
MANY-OUT-OF-MANY PROOFS
with applications to Anonymous Zether

Benjamin E. Diamond∗

J.P. Morgan

benediamond@gmail.com

Abstract

We introduce a family of extensions to the one-out-of-many proofs of Groth and Kohlweiss (Euro-
crypt 2015), which efficiently prove statements about many messages among a list of commitments.
These extensions prove knowledge of a secret subset of the list, and assert that the commitments in
the subset satisfy certain properties (expressed as linear equations). Our communication remains log-
arithmic; our computation increases only by a logarithmic multiplicative factor. Our work introduces
a new “circular rotation” technique, and a novel instantiation of the number-theoretic transform.

Applying these techniques, we construct a protocol for the Anonymous Zether payment system—as
proposed in Bünz, Agrawal, Zamani, and Boneh (FC’20)—which improves upon the communication
complexity attained by existing efforts. We describe an open-source, Ethereum-based implementation
of our protocol.

1 Introduction

Blockchain-based cryptocurrencies like Bitcoin [Nak08] allow their mutually distrustful participants to
maintain shared computational state. These systems generally encode this state—as well as the transactions
which incrementally modify it—“in the clear”, and so afford to these participants only cursory privacy (we
refer to, e.g., Ron and Shamir [RS13]).

This deficiency has impelled the development of “privacy-preserving” alternatives, most notably Zcash
[SCG+14] and Monero [SMM16]. These systems encode their state cryptographically, and define trans-
actions which privately and securely modify this state (frequently with recourse to non-interactive zero-
knowledge proofs). Fauzi, Meiklejohn, Mercer, and Orlandi’s Quisquis [FMMO19] materially advances
this research line, in that it demands of each participating node disk space (per user of the system) which
grows only constantly in time, and so dispenses with the “monotonically increasing” UTXO sets endemic
to Zcash and Monero.

The Anonymous Zether paradigm, proposed by Bünz, Agrawal, Zamani, and Boneh [BAZB20], breaks
ground in multiple further respects. For one, it withstands a certain “race condition” which threatens high-
throughput deployments of Quisquis ([BAZB20] calls this “the front-running problem”; see also [FMMO19,
§5.2.6]). Anonymous Zether additionally obviates the practice—required by Quisquis, Monero, and Zcash—
whereby each user must continually “scan” through all posted transactions in order to identify relevant
ones.

In this paper, we present a construction of Anonymous Zether which improves upon the efficiency
attained by existing efforts. [BAZB20] claims a construction featuring linearly growing proofs; Quisquis’s
proofs also grow linearly (i.e., in the size N of each transaction’s “anonymity set”). Our proofs are
O(logN)-sized. Our concrete proof and transaction sizes are also smaller than those of Quisquis, by an
order of magnitude. We thus resolve the “interesting open question” posed by Fauzi, Meiklejohn, Mercer,
and Orlandi [FMMO19, §9] (namely, “the design of a special-purpose NIZK for improved communication
efficiency”).

∗I would like to thank Markulf Kohlweiss and Michele Ciampi for many helpful discussions and suggestions.

1

mailto:benediamond@gmail.com


1.1 Overview of Anonymous Zether

The Anonymous Zether [BAZB20, §D] payment paradigm maintains a global table of “accounts”, which
associates to each public key an El Gamal ciphertext under that key (encrypting that key’s account balance
“in the exponent”). To send funds, a user selects a ring containing herself and the recipient, and encrypts,
under the ring’s respective keys, the amounts by which she intends to alter each account’s balance. The
administering environment (e.g., smart contract) applies these adjustments homomorphically.

Each transaction, finally, must attach a proof attesting that it preserves all monetary invariants. These
invariants are expressed by the relation [BAZB20, (8)] (see also (2) below), which encodes, in particular,
that value is conserved, and flows only from some account whose secret key the prover knows, as well as
that no overdrafts occur.

1.2 Technical challenges

An efficient proof protocol for (2) presents a number of challenges. Importantly, it entails facts not just
about two among a list of ciphertexts (namely, the sender’s and receiver’s, which are required to encrypt
opposite amounts) but also about all of the rest (which are required to encrypt zero).

This very fact precludes an elementary application of Groth and Kohlweiss’s one-out-of-many proofs
[GK15], whose use [BAZB20] recommends. The tempting approach whereby the prover conducts [GK15]
N times—“handing” to the verifier, in each execution, a distinct element of the list—would be inefficient
(incurring super-linear communication and super-quadratic computation). More subtly, it would prove
nothing about how the N secret indices relate to each other, and in particular whether they’re distinct.
Indeed, the prover must deliver something like a verifiable shuffle of the input ciphertexts (so that the
verifier can perform checks on the shuffled ciphertexts).

Shuffle proofs too, however, fall short of our needs (we again leave aside for now their inefficiency).
Indeed, the adjustment ciphertexts of the Anonymous Zether relation (2) are encrypted under the ring’s
members’ heterogeneous public keys, as are the ciphertexts representing their post-adjustment balances.
More subtly, shuffle proofs also deliver “more than we need”. While they allow a prover to designate a
full permutation of a list of ciphertexts, our prover need only distinguish two among them (namely, the
sender’s and receiver’s); the verifier may complete the permutation arbitrarily. Our protocol fundamentally
exploits this insight.

2 Overview of our contribution

One-out-of-many proofs, introduced by Groth and Kohlweiss [GK15], allow a prover to demonstrate knowl-
edge of a secret element among a public list of commitments, together with an opening of this commitment
to 0. This important primitive has been used to construct ring signatures, zerocoin, and proofs of set
membership [GK15], along with “accountable ring signatures” [BCC+15]; it has also been re-instantiated
in the setting of lattices [ESS+19].

By definition, these proofs bear upon only one (secret) element of a list, and establish nothing about
the others; indeed, in general the prover knows nothing about these other elements. As we have seen,
however, certain applications require more flexible assertions (which, in particular, pertain to more than
one element of the list). Informally, many-out-of-many proofs allow a prover to efficiently prove knowledge
of a certain (ordered) subset of a fixed list of commitments, as well as that the elements of this subset
satisfy certain properties.

We briefly sketch a representative example. Given some list c0, . . . , cN−1 of commitments, and hav-
ing agreed upon some pre-specified linear map Ξ: FNq → Fsq (say), a prover might wish to demonstrate
knowledge of a secret permutation K ∈ SN , as well as of openings to zero of the image points of
(cK(0), . . . , cK(N−1)) under Ξ. We show how this can be done, provided that the prover and verifier
agree in advance to restrict K to one among a certain class of order-N subsets (often subgroups) of SN .

This technique is powerful, with an interesting combinatorial flavor. In fact, we situate the above-
described protocol within a natural family of extensions to [GK15], themselves parameterized by permu-
tations κ ∈ SN of a certain form (namely, those whose action partitions {0, 1, . . . , N − 1} into equal-sized

2



orbits). In this family, κ = id ∈ SN exactly recovers [GK15], whereas the above example corresponds
to κ an N -cycle. Finally, κ = (0, 2, . . . , N − 2)(1, 3, . . . , N − 1) (for N even, and for specially chosen Ξ,
described below) is used in the crucial step of Anonymous Zether (details are given in Subsection 6.3). In
each case, the prover proves knowledge of exactly one “ordered orbit” of κ, as well as that the commitments
represented by this orbit satisfy prescribed linear equations.

Remarkably, our communication remains logarithmic (like that of [GK15]). Moreover, under mild
conditions on the linear map Ξ (which hold in all of our applications), we add at most a logarithmic
multiplicative factor to both the prover’s and verifier’s computational complexity. We thus have (see
Section 4.2 below):

Theorem 2.1. There exists a sound, honest verifier zero-knowledge protocol for the many-out-of-many re-
lation R2 below, which requires O(logN) communication, and moreover can be implemented in O(N log2N)
time for the prover and O(N logN) time for the verifier.

2.1 Review of one-out-of-many proofs

The central technique of one-out-of-many proofs [GK15] (see also [BCC+15]) is the construction, by the
prover, of certain polynomials Pi(X), i ∈ {0, . . . , N − 1}, and the efficient transmission (i.e., using only
O(logN) communication) to the verifier of these polynomials’ evaluations pi := Pi(x) at a challenge x.
Importantly, each Pi(X) has “high degree” (i.e., m, where m = logN) if and only if i = l, where l is a
secret index chosen by the prover.

The utility of the vector (pi)
N−1
i=0 resides in its use as the exponent in a multi-exponentiation. Indeed

multi-exponentiating the public vector of commitments (c0, . . . , cN−1) by (pi)
N−1
i=0 “picks out”, modulo

lower-order terms, exactly that commitment ci for which Pi(X) has high degree (namely, cl). More precisely,
the prover sends (before seeing x) correction terms representing the lower-degree (i.e., strictly less than m)
parts of the polynomials Pi(X). Once x is released, these correction terms strip away the lower-order parts
of the evaluations pi (while adding blinding randomnesses), and leave the verifier with a re-encryption of
cl alone.

2.2 Idea of many-out-of-many proofs

Our first core idea is that, having reconstructed the vector (pi)
N−1
i=0 of evaluations, the verifier may “homo-

morphically permute” this vector and re-use its components in successive multi-exponentiations. In this
way, the verifier will pick out secret elements among c0, . . . , cN−1 in a highly controlled way (and without
necessitating additional communication).

We fix a permutation κ ∈ SN in what follows. Given the vector (pi)
N−1
i=0 , the verifier may iteratively

permute its components, and so construct the sequence of vectors(
pκ−j(i)

)N−1

i=0
,

for j ∈ {0, . . . , o− 1} (where each κ−j ∈ SN is an “inverse iterate” of κ and o denotes κ’s order in SN ).
Despite not knowing l, the verifier nevertheless knows that Pκ−j(i)(X) has high degree if and only if

i = κj(l). In this way, the verifier implicitly iterates through the orbit (under κ) of an unknown initial
element l ∈ {0, . . . , N − 1}. Under the additional condition that 〈κ〉 ⊂ SN acts freely on {0, . . . , N − 1},
each implicit map {0, . . . , o−1} → {0, . . . , N −1} sending j 7→ κj(l) is necessarily injective (i.e., regardless
of l), and these orbits never “double up”. Permutations κ of this type thus represent a natural class for
our purposes.

2.3 Correction terms and linear maps

Of course,
∏N−1
i=0 cpii does not directly yield cx

m

l (where m = logN), but rather the sum of this element
with lower-order terms which must be “cancelled out”. More generally, an analogous issue holds for each

ej :=
∏N−1
i=0 c

pκ−j(i)
i (for j ∈ {0, . . . , o− 1}). Furthermore, there may be up to linearly many such elements

(if o = Θ(N)), and to send correction terms for each would impose excessive communication costs.

3



Our compromise is to correct not each individual term ej , but rather a “random linear combination” of
these terms; this recourse evokes that used (twice) in Bulletproofs [BBB+18, §4.1]. For additional flexibility,
we also interpose an arbitrary linear transformation Ξ: Foq → Fsq. The prover then sends correction terms
only for the single element

[
1 v . . . vs−1

]
·
[

Ξ
]
·


e0

e1

...
eo−1

 ,
where v is a random challenge chosen by the verifier (the right-hand dot is a “module product”). By
interleaving v with the many-out-of-many process with appropriate delicacy, we ensure that the resulting
protocol is still sound.

2.4 A canonical example

To illustrate these ideas, we describe an example which is essentially canonical: the case κ = (0, 1, . . . , N−1)
(we describe reductions from general κ to this case below). Iterating this permutation corresponds exactly
to circularly rotating the vector (pi)

N−1
i=0 ; this process in turn “homomorphically increments” l modulo N .

In this way, the prover implicitly sends the top row of an unknown circular shift matrix to the verifier,
who constructs the rest locally.



0, . . . . . . . . . , 1, . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
1 only at index l

0, . . . . . . . . . . . . , 1, . . . . . . . . . . . . , 0

0, . . . . . . . . . . . . . . . , 1, . . . . . . . . . , 0
...

0, . . . , 1, . . . . . . . . . . . . . . . . . . . . . , 0

0, . . . . . . , 1, . . . . . . . . . . . . . . . . . . , 0



Figure 1: “Prover’s view”.



(pi)
N−1
i=0︸ ︷︷ ︸

“1” at unknown index

(pi)
N−1
i=0

(pi)
N−1
i=0

...

(pi)
N−1
i=0

(pi)
N−1
i=0


Figure 2: “Verifier’s view”.

The evaluation of the matrix multiplication of Fig. 2 by the vector of curve points (cj)
N−1
j=0 takes

O(N2) time, näıvely. Yet Fig. 2 is a circulant matrix, and this multiplication is a circular convolution; the
number-theoretic transform can thus be applied (see Subsection 2.5 for additional discussion).

The resulting matrix product (ej)
N−1
j=0 yields, modulo lower-order terms, the permuted input vector

(cκl(j))
N−1
j=0 , upon which any linear transformation Ξ (as well as the “linear combination trick”) can be

homomorphically applied. (We use the identity κj(l) = κl(j), true in particular for κ = (0, 1, . . . , N − 1).)
Supposing now, in addition, that the prover and verifier have agreed in advance upon a linear functional
Ξ: FNq → Fq, our general protocol (in this case) thus yields a proof of knowledge of a secret permutation
K ∈ 〈(0, 1, . . . , N − 1)〉, as well as of an opening to zero of the image under Ξ of the permuted vector
(cK(0), . . . , cK(N−1)). Heuristically, it asserts that the “messages” of c0, . . . , cN−1 reside in some hyperplane
of FNq , after being rotated.

Our communication complexity is still logarithmic; the computational complexity becomes O(N log2N)
for the prover and O(N logN) for the verifier.

2.5 Circular convolutions and the number-theoretic transform

We remark further upon our use of Fourier-theoretic techniques. General treatments of these ideas—such as
that of Tolimieri, An and Lu [TAL97]—tend only to treat the convolution of vectors consisting of (complex)

4



field elements. This remains true even for those surveys, like Nussbaumer’s [Nus82, §8], which address also
the prime field case (often called the “number theoretic transform”).

We fix in what follows a commitment scheme whose commitment space is a q-torsion group (for a prime
q), or in other words an Fq-module (actually, a vector space). (The Pedersen and El Gamal commitment
schemes satisfy this property.) Our setting, unusually, mandates that a vector of module elements (i.e.,
commitments) be convolved with a vector of field elements. Our important observation in this capacity
is that only the module structure, and not the ring structure, of a signal’s domain figures in its role
throughout the fast Fourier transform and the convolution theorem, and that these techniques can be
carried out “homomorphically”. We thus introduce the efficient convolution of a vector of module elements
with a vector of field elements (see also Remark 4.9 below). Though this observation is implicit in existing
work, we have not found it stated explicitly in the literature.

2.6 Additional innovations

We introduce various additional innovations throughout our construction of Anonymous Zether. These
include an adaptation of many-out-of-many proofs to El Gamal ciphertexts under heterogeneous keys, and
a technique to ensure that l is chosen consistently across multiple executions of the many-out-of-many
procedure (both are applicable equally in the classical case).

We also introduce a new ring signature, which replaces the final “randomness revelation” step of [GK15]
with a Schnorr knowledge-of-exponent protocol. The advantage of this technique is that the final Schnorr
proof can be shared across concurrent executions of the protocol over multiple rings, ensuring in particular
that the same secret key is used in each execution.

Finally, we introduce an “opposite parity proof”, used to assert that two separate executions of the
many-out-of-many protocol use secrets l featuring opposite parities (for N even). This technique finds
important use in Anonymous Zether.

3 Security Definitions

We recall general security definitions, deferring specialized definitions to the appropriate sections below.

3.1 Groups

Following Katz and Lindell [KL15, §8.3.2], we let G denote a group-generation algorithm, which on input
1λ outputs a cyclic group G, its prime order q (with bit-length λ) and a generator g ∈ G. Moreover, we
have:

Definition 3.1 (Katz–Lindell [KL15, Def. 8.62]). The discrete-logarithm experiment DLogA,G(λ) is defined
as:

1. Run G(1λ) to obtain (G, q, g).

2. Choose a uniform h ∈ G.

3. A is given G, q, g, h, and outputs x ∈ Fq.

4. The output of the experiment is defined to be 1 if gx = h, and 0 otherwise.

We say that the discrete-logarithm problem is hard relative to G if, for each probabilistic polynomial-time
algorithm A, there exists a negligible function negl for which Pr[DLogA,G(λ) = 1] ≤ negl(λ).

