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Abstract. Nakamoto consensus, arguably the most exciting development in distributed computing
in the last few years, is in a sense a recasting of the traditional state-machine-replication problem in
an unauthenticated setting, where furthermore parties come and go without warning. The protocol
relies on a cryptographic primitive known as proof of work (PoW) which is used to throttle message
passing with the PoW difficulty level being appropriately adjusted throughout the course of the protocol
execution.
While the original formulation was only accompanied by rudimentary analysis, significant and steady
progress has been made in abstracting the protocol’s properties and providing a formal analysis under
various restrictions, starting with the work by Garay, Kiayias and Leonardos [Eurocrypt ’15], for a
simplified version of the protocol which excluded PoW difficulty adjustment and assumed a fixed
number of parties as well as synchronous communication rounds. These assumptions have since been
relaxed, first by Pass, Seeman and Shelat [Eurocrypt ’17] who also focused on the simplified version of
the protocol but on the more realistic bounded-delay model of communication, and by Garay, Kiayias
and Leonardos [Crypto ’17] who looked into the full protocol including the PoW difficulty adjustment
mechanism with a variable number of parties but again assuming synchronous communication and a
predetermined schedule of participation. Despite the above progress, the full analysis of the protocol
in the setting of bounded communication delays and dynamic participation has remained elusive.
This paper’s main result is the proof that Nakamoto’s protocol achieves, under suitable conditions, con-
sistency and liveness in bounded-delay networks with adaptive (as opposed to predetermined) dynamic
participation assuming, as in previous works, that the majority of the computational power favors the
honest parties. While our techniques draw from previous analyses, our objective is significantly more
challenging, demanding new insights and the introduction of new techniques in order to realize it.

1 Introduction

Nakamoto’s blockchain protocol [18] is a protocol where parties engage in the collection and organization of
transactions in a ledger without having any information about each other or even precise knowledge of the
number of parties running the protocol at any given time. This is in contrast to classical models and results in
consensus (aka Byzantine agreement) [20, 16] and other fundamental distributed computing tasks, where it is
typically assumed that parties have pairwise authenticated communication channels or are initialized with the
public keys of all participants. Instead, Nakamoto’s blockchain protocol relies on the cryptographic primitive
known as proof-of-work (PoW, aka cryptographic puzzles) [8, 22, 1, 13]), to throttle message transmission and
stochastically create opportunities for unifying the parties’ possibly diverging views, despite the presence of
a subset of them acting adversarially.

Given that the original protocol was presented with only a rudimentary analysis focusing solely on the
application context of fund transfers, a number of works have attempted to isolate the protocol’s properties
and provide a formal analysis. The first analysis, presented in [10], focused on a synchronous execution model,
and assuming the probability of the parties to solve a PoW over a single message-passing round is suitably
restricted, proved that the protocol satisfies consistency and liveness as long as the total computational
power in the system is in favor of the honest parties. Two limitations of this first analysis were that the
target recalculation mechanism of the blockchain protocol which adjusts the hardness of PoWs was excluded
(and hence, necessarily, the total number parties was assumed to remain fixed throughout the execution),
and that the execution model considered synchronous communication rounds.



Addressing the latter problem was undertaken in [19] (with further improvements in follow-up works [15,
21]), where the blockchain protocol was analyzed in the so-called bounded-delay model (cf. [7])4, showing
the protocol secure for a favorable choice of network delay ∆ with respect to its hard-coded PoW hardness
parameter, and its insecurity in the general case where ∆ is chosen adversarially. Technically, the main
challenge to address in transitioning to the bounded-delay model is the fact that the usefulness of a certain
event in the protocol execution (e.g., the creation of a PoW at time t) is affected by events that are happening
at times up to t+∆ forward in time (e.g., the creation of another PoW) and hence this dependence asks for
additional care to be applied in the probabilistic analysis.

The problem of analyzing the target recalculation mechanism was addressed in [11], albeit again in
the synchronous communication model, by introducing a setting where parties’ participation is allowed to
change round by round following a predetermined schedule that has a bounded rate of change. The main
technical difficulty addressed in that setting was the fact that PoW successes are not independent events in
the execution since the difficulty of the PoW primitive is determined by preceding execution events instead
of being fixed throughout, as in [10, 19].

While the above works have significantly improved our understanding regarding the behavior of Nakamoto
consensus in successively more refined theoretical models, the full analysis of the protocol has been elusive.
Namely, the question is whether the protocol retains its properties in a bounded-delay network when the
parties’ number is dynamically changing without following a predetermined schedule, i.e., it is adaptively
selected by the adversary, possibly even reacting to events that happen in the protocol execution, as long as
the rate of change is bounded by a constant.

Our results. Our main result is the proof that Nakamoto’s protocol achieves consistency and liveness in
bounded-delay networks with adaptive dynamic participation. While our results draw from the previous
analyses of [10, 19, 11], technically our objective is significantly more challenging and new techniques and
insights are needed in order to realize it.

At the core of our analysis is the function f(T, n), which determines the probability that n parties
executing the protocol at a certain time find a PoW whose difficulty is determined by the “target” T
(here, without loss of generality, n equates the number of parties with the number of CPUs of equal power
running the protocol). Given that n is unknown and continuously changing, Nakamoto’s protocol adjusts T
at regular intervals called epochs. As we show, the protocol’s resilience to attacks will stem from its ability
to keep f(T, n) close to a suitable value that is favorably positioned with respect to the, otherwise unknown,
network delay ∆. Starting with the assumption that the protocol is initiated at an appropriate f value,
the blockchain protocol will recalculate T to approximate that initial value by estimating the number of
active parties n per epoch. The estimation is based on the observed production of PoWs as recorded in the
blockchain itself and the relative timings of their production. A complication here is that for adversarially
produced blocks, there is no guarantee that the timestamp they contain is correct. The only guarantee we
have about timestamps is that in a valid blockchain they have to be monotonically increasing.

A major technical challenge is to work in a probabilistic setting where the random variables corresponding
to the cumulative difficulty of PoWs (rather than their number) collected by the protocol participants capture
the adaptive dynamic evolution of participants as well as the fact that some of these variables’ values at a
certain round may be affected by events in the future. The latter issue asks for a lower bound estimation of
the aggregate difficulty (in terms of PoWs of different targets) collected by the honest parties over a period
of time that is “isolated” from any future PoW event for a period of ∆ rounds. At the same time, we need
an upper bound on the aggregate difficulty amassed by adversarial parties while accounting for the fact that
the adversary may choose to work on very difficult PoW instances for which it will be impossible to control
their stochastic advantage via concentration bounds, due to high variance.

Our analysis culminates in two fundamental conditions, stated here at a high level (refer to Section 5.2
for the detailed specification), under which consistency and liveness of Nakamoto consensus can be shown:
(C1) imposes a lower bound on the duration of an epoch, the period over which the estimation of observed

4 In this model, formulated by Dwork, Lynch and Stockmeyer [7], there is an upper bound ∆, unknown to the
protocol, in the delay that the adversary may inflict on the delivery of messages. See Section 2.
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computational difficulty takes place; (C2) imposes a lower bound on the advantage that the honest compu-
tational power should have with respect to the adversary’s power; finally, both conditions impose an upper
bound on network delay ∆, as well as on the rate with which the number of parties dynamically change over
time with respect to the “dampening” factor which is hard-coded in the Nakamoto protocol and tempers
the PoW adjustment mechanism (cf. Def. 2).

The isolation of these two intuitive conditions is unique to our work, as no prior work was able to identify
the sufficient conditions to prove Nakamoto consensus. Specifically, [10, 19, 15, 21] only identified variants
of (C2) since they abstracted out the target recalculation mechanism, while [11] identified 7 interlocking
requirements without accounting for network delay as in C2 above. Arguably, these conditions are also
necessary for Nakamoto’s consensus protocol. It is easy to see that the protocol will fail when there is not
enough time to estimate the number of parties to adjust difficulty correctly (failure of C1); or when the
honest parties’ power is rivalled by the adversary (failure of C2).

Remark. The reader might wonder why the number of parties is allowed to adaptively dynamically evolve
following even an exponential increase while the upper bound on the delay ∆ is assumed fixed throughout
the execution and not allowed to dynamically evolve as well. The reason is that Bitcoin was designed with
exactly this setting in mind. (To see evidence of this consider that PoW production in the protocol is fixed to
be at 10 min intervals, irrespectively of the computational hashing power available to the network which has
increased significantly—and at periods of times even exponentially— since its initiation in 2009.) Designing
a protocol that can absorb changes in ∆ as well is an interesting, albeit rather theoretical, open question.

