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Abstract. Post-quantum cryptography introduces cryptographic algo-
rithms that are secure against adversaries who can employ a quantum
computer and it is the inevitable next-step in the evolution of the cryp-
tographic algorithms. In order to create a conventional foundation the
National Institute of Standards and Technology (NIST) started a com-
petition for Post-Quantum Cryptography in 2017.

This paper introduces the first differential side channel analysis of a
candidate in the competition; the Picnic Signature Scheme. We present
a successful side channel analysis of the underlying Multiparty LowMc
implementation and show how leakages can be exploited to recover the
entire secret key using two different parts of the algorithm. LowMc key re-
covery then allows to forge signatures for the calling Picnic post-quantum
signature scheme. We target the NIST reference implementation exe-
cuted on a FRDM-K66F development board. Key recovery succeeds with
less than 1000 traces, which can be obtained from less than 30 observed
Picnic signatures.

Keywords: Picnic Signature Scheme · LowMc · Multiparty Computa-
tion · Power Analysis · DPA.

1 Introduction

The recent trends in security show that public key cryptography is an indispens-
able component of secure communication. Because of our constant evolution in
computer science, the existence of usable quantum computers might not be too
far away from reality. Quantum computers which can perform much more power-
ful computations could break most of the widely used public key cryptographic
schemes, due to Shor’s algorithm [26]. Despite the possibility that there may
never be quantum computers that are able to process enough bits to break the
current public key schemes, we should still be prepared for the development of
these types of quantum computers and expand the portfolio of deployable public
key schemes. NIST started a competition for Post-Quantum Cryptography in
2017 and is currently in the second round of the submissions.
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However, the security of cryptographic systems does not only require resis-
tance to purely computational cryptanalysis. For practical implementations, re-
sistance to other attacks such as physical side channel attacks is also relevant. A
wide range of such attacks has been shown to reveal secret keys with little effort,
especially if no countermeasures were taken during implementation. Two main
classes of physical attacks are fault injection attacks and passive side channel
attacks. Fault injection attacks manipulate the (secret) state of a cryptographic
scheme, while it is performing an encryption or signing operation. Afterwards,
the attacker tries to extract information about the scheme’s secret key, from
the faulted output of the scheme [7,6]. Similarly, the information derived from
power [20], sound [15], or electromagnetic emanation [13] of a target that runs
an unprotected cryptographic implementation can reveal information regarding
the secret state. The impact of side channel analysis is shown in the literature
ranges from high-speed CPU’s [14] to virtual machines in cloud systems [17].
Furthermore system-on-chip embedded platforms [21] and even white-box im-
plementations [8] are vulnerable to these kind of attacks.

Differential power analysis (DPA) is one of the most popular side channel
attacks and was originally proposed by Kocher et al. [20]. The main idea is to
measure the power consumption of a device, while it is performing a crypto-
graphic operation and correlate it with key related information that is already
known to the attacker. The impact of this attack is shown in the literature in
works such as [23] and [25]

Prior work has already shown, that post-quantum cryptographic schemes on
embedded systems are vulnerable to side channel attacks [27]. In 2018, Park
et al. [24] presented that correlation power analysis can be applied to signa-
ture schemes based on multivariate quadratic equations namely; UOV [19] and
Rainbow [11]. Side channel properties of hash based signatures have also been
analyzed [12,9]. Recent work by Aranha et al. [5] analyses the security of Fiat-
Shamir based signature schemes against fault attacks.

Our Contribution: This work analyses the side channel vulnerability of the Pic-
nic scheme [10], with a focus on DPA attacks. Picnic is a candidate in the second
round of the ongoing NIST PQC competition. We present the first successful side
channel analysis of the Picnic signature scheme, by analysing its core compo-
nent; MPC-LowMc. We explore the security features of MPC-LowMc and its
direct effects on the security of the whole signature scheme. We used the ref-
erence implementation of MPC-LowMc on a FRDM-K66F development board
and managed to collected electromagnetic emanation from it. Based on this, we
recover the secret key from MPC-LowMc using two different attacks: an attack
on the secret sharing process and an attack on the multi party computation
of the Sbox layer. The first attack, is able to recover Picnic’s secret key from
less then 5000 power traces, which corresponds to around 30 observed Picnic
signatures. The second attack can be used to leak 30 bits of secret key related
information from each round of the MPC-LowMc cipher. However, this step can
be repeated, to form a system of linear equations, whose solution is the 128 bit
secret key of the Picnic scheme. Whether the information obtained in the first
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step leads to linear independent equations or not depends on the randomised
matrices that are used by MPC-LowMC. In practice, we were able to solve the
system of linear equations by combining the information obtained from the first
five rounds of the MPC-LowMc cipher. For longer key sizes, like 196 or 256 bits,
we can just use more rounds, to receive 220 or 280 linear equations.

