
An Optimal Relational Database Encryption Scheme

Seny Kamara ∗
Brown University

Tarik Moataz†
Aroki Systems

Stan Zdonik ‡
Brown University

Zheguang Zhao§
Brown University

Abstract

Recently, Kamara and Moataz described the first encrypted relational database solution
with support for a non-trivial fraction of SQL that does not make use of property-preserving
encryption (Asiacrypt, 2018). More precisely, their construction, called SPX, handles the set of
conjunctive SQL queries. While SPX was shown to be optimal for the subset of uncorrelated
conjunctive SQL queries, it did not handle correlated queries optimally. Furthermore, it only
handles queries in heuristic normal form. In this work, we address these limitations by proposing
an extension of SPX that handles all conjunctive SQL queries optimally no matter what form
they are in.

∗seny@brown.edu
†tarik@aroki.com
‡sbz@cs.brown.edu
§zheguang.zhao@brown.edu

1

Contents

1 Introduction 3

2 Preliminaries 4

3 Definitions 7

4 The OPX Construction 9
4.1 Efficiency . 17

5 Security and Leakage of OPX 18
5.1 Black-Box Leakage Profile . 19
5.2 Security of OPX . 21
5.3 Concrete Leakage Profile . 21

A Proof of Theorem 4.1 27

B Proof of Theorem 5.1 28

C A Concrete Example of Indexed HNF 32

2

1 Introduction

End-to-end encrypted relational database management systems encrypt relational database in such
a way that they can be be privately queried. This problem was first considered by Hacigümüs,
Iyer, Li and Mehrotra [15] who used a quantization-based approach that leaked the range within
which an item fell. In [1], Popa, Redfield, Zeldovich and Balakrishnan described a system called
CryptDB that could support a non-trivial subset of SQL without quantization. CryptDB achieved
this in part through the use of property-preserving encryption (PPE) schemes like deterministic
and order-preserving encryption [2, 4, 5]. This approach was adopted by other systems including
Cipherbase [3] and SEEED [23]. While these systems were efficient and legacy-friendly, it was shown
by Naveed, Kamara and Wright [21], that they leaked a non-trivial amount of information.

An alternative approach to designing encrypted databases is to use structured encryption (STE)
[9] which is a generalization of index-based searchable symmetric encryption [24, 11]. STE-based
systems leak less than their PPE-based counterparts while achieving similar efficiency. Initial
STE-based solutions, however, have had two major limitations. The first is that they are not
legacy-friendly and require custom database management systems. The second is that they could
only handle a limited fraction of SQL. For example, systems based on standard STE techniques
like Blind Seer [22, 12] and ESPADA [7, 6] can handle filtering and range queries but not joins or
projections. This limitation was addressed recently by Kamara and Moataz [16] who proposed an
STE-based scheme called SPX that handles a non-trivial fraction of SQL queries; specifically the
set of conjunctive SQL queries, which have the form,

SELECT attributes FROM tables WHERE att1 = a ∧ att2 = att3.

In addition to handling a large subset of SQL queries, the SPX construction was also shown to be
efficient and even optimal for the subset of uncorrelated queries which, roughly speaking, are queries
of the above form where the attributes are all distinct and from different tables. Though SPX is
practical, it is not efficient enough to yield a system that is competitive with commercial plaintext
database management systems (DBMS). This stems from several reasons which we now discuss.

Query processing and optimization. Database systems process SQL queries in a series of
steps. First, a SQL query is converted into a logical query tree which is a tree-based representation
of the query where each node is a relational algebra operator. Query trees are evaluated bottom
up by evaluating the operators at the leaves on the appropriate database tables. The intermediate
table that results from an operation is then passed on to its parent node until the final result table
is output by the root. The initial query tree is then converted by a query optimizer to an equivalent
but optimized query tree using various optimization techniques.

Query optimizers are one of the most important components of a DBMS and a large part of
why commercial systems are so efficient. It follows then that for encrypted database systems to
be competitive with commercial systems, they must support some form of query optimization. As
described, however, the SPX construction does not allow for query optimization because it only
handles queries in heuristic normal form (HNF) which is a very specific form of query tree.

An overview of SPX. We briefly recall how SPX works at a high-level. First, note that any
conjunctive SQL query can be represented as an SPC query [8] which, in turn, can be represented
as a query tree with select/filter, projection and cross product operations. SPX makes use of two
kinds of encrypted data structures: encrypted multi-maps (EMM) which map encrypted labels to

3

encrypted tuples and encrypted dictionaries which map encrypted labels to encrypted values. A
database DB = (T1, . . . ,Tn) is encrypted as EDB = (EMMR,EMMC ,EMMV ,EDX) where EMMR

and EMMC store encryptions of the rows and columns in the database, respectively; where EMMV

is used to process filter operations and where EDX is an encrypted dictionary that stores a set
of encrypted multi-maps {EMMc,c′}c,c′∈DB that are used to process joins between columns c and
c′. Given a query tree, SPX evaluates leaf operations by querying one of its EMMs directly and
then uses various algorithms to process the internal operations on intermediate results. While the
leaf operations are handled optimally thanks to the EMMs, internal operations are not necessarily
handled in optimal or even sub-linear time.

Sub-optimality of correlated queries. Another source of SPX’s sub-optimality is comes from
how it handles correlated queries. Roughly speaking, a conjunctive SQL query is uncorrelated if the
terms of its WHERE clause include attributes/columns that are in different tables. The query trees of
uncorrelated queries are relatively simple: they have height 1 with leaves that are either join or
filter operations and a root that is a Cartesian product. From the discussion above, one can see
that SPX can handle these queries very efficiently since leaf operations are evaluated optimally by
directly querying the EMMs. Correlated queries, on the other hand, have query trees of height 2
or more which means they have internal operations which, as discussed above, are not necessarily
handled optimally.

Our contributions. In this work, we describe an extension of the SPX construction [16], called
OPX, that supports query optimization and handles all conjunctive SQL queries optimally. It
does this by using additional encrypted structures that are designed to optimally handle internal
operations. These additional structures include an encrypted set structure to handle internal filters
and an additional set of encrypted multi-maps to handle internal joins. These additional structures
increase the storage overhead but only concretely; asymptotically-speaking OPX has the same
storage overhead as SPX. The leakage profile of OPX is also similar to that of SPX. In addition
to executing internal operations more efficiently, OPX has the advantage that it can handle any
query tree; not just HNF trees. This is an important feature because it means that OPX can be
used to query trees that have been optimized by standard query optimizers.

Related work. Since we already discussed related work on encrypted database schemes and
systems, we omit a formal related work section.

s

2 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite
binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}. We write x ← χ to represent an
element x being sampled from a distribution χ, and x $← X to represent an element x being sampled
uniformly at random from a set X. The output x of an algorithm A is denoted by x← A. Given a
sequence v of n elements, we refer to its ith element as vi or v[i]. If S is a set then #S refers to its
cardinality. If s is a string then |s| refers to its bit length.

4

Basic cryptographic primitives. A private-key encryption scheme is a set of three polynomial-
time algorithms Π = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a security
parameter k and returns a secret key K; Enc is a probabilistic algorithm that takes a key K and a
message m and returns a ciphertext c; Dec is a deterministic algorithm that takes a key K and a
ciphertext c and returns m if K was the key under which c was produced. Informally, a private-key
encryption scheme is secure against chosen-plaintext attacks (CPA) if the ciphertexts it outputs do
not reveal any partial information about the plaintext even to an adversary that can adaptively
query an encryption oracle. We say a scheme is random-ciphertext-secure against chosen-plaintext
attacks (RCPA) if the ciphertexts it outputs are computationally indistinguishable from random
even to an adversary that can adaptively query an encryption oracle.1 In addition to encryption
schemes, we also make use of pseudo-random functions (PRF) and permutations (PRP), which
are polynomial-time computable functions that cannot be distinguished from random functions by
any probabilistic polynomial-time adversary. We refer the reader to [20] for formal definitions of
CPA-security, PRFs and PRPs.

Basic structures. We make use of several basic data types including dictionaries and multi-maps
which we recall here. A dictionary DX of capacity n is a collection of n label/value pairs {(`i, vi)}i≤n
and supports get and put operations. We write vi := DX[`i] to denote getting the value associated
with label `i and DX[`i] := vi to denote the operation of associating the value vi in DX with label `i.
A multi-map MM with capacity n is a collection of n label/tuple pairs {(`i, ti)i}i≤n that supports
get and put operations. Similarly to dictionaries, we write ti := MM[`i] to denote getting the tuple
associated with label `i and MM[`i] := ti to denote operation of associating the tuple ti to label `i.
Multi-maps are the abstract data type instantiated by an inverted index. In the encrypted search
literature multi-maps are sometimes referred to as indexes, databases or tuple-sets (T-sets).

Relational databases. A relational database DB = (T1, . . . ,Tn) is a set of tables where each
table Ti is a two-dimensional array with rows corresponding to an entity (e.g., a customer or
an employee) and columns corresponding to attributes (e.g., age, height, salary). For any given
attribute, we refer to the set of all possible values that it can take as its space (e.g., integers,
booleans, strings). We define the schema of a table T to be its set of attributes and denote it S(T).
The schema of a database DB = (T1, . . . ,Tn) is then the set S(DB) =

⋃
i S(Ti). We assume the

attributes in S(DB) are unique and represented as positive integers. We denote a table T’s number
of rows as ‖T‖r and its number of columns as ‖T‖c.

We sometimes view tables as a tuple of rows and write r ∈ T and sometimes as a tuple
of columns and write c ∈ Tᵀ. Similarly, we write r ∈ DB and c ∈ DBᵀ for r ∈

⋃
i Ti and

c ∈
⋃
i T

ᵀ
i , respectively. For a row r ∈ Ti, its table identifier tbl(r) is i and its row rank rrk(r)

is its position in Ti when viewed as a tuple of rows. Similarly, for a column c ∈ Tᵀ
i , its table

identifier tbl(c) is i and its column rank crk(c) is its position in Ti when viewed as a tuple of
columns. For any row r ∈ DB and column c ∈ DBᵀ, we refer to the pairs χ(r) def= (tbl(r), rrk(r))
and χ(c) def= (tbl(c), crk(c)), respectively, as their coordinates in DB. We write r[i] and c[i] to refer
to the ith element of a row r and column c. The coordinate of the jth cell in row r ∈ Ti is the
triple (i, rrk(r), j). Given a column c ∈ DBᵀ, we denote its corresponding attribute by att(c). For

1RCPA-secure encryption can be instantiated practically using either the standard PRF-based private-key encryption
scheme or, e.g., AES in counter mode.

5

any pair of attributes att1, att2 ∈ S(DB) such that dom(att1) = dom(att2), DBatt1=att2 denotes the
set of row pairs

{
(r1, r2) ∈ DB2 : r1[att1] = r2[att2]

}
. For any attribute att ∈ S(DB) and constant

a ∈ dom(att), DBatt=a is the set of rows
{
r ∈ DB : r[att] = a

}
.

SQL. In practice, relational databases are queried using the special-purpose language called SQL.
SQL is a declarative language and can be used to modify and query a relational DB. In this work,
we only focus on its query operations. Informally, SQL queries have the form

SELECT attributes FROM tables WHERE condition,

where attributes is a set of attributes/columns, tables is a set of tables and condition is a predicate
over the rows of tables and can itself contain a nested SQL query. More complex queries can be
obtained using Group-by, Order-by and aggregate operators (i.e., max, min, average etc.) but the
simple form above already captures a large subset of SQL. The most common class of queries on
relational DBs are conjunctive queries [8] which have the above form with the restriction that
condition is a conjunction of equalities over attributes and constants. In particular, this means there
are no nested queries in condition. More precisely, conjunctive queries have the form

SELECT attributes FROM tables WHERE
(
att1 = X1 ∧ · · · ∧ att` = X`

)
,

where atti is an attribute in S(DB) and Xi can be either an attribute or a constant.