We also have the decisional Diffie–Hellman assumption, which we adapt from [KL15, Def. 8.63]:

Definition 3.2. The DDH experiment DDHA,G(λ) is defined as:

1. Run G(1λ) to obtain (G, q, g).

2. Choose uniform x, y, z ∈ Fp and a uniform bit b ∈ {0, 1}.

5



3. Give (G, q, g, gx, gy) to A, as well as gz if b = 0 and gxy if b = 1. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if and only if b′ = b.

We say that the DDH problem is hard relative to G if, for each probabilistic polynomial-time algorithm A,
there exists a negligible function negl for which Pr[DDHA,G(λ) = 1] ≤ negl(λ).

3.2 Commitment schemes

A commitment scheme is a pair of probabilistic algorithms (Gen,Com); given public parameters params←
Gen(1λ) and a message m, we have a commitment com := Com(params,m; r), as well as a decommitment
procedure (effected by sending m and r). For notational convenience, we often omit params.

We now present security definitions.

Definition 3.3 (Katz–Lindell [KL15, Def. 5.13]). The commitment binding experiment BindingA,Com(λ)
is defined as:

1. Parameters params← Gen(1λ) are generated.

2. A is given params and outputs (m0, r0) and (m1, r1).

3. The output of the experiment is defined to be 1 if and only if m0 6= m1 and Com(params,m0; r0) =
Com(params,m1; r1).

We say that Com is computationally binding if, for each PPT adversary A, there exists a negligible function
negl for which Pr

[
BindingA,Com(λ) = 1

]
≤ negl(λ). If negl = 0, w say that Com is perfectly binding.

Definition 3.4 (Katz–Lindell [KL15, Def. 5.13]). The commitment hiding experiment HidingA,com(λ) is
defined as:

1. Parameters params← Gen(1λ) are generated.

2. The adversary A is given input params, and outputs messages m0 and m1.

3. A uniform bit b ∈ {0, 1} is chosen. The commitment com := Com(params,mb; r) is computed (i.e.,
for random r) and is given to A.

4. The adversary A outputs a bit b′. The output of the experiment is 1 if and only if b′ = b.

We say that Com is computationally hiding if, for each PPT adversary A, there exists a negligible function
negl for which Pr

[
HidingA,Com(λ) = 1

]
≤ 1

2 + negl(λ). If negl = 0, we say that Com is perfectly hiding.

3.2.1 An alternate notion of hiding

A commitment scheme is homomorphic if, for each params, its message, randomness, and commitment
spaces are abelian groups, and the corresponding commitment function is a group homomorphism.

We now present a slightly modified version of Definition 3.4. This definition makes sense only for ho-
momorphic schemes; it shall also better suit our purposes below. In this version, the adversary outputs two
challenge commitments, as opposed to messages; one among these is then re-randomized homomorphically
by the experimenter.

Definition 3.5. The modified hiding experiment MHidingA,Com(λ) is defined as:

1. Parameters params← Gen(1λ) are generated.

2. The adversary A is given input params, and outputs elements c0 and c1 of the commitment space.

3. A uniform bit b ∈ {0, 1} is chosen. The commitment com := cb ·Com(0) is computed and given to A.

4. The adversary A outputs a bit b′. The output of the experiment is 1 if and only if b′ = b.

6



Any scheme which is hiding in the sense of Definition 3.5 is also hiding in the classical sense of Definition
3.4. Indeed, any adversary A targeting HidingA,Com yields an adversary A′ targeting MHidingA′,Com in the
obvious way. Upon receiving A’s messages m0 and m1, A′ outputs c0 := Com(m0; 0) and c1 := Com(m1; 0).
Finally, it passes the challenge com to A, and returns whatever A returns.

On the other hand, the reverse implication is also true, as the following lemma argues:

Lemma 3.6. Definitions 3.4 and 3.5 are equivalent for any homomorphic commitment scheme Com.

Proof. It remains to convert any A attacking MHidingA,Com into an adversary A′ attacking HidingA′,Com.
A′ operates as follows, on input params:

1. For a randomly chosen message r, assign m0 = r and m1 = 0. Output m0 and m1.

2. Upon receiving the experimenter’s challenge com and A’s commitments c0 and c1, select a random
bit b ∈ {0, 1}. Give cb · com to A.

3. When A outputs a bit b′, return whether b′ = b.

If the experimenter’s bit is 0, then its challenge com is completely random, as is hence cb ·com; we conclude
in this case that A’s advantage is 0. If on the other hand the experimenter’s bit is 1, then A’s view exactly
matches its view in MHidingA,Com, and in this case A′ wins whenever A does. We conclude that:

Pr[HidingA′,Com(λ) = 1]− 1

2
=

1

2
· (0) +

1

2
·
(

Pr[MHidingA,Com(λ) = 1]− 1

2

)
.

In particular, if Com is hiding, then Pr[MHidingA,Com(λ) = 1]− 1
2 is negligible.

Example 3.7. If a homomorphic commitment scheme is perfectly hiding in the classical sense of Definition
3.4, then it’s also perfectly hiding in the modified sense, as the proof of Lemma 3.6 shows. For example,
we have the Pedersen commitment scheme (as in e.g. [BCC+16, §2.2]).

Example 3.8. Specializing Definition 3.5 to the El Gamal encryption scheme (as in e.g. [KL15, Cons.
11.16])—which we view as a commitment scheme—we obtain the following unusual experiment:

1. Parameters (G, q, g)← G(1λ), as well as a random keypair (y, sk)← Gen(1λ), are generated.

2. A is given (G, q, g) and y. A outputs group-element tuples c0 = (M0,m0) and c1 = (M1,m1).

3. A uniform bit b ∈ {0, 1} is chosen. A random element r ← Fq is generated, and (Mb · yr,mb · gr) is
returned to A.

4. A outputs a bit b′. The output of the experiment is defined to be 1 if and only if b′ = b.

In virtue of [KL15, Thm. 11.18] and of Lemma 3.6, we conclude that, under the DDH assumption, each
adversary A has at most negligible advantage in this experiment.

We assume in what follows that all commitment schemes are homomorphic. We also assume that each
commitment scheme has randomness space given by Fq, for a λ-bit prime q, as well a q-torsion group for
its commitment space.

3.3 Zero-knowledge proofs

We present definitions for zero-knowledge arguments of knowledge, closely following [GK15] and [BCC+16].
We formulate our definitions in the “experiment-based” style of Katz and Lindell.

We posit a triple of interactive, probabilistic polynomial time algorithms Π = (Setup,P,V). Given some
polynomial-time-decidable ternary relation R ⊂ ({0, 1}∗)3, each common reference string σ ← Setup(1λ)
yields an NP language Lσ = {x | (σ, x, w) ∈ R}. We denote by tr← 〈P(s),V(t)〉 the (random) transcript
of an interaction between P and V on auxiliary inputs s and t (respectively), and write the verifier’s output
as 〈P(s),V(t)〉 = b.

We now have:

7



Definition 3.9. The completeness experiment CompleteA,Π,R(λ) is defined as:

1. A common reference string σ ← Setup(1λ) is generated.

2. A is given σ and outputs (u,w) for which (σ, u, w) ∈ R

3. An interaction 〈P(σ, u, w),V(σ, u)〉 = b is carried out.

4. The output of the experiment is defined to be 1 if and only if b = 1.

We say that Π = (Setup,P,V) is perfectly complete if for each PPT adversary A, Pr[CompleteA,Π,R(λ)] = 1.

Supposing that Π = (Setup,P,V) is a 2µ+ 1-move, public-coin interactive protocol, we have:

Definition 3.10. The (n1, . . . , nµ)-special soundness experiment Sound
(n1,...,nµ)
A,X ,Π,R (λ) is defined as:

1. A common reference string σ ← Setup(1λ) is generated.

2. A is given σ and outputs u, as well as an (n1, . . . , nµ)-tree (say tree) of accepting transcripts whose
challenges feature no collisions.

3. X is given σ, u, and tree and outputs w.

4. The output of the experiment is designed to be 1 if and only if (σ, u, w) ∈ R.

We say that Π = (Setup,P,V) is computationally (n1, . . . , nµ)-special sound if there exists a PPT
extractor X for which, for each PPT adversary A, there exists a negligible function negl for which

Pr[Sound
(n1,...,nµ)
A,X ,Π,R (λ) = 1] ≥ 1 − negl(λ). If negl = 0, we say that Π is perfectly (n1, . . . , nµ)-special

sound.

Definition 3.11. The special honest verifier zero knowledge experiment SHVZKA,S,Π,R(λ) is defined as:

1. A common reference string σ ← Setup(1λ) is generated.

2. A is given σ and outputs (u,w) for which (σ, u, w) ∈ R, as well as randomness ρ.

3. A uniform bit b ∈ {0, 1} is chosen.

• If b = 0, tr← 〈P(σ, u, w),V(σ, u; ρ)〉 is assigned.

• If b = 1, tr← S(σ, u; ρ) is assigned.

4. The adversary A is given tr and outputs a bit b′.

5. The output of the experiment is defined to be 1 if and only if b′ = b.

We say that Π = (Setup,P,V) is computationally special honest verifier zero knowledge if there exists a
PPT simulator S for which, for each PPT adversary A, there exists a negligible function negl for which
Pr[SHVZKA,S,Π,R(λ) = 1] ≤ 1

2 + negl(λ). If negl = 0, we say that Π is perfect special honest verifier zero
knowledge.

In all of our protocols, Setup(1λ) runs the group-generation procedure G(1λ) and the commitment
scheme setup Gen(1λ), and then stores σ ← Setup(1λ) = (G, q, g, params).

8



4 Many-out-of-Many Proofs

We turn to our main results. We begin with preliminaries on permutations, referring to Cohn [Coh74] for
further background.

Definition 4.1. We say that a permutation κ ∈ SN is free if it satisfies any, and hence all, of the following
equivalent conditions:

• The natural action of 〈κ〉 ⊂ SN on {0, . . . , N − 1} is free.

• The natural action of 〈κ〉 partitions the set {0, . . . , N − 1} into orbits of equal size.

• κ is a product of equal-length cycles, with no fixed points.

• For each l ∈ {0, . . . , N − 1}, the stabilizer 〈κ〉l ⊂ 〈κ〉 is trivial.

• For each l ∈ {0, . . . , N − 1}, the map {0, . . . , o− 1} → {0, . . . , N − 1} sending j 7→ κj(l) is injective
(we write o for the order of κ).

We leave the equivalence of these definitions to the reader.
For any free κ ∈ SN , we thus also have the notion, for each l ∈ {0, . . . , N − 1}, of l’s “ordered orbit”,

given by the ordered sequence κj(l) ∈ {0, . . . , N − 1}, for j ∈ {0, . . . , o − 1}. By hypothesis on κ, this
sequence contains no repetitions.

4.1 Commitments to bits

We replicate in its entirety, for convenience, the “bit commitment” protocol of Bootle, Cerulli, Chaidos,
Ghadafi, Groth, and Petit [BCC+15, Fig. 4], which we further specialize to the binary case (i.e., n = 2).
This protocol improves the single-bit commitment procedure of [GK15, Fig. 1], and requires slightly less
communication.

Following [BCC+15], we have the relation:

R1 = {(B; (b0, . . . , bm−1), rB) : ∀i, bi ∈ {0, 1} ∧B = Com (b0, . . . , bm−1; rB)} ,

and the protocol:

P1(σ,B; (b0, . . . , bm−1), rB) V1(σ,B)

rA, rC , rD, a0, . . . , am−1 ←$Fq
A := Com (a0, . . . , am−1; rA)

C := Com
(
(ak · (1− 2bk))m−1

k=0 ; rC
)

D := Com
(
−a20, . . . , a2m−1; rD

) A,C,D

x x←$Fq

∀i : fi := bi · x+ ai Accept if and only if:

zA := rB · x+ rA f0, . . . , fm−1, zA, zC BxA
?
= Com ((f0, . . . , fm−1); zA)

zC := rC · x+ rD CxD
?
= Com

(
(fk · (x− fk))m−1

k=0 ; zC
)

Figure 3: Protocol for the relation R1.

Finally, we have:

9



Lemma 4.2 (Bootle, et al. [BCC+15]). The protocol of Fig. 3 is perfectly complete. If Com is (perfectly)
binding, then it is (perfectly) (3)-special sound. If Com is (perfectly) hiding, then it is (perfectly) special
honest verifier zero knowledge.

Proof. We refer to [BCC+15, Lem. 1]. We note that [BCC+15, Fig. 4]’s perfect SHVZK relies on its
use of (perfectly hiding) Pedersen commitments; in our slightly more general setting, S must simulate
C ← Com(0, . . . , 0) as a random commitment to zero. As in [BCC+15, Lem. 1], we observe that the
remaining elements of the simulated transcript are either identically distributed to those of real ones or
are uniquely determined given C. The indistinguishability of the simulation therefore reduces directly to
the hiding property of the commitment scheme.

4.2 Main protocol

Our main result in this section is a proof of knowledge of an index l, as well as of openings r0, . . . , rs−1 to
0 of the image points (under a fixed linear map Ξ: Foq → Fsq) of the commitments cκj(l) represented by l’s
ordered orbit. We represent Ξ as an s× o matrix over Fq in what follows. For commitments c0, . . . , cN−1,
we thus have the relation:

R2 =
{

(σ, (c0, . . . , cN−1), κ,Ξ; l, (r0, . . . , rs−1)) :
[
Com(0; ri)

]s−1

i=0
=
[

Ξ
]
·
[
cκj(l)

]o−1

j=0

}
.

We understand both arrays as column vectors, and the “dot” as a module product of a column vector (of
curve points) by the field matrix Ξ.

As in [GK15], we write ik for the kth bit of an integer i ∈ {0, . . . , N}, where k ∈ {0, . . . ,m − 1}. We
also have the polynomials Fk,1(X) := lk ·X + ak and Fk,0(X) := (1− lk) ·X − ak (for k ∈ {0, . . . ,m− 1}),
as well as the products Pi(X) :=

∏m−1
k=0 Fk,ik(X) = δi,l ·Xn +

∑m−1
k=0 Pi,k ·Xk for i ∈ {0, . . . , N − 1}. The

coefficients Pi,k can be calculated in advance by the prover.
We now have:

P2(σ, (c0, . . . , cN−1), κ,Ξ; l, (r0, . . . , rs−1)) V2(σ, (c0, . . . , cN−1), κ,Ξ)

rB , ρ0, . . . , ρm−1 ←$ Fq
B := Com(l0, . . . , lm−1; rB)

(A,C,D)← P1(σ,B; (l0, . . . , lm−1, r))
A,B,C,D

v v ←$ Fq

. . . . . . . . . . . . . . . . . . . . . . P2 and V2 evaluate the matrix product
[
1, v, . . . , vs−1

]
· Ξ =: [ξ0, . . . , ξo−1], say . . . . . . . . . . . . . . . . . . . . . .

for k ∈ {0, . . . ,m− 1} do

Gk :=

o−1∏
j=0

(
N−1∏
i=0

c
P
κ−j(i),k
i

)ξj
· Com(0; ρk) G0, . . . , Gm−1

x x←$ Fq

(f0, . . . , fm−1, zA, zC)← P1(x) Accept if and only if

z :=

(
s−1∑
i=0

v
i · ri

)
· xm −

m−1∑
k=0

ρk · xk f0, . . . , fm−1, zA, zC , z V1(σ,B, x,A,C,D, (fk)
m−1
k=0 , zA, zC)

?
= 1

o−1∏
j=0

(
N−1∏
i=0

c
p
κ−j(i)
i

)ξj
·
m−1∏
k=0

G
−xk
k

?
= Com(0; z)

where ∀k, fk,1 := fk, fk,0 := x− fk

and ∀i ∈ {0, . . . , N − 1}, pi :=

m−1∏
k=0

fk,ik

Figure 4: Protocol for the relation R2.