Outline of the Paper: In Section 2, we introduce the basic notations and def-
initions. In Section 3 we explain our target implementation with the practical
setup and the implication of our attack on MPC-LowMc to the Picnic scheme.
The attack on the secret sharing process and the attack on the Sbox layer are
explained in Section 4 and Section 5 respectively. Moreover each attack section
is supported by experimental results.

2 Preliminaries

In this section, we provide the definitions used in this paper. We start with
the differential power analysis. DPA is first introduced by Kocher et al. [20] and
analyses side channel leakage over many different traces, selecting the most likely
secret values using a statistical test.

In order to implement DPA, an adversary first selects an intermediate vari-
able which is a function (f) of a secret value and a known value (such as plaintext
or ciphertext) . In the next step, the adversary chooses a function φ, that models
how a register value influences the power consumption. Common models are the
hamming weight or a single bit [22] of the register. We refer to this function as
the key hypothesis. In the second step the adversary collects a large number of
side channel traces to implement a statistical analysis.

In our analysis we use a simple correlation as our statistical tool. For each
key candidate k∗ ∈ K 1 we form the following set:

(φ(f(p1, k
∗)), . . . , φ(f(pN , k

∗))),

where N is the number of traces and pi for 1 ≤ i ≤ N is the known input.
This set is then applied to the statistical tool together with the side channel
measurements. The statistical analysis results in an observable peak for the
correct key hypothesis, while wrong keys reside within a threshold.

In order to present our target implementation, we first need to introduce
the underlying scheme. LowMc [4] is a flexible block cipher with low AND
depth. Thus it is a suitable cipher for Secure Multi-Party Computation (MPC),
Zero-Knowledge Proofs (ZK) and Fully Homomorphic Encryption (FHE). An
overview of the structure of the scheme with the parameters (n, k, r) where n, k
and r denotes block length, key size and number of rounds respectively, can be
found in Algorithm 1. The details of the ith round are as follows:

1 |K| is small enough to process the analysis and generally it ranges from 24 to 28.
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Algorithm 1 LowMc Encryption Scheme

Input: Key matrices KMi∈[1,r] ∈ Fn×k
2 , Linear matrices LMi∈[1,r] ∈ Fn×n

2 , Round
constants RCi∈[1,r] ∈ Fn

2 , a plaintext p ∈ Fn
2 and a secret-key ks ∈ Fn

2

Output: Ciphertext s ∈ Fn
2 such that s = LowMc(p, ks).

1: s← (KM0 · ks)⊕ p . Initial Key Addition
2: for 1 ≤ i ≤ r do
3: s← Sbox(s) . SboxLayer

4: s← LMi · s . LinearLayer

5: s← RCi ⊕ s . ConstantAddition

6: s← (KMi · ks)⊕ s . KeyAddition

7: return s

1. SboxLayer: The round function consists of multiple parallel application of
the same 3 × 3 Sbox as shown in Equation (1). However only a part of the
state is processed by the Sbox layer and the remaining bits stay unchanged.

Sbox(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab). (1)

2. LinearLayer: The state is multiplied with a random and invertible matrix
LMi, where LMi ∈ Fn×n

2 .
3. ConstantAddition: A constant vector RCi is added to the state, where
RCi ∈ Fn

2 .
4. KeyAddition: The round key ki is added to the state, where ki is obtained

by the multiplication of the key matrix KMi where KMi ∈ Fn×k
2 and ks is

the master-secret key .