The SPC algebra. It was shown by Chandra and Merlin [8] that conjunctive queries could be
expressed as a subset of Codd’s relational algebra which is an imperative query language based on
a set of basic operators. In particular, they showed that three operators select, project and cross
product were enough. The select operator σΨ is parameterized with a predicate Ψ and takes as
input a table T and outputs a new table T′ that includes the rows of T that satisfy the predicate Ψ.
The projection operator πatt1,...,atth

is parameterized by a set of attributes att1, . . . , atth and takes as
input a table T and outputs a table T′ that consists of the columns of T indexed by att1 through
attn. The cross product operator × takes as input two tables T1 and T2 and outputs a new table
T′ = T1 ×T2 such that each row of T′ is an element of the cross product between the set of rows
of T1 and the set of rows of T2. The query language that results from any combination of select,
project and cross product is referred to as the SPC algebra. We formalize this in Definition 2.1
below.

Definition 2.1 (SPC algebra). Let DB = (T1, . . . ,Tn) be a relational database. The SPC algebra
consists of any query that results from the combination of the following operators:

• T′ ← σΨ(T): the select operator is parameterized with a predicate Ψ of form att1 = X1 ∧ · · · ∧
att` = X`, where atti ∈ S(DB) and Xi is either a constant a in the domain of atti (type-1)
or an attribute xj ∈ S(DB) (type-2). It takes as input a table T ∈ DB and outputs a table
T′ = {r ∈ T : Ψ(r) = 1}, where terms of the form atti = xj are satisfied if r[atti] = r[xj] and
terms of the form atti = a are satisfied if r[atti] = a.

• T′ ← πatt1,...,atth
(T): the project operator is parameterized by a set of attributes att1, . . . , atth ∈

S(DB). It takes as input a table T ∈ DB and outputs a table T′ = {〈r[att1], . . . , r[atth]〉 : r ∈
T}.

6

• R ← T1 ×T2: the cross product operator takes as input two tables T1 and T2 and outputs a
result table R =

{〈
r,v

〉
: r ∈ T1 and v ∈ T2

}
, where 〈r,v〉 is the concatenation of rows r and

v.

We will often also consider the inner join operator which is defined as follows:

• R ← T1 ./att1=att2 T2: the inner join operator is parameterized by an expression of the form
att1 = att2. It takes as input two tables T1 and T2 and outputs a result table R = {〈r,v〉 :
r ∈ T1 and v ∈ T2 and r[att1] = v[att2]}.

Note that adding the inner join operator to the SPC algebra does not increase its power as inner joins
can be computed using select and cross product operations. This is just a notational convenience.

Intuitively, the connection between conjunctive SQL queries and the SPC algebra can be seen as
follows: SELECT corresponds to the projection operator, FROM to the cross product and WHERE to the
(SPC) select operator.

Query trees. Every query in the SPC algebra can be represented as a query tree which is a a
tree-based representation of the query. A query can have several query tree representations each
leading to a different query complexity when executed. As an example, the following conjunctive
SQL query:

SELECT T1.ID FROM T1,T2 WHERE T2.Department = Math ∧T2.Course = T1.Course,

has at least three possible query tree representations, which are illustrated in Figure (??).

3 Definitions

In this Section, we define the syntax and security of STE schemes. A STE scheme encrypts data
structures in such a way that they can be privately queried. There are several natural forms of
structured encryption. The original definition of [9] considered schemes that encrypt both a structure
and a set of associated data items (e.g., documents, emails, user profiles etc.). In [10], the authors
also describe structure-only schemes which only encrypt structures. Another distinction can be made
between interactive and non-interactive schemes. Interactive schemes produce encrypted structures
that are queried through an interactive two-party protocol, whereas non-interactive schemes produce
structures that can be queried by sending a single message, i.e, the token. One can also distinguish
between response-hiding and response-revealing schemes: the latter reveal the query response to the
server whereas the former do not.

In this work, we focus on non-interactive structure-only schemes. Our main construction, OPX,
is response-hiding but makes use of response-revealing schemes as building blocks. As such, we
define both forms below. At a high-level, non-interactive STE works as follows. During a setup
phase, the client constructs an encrypted structure EDS under a key K from a plaintext structure
DS. The client then sends EDS to the server. During the query phase, the client constructs and
sends a token tk generated from its query q and secret key K. The server then uses the token tk
to query EDS and recover either a response r or an encryption ct of r depending on whether the
scheme is response-revealing or response-hiding.

7

Definition 3.1 (Response-revealing structured encryption [9]). A response-revealing structured
encryption scheme Σ = (Setup,Token,Query) consists of three polynomial-time algorithms that work
as follows:

• (K,EDS)← Setup(1k,DS): is a probabilistic algorithm that takes as input a security parameter
1k and a structure DS and outputs a secret key K and an encrypted structure EDS.

• tk ← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a secret key K
and a query q and returns a token tk.

•
{
⊥, r

}
← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted

structure EDS and a token tk and outputs either ⊥ or a response.

We say that a response-revealing structured encryption scheme Σ is correct if for all k ∈ N, for all
poly(k)-size structures DS : Q→ R, for all (K,EDS) output by Setup(1k,DS) and all sequences of
m = poly(k) queries q1, . . . , qm, for all tokens tki output by Token(K, qi), Query(EDS, tki) returns
DS(qi) with all but negligible probability.

Definition 3.2 (Response-hiding structured encryption [9]). A response-hiding structured encryption
scheme Σ = (Setup,Token,Query,Dec) consists of four polynomial-time algorithms such that Setup
and Token are as in Definition 3.1 and Query and Dec are defined as follows:

• {⊥, ct} ← Query(EDS, tk): is a deterministic algorithm that takes as input an encrypted
structured EDS and a token tk and outputs either ⊥ or a ciphertext ct.

• r ← Dec(K, ct): is a deterministic algorithm that takes as input a secret key K and a ciphertext
ct and outputs a response r.

We say that a response-hiding structured encryption scheme Σ is correct if for all k ∈ N, for all
poly(k)-size structures DS : Q→ R, for all (K,EDS) output by Setup(1k,DS) and all sequences of

m = poly(k) queries q1, . . . , qm, for all tokens tki output by Token(K, qi), DecK
(

Query
(

EDS, tki
))

returns DS(qi) with all but negligible probability.

Security. The standard notion of security for structured encryption guarantees that an encrypted
structure reveals no information about its underlying structure beyond the setup leakage LS and
that the query algorithm reveals no information about the structure and the queries beyond the
query leakage LQ. If this holds for non-adaptively chosen operations then this is referred to as
non-adaptive semantic security. If, on the other hand, the operations are chosen adaptively, this
leads to the stronger notion of adaptive semantic security. This notion of security was introduced
by Curtmola et al. in the context of SSE [11] and later generalized to structured encryption in [9].

Definition 3.3 (Adaptive semantic security [11, 9]). Let Σ = (Setup,Token,Query) be a response-
revealing structured encryption scheme and consider the following probabilistic experiments where A
is a stateful adversary, S is a stateful simulator, LS and LQ are leakage profiles and z ∈ {0, 1}∗:

RealΣ,A(k): given z the adversary A outputs a structure DS. It receives EDS from the challenger,
where (K,EDS)← Setup(1k,DS). The adversary then adaptively chooses a polynomial number
of queries q1, . . . , qm. For all i ∈ [m], the adversary receives tk ← Token(K, qi). Finally, A
outputs a bit b that is output by the experiment.

8

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends to the challenger.
Given z and leakage LS(DS) from the challenger, the simulator S returns an encrypted data
structure EDS to A. The adversary then adaptively chooses a polynomial number of operations
q1, . . . , qm. For all i ∈ [m], the simulator receives a tuple

(
DS(qi),LQ(DS, qi)

)
and returns a

token tki to A. Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-semantically secure if for all ppt adversaries A, there exists a
ppt simulator S such that for all z ∈ {0, 1}∗, the following expression is negligible in k:

|Pr [RealΣ,A(k) = 1]− Pr [IdealΣ,A,S(k) = 1]|

The security definition for response-hiding schemes can be derived from Definition 3.3 by giving
the simulator

(
⊥,LQ(DS, qi)

)
instead of

(
DS(qi),LQ(DS, qi)

)
.

Modeling leakage. Every STE scheme is associated with leakage which itself can be composed
of multiple leakage patterns. The collection of all these leakage patterns forms the scheme’s leakage
profile. Leakage patterns are (families of) functions over the various spaces associated with the
underlying data structure. For concreteness, we borrow the nomenclature introduced in [18] and
recall some well-known leakage patterns that we make use of in this work. Here D and Q refer to
the space of all possible data objects and the space of all possible queries for a given data type. In
this work, we consider the following leakage patterns:

• the query equality pattern is the function family qeq = {qeqk,t}k,t∈N with qeqk,t : Dk ×Qt
k →

{0, 1}t×t such that qeqk,t(DS, q1, . . . , qt) = M , where M is a binary t × t matrix such that
M [i, j] = 1 if qi = qj and M [i, j] = 0 if qi 6= qj . The query equality pattern is referred to as
the search pattern in the SSE literature;

• the response identity pattern is the function family rid = {ridk,t}k,t∈N with ridk,t : Dk ×Qt
k →

[2[n]]t such that ridk,t
(
DS, q1, . . . , qt

)
= (DS[q1], . . . ,DS[qt]). The response identity pattern is

referred to as the access pattern in the SSE literature;

• the response length pattern is the function family rlen = {rlenk,t}k,t∈N with rlenk,t : Dk ×Qt
k →

Nt such that rlenk,t(DS, q1, . . . , qt) =
(
|DS[q1]|, . . . , |DS[qt]|

)
;

4 The OPX Construction

We now describe our main construction, OPX, which is a response-hiding STE scheme for relational
databases that supports conjunctive SQL queries. It uses a response-revealing multi-map encryption
scheme ΣMM, the adaptively-secure encrypted multi-map scheme Σπ

MM by Cash et al. [6], a symmetric
encryption scheme SKE, a pseudo-random function F , and a random oracle H. We describe the
scheme in detail in Figures (1), (2), (3), and (4), and provide a high level description below.

Remark on notation. We note that the syntax of OPX matches Definition 3.2 but its queries
q are query trees and its tokens tk are token trees; that is, trees where each node is a sub-token.
We make this explicit here by referring to query trees as Q and to token trees as TK. Throughout,
while processing a query tree, we denote by Rin the set of inputs to an operation/node and by Rout
the set of outputs of that operation/node.