10



Example 4.3. Setting κ = id ∈ SN the identity permutation, and Ξ = I1 : Fq → Fq the identity map,
exactly recovers the original protocol of Groth and Kohlweiss [GK15].

Example 4.4. More generally, we consider (for o dividing N) the iterate κ := (0, 1, . . . , N − 1)
N/o, and

set Ξ = Io as the identity map on Foq. In this setting, the protocol of this section demonstrates knowledge
of a secret residue class l mod N/o, as well as of openings to 0 (say, r0, . . . , ro−1) of those commitments ci
for which i ≡ l mod N/o.

Example 4.5. Subsection 2.4 sketches the choice κ := (0, 1, . . . , N−1) and Ξ: FNq → Fq a linear functional.
This setting gives a proof of knowledge of a secret permutation K ∈ 〈(0, 1, . . . , N − 1)〉 for which the
“messages” of cK(0), . . . , cK(N−1) reside in a prespecified hyperplane of FNq .

The protocol Π = (Setup,P2,V2) of Fig. 4 is perfectly complete. This follows essentially by inspection;

we note in particular that (0;
∑s−1
i=0 v

i · ri) opens the matrix product

[
1 v . . . vs−1

]
·
[

Ξ
]
·


cl
cκ(l)

...
cκo−1(l)

 ,
by hypothesis on the r0, . . . , rs−1.

Moreover, we have:

Theorem 4.6. If Com is (perfectly) binding, then Π is (perfectly) (s,m+ 1)-special sound.

Proof. We describe an extractor X which, given an (s,m+ 1)-tree of accepting transcripts, either returns
a witness (l, (r0, . . . , rs−1)) or breaks the binding property of the commitment scheme Com. We suppose
that σ ← Setup(1λ) has been generated; we let u and tree be arbitrary. We essentially follow [GK15, Thm.
3], while introducing an additional (i.e., a second) Vandermonde inversion step. Details follow.

We first consider, for fixed v, accepting responses (f0, . . . , fm−1, zA, zC , z) to m+1 distinct challenges x.
With recourse to the extractor of Lemma 4.2 and responses to 3 distinct challenges x, X obtains openings
(b0, . . . , bm−1; rB) and (a0, . . . , am−1; rA) of B and A (respectively) for which each bk ∈ {0, 1}. The bits
lk := bk define the witness l. Moreover, each response (fk)m−1

k=0 either takes the form (bk · x + ak)m−1
k=0 , or

yields a violation of Com’s binding property. Barring this latter contingency, X may construct using bk
and ak polynomials Pi(X), for i ∈ {0, . . . , N − 1}—of degree m if and only if i = l—for which pi = Pi(x)
for each x (where pi are as computed by the verifier).

Using these polynomials, X may, for each x, re-write the final verification equation as:o−1∏
j=0

(cκj(l))
ξj

xm

·
m−1∏
k=0

(G̃k)x
k

= Com(0; z),

for elements G̃k which depend only on the polynomials Pi(X) and the elements Gk (in particular, they
don’t depend on x). Exactly as in [GK15, Thm. 3], by inverting an (m + 1) × (m + 1) Vandermonde
matrix containing the challenges x (and using the inverse’s bottom row as coefficients), X obtains a linear
combination of the responses z, say zv, for which:

o−1∏
j=0

(cκj(l))
ξj = Com (0; zv) .

In fact, an expression of this form can be obtained for each challenge v. Furthermore—now using the
definition of [ξ0, . . . , ξo−1]—we rewrite this expression’s left-hand side as the matrix product:

[
1 v . . . vs−1

]
·
[

Ξ
]
·


cl
cκ(l)

...
cκo−1(l)

 = Com (0; zv) .

11



Using expressions of this form for s distinct challenges v, and inverting a second Vandermonde matrix, X
obtains combinations of the values zv, say r0, . . . , rs−1, for which:

[
Ξ
]
·


cl
cκ(l)

...
cκo−1(l)

 =


Com (0; r0)
Com(0; r1)

...
Com(0; rs−1)

 .
This completes the extraction process. Finally, any adversary A who causes X to lose Sound

(n1,...,nµ)
A,X ,Π,R (λ)

can be converted into an adversary A′ who wins BindingA′,Com(λ) with the same probability. Indeed, on
input params, A′ can simulate a view for A by including params in a common reference string σ and giving

it to A. The outcome Sound
(n1,...,nµ)
A,X ,Π,R (λ) = 0 if and only if A’s tree causes X to extract a violation of the

binding property; if this happens, A′ simply returns the offending values m, r,m′, r′ directly.

Finally:

Theorem 4.7. If Com is (perfectly) hiding, then Π is (perfectly) special honest verifier zero knowledge.

Proof. We describe a PPT simulator S which outputs accepting transcripts. Given input σ and u (as
well as the verifier’s randomness ρ, which explicitly determines the challenges y and x), S first randomly
generates B ← Com(0, . . . , 0), and invokes the simulator of [BCC+15, §B.1] on B and x to obtain values
A,C,D, zA, zC , f0, . . . , fm−1. S then randomly selects z, and, for each k ∈ {1, . . . ,m − 1}, assigns to
Gk ← Com(0) a random commitment to 0. Finally, S sets

G0 :=

o−1∏
j=0

(
N−1∏
i=0

c
pκ−j(i)
i

)ξj
·
m−1∏
k=1

G−x
k

k · Com(0;−z),

where [ξ0, . . . , ξo−1] and (pi)
m−1
k=0 are computed exactly as is prescribed for the verifier.

We posit some A attacking SHVZKA,S,Π,R, and define an adversary A′ attacking MHidingA′,Com (see
Definition 3.5) as follows. To simplify the proof, we modify Definition 3.5 so as to give to the adversary an
LR-oracle (in the sense of e.g. [KL15, Def. 11.5]); in this way, we obviate a hybrid argument.
A′ operates as follows. It is given input params.

1. Run G(1λ), and give (G, q, g) and params to A.

2. Upon receiving (c0, . . . , cN−1), κ,Ξ, l, (r0, . . . , rs−1) and the random coins ρ, honestly compute the
elements A,B,C,D, (fk)m−1

k=0 , zA, zC as prescribed by Fig. 3 (i.e., using the witness l). Compute the
polynomials Pi(X), as well as their evaluations pi, in the standard way. For each k > 1, submit

the pair of commitments

(∏o−1
j=0

(∏N−1
i=0 c

Pκ−j(i),k
i

)ξj
,Com(0)

)
to the LR-oracle, so as to obtain the

commitment Gk. Randomly generate z, and define G0 using the final verification equation, as above.

3. Give the transcript tr constructed in this way to A. When A outputs a bit b′, return b′.

If the experimenter’s hidden bit b = 0, then A’s view in its simulation by A′ exactly matches its view
in an honest execution of SHVZKA,S,Π,R (i.e., tr follows the distribution 〈P(σ, u, w),V(σ, u; ρ)〉). If on the
other hand b = 1, then A′’s transcript tr differs from the distribution S(σ, u; ρ) only in that its commitments
B and C honestly reflect A’s witness l, whereas S’s do not (i.e., they are simulated as prescribed by Lemma
4.2). This difference at most negligibly impacts A’s advantage, as can be shown by a direct reduction to
the SHVZK of Fig. 3. Finally, A′ wins whenever A does.

4.3 Efficiency

We discuss the efficiency of our protocol, and argue in particular that it can be computed in quasilinear
time for both the prover and the verifier. In order to facilitate fair comparison, we assume throughout that
only “elementary” field, group, and polynomial operations are used (in contrast with [GK15], who rely on
multi-exponentiation algorithms and unspecified “fast polynomial multiplication techniques”).

12



4.3.1 Analysis of [GK15]

We begin with an analysis of [GK15]. The prover and verifier may näıvely compute the polynomials
Pi(X) and the evaluations pi in O(N log2N) and O(N logN) time, respectively. We claim that the prover
and verifier can compute (Pi(X))N−1

i=0 and (pi)
N−1
i=0 (respectively) in O(N logN) and O(N) time. (These

are clearly optimal, in light of the output sizes.) To this end, we informally sketch an efficient recursive
algorithm, which closely evokes those used in bit reversal (see e.g., Jeong and Williams [JW90]).

Having constructed the linear polynomials Fk,1(X) and Fk,0(X) for k ∈ {0, . . . ,m − 1}, the prover
constructs the Pi(X) using a procedure which, essentially, arranges the “upward paths” through the array

Fk,j(X) into a binary tree of depth m. Each leaf i gives the product
∏m−1
k=0 Fk,ik(X) = Pi(X), which can be

written into the ith index of a global array (the index i can be kept track of throughout the recursion, using
bitwise operations). Each edge of this tree, on the other hand, represents the multiplication of an O(logN)-
degree “partial product” by a linear polynomial; we conclude that the entire procedure takes O(N logN)
time. (The m multi-exponentiations of c0, . . . , cN−1 by Pi,k—conducted during the construction of the
Gi—also take O(N logN) time.)

The verifier of [GK15] can be implemented O(N) time. Indeed, the same binary recursive procedure—
applied now to the evaluations fk,j—takes O(N) time, as in this setting the products don’t grow as the
depth increases, and each “partial product” can be extended in O(1) time.

4.3.2 Efficiency analysis of many-out-of-many proofs

We turn to the protocol of Fig. 4. Its communication complexity is clearly O(logN), and in fact is identical
to that of [BCC+15] (in its radix n = 2 variant).

Its runtime, however, is somewhat delicate, and depends in particular on how the map Ξ grows with
N . Indeed—even assuming that the image dimension s ≤ o (which doesn’t impact generality)—Ξ could
take as much as Θ(N2) space to represent; the evaluation of [1, v, . . . vs−1] · Ξ could also take Θ(N2) time
in the worst case. To eliminate these cases (which are perhaps of theoretical interest only), we insist
that Ξ has only O(N) nonzero entries as N grows. This ensures that the expression [1, v, . . . vs−1] · Ξ can
be evaluated in linear time. (We note that the unevaluated matrix product—represented as a matrix in
the indeterminate V—can be computed in advance of the protocol execution, and stored, or even “hard-
coded” into the implementation; under our assumption, it will occupy O(N) space, and require O(N) time
to evaluate during each protocol execution.)

This condition holds in particular if the number of rows s = O(1). Importantly, it also holds in
significant applications (like in Anonymous Zether) for which s = Θ(N); this latter fact makes the “linear
combination” trick non-vacuous.

Even assuming this condition on Ξ, a näıve implementation of the protocol of Fig. 4 uses Θ(N2 logN)
time for the prover and Θ(N2) time for the verifier (in the worst case o = Θ(N)). It is therefore surprising
that, imposing only the aforementioned assumption on Ξ, we nonetheless attain:

Theorem 4.8. Suppose that the number of nonzero entries of Ξ grows as O(N). Then the protocol of Fig.
4 can be implemented in O(N log2N) time for the prover and O(N logN) time for the verifier.

Proof. We first argue that it suffices to consider only the “canonical” case κ = (0, 1, . . . , N − 1). To this
end, we fix a κ′ ∈ SN , not necessarily equal to κ; we assume first that κ′ is an N -cycle, say with cycle
structure (κ′0, κ

′
1, . . . , κ

′
N−1). Given desired common inputs (σ, (c0, c1, . . . , cN−1), κ′,Ξ), and private inputs

(l′, (r0, . . . , rs−1)), we observe that the prover and verifier’s purposes are equally served by running Fig. 4
instead on the common inputs (σ, (cκ′0 , cκ′1 , . . . , cκ′N−1

), κ,Ξ) and private inputs (l, (r0, . . . , rs−1)), where l

is such that κ′l = l′.
Any arbitrary free permutation κ′′ ∈ SN (with order o, say), now, is easily seen to be an iterate (with

exponent N/o) of some N -cycle κ′; in fact, one such κ′ can easily be constructed in linear time by “collating”
through the cycles of κ′′. On desired inputs (σ, (c0, c1, . . . , cN−1), κ′′,Ξ; l′, (r0, . . . , rs−1)), then, the prover
and verifier may use the above reduction to execute (σ, (c0, c1, . . . , cN−1), κ′,Ξ; l′, (r0, . . . , rs−1)); they may
then discard all “rows” except those corresponding to indices j ∈ {0, . . . , N − 1} for which N/o | j.

13



We therefore turn now to the case κ = (0, 1, . . . , N − 1), whose analysis, by the above, suffices for
arbitrary κ. The verifier’s bottleneck is the evaluation of the matrix action[

ej
]N−1

j=0
:=
[
pκ−j(i)

]N−1

j,i=0
·
[
ci
]N−1

i=0
.

Yet by hypothesis on κ, the matrix
[
pκ−j(i)

]N−1

j,i=0
is a circulant matrix (see e.g. [TAL97, (6.5)]), and the

above equation’s right-hand side is a circular convolution in the sense of [TAL97, p. 103]. (We assume here
that N is a power of 2 and that N | (q − 1), so that the number-theoretic transform can be applied; see
[Nus82, Thm. 8.2]). The verifier may thus evaluate this product in O(N logN) time using the standard
Cooley–Tukey algorithm [TAL97, Thm. 4.2] and the convolution theorem [TAL97, Thm. 6.1].

We turn to the prover, who must compute the m matrix evaluations:[
Pκ−j(i),k

]N−1

j,i=0
·
[
ci
]N−1

i=0
,

for each k ∈ {0, . . . ,m − 1} (in the process of computing the Gk). Using identical reasoning, we see that
these can be computed with the aid of m parallel NTT-aided convolutions; the prover’s complexity is
therefore O(N log2N).

The remaining work, for both the prover and verifier, amounts to evaluating [ξ0, . . . , ξo−1] :=[
1, v, . . . , vs−1

]
· Ξ. By hypothesis on Ξ, this can be done in linear time.

Remark 4.9. The commitment space in which the commitments ci reside is not in general isomorphic
(as an Fq-module) to Fq, let alone efficiently computably so. Nonetheless, we observe that an Fq-module
structure alone on this space suffices for the application of Theorem 4.8. This fact is implicit in, say, the
statement of [TAL97, Thm. 6.1], where the convolution of two vectors is expressed as a matrix product of
the latter.

5 An Alternative Ring Signature

We describe an alternative procedure for ring signatures, which adapts that of [GK15, §4].
In our treatment, we consider anonymity only with respect to adversarially chosen keys, and in fact

our protocol is not secure in the stronger setting of full key exposure (we present definitions below).
Nonetheless, this limitation is acceptable in—and in fact is inherent to—our main application (namely
Anonymous Zether), as we shall argue below. Moreover, our protocol admits important flexibility not
offered by that of [GK15, §4]; informally, it can be run concurrently over multiple rings, while ensuring in
each case that the same secret key is used.

To hint at this flexibility, we sketch a basic example. Consider first the standard relation below, adapted
from [GK15, §3]:

R3 =
{

(σ, (y0, . . . , yN−1); l, sk) : yl = gsk
}
.

While [GK15, Fig. 2] easily handles R3, it’s less straightforward to see how it might adapt into a proof
for, say, the relation:

R∗3 =
{

(σ, (y0,0, . . . , y0,N−1), (y1,0, . . . , y1,N−1); l, sk) : y0,l = gsk0 ∧ y1,l = gsk1
}
,

for bases g0 and g1 implicit in the reference string σ, and where, crucially, the same secret key sk must be
used in both discrete logarithms. (In another closely related variant, the index l is allowed to be different
in both places.) Significantly, our protocol easily adapts to this setting.

5.1 Security definitions

We pause to define the security of ring signature schemes, closely following the article of Bender, Katz, and
Morselli [BKM09]. We begin with algorithms (Setup,Gen,Sign,Verify). Given parameters σ ← Setup(1λ),
Gen(1λ) outputs a keypair (y, sk), whereas π ← Signs,sk(m,R) signs the message m on behalf of the ring
R = (y0, . . . , yN−1) (where (ys, sk) is a valid keypair); finally, VrfyR(m,π) verifies the purported signature
π on m on behalf of R. We fix a polynomial N(·) in what follows.

14



Definition 5.1 (Bender–Katz–Morselli [BKM09, Def. 7]). The unforgeability with respect to insider cor-

ruption experiment UnforgeIC
N(·)
A,Π (λ) is defined as:

1. Parameters σ ← Setup(1λ) are generated and given to A.

2. Keypairs (yi, ski)
N(λ)−1
i=0 are generated using Gen(1λ), and the list of public keys S := (yi)

N(λ)−1
i=0 is

given to A.