ZKBOO decomposition and Picnic Signature Scheme: Zero knowledge for boolean
circuits (ZKBOO) is a protocol introduced by Giacomelli et al. [16], that can
prove the knowledge of a preimage of a one-way function f , such that f(x) = y,
without leaking any information on x. The main idea of ZKBOO is to use MPC-
in-the-head paradigm introduced in [18].

In the ZKBOO scheme, the verifier and the prover both know the output
y. However, the prover is the only one, that knows x, such that y = f(x). The
prover then calculates f(x) using a z-privacy circuit decomposition of f , i.e. at
least z shares are required to reconstruct x. The scheme can be summarized as
follows: The prover runs the MPC-Circuit multiple times and commits to each
of the generated views, before sending the committed values to the verifier. The
verifier then requests the prover to open the commitment of some (less than z)
shares from each execution and checks the revealed values for consistency. As
less than z shares of each run are opened, the verfier does not learn anything
about x.

The Picnic scheme introduced by Chase et al. [10], uses ZKB++ (which is
an improved version of ZKBOO) to create signatures. They chose the LowMc
cipher as the one-way function f , because it only requires amount of AND gates,
greatly reducing the complexity of the circuit decomposition.
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Fig. 1. Overview of the Picnic signature scheme where m is constant plaintext that is
used in LowMc such that LowMc(m, ks) = y, sk = ((y,m), ks) is the secret key and
pk = (y,m) is the public key. The figure is adapted from [5].

An overview of the Picnic signature scheme can be seen in Figure 1. As seen
in the figure, the MPC-LowMc circuit is the foundation of the scheme. Next, we
describe our attacks on the MPC-LowMc part of the scheme. The aim of the
attacks is to recover the secret key ks which is also the secret key used in Picnic.

3 DPA on LowMc and The Extensions to Picnic

In Figure 1 we can see the signing process of Picnic. Our goal is to apply a DPA
attack on MPC-LowMC, to gain information about intermediate state values
which then will be used to recover the secret key. As our target, we focus on the
reference implementation given by the authors [3] that uses the Unruh transfor-
mation with security parameters L1. However, our attacks are independent of
the actual transformation (Fiat-Shamir or Unruh Transformation), and can be
adapted to the different security parameters.

Attacker Model: We model an adversary who has physical access to a target
device, running the Picnic signature scheme. In particular, the attacker is able to
measure the side channel information, such as power electromagnetic emanation,
during the signing of any message and can obtain the valid signature in a known-
plaintext scenario. Remark, that the signed message does not affect our model,
since the message does not change the computation performed by LowMc, which
is based on a fixed (and public) input m and a secret key ks.

3.1 Experimental Setup

All experiments are performed on an embedded test platform. We ported the
relevant parts of the Picnic reference implementation from the NIST round 2
submission of Picnic [3] to the FRDM-K66F development board.

Modifications to the Code: As the Picnic reference implementation needs a lot
of RAM to save all the MPC-Rounds, we modified the code to be able to let the
algorithm run on the device. Since the relevant part of the signature generation
are the calls to LowMC, we only execute the shared MPC-LowMc computations
on the board. As customary, we also placed a trigger before the start of the
LowMc calls to make the attack easier in our setting and to save us some effort.
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Fig. 2. An annotated example EM trace for one round of LowMc.

Measurement Setup: For our test purposes, we choose the FRDM-K66F devel-
opment board, that features an NXP MK66FN2M0VMD18 Cortex-M4F MCU,
which can be clocked at up to 180 MHz, with 2MB flash memory and 256 KB
SRAM. Measurements were taken using a Tektronix MSO6 at 312.5 MHz sam-
pling rate. We collected a total of 20000 traces using a Langer EM Probe [2]
placed at the C37 0.1µF blocking capacitor of the FRDM-K66F development
board [1]. The MCU was clocked at 120MHz.

An example trace starting with the secret sharing until the end of the first
SboxLayer can be seen in Figure 2, which contains the relevant initial operations
as well as operations from the first round of MPC-LowMC. The 10 shared Sbox
computations are on the right hand side, while the secret sharing happens early,
as indicated on the left hand side. We applied a minimal pre-processing step, of
cutting the necessary part for each attack. Furthermore, we compressed 10 data
points to 1, by applying the mean over these 10 points, effectively reducing the
sampling rate and noise.