Organization of the paper. The remainder of the paper is organized as follows. In Section 2 we present
the network, protocol execution and adversarial model; in particular, we define the dynamic bounded-delay
setting where we our analysis is performed. In Section 3 we present the blockchain notation we will be using,
Bitcoin’s target recalculation function and desired properties the blockchain protocol should satisfy. Section 4
formally defines the Nakamoto consensus problem. Section 5 contains the bulk of our analysis, in particular
the relevant protocol parameters and the conditions mentioned above under which Nakamoto consensus can
be achieved, followed by characterizations of executions where the basic blockchain properties are satisfied,
from which proofs of consistency and liveness can be derived. Mathematical facts and some of the proofs are
presented in the appendix.

2 Model

We describe our protocols in the bounded-delay (aka “partially synchronous”) model considered in [19] for
the analysis of Nakamoto’s blockchain protocol (albeit in the static setting with a fixed number of parties),
in turn first formalized in [7], where there is an upper bound ∆ in the delay (measured in number of rounds)
that the adversary may inflict to the delivery of any message. The precise value of ∆ will be unknown to the
protocol (and in particular regular protocol participation will not rely on using ∆ as a time-out parameter).
Observe that “rounds” still exist in the model, but now these are not synchronization rounds where messages
are supposed to be delivered to honest parties. We build on Canetti’s formulation of “real world” notion of
protocol execution [3–5] for multi-party protocols), adapting it to the dynamic setting with a varying number
of parties and bounded delays.

Round structure and protocol execution. As in [9, 19], the protocol execution proceeds in “rounds”
(note: these are not message-passing rounds) with inputs provided by an environment program denoted by
Z to parties that execute the protocol Π. The adversary A is “adaptive,” and allowed to take control of
parties on the fly, as well as “rushing,” meaning that in any given round the adversary gets to observe honest
parties’ actions before deciding how to react. Network and hash function access is bundled by a joint random
oracle/diffusion (“gossiping”) functionality. The diffusion functionality is similar to those in [9, 19]; it allows
order of messages to be controlled by A, i.e., there is no atomicity guarantees in message broadcast [12], and,
furthermore, the adversary is allowed to spoof the source information on every message (i.e., communication
is not authenticated). A can inject messages for selective delivery but cannot change the contents of the
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honest parties’ messages nor prevent them from being delivered beyond ∆ rounds of delay — a functionality
parameter.

The environment program Z determines the protocol execution; it creates and interacts with other
instances of programs at the discretion of a control program C. Following [4], (Z, C) forms of a system of
interactive Turing machines (ITM’s). The only instances allowed by C are those of the protocol program Π,
an adversary A. These are called ITI’s (interactive Turing Machines Instances). We refer to [4] for further
details on the mechanics of the model. The only additional feature that is relevant to our setting is that we
assume each instance is initialized with a special Boolean flag denoted as ready which is set to false upon
initialisation.

The joint hash function/network functionality. We next present the dual functionality that is available
to all parties running the protocol and the adversary and abstracts the hash function and the network. We
choose to define the two as a joint functionality to ensure that access to the hash function will be provided
in a “fair” manner to all participants according to our bookkeeping convention.

The hash function functionality. It accepts queries of the form (compute, x) and (verify, x, y). For the first
type of query, assuming x was never queried before, a value y is sampled from {0, 1}κ and it is entered
to a table TH . If x was queried before the pair (x, y) is recovered from TH . The value y is provided as an
answer. For the second type of query, a membership test is performed on the table. Honest parties are
allowed to ask one query per round of the type compute and unlimited queries of the type verify (note:
we exclude Denial of Service attacks from our modeling, where A depletes the running time of parties
by sending them too many messages for verification). The adversary A is given a bounded number of
compute queries per round and no verify queries (the adversary can easily simulate those locally). The
bound for the adversary is determined as follows. Whenever a corrupted party is activated the bound
is increased by 1; whenever a query is asked the bound is decreased by 1 (it is not necessary that the
specific corrupted party makes the query).

The diffusion functionality. Message passing and round bookkeeping is maintained by this functionality.
A round variable round is initialized to 0. For each party a string denoted by Receive() is maintained and
the party is allowed to fetch the contents of its corresponding Receive() at any time. The functionality
records all messages of the form (Diffuse,m) it receives from the parties. Completion of a round for
a party is indicated by sending a special message (RoundComplete). The adversary A is allowed to
receive all the currently recorded Diffuse messages at any time and messages to the Receive() strings
as desired. The round is completed when the adversary submits its (RoundComplete) message. In such
case, the functionality inspects the contents of all Receive() strings and includes any messages m that
were diffused by the parties ∆ rounds ago but not contributed by the adversary to the Receive() tapes
(in this way guaranteeing message delivery up to ∆ rounds). It also flushes any diffuse records that are
placed in the Receive() string of all parties. The variable round is then incremented and a new round
begins.

The dynamic bounded-delay setting. Given the functionalities as described above observe that contrary
to prior formalizations, the adversary can choose the termination of the round thus deciding on the spot how
many honest parties were activated adaptively. (In all previous works [10, 19, 11] the adversary was restricted
to a preset number of activations.) In each round, the number of parties that are active in the protocol is
denoted by nr and is equal to the total number of parties that have submitted the (RoundComplete) indicator
to the diffusion functionality and have their internal flag ready set to true. Determining nr can only be done
by examining the view of all honest parties and is not a quantity that is accessible to any of the honest
parties individually. The number of “corrupt” parties controlled by A in a round r is similarly denoted by
tr.

Parties, when activated, are able to read their input tape Input() and communication tape Receive()
from the diffusion functionality. If a party finds that its ready flag is false, it enters a “bootstrapping” mode
where it will diffuse a discovery message and synchronize (in the case of Nakamoto consensus, the party
will send a request for the latest blockchains, will collect all of them until a time-out parameter is reached
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and then will pick the most difficult one to start mining).5 When the synchronization phase terminates, the
party will set its ready flag to true and after this point it will be counted among the honest parties. An
honest party goes “offline” when it misses a round, i.e., the adversary issues a (RoundComplete) but that
party misses the opportunity to complete its computation. To record this action, whenever this happens we
assume that the party’s ready flag is set to false (in particular this means that a party is aware that it
went offline; note, however, that the party does not need to report it to anyone). Also observe that parties
are unaware of the set of activated parties. As in previous works (e.g., [10]), we assume, without loss of
generality, that each honest party has the same computational power.6

We will restrict the environment to fluctuate the number of parties in a certain limited fashion. Suppose
Z,A with fixed coins produces a sequence of parties nr where r ranges over all rounds of the execution. We
define the following property, which is a finite sequence version of a similar property introduced in [11] for
infinite sequences.

Definition 1. For γ ∈ R+ we call (nr)r∈[0,B), where B ∈ N, (γ, s)-respecting if for any set S ⊆ [0, B) of at
most s consecutive integers, maxr∈S nr ≤ γ ·minr∈S nr.

We say that Z is (γ, s)-respecting if for all A and coins for Z and A the sequence of parties nr is
(γ, s)-respecting.

The term {viewP
Π,A,Z(z)}z∈{0,1}∗ denotes the random variable ensemble describing the view of party P

after the completion of an execution running protocol Π with environment Z and adversary A, on input
z ∈ {0, 1}∗. We consider a “standalone” execution without any auxiliary information and we will thus restrict
ourselves to executions with z = 1κ. For this reason we will simply refer to the ensemble by viewP

Π,A,Z . The
concatenation of the view of all parties ever activated in the execution is denoted by viewΠ,A,Z .

Properties of protocols. In our theorems we will be concerned with properties of protocols Π running
in the above setting. Such properties will be defined as predicates over the random variable viewΠ,A,Z by
quantifying over all possible adversaries A and environments Z. Note that all our protocols will only satisfy
properties with a small probability of error in κ as well as in a parameter k that is selected from {1, . . . , κ}
(with foresight we note that in practice would be able to choose k to be much smaller than κ, e.g., k = 6).

3 Blockchains of Variable Difficulty

First we introduce the blockchain data structure and related notation, following [11]. Let G(·) and H(·) be
cryptographic hash functions with output in {0, 1}κ. A block with target T ∈ N is a quadruple of the form
B = 〈r, st, x, ctr〉 where st ∈ {0, 1}κ, x ∈ {0, 1}∗, and r, ctr ∈ N are such that they satisfy the predicate
validblockTq (B) defined as

(H(ctr,G(r, st, x)) < T ) ∧ (ctr < q).

The parameter q ∈ N is an arbitrary bound that determines the size of the register ctr; in the case of
Bitcoin it is 232. Contrary to [9, 11], q is not significant in any way in the analysis and can be set even to 1
(even though in practice this would not make sense, as it would require re-factoring the block contents after
a single hash query).

A blockchain, or simply a chain is a sequence of blocks where the rightmost block is the head of the chain,
denoted head(C). Note that the empty string ε is also a chain; by convention we set head(ε) = ε. A chain C
with head(C) = 〈r, st, x, ctr〉 can be extended to a longer chain by appending a valid block B = 〈r′, st′, x′, ctr′〉
that satisfies st′ = H(ctr,G(r, st, x)) and r′ > r, where r′ is called the timestamp of block B. In case C = ε,
by convention any valid block of the form 〈r′, st′, x′, ctr′〉 may extend it. In either case we have an extended
chain Cnew = CB that satisfies head(Cnew) = B. We note that in Bitcoin and variant implementations the
first block is called the “genesis” block, it is hardcoded in the client and serves the purpose of a common
reference string. This is not significant for our analysis however and for simplicity can be ignored.