3. A is given access to a signing oracle Osign(·, ·, ·) such that Osign(s,m,R) returns Signsks(m,R), where
we require ys ∈ R.

4. A is also given access to a corrupt oracle Corrupt(·), where Corrupt(i) outputs ski.

5. A outputs (R∗,m∗, π∗), and succeeds if VrfyR∗(m
∗, π∗) = 1, A never queried (?,m∗, R∗), and R∗ ⊂

S\C, where C is the set of corrupted users.

We say that Π = (Setup,Gen,Sign,Verify) is unforgeable with respect to insider corruption if, for each PPT

adversary and polynomial N(·), there exists a negligible function negl for which Pr[UnforgeIC
N(·)
A,Π (λ) = 1] ≤

negl(λ).

Definition 5.2 (Bender–Katz–Morselli [BKM09, Def. 3]). The anonymity with respect to adversarially

chosen keys experiment AnonACK
N(·)
A,Π (λ) is defined as:

1. Parameters σ ← Setup(1λ) are generated and given to A.

2. Keypairs (yi, ski)
N(λ)−1
i=0 are generated using Gen(1λ), and the list of public keys S := (yi)

N(λ)−1
i=0 is

given to A.

3. A is given access to a signing oracle Osign(·, ·, ·) such that Osign(s,m,R) returns Signsks(m,R), where
we require ys ∈ R.

4. A outputs a message m, distinct indices i0 and i1, and a ring R for which yi0 , yi1 ∈ R.

5. A random bit b is chosen, and A is given the signature π ← Signskib
(m,R). The adversary outputs a

bit b′.

6. The output of the experiment is defined to be 1 if and only if b′ = b.

We say that Π = (Setup,Gen,Sign,Verify) is anonymous with respect to adversarially chosen keys if
for each PPT adversary A and polynomial N(·), there exists a negligible function negl for which

Pr[AnonACK
N(·)
A,Π (λ) = 1] ≤ 1

2 + negl(λ).

We note that this definition is not the strongest formulation of anonymity given in [BKM09], and in
particular does not ensure anonymity in the face of attribution attacks or full key exposure [BKM09, Def.
4]. We will argue below that this slightly weaker definition suffices for our purposes (namely, Anonymous
Zether).

5.2 Ring signature protocol

We continue with our protocol for the simple relation R3 above. We construct our correction terms
differently than do the protocols [GK15, Fig. 2] and [BCC+15, Fig. 5]; we also replace the final revelation
of z by a Schnorr knowledge-of-exponent identification protocol (see e.g., [KL15, Fig. 12.2]). Explicitly:

15



P3(σ, (y0, . . . , yN−1); l, sk) V3(σ, (y0, . . . , yN−1))

rB , rK , ρ0, . . . , ρm−1 ←$Fq
B := Com(l0, . . . , lm−1; rB)

(A,C,D)← P1(σ,B; (l0, . . . , lm−1), rB)

for k ∈ {0, . . . ,m− 1} do

Yk :=

N−1∏
i=0

y
Pi,k
i · yρkl , Gk := gρk A,B,C,D, (Yk, Gk)

m−1
k=0

(f0, . . . , fm−1, zA, zC)← P1(x)
x x←$Fq

g := gx
m−

∑m−1
k=0

ρk·xk set g := gx
m
·
m−1∏
k=0

G−xk
k

K := grK f0, . . . , fm−1, zA, zC ,K set y :=

N−1∏
i=0

y
pi
i ·

m−1∏
k=0

Y −xk
k

c c←$Fq

s := c · sk+ rK
s Accept if and only if

V1(σ,B, x,A,C,D, (fk)m−1
k=0 , zA, zC)

?
= 1

gs · y−c ?
= K

Figure 5: Protocol for the relation R3.

In effect, the prover sends correction terms for both yl and g; the prover and verifier then conduct a
Schnorr protocol on the “corrected” elements y and g. We remark that the correction terms Yk use the
blinding scalars ρk in the exponent of yl—which, in particular, depends on the witness—and not of a
generic Pedersen base element (or of a global public key, as in [BCC+15]).

We define a ring signature Π = (Gen,Sign,Verify) by applying the Fiat–Shamir transform to Fig. 5 (see
[KL15, Cons. 12.9]). Gen(1λ) runs a group generation procedure (G, q, g) ← G(1λ) and the commitment
scheme setup, and chooses a function H : {0, 1}∗ → Fq. (In our security analyses below, we model H as a
random oracle.) We then define x = H((yi)

N−1
i=0 , A,B,C,D, (Yk, Gk)m−1

k=0 ,m) as well as c = H(x,K); the
verifier, given a transcript, checks also that these queries were computed correctly.

Π is complete, as can be seen from the completeness of the Schnorr signature, and from the discrete

logarithm relation y = gsk. In fact, g = gx
m−

∑m−1
k=0 ρk·xk and y = y

xm−
∑m−1
k=0 ρk·xk

l ; the relation immediately
follows. Moreover:

Theorem 5.3. If Com is computationally binding and the discrete logarithm problem is hard with respect
to G, then Π is unforgeable with respect to insider corruption.

Proof. We fix a polynomial N(·) and an adversary A targeting UnforgeIC
N(·)
A,Π (λ); assuming that Com is

binding, we define an adversary A′ which wins DLogA′,G(λ) with polynomially related probability. In

short, A′ simulates an execution of UnforgeIC
N(·)
A,Π (λ) on A, closely following the spirit of [BKM09, p. 20].

If A′ is able to obtain a (2m + 1, 2)-tree of valid signatures on the right witness (and barring a violation
of the binding property), A′ returns a discrete logarithm with probability 1. The difficult part resides in
this latter extraction. Indeed, after seeing x, the prover could in principle choose sk adaptively, and the
extraction of log(yl) demands the interpolation of a rational function (generalizing the Vandermonde-based
polynomial interpolation of e.g. [GK15]).

We elaborate on this point before beginning, referring to the section Cauchy interpolation of von zur
Gathen and Gerhard [vzGG13, §5.8]. In fact, step 8. below—and in particular, equation (1)—gives exactly
the closely related setting [vzGG13, §5.8, (21)], in which no division is performed; we essentially require a

16



relaxed version of the uniqueness result [vzGG13, Cor. 5.18, (ii)], in which (21) is considered instead of
(20) (and the “canonical form” condition is dropped). Details are given inline.
A′ works as follows. It is given G, q, g, and h as input.

1. Generate parameters σ ← Setup(1λ) for which G, q, and g are as given by the experiment input.
Give σ to A.

2. Generate keys (yi, ski)
N(λ)−1
i=0 using Gen(1λ). For a randomly chosen l ∈ {0, . . . , N(λ)− 1}, re-assign

to yl the discrete logarithm challenge h. Finally, give the modified list S := (yi)
N(λ)−1
i=0 to A.

3. Respond to each of A’s random oracle queries with a random element of Fq.

4. For each oracle query Osign(s,m,R) for which s 6= l, simply compute a signature as specified by Fig.
5. If s = l, replace the final Schnorr protocol by a simulation (exactly as in [KL15, p. 456]).

5. For each query Corrupt(i) for which i 6= l, return ski; if i = l, abort.

6. When A outputs (R∗,m∗, π∗), by rewinding it and freshly simulating its random oracle queries,
obtain a (2m + 1, 2)-tree of signatures π∗ on R∗ and m∗ (i.e., for 2m + 1 values of x and, for each
one, 2 values of c). If any of the (2m+ 1) · 2 resulting signatures fail to meet the winning condition

of UnforgeIC
N(·)
A,Π , or if any collisions occur between the x or c challenges (respectively), then abort.

7. By running the extractor of Lemma 4.2, obtain openings b0, . . . , bm−1, a0, . . . , am−1 of the initial
commitments B and A for which bk ∈ {0, 1}. If for any x it holds that fk 6= bk · x + ak for some
k, abort (having obtained a violation of the binding property of the commitment BxA). Otherwise,
determine whether the element y∗ (say) whose index in R∗ is given (in binary) by b0, . . . , bm−1 equals
yl. If it doesn’t, abort.

8. Given these conditions, use the following procedure to obtain, with probability 1, a discrete logarithm
sk ∈ Fq for which gsk = yl = h. Use the openings bk and ak to recover the polynomials Pi(X), and
hence representations, valid for each x, of the form:

(y, g) =

(
yx

m

l ·
m−1∏
k=0

Ŷk
−xk

, gx
m

·
m−1∏
k=0

G−x
k

k

)
,

for easily computable elements Ŷk independent of x. For each particular x, meanwhile, use the
standard Schnorr extractor on the two equations gs · y−c = K to obtain some quantity ŝk (possibly

depending on x) for which gŝk = y. Each such pair (x, ŝk) thus satisfies:

yx
m

l ·
m−1∏
k=0

Ŷk
−xk

=

(
gx

m

·
m−1∏
k=0

G−x
k

k

)ŝk

.

By taking the discrete logarithms with respect to g, re-express this relationship as an algebraic
equation in two variables, with unknown coefficients, which the point (x, ŝk) satisfies:

log(yl) · xm −
m−1∑
k=0

log(Ŷk) · xk =

(
1 · xm −

m−1∑
k=0

log(Gk) · xk
)
· ŝk. (1)

View the 2m+ 1 satisfying pairs (x, ŝk) of (1) as an instance of [vzGG13, (21)] (using the parameters
n = 2m + 1, k = m + 1), and in particular denote by r and t the (unknown) polynomials in
the indeterminate X which appear in (1)’s left- and right-hand sides. Use the Extended Euclidean
Algorithm to construct polynomials rj , tj ∈ Fq[X], exactly as prescribed in the statement of [vzGG13,

Cor. 5.18]. Finally, set sk = log(yl) as (lc(tj))
−1 · lc(rj) (where lc returns a polynomial’s leading

coefficient).

17



We pause to explain the correctness of step 8. Adapting the proof of [vzGG13, Thm. 5.16, (ii)], we argue
that, under the conditions of step 8., there necessarily exists some nonzero α ∈ Fq[X] for which

(r, t) = (α · rj , α · tj).

Though α’s existence guarantee is not constructive, we nonetheless note that because t is monic, α’s leading
coefficient must equal τ−1 (as in [vzGG13, §5.18, (ii)], we denote by τ = lc(tj) the leading coefficient of
tj). We conclude that r’s leading coefficient—namely, the desired quantity log(yl)—is given explicitly by
τ−1 · lc(rj).

We turn to A′’s correctness probability. We first analyze a modified experiment UnforgeIC′
N(·)
A,Π , which

differs from the standard UnforgeIC
N(·)
A,Π only in that the experimenter, upon receiving the final output

(R∗,m∗, π∗), rewinds A so as to obtain a (2m+ 1, 2)-tree of signatures, and imposes the winning condition

of UnforgeIC
N(·)
A,Π on all (2m+ 1) · 2 leaves. The experiment also returns 0 if any of the x or c values feature

collisions. Using an argument exactly analogous to that of the proof of [KL15, Thm. 12.11] (and using

Jensen’s inequality twice), we see that Pr[UnforgeIC′
N(·)
A,Π = 1] ≥ Pr[UnforgeIC

N(·)
A,Π (λ) = 1](2m+1)·2− negl(λ),

where negl is a negligible function.

We now claim that if that Com is binding, the event in which both UnforgeIC′
N(·)
A,Π (λ) = 1 and the

(2m + 1) · 2 signatures (R∗,m∗, π∗) yield a violation of the binding property occurs in at most negligibly

many executions of UnforgeIC′
N(·)
A,Π (λ) = 1 (say negl′). Indeed, an adversary A targeting UnforgeIC′

N(·)
A,Π

immediately yields an adversary A′′ targeting BindingA′′,Com, which, on input Com, runs UnforgeIC′
N(·)
A,Π (λ),

and returns the violation (winning BindingA′′,Com) exactly in this situation.

We finally point out that, among those executions of UnforgeIC′
N(·)
A,Π which A wins and in which no

binding violation occurs, that element y∗ ∈ R∗ whose index in R∗ is given by the binary representation
b0, . . . , bm−1 matches a uniform element yl ∈ S (chosen in advance) with probability exactly 1

N(λ) ; further-

more, in this latter setting, A necessarily never queries Corrupt(l) (this follows from the simple requirement
R∗ ⊂ S\C).

We turn now to the simulation given above. We claim that A′ answers A’s random oracle queries
inconsistently in at most negligibly many of its simulations. Indeed, inconsistency results only in the event
that A′, upon receiving a query Osign(l,m,R), simulates the Schnorr proof using random quantities s, c
for which A has already queried (x,K) (where K := gs · y−c) and for which H(x,K) 6= c. This happens
with negligible probability (say negl′′).

Barring this event, and that in which A′ aborts, A’s view in the simulation exactly matches that in

UnforgeIC′
N(·)
A,Π . Moreover, as long as no abort takes place and no violation of the binding property occurs,

A′ necessarily wins DLogA′,G(λ). We thus see that:

Pr[DLogA′,G(λ) = 1] ≥ Pr[UnforgeIC′
N(·)
A,Π (λ) = 1 ∧No binding violation is obtained ∧ y∗ = yl]− negl′′(λ)

≥ 1

N(λ)
· Pr[UnforgeIC′

N(·)
A,Π (λ) = 1 ∧No binding violation is obtained]− negl′′(λ)

≥ 1

N(λ)
·
(

Pr[UnforgeIC′
N(·)
A,Π (λ) = 1]− negl′(λ)

)
− negl′′(λ)

≥ 1

N(λ)
·
(

Pr[UnforgeIC
N(·)
A,Π (λ) = 1](2m+1)·2 − negl(λ)− negl′(λ)

)
− negl′′(λ).

The result immediately follows from discrete logarithm assumption on G.

Remark 5.4. Because the final portion of Fig. 5 is simply a Schnorr protocol on the elements g and y,
we may, having applied the Fiat–Shamir transform, rely on the Schnorr proof’s SHVZK property, and in
particular its simulator. This observation underlies A′’s step 4. above.

Remark 5.5. The proof of Theorem 5.3 (and in particular, A′’s steps 7. and 8.) implicitly demonstrates
that the interactive protocol Fig. 5 is (2m+ 1, 2)-special sound for the relation R3.

18



We turn to anonymity. We note that the interactive protocol of Fig. 5 is not zero-knowledge, or even
witness-indistinguishable (see e.g. [GK15, Def. 8]). Indeed, having chosen a statement and candidate
witnesses (l0, sk0) and (l1, sk1), A (say) may simply return whichever b′ ∈ {0, 1} satisfies:

yx
m

lb′
·
m−1∏
k=0

(
Yk · (Gk)−skb′

)xk ?
=

N−1∏
i=0

ypii .

Analogously, Π is not anonymous against full key exposure (recall [BKM09, Def. 4]). Heuristically, these
failures stem from the pairs (Yk, Gk), which are “El Gamal ciphertexts” under yl, and can be retrospectively
“decrypted” if (and only if) sk is exposed. Nonetheless, we obtain:

Theorem 5.6. If Com is computationally hiding and the DDH problem is hard relative to G, then Π is
anonymous with respect to adversarially chosen keys.

Proof. We convert an adversary A attacking AnonACK
N(·)
A,Π into an adversary A′ who, assuming that Com

is hiding, wins DDHA′,G with polynomially related probability. The essential difficulty is that both the
“messages” of the “ciphertexts” (Yk, Gk) and the key under which they are encrypted depend on the
experimenter’s hidden bit b ∈ {0, 1}. This makes the argument below somewhat delicate.
A′ works as follows. It is given G, q, g, h1, h2, and h′ as input.

1. Generate parameters σ ← Setup(1λ) for which G, q, and g are as given by the experiment input.
Give σ to A.

2. Generate keys (yi, ski)
N(λ)−1
i=0 using Gen(1λ). For a random index l ∈ {0, . . . , N(λ) − 1}, re-assign

yl := h1. Finally, give the modified list S := (yi)
N(λ)−1
i=0 to A.