9

Let ΣMM = (Setup,Token,Get) be a response-revealing multi-map encryption scheme, ΣπMM = (Setup,Token,Get)
be the response-revealing multi-map encryption scheme in [6], SKE = (Gen,Enc,Dec) be a symmetric encryption
scheme, F : {0, 1}k × {0, 1}? → {0, 1}m be a pseudo-random function, and H : {0, 1}? → {0, 1}m be a random
oracle. Consider the DB encryption scheme OPX = (Setup,Token,Query,Dec) defined as follows a:

• Setup(1k,DB):

1. initialize a set SET;
2. initialize multi-maps MMR, MMC and MMV ;
3. initialize multi-maps (MMatt)att∈DBᵀ ;
4. initialize multi-maps (MMatt,att′)att,att′∈DBᵀ such that dom(att) = dom(att′);

5. sample two keys K1,KF
$← {0, 1}k;

6. for all r ∈ DB set
MMR

[
χ(r)

]
:=
(

EncK1(r1), . . .EncK1(r#r), χ(r)
)

;

7. compute (KR,EMMR)← ΣMM.Setup
(
1k,MMR

)
;

8. for all c ∈ DBᵀ, set

MMC

[
χ(c)

]
:=
(

EncK1(c1), . . .EncK1(c#c), χ(c)
)

;

9. compute (KC ,EMMC)← ΣMM.Setup
(
1k,MMC

)
;

10. for all c ∈ DBᵀ,
(a) for all v ∈ c and r ∈ DBc=v,

i. compute mtkr ← ΣMM.Token
(
KR, χ(r)

)
,

(b) set

MMV

[〈
v, χ(c)

〉]
:=
(

mtkr

)
r∈DBc=v

;

11. compute (KV ,EMMV)← ΣMM.Setup
(
1k,MMV

)
;

12. for all c ∈ DBᵀ,
(a) for all c′ ∈ DBᵀ such that dom(att(c′)) = dom(att(c)),

i. initialize an empty tuple t;
ii. for all rows ri and rj in c and c′, such that c[i] = c′[j],

A. compute mtki ← ΣMM.Token
(
KR, χ(ri)

)
;

B. compute mtkj ← ΣMM.Token
(
KR, χ(rj)

)
;

C. add (mtki,mtkj) to t;
iii. set

MMc

[〈
χ(c), χ(c′)

〉]
:= t;

(b) compute (Kc,EMMc)← ΣMM.Setup
(
1k,MMc

)
;

aNote that we omit the description of Dec since it simply decrypts every cell of R.

Figure 1: The OPX scheme (Part 1).

10

• Setup(1k,Q):

13. for all c ∈ DBᵀ,
(a) for all v ∈ c,

i. compute Kv ← FKF
(χ(c)‖v);

ii. set for all r ∈ DBc=v,

SET := SET
⋃{

H
(
Kv‖rtk

)}
,

where rtk← ΣMM.Token(KR, χ(r));
14. for all c ∈ DBᵀ,

(a) for all c′ ∈ DBᵀ such that dom(att(c′)) = dom(att(c)),
i. initialize an empty tuple t;

ii. for all ri, rj ∈ [m] such that c[i] = c′[j],
A. add

(
rtki, rtkj

)
to t where

rtki ← ΣMM.Token(KR, χ(ri)) and rtkj ← ΣMM.Token(KR, χ(rij).

iii. for all rtk s.t. (rtk, ·) ∈ t, set

MMc,c′

[
rtk
]

:=
(

rtk′
)

(rtk,rtk′)∈t

(b) compute (Kc,c′ ,EMMc,c′)← ΣπMM.Setup
(
1k,MMc,c′

)
;

15. output K = (K1,KR,KC ,KV , {Kc}c∈DBᵀ ,KF , {Kc,c′}c,c′∈DBᵀ) and EDB =
(EMMR,EMMC ,EMMV , (EMMc,c′)c,c′∈DBᵀ , SET, (EMMc)c∈DBᵀ).

Figure 2: The OPX scheme (Part 2).

11

• Token(K,Q):

1. initialize a token tree TK with empty nodes and with the same structure as Q;
2. for every node N accessed in a post-traversal order in Q ,

(a) if N ≡ σatt=a(T) then set TKN to

stk← ΣMM.Token
(
KV , 〈a, χ(att)

)
;

(b) if N ≡ σatt=a(Rin) then set TKN to (mtk, pos) where

mtk← FKF

(
χ(att)‖a

)
and pos denotes the position of att in Rin.

(c) if N ≡ T1 ./att1=att2 T2 then set TKN to (jtk, pos) where

jtk← ΣMM.Token
(
Katt1 ,

〈
χ(att1), χ(att2)

〉)
,

and pos is the position of attribute att1 in Rin.
(d) if N ≡ T ./att1=att2 Rin then set the corresponding node in TK to (etk, pos1, pos2) where

etk := Katt1,att2 ;

and pos1, pos2 are the positions of the attributes att1, att2 in Rin, respectively.
(e) if N ≡ R(l)

in ./att1=att2 R(r)
in then set TKN to (pos1, pos2) where pos1 and pos2 are the column

positions of att1 and att2 in R(l)
in and R(r)

in , respectively.
(f) if N ≡ πatt(T) then set TKN to ptk where

ptk← ΣMM.Token
(
KC , χ(atti)

)
.

(g) if N ≡ πatt1,··· ,attz
(Rin) then set TKN to(

pos1, · · · , posz

)
,

where posi is the column position of atti in Rin.
(h) if N ≡ [a] then set TKN to [EncK1(a)].
(i) if N ≡ × then set TKN to ×.

3. output TK.

Figure 3: The OPX scheme (Part 3).

12

• Query(EDB, tk):

1. parse EDB as (EMMR,EMMC ,EMMV , (EMMc,c′)c,c′∈DBᵀ , SET, (EMMc)c∈DBᵀ).
2. for every node N accessed in a post-traversal order in TK,

– if N ≡ stk, it computes

(rtk1, · · · , rtks)← ΣMM.Query
(

stk,EMMV

)
,

and sets Rout := (rtk1, · · · , rtks);
– if N ≡ (mtk, pos), then for all rtk in Rin in the column at position pos, if

H(mtk‖rtk) /∈ SET

then it removes the row from Rin. Finally, it sets Rout := Rin;
– if N ≡ (jtk, pos), then it computes(

(rtk1, rtk′1), . . . , (rtks, rtk′s)
)
← ΣMM.Query(jtk,EMMpos),

and sets
Rout :=

(
(rtki, rtk′i)

)
i∈[s]

;

– if N ≡ (etk, pos1, pos2), then for each row r in Rin, it computes ltk← ΣπMM.Token(etk, rtk), and

(rtk1, · · · , rtks)← ΣπMM.Query(ltk,EMMpos1,pos2
),

where rtk = r[attpos2
], and appends the new rows

(
rtki
)
i∈[s]
× r to Rout;

– if N ≡ (pos1, pos2), then it sets

Rout := R(l)
in ./pos1=pos2

R(r)
in ,

where R(l)
in and R(r)

in are the left and right input respectively;
– if N ≡ ptk then it computes

(ct1, · · · , cts)← ΣMM.Query
(

ptk,EMMC

)
and sets Rout := (ct1, · · · , cts);

– if N ≡ (pos1, · · · , posz), then it computes Rout := πpos1,··· ,posz
(Rin);

– if N ≡ × then it computes
Rout := R(l)

in ×R(r)
in ;

3. it replaces each cell rtk in Rroot
out by ct← ΣMM.Query(rtk,EMMR);

4. output Rroot
out.

Figure 4: The OPX scheme (Part 4).

13

Setup. The Setup algorithm takes as input a database DB = (T1, · · · ,Tn) and a security parameter
k. It first samples a key K1

$← {0, 1}k, and then initializes a multi-map MMR such that for all rows
r ∈ DB, it sets

MMR

[
χ(r)

]
:=
(

EncK1(r1), · · · ,EncK1(r#r), χ(r)
)
,

It then computes

(KR,EMMR)← ΣMM.Setup
(

1k,MMR

)
.

It initializes a multi-map MMC such that for all columns c ∈ DBᵀ, it sets

MMC

[
χ(c)

]
:=
(

EncK1(c1), · · · ,EncK1(c#c), χ(c)
)
,

It then computes

(KC ,EMMC)← ΣMM.Setup
(

1k,MMC

)
.

It initializes a multi-map MMV , and for each c ∈ DBᵀ, all v ∈ c and r ∈ DBc=v, it computes

mtkr ← ΣMM.Token
(
KR, χ(r)

)
,

and sets
MMV

[〈
v, χ(c)

〉]
:=
(

mtkr

)
r∈DBc=v

.

It then computes
(KV ,EMMV)← ΣMM.Setup(1k,MMV).

It initializes a set of multi-maps {MMc}c∈DBᵀ . For all columns c, c′ ∈ DBᵀ that have the same
domain such that dom(att(c)) = dom(att(c′)), it initiates an empty tuple t that it populates as
follows. For all rows ri and rj in column c and c′, respectively, that verify

c[i] = c′[j],

it inserts (rtki, rtkj) in t where

rtki ← ΣMM.Token(KR, χ(ri))

and
rtkj ← ΣMM.Token(KR, χ(rij)),

and sets
MMc

[
〈χ(c), χ(c′)〉

]
:= t.

It then computes, for all c ∈ DBᵀ,

(Kc,EMMc)← ΣMM.Setup
(

1k,MMc

)
.

14

It initializes a set SET and computes for each column c ∈ DBᵀ, and for all v ∈ c, a key Kv such that

Kv ← FKF
(χ(c)‖v),

where KF
$← {0, 1}k. Then for all rows r in DBc=v, it sets

SET := SET
⋃{

H(Kv‖rtk)
}
,

where rtk← ΣMM.Token(KR, χ(r)). It then initializes a set of multi-maps {MMatt,att′} for att, att′ ∈
S(DB) and dom(att) = dom(att′). For all columns c, c′ ∈ DBᵀ that have the same domain, it initiates
an empty tuple t that it populates as follows. For all rows ri and rj in column c and c′, respectively,
that verify

c[i] = c′[j],

it inserts (rtki, rtkj) in t where

rtki ← ΣMM.Token(KR, χ(ri))

and
rtkj ← ΣMM.Token(KR, χ(rij)).

Then for all rtk such that (rtk, ·) ∈ t, it sets

MMc,c′

[
rtk
]

:=
(

rtk′
)

(rtk,rtk′)∈t

then computes

(Kc,c′ ,EMMc,c′)← Σπ
MM.Setup

(
1k,MMc,c′

)
.

Finally, it outputs a key K = (K1,KR,KC ,KV , {Kc}c∈DBᵀ ,KF , {Kc,c′}c,c′∈DBᵀ) and EDB =
(EMMR,EMMC ,EMMV , (EMMc,c′)c,c′∈DBᵀ , SET, (EMMc)c∈DBᵀ).

Token. The Token algorithm takes as input a key K and a query tree Q and outputs a token tree
TK. The token tree is a copy of Q and first initialized with empty nodes. The algorithm performs a
post-order traversal of the query tree and, for every visited node N , does the following:

• (leaf select) if N is a leaf node of form σatt=a(T) then set the corresponding node in TK to

stk← ΣMM.Token
(
KV , 〈a, χ(att)

)
;

• (internal constant select): if N is an internal node of form σatt=a(Rin) then set the
corresponding node in TK to (mtk, pos) where

mtk← FKF

(
χ(att)‖a

)
and pos denotes the position of att in Rin.

15

• (leaf join): if N is a leaf node of form T1 ./att1=att2 T2 then set the corresponding node in
TK to (jtk, pos) where

jtk← ΣMM.Token
(
Katt1 ,

〈
χ(att1), χ(att2)

〉)
,

and pos denotes the positions of att1 in Rin.

• (internal join): if N is an internal node of form T ./att1=att2 Rin, then set the corresponding
node in TK to (etk, pos1, pos2) where

etk := Katt1,att2 ;

and pos1, pos2 denote the positions of att1 and att2 in Rin, respectively.

• (intermediate internal join): if N is an internal node of form R(l)
in ./att1=att2 R(r)

in then set
the corresponding node in TK to (pos1, pos2) where pos1 and pos2 are the column positions
of att1 and att2 in R(l)

in and R(r)
in , respectively.

• (leaf projection): if N is a leaf node of form πatt(T) then set the corresponding node to ptk
where

ptk← ΣMM.Token
(
KC , χ(atti)

)
• (internal projection): if N is an internal node of form πatt1,··· ,attz (Rin) then set the corre-

sponding node to (
pos1, · · · , posz

)
,

where posi is the column position of atti in Rin.