5 Refer to Section 5.2 (specifically, discussion after Condition (C1)) for an adequate time-out value depending on
the epoch’s length and probability of at least one honest party out of the initial number of parties solving a PoW.

6 A real-world mining pool or party of a certain hashing power can be thought of as a set of flat-model parties.
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The length of a chain len(C) is its number of blocks. Consider a chain C of length ` and any nonnegative
integer k. We denote by Cdk the chain resulting from “pruning” the k rightmost blocks. Note that for
k ≥ len(C), Cdk = ε. If C1 is a prefix of C2 we write C1 � C2.

Given a chain C of length len(C) = `, we let xC denote the vector of ` values that is stored in C and starts
with the value of the first block. Similarly, rC is the vector that contains the timestamps of the blockchain C.

The target T is recalculated for each block based on the round timestamps of the previous blocks.
Specifically, there is a function D : Z∗ → R which receives an arbitrary vector of round timestamps and
produces the next target. The value D(ε), denoted by T0, is the initial target of the system that the genesis
block should conform to. The difficulty of each block is measured in terms of how many times the block is
harder to obtain than a block of target T0. In more detail, the difficulty of a block with target T is equal to
T0/T ; without loss of generality we will adopt the simpler expression 1/T . We will use diff(C) to denote the
aggregate difficulty of a chain. This is equal to the sum of all block difficulties that comprise the chain.

The target calculation function. At a high level, the target calculation function D(·) attempts to evaluate
the number of parties that exist in the system (recall we operate in the flat model where honest parties have
the same computational power) and adjust the target so the block production remains roughly the same over
time. We use two parameters m ∈ N and f0 ∈ (0, 1) and the goal is to have an expectation that m blocks
will be produced in m/f0 rounds. We will see in Section 5 that the probability f(T, n) with which n parties
produce a new block with target T is roughly Tn2−κ with f0 = f(T0, n0) the initial “block production rate”
where T0 is the initial target and n0 the initial estimate in the number of parties (in the sequel, for brevity,
we will abuse notation and write f instead of f0).

It follows that, if n is known, it is easy to adjust T so that Tn2−κ matches f . Just set T to be T0n0/n.
In order to facilitate the estimation of n, consider the last m blocks of a chain C where computed for target
T and it took Λ rounds to produce them. We define the quantity

n(T,Λ) = 2κm/TΛ

Observe that n(T0,m/f) = 2κT0n02−κ/T0 = n0. The above suggest a simple way to define the target
recalculation formula: T0n(T,Λ)/n0. This is flawed however as it is subject to attack, see [2, 11]. With
surprising foresight, Bitcoin set its target recalculation together using a “dampening filter”-like adjustment.
The formal definition is as follows.

Definition 2 (adapted from [11]). For fixed constants κ, τ,m, n0, T0, the target calculation function D :
Z∗ → R is defined as

D(ε) = T0 and D(r1, . . . , rv) =


1
τ · T if n0

n(T,Λ) · T0 <
1
τ · T ;

τ · T if n0

n(T,Λ) · T0 > τ · T ;
n0

n(T,Λ) · T0 otherwise,

where n(T,Λ) = 2κm/TΛ, with Λ = rm′ − rm′−m, T = D(r1, . . . , rm′−1), and m′ = m · bv/mc.

In the definition, (r1, . . . , rv) corresponds to a chain of v blocks with ri the timestamp of the ith block; m′, Λ,
and T correspond to the last block, duration, and target of the last completed epoch, respectively.

Blockchain properties. The blockchain data structure’s two fundamental properties, adapted from [9, 11],
are related to the Nakamoto consensus properties of Consistency and Liveness (see below).

The common prefix property, parameterized by a value k ∈ N, considers an arbitrary environment and
adversary, and holds as long as any two parties’ chains at two rounds have the earlier one subsumed in the
former as long as k blocks are removed.

Definition 3 (Common Prefix). The common prefix property Qcp with parameter k ∈ N states that for

any two players P1, P2 holding chains C1, C2 at rounds r1, r2, with r1 ≤ r2, it holds that Cdk1 � C2.
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The second property, called chain quality, quantifies the honest-party contributions that are contained in
a sufficiently long and continuous part of a party’s chain. Because we consider chains of variable difficulty,
it is more convenient to think of parties’ contributions in terms of the total difficulty they add to the chain
as opposed to the number of blocks they add (as done in [10]). The property states that adversarial parties
are bounded in the amount of difficulty they can contribute to any sufficiently long segment of the chain.

Definition 4 (Chain Quality). The chain quality property Qcq, with parameters µ ∈ R and ` ∈ N, states
that for any party P with chain C in viewΠ,A,Z , and any segment of that chain of difficulty d such that
the timestamp of the first block of the segment is at least ` smaller than the timestamp of the last block, the
blocks the honest parties have contributed in the segment have total difficulty at least µ · d.

4 Nakamoto Consensus and its Properties

As mentioned in Section 1, Nakamoto consensus (aka “ledger consensus”) is the problem where a set of
servers (nodes, parties) operate continuosly accepting inputs (“transactions”) and incorporate them in a
public data structure called the ledger. More specifically, the problem is to maintain a ledger of transactions
serialized in the form of a transaction sequence L; satisfying the following two properties [10, 11]. Below we

make the distinction between L and L̃, with the first denoting the settled ledger in the view of the party, and
the second denoting the settled ledger with a sequence of transactions appended that are still not settled in
the view of the party. In the context of Nakamoto’s Bitcoin protocol, we note that L̃ will be the sequence of
transactions defined by the chain C held by the party, while L will be the sequence of transactions defined
by the prefix Cdk, where k is a security parameter.

Consistency (cf. Persistence [10]): For any two honest parties P1, P2, reporting L1,L2 at rounds

r1 ≤ r2, respectively, it holds that L1 is a prefix of L̃2.

Liveness (parameterized by u ∈ N, the “wait time” parameter): If a transaction tx is provided to all
honest parties for u consecutive rounds, then it holds that for any player P , tx will be in L.

We remark that the problem is a variant of the state machine replication problem [23].

5 Nakamoto Consensus in Bounded-Delay Networks and Dynamic
Environments

In this section we present the full analysis and proofs of Nakamoto’s consensus protocol in the originally
envisioned dynamic environment where parties come and go, resulting in the adjusment of blocks’ difficulty
values. In particular, we formally specify (Section 5.2) the two conditions mentioned in Section 1 under which
consistency and liveness of Nakamoto consensus can be shown.

5.1 Additional notation, definitions, and preliminary propositions

Our probability space is over all executions of length at most some polynomial in κ. Formally, the set of
elementary outcomes can be defined as a set of strings that encode every variable of every party during each
round of a polynomially bounded execution. (We will not delve into such formalism and leave further details
unspecified.) We will denote by Pr the probability measure of this space. Define also the random variable E
taking values on this space and with a distribution induced by the random coins of all entities (adversary,
environment, parties) and the random oracle.

Suppose at round r exactly n parties query the oracle for target T . The probability at least one of them
will succeed is

f(T, n) = 1− (1− pT )n ≤ pTn, where p = 1/2κ.

For the initial target T0 and the initial estimate of the number of parties n0, we denote f0 = f(T0, n0).
Looking ahead, the objective of the target recalculation mechanism would be to maintain a target T for each
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party such that f(T, nr) ≈ f0 for all rounds r. For this reason, we will drop the subscript from f0 and simply
refer to it as f ; to avoid confusion, whenever we refer to the function f(·, ·), we will specify its two operands.

We will next present some definitions which will allow us to introduce a few (“good”) properties. These
properties are an intermediate step towards proving common prefix and chain quality, but are also interesting
in their own. The next two definitions are about the notions of “good chain” and “good round.” The
underlying notion of “goodness” is concerned with the targets that the honest parties are querying the
random oracle for. At a round r of an execution the nr honest parties might be querying the random oracle
for various targets. We denote by Tmin

r and Tmax
r the minimum and maximum of those targets.

With respect to parameters that appear as “free” in the following definitions (such as γ,∆, `), please
refer to the next subsection.

Definition 5. Round r is good if f/2γ2 ≤ pnrTmin
r and pnrT

max
r ≤ (1 + δ)γ2f .

Definition 6. Round r is a target-recalculation point of a chain C, if C has a block with timestamp r and
height a multiple of m. A target-recalculation point r is good if the target T for the next block satisfies
f/2γ ≤ pnrT ≤ (1 + δ)γf . A chain is good if all its target-recalculation points are good.

We now define notions related to timestamps of the blocks, such as “accuracy,” “epoch,” and “duration.”