3. Respond to each of A’s random oracle queries with a random element of Fq.

4. For each oracle query Osign(s,m,R) for which s 6= l, simply compute a signature as specified by Fig.
5. If s = l, replace the final Schnorr protocol by a simulation (as in [KL15, p. 456]).

5. When A outputs m, i0, i1, R, choose a uniform bit b ∈ {0, 1}. If ib 6= l, abort and return a random
bit.

6. If on the other hand ib = l, construct a signature π exactly as specified in Fig. 5, except set:

(Yk, Gk) :=

(
N−1∏
i=0

y
Pi,k
i · (h′)ρk , (h2)ρk

)

for each k ∈ {0, . . . ,m − 1}. Moreover, simulate the final Schnorr protocol, as in [KL15, p. 456].
Give the resulting signature to A.

7. When A outputs a bit b′, return whether b′
?
= b.

For notational ease, we first introduce a modified experiment AnonACK′
N(·)
A,Π , which differs from the standard

AnonACK
N(·)
A,Π only in the construction strategy of the signature π. The experimenter proceeds as follows.

After receiving i0 and i1 and generating the bit b ∈ {0, 1}, it generates a further uniform bit b′′. If b′′ = 1,

the experimenter proceeds exactly as in AnonACK
N(·)
A,Π . Otherwise, the experimenter generates a random

element, say y∗ ← G, and replaces yib with y∗ in the construction of π (and also simulates the final Schnorr
protocol).

We consider the winning probability of A in AnonACK′
N(·)
A,Π . If b′′ = 1, this probability exactly matches

that of A in AnonACK
N(·)
A,Π (by construction of the former experiment). If on the other hand b′′ = 0, we

argue—assuming now that Com is hiding—that Pr[AnonACK′
N(·)
A,Π (λ) = 1] differs at most negligibly from

1
2 (say by negl). To make this explicit, we define a further experiment, AnonACK′′

N(·)
A,Π , which represents

19



the case b′′ = 0 of AnonACK′
N(·)
A,Π ; that is, the experimenter always replaces yib with a random element y∗

in the construction of π (and simulates the Schnorr protocol). We claim now that Pr[AnonACK′′
N(·)
A,Π (λ) =

1]− 1
2 ≤ negl(λ).

To this end, we pause to sketch an adversary A′′ who, given an algorithm A targeting AnonACK′′
N(·)
A,Π ,

attacks the multiple encryptions experiment PubKLR-cpa
A′′,Π of [KL15, Def. 11.5]. (We specialize this latter

experiment to the El Gamal scheme, invoking both [KL15, Thm. 11.18] and [KL15, Thm. 11.6].) A′′
operates as follows, upon receiving a public key y∗:

1. Generate keys (yi, ski)
N(λ)−1
i=0 and give them to A.

2. Respond to Osign(·, ·, ·) queries in the obvious way (i.e., honestly).

3. Upon receiving m, i0, i1, R from A run the SHVZK simulator of Lemma 4.2 to construct quantities
A,B,C,D, x, (fk)m−1

k=0 , zA, zC , and also construct (pi)
N−1
i=0 as prescribed by Fig. 5. For each b ∈ {0, 1}

and k ∈ {0, . . . ,m− 1}, assign bb,k := (ib)k (i.e., the kth bit of the index ib) and ab,k := fk − bb,k · x;
additionally, define Fb,k,1(X) := bb,k ·X+ab,k and Fb,k,0(X) := X−Fb,k,1(X). Finally, set Pb,i(X) :=∑m
k=0 Pb,i,k · Xk :=

∏m−1
k=0 Fb,k,ik(X) (for each b ∈ {0, 1} and i ∈ {0, . . . , N(λ) − 1}). For each

k ∈ {0, . . . ,m − 1}, submit the pair
(∏N(λ)−1

i=0 y
P0,i,k

i ,
∏N(λ)−1
i=0 y

P1,i,k

i

)
to the oracle LRy∗,b, so as to

obtain an encryption; call the result (Yk, Gk). Finally, simulate the Schnorr proof. Give the resulting
signature to A.

4. When A returns a bit b′, return whatever A returns.

We argue that A’s view in its simulation by A′′ differs its view in an honest execution of AnonACK′′
N(·)
A,Π only

in the (simulated) commitments B and C, and hence (in view of the assumed hiding property of Com) that
its advantage drops only negligibly; finally, A′′ wins whenever A wins. This completes the construction.

We return to AnonACK′
N(·)
A,Π . Barring inconsistencies in the random oracle queries implicit in A′’s

Schnorr simulations (which occur in negligibly many among A′’s executions, say negl′) and an abort by
A′ (which takes place in exactly 1

N(λ) of executions in which no inconsistencies occur), A’s view in its

simulation by A′ exactly matches its view in AnonACK′
N(·)
A,Π . (This is by design of the latter experiment;

indeed, the possibilities b′′ ∈ {0, 1} in AnonACK′
N(·)
A,Π correspond exactly to the two possibilities of the DDH

experimenter’s random bit in A′’s simulation.)

Putting these facts together, and splitting Pr[AnonACK′
N(·)
A,Π (λ) = 1] along the two possibilities b′′ ∈

{0, 1}, we see that:

Pr[DDHA′,G(λ) = 1]− 1

2
≥ 1

N(λ)
·
(

Pr[AnonACK′
N(·)
A,Π (λ) = 1]− 1

2

)
− negl′(λ)

≥ 1

N(λ)
·
(

1

2
· (−negl(λ)) +

1

2
·
(

Pr[AnonACK
N(·)
A,Π (λ) = 1]− 1

2

))
− negl′(λ).

The result immediately follows from the DDH assumption on G.

6 Application: Anonymous Zether

We turn to our main application, Anonymous Zether.

6.1 Review of basic and anonymous Zether

We briefly summarize both basic and anonymous Zether; for further details we refer to [BAZB20].

20



Zether’s global state consists of a mapping acc from El Gamal public keys to El Gamal ciphertexts;
each y’s table entry contains an encryption of y’s balance b (in the exponent). In other words:

acc : G→ G2,

y 7→ acc[y] = Ency(b, r) =
(
gbyr, gr

)
,

for some randomness r which y in general does not know. (For details on the synchronization issues
surrounding “epochs”, we refer to [BAZB20].)

6.1.1 Basic Zether

In “basic” (non-anonymous) Zether, a non-anonymous sender y may transfer funds to a non-anonymous
recipient y. To do this, y should publish the public keys y and y, as well as a pair of ciphertexts (C,D) and
(C,D) (i.e., with the same randomness). These should encrypt, under y and y’s keys, the quantities g−b

∗

and gb
∗
, respectively, for some integer b∗ ∈ {0, . . .MAX} (MAX is a fixed constant of the form 2n − 1). To

apply the transfer, the administering system (e.g., smart contract) should group-add (C,D) and (C,D) to
y and y’s account balances (respectively). We denote by (CLn, CRn) y’s balance after the homomorphic
deduction is performed.

Finally, the prover should prove knowledge of:

• sk for which gsk = y (knowledge of secret key),

• r for which:

◦ gr = D (knowledge of randomness),

◦ (y · y)r = (C · C) (ciphertexts encrypt opposite balances),

• b∗ and b∗ in {0, . . . ,MAX} for which C = g−b
∗ · D and CLn = gb

′ · CRn (overflow and overdraft
protection).

Formally, we have the relation below, which essentially reproduces [BAZB20, (2)]:

stConfTransfer :

{
(y, y, CLn, CRn, C, C,D; sk, b∗, b′, r) :

gsk = y ∧ C = g−b
∗
·Dsk ∧ CLn = gb

′
· Csk

Rn∧
D = gr ∧ (y · y)r = C · C∧

b∗ ∈ {0, . . . ,MAX} ∧ b′ ∈ {0, . . . ,MAX}
}
.

6.1.2 Anonymous Zether

In Anonymous Zether [BAZB20, §D], a sender may hide herself and the recipient in a larger “ring” (yi)
N−1
i=0 .

To an observer, it should be impossible to discern which among a ring’s members sent or received funds.
Specifically, a sender should choose a list (yi)

N−1
i=0 , as well as indices l0 and l1 for which yl0 and yl1 belong

to the sender and recipient, respectively. The sender should then publish this list, as well as a list of
ciphertexts (Ci, D)N−1

i=0 , for which (Cl0 , D) encrypts g−b
∗

under yl0 , (Cl1 , D) encrypts gb
∗

under yl1 , and
(Ci, D) for each i 6∈ {l0, l1} encrypts g0 under yi. To apply the transfer, the contract should (Ci, D) to yi’s
balance for each i; we denote the list of new balances by (CLn,i, CRn,i)

N−1
i=0 .

Finally, the prover should prove knowledge of:

• l0, l1 ∈ {0, . . . , N − 1} (sender’s and recipient’s secret indices),

• sk for which gsk = yl0 (knowledge of secret key),

• r for which:

◦ gr = D (knowledge of randomness),

21



◦ (yl0 · yl1)
r

= Cl0 · Cl1 (sender’s and receiver’s ciphertexts encrypt opposite balances),

◦ for each i 6∈ {l0, l1}, yri = Ci (all ciphertexts other than the sender’s and recipient’s encrypt 0),

• b∗ and b′ in {0, . . . ,MAX} for which Cl0 = g−b
∗ ·D and CLn,l0 = gb

′ · CRn,l0 (overflow and overdraft
protection).

We group these facts into a formal relation, adapting [BAZB20, (8)]. For technical reasons (discussed
in Subsection 6.3 below), we actually prove a slight variant of this relation, in which N is required to be
even and l0 and l1 are required to have opposite parities. Formally:

stAnonTransfer :

{(
(yi, Ci, CLn,i, CRn,i)

N−1
i=0 , D, u, gepoch; sk, b

∗, b′, r, l0, l1
)

:

gsk = yl0 ∧ Cl0 = g−b
∗
Dsk ∧ CLn,l0 = gb

′
Csk
Rn,l0∧

D = gr ∧ (yl0 · yl1)
r

= Cl0 · Cl1 ∧
∧

i 6∈{l0,l1}

yri = Ci∧

gskepoch = u ∧ b∗ ∈ {0, . . . ,MAX} ∧ b′ ∈ {0, . . . ,MAX}∧

N ≡ 0 mod 2 ∧ l0 6≡ l1 mod 2
}
.

(2)

6.2 Insider and “rogue-key” attacks

We now turn to anonymous payment. We begin with a comment regarding the Anonymous Zether state-
ment ; in particular this subsection applies equally to this work and to [BAZB20, §D].

An important aspect of the statement (2) is that the same randomness D is used in each El Gamal
ciphertext (Ci, D). Yet the appeal of [BAZB20] to Kurosawa [Kur02] (in defense of this measure) appears
to misunderstand the latter work. Indeed, as Bellare, Boldyreva and Staddon [BBS03, §1.2] observe,
Kurosawa’s security definitions are weak, and assume in particular that each adversary is an “outsider”.

In contrast, we sketch a plausible insider attack on privacy—analogous to that described in [BBS03,
§4]—on any protocol following the paradigm of [BAZB20, §D] (i.e., regardless of its proof system). The
attacker, targeting some honest user y, generates a rogue public key y∗ := ysk

∗
(for some secret and

arbitrary sk∗). The attacker then induces some honest user (possibly, but not necessarily, y) to include
both the attacker and y in the honest user’s anonymity set. The attacker finally obtains the quantity b of
y’s change in balance (and in particular, determines whether y was the sender, the recipient, or neither)
using the following procedure. If y and y∗ reside at the indices l and l∗ (respectively) of the anonymity set
(yi)

N−1
i=0 (and assuming for simplicity that y∗ was neither the recipient nor the sender), the attacker simply

determines b using gb = Cl ·
(

(Cl∗)
(sk∗)−1

)−1

. The essential mechanism is that the Diffie–Hellman elements

of y and y∗ with respect to D differ by the same logarithm by which y and y∗ differ (namely, sk∗).
We observe that the conduct of the attacker is completely undetectable to y. We emphasize, moreover,

that y is at risk even during transactions which she does not initiate; indeed, the sender whom y∗ tricks
(i.e., into including y and y∗) may be arbitrary (say, unknown to y, for example).

Finally, we note that recourse whereby separate randomnesses (Di)
N−1
i=0 are used is (even were we to

leave aside its inefficiency, and in particular its almost-doubling of each transaction’s size) not available.
In fact, the reuse of D is critical in our cryptographic approach to Anonymous Zether, as we explain below
(in Subsection 6.3).

We adopt the remedy suggested by [BBS03, §1.2]. That is, we require each participant to prove
knowledge of her own public key before participating in the contract (i.e., before appearing in any anonymity
set). We implement a “registration” procedure, whereby each public key must sign a specified, fixed message
before it participates. This requirement is minimally cumbersome (especially in light of the superfluity of
multiple-account use in Anonymous Zether). We suggest the elimination of this requirement as a problem
for future work.

We note that this issue does affect basic Zether, but vacuously so, in that each transaction’s “insiders”
(i.e., its sender and recipient) already know each other’s respective roles, as well as the amount of funds
sent.

22



6.3 Cryptographic approach to anonymity

We now summarize our proof protocol for Anonymous Zether; our approach uses many-out-of-many proofs
in a crucial way. The most significant challenge of the Anonymous Zether relation (2) is that all N
ciphertexts (Ci, D)N−1

i=0 appear; in particular, it requires not just that (yl0 · yl1)
r

= Cl0 · Cl1 , but also that∧
i 6∈{l0,l1} y

r
i = Ci, where gr = D (and l0 and l1 are the sender’s and receiver’s secret indices, respectively).

Put differently, the verifier must iterate (provably) bijectively through all N ciphertexts, after hav-
ing received only two from the prover. To achieve this, the prover and verifier run many-out-of-
many proofs twice—with secrets l0 and l1, respectively—using, in each case, the permutation κ =
(0, 2, . . . , N − 2)(1, 3, . . . , N − 1) (they also require that N be even). The verifier in this way iterates
over the respective orbits of l0 and l1 under κ. These orbits, however, aren’t necessarily disjoint; indeed,
they’re either disjoint or identical, accordingly as l0 and l1’s parities are opposite or equal (respectively).
The verifier therefore requires in addition that the two executions be run in such a way that the secrets l0
and l1 feature opposite parities. The prover may demonstrate that this condition holds by adapting ideas
already present in [GK15] and [BCC+15], as we argue in Subsection 6.5 below.

The verifier, then—instead of using individual matrices Ξ for each execution—interleaves the respective
rows yielded by the two executions. The verifier constructs in this way a “double circulant” matrix,
represented by the schematic:



0, . . . . . . . . . . . . , 1, . . . . . . . . . . . . , 0︸ ︷︷ ︸
1 only at index l0

0, . . . . . . , 1, . . . . . . . . . . . . . . . . . . , 0︸ ︷︷ ︸
1 only at index l1

0, . . . . . . . . . . . . . . . . . . . . . , 1, . . . , 0

0, . . . . . . . . . . . . . . . , 1, . . . . . . . . . , 0
...

0, . . . . . . . . . , 1, . . . . . . . . . . . . . . . , 0

0, . . . , 1, . . . . . . . . . . . . . . . . . . . . . , 0



Figure 6: “Prover’s view”.



(p0,i)
N−1
i=0︸ ︷︷ ︸

“1” at unknown even (resp.) or odd index

(p1,i)
N−1
i=0︸ ︷︷ ︸

“1” at unknown odd (resp.) or even index

(p0,i)
N−1
i=0

(p1,i)
N−1
i=0

...

(p0,i)
N−1
i=0

(p1,i)
N−1
i=0


Figure 7: “Verifier’s view”.

(The vectors (p0,i)
N−1
i=0 and (p1,i)

N−1
i=0 correspond respectively to the two many-out-of-many executions.)

Informally, the prover implicitly sends the top two rows of an unknown matrix; by performing two-step
rotations, the verifier constructs the remaining N − 2 rows. The matrix so constructed is a permutation
matrix if and only if the top two rows attain the value 1 at indices of opposite parity.

We can also express the prover’s choice of the secrets l0 and l1 group-theoretically, as that of a certain
permutation. Indeed, any indices l0 and l1 with opposite parities implicitly yield in this way a permutation
K ∈ SN , defined by setting, for any i ∈ {0, . . . , N − 1}:

i 7→ K(i) :=

{
(l0 + 2 · k) mod N if i = 2 · k
(l1 + 2 · k) mod N if i = 2 · k + 1.