• (leaf scalars): if N is a node of form [a] then set the corresponding node to [EncK1(a)].

• (cross product): if N is a node of form × then keep it with no changes.

Query. The algorithm takes as input the encrypted database EDB and the token tree TK. It
performs a post-order traversal of tk and, for each visited node N , does the following:

• (leaf select): if N has form stk, it computes

(rtk1, · · · , rtks)← ΣMM.Query
(

stk,EMMV

)
and sets Rout := (rtk1, · · · , rtks).

• (internal constant select): if N has form (mtk, pos), then for all rtk in Rin in the column
at position pos, if

H(mtk‖rtk) /∈ SET

then it removes the row from Rin. Finally, it sets Rout := Rin.

16

• (leaf join): if N has form (jtk, pos), then it computes(
(rtk1, rtk′1), . . . , (rtks, rtk′s)

)
← ΣMM.Query(jtk,EMMpos),

and sets
Rout :=

(
(rtki, rtk′i)

)
i∈[s]

• (internal join): if N has form (etk, pos1, pos2), then for each row r in Rin, it computes
ltk← Σπ

MM.Token(etk, rtk), and

(rtk1, · · · , rtks)← Σπ
MM.Query(ltk,EMMpos1,pos2),

where rtk = r[attpos2], and appends the new rows(
rtki

)
i∈[s]
× r

to Rout

• (intermediate internal join): if N has form (pos1, pos2), then it sets

Rout := R(l)
in ./pos1=pos2 R(r)

in

• (leaf projection): if N is a leaf node of form ptk then it computes

(ct1, · · · , cts)← ΣMM.Query
(

ptk,EMMC

)
and sets Rout := (ct1, · · · , cts).

• (internal projection): if N is an internal node of form (pos1, · · · , posz), then it computes

Rout := πpos1,··· ,posz
(Rin)

• (cross product): if N is a node of form × then it computes

Rout := R(l)
in ×R(r)

in ,

where R(l)
in and R(r)

in are the left and right input respectively.

Now, it replaces each cell rtk in Rroot
out by

ct← ΣMM.Query(rtk,EMMR).

4.1 Efficiency

We now turn to analyzing the search and storage efficiency of our construction.

17

Query complexity. Given a potentially optimized query tree Q of an SPC query, we show that
the search complexity of OPX is asymptotically optimal.

Theorem 4.1. If Σmm is optimal, then the time and space complexity of the Query algorithm
presented in Section (4) is optimal.

The proof of the theorem is in Appendix A.

Storage complexity. The storage complexity of OPX is similar to that of SPX asymptotically,
but is larger concretely. This is because OPX needs two additional encrypted structures: a collection
of encrypted multi-maps (EMMc,c′)c,c′∈DBᵀ) and an encrypted set SET.

For a database DB = (T1, . . . ,Tn), OPX produces three encrypted multi-maps EMMR, EMMC ,
EMMV , two collections of encrypted multi-maps (EMMc,c′)c,c′∈DBᵀ and (EMMc)c∈DBᵀ , and a set
structure SET. For ease of exposition, we assume that each table is composed of m rows. Also,
note that standard multi-map encryption schemes [11, 9, 19, 7, 6] produce encrypted structures
with storage overhead that is linear in the sum of the tuple sizes. Using such a scheme as the
underlying multi-map encryption scheme, we have that EMMR and EMMC are O(

∑
r∈DB #r) and

O
(∑

c∈DBᵀ #c
)
, respectively, since the former maps the coordinates of each row in DB to their

(encrypted) row and the latter maps the coordinates of very column to their (encrypted) columns.
Since EMMV maps each cell in DB to tokens for the rows that contain the same value, it requires
O
(∑

c∈DBᵀ
∑
v∈c #DBatt(c)=v

)
storage. Similarly, SET contains the pseudo- random evaluation of

the coordinate of all rows in the database and therefore requires O
(∑

c∈DBᵀ
∑
v∈c #DBatt(c)=v

)
.

For each c ∈ DBᵀ, an encrypted multi-map EMMc maps each pair of form (c, c′) such that
dom(att(c)) = dom(att(c′)) to a tuple of tokens for rows in DBatt(c)=att(c′). As such, the collection
(EMMc)c∈DBᵀ has size

O

(∑
c∈DBᵀ

∑
c′:dom(att(c′))=dom(att(c))

#DBatt(c)=att(c′)

)
.

Similarly, for all c, c′ ∈ DBᵀ, an encrypted multi-map EMMatt,att′ maps the coordinate of each row
r in the column att to all the coordinates of rows r′ in att′ that have the same value such that
r[att] = r′[att′]. The size of (EMMc,c′)c,c′∈DBᵀ is exactly the same as the earlier collection.

Note that the expression above will vary greatly depending on the number of columns in DB that
have the same domain. In the worst case, all columns will have a common domain and the expression
will be a sum of O

((∑
i ‖Ti‖c

)2) terms of the form #DBatt(c)=att(c′). In the best case, none of the
columns will share a domain and both collections will be empty. In practice, however, we expect
there to be some relatively small number of columns with common domains. In Appendix (C), we
provide a concrete example of the storage overhead of an encrypted database.

5 Security and Leakage of OPX

We show that OPX is adaptively-semantically secure with respect to a well-specified leakage profile.
Similar to the leakage profile SPX [16], the profile of OPX is composed of a “black-box component”
in the sense that it comes from the underlying STE schemes, and a “non-black-box component” that
comes from OPX directly. In this section, we will first describe and prove this leakage profile in a
black-box manner, i.e., without assuming any specific instantiation of the underlying STE schemes

18

except for Σπ
MM which is a concrete response-revealing multi-map encryption scheme by Cash et al.

[6]. Then, as a second step, we consider two instantiations with different concrete leakage profiles
that illustrate the impact on the overall leakage profile of OPX. In particular, depending on the
chosen concrete instantiation, we will show that the resulting leakage profile can be significantly
different.

5.1 Black-Box Leakage Profile

In the following, we describe the setup and query leakage of OPX without any assumption on how
the underlying data structure encryption schemes work.

Setup leakage. The setup leakage captures what a persistent adversary learns by only observing
the encrypted structure and before observing any query execution. The setup leakage of OPX is
equal to the setup leakage of SPX along with the setup leakage of ΣDX and the number of cells of
all tables in the database such that2

Lopx
S
(
DB
)

=
(

(Lmm
S (MMc))c∈DBᵀ ,Lmm

S (MMR) ,Lmm
S (MMC) ,

Lmm
S (MMV) ,

(
LπS(MMc,c′)

)
c,c′∈DBᵀ , n ·

n∑
i=1
‖Ti‖c

)
,

where Lmm
S , LπS , n and ‖Ti‖ are the setup leakage of ΣMM, the setup leakage of Σπ

MM which is equal
to the sum of all tuple sizes in a given multi-map, the number of tables, and the number of columns
in the ith table, respectively.

Query leakage. The query leakage captures what a persistent adversary learns when it observes
the token and query execution. The query leakage of OPX is represented as a leakage tree that has
the same form as of the query tree Q. In particular, the query leakage, denoted here Λ, starts empty
and is then populated in a recursive manner as the query execution goes through in a post-order
traversal of the nodes of Q. In particular, for every node N visited in Q, the query leakage is
constructed as follows.

Cross product. If the node N ≡ xnode, then this is is a cross product pattern which is defined as

X (xnode) =
{(

scalar, |a|
)

if xnode ≡ [a];(
cross,⊥

)
if xnode ≡ ×;

This pattern captures what the server learns when it executes a scalar node or a cross product node.
The query leakage is now equal to

Λ := Λ
⋃{
X (xnode)

}
.

2Note that this information will be revealed to the adversary through the size of the set structure SET

19

Projection. If N ≡ pnode, then this is a projection pattern which is defined as

P(pnode) =

(

leaf,Lmm
Q

(
MMC , χ(att)

))
if pnode ≡ πatt(T);(

in, f(att1), · · · , f(attz)
)

if pnode ≡ πatt1,··· ,attz (Rin);

where f $←
{
{0, 1}∗ → {0, 1}log(ρ)

}
is a uniformly sampled function and ρ is the total number of

attributes in DB. The projection pattern captures the leakage produced when the server executes
a projection node, whether it is a leaf or an internal node. If the node pnode in Q is a leaf
projection, then P(pnode) captures the leakage produced when the server queries EMMC to retrieve
the encrypted content of the column att. More precisely, P(pnode) reveals the ΣMM query leakage
on the coordinates of the projected attribute. Otherwise, if the node pnode is an internal projection
in Q, then P(pnode) reveals the position of the attributes, att1, · · · , attz, in Rin – the intermediary
result table given as input to pnode. The query leakage is now equal to

Λ := Λ
⋃{
P(pnode)

}
.

Selection. If N ≡ snode, then this is a selection pattern which is defined as

Z(snode) =

(

leaf,Lmm
Q

(
MMV ,

〈
a, χ(att)

〉)
,

(
Lmm

Q (MMR, χ(r)
)

r∈DBatt=a

)
if snode ≡ σatt=a(T);(

in, f(att), g(a‖att),
(
Lmm

Q (MMR, χ(r)
)
χ(r)∈Rin∧r[att]=a

)
if snode ≡ σatt=a(Rin);

where g $←
{
{0, 1}∗ → {0, 1}log(γ)

}
is a uniformly sampled function, and γ is the sum of distinct

values in every column in the entire database. The selection pattern captures the leakage produced
when the server executes a selection node, whether it is a leaf or an internal node. If the node
snode is a leaf selection node, then Z(snode) captures the leakage produced when the server queries
EMMV to retrieve some row tokens. More precisely, Z(snode) reveals the ΣMM query leakage on
the coordinates of the attribute att and the constant a. It also reveals the ΣMM query leakage on all
coordinates of rows whose cell values at attribute att match the constant a. Otherwise, if the node
snode is an internal selection node, then Z(snode) captures the leakage produced when the server
removes all row tokens in the intermediate result set Rin that do not belong to the set structure
SET. In particular, Z(snode) reveals the ΣMM query leakage on all coordinates of rows r in Rin
that match the constant a at the attribute att. The query leakage is now equal to

Λ := Λ
⋃{
Z(snode)

}
.

Join. If N ≡ jnode, then this is a join pattern which is defined as follows. If jnode has form
T1 ./att1=att2 T2 then,

J (jnode) =
(

leaf, f(att1),Lmm
Q

(
MMatt1 ,

〈
χ(att1), χ(att2)

〉)
,{

Lmm
Q (MMR, χ(r1),Lmm

Q (MMR, χ(r2)
}

(r1,r2)∈DBatt1=att2

)
,

20

In this case, J (jnode) captures the leakage produced when the server retrieves some EMMatt1 which
it in turn queries to retrieve row tokens. More precisely, it reveals if and when EMMatt1 has been
accessed in the past. In addition, it reveals the query leakage of ΣMM on the coordinates of att1
and att2 and, for every pair of rows (r1, r2) in DBatti,1=atti,2 , it reveals the ΣMM query leakage on
their coordinates. If jnode has form T ./att1=att2 Rin then,

J (jnode) =
(

in, 〈f(att1), f(att2)〉,
(
LπQ
(

MMatt1,att2 , χ(r)
))

χ(r)∈Rin[att2]
,

{
Lmm

Q (MMR, χ(r1)
}

(r1,r2)∈DBatt1=att2
∧χ(r2)∈Rin[att2]

)
,

where Rin[att] denotes the cell values in Rin at attribute att. In this case, J (jnode) captures the
leakage produced when the server retrieves EMMatt1,att2 which it in turn queries to retrieve row
tokens. More precisely, it reveals if and when EMMatt1,att2 has been accessed in the past. In addition,
it reveals the query leakage of Σπ

MM on the coordinates of rows r that belong to Rin[att] and, for
every pair of rows (r1, r2) in DBatti,1=atti,2 such that χ(r2) ∈ Rin[att2], it reveals the ΣMM query
leakage on their row coordinates. In particular, the concrete query leakage of Σπ

MM reveals if and
when the same query is evaluated (search pattern) as well as the response identifiers (access pattern).
If jnode has form R(l)

in ./att1=att2 R(r)
in then,

J (jnode) =
(

inter, f(att1), f(att2)
)
,

In this case, J (jnode) captures the leakage produced when the server removes all the rows in
R(l)

in ×R(r)
in to only keep those which have the same cell value at both attributes att1 and att2. The

query leakage is now equal to

Λ := Λ
⋃{
J (jnode)

}
.