4 Attack on the Secret Sharing Process

In this section, we introduce our first attack which targets the secret sharing
process of the MPC-LowMc reference implementation. As seen in Figure 2, the
secret sharing process is located before the actual MPC-LowMc part starts. We
start with a theoretical explanation of the attack which is followed by experi-
mental results.

To set up the model we focus on the description of the secret sharing of the
secret key ks in the scheme. First, two n bit keys for two players k0 and k1 are
generated randomly. Using the generated keys (or key shares), the key share for
the last player k2 is calculated as follows:

k2 = ks ⊕ k0 ⊕ k1.

During the challenge/opening phase of the Picnic scheme, the key shares of
two players are revealed. In the following analysis, we focus on Challenge 0 (C0),
which reveals k1 and k2. The power trace of a simple xoration does usually not
reveal enough information to apply a side channel attack. However, in the case
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Fig. 3. Left side: DPA using 5000 sample points and 20.000 traces. Right side: The
change of absolute values of DPA results with respect to number of traces. Although
we can see a positive peak in the first figure, the second figure shows that the correct
key is distinguishable with less that 2000 traces.

of Picnic, k2 is the result of two chained xor operations. We can imagine that
the output of ks ⊕ k0 is saved in a register R and then continuously used to be
xored with k1. Thus, we build our hypothesis for the point where we xor the
second key with the intermediate result ks ⊕ k0. For each key candidate k∗ ∈ K
we produce the hypothesis value as follows:

Hk∗ = HW(k∗ ⊕ k0 ⊕ k1), (2)

where HW is the hamming weight function. That is the function φ (defined
in Section 2) is selected as the hamming weight function. Using the hypothesis
values Hk∗ for all k∗ ∈ K (where K denotes the key space), we can implement a
statistical analysis and the best key candidate reveals ks.

4.1 Experimental Results

The resulting correlation for the key hypothesis with 5.000 sample points and
20.000 traces can be seen on the left hand side of Figure 3 which shows the
correlation values for the first byte of the secret key. Furthermore, on the right
hand side of Figure 3, we present the change in the correlation results for each
key guess with respect to the number of traces. We can see 9 clusters for the
different key guesses based on the hamming weight values (which can take values
between zero and eight). As seen in the figure we were able to recover the secret
key with 2000 traces.

5 Attack on the Substitution Layer

In order to explain the attack, let us first denote the MPC-LowMc players as
P0, P1, P2 and their states as p0, p1 and p2 respectively. Also we denote a
(theoretical) unshared version (player Pr) of the state as pr, i.e. pr = p0⊕p1⊕p2.
Furthermore, the tapes which contain the random values that are produced by
player Pi is denoted by ti and the challenges are denoted by Ci.
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We focus on the SboxLayer of the LowMc cipher in the MPC settings and
compare them with the unmasked state values. That is, we analyze the state
values of LowMc(m, ks) with MPC-LowMc(m, ks), where m is the constant (and
predefined) message and ks is the secret key. MPC-LowMc starts by initialising
the state of Pi with ki. As seen in Algorithm 1, the plaintext (or the message
in our case) is xored with the key value. In the MPC setting, this step is only
performed for the first player’s state. In the unmasked LowMc version we set
the Pr state to the value KM0 · ks ⊕ m. In summary, the initial states of the
MPC-LowMc (p0, p1, p2) variant and the (imaginary) LowMc variant (pr) are as
follows:

– p0 ← KM0 · k0 ⊕m,
– p1 ← KM0 · k1,
– p2 ← KM0 · k2,
– pr ← KM0 · ks ⊕m.

Keep in mind, that the state of Pr always equals to the xoration of all other
players’ corresponding states, i.e. pr is equal to p0⊕p1⊕p2 at any given time. We
build our hypothesis on this fact. The initial state operations are followed by the
SboxLayer. We remark Equation (1) where we introduce the Sbox operation;

S(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab).