Such permutations K are exactly those residing in the subgroup of SN (of order N2

2 ) given by the generators
〈(0, 1, . . . , N − 1), (0, 2, . . . , N − 2)〉. This setting thus extends that of standard many-out-of-many proofs
(which restrict K to an order-N subgroup).

After interleaving the two executions as described above, the prover and verifier set as Ξ the (N−1)×N

23



matrix

Ξ =


1 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

 .
This matrix controls the messages of the permuted ciphertexts (CK(0), D), (CK(1), D) . . . , (CK(N−1), D).

Indeed, it encodes exactly that the sum (Cl0 , D) · (Cl1 , D) is an encryption of 0, whereas the ciphertexts
(Ci, D) for i 6∈ {l0, l1} individually encrypt 0. (We observe that this matrix has O(N) nonzero entries, and
so satisfies the hypothesis of Theorem 4.8.)

We remark finally on the heterogeneity of the keys y0, . . . , yN−1 under which the ciphertexts
(C0, D), . . . , (CN−1, D) are encrypted. We accommodate this challenge using a further trick. We view
each pair (Ci, yi) as a “ciphertext” under the “public key” D (whose “private key” is r). Viewed this
way, these pairs indeed are homomorphic; we thus conduct our many-out-of-many proofs on the vector
(Ci, yi)

N−1
i=0 . Finally, instead of revealing its “randomness” (which the prover generally doesn’t know), the

prover instead argues that the final result is an encryption of 0 under the “public key” D (using a simple
Σ-protocol). Put differently, the prover shows that the linear combination(

Cl0 · Cl1 · Cvl0+2 · Cv
2

l1+2 · · · · · Cv
N−2

l1−2 , yl0 · yl1 · yvl0+2 · yv
2

l1+2 · · · · · yv
N−2

l1−2

)
is an “encryption” of 0 under the “public key” D. This fact suffices for our purposes. The indices l0 and
l1 of course remain secret.

In a sense, this approach directly generalizes that of basic Zether, which proves that (y · y)
r

= C · C
(where gr = D).

6.4 Reducing prover runtime to O(N logN)

We reduce the prover’s runtime complexity from O(N log2N) to O(N logN) using a further trick, which
we presently sketch. We exploit the special structure of the Anonymous Zether ciphertexts (Ci, D)N−1

i=0 ,
only O(1) (i.e., 2) of whose messages are nonzero.

We continue to view the pairs (Ci, yi) as “encryptions” under the “public key” D. A direct application
of Fig. 4 would prescribe, for each k, that the prover construct—and the verifier eliminate—the entire kth-

order part
∏1,N2 −1
ι,j=0

(∏N−1
i=0 (Ci, yi)

Pι,i,k
)ξ2·j+ι

of the uncorrected many-out-of-many product. Each such

correction term alone would require O(N logN) time for the prover to compute (see the treatment of
Theorem 4.8).

Yet the messages of (Ci, D)N−1
i=0 are nonzero only at 2 indices i (namely, l0 and l1), so that, for each

k, a “messages-only” version of the above correction term can be computed in O(N) time (the messages
of the inner expression can be accumulated in constant time for each value (ι, j) of the outer index). The
total runtime of the prover is thus O(N logN). Our approach is to subtract these messages alone; the
resulting ciphertext is still an encryption of 0 under D (just with more complicated randomness), and so
passes verification all the same.

6.5 The opposite parity requirement

We comment further on the requirement that l0 6≡ l1 mod 2 (whose necessity is explained by the discussion
above).

6.5.1 Technique

Cryptographically, we must ensure that two executions of the many-out-of-many procedure correspond to
secrets l0 and l1 featuring opposite parities. Our technique is to require that the prover commit to the
constant- and first-order parts (i.e., respectively, in separate commitments E and F ) of the polynomials
F0,0(X) · F1,0(X) and (X − F0,0(X)) · (X − F1,0(X)). These products are both a priori quadratic in X,

24



with leading coefficients given respectively by b0,0 · b1,0 and (1 − b0,0) · (1 − b1,0) (where b0,0 and b1,0 are
the least-significant bits of l0 and l1).

The verifier’s check F xE
?
= Com ((f0,0 · f1,0, (x− f0,0)(x− f1,0))), then, enforces exactly that both

polynomials above are in fact linear, and hence that their leading coefficients are zero. This in turn exactly
encodes the logical fact that both b0,0∧ b1,0 = 0 and ¬b0,0∧¬b1,0 = 0, or in other words that b0,0⊕ b1,0 = 1
(and hence l0 6≡ l1 mod 2).

Methodologically, this approach naturally extends the standard bit-commitment protocol of [BCC+15,

Fig. 4]. In that protocol, the check Bx ·A ?
= Com

(
(fι,k)1,m−1

ι,k=0

)
encodes exactly the requirement that each

Fι,k(X) be linear, whereas the additional check CxD
?
= Com

(
(fι,k(x− fι,k))1,m−1

ι,k=0

)
enforces that each

Fι,k(X) · (X − Fι,k) is linear (and hence that Fι,k(X)’s leading coefficient bι,k ∈ {0, 1}).

6.5.2 Privacy implications

The requirement that l0 6≡ l1 mod 2 decreases privacy, but only minimally so. Indeed, it decreases the

cardinality of the set of possible pairs (l0, l1) ∈ {0, . . . , N − 1}2 from N · (N − 1) to N2

2 ; put differently, it
restricts the set of possible sender–receiver pairs to those represented by the edges of the complete bipartite
directed graph on {0, . . . , N − 1}, where the coloring is given by parity (i.e., as opposed to the complete
directed graph).

This restricted cardinally still grows quadratically in N , and in mainnet applications the deficit can
essentially be remedied simply by picking larger anonymity sets. This recourse would not be available in
consortium settings, however, where the total size of the network is limited. We consider this to to be an
acceptable limitation for practical use.

6.5.3 Eliminating the requirement

We briefly mention, though do not further pursue, an avenue by the aid of which the opposite parity
requirement could be eliminated. The prover and verifier could run standard many-out-of-many proofs
just once, using the “canonical” permutation κ = (0, 1, . . . , N −1), as well as a single secret l0 representing
the sender’s index. Moreover, they could set for Ξ the simple “summation” matrix

Ξ =
[
1 1 . . . 1

]
,

ensuring thereby that the (respective) quantities encrypted by (Ci, D)N−1
i=0 sum to 0. (In fact, this could be

done independently of the many-out-of-many procedure, as this transformation is a symmetric function.)
The non-trivial use of many-out-of-many proofs would arise in the protocol’s range checks. Whereas
standard Anonymous Zether checks the ranges only of (CLn,l0 , CRn,l0) and (the negation of) (Cl0 , D), this
approach would check the ranges of (CLn,l0 , CRn,l0) and all other ciphertexts (Ci, D)i6=l0 . (We continue
to use a sign representation whereby (Cl0 , D) encrypts a nonpositive amount and all other ciphertexts
encrypt nonnegative amounts.) Effectively, the many-out-of-many proof would guide the verifier as to
which adjustment ciphertext to exempt from range checking (while concealing its index in the original list).
This approach would convey the additional benefit of allowing more general sorts of transactions, in which
a single sender “spreads funds” to many receivers (as is possible in Quisquis [FMMO19]).

Unfortunately, these range checks would require that the N permuted ciphertexts be corrected in-
dividually (i.e., prior to the application of Ξ). In effect, “being in range” is not invariant under linear
transformation. Correcting each term individually would require at least Ω(N) communication. (In fact,
it could be made Θ(N) by setting the radix of [BCC+15, Fig. 4] equal to N , and sending only 1 correction
term per element.)

As this approach would require Θ(N)-sized proofs, we consider it an inferior point in the design space.
In fact, its use of Bulletproofs on N quantities (as opposed to just two) would further mandate, in addition
to increased computation, a linearly-sized common reference string containing n · N (in practice, 32 · N)
curve points. This too would be cumbersome, as contract storage is expensive.

25



6.6 Use of ring signatures

We describe how Anonymous Zether uses the ring signature of Fig 5. The relation (2) demands not just
that yl0 = gsk, but also that Cl0 = gb

∗
Dsk and CLn,l0 = gb

′
Csk
Rn,l0

; importantly, the same l0 and the same
sk must be used in all three equalities.

Roughly, our approach is as follows. The prover and verifier run the first part of Fig. 5 simultaneously on
(yi)

N−1
i=0 and on (Ci)

N−1
i=0 , as well as on the list of pairs (CLn,i, CRn,i)

N−1
i=0 (in this latter case, the prover adds

appropriate correction elements to both components of each random pair (yρkl0 , g
ρk)). In particular, they

use the same values A,B,C,D, fk, zA, zC in each execution, though the prover sends separate correction
terms for each. The verifier obtains in this way re-encryptions y0, g, C0, D,CLn, CRn, respectively, of
the elements yl0 , g, Cl0 , D,CLn,l0 , CRn,l0 , where the index l0 is necessarily chosen consistently throughout.
Finally, after conducting the Schnorr protocol for yl0 = gsk, as specified by Fig. 5—that is, after verifying
that gssk · y0

−c = Ay—the prover and verifier continue to use the same values ksk and ssk during the rest of
the Σ-Bullets procedure (and perform it likewise on the re-encrypted elements). In particular, the prover

sets Ab := gkb ·
(
D
−z2 · CRn

z3
)ksk

, whereas the verifier checks

g−sb ·Ab
?
=

(
D
−z2 · CRn

z3
)ssk
·
(
C0
−z2 · CLn

z3
)−c

.

This technique ensures that the same sk for which yl0 = gsk is used to decrypt (Cl0 , D) and
(CLn,l0 , CRn,l0). Explicit details are given in our security analyses below.

6.7 Security definitions

We present security definitions for Anonymous Zether, adapting those of Quisquis [FMMO19, §4], as well
as the original treatment of [BAZB20, §C]. We refer also to Ben-Sasson, Chiesa, Garman, Green, Miers,
Tromer and Virza [SCG+14]. Unlike [BAZB20, §C], we treat a simplified version of Anonymous Zether in
which only transfers—and no funds or burns—exist (and in which the contract is initialized with its full
capacity). This version is simpler to analyze, and evokes the approach of Quisquis [FMMO19, §4.3]. For
simplicity, we also ignore the existence of epochs in our analysis, and assume that each transaction takes
effect immediately.

We first recall the auxiliary algorithms:

• (y, sk)← Gen(1λ) returns a random keypair (satisfying y = gsk).

• b ← Read(acc, sk) decrypts acc[y], where y := gsk, and returns its balance b (obtained by “brute-
forcing” the exponent, assumed to be in the range {0, . . . ,MAX}).

We now have the constituent algorithms:

• σ ← Setup
(
1λ
)

runs a group-generation algorithm G(1λ) and generates commitment scheme params.

• tx :=
(
(Ci, yi)

N−1
i=0 , D, π

)
← Trans(acc, sk, y, R, b∗) generates a transfer transaction, given an

anonymity set R = (yi)
N−1
i=0 containing both y := gsk and y (at indices of opposite parity), as

well as the contract’s current state.

• acc ← Verify(acc, tx) verifies the transaction tx against acc. If tx =
(
(Ci, yi)

N−1
i=0 , D, π

)
is invalid

with respect to acc, Verify sets acc = ⊥; otherwise, it returns a new state acc obtained by updating
acc[yi] ·= (C−1

i , D−1) for each i ∈ {0, . . . , N − 1}.

We denote by Π = (Setup,Trans,Verify) the payment system defined by these algorithms. For each such
Π, we define in addition a stateful smart contract oracle OSC, which maintains a global state acc : G→ G2,
and also accepts transactions (upon each of which it calls Verify). OSC’s state, as well as each transaction
sent to it, are visible to all adversaries defined below.

We introduce a generic experiment setup, upon which our further definitions will build:

26



Definition 6.1. The generic cryptocurrency experiment CryptA,Π(λ) is defined as:

1. Parameters σ ← Setup
(
1λ
)

are generated and given to A.

2. A outputs a list (bi)
N−1
i=0 for which each bi ∈ {0, . . . ,MAX} and

∑N−1
i=0 bi = MAX. For each i ∈

{0, . . . , N − 1}, a keypair (yi, ski) ← Gen(1λ) is generated, and acc[yi] := Encyi(bi) is stored. OSC is
initialized using the table acc, and S = (yi)

N−1
i=0 is given to A.

3. A is given access to an oracle Transact(·, ·, ·, ·). For each particular call Transact(s, y,R, b∗) for which
ys and y reside in R (and occupy indices of opposite parity), a transaction tx← Trans(acc, sks, y, R, b

∗)
is generated, and is sent to OSC (which executes acc← Verify(acc, tx)).

4. A is given access to an oracle Insert(·), where Insert(tx) sends tx directly to OSC.

We define our security properties by adding steps to the above setup.
We first consider “overdraft safety”, called “theft prevention” in Quisquis [FMMO19]. The adversary,

to win, must produce a valid transaction which increases the total balance of a set of accounts she controls
(or, alternatively, which siphons value from an honest account). Unlike Quisquis, we explicitly allow
adversarially generated keys; in this light, we require the adversary to reveal its accounts’ secret keys
(mirroring the revelation of coins in [SCG+14, Def. C.3]).

Definition 6.2. The overdraft-safety experiment OverdraftA,Π(λ) is defined by adding the following step
to CryptA,Π(λ):

5. A is given access to an oracle Corrupt(·), where Corrupt(i) returns ski. (Denote by C ⊂ S the set of
corrupted public keys at any particular time.)

6. A outputs a transaction tx∗, as well as a list of keypairs (y∗i , sk
∗
i ). Consider the following conditions:

(i) There exists some i for which yi ∈ S\C and b← Read(acc, ski) decreases as a result of tx∗.

(ii) The sum
∑
y∗i 6∈S\C

Read(acc, sk∗i ) increases as a result of tx∗.

The result of the experiment is defined to be 1 if (tx∗ is valid and) either of these conditions hold.
The result is also 1 if any of the Read calls fail to terminate (i.e., with a result b ∈ {0, . . . ,MAX}).
Otherwise, the result is 0.

We say that Π is overdraft-safe if, for each PPT adversary A, there exists a negligible function negl for
which Pr[OverdraftA,Π(λ) = 1] ≤ negl(λ).

We now consider privacy, which we call ledger-indistinguishability (following [SCG+14, Def. C.1]).
Importantly, we must heed the insecurity of multi-recipient El Gamal under insider attacks, discussed for
example in Bellare, Boldyreva and Staddon [BBS03, §4]. Our solution is exactly that of [BBS03, Def. 4.1];
in other words, we require that the adversary reveal the secret keys of all adversarially chosen accounts.
In particular, this measure prevents the adversary from using a public keys whose secret key it does not
know (as in the attack of Subsection 6.2).

In practice, this requirement is captured by our registration procedure, which demands that each
account issue a signature on its own behalf. As [BBS03, §4] mention, we could equally well perform key
extractions (i.e., from these signatures) during our security proofs; this alternative would be unenlightening
and cumbersome.

We finally compare this requirement (i.e., that the secret keys be revealed) with that of step 6. of
OverdraftA,Π above. Though the two requirements are syntactically similar, that of step 5. below is more
restrictive, as we explain now. Requiring that an adversary reveal the keys of those accounts whose value
it inflates does not materially hinder the adversary, who needs those keys anyway to spend the accounts’
funds (as the soundness property of the proof protocol guarantees). On the other hand, an adversary
seeking only to distinguish two transactions could a priori use arbitrary keys—on whose behalf it does not
plan to sign—with no consequence.

27



Definition 6.3. The ledger-indistinguishability experiment L-INDA,Π(λ) is defined by adding the following
steps to CryptA,Π(λ):

5. A outputs indices s0, s1, public keys y0, y1, quantities b∗0, b
∗
1, and an anonymity set R∗. A also outputs

a secret key ski for each yi ∈ R∗\S. Consider the conditions:

(i) For each b ∈ {0, 1}, both ysb and yb reside in R∗ (and occupy indices of opposite parity).

(ii) If either y0 6∈ S or y1 6∈ S, then y0 = y1 (i.e., at the same index) and b∗0 = b∗1.