Definition 7. A block created at round u is accurate if it has a timestamp v such that |u− v| ≤ `+ 2∆. A
chain is accurate if all its blocks are accurate. A chain is stale if for some u ≥ ` + 2∆ it does not contain
an honest block with timestamp v ≥ u− `− 2∆.

Definition 8. The blocks between two consecutive target recalculation points u and v on a chain C are an
epoch of C. The duration of the epoch is u− v.

At a certain round of an execution, we would like to prove that the chain of every honest party has
several desirable properties (along the notions just defined). This, however, entails a stronger statement in
the following sense. At any given round there might exist chains which do not belong to any honest party
(perhaps because the adversary kept them private), but have the potential to be adopted by one (i.e., have
sufficient difficulty). With that in mind we define the following set of chains of a round r.

Sr =

{
C ∈ Er

(C belongs to an honest party) or (∃C′ ∈ Er that belongs to an honest party and either
diff(C) > diff(C′) or diff(C) = diff(C′) and head(C) was computed no later than head(C′))

}
,

where C ∈ Er means that C exists and is valid at round r.
Next, we define a series of useful predicates with respect to such set of chains.

Definition 9. For a round r, let:

GoodChains(r) , “For all u ≤ r, every chain in Su is good.”

GoodRounds(r) , “All rounds u ≤ r are good.”

NoStaleChains(r) , “For all u ≤ r, the are no stale chains in Su.”

Accurate(r) , “For all u ≤ r, all chains in Su are accurate.”

Duration(r) , “For all u ≤ r and duration Λ of any epoch in C ∈ Su, 1
2(1+δ)γ2 ·mf ≤ Λ ≤ 2(1+δ)γ2 ·mf .”

Our goal is to show that, with high probability, an execution satisfies the common prefix and chain
quality properties. To fulfill this goal we will first focus on showing that the execution satisfies the predicates
we defined above. In particular, we will argue first that none of these predicates can fail, assuming proper
initialization. Towards that goal, we first specify a number of random variables.

Random variables. In our analysis, we will be interested in estimating the difficulty acquired by honest
parties during a sequence of rounds. Their number at a round r is denoted nr and define the real random
variable Dr equal to the sum of the difficulties of all blocks computed by honest parties at round r. Also,
define Yr to equal the maximum difficulty among all blocks computed by honest parties at round r, and
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Qr to equal Yr when Du = 0 for all r < u < r + ∆ and 0 otherwise. We call a round r such that Dr > 0
successful and one wherein Qr > 0 isolated successful. Regarding the adversary, let tr denote the number of
parties he controls at round r (equivalently, the number of random-oracle queries he can make at round r).
Note that nr and tr are determined by the environment at the beginning of round r and should conform to
the (γ, s)-respecting definition (Definition 1). We wish to upper bound the difficulty he can acquire during
a set J of queries. Looking ahead, to obtain a good upper bound that holds with high probability, we will
need some upper bound on the difficulty of a single block. However, the adversary may query the oracle for
arbitrarily low targets and may obtain blocks of arbitrarily high difficulty. The following definition will allow
us to work around these technical obstacles.

Consider a set of consecutive adversarial queries J , and note that the execution up to the first query in
J determines the target associated with it. We denote this target by T (J) and say that T (J) is associated
with J . We define A(J) and B(J) to be equal to the sum of the difficulties of all blocks computed by the
adversary during queries in J for target at least T (J)/τ and T (J), respectively. That is, queries in J for
targets less than T (J)/τ (resp. T (J)) do not contribute to A(J) (resp. B(J)). While considering consecutive
epochs of a particular chain, the target can either increase by at most τ (and B(J) will be appropriate), or
decrease by at most τ (and A(J) will be useful). For a set of rounds S or queries J we write n(S) =

∑
r∈S nr

and similarly t(S), D(S), Q(S), A(J), B(J).
Let Er−1 fix the execution just before round r. In particular, a value Er−1 of Er−1 determines the

adversarial strategy and so determines the targets against which every party will query the oracle at round
r and the number of parties nr and tr, but it does not determine Dr or Qr. For an adversarial query j we
will write Ej−1 for the execution just before this query.

Proposition 1. For any round r, [1− f(Tmax
r , nr)]pnr ≤ E[Yr|Er−1 = Er−1] ≤ E[Dr|Er−1 = Er−1] = pnr,

E[Y 2
r |Er−1 = Er−1] ≤ pnr/Tmin

r , and var[Dr|Er−1 = Er−1] ≤ pnr/Tmin
r .

Proof. Let us drop the subscript r for convenience. Suppose that the n honest parties at round r query for
targets T1, . . . , Tn. Observe that all these variables are determined by Er−1. We have

E[Yr|Er−1 = Er−1] =
∑
i∈[n]

1

Ti
· Ti

2κ

∏
i<j

[
1− f(Tj , 1)

]
≥
∑
i∈[n]

p
∏
j∈[n]

[
1− f(Tj , 1)

]
≥
∑
i∈[n]

p
∏
j∈[n]

[
1− f(Tmax, 1)

]
=
∑
i∈[n]

p[1− f(Tmax, n)] = pn[1− f(Tmax, n)],

where the third inequality holds because f(T, n) is increasing in T . For the upper bound on variance,

var[Dr|Er−1 = Er−1] ≤
∑
i∈[n]

1

T 2
i

· Ti
2κ

=
∑
i∈[n]

p

Ti
≤ pn

Tmin

and E[Y 2
r |Er−1 = Er−1] is bounded alike.

The following proposition collects a few useful inequalities that hold in a (γ, s)-respecting environment.

Proposition 2. Let U be a set of at most s consecutive rounds in a (γ, s)-respecting environment and S ⊆ U .

For any n ∈ {nr : r ∈ U}, n
γ ≤

n(S)
|S| ≤ γn.

n(U) ≤
(
1 + γ|U\S|

|S|
)
n(S).

|S|
∑
r∈S(pnr)

2 ≤ γ(
∑
r∈S pnr)

2.

Proof. The first part is proved in [11] and is a direct consequence of the definition. For the second, note that
n(U) = n(S) + n(U \ S) and n(U \ S) ≤ |U \ S|γn(S)/|S|. For the third, note that pn/γ ≤ pnr ≤ γpn for
any r ∈ S. The inequality follows from Theorem 8, since A/G ≤ (γ + 1/γ)/2 ≤ γ.
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5.2 Parameters and Their Conditions

Our formalization of the protocol involves a number of parameters that have already appeared in the text
above. With respect to the environment,

δ: Advantage of honest parties7 (tr < (1− δ)nr for all r);

(γ, s) : It restricts the fluctuation of the number of parties across rounds (Definition 1); we set s = τm/f .

An important parameter, which is a function of the protocol’s initialization parameters n0 and T0, is

f ∈ (0, 1): The probability at least one honest party out of n0 computes a block for target T0; i.e.,
f(T0, n0).

The protocol strives to maintain the probability of a successful round as close f as possible. This is the task
of the target recalculation function. Recall Definition 2 and the significance of the involved parameters

m ∈ N: The length of an epoch in number of blocks;

τ ≥ 1: The dampening filter.

The value τm/f is the longest an epoch might take to complete and γ ≥ 1 is an estimate of how much
the number of parties can change in such a time interval.

Our two main security parameters are κ and λ. The first determines the probability of a collision and
the second the probability desirable properties fail to hold.

κ : The length of the range of the hash function;

λ : Related to the properties of the protocol.

To achieve security, we will argue concentration of several random variables. Furthermore, in any exponen-
tially long (in the security parameters) execution bad events are bound to happen.

ε: Quality of concentration of random variables;

L : The total number of rounds in the execution.

For L = poly(κ, λ), our statements will fail with probability poly(κ, λ)(e−κ + e−λ).
To obtain meaningful concentration, we should be considering a sufficiently long sequence of at least

` =
4(1 + 3ε)

ε2f [1− (1 + δ)γ2f ]∆+1
·max{∆, τ} · γ3 · λ. (1)

consecutive rounds.
For our analysis to go through, the above parameters should satisfy certain conditions which we now

discuss. First, we will require that the number ` defined above is appropriately small compared to the
duration of an epoch.

2`+ 6∆ ≤ εm

2(1 + δ)γ2f
. (C1)

The above condition also suggests a way to set the time-out parameter for bootstrapping, since (along with
the expression for ` above) it provides an upper bound on ∆. Second, the advantage of the honest parties δ
should be large enough to absorb error factors such as (1− ε) and [1− (1 + δ)γ2f ]∆. To that end, we require
the following inequalities.

[1− (1 + δ)γ2f ]∆ ≥ 1− ε and ε ≤ δ/8 ≤ 1/8. (C2)

5.3 Chain Growth Lemma

We now prove the Chain Growth Lemma. This lemma appears already in [10] in a model with fixed difficulty
and fixed number of parties. In [14] the name “chain growth” appears for the first time, and where the
authors explicitly state a Chain Growth Property. In [11], the lemma is proved in a synchronous model
allowing variable difficulty and varying number of parties. Here we give a different proof that works in the
dynamic bounded-delay model. The lemma provides a lower bound on the progress of the honest parties,
which holds irrespective of any adversary.