In the MPC-LowMc setting, the Sbox is defined according to the linear de-
composition of the binary multiplication gate. That means that the players need
to communicate their bits according to the definition by ZKBOO [10], to se-
curely calculate the values ab, bc and ac. Assume, that the values ab, bc and ac
are calculated in the MPC setting and the state values for Pi are denote by ai,
bi, ci, [ab]i, [bc]i and [ac]i respectively (for example ab = [ab]0 ⊕ [ab]1 ⊕ [ab]2).
Each player calculates the following equations in order to generate the shared
representations of the state values:

[bc]i = bici ⊕ bjci ⊕ bicj ⊕ rbci ⊕ rbcj
[ac]i = aici ⊕ ajci ⊕ aicj ⊕ raci ⊕ racj
[ab]i = aibi ⊕ ajbi ⊕ aibj ⊕ rabi ⊕ rabj

(3)

where j = i + 1 mod(3) and rabi (resp. raci and rbci ) represents the random
bit that is generated by the ith player while calculating the output share of [bc]i
(resp. [ac]i and [bc]i). After the communication step, each player calculates its
share of the state (i.e. output of the Sbox operation). The output state of Pi can
be calculated as follows:

Sbox(ai, bi, ci) = (ai ⊕ [bc]i, ai ⊕ bi ⊕ [ac]i, ai ⊕ bi ⊕ ci ⊕ [ab]i) (4)

In Picnic, n runs of the MPC-LowMc are pre-computed. Next, in the chal-
lenge response phase, two players’ keys and random tapes are opened. For ex-
ample, the values ai, bi, and ri for i = 1, 2 are opened during the challenge C0.
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Fig. 4. SboxLayer calculation for MPC-LowMc (left hand side) and LowMc (right hand
side). Dashed boxes and arrows represent the values that are not opened during the
challenge C0 and pi (resp. p′i) represents the state of Pi before (resp. after) the Sbox
operation

A brief summary of challenge C0 can be seen in Figure 4. In the representation
we use the notation pi (resp. p′i) to represent the state of Pi before (resp. after)
the Sbox operation.

Setup and Hypothesis: Similar to the previous attack, we focus on the challenge
C0. However, the attack can be adapted to other challenges C1 and C2. We
know that in any instance of the cipher, the equation pr = p0 ⊕ p1 ⊕ p2 holds.
Moreover, LowMC uses the same plaintext every run, which means that the state
pr, is constant before each Sbox operation in every run. Thus we can build our
hypothesis on the state of Pr which can be seen in Figure 4.

We define a state-guess k∗ of Pr of the Sbox and call the corresponding
state pk∗ . The aim of the DPA attack is to get knowledge of the state of P2. As
mentioned before, we cannot directly recover it with a first order DPA attack
(due to the circuit decomposition), as we would need to guess the actual state
as well as the random value/mask. However, we can exploit the structure of
MPC-LowMC, to recover the random mask based on a key guess and the values
opened in challenge C0. This way, we can again use a first order DPA attack, to
recover key related data. Here is the summary of the attack steps:

1. For each k∗ ∈ K (in the LowMc case K := F3
2) compute the state of player

P2 as: p̃2 = p0 ⊕ p1 ⊕ pk∗ .
2. Compare the opened output-share p′1 with the Sbox(p1, p̃2, r1,∼), where ∼

indicates the calculations are processed as in Equation (4) without using the
randomness produced by P2 to have a guess value on r2.

r̃2 = p′1 ⊕ Sbox(p1, p̃2, r1,∼)

where ri = (rabi , r
bc
i , r

ac
i ) denotes the set of random bits generated by Pi.

The 3-bit state values p1 (and corresponding random values r1) are opened
during the challenge C0.

3. Calculate the Sbox output for guessed state of P2,

p′2H = Sbox(p1, p̃2, r1, r̃2).
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Algorithm 2 DPA Attack on the State of LowMc.

Input: A set of state values p1, p2, p′1, p′2 and random values r0 and r1. A side channel
trace T .

Output: Best key candidate k∗.
1: for all k∗ ∈ K do
2: p̃2 = p1 ⊕ p2 ⊕ pk∗ . state guess of P2

3: r̃2 = p′1 ⊕ Sbox(p1, p̃2, r1,∼) . calculate the mask depending on the guess
4: p′2H = Sbox(p̃2, p0, r0, r̃2) . output state based on key guess k∗
5: R← corr(φ(p′2H), T ) . proceed with the statistical analysis.