If either of these conditions fails to hold, output 0. Otherwise, select a random bit b ← {0, 1} and
generate tx← Trans(acc, sksb , yb, R

∗, b∗b). Finally, send tx to OSC.

6. A outputs a bit b′. The output of the experiment is defined to be 1 if and only if b′ = b.

We say that Π is ledger-indistinguishable if, for each PPT adversary A, there exists a negligible function
negl for which Pr[L-INDA,Π(λ) = 1] ≤ 1

2 + negl(λ).

The condition 5.(ii), inspired by Quisquis [FMMO19, §4.3], also exactly encodes the consistency condi-
tion of [BBS03, Def. 4.1] (namely that adversary’s message vectors coincide over the corrupt keys).

6.8 Protocol and security properties

An explicit (interactive) protocol for Anonymous Zether relation (2) is given in Appendix A. We define
the algorithms Trans and Verify by applying the Fiat–Shamir heuristic to this interactive protocol. In this
way, we obtain a payment system Π = (Setup,Trans,Verify).

Theorem 6.4. If the discrete logarithm problem is hard with respect to G, then Π is overdraft-safe.

Proof. Deferred to Appendix B.

We turn to ledger-indistinguishability. We remark that the interactive protocol of Appendix A is
not zero-knowledge, for the same reason that that of Fig. 5 fails to be. Yet just as Fig. 5’s non-
interactive version is anonymous with respect to adversarially chosen keys, so is Anonymous Zether ledger-
indistinguishable:

Theorem 6.5. If the DDH problem is hard with respect to G, then Π is ledger-indistinguishable.

Proof. Deferred to Appendix C.

6.9 Performance

We describe our implementation of Anonymous Zether. This implementation is open-source (available at
jpmorganchase / anonymous-zether), and is fully equipped for use “today”. In particular, it supports
not just the generation and verification of proofs, but also all “wallet-like” functionality necessary for
account maintenance. A simple API facilitates all necessary contract deployments, and exposes “fund”,
“burn”, and “transfer” methods. Proving takes place in a JavaScript library, which is in turn invoked by
our wallet (also written in JavaScript). Verification takes place in Solidity contracts.

We report performance measurements below. Each number next to “Transfer” indicates the size of
the anonymity set used (including the actual sender and recipient). The proving time we report does not
include the time taken to construct the statement (which is minimal in any case). The verification time
given reflects the time taken by the local EVM in evaluating a read-only call to the verification contract.
Our proof size assumes 32-byte field elements and 64-byte (i.e., uncompressed) points, as Ethereum’s
precompiled contracts require. Our transaction size reflects the size of the full Solidity ABI-encoded data
payload, which itself includes both a statement and its proof. Gas used incorporates not just verification
itself, but also the relevant account maintenance associated with the Zether Smart Contract; our gas
measurements do incorporate EIP-1108.

Our “Burn” transaction is actually a “partial burn”, in contrast to that of [BAZB20]; in other words,
it allows a user to withdraw only part of her balance (using a single range proof).

28

https://github.com/jpmorganchase/anonymous-zether


Proving Time Verif. Time Proof Size Tx. Size Gas Used
(ms) (ms) (bytes) (bytes) (units)

Burn 992 50 1,152 1,380 2,405,339
Transfer (2) 1,974 82 2,368 2,948 5,152,200
Transfer (4) 2,139 91 2,944 3,780 5,929,196
Transfer (8) 2,407 110 3,520 4,868 8,519,260
Transfer (16) 3,071 170 4,096 6,468 13,670,599
Transfer (32) 4,569 254 4,672 9,092 24,427,623
Transfer (64) 8,295 491 5,248 13,764 48,764,759
Transfer (N) O(N logN) O(N logN) O(logN) O(N) O(N logN)

We compare our measurements to those of competing protocols, following the benchmarks given by
[FMMO19, §7]. Our proving time is an order of magnitude faster than that of Zcash. Both our proving
and verification times are mildly slower than those of Monero and Quisquis (by about two- or three-fold);
we emphasize, however, that our reference implementation is in JavaScript and Solidity, whereas those
systems use C++ and Go (respectively). A “native” implementation of Anonymous Zether would almost
certainly challenge those protocols.

Quisquis’s proofs grow linearly, whereas ours grow logarithmically. Specifically, our proofs consists of
8 log(N)+22 group elements and 2 log(N)+12 field elements, whereas Quisquis’s consist of 6N+22

√
N+52

group elements and 6N+10
√
N+39 field elements (assuming the number of receivers t = 1). In fact, these

latter measurements exclude the “intermediate account lists” inputs′, outputs′, {acctδ,i}, and {acctε,i}; were
they included, Quisquis’s proofs would each include an additional 16N group elements.

While our statements grow linearly (a limitation discussed in [BAZB20, §D.2]), we also significantly
improve upon Quisquis’s constants. Our full transactions (i.e., each including both a statement and its
proof) feature 2N + 8 log(N) + 24 group elements and 2 log(N) + 12 field elements (plus an additional 196
bytes used in the Solidity ABI encoding), whereas Quisquis’s contain 30N+22

√
N+52 group elements and

6N+10
√
N+39 field elements. Concretely—and using an uncompressed (i.e., 64-byte) point representation

in both cases, for fair comparison—this amounts, in the case N = 16, to total transaction sizes of 6.5 kB and
45.3 kB, respectively. (Quisquis’s reported 13.4 kB “tx size” actually reflects only its proof, which further
still excludes the intermediate account lists; moreover, it assumes a compressed point representation.)

In light of these improvements, our work answers in the affirmative an open problem raised by Fauzi,
Meiklejohn, Mercer, and Orlandi [FMMO19, §9], and represents a new state-of-the-art (especially among
protocols with constant long-term space overhead per participant).

References

[BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy
in a smart contract world. In International Conference on Financial Cryptography and Data
Security, 2020. Full version.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy (SP), volume 1, 2018. Full version.

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in multi-
recipient encryption schemes. In Proceedings of the 6th International Workshop on Theory
and Practice in Public Key Cryptography, pages 85–99, 2003. Full version.

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe
Petit. Short accountable ring signatures based on DDH. In Günther Pernul, Peter Y A Ryan,
and Edgar Weippl, editors, Computer Security – ESORICS 2015, volume 9326 of Lecture Notes
in Computer Science, pages 243–265. Springer International Publishing, 2015.

29



[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, volume
9666 of Lecture Notes in Computer Science, pages 327–357. Springer Berlin Heidelberg, 2016.

[BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions,
and constructions without random oracles. Journal of Cryptology, 22:114–138, 2009.

[Coh74] P.M. Cohn. Algebra, volume 1. John Wiley & Sons, 1974.

[ESS+19] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and Dongxi Liu. Short
lattice-based one-out-of-many proofs and applications to ring signatures. In Robert H. Deng,
Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, Applied Cryptography and
Network Security, pages 67–88. Springer International Publishing, 2019.

[FMMO19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new
design for anonymous cryptocurrencies. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology – ASIACRYPT 2019, volume 11921 of Lecture Notes in Computer
Science. Springer International Publishing, 2019.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and
spend a coin. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EU-
ROCRYPT 2015, volume 9057 of Lecture Notes in Computer Science, pages 253–280. Springer
Berlin Heidelberg, 2015.

[JW90] J. Jeong and W. J. Williams. A fast recursive bit-reversal algorithm. In International Confer-
ence on Acoustics, Speech, and Signal Processing, volume 3, pages 1511–1514, 1990.

[KL15] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC Press, second
edition, 2015.

[Kur02] Kaoru Kurosawa. Multi-recipient public-key encryption with shortened ciphertext. In David
Naccache and Pascal Paillier, editors, Public Key Cryptography, volume 2274 of Lecture Notes
in Computer Science, pages 48–63, 2002.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[Nus82] H. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag, 1982.

[RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full Bitcoin transaction graph. In
Ahmad-Reza Sadeghi, editor, Financial Cryptography and Data Security, pages 6–24, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[SCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In
Proceedings of the 2014 IEEE Symposium on Security and Privacy, pages 459–474, 2014. Full
version.

[SMM16] Noether Shen, Adam Mackenzie, and Monero Core Team. Ring confidential transactions.
Research Bulletin MRL-0005, Monero Research Lab, February 2016.

[TAL97] Richard Tolimieri, Myoung An, and Chao Lu. Algorithms for Discrete Fourier Transform and
Convolution. Springer New York, second edition, 1997.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, third edition, 2013.

30



A Full Anonymous Zether Protocol

We provide a detailed proof protocol for the Anonymous Zether relation (2). We denote by n that integer
for which MAX = 2n − 1, and by m that integer for which N = 2m. All vector indices are taken modulo
the size of the vector (in case of overflow). We define and make use of the following functions:

• Shift(v, i) circularly shifts the vector v of field elements (i.e., Fq) by the integer i.

• MultiExp(V,v) multi-exponentiates the vector V of curve points by the vector v of field elements.

We mark in blue font those steps which do not appear in [BAZB20], [BBB+18], [GK15] or [BCC+15].

1: P computes...
2: α, ρ←$Fq . begin Bulletproof [BBB+18, §4]
3: aL ∈ {0, 1}2·n s.t.

〈
aL[:n],2

n
〉

= b∗,
〈
aL[n:],2

n
〉

= b′

4: aR = aL − 12·n

5: A = hαgaLhaR

6: sL, sR←$F2·n
q

7: S = hρgsLhsR

8: rA, rB , rC , rD, rE , rF ←$Fq . begin many-out-of-many proof
9: for all ι ∈ {0, 1}, k ∈ {0, . . . ,m− 1} do

10: sample aι,k←$Fq
11: set bι,k = (lι)k, i.e., the kth (little-endian) bit of lι
12: end for
13: A = Com(a0,0, . . . , a1,m−1; rA)
14: B = Com(b0,0, . . . , b1,m−1; rB)

15: C = Com((aι,k(1− 2bι,k))
1,m−1
ι,k=0 ; rC)

16: D = Com(−a2
0,0, . . . ,−a2

1,m−1; rD)
17: E = Com ((a0,0 · a1,0, a0,0 · a1,0); rE)
18: F = Com

(
(ab0,0,0,−ab1,0,0); rF

)
. the bits b0,0 and b1,0 are used as indices here.

19: end P
20: P → V : A,S, A,B,C,D,E, F
21: V : v←$Fq
22: V → P : v
23: P computes... . in what follows, we denote by ik the kth bit of i.
24: for all ι ∈ {0, 1} do
25: for all k ∈ {0, . . . ,m− 1} do
26: set Fι,k,1(W ) := bι,k ·W + aι,k
27: set Fι,k,0(W ) := W − Fι,k,1(W )
28: end for
29: for all i ∈ {0, . . . , N − 1} do

30: set Pι,i(W ) :=
∑m
k=0 Pι,i,k ·W k :=

∏m−1
k=0 Fι,k,ik(W )

31: end for
32: end for
33: (φk, χk, ψk, ωk)m−1

k=0 ←$Fq
34: set (ξ0, ξ1, ξ2, ξ3, . . . , ξN−1) =

(
1, 1, v, v2, . . . , vN−2

)
35: for all k ∈ {0, . . . ,m− 1} do

36: C̃Ln,k = MultiExp
(

(CLn,i)
N−1
i=0 , (P0,i,k)N−1

i=0

)
· (yl0)φk

37: C̃Rn,k = MultiExp
(

(CRn,i)
N−1
i=0 , (P0,i,k)N−1

i=0

)
· gφk

38: C̃0,k = MultiExp
(

(Ci)
N−1
i=0 , (P0,i,k)N−1

i=0

)
(yl0)

χk

Protocol Anonymous Zether

31



39: D̃k = gχk

40: ỹ0,k = MultiExp
(

(yi)
N−1
i=0 , (P0,i,k)N−1

i=0

)
(yl0)

ψk

41: g̃k = gψk

42: C̃X,k =
(∏1,N2 −1

ι,j=0 gb
∗·(−Pι,l0−2·j,k+Pι,l1−2·j,k)

)ξ2·j+ι
·Dωk

43: ỹX,k = gωk

44: end for
45: end P
46: P → V :

(
C̃Ln,k, C̃Rn,k, C̃0,k, D̃k, ỹ0,k, g̃k, C̃X,k, ỹX,k

)m−1

k=0
47: V : w←$Fq
48: V → P : w
49: P computes...
50: for all ι ∈ {0, 1}, k ∈ {0, . . . ,m− 1} do
51: set fι,k := Fι,k,1(w)
52: end for
53: zA = rB · w + rA
54: zC = rC · w + rD
55: zE = rF · w + rE
56: end P
57: P → V : (fι,k)

1,m−1
ι,k=0 , zA, zC , zE

58: V : y, z←$Fq
59: V → P : y, z
60: P :
61: l(X) = (aL − z · 1n) + sL ·X
62: r(X) = yn ◦ (aR + z · 1n + sR ·X) + z2 · (2n ‖ 0n) + z3 · (0n ‖ 2n)
63: t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X2 . l and r are elements of F2·n

q [X]; t ∈ Fq[X]
64: τ1, τ2←$Fq
65: Ti = gtihτi for i ∈ {1, 2}
66: end P
67: P → V : T1, T2

68: V : x←$Fq
69: V → P : x
70: P computes...
71: l = l(x) = aL − z · 12·n + sL · x
72: r = r(x) = y2·n ◦ (aR + z · 12·n + sR · x) + z2 · (2n ‖ 0n) + z3 · (0n ‖ 2n)
73: t̂ = 〈l, r〉 . l and r are elements of F2·n

q ; t̂ ∈ Fq
74: τx = τ2 · x2 + τ1 · x
75: µ = α+ ρ · x
76: CRn = (CRn,l0)

wm ·
(∏m−1

k=0 g−φk·w
k
)

. prover “anticipates” certain re-encryptions

77: D = Dwm · g−
∑m−1
k=0 χk·wk

78: y0 = (yl0)w
m ·
(∏m−1

k=0 y−ψk·w
k

l0

)
79: g = gw

m−
∑m−1
k=0 ψk·wk

80: yX,k =
∏1,N2 −1
ι,j=0 MultiExp

(
(yi)

N−1
i=0 ,Shift

(
(Pι,i(w))N−1

i=0 , 2 · j
))ξ2·j+ι · (∏m−1

k=0 g−ωk·w
k
)

81: ksk, kr, kb, kτ ←$Fq . begin Σ-protocol proving
82: Ay = gksk

83: AD = gkr

84: Ab = gkb ·
(
D−z

2 · CRnz
3
)ksk

85: AX = yX
kr . in some sense, AX replaces Ay

86: At = g−kbhkτ

32



87: Au = gkskepoch

88: end P
89: P → V : t̂, µ, Ay, AD, Ab, AX , At, Au
90: V : c←$Fq
91: V → P : c
92: P computes...
93: ssk = ksk + c · sk
94: sr = kr + c · r
95: sb = kb + c · wm · (b∗z2 + b′z3)
96: sτ = kτ + c · wm · τx
97: end P
98: P → V : ssk, sr, sb, sτ
99: V requires...
100: for all ι ∈ {0, 1}, k ∈ {0, . . . ,m− 1} do
101: set fι,k,1 = fι,k
102: set fι,k,0 = w − fι,k
103: for all i ∈ {0, . . . , N − 1} do

104: set pι,i =
∏m−1
k=0 fι,k,ki

105: end for
106: end for
107: BwA

?
= Com (f0,0, . . . , f1,m−1; zA)

108: CwD
?
= Com

(
(fι,k(w − fι,k))1,m−1

ι,k=0 ; zC

)
109: FwE

?
= Com ((f0,0 · f1,0, (w − f0,0)(w − f1,0)); zE) . opposite parity check, see Subsection 6.5