7 Note that we denote the number of honest parties at round r by nr and the number of parties controlled by the
adversary by tr, so that the total number of parties is nr + tr. Although this is not standard, it simplifies several
expressions and is also in agreement with notation in [11].
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Lemma 1 (Chain Growth). Suppose that at round u of an execution E an honest party broadcasts a chain
of difficulty d. Then, by round v, every honest party has received a chain of difficulty at least d+Q(S), where
S = {r : u+∆ ≤ r ≤ v −∆}.

Proof. If two blocks are obtained at rounds which are at distance at least ∆, then we are certain that the
later block increased the accumulated difficulty. To be precise, assume S∗ ⊆ S is such that, for all i, j ∈ S∗,
|i− j| ≥ ∆ and Yi > 0. We argue that, by round v, every honest party has a chain of difficulty at least

d+
∑
r∈S∗

Yr ≥ d+
∑
r∈S

Qr.

Observe first that every honest party will receive the chain of difficulty d by round u + ∆ and so the first
block obtained in S∗ extends a chain of weight at least d. Next, note that if a block obtained in S∗ is the
head of a chain of weight at least d′, then the next block in S∗ extends a chain of weight at least d′.

5.4 Typical Executions: Definition and Related Proofs

We now define formally our notion of typical executions. Intuitively, the idea that this definition captures is
as follows. Suppose that we examine a certain execution E. Note that at each round of E the parties perform
Bernoulli trials with success probabilities possibly affected by the adversary. Given the execution, these
trials are determined and we may calculate the expected progress the parties make given the corresponding
probabilities. We then compare this value to the actual progress and if the difference is reasonable we declare
E typical. Note, however, that considering this difference by itself will not always suffice, because the variance
of the process might be too high. Our definition, in view of Theorem 7, says that either the variance is high
with respect to the set of rounds we are considering, or the parties have made progress during these rounds
as expected.

Beyond the behavior of random variables described above, a typical execution will also be characterized
by the absence of a number of bad events about the underlying hash function H(·) which is used in proofs
of work and is modeled as a random oracle. The bad events that are of concern to us are defined as follows
(recall that a block’s creation time is the round that it has been successfully produced by a query to the
random oracle either by the adversary or an honest party).

Definition 10. An insertion occurs when, given a chain C with two consecutive blocks B and B′, a block
B∗ created after B′ is such that B,B∗, B′ form three consecutive blocks of a valid chain. A copy occurs if the
same block exists in two different positions. A prediction occurs when a block extends one with later creation
time.

Given the above we are now ready to specify what is a typical execution.

Definition 11 (Typical execution). An execution E is typical if the following hold.

(a) For any set S of at least ` consecutive good rounds,

(1− ε)[1− (1 + δ)γ2f ]∆pn(S) < Q(S) ≤ D(S) < (1 + ε)pn(S).

(b) For any set J of consecutive adversarial queries and α(J) = 2(1
ε + 1

3 )λ/T (J),

A(J) < p|J |+ max{εp|J |, τα(J)} and B(J) < p|J |+ max{εp|J |, α(J)}.

(c) No insertions, no copies, and no predictions occurred in E.

We will be interested in comparing the computational power of the adversary against that of the honest
parties in a set of consecutive rounds S. However, in the bounded-delay model with delay ∆, the adversary
can mute the honest parties for the final ∆ rounds. The calculation summarized in the following lemma will
be used repeatedly.
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Lemma 2. Consider a typical execution in a (γ, s)-respecting environment. Let S = {r : u ≤ r ≤ v} be a
set of at least ` consecutive good rounds and J the set of adversarial queries in U = {r : u−∆ ≤ r ≤ v+∆}.
(a) (1 + ε)p|J | ≤ Q(S) ≤ D(U) < (1 + 5ε)Q(S).
(b) T (J)A(J) < εm/4(1 + δ) or A(J) < (1 + ε)p|J | and τT (J)B(J) < εm/4(1 + δ) or B(J) < (1 + ε)p|J |.
(c) If w is a good round such that |w− r| ≤ s for any r ∈ S, then Q(S) > (1− ε)[1− (1 + δ)γ2f ]∆|S|pnw/γ.

If in addition T (J) ≥ Tmin
w , then A(J) < (1− δ + 3ε)Q(S).

The main result of this section is that almost all polynomially bounded in κ and λ executions are typical.

Theorem 1. Assuming the ITM system (Z, C) runs for L steps, the probability of the event “E is not typical”
is bounded by O(L2)(e−λ + 2−κ).

5.5 Technical Overview

Next, we present an overview of the flow of the analysis, establishing the validity of the predicates of
Definition 9 over the space of typical executions in a (γ, s)-respecting environment. This constitutes the bulk
of the analysis, which in turn leads to the establishment of the common prefix and chain quality properties,
which in turn are used to show that Nakamoto consensus’ properties hold. The detailed presentation can be
found in the subsequent subsections.

First, we show that typical executions are good and accurate. Our first lemma says that the adversary
cannot maintain a chain by himself for too long. The reason is that the honest parties will progress faster
and his blocks will be orphaned. This implies accurate timestamps.

Lemma 3. GoodRounds(r − 1) =⇒ NoStaleChains(r).

Corollary 1. GoodRounds(r − 1) =⇒ Accurate(r).

Lemma 4. GoodRounds(r − 1) ∧GoodChains(r − 1) =⇒ Duration(r).

Lemma 5. GoodRounds(r − 1) =⇒ GoodChains(r).

Corollary 2. GoodRounds(r − 1) =⇒ GoodRounds(r).

Which allows us to conclude that, under certain conditions, all the predicates hold:

Theorem 2. Consider a typical execution in a (γ, 2(1+ δ)γ2m/f)-respecting environment. If the Conditions
C1 and C2 are satisfied, then all predicates of Definition 9 hold.

Next, we establish that the common prefix and chain quality properties hold.

Common Prefix and Chain Quality. The following lemma says that two “longest” chains cannot diverge
for too long.

Lemma 6. For any round r of a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment and any
two chains C and C′ in Sr, the timestamp of head(C ∩ C′) is at least r − 2`− 4∆.

Theorem 3 (Common Prefix). For a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment,
the common-prefix property holds for parameter εm.

Theorem 4 (Chain Quality). For a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment, the
chain-quality property holds with parameters `+ 2∆ and µ = δ − 3ε.

Nakamoto Consensus: Consistency and Liveness. Consistency and Liveness can now be shown easily
as in previous work, such as [11, 19, 10].

Theorem 5 (Consistency). For a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment, Con-
sistency is satisfied by setting the settled transactions to be those reported more than εm blocks deep.

The proof follows directly from the Common Prefix property (Theorem 3).

Theorem 6 (Liveness). For a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment, Liveness
is satisfied for depth εm with wait-time (4γ2 + 1)εm/f .

We refer to the remainder of the section for the full analysis.
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5.6 Typical Executions are Good and Accurate

In this subsection we study in detail the validity of the predicates of Definition 9 over the space of typical
executions in a (γ, s)-respecting environment. All statements in this subsection assume a typical execution
and a (γ, s)-respecting environment, for s ≥ 2(1 + δ)γ2m/f . Furthermore, the Conditions are assumed to
hold for the initialization parameters n0 and T0.

Our first lemma says that the adversary cannot maintain a chain by himself for too long. The reason is
that the honest parties will progress faster and his blocks will be orphaned. This implies accurate timestamps.

Lemma 3. GoodRounds(r − 1) =⇒ NoStaleChains(r).

Proof. Suppose—towards a contradiction—C ∈ Sr and has not been extended by an honest party for at
least ` + 2∆ rounds and r is the least round with this property. Let B be the last block of C computed by
honest parties (possibly the genesis) and let w be its timestamp. Set S = {u : w + ∆ ≤ u ≤ r − ∆} and
U = {u : w ≤ u ≤ r}. Note that by our assumption |S| ≥ `. Suppose that the blocks of C after B span k
epochs with corresponding targets T1, . . . , Tk. For i ∈ [k] let mi be the number of blocks with target Ti and
set M = m1 + · · ·+mk and d = m1/T1 + · · ·+mk/Tk. Our plan is to contradict the assumption that C ∈ Sr
by showing that all chains in Sr have more difficulty than C. By Chain-Growth (Lemma 1), all the honest
parties have advanced (in difficulty) during the rounds in U by Q(S). Therefore, to reach a contradiction it
suffices to show that d < Q(S).

When k > 2 we may partition these M blocks into k − 1 parts so that each part has the following
properties: (1) it contains at most one target-recalculation point, and (2) it contains at least m/2 blocks.
For each i ∈ {1, 2, . . . , k − 1}, let ji ∈ J be the index of the query during which the first block of the i-th
part was computed and set Ji = {j : ji ≤ j < ji+1} (Definition 11(c) assures ji < ji+1). We claim

d =

k∑
i=1

mi

Ti
<

k−1∑
i=1

(1 + ε)|Ji| ≤ (1 + ε)p|J | ≤ Q(S).