Finally, it sets
Lopx

Q (DB,Q) := Λ.

5.2 Security of OPX

We now prove that OPX is adaptively semantically-secure with respect to the leakage profile
described in the previous sub-section.

Theorem 5.1. If F is a pseudo-random function, SKE is RCPA secure, Σπ
MM is adaptively

(
LπS ,LπQ

)
-

secure, and ΣMM is adaptively
(
Lmm

S ,Lmm
Q
)
-secure, then OPX is adaptively (Lopx

S ,Lopx
Q)-secure in

the random oracle model.

The proof of Theorem 5.1 is in Appendix (B).

5.3 Concrete Leakage Profile

In this section, we are interested in the leakage profile of OPX when the underlying data structure
encryption schemes are instantiated with specific constructions and a well-specified concrete leakage
profile. Note that in this section, we make the additional assumption that Σπ

MM from [6] is replaced
with an almost leakage free multi-map encryption scheme. However, this scheme needs to verify
some key-equivocation property which is the case for the volume hiding schemes like PBS [18],
VLH or AVLH [17] if built using the adaptively-secure Σπ

MM scheme as the underlying multi-map
encryption scheme.

21

(Almost) Leakage-free data structure encryption schemes. We make the assumption that
the underlying response-revealing multi-map encryption scheme Σmm is almost-leakage free in that
it leaks the response length pattern, known as the volume pattern, and the response identity pattern
such that

Lmm
Q (MM, q) =

(
rlen, rid

)
.

To instantiate such a scheme, one can use oblivious RAM (ORAM) simulation techniques [14] in a
black-box fashion, or more customized/advanced schemes such as the oblivious tree structures (OTS)
[?] or the TWORAM construction [13] with a careful parametrization of the block-sizes, or the AZL
construction based on the piggy-backing scheme PBS [18]. These constructions however incur an
additional overhead, and some of them, work under new trade-offs. Note that if a construction is
response-hiding, then it may require one round of interaction to reveal the response. Note that the
leakage profile of OPX can be further improved by using completely leakage-free data structures
that can also hide the volume pattern, but we defer the details to the full version of this work.

In the following, we describe the concrete leakage profile of OPX when instantiated with a
(almost) leakage-free data structure encryption. Specifically, when the node is an xnode, the revealed
cross-product pattern remains the same. If the node is a pnode, then the projection pattern added
to Λ is now equal to

P(pnode) =

(

leaf,
(
|cj |
)
j∈[#c[att]],AccP

(
att
))

if pnodei ≡ πatt(T);(
in, f(att1), · · · , f(attz)

)
if pnodei ≡ πatt1,··· ,attz (Rin).

where AccP(att) denotes if and when the attribute att has been accessed before.
If the node is an snode, then the revealed selection pattern added to Λ is now equal to

Z(snode) =

(

leaf,
{
|r|,AccP

(
r
)}

r∈DBatt=a

)
if snode ≡ σatt=a(T);(

in, g(a‖att),
{
|r|,AccP

(
r
)}

χ(r)∈Rin∧r[att]=a

)
if snode ≡ σatt=a(Rin);

If the node is a jnode, then the revealed join pattern added to Λ is now equal to

J (jnode) =
(

leaf, f(att1),
{
|r1|,AccP(r1), |r2|,AccP(r2)

}
(r1,r2)∈DBatt1=att2

)
,

if jnode has form T1 ./att1=att2 T2 and,

J (jnode) =
(

in, 〈f(att1), f(att2)〉,
{
|r1|,AccP(r1)

}
(r1,r2)∈DBatt1=att2
∧χ(r2)∈Rin[att2]

)
,

if jnode has form T ./att1=att2 Rin and,

J (jnode) =
(

inter, f(att1), f(att2)
)
,

if jnode has form R(l)
in ./att1=att2 R(r)

in .

22

Variant. Note that the leakage profile of OPX can be further improved with some slight modifica-
tions to the main OPX construction. In particular, if the underlying response-revealing multi-map
is replaced with a response-hiding scheme, then the access pattern, AccP(r), of an accessed row, r,
can be completely hidden. Note that even the response length of the intermediary results will not be
disclosed as the underlying scheme is leakage-free as per our assumption. For example, in the case
of a leaf select node, the output will now be a set of row coordinates, instead of row tokens. And in
order to proceed to the next node, the client and server need to interact to first decrypt the row
coordinate and execute the next operation. Note that this approach will not incur any additional
query overhead to what is added by using leakage-free schemes; however it will add additional
interaction between the client and the server. The concrete leakage profile of this modified scheme
will be the type of nodes composing the query plan, i.e., whether the node is a join, select, or a
cross-product node. We defer the details of this variant to the full version of this work.

Efficiency. We have shown in Theorem 4.1 that both the OPX query algorithm and the equivalent
plaintext execution on the same query tree Q have exactly the same query complexity if the underlying
multi-map and dictionary encryption schemes are instantiated using standard techniques [11, 9, 19,
7, 6]. However, in the (almost) leakage-free setting, the query complexity of OPX is higher for the
simple reason that the cost of querying a leakage-free data structure encryption scheme is higher
than the one of querying a standard (optimal) scheme. More precisely, at any step where the client
and server execute a Σmm query protocol, then the query complexity will be higher depending on
the executed node. We describe below this impact in more details.

• (case 1): If the node is a leaf selection node of the form σatt=a(T), then the overhead is equal
to

O

(
#DBatt=a · log

(
m ·

n∑
i=1
‖Ti‖c

))
.

where m is the maximum number of cells in a table; instead of O(m) – the query complexity
of a plaintext execution on the same node.

• (case 2): If the node is a leaf join node of the form T1 ./att1=att2 (T2), then the overhead is
equal to

O

(
#DBatt1=att2 · log

(∑
att∈S(DB)

∑
att′∈S(DB)

dom(att)=dom(att′)

#DBatt=att′

))
,

where DBatt1=att2 is the tuple composed of all joined pairs between columns att1 and att2;
instead of O(#DBatt1=att2) – the query complexity of a plaintext execution on the same node.

• (case 3): If the node is an internal join node of the form T ./att1=att2 (Rin), then the overhead
is equal to

O

(∑
χ(r)∈Rin[att2]

(
#DBatt1=Valatt2 (r) · log

(∑
att∈S(DB)

∑
att′∈S(DB)

dom(att)=dom(att′)

#DBatt=att′

)))
,

where Valatt2(r) is the cell value of row r at attribute att2; instead ofO(
∑
χ(r)∈Rin[att2](#DBatt1=Valatt2 (r)))–

the query complexity of a plaintext execution on the same node.

23

• (case 5): If the node is a leaf projection node of the form πatt(T), then the overhead is equal
to

O

(
m · log

(
m ·

n∑
i=1
‖Ti‖c

))
,

where m is the maximum number of cells in the table.

• (case 5): if the node is a scalar node, a cross-product node, an intermediate internal join, an
internal projection node, or an internal selection node, then the query complexity is similar
to a plaintext execution as no multi-map or dictionary query executions are required in the
process.

Note that using (almost) leakage-free data structures to instantiate OPX does not incur any
asymptotical storage overhead.

Standard data structure encryption schemes. In this section, we describe the leakage profile
of OPX if instantiated with standard data structure encryption schemes [11, 9, 19, 7, 6]. By
standard, we refer to a class of well-studied data structure encryption schemes that reveal the
response identity pattern (rid), and the query equality pattern (qeq), known as the access pattern
and the search pattern in the SSE literature, respectively. The search pattern reveals if and when
a query is repeated while the access pattern reveals the identities of the responses. The concrete
leakage profile of OPX when instantiated with these standard data structures is the same as the
one detailed in the abstract section except that we replace the black box notation Lmm

Q with rid and
qeq on the same inputs. Below, we give a high level intuition on what each pattern will disclose.

Select pattern. Independently of the type of the selection node, then an adversary can learn the
number of rows containing the same value as well as the frequency with which a particular row has
been accessed, and also the size of that row. If many queries have been performed on the same
table and the same column, then the adversary can build a frequency histogram of that specific
column’s contents. Now depending on the composition of the query tree, an adversary can build a
more detailed histogram if more internal selection are performed on the same attribute.

Join pattern. Among all patterns, the join pattern leaks the most. The adversary learns the
number of rows that have equal values in a given pair of attributes. In addition, it learns the
frequency with which these rows have been accessed in the past, eventually following the execution
of a different type of nodes such as a projection or a selection. Similar to the selection pattern,
the adversary can build therefore a histogram summarizing the frequency of apparition of rows
that it gets richer with more operations down the query tree. If the join node is internal, then the
adversary learns a bit more information as for every row, it knows exactly the rows in a different
attribute that have the same value. The adversary can help the adversary for example to trace back
to the leaf join leakage information it collected to identify the exact rows that have the same values.
This is also true in general for all the information the adversary collects from different nodes as
long as the operations are correlated. Finally, if the node is an intermediate internal node, then
the execution of such a node leads to the propagation of the frequency information cross different
attributes.

24

Projection pattern. This pattern simply discloses the number of rows in a specific attributes
(size of the column) along with the frequency with which these rows have been accessed.

Note that we dismissed a discussion on the cross-product pattern as it is self-explanatory and
does not involve querying any data structure encryption scheme.

Efficiency. With respect to efficiency, we have shown in Theorem 4.1 that the execution of the
OPX query algorithm and its plaintext counterpart have exactly the same asymptotics.

References

[1] R. Ada Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: Protecting confiden-
tiality with encrypted query processing. In ACM Symposium on Operating Systems Principles
(SOSP), pages 85–100, 2011.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data.
In ACM SIGMOD International Conference on Management of Data, pages 563–574, 2004.

[3] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and R. Venkatesan.
Orthogonal security with cipherbase. In CIDR, 2013.

[4] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption.
In A. Menezes, editor, Advances in Cryptology – CRYPTO ’07, Lecture Notes in Computer
Science, pages 535–552. Springer, 2007.

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric encryption. In
Advances in Cryptology - EUROCRYPT 2009, pages 224–241, 2009.

[6] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Dynamic
searchable encryption in very-large databases: Data structures and implementation. In Network
and Distributed System Security Symposium (NDSS ’14), 2014.

[7] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. In Advances in Cryptology - CRYPTO
’13. Springer, 2013.

[8] A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in relational data
bases. In ACM Symposium on Theory of Computing (STOC ’77), pages 77–90. ACM, 1977.

[9] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in
Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages
577–594. Springer, 2010.

[10] M. Chase and S. Kamara. Structured encryption and controlled disclosure. Technical Report
2011/010.pdf, IACR Cryptology ePrint Archive, 2010.