6: return best key candidate k∗

4. DPA: proceed a statistical analysis using φ(p′2H) with the power consumption
of the device.

For the correct guess k∗, the output for the Step-2 will result in the mask
which is used from P2 during the communication of the bits for the state of
p′1. With the knowledge of the mask for P2, we can build a hypothesis H on
the output bits of P2 as in Step-3. Our hypothesis H will therefore be p′2H =
Sbox(p1, p̃2, r1, r̃2) which simulates the hypothetical intermediate output of the
Sbox for P2. We can then correlate it with the power consumption of the device to
apply to our DPA attack. A more compact description of the attack can be found
in Algorithm 2. The state values p1 and p2 (resp. r1 and r2) represents the set of
state values with N elements where N is the number of measurements such as pi
denotes the set of state values for Pi for N measurement i.e. pi = {p1i , . . . , pNi }.

5.1 Experimental Results

In order to experimentally verify our attack we focused on the first round of
MPC-LowMc. Due to the SboxLayer structure of LowMc, only the first 30-bit
state goes through Sbox operations therefore we can only recover 30 bit key-
information of the first round key.
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In Figures 5, we present the DPA of the 3 output bits of the 10th Sbox for
20000 traces. We see that the two lines corresponds to the key guesses are the
inverse of each other. As a result of our measurement setup, the negatives peaks
correspond to the device’s current and therefore give us the correct bits.

By looking at the correlation figures for bit 1 to 3, we can see a strong
characteristics peaks. By overlaying the 3 figures we see that the peaks occurs
at almost the same points in time. Remark that Sbox structure of LowMc has
some characteristics(as seen in Equation (1)), such as first input bit a is xored
with the first, the second and the third output bit. Therefore, when we build our
hypothesis on the first bit of the Sbox output (i.e a ⊕ bc), the guessed value is
highly correlated with the second and the third output bit. Thus, we see three
peaks in the first figure. Similarly in the second one (where we guess the a⊕b⊕ac)
we see two peaks and in the last one we can see only one peak.

On the basis of the observed structure, we can see that our model fits well
for the MPC structure. In Figure 6, we can see the distinguishability of the three
bits of the 10th Sbox. We can see that no more than 1000 traces are needed to
clearly identify the correct key.
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Fig. 6. Attack on 10th Sbox using first and third bit respectively. Correct key is dis-
tinguishable with less than 1000 traces.

The attack uses the opened state values of the two players, such as P0 and P1.
Therefore the attack can be implemented independently to the deeper rounds
to recover key-related information. As the scheme uses a constant plaintext for
all challenges, the unshared state Pr is constant for every run. That means, our
attack can be applied for every round to receive 30 bits key-related information.
However, the interpretation of this information is not straightforward. Therefore,
in the next section, we introduce an algebraic key recovery analysis in order to
generate the connection between the recovered information from deeper rounds
with the secret key ks.

5.2 Algebraic Key Recovery

In Section 5, we described how to gain key-related information using a side
channel analysis. In this section, we combine this information to recover the
secret key.
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The main idea of the analysis, is to gain information by analysing the con-
nection between recovered states and the secret key in use. We consider the
following system of linear equations Uks = V where ks is an n-bit secret key, U
is a m × n matrix (where m depends on the number of analyzed rounds) and
V is a n× 1 matrix. In the following, we explain how to produce such a system
to recover the secret key ks. To achieve this, we propose the following iterative
method and we form the equations Uiks = Vi using the attack on the ith round
to characterise the connection between secret-key and recovered-state values.

In the analysis, the notation U [i : j] is used to denote the rows of a matrix
between ith and jth index. The ith round state before and after SboxLayer is
denoted by pi and p′i respectively. Remark that, the LowMc Sbox layer does
not cover the whole state, and only 30-bit state processed by the Sbox layer i.e.
p′i = Sbox(pi)[1 : 30]||p′i[31 : 128]. We start with the attack on the initial step or
zero round attack.