For the first inequality, consider part i. We have Ti = T (Ji) and—because of the first property of the
partition—two possible cases for Ti+1: either Ti ≤ Ti+1 ≤ τTi or Ti/τ ≤ Ti+1 ≤ Ti. In the first case, the
difficulty of the blocks acquired in Ji is at most B(Ji) and their number at most τTiB(Ji). In the second
case, the difficulty of the blocks acquired in Ji is at most A(Ji) and their number at most TiA(Ji). In either
case, since the adversary acquired at least m/2 blocks in Ji, the desired bound follows from Lemma 2(b).
The final inequality is Lemma 2(a).

If k ≤ 2, let J denote the queries in U starting from the first adversarial query attempting to extend B.
Then, T1 = T (J) and T2 ≥ T (J)/τ ; thus, d ≤ A(J). If A(J) < (1 + ε)p|J |, then A(J) < Q(S) is obtained by
Lemma 2(a). Otherwise, A(J) < ( 1

ε + 1)τα(J) = 2(1
ε + 1)( 1

ε + ε
3 )τλ/T (J). However, by considering only the

first ` rounds in S, n(S) ≥ nu`/γ. We have

Q(S) > (1− ε)[1− (1 + δ)γ2f ]∆ · pnu`T1
γT1

>
(1− ε)[1− (1 + δ)γ2f ]∆f`

2γ3T (J)
≥ 2(1− ε)(1 + 3ε)τλ

ε2T (J)
≥ A(J).

Corollary 1. GoodRounds(r − 1) =⇒ Accurate(r).

Proof. Suppose—towards a contradiction—that, for some w ≤ r, C ∈ Sw contains a block which is not
accurate and let u ≤ w be the timestamp of this block and v its creation time. If u− v > `+ 2∆, then every
honest party would consider C to be invalid during rounds v, v + 1, . . . , u. If v − u > ` + 2∆, then in order
for C to be valid it should not contain any honest block with timestamp in u, u + 1, . . . , v. (Note that we
are using Definition 11(c) here as a block could be inserted later.) In either case NoStaleChains(r) is false
contradicting the previous lemma.

Lemma 4. GoodRounds(r − 1) ∧GoodChains(r − 1) =⇒ Duration(r).
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Proof. Assume—towards a contradiction—that Duration(r) is false. Then, there exists a w ≤ r and a chain
C ∈ Sw with an epoch of target T and duration Λ that does not satisfy

1

2(1 + δ)γ2
· m
f
≤ Λ ≤ 2(1 + δ)γ2 · m

f
.

We consider the earliest epoch with this property.
For the upper bound, Lemma 3 implies the existence of two honest blocks in this epoch with timestamps

that differ at least Λ− 2`+ 4∆. Let u and v be these timestamps and define S = {i : u+∆ ≤ i ≤ v −∆}.
Assuming Λ > 2(1 + δ)γ2m/f , Condition C1 implies |S| ≥ Λ− 2`− 6∆ ≥ 2(1 + δ)(1− ε)γ2m/f . We have

Q(S) > (1− ε)[1− (1 + δ)γ2f ]∆ · f |S|
2γ2T

≥ (1 + δ)(1− ε)3 · m
T
>
m

T
.

For the first inequality we used that the beginning of the epoch was a good target-recalculation point; the
lower bound for |S| for the next and Condition C2 for the last inequality. This contradicts Chain Growth,
since the honest parties at round v already have more than m/T difficulty on top of u.

To prove the lower bound we are going to argue that even if the honest parties and the adversary join
forces they still cannot obtain m blocks. Let u be the timestamp of the first block in the epoch and v = u+Λ.
Set S = {u, . . . , v}, S′ = {u− `− 2∆, . . . , v + `+ 2∆},8 and J the set of queries available to the adversary
during the rounds in S′ starting with the first query for target T (so that T (J) = T ). Since Accurate(r)
holds (Corollary 1), the adversarial queries that contributed to the epoch are all in J . Since u is a good
target-recalculation point9 and nr ≤ γnu for all r ∈ S′, it follows that pn(S) ≤ pγnu|S| ≤ (1 + δ)γ2f |S|/T .
Thus,

D(S) < (1 + ε)pn(S) ≤ (1 + ε)(1 + δ) · γ
2f |S|
T

≤ (1 + ε) · m
2T

.

With respect to the adversary, if τTB(J) < εm/4, then the total number of blocks is less than m and we
are done. Otherwise, by Lemma 2(b),

B(J) < (1 + ε)p|J | ≤ (1 + ε)(1− δ)pn(S′) ≤ (1 + ε)(1− δ)pγnu|S′| ≤ (1 + ε)(1− δ) · pγnuT
T

· |S′|

≤ (1 + ε)(1− δ) · (1 + δ)γ2f

T
· |S′| ≤ (1− δ2)(1 + ε)

(
1 +

2`+ 4∆

|S|

)
|S| · γ

2f

T
≤ (1− δ)(1 + ε)2 · m

2T
.

For the last inequality we used Condition C1 and |S| ≤ m/2(1 + δ)γ2f . Since ε ≤ δ/4 (Condition C2), the
total count of blocks is again less than m.

Lemma 5. GoodRounds(r − 1) =⇒ GoodChains(r).

Proof. Note that it is our assumption that the first round (the genesis) is a good target-recalculation point.
Therefore, it suffices to show that if a recalculation point u in a chain C ∈ Sr is good, then the next one at
v = u+Λ ≤ r is also good. Let T be the target of the epoch starting at u and T ′ the target of the next one.
We wish to show that f/2γ ≤ pnvT ′ ≤ (1 + δ)γf.

We prove first the lower bound. If Λ ≥ γm/f , then T ′ ≥ γT (using γ ≤ τ) and so pnvT
′ ≥ pnuT

′/γ ≥
pnuT ≥ f/2γ, because u is assumed to be a good target-recalculation point. We assume now Λ < γm/f ,
which implies Λ ≤ (T ′/T )(m/f). Define S = {u, . . . , v}, S′ =

{
u− `− 2∆, . . . , v + `+ 2∆},8 and J the set

of queries available to the adversary in S′. Clearly, all blocks were computed during honest queries in S or
adversarial ones in J . Note that, by Condition C1 and Lemma 4, |S′| = Λ+ 2`+ 4∆ ≤ (1 + ε)Λ. We have

B(J) < (1− δ)(1 + ε)pn(S′) ≤ (1− δ)(1 + ε)pγnv|S′| ≤ (1− δ)(1 + ε)2pγnvΛ.

8 To be more precise we should adjust the endpoints of S′ to make sure S′ ⊆ {0, ..., r}.
9 The alert reader might spot the annoying case u = v = r (which basically amounts to the adversary completing

a whole epoch by himself). Since we are considering the earliest epoch in violation, the epoch ending at u didn’t
last longer than s rounds. The proof of Lemma 5 implies pnuT ≤ 2γf holds.
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Similarly, D(S) < (1 + ε)pn(S) ≤ (1 + ε)pγnvΛ. Assuming pnvT
′ < f/2γ we obtain the contradiction

2γpnvΛ ≤ 2γpnv ·
T ′

T
· m
f
<
m

T
≤ D(S) +B(J) < (2 + 4ε− δ)pγnvΛ ≤ 2γpnvΛ.

For the upper bound, let S = {u+ `+ 3∆, . . . , v − `+ 3∆}. Note first that if Λ ≤ m/γf , then T ′ ≤ T/γ
and so pnvT

′ ≤ pγnuT
′ ≤ pnuT ≤ (1 + δ)γf , where we used that u is a good target-recalculation point.

Thus, we may assume Λ > m/γf , which implies Λ ≥ (T ′/T )(m/f) and |S| = |Λ − 2` − 6∆| ≥ (1 − ε)Λ.
Assuming pnvT

′ > (1 + δ)γf , we obtain the following contradiction.

pnvΛ

(1 + δ)γ
≥ pnv

(1 + δ)γ
· T
′

T
· m
f
>
m

T
≥ Q(S) > (1− ε)[1− (1 + δ)γ2f ]∆ · pnv|S|

γ
≥ pnvΛ

(1 + δ)γ
.

The first two inequalities have been discussed above. For the third one, note that since C ∈ Sr, by Lemma 3
there is a block computed by an honest party among the first and the last `+ 2∆ rounds of the epoch; the
inequality follows by Chain Growth. The next one follows from Definition 11, since |S| ≤ s due to Lemma 4,
and so n(S) ≥ nv|S|/γ. The last inequality is a consequence of Condition C2.

Corollary 2. GoodRounds(r − 1) =⇒ GoodRounds(r).