[11] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In ACM Conference on Computer and
Communications Security (CCS ’06), pages 79–88. ACM, 2006.

25

[12] B. A. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin, and S. M.
Bellovin. Malicious-client security in blind seer: a scalable private dbms. In IEEE Symposium
on Security and Privacy, pages 395–410. IEEE, 2015.

[13] S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: efficient oblivious RAM in two rounds
with applications to searchable encryption. In Advances in Cryptology - CRYPTO 2016, pages
563–592, 2016.

[14] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal
of the ACM, 43(3):431–473, 1996.

[15] H. Hacigümücs, B. Iyer, C. Li, and S. Mehrotra. Executing sql over encrypted data in the
database-service-provider model. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 216–227, 2002.

[16] S. Kamara and T. Moataz. SQL on Structurally-Encrypted Data. In Asiacrypt, 2018.

[17] S. Kamara and T. Moataz. Computationally volume-hiding structured encryption. In Advances
in Cryptology - Eurocrypt’ 19, 2019.

[18] S. Kamara, T. Moataz, and O. Ohrimenko. Structured encryption and leakae suppression. In
Advances in Cryptology - CRYPTO ’18, 2018.

[19] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In
ACM Conference on Computer and Communications Security (CCS ’12). ACM Press, 2012.

[20] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC, 2008.

[21] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving encrypted
databases. In ACM Conference on Computer and Communications Security (CCS), CCS ’15,
pages 644–655. ACM, 2015.

[22] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George, A. Keromytis,
and S. Bellovin. Blind seer: A scalable private dbms. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 359–374. IEEE, 2014.

[23] SAP Software Solutions. SEEED. https://www.sics.se/sites/default/files/pub/
andreasschaad.pdf.

[24] D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data. In
IEEE Symposium on Research in Security and Privacy, pages 44–55. IEEE Computer Society,
2000.

26

https://www.sics.se/sites/default/files/pub/andreasschaad.pdf
https://www.sics.se/sites/default/files/pub/andreasschaad.pdf

A Proof of Theorem 4.1

Theorem 4.1. If the query algorithm of Σmm is optimal, then the time and space complexity of
the Query algorithm presented in Section (4) is optimal.

Proof. A query tree Q can be composed of four different types of nodes: (1) a cross-product node
xnode, (2) a projection node pnode, (3) a selection node snode, and a (4) a join node jnode. We
will show that for each type of nodes, the search and space complexity on plaintext text relational
database is asymptotically equal to the search and space complexity required by the Query algorithm
of OPX. We assume in this proof that the plaintext database has indices to speed-up lookup
operations on every attribute.

• (case 1): if the node is a cross-product node, then the output of the node, xnode, in a
plaintext database given a left and a right input R(l)

in and R(r)
in , respectively, is equal to

Rout = R(l)
in ×R(r)

in ,

which is the exact same operation performed by the Query algorithm of OPX when the node
is a cross-product node.

• (case 2): if the node is a projection node, then there are two possible cases. If the node
pnode has form πatt(T), a leaf projection node, then a plaintext database will require a work
linear in O(m) to fetch all the cells of the attribute att and where m is the number of cell
in the column. On the other hand, OPX performs a Query operation on EMMC to fetch the
corresponding encrypted cells. Assuming that ΣMM has an optimal search complexity, the
amount of work is also linear in O(m).3

The second case is when the projection node has form πatt(Rin), an interior projection node.
In this case, a plaintext database will simply select the corresponding columns from the input
Rin which has search complexity equal to O(#Rin[att]) which is the number of cells of the
attribute att in Rin. In the Query algorithm of OPX, the exact same operation is performed
and therefore, the same complexity is required.

• (case 3): if the node is a selection node, there there are three possible cases. If the node
snode has form σatt=a(T), a leaf selection node, then a plaintext database will require a work
linear in O(#DBatt=a) which is the number of cells in the attribute att equal to a. On the
other hand, OPX performs a Query operation on EMMC to fetch the corresponding cells in
DBatt=a. Assuming that ΣMM has an optimal search complexity, then the amount of work is
equal to O(#DBatt=a).
The second case is when the selection node has form σatt=a(Rin), an interior selection node.
In this case, a plaintext database has to go linearly over the entire column att in Rin to only
output the rows in Rin with the cell at the attribute att equal to the constant a. That is,
the search complexity is equal to O(Rin[att]). On the other hand, OPX tests for each row in
Rin[att] whether it exists in SET. Assuming that test membership in SET is optimal, then
the search complexity is equal to O(Rin[att])

3Note that we are not accounting for the security parameter in our computation and only focusing on the number
of cells.

27

The third case is when the selection node has form σatt1=att2(Rin), an interior variable select
node. In this case, a plaintext will simply remove any row in Rin such that the cell values
are not equal. This has search complexity equal to O(#Rin[att1]). On the other hand, OPX
similarly removes all rows that have equal equal cell value at both columns att1 and att2.
Clearly, the plaintext and encrypted operations have the same search and space complexity.

• (case 4): if the node is a join node, then there are two possible cases. If the node jnode
has form T1 ./att1=att2 T2, then a plaintext database would at least require O(#DBatt1=att2)
which is the result of the join operation on the columns att1 and att2. On the other hand,
OPX queries EMMatt1 to fetch the join result. Assuming that ΣMM has an optimal search
complexity, then the search complexity is equal to O#(DBatt1=att2).
The second case occurs when the join node has form T ./att1=att2 Rin, an interior join node.
In this case, a plaintext database has to go over every cell at the attribute att2 and checks if
there are any rows in table T at attribute att1 that are equal to the value in the selected cell.
The search complexity is equal to

O

(
max(#Rin[att2],#Rout[att2])

)
,

which is itself equal to the maximum value of either (1) the number of cells in Rin[att] or
(2) the size of joinable rows which is equal to #Rout[att2] (or equivalently to #Rout[att1]).
On the other hand, OPX queries EMMatt1,att2 to fetch the joinable result. Similar to the
plaintext scenario, OPX will for each row token in Rin[att2] fetch the joinable rows, if any,
from EMMatt1,att2 . Since Σπ

MM has an optimal search complexity, then the search complexity
is equal to O(max(#Rin[att2],#Rout[att2])) as the same operation is performed.

Finally, OPX will query EMMR to retrieve all the encrypted rows corresponding to the rows tokens in
Rroot

in . Assuming that Σmm has an optimal search complexity, then this step will require O(#Rroot
in).

Note that this operation would add exactly the same complexity as the sum of the output size of
the child nodes, and therefore would not have an impact on the final asymptotic result.

To sum up, we have shown that whatever the type of the node, both the plaintext and OPX
query algorithm executions require the same space and search complexities.

B Proof of Theorem 5.1

Theorem 5.1. If F is a pseudo-random function, SKE is RCPA secure, Σπ
MM is adaptively(

LπS ,LπQ
)
-secure, and ΣMM is adaptively

(
Lmm

S ,Lmm
Q
)
-secure, then OPX is adaptively (Lopx

S ,Lopx
Q)-

secure in the random oracle model.

Proof. Let SMM and SπMM be the simulators guaranteed to exist by the adaptive security of ΣMM
and Σπ

MM and consider the OPX simulator S that works as follows. Given Lopx
S (DB), S simu-

lates EDB by computing EMMR ← SMM
(
Lmm

S (MMR)
)
, EMMC ← SMM

(
Lmm

S (MMC)
)
, EMMV ←

SMM
(
Lmm

S (MMV)
)
, for all c ∈ DBᵀ, EMMc ← SMM

(
Lmm

S (MMc)
)
, and for all c, c′ ∈ DBᵀ, EMMc,c′ ←

28

SπMM
(
LπS(MMc,c′)

)
. Given (n, ρ), it instantiates an empty set SET, and inserts ri,j

$← {0, 1}k in SET
for i ∈ [n] and j ∈ [ρ]. S outputs

EDB = (EMMR,EMMC ,EMMV , (EMMc)c∈DBᵀ ,SET, (EMMc,c′)c,c′∈DBᵀ).

Recall that OPX is response-hiding so S receives
(
⊥,Lopx

Q (DB,Q)
)

as input in the IdealSPX,A,S(k)
experiment. Given this input, S parses Lopx

Q (DB,Q) as a leakage tree. It then instantiates a token
tree TK with the same structure. It samples uniformly at random a key K1

$← {0, 1}k, and creates
s set SET? such that SET? := SET. For each node N , retrieved in a post-order traversal from the
leakage tree, it simulates the corresponding node in the token tree TK as follows.

• (Cross product). If N has form
(
scalar, |a|

)
then it sets TKN to [EncK1(0|a|)]. Otherwise

if N has form
(
cross,⊥

)
, then it sets TKN to ×.

• (Projection). If N has form
(

leaf,Lmm
Q

(
MMC , χ(att)

))
then it sets

TKN ← SMM

(
Lmm

Q

(
MMC , χ(att)

))
,

If N has form
(
in, f(att1), · · · , f(attz)

)
, then it sets TKN to

(
f(att1), · · · , f(attz)

)
.

• (Selection case-1). If N has form(
leaf,Lmm

Q

(
MMV ,

〈
a, χ(att)

〉)
,

(
Lmm

Q (MMR, χ(r)
)

r∈DBatt=a

)
then it first sets for all r ∈ DBatt=a,

mtkr ← SMM

(
Lmm

Q (MMR, χ(r))
)
,

then it sets,

TKN ← SMM

((
mtkr

)
r∈DBatt=a

,Lmm
Q

(
MMV ,

〈
a, χ(att)

〉))
.

• (Selection case-2). If N has form(
in, f(att), g(a‖att),

(
Lmm

Q (MMR, χ(r)
)
χ(r)∈Rin∧r[att]=a

)

then if g(a‖att) has never been revealed before,

– for all r ∈ DB such that χ(r) ∈ Rin and r[att] = a, it sets

mtkr ← SMM

(
Lmm

Q (MMR, χ(r))
)

– it samples a key Kg(a‖att)
$← {0, 1}k;

29

– for each r ∈ DB such that χ(r) ∈ Rin and r[att] = a, it picks and removes uniformly at
random a value r in SET? and sets

H(Kg(a‖att)‖mtkr) := r;

– it sets
TKN ← (Kg(a‖att), f(att)).

Otherwise, if g(a‖att) has been revealed before then,

– for all r ∈ DB such that χ(r) ∈ Rin and r[att] = a, it sets

mtkr ← SMM

(
Lmm

Q (MMR, χ(r))
)

– for all r ∈ DB such that χ(r) ∈ Rin and r[att] = a, if H(Kg(a‖att)‖mtkr) has not been set
yet, then it picks and removes uniformly at random a value r ∈ SET? and sets

H(Kg(a‖att)‖mtkr) := r;

– it sets
TKN ← (Kg(a‖att), f(att)).