Zero Round Attack: We can recover the 30 bits of the initial key, as given in
the previous section. Remark, that the recovered bits correspond to line 1 of
Algorithm 1 and the recovered information is k0[1 : 30]. Therefore, the equation
can be formed as:

U0 = KM0 and V ← k0

The solution parameters for the initial stage are determined as follows:

U [1 : 30]← KM0[1 : 30] and V[1 : 30]← k0[1 : 30].

ith-Round Attack: Using the above analysis we can repeat the same procedure
for the deeper rounds. First of all we reformulate the state values as follows:

pbi+1 = LMi(SBox(pi))⊕RCi ⊕KMiks

= LMi(p
′
i[1 : 30] || pi[31 : 128])⊕RCi ⊕KMiks

= LMi(p
′
i[1 : 30] || (Ui−1ks ⊕ ti−1)[31 : 128])⊕RCi ⊕KMiks

= LMi(p
′
i[1 : 30] || ti−1[31 : 128])⊕ LMi(Z || (Mi−1ks))[31 : 128])⊕RCi ⊕KMiks

where Z is a 30 × 128 zero matrix. Using this state representation we can
define the system of linear equations Uiks = Vi as:

– Ui = LMi(Z||(Ui−1))[31 : 128])⊕KMi and
– Vi = LMi(p

′
i[1 : 30]||ti−1[31 : 128])⊕ pi+1[1 : 30]⊕RCi[1 : 30].

and update the state value as:

– ti = LMi(p
′
i[1 : 30]||ti−1[31 : 128])⊕RCi

After forming the equation as above, we can collect the indexes correspond
to the 30-bit state information. Hence, we update the solution matrices U and
V as follows:

– U [30i+ 1 : 30(i+ 1)]← Ui[1 : 30]
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Algorithm 3 Algebraic Key Recovery

Input: The state values recovered using DPA, pi[1 : 30] for i = 0, . . . , n.
Output: ks
1: U0 = KM0 and t0 = m
2: U [1 : 30]← U0[1 : 30] and V[1 : 30]← k0[1 : 30]
3: for Round i = 1 to n do
4: Ui = LMi(Z||(Ui−1)[31 : 128])⊕KMi

5: Vi = LMi(p
′
i[1 : 30]||ti−1[31 : 128])⊕ pi+1[1 : 30]⊕RCi[1 : 30]

6: ti = LMi(p
′
i[1 : 30]||ti−1[31 : 128])⊕RCi

7: U [30i+ 1 : 30(i+ 1)] = Ui[1 : 30] . Update the coefficient Matrix
8: V[30i+ 1 : 30(i+ 1)] = Vi[1 : 30] . Update the solution Matrix

9: Return Solution of U · ks = V

– V[30i+ 1 : 30(i+ 1)]← Vi[1 : 30]

This calculation holds for any round, thus we can generate equations for 30
rows of Ui with the solution in Vi. After collecting enough equations, we can
solve the system Uks = V with a simple Gaussian elimination and recover the
secret key. As we gain 30 equations per observed round, 5 rounds suffice to make
the search space small enough to recover the key quickly.

6 Conclusion

In this work, we provided the first side channel analysis of the Picnic signature
scheme, a family of digital signature schemes secure against attacks by quantum
computers. We showed that the core part of the scheme, LowMc is vulnerable
to side channel attacks. By exploiting the features of the known shares for side
channel analysis, we were able to recover 30-bits of each round state of LowMc.
We showed how to use this information, to derive a straightforward algebraic
key recovery by solving a system of linear equations. The simple algebraic attack
gave us a solution space for key candidates which can be searched easily. Our
analysis showed, that we can recover the secret key with less than 2000 traces
for a specific challenge, depending on the attack.

We further showed, how the attack which only targets the secret sharing
part can be extended to completely recover the secret key of Picnic. As one
Picnic signature contains at least 219 calls to LowMc, as little as 30 signatures
suffices to recover the secret key even if we only use traces for one particular
unknown party. These results highlight the need for side channel protection for
Picnic. When compared to classic block cipher protection, the MPC-in-the head
rather makes the attack easier, as known inputs are available for all rounds of
computation.
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