Proof. Consider any C ∈ Sr and let u be its last recalculation point before r and T the associated target. Note
that if r is a recalculation point, it follows directly by Lemma 5 that it is good. Otherwise, we need to show
that f/2γ2 ≤ pnrT ≤ (1 + δ)γ2f . By Lemma 5, f/2γ ≤ pnuT ≤ (1 + δ)γf . By Lemma 4, nu/γ ≤ nr ≤ γnu.
Combining these two bounds we obtain the desired inequality.

Theorem 2. Consider a typical execution in a (γ, 2(1+δ)γ2m/f)-respecting environment. If the Conditions
C1 and C2 are satisfied, then all predicates of Definition 9 hold.

Proof. We only need to verify that the predicates hold for the first ` + 2∆ rounds, assuming they hold at
the first round. Note that if no epoch has been completed, all honest parties query for target T0 and are
at most γn0. Thus, we only need to verify Duration(` + 2∆). The lower bound of Lemma 4 holds unless
GoodRounds(r) fails for some r < `+ 2∆, which does not happen by Corollary 2.

5.7 Common Prefix and Chain Quality

The following lemma says that two “longest” chains cannot diverge for too long. We say below that d ∈ R
is contained in a block B and write d ∈ B, when B extends a chain C and diff(C) < d ≤ diff(CB).

Lemma 6. For any round r of a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment and any
two chains C and C′ in Sr, the timestamp of head(C ∩ C′) is at least r − 2`− 4∆.

Proof. Let v be the timestamp of head(C ∩ C′) and u ≤ v the greatest timestamp among those blocks on
C ∩ C′ that was computed by an honest party. Let U = {i : u < i ≤ r}, S = {i : u+∆ ≤ i ≤ r−∆}, and let
J denote the adversarial queries that correspond to the rounds in U . We claim that, if r− v ≥ `+ 2∆, then

2Q(S) ≤ D(U) +A(J).

This contradicts Lemma 2 for δ ≥ 8ε, which implies D(U) < (1 + 5ε)Q(S) and A(J) < (1− δ + 3ε)Q(S).
Towards proving the claim, associate with each r ∈ S such that Qr > 0 an arbitrary honest block that

is computed at round r for difficulty Qr. Let B be the set of these blocks and note that their difficulties
sum to Q(S). We argue the existence of a set of blocks B′ computed in U such that B ∩ B′ = ∅ and
{d ∈ B : B ∈ B} ⊆ {d ∈ B : B ∈ B′}. This suffices, because each block in B′ contributes either to
D(U)−Q(S) or to A(J) and so Q(S) ≤ D(U)−Q(S) +A(J).

Consider, then, a block B ∈ B extending a chain C∗ and let d = diff(C∗B). If d ≤ diff(C ∩ C′) (note
that u < v in this case and head(C ∩ C′) is adversarial), let B′ be the block of C ∩ C′ containing d. Such a
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block clearly exists and has a timestamp greater than u. Furthermore, B′ /∈ B, since B′ was computed by
the adversary. If d > diff(C ∩ C′), note that there is a unique B ∈ B such that d ∈ B (recall the argument in
Chain Growth Lemma 1). Since B cannot simultaneously be on C and C′, there is a B′ /∈ B either on C or
on C′ that contains d.

Theorem 3 (Common Prefix). For a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment,
the common-prefix property holds for parameter εm.

Proof. Suppose common prefix fails for two chains C1 and C2 at rounds r1 ≤ r2. It is not hard to see that in
such a case there was a round r ≤ r2 and two chains C and C′ in Sr, such that each had at least k blocks after
head(C ∩C′). By Lemmas 4 and 6, at least εm/2 belong to one epoch. In view of Lemma 6, it suffices to show
that that these were computed in at least ` + 2∆ rounds. Let T be the target of these blocks and suppose
the honest parties query the oracle for target T during a set of rounds S of size ` + 2∆. By Condition C1,
|S| ≤ εm/4(1 + δ)γ2f . Furthermore, by Theorem 2, pnrT ≤ (1 + δ)γ2f holds for each r ∈ S. Putting these
together, the number of such blocks that the honest parties computed are less than

T ·D(S) < (1 + ε)
∑
r∈S

pnrT ≤ (1 + ε)εm/4.

By Lemma 2 the adversary contributed less than (1 + ε)εm/4(1 + δ) blocks, for a total of less than εm/2.

Theorem 4 (Chain Quality). For a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment, the
chain-quality property holds with parameters `+ 2∆ and µ = δ − 3ε.

Proof. Let us denote by Bi the i-th block of C so that C = B1 . . . Blen(C) and consider K consecutive blocks
Bu, . . . , Bv. Define K ′ as the least number of consecutive blocks Bu′ , . . . , Bv′ that include the K given ones
(i.e., u′ ≤ u and v ≤ v′) and have the properties (1) that the block Bu′ was computed by an honest party
at some round r or is B1 in case such block does not exist (r = 0), and (2) that there exists a round r′

such that B1 . . . Bv′ ∈ Sr′ . Denote by d′ the total difficulty of these K ′ blocks. Define U = {r, . . . , r′},
S = {r + ∆, . . . , r′ −∆}, and J the adversarial queries in U starting with the first to obtain one of the K ′

blocks. Let x denote the total difficulty of all the blocks from honest parties that are included in the K blocks
and—towards a contradiction—assume x < µd′. In a typical execution, all the K ′ blocks {Bj : u′ ≤ j ≤ v′}
have been computed in U . But then we have the following contradiction to Lemma 2(c).

A(J) ≥ d′ − x > (1− µ)d′ ≥ (1− µ)Q(S) = (1− δ + 3ε)Q(S).

The first two inequalities follow from the definitions of x and d′ and the assumed relation between them. It
is not hard to see that the last inequality follows from Chain-Growth Lemma. Finally, to verify that this is
indeed a contradiction, note that if U > (1 + δ)γ2m/f we may use Lemma 3 to partition U appropriately
(using blocks computed by honest parties as pivot points) and apply Lemma 2(c) to each part. This is valid,
since a block computed by an honest party provides both properties (1) and (2) required for K ′.

5.8 Nakamoto Consensus: Consistency and Liveness

For parameters that satisfy Conditions C1 and C2, we can show that a typical execution in a (γ, (1+δ)γ2m/f)-
respecting environment enjoys Consistency and Liveness. Their proofs follow along the lines of previous work,
such as [11, 19, 10]. In particular, Consistency will follow directly from the Common-Prefix property, that we
show to hold in the above circumstances.

Theorem 5 (Consistency). For a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment, Con-
sistency is satisfied by setting the settled transactions to be those reported more than εm blocks deep.

Theorem 6 (Liveness). For a typical execution in a (γ, (1 + δ)γ2m/f)-respecting environment, Liveness
is satisfied for depth εm with wait-time (4γ2 + 1)εm/f .
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Proof. We claim that the chain C of any honest party has at least εm blocks that where computed in the
last 4εγ2m/(1− 2ε)f + 4∆ rounds. Indeed, C must have a segment that lies in a single epoch—say of target
T—and was computed in a set U of at least 2εγ2m/(1 − 2ε)f + 2∆ consecutive rounds. If S is its subset
without the first and last ∆ rounds, by Chain-Growth Lemma 1, the length of this segment is at least

T ·Q(S) > (1− ε)[1− (1 + δ)f ]∆
∑
r∈S

pnrT ≥
(1− 2ε)f |S|

2γ2
≥ εm.

Furthermore, if a transaction tx is included in any block computed by an honest party for the first ` + 2∆
rounds, by Lemma 3, the chain C of any honest party contains tx in a block B. The total wait-time amounts
to

`+ 6∆+
4εγ2m

(1− 2ε)f
≤ εm

2(1 + δ)f
+

4εγ2m

(1− 2ε)f
≤ (4γ2 + 1) · εm

f
.
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A Mathematical Facts

All the following definitions and statements assume finite probability spaces and random variables with finite
means.

Definition 12. [6, Definition 5.3] A sequence of random variables (X0, X1, . . . ) is a martingale with respect
to the sequence (Y0, Y1, . . . ), if, for all n ≥ 0, Xn is determined by Y0, . . . , Yn and E[Xn+1|Y0, . . . , Yn] = Xn.

The following is closer to Theorem 3.15 in [17], but see also Theorems 8.1 and 8.2 in [6].

Theorem 7. Let (X0, X1, . . . ) be a martingale with respect to the sequence (Y0, Y1, . . . ). Suppose an event
G implies

Xk −Xk−1 ≤ b (for all k) and V =
∑
k var[Xk −Xk−1|Y1, . . . , Yk−1] ≤ v,

Then, for non-negative n and t,

Pr
[
Xn ≥ X0 + t ∧G

]
≤ exp

{
− t2

2v + 2bt/3

}
.

The following Cauchy-Schwarz converse (see [24]) will be of use.