• (Join case-1). If N has form(
leaf, f(att1),Lmm

Q

(
MMatt1 ,

〈
χ(att1), χ(att2)

〉)
,{

Lmm
Q (MMR, χ(r1),Lmm

Q (MMR, χ(r2)
}

(r1,r2)∈DBatt1=att2

)
,

then it sets for all (r1, r2) ∈ DBatt1=att2 ,

mtk1 ← SMM

(
LMM

Q

(
MMR, χ(r1)

))
and

mtk2 ← SMM

(
LMM

Q

(
MMR, χ(r2)

))
,

it then sets

TKN ←
(
SMM

({
mtkr1 ,mtkr2

}
(r1,r2)∈DBatt1=att2

,Lmm
Q

(
MMatt1 ,

〈
χ(att1), χ(att2)

〉))
, f(att1)

)

• (Join case-2). If N has form(
in, 〈f(att1), f(att2)〉,

(
LπQ
(

MMatt1,att2 , χ(r)
))

χ(r)∈Rin[att2]
,

{
Lmm

Q (MMR, χ(r1)
}

(r1,r2)∈DBatt1=att2
∧χ(r2)∈Rin[att2]

)
,

30

then it first computes for all (r1, r2) ∈ DBatt1=att2 and χ(r2) ∈ Rin[att2],

mtk1 ← SMM

(
LMM

Q

(
MMR, χ(r1)

))
then if 〈f(att1), f(att2)〉 has never been queried before, and by leveraging the key-equivocation
of Σπ

MM, it generates a key such that4

Kf(att1),f(att2) ← SπMM

(
{mtkr}r,

(
LπQ
(

MMatt1,att2 , χ(r)
))

χ(r)

)

otherwise if 〈f(att1), f(att2)〉 has been queried before, it uses the previously generated key
and sets

TKN ←
(
Kf(att1),f(att2), f(att1), f(att2)

)

• (Join case-3). If N has form
(

inter, f(att1), f(att2)
)

, then it sets

TKN ← (f(att1), f(att2))

It remains to show that for all probabilistic polynomial-time adversaries A, the probability that
RealOPX,A(k) outputs 1 is negligibly-close to the probability that IdealOPX,A,S(k) outputs 1. We
do this using the following sequence of games:

Game0 : is the same as a RealOPX,A(k) experiment.

Game1 : is the same as Game0, except that EMMC is replaced with the output of SMM
(
Lmm

S (MMC)
)

and every leaf projection node of form πatt(T) is replaced with the output of

SMM

(
Lmm

Q

(
MMC , χ(att)

))
,

Game2 : is the same as Game1, except that EMMV is replaced with the output of SMM
(
Lmm

S (MMV)
)

and, every leaf select node of form σatt=a(T) is replaced with the output of

SMM

((
mtkr

)
r∈DBatt=a

,Lmm
Q

(
MMV ,

〈
a, χ(att)

〉))
.

Game2+i for i ∈ [#DBᵀ]: is the same as Game1+i, except that EMMci is replaced with the output
of SMM

(
Lmm

S (MMci)
)

and, every leaf join node of form T1 ./att1=att2 T2 is replaced with the
output of(

SMM

({
mtkr1 ,mtkr2

}
(r1,r2)∈DBatt1=att2

,Lmm
Q

(
MMatt1 ,

〈
χ(att1), χ(att2)

〉))
, f(att1)

)
4Note that the key will be generated based on all previously simulated row tokens on that particular column; and

this is why we omit the indices from the notation in order to capture this aspect.

31

Course Department
16 CS
18 Math

<latexit sha1_base64="lS7rPMowVeiWRA/USYMV93/WbbU=">AAACbnicbVFNT9tAEF0b2kL6FUDiUFR11agVp8gGBBwR4dALEqgNIMVRtN6MkxXrtbU7RkTGx/7B3vgNXPgJjENAfHRWlp7ezOx7+xznWjkMgmvPn5t/8/bdwmLj/YePnz43l5ZPXFZYCV2Z6cyexcKBVga6qFDDWW5BpLGG0/i8U/dPL8A6lZk/OMmhn4qRUYmSAokaNP9GMYyUKVHEhRa2Kq80naoRjesbGzxCuMQ4KTsk6KDiP/kjdQC5sJiCwYpHEX/YCLdpqPP7GbVL1KHA8RMyAjN8VB00W0E7mBZ/DcIZaLFZHQ2a/6JhJotaXGrhXC8McuyX5EdJDWS/cOROnosR9AgakYLrl9O4Kv6DmCFPMkufQT5ln26UInVuksY0mZJp97JXk//r9QpMdvulMnmBYOS9UFJojhmvs+dDZUGinhAQ0iryyuVYWCGR/lCDQghfPvk1ONloh5vtjeOt1t7+LI4Ftsa+s3UWsh22x36xI9Zlkt14S94Xb8279Vf9r/63+1Hfm+2ssGflr98BcEa5mQ==</latexit>

ID Name Course
A05 Alice 16
A12 Bob 18
A03 Eve 18

<latexit sha1_base64="06NVr2eY/DFZL9F3e4eVef5cQrc=">AAAConicbVFbT9swFHYC26C7UOBxD7NWNu2pSsq4PHKVxh4YaBSQmqqy3ZPWwnEi+wRRZflh/A3e9m/mhIKA7liWvvN959jnwjMlLQbBX8+fm3/1+s3CYuPtu/cflprLK+c2zY2ArkhVai45s6Ckhi5KVHCZGWAJV3DBr/Yr/eIajJWpPsNJBv2EjbSMpWDoqEHzNuIwkrpAxnPFTFn8UfUpG9G4erNBI4Qb5HFxdFDSr/TRPWYJVMSDv+8qslBGEX1I3A02nL6rpIAqMdykT8Ww48i9lNfS9jMpWHfk4TXMSBHo4WOlg2YraAe10VkQTkGLTO1k0LyLhqnIE9AoFLO2FwYZ9gtmUAoFruHcQsbEFRtBz0HtGrT9oh5xSb84Zkjj1Lirkdbs04yCJdZOEu4iE4Zj+1KryP9pvRzj7X4hdZYjaHH/UZwriimt9kWH0oBANXGACSNdrVSMmWEC3VYbbgjhy5ZnwXmnHa63O6ffWzt703EskI/kM/lGQrJFdsgPckK6RHifvEPv2Pvlr/k//VP/932o701zVskz86N/mvrGeg==</latexit>

Figure 5: Plaintext database DB.

Game3+#DBᵀ : is the same as Game2+#DBᵀ , except that SET is replaced by a set composed of values
generated uniformly at random, and every internal select node of the form σatt=a(Rin) is
replaced with (Kg(a‖att), f(att)), where Kg(a‖att) is generated as detailed above.

Game3+#DBᵀ+i for i ∈ [(#DBᵀ)2]: is the same as Game2+#DBᵀ+i, except that EMMci,c′i is replaced
with the output of SMM

(
Lmm

S (MMci,c′i)
)
, and every internal join node of form T ./att1=att2 Rin

is replaced with the output of(
SπMM

(
{mtkr}r,

(
LπQ
(

MMatt1,att2 , χ(r)
))

χ(r)

)
, f(att1), f(att2)

)

Game4+#DBᵀ+(#DBᵀ)2 : is the same as Game3+#DBᵀ+(#DBᵀ)2 except that EMMR is replaced with
the output of SMM

(
Lmm

S (MMR)
)

and every row token mtkr for a row r is replaced with the
output of5 of

SMM

(
Lmm

Q

(
MMR,

〈
tbl(r), rrk(r)

〉))
where ctj ← EncK1(rj).

Game5+#DBᵀ+(#DBᵀ)2 : is the same as Game4+#DBᵀ+(#DBᵀ)2 , except that every SKE encryption ct
of a message m is replaced with ct← EncK1(0|m|).
Note that Game5+#DBᵀ+(#DBᵀ)2 is identical to IdealOPX,A,S(k).

C A Concrete Example of Indexed HNF

Similar to [16], our examples also rely on a small database DB composed of two tables T1 and T2
that have three and two rows, respectively. The schema of T1 is S(T1) = (ID, Name, Course) and
that of T2 is S(T2) = (Course, Department). The tables are described in Figure (5).

Figure (6) shows the result of applying our method to index the database DB = (T1,T2), as de-
tailed in Section (??). There are five multi-maps MMR, MMC , MMV , MMCourse, MMT2.Course,T1.Course,
and a set SET. e detail below how the indexing works for this example.

The first multi-map, MMR, maps every row in each table to its encrypted content. As an
instance, the first row of T1 is composed of three values (A05,Alice, 16) that will get encrypted

5Note that we are making the assumption that all attributes have the same domain, otherwise, there would be a
number of games smaller than (#DBᵀ)2.

32

MMC

T1kc1 EncK(A05), EncK(A12), EncK(A03)
T1kc2 EncK(Alice), EncK(Bob), EncK(Eve)
T1kc3 EncK(16), EncK(18), EncK(18)
T2kc1 EncK(16), EncK(18)
T2kc2 EncK(CS), EncK(Math)

<latexit sha1_base64="DQMXHCe4uQ1GLau47HGuYVtskcA=">AAAEYXicjVNRa9swEFZjb2uztUu7x76IJRsNjGA7W9vHrqEwGIGONW0hCkZW5ERUlo0kdwTXf3Jve9nL/sgU15Q18ZKeMZy+73Sf7rgLEs6UdpxfGzXLfvb8xeZW/eWr7Z3Xjd29SxWnktABiXksrwOsKGeCDjTTnF4nkuIo4PQquOnN+atbKhWLxYWeJXQU4YlgISNYG8jfrf1AAZ0wkWkcpBzLPLvj5svraDpPWUdRyjUzOmkkMq9g86yFIqynKsz6/dzvtXKIUBkOC3vgL3zXkHfEd1sF8f4ReyZI7n9tHXx2PrU/VMCuVwk73fY8DUJwjai3UpQzQqvyn8aBgZfxs1vavldar9xdpeweVsm6x5WqBl4r6j2hx/8VfUrmlY3sfa/K3DfH9sLDERXjhznzG02n4xQGlx23dJqgtHO/8RONY5JGVGjCsVJD10n0KMPSjCenZmBTRRNMbvCEDo0rcETVKCs2JIfvDDKGYSzNLzQs0H9vZDhSahYFJrIoZJGbg1XcMNXh8ShjIkk1NaUXQmHKoY7hfN3gmElKNJ8ZBxPJzFshmWKJiTZLWTdNcBdLXnYuvY7b7XjfPjZPTst2bIJ98BYcABccgRPwBZyDASC135ZtbVs71h97y27Ye/ehtY3yzhvwyOz9v1alS6s=</latexit>

SET
T1kr1kc1kA05
T1kr2kc1kA12
T1kr3kc1kA03
T1kr1kc2kAlice
T1kr2kc2kBob
T1kr3kc2kEve
T1kr1kc3k16
T1kr2kc3k18
T1kr3kc3k18
T2kr1kc1k16
T2kr2kc1k18
T2kr1kc2kCS
T2kr2kc2kMath

<latexit sha1_base64="tu+v4gKBgo71bicox8BCM2J95VY=">AAAEbnicjZPdatswFMfV2Nu67KPJBrtYGRNLBr0KtrN2vexaCrsZdDRpC3EwsiInorJsJLkQHN/tCXe3Z9jNHmGyYkraZpkPGB3O+Z3jvz5OmDIqleP82mpY9qPHT7afNp89f/Fyp9V+dSGTTGAyxAlLxFWIJGGUk6GiipGrVBAUh4xchtcnZf7yhghJEz5Q85SMYzTlNKIYKR0K2o0ffkimlOcKhRlDosgXbFE0/VnZsNn1ZZSfnw6KLvR9eBuMkZrpxCBwC+gvoAjccsFm6X5x9jfD3irsepvh/p3O/VoyPAMzikktIQY/TsJaQgx8evOfzpWQsqbrHtRSsWQPa4nYyHpr7uRfGrw1V1KzrzmIk/NafQ37TSdXaJ/wye2jC1odp+cYgw8dt3I6oLKzoPXTnyQ4iwlXmCEpR66TqnGOhKKYEf1+M0lShK/RlIy0y1FM5Dg341LAjzoygVEi9McVNNHVihzFUs7jUJNmR/dzZXBdbpSp6HCcU55minC8/FGUMagSWM4enFBBsGJz7SAsqNYK8QwJhJWe0KY+BPf+lh86F17P7fe87586R8fVcWyDXfAB7AEXfAZH4Cs4A0OAG7+ttvXW2rX+2G/sd/b7JdrYqmpegztm7/0Fsgtc6A==</latexit>

MMV

T1kc1kA05 T1, r1

T1kc1kA12 T1, r2

T1kc1kA03 T1, r3

T1kc2kAlice T1, r1

T1kc2kBob T1, r2

T1kc2kEve T1, r3

T1kc3k16 T1, r1

T1kc3k18 (T1, r2), (T1, r3)
T2kc1k16 T2, r1

T2kc1k18 T2, r2

T2kc2kCS T2, r1

T2kc2kMath T2, r2
<latexit sha1_base64="LK0h1HF04xqddcOB9MT2ZG9DJpc=">AAAF3XicrZTPa9swFMfV1t667EfT7biLWLLRQgm2sx85di2DXQIda9KyOBhZURJRWTaSXAiuYZcdNsau+79229+xf2CyYkrabGkKecbm8d7TR+8r4RcmjErlOL/X1jcs+87dzXuV+w8ePtqqbj/uyjgVmHRwzGJxGiJJGOWko6hi5DQRBEUhIyfh2WGRPzknQtKYH6tJQvoRGnE6pBgpHQq2N/74IRlRnikUpgyJPLtg+skr/rhAVvwoZYrqfdKIZ57J5lndj5Aay2HWbudBt55D3y/LobHL/HHg6uQFDlz9rb91Xpn0i7maPSgCt16EfR8uhXK9BSjvViinuQDVXBLlGRSjmKxAooEdxOEKJBrUu/NFXS0rsVmg3Ncr0DcltWZIO3P6dvfgXLC5e9MG3szF/qdVb7lWr5BaC0g33oQ3cxOHH1fQkyG1dfAWXfmEDy7/8aBacxqOMTjvuKVTA6UdBdVf/iDGaUS4wgxJ2XOdRPUzJPRoYEQPi1SSBOEzNCI97XIUEdnPzHTK4XMdGcBhLPTLFTTR2RUZiqScRKGuNCKu54rgv3K9VA1b/YzyJFWE4+lGw5RBFcNi1MEBFQQrNtEOwoLqXiEeI4Gw0gOxog/BvS553ul6DbfZ8D68rO0flMexCZ6CZ2AHuOAN2AfvwRHoAGx9sj5bX61vdmB/sb/bP6al62vlmifgitk//wIeXrKQ</latexit>

MMR

T1kr1 EncK(A05), EncK(Alice), EncK(16)
T1kr2 EncK(A12), EncK(Bob), EncK(18)
T1kr3 EncK(A03), EncK(Eve), EncK(18)
T2kr1 EncK(16), EncK(CS)
T2kr2 EncK(18), EncK(Math)

<latexit sha1_base64="SV+h55+fTNK6G8cb7xTcciwPrJ8=">AAAEZHicjVNRa9swEFZjb+2ybkta9jQYYslGAyPYztb1sWspDEag25q2EAUjK3IiKstGkguZ6z+5tz3uZb9jimvKmnhZTghO953uuzvugoQzpR3n50bNsh883Nx6VH+8/eTps0Zz51zFqSR0QGIey8sAK8qZoAPNNKeXiaQ4Cji9CK6O5/jFNZWKxeJMzxI6ivBEsJARrI3Jb9a+o4BOmMg0DlKOZZ7dcHPyOprOQ9ZRlHLNDE8aicwr0DxrowjrqQqzfj/3v7ZziFDpDgu5w89814A30nfbBfDmHnoiSO5/bu99dN533laYOSPUAMuIu9+5JUII/ofYW0nselXER3FQTXuwNm1vdb29KtqT639Uuwatt0abTdcqWI+/ddaJvLKPJsOKyH3z7CwkjqgY342a32g5XacQuKy4pdICpZz6jR9oHJM0okITjpUauk6iRxmWZkI5NTObKppgcoUndGhUgSOqRlmxJDl8bSxjGMbSXKFhYf37R4YjpWZRYDyLQhaxubEKG6Y6PBhlTCSppqb0gihMOdQxnG8cHDNJieYzo2AimckVkimWmGizl3XTBHex5GXl3Ou6va735V3r8KhsxxZ4AV6BPeCCD+AQfAKnYABI7Ze1aTWspvXb3rZ37ee3rrWN8s8uuCf2yz/op0yD</latexit>

MMT2.Course,T1.Course

T2kr1 (T1, r1)
T2kr2 (T1, r2), (T1, r3)

<latexit sha1_base64="kPxqh/9kvNvGP1LAhQviuTfHMEw=">AAADBXichVLLatwwFJXdVzp9TdJlNqLjlgSGwXYKyTIkm24CKcwkgdFgZI08IyLJRo/CoHiTTX8lmy5aSrf9h+76N9U4bpsX7TWC43N0j6Qj5RVn2sTxzyC8d//Bw0crjztPnj57/qK7unakS6sIHZGSl+okx5pyJunIMMPpSaUoFjmnx/np/lI//kCVZqUcmkVFJwLPJCsYwcZT2WqwjnI6Y9IZnFuOVe3OuP/qDpovLTtIWG6YX8cK6dJGrV2EBDZzXbiDgzpzv3+GWTrY9/vStA+HWdLiuo5qiFBrB5uKrrR48UxlSdQIbxp146+c1LDv1U0vIwT/Y5L+0yTdjPp30FvXvRGV0z9ZZN1ePIibgrdB0oIeaOsw6/5A05JYQaUhHGs9TuLKTBxWPkJOfahW0wqTUzyjYw8lFlRPXHOLNXztmSksSuWHNLBhr3Y4LLReiNzPbM5wU1uSd2lja4qdiWOysoZKcrlQYTk0JVw+CThlihLDFx5gopjfKyRzrDAx/uF0fAjJzSPfBkfpINkapO/f9nb32jhWwDp4BTZAArbBLngHDsEIkOA8uAg+B1/Cj+Gn8Gv47XJqGLQ9L8G1Cr//Agnk6sQ=</latexit>

MMCourse

T1kc3kT2kc1 (T1kr1, T2kr1), (T1kr2, T2kr2), (T1kr3, T2kr2)
<latexit sha1_base64="FnX6bXTNsMf2JATmcmbrCmSSp/k=">AAADJXicdVJNa9swGJa9ry77aLoddxFLNjoowXYGG+xS1ssuhRaathAFIytyIirJRh+DoPrP7LK/sssOK2Ow0/5KZdfttiR9jc3r58N69VhZyZk2UfQ7CO/cvXf/wcbDzqPHT55udreeHevCKkJHpOCFOs2wppxJOjLMcHpaKopFxulJdrZX8yefqdKskEdmUdKJwDPJckaw8VC6FXxAGZ0x6QzOLMeqcufcX1UHzetPdpCw3DC/jhXSJQ1buT4S2Mx17vb3q9Rdv+z5mTStqn4FEWrtsKkb/VEae/KcpEP/hH/RpEYhSeN+o3/dmLaXXFCl8c6KyYNv+jtr1ck6dXKbeniLup4FIXidB5XTm6zSbi8aRE3B1SZumx5o6yDtXqBpQayg0hCOtR7HUWkmDisfMac+dKtpickZntGxbyUWVE9c85cr+MojU5gXyt/SwAb91+Gw0HohMq9s9rHM1eA6bmxN/n7imCytoZJcLZRbDk0B6yMDp0xRYvjCN5go5meFZI4VJsYfrI4PIV7e8mpznAzi4SA5fNvb/djGsQFegJdgG8TgHdgFn8ABGAESfAm+BT+Ci/Br+D38Gf66koZB63kO/qvwzyWoM/q4</latexit>

Figure 6: Indexed database.

and stored in MMR. Since DB has five rows, MMR has five pairs. The second multi-map, MMC ,
maps each column of every table to its encrypted content. Similarly, as DB is composed of five
columns in total, MMC has five pairs. The third multi-map, MMV , maps every unique value in
every table to its coordinates in the plaintext table. For example, the value 18 in T1 exists in two
positions, in particular, in the second and third row. The join multi-map, MMCourse, maps the
columns’ coordinates to the pair of rows that have the same value. In our example, as the first row
of both tables contains 16, and the second and third rows of T1 and the second row of T2 contain
18, the label/tuple pair(

T1‖c3‖T2‖c1,
(
(T1‖r1,T2‖r1), (T1‖r2,T2‖r2)

)
, (T1‖r3,T2‖r2)

))
is added to MMCourse. The correlated join multi-map, MMT2.Course,T1.Course, maps every row in each
table to all rows that contain the same value. In our example, for the attribute Course, the first
row in T2 maps to the first row in T1 while the second row in T2 maps to second and third rows in
T1. Finally, the set structure SET stores all values in every row and every attribute.

33

πID

./
T1.Course=T2.Course

σT2.Department=Math

T2

T1

(a) Query tree

ptkT1.c1

jtkT1.Course,T2.Course

stkT2.Department,Math

(b) Token tree

Rstk
out : (T2, r2)

Rjtk
out : (T1, r2) (T2, r2)

(T1, r3) (T2, r2)

Rptk
out : (T1, r2)1

(T1, r3)1

R(root)
out : EncK(A12)

EncK(A03)

(c) Intermediate results of token
tree

Figure 7: A query tree translated to a token tree which is then executed using the indexed database.

A concrete query. Let us consider the following simple SQL query

Select T1.ID From T1,T2 Where T2.Department = Math AND T2.Course = T1.Course.

This SQL query can be rewritten as a query tree, see Figure (??), and then translated, based on
OPX protocol into a token tree as depicted in Figure (7b).6

We detail in Figure (7c) the intermediary results of the token tree execution using the indexed
database and provide below a high level description of how it works.

The server starts by fetching from MMV the tuple corresponding to T2‖c2‖18, which is equal to
{(T2, r2)}. This represents the first intermediary output Rstk

out which is also the input for the next
node. For each element in Rstk

out, the server fetches the corresponding tuple in MMT2.Course,T1.Course,
which is equal to {(T1, r2), (T1, r3)}. Now, the second intermediary output Rjtk

out is composed of all
row coordinates from T1 that match T2. For the internal projection node, given (1, in), the server
will simply output the row tokens in the first attribute as Rptk

out.
Finally, the server fetches tuples from the MMR that correspond to the remaining row tokens,

as the final result of Rroot
out , which is equal to

Rroot
out = (EncK(A12),EncK(A03)).

Concrete storage overhead. The plaintext database DB is composed of thirteen cells excluding
the tables attributes.7 The indexed structure consists of fifty eight pairs. Assuming that a pair and
a cell have the same bit length, our indexed representation of the database has a multiplicative

6For sake of clarity, this example of token tree generation does not accurately reflect the token protocol of OPX,
but only gives a high level idea of its algorithmic generation.

7Note that our calculation does not take into account the security parameter and consider every (encrypted) cell as
a one unit of storage.

34

storage overhead of 4.46. In particular, each of the multi-maps MMR, MMC , MMV and the set SET
have the same size as the plaintext database (i.e., 13 pairs). This explains the 4× factor. It is worth
emphasizing that even if one considers a larger database, the 4× factor remains unchanged. The
additive component of the multiplicative factor, i.e., the 0.46, will vary, however, from one database
to another depending on the number of columns with the same domain and the number of equal
rows in these columns.

35

	Introduction
	Preliminaries
	Definitions
	The OPX Construction
	Efficiency

	Security and Leakage of OPX
	Black-Box Leakage Profile
	Security of OPX
	Concrete Leakage Profile

	Proof of Theorem 4.1
	Proof of Theorem 5.1
	A Concrete Example of Indexed HNF