Theorem 8. For all non-negative real numbers ak, bk, k = 1, 2, . . . , n that satisfy m ≤ ak/bk ≤M for some
constants 0 < m ≤M <∞, √√√√ n∑

k=1

a2k

√√√√ n∑
k=1

b2k ≤
A

G

n∑
k=1

akbk,

where A = (m+M)/2 and G =
√
mM .

B Proof of (All Executions are Typical) Theorem 1 and the Related Lemma 2

Proof. Since the length L of the execution is fixed we will prove the stated bound for a fixed set of consecutive
rounds S—or, with respect to the adversary, a fixed set of consecutive queries J—and then apply a union
bound over all such sets in the length of the execution. Furthermore, we may assume |S| ≤ s. This is because
` ≤ s/2 and we may partition S in parts such that each part has size between ` and s. We then sum over
all parts to obtain the desired bound. Let us also fix an execution E0 just before the beginning of S (or J).
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We will prove that the statements fail with exponentially small probability for an arbitrary E0. Note that
E0 determines the number of parties n0 and t0 at the beginning of S (or J) and the target T (J) associated
with the first query in J .

For each round i ∈ S, define a Boolean random variable Fi equal to 1 exactly when all ni hash values
that were returned to the queries of the honest parties were above min{T : f(T, ni) ≥ (1 + δ)γ2f}; define
Zi = Yi · Fi+1 · · ·Fi+∆−1. Let G denote the event that the rounds in S are good. Given G, for any i ∈ S,
(Fi = 1) =⇒ (Di = 0) and so Qi ≥ Zi. Thus, for any d,

Pr
[
G ∧

∑
i∈[k]

Qi ≤ d
]
≤ Pr

[
G ∧

∑
i∈[k]

Zi ≤ d
]
,

and we may focus on the term on the right-hand side. Identify S with {1, . . . , |S|} and partition it with sets
of the form Sj = {j, j +∆, j + 2∆, . . . } for j ∈ {0, 1, . . . ,∆− 1}. We will show that, for each part Sj ,

Pr
[
G ∧

∑
i∈Sj

Zi ≤ (1− ε)[1− (1 + δ)γ2f ]∆p
∑
i∈Sj

ni

]
≤ e−λ.

Let us fix such a set Sj = {s1, s2, . . . , sν}, with ν ≥ b|S|/∆c, and define the event Gt as the conjunction of
the events G and t = ε(1− 2γ2f)∆pn(Sj). Note that n(Sj) ≤ L and so t ranges over a discrete set of size at
most L and we can afford a union bound over it. Thus, it is sufficient to show that for any such t,

Pr
[
Gt ∧

∑
i∈Sj

Zi ≤ [1− (1 + δ)γ2f ]∆p
∑
i∈Sj

ni − t
]
≤ e−λ.

To that end, consider the sequence of random variables

X0 = 0; Xk =
∑
i∈[k]

Zsi −
∑
i∈[k]

E[Zsi |Esi−1], k ∈ [ν].

This is a martingale with respect to the sequence Es1−1(E0 = E0), . . . , Esν−1, E , because (recalling basic
properties of conditional expectation [17]),

E[Xk|Esk−1] = E
[
Zsk −E[Zsk |Esk−1]

∣∣Esk−1]+ E[Xk−1|Esk−1] = Xk−1.

Specifically, the above follows from linearity of conditional expectation and the fact that Xk−1 is a deter-
ministic function of Esk−1+∆−1 = Esk−1. Furthermore, given an execution E satisfying Gt,

ε
∑
i∈Sj

E[Zi|Esk−1 = Esk−1] ≥ ε
∑
i∈Sj

[1− (1 + δ)γ2f ]∆pni = t.

Thus, our goal is to show Pr[−Xν ≥ t ∧Gt] ≤ e−λ.
We now provide the details relevant to Theorem 7. Consider an execution E satisfying Gt and let B

denote the event Esk−1 = Esk−1. Note that Z2
sk

= Y 2
sk
·Fsk+1 · · ·Fsk+∆−1 and all these random variables are

independent given B. Since Xk −Xk−1 = Zsk −E[Zsk |Esk−1] and

Zsk −E[Zsk |B] ≤ 1

Tmin
sk

=
pnsk

pnskT
min
sk

≤ γpn(Sj)

pnskT
min
sk
|Sj |
≤ γpn(Sj)

νf/(2γ2)
≤ 2γ3t

ε(1− 2γ2)∆fν

def
= b, (2)

we see that the event G implies Xk − Xk−1 ≤ b. With respect to V =
∑
k var[Xk − Xk−1|Esk−1] ≤∑

k E[Z2
sk
|Esk−1], using the independence of the random variables and Proposition 1,

∑
k∈[ν]

E[Z2
sk
|B] ≤ [1− (1 + δ)γ2f ]∆−1

∑
k∈[ν]

(pnsk)2

pnskT
min
sk

≤ [1− (1 + δ)γ2f ]∆−1

f/(2γ2)
·
∑
k∈[ν]

(pnsk)2.
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Applying Proposition 2 on this bound, we see that event Gt implies

V ≤ 2γ3[1− (1 + δ)γ2f ]∆−1

f |Sj |
·
(∑
k∈[ν]

pnsk

)2
≤ 2γ3t2

ε2f(1− 2γ2f)∆+1ν

def
= v. (3)

In view of these bounds (note that bt < εv), by Theorem 7,

Pr[−Xν ≥ t ∧Gt] ≤ exp
{
− t2

2v(1 + ε
3 )

}
≤ exp

{
−ε

2f [1− (1 + δ)γ2f ]∆+1ν

4γ3(1 + ε
3 )

}
≤ e−λ,

where for the last inequality we used Condition 1 (recall that ν ≥ `/∆).
For the bound on D(S) it will be convenient to work per query. Let J denote the queries in S, ν = |J |,

and Zi the difficulty of any block obtained from query i ∈ J . Define the martingale sequence

X0 = 0; Xk =
∑
i∈[k]

Zi +
∑
i∈[k]

E[Zi|Ei−1], k ∈ [ν].

With similar calculations as above we obtain that Gt (with t = εpν) implies

Xk −Xk−1 ≤
2γ3t

εf |S|
def
= b and V ≤ 2γ3t2

ε2f |S|
def
= v.

Applying Theorem 7 we obtain

Pr
[
Xν ≥ t ∧Gt

]
≤ exp

{
− εt

2b(1 + ε
3 )

}
≤ e−λ.

We next focus on part (b). For each j ∈ J , let Aj be equal to the difficulty of the block obtained with
the j-th query as long as the target was at least T (J)/τ ; thus, A(J) =

∑
j∈J Aj . If |J | = ν, identify J with

[ν] and define the martingale

X0 = 0; Xk =
∑
j∈[k]

Aj −
∑
j∈[k]

E[Aj |Ej−1], k ∈ [ν].

For all k ∈ [ν] we have Xk − Xk−1 ≤ τ/T (J), var[Xk − Xk−1|Ek−1] ≤ pτ/T (J), and E[Aj |Ej−1] ≤ p. We
may apply Theorem 7 with b = τ/T (J), v = bpν ≤ bt/ε, and t = max

{
εpν, 2( 1

ε + 1
3 )bλ

}
. We obtain

Pr

[∑
j∈J

Aj ≥ pν + t

]
≤ exp

{
− t

2b( 1
3 + 1

ε )

}
≤ e−λ.

For part (c), as in [11], it can be shown that an insertion or a copy imply a collision, which can be
shown to occur with probability at most

(
L
2

)
2−κ. Also, since there can be at most L predicted blocks, the

probability a prediction occurs is at most L22−κ.

Proof (Proof of Lemma 2). (a) The middle inequality follows directly from the definition of the random

variables. For the other two note that n(U \S) ≤ γ · n(S)|S| · |U \S| ≤ γ ·
n(S)
` · 2∆. Since |J | ≤ (1− δ)n(U) and

n(U) = n(S) + n(U \ S) ≤
(

1 +
2γ∆

`

)
n(S) <

(
1 +

ε2

2

)
n(S),

the inequalities follow from Definition 11 and Condition C2.
(b) Either εp|J | ≥ τα(J) and Definition 11 applies directly, or p|J | < τα(J)/ε and by Equation (1) and

Condition C1,

T (J) ·A(J) <
2

ε2
· (1 + ε)

(
1 +

ε

3

)
τλ <

f`

2γ3
<

εm

4(1 + δ)γ5
.
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(c) In a (γ, s)-respecting environment, γn(S) ≥ nw|S|. Incorporating this in Definition 11 we obtain the
first bound. For the second one, since w is good, pnwT (J) ≥ pnwTmin

w ≥ f/2γ2. Using ε < 1/6,

ε(1− 2ε)pn(S) ≥ ε(1− 2ε)|S| · pnwT
min
w

γT (J)
≥ ε(1− 2ε)f`

2γ3T (J)
> τα(J).

As in (a), p|J | ≤ (1− δ + ε2/2)pn(S). We obtain A(J) ≤ (1− δ + ε)pn(S) and use Condition C2.
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