110: CLn = MultiExp
(

(CLn,i)
N−1
i=0 , (p0,k)N−1

i=0

)
·
∏m−1
k=0 C̃Ln,k

−wk
. begin comp. of re-encryptions

111: CRn = MultiExp
(

(CRn,i)
N−1
i=0 , (p0,k)N−1

i=0

)
·
∏m−1
k=0 C̃Rn,k

−wk

112: C0 = MultiExp
(

(Ci)
N−1
i=0 , (p0,k)N−1

i=0

)
·
∏m−1
k=0 C̃0,k

−wk

113: D = Dwm ·
∏m−1
k=0 D̃k

−wk

114: y0 = MultiExp
(

(yi)
N−1
i=0 , (p0,k)N−1

i=0

)
·
∏m−1
k=0 ỹ0,k

−wk

115: g = gw
m ·
∏m−1
k=0 g̃k

−wk

116: set (ξ0, ξ1, ξ2, ξ3, . . . , ξN−1) =
(
1, 1, v, v2, . . . , vN−2

)
117: CX =

∏1,N2 −1
ι,j=0 MultiExp

(
(Ci)

N−1
i=0 ,Shift

(
(pι,i)

N−1
i=0 , 2 · j

))ξ2·j+ι ·∏m−1
k=0 C̃X,k

−wk

118: yX =
∏1,N2 −1
ι,j=0 MultiExp

(
(yi)

N−1
i=0 ,Shift

(
(pι,i)

N−1
i=0 , 2 · j

))ξ2·j+ι ·∏m−1
k=0 ỹX,k

−wk

119: Ay
?
= gssk · y0

−c . begin Σ-protocol verification

120: AD
?
= gsr ·D−c

121: g−sb ·Ab
?
=
(
D−z

2 · CRnz
3
)ssk
·
(
C0
−z2 · CLnz

3
)−c

122: AX
?
= yX

sr · CX
−c

123: δ(y, z) = (z − z2) ·
〈
12·n,y2·n〉− (z3 · 〈1n,2n〉+ z4 · 〈1n,2n〉

)
124: gw

m·c·t̂ · hsτ ?
= gw

m·c·δ(y,z) · gsb ·At ·
(
T x1 · T x

2

2

)wm·c
125: Au

?
= gsskepoch · u−c

126: end V
127: h′ =

(
h0, h

y−1

1 , hy
−2

2 , . . . , hy
−2·n+1

2·n−1

)
. complete inner product argument

128: P = A · Sx · g−z · h′z·y
2·n+z2·(2n‖0n)+z3·(0n‖2n)

129: P and V engage in Protocol 1 of [BBB+18] on inputs (g,h′, Ph−µ, t̂; l, r)

33



B Overdraft Safety: Proof

Proof of Theorem 6.4. We fix an adversary A targeting OverdraftA,Π(λ); assuming that Com is binding,
we yield an adversary A′ which wins DLogA′,G(λ) with polynomially related probability. (By specializing
to Pedersen commitments, we incorporate the binding property of Com “for free” in the hypothesis of the
Theorem.)
A′ is defined as follows. It is given G, q, g, and h as input.

1. Generate parameters σ ← Setup
(
1λ
)

for which G, q, and g are as given by the experiment input.
Give σ to A.

2. Given the list (bi)
N−1
i=0 , generate a keypair (yi, ski) ← Gen(1λ) for each i ∈ {0, . . . , N − 1}. For a

randomly chosen index l ∈ {0, . . . , N − 1}, overwrite yl := h. Encrypt acc[yi] := Encyi(bi) for each i
and initialize OSC with acc. Finally, give the modified list S = (yi)

N−1
i=0 to A.

3. Respond to each of A’s random oracle queries with a random element of Fq.

4. For each oracle query Transact(s, y,R, b∗) for which s 6= l, simply compute tx :=
(
(Ci, yi)

N−1
i=0 , D, π

)
←

Trans(acc, sks, y, R, b
∗) as specified by the Anonymous Zether protocol. If instead s = l, construct π

by replacing each Schnorr protocol involving sk by a simulation. More specifically, randomly generate

ssk and c. Finally, set Ay := gssk · y0
−c and At := gw

m·c·(t̂−δ(y,z)) · hwm·c·τx · ccommit ·
(
T x1 · T x

2

2

)−wm·c
.

Compute all other elements as specified by the protocol.

5. For each oracle query Insert(tx), forward tx to OSC.

6. For each oracle query Corrupt(i) for which i 6= l, return ski. If i = l, abort.

7. When A outputs tx∗ =
(
(Ci, yi)

N−1
i=0 , D, π∗

)
, check if either of the conditions of step 6. of

OverdraftA,Π(λ) hold. If not, then abort. If either does, then rewind A so as to obtain an
(N − 1, 2m + 1, 2 · n, 4, 3, 2)-tree of proofs π∗ (by freshly simulating its random oracle queries for
the challenges (v, w, y, z, x, c), respectively). If any of the resulting leaves π∗ fails to be valid, or if
any collisions in the simulated challenges occur, then abort.

8. By running the extractor of Lemma 4.2, obtain openings b0,0, . . . , b1,m−1, a0,0, . . . , a1,m−1 of the
initial commitments B and A for which bι,k ∈ {0, 1}. If for any w it holds that fι,k 6= bι,k · w + aι,k
for some ι, k, abort (having obtained a violation of the binding property of the commitment BwA).
Otherwise, determine whether the element y∗ (say) whose index in R∗ := (yi)

N−1
i=0 is given (in binary)

by b0,0, . . . , b0,m−1 equals yl. If it doesn’t, abort.

9. Given these conditions, use the exact same procedure as in Theorem 5.3, step 8. (on the first list of
bits, b0,0, . . . , b0,m−1) to obtain, with probably 1, sk for which gsk = yl. Return sk.

We first introduce a modified experiment Overdraft′A,Π, which differs from the standard OverdraftA,Π
only in that the experimenter, having received tx∗ =

(
(Ci, yi)

N−1
i=0 , D, π∗

)
, rewinds A so as to obtain a

(N − 1, 2m + 1, 2 · n, 4, 3, 2)-tree of proofs π∗ (freshly simulating its random oracle queries), and imposes
the winning condition 6. of OverdraftA,Π on all leaves (aborting also if any challenge collisions occur
in the tree). Exactly as in [KL15, Thm. 12.11] and in Theorem 5.3, after applying Jensen’s inequality
iteratively, we see that for some negligible function negl, Pr[Overdraft′A,Π(λ) = 1] ≥ Pr[OverdraftA,Π(λ) =

1](N−1)·(2m+1)·2·n·24 − negl(λ).
Now, let Overdraft′′A,Π differ further from Overdraft′A,Π only in that, after requiring the validity of all

leaves π∗, the experimenter imposes upon them instead of 6. an (apparently stronger) winning condition,
whereby no binding violation in the (bι,k, aι,k)1,m−1

ι,k=0 occurs (as in step 8. above) and in addition y∗ ∈ S\C.
(In effect A must forge the ring signature of Fig. 5 on an honest user’s behalf.) We argue that the joint
event in which A wins Overdraft′A,Π and fails to satisfy the winning condition of Overdraft′′A,Π occurs in

at most negligibly many executions of Overdraft′A,Π (say negl′). In fact, this follows exactly from (the
binding property of Com and) the (N − 1, 2m + 1, 2 · n, 4, 3, 2)-soundness of the interactive protocol of

34



Appendix A, whose proof we further defer to a lemma below. Indeed, if all π∗ are valid and A’s statement
((Ci, yi)

N−1
i=0 , D) has a witness (sk, b∗, b′, r, l0, l1) in the sense of (2) (and no BwA binding violation occurs),

then the winning conditions of Overdraft′A,Π and Overdraft′′A,Π are equivalent; in particular, in this case
6.(ii) implies 6.(i), which in turn implies y∗ ∈ S\C.

We finally argue that A’s view in its simulation by A′ differs from its view in Overdraft′′A,Π only if A′
aborts (i.e., upon receiving a call Corrupt(l), or if y∗ 6= yl) or if A′’s response to some Transact(l, y, R, b∗)
query features a Schnorr simulation whose implicit random oracle response clashes with a prior evaluation.
The latter event happens in negligibly many executions of A′ (say negl′′); among executions for which it
does not occur, A necessarily queries Corrupt(l) (for a random l ∈ {0, . . . , N − 1}, chosen in advance) in at
most 1

N among executions for which the winning condition of Overdraft′′A,Π holds.
Putting these facts together, we see that:

Pr[DLogA′,G(λ) = 1] ≥ Pr[Overdraft′′A,Π(λ) = 1 ∧ y∗ = yl]− negl′′(λ)

≥ 1

N
· Pr[Overdraft′′A,Π(λ) = 1]− negl′′(λ)

≥ 1

N
·
(
Pr[Overdraft′A,Π(λ) = 1]− negl′(λ)

)
− negl′′(λ)

≥ 1

N
·
(

Pr[OverdraftA,Π(λ) = 1](N−1)·(2m+1)·2·n·24 − negl(λ)− negl′(λ)
)
− negl′′(λ).

This completes the proof.

It thus remains only to show:

Lemma B.1. If the discrete logarithm problem is hard with respect to G, then the interactive protocol of
Appendix A for (2) is (N − 1, 2m+ 1, 2 · n, 4, 3, 2)-special sound.

Proof. We describe an extractor X which, given an arbitrary statement ((yi, Ci, CLn,i, CRn,i)
N−1
i=0 , D) and

an (N −1, 2m+ 1, 2 ·n, 4, 3, 2)-tree of accepting transcripts, returns either a witness (sk, b∗, b′, r, l0, l1) as in
(2) or a binding violation. The latter event can be shown to be negligibly probable under the assumption
that Com is binding, by a direct reduction. (By specializing Com to the Pedersen scheme, we obtain Com’s
binding property from the discrete logarithm hypothesis alone.)
X first performs a Σ-Bullets extraction, as in [BAZB20, §G], modified to suit our “re-encrypted” setting.

For notational convenience, we assume in what follows that each challenge w 6= 0.
For each particular assignment of values to the challenges w, y, z, x (and for arbitrarily chosen v),

by using the standard Schnorr extractor on the two leaves c, X obtains from the verification equation

Ay = gssk · y0
−c a quantity ŝk (a priori unequal to sk) for which gŝk = y0. Similarly, from the two copies

of the Σ-Bullets verification equation 121, X obtains a quantity b (which we tacitly divide by wm) and an
equality:

gw
m·b =

(
D
−ŝk · C0

)−z2
·
(
CRn

−ŝk · CLn
)z3

(3)

for ŝk as above. Finally, from the two copies of the Bulletproofs verification equation 124 (and again
dividing throughout by wm), X obtains a quantity τx, as well as an expression:

gt̂ · hτx = gδ(y,z) · gb · T x1 · T x
2

2 . (4)

X now performs a Bulletproofs extraction, essentially as in [BBB+18, §C]. For completeness, we carry
through the details. For each assignment of values to the challenges w, y, z (and v as before), X runs for
each value x the inner product extractor, so as to obtain vectors l and r for which P = hµ · gl · (h′)r
and t̂ = 〈l, r〉. (Technically, our tree of transcripts should be augmented so as to incorporate, for each
x, a log(n)-depth tree containing O(n2) further transcripts, upon which the inner product extractor may
operate. For notational convenience, we suppress this matter.) Using the resulting vectors for two distinct

challenges x—and the representations P = A ·Sx · g−z ·h′z·y
2·n+z2·(2n‖0n)+z3·(0n‖2n)

—X obtains openings

35



α,aL,aR and ρ, sL, sR of A and S (respectively). If, for any x, equalities of the form of lines 71 and 72 do
not hold, X returns the corresponding binding violation of P .

Otherwise, we observe that necessarily t̂ = t(X) for each x, where t(X) := 〈l(X), r(X)〉 (and l(X) and
r(X) are defined as in 61 and 62 with respect to the above openings). By constructing a Vandermonde
matrix in the challenges x and multiplying its inverse by the vector of values (t̂, τx), X obtains, in view of
(4), openings for gb+δ(y,z) as well as for T1 and T2. Barring a second binding violation, we conclude in fact
that b+ δ(y, z) = t0 for each x. Indeed, both sides of this equality are (in this case) uniquely characterized
as the first component of that vector whose image equals t̂ under each “evaluation-at-x” linear functional.

We conclude in particular from the definitions of t(X) and δ(y, z) that:

b = t0 − δ(y, z) =
〈
aL,y

2·n ◦ aR
〉

+
〈
aL − 12·n − aR,y

2·n〉 · z +
〈
aL[:n],2

n
〉
· z2 +

〈
aL[n:],2

n
〉
· z3

for each w, y and z. Exponentiating both sides of this equality by g (and also multiplying them by wm),
we derive the following alternative expression for the right-hand side of (3):

gw
m·〈aL,y2·n◦aR〉 ·

(
gw

m·〈aL−12·n−aR,y2·n〉
)z
·
(
gw

m·〈aL[:n],2
n〉
)z2
·
(
gw

m·〈aL[n:],2
n〉
)z3

.

We conclude immediately (i.e., after inverting a 4 × 4 Vandermonde matrix in the challenges z and ap-
plying it to both representations) that

〈
aL,y

2·n ◦ aR
〉

= 0 and
〈
aL − 12·n − aR,y

2·n〉 = 0, as well as that

g−w
m·b∗ = D

−ŝk · C0 and gw
m·b′ = CRn

−ŝk · CLn, where we denote b∗ :=
〈
aL[:n],2

n
〉

and b′ :=
〈
aL[n:],2

n
〉
.

From the first two equalities at all 2 ·n challenges y, we conclude that aL ∈ {0, 1}2·n. It follows immediately
that b∗ and b′ reside in {0, . . . ,MAX} (from the construction of these latter values).
X continues as follows. By running the extractor of Lemma 4.2 on three values w, X obtains openings

b0,0, . . . , b1,m−1, a0,0, . . . , a1,m−1 of the initial commitments B and A for which bι,k ∈ {0, 1}. If for any w it
holds that the response fι,k 6= bι,k ·w+ aι,k for some ι, k, X returns the corresponding binding violation of
BwA. Otherwise, it uses the bits bι,0, . . . , bι,m−1 to determine the witness lι (for each ι ∈ {0, 1}). It then
uses the openings bι,k and aι,k to reconstruct the polynomials Pι,k(W ) (for each ι, k), and in particular
representations, valid for each w, of the form:

(y0, g) =

(
yw

m

l0 ·
m−1∏
k=0

ŷ0,k
−wk

, gw
m

·
m−1∏
k=0

g̃k
−wk

)
,

(
C0, D

)
=

(
Cw

m

l0 ·
m−1∏
k=0

Ĉ0,k

−wk
, Dwm ·

m−1∏
k=0

D̃k

−wk
)
,

(
CLn, CRn

)
=

(
Cw

m

Ln,l0 ·
m−1∏
k=0

ĈLn,k
−wk

, Cw
m

Rn,l0 ·
m−1∏
k=0

ĈRn,k
−wk

)
,

for easily computable elements
(
ŷ0,k, Ĉ0,k, ĈLn,k, ĈRn,k

)m−1

k=0
which don’t depend on w.

From the equalities g−w
m·b∗ = D

−ŝk · C0, gw
m·b′ = CRn

−ŝk · CLn, and gŝk = y0, X obtains in turn the
relationships

yw
m

l0 ·
m−1∏
k=0

ŷ0,k
−wk

=

(
gw

m

·
m−1∏
k=0

g̃k
−wk

)ŝk

,

(
gb
∗
· Cl0

)wm
·
m−1∏
k=0

Ĉ0,k

−wk
=

(
Dwm ·

m−1∏
k=0

D̃k

−wk
)ŝk

,

(
g−b

′
· CLn,l0

)wm
·
m−1∏
k=0

ĈLn,k
−wk

=

(
Cw

m

Rn,l0 ·
m−1∏
k=0

ĈRn,k
−wk

)ŝk

.

36



The discrete logarithms with respect to g of these equalities give three algebraic equations, with unknown
coefficients, which each point (w, ŝk) simultaneously satisfies:

log(yl0) · wm −
m−1∑
k=0

log(ŷ0,k) · wk =

(
1 · wm −

m−1∑
k=0

log(g̃k) · wk
)
· ŝk, (5)

log(gb
∗
· Cl0) · wm −

m−1∑
k=0

log(Ĉ0,k) · wk =

(
log(D) · wm −

m−1∑
k=0

log(D̃k) · wk
)
· ŝk, (6)

log(g−b
′
· CLn,l0) · wm −

m−1∑
k=0

log(ĈLn,k) · wk =

(
log(CRn,l0) · wm −

m−1∑
k=0

log(ĈRn,k) · wk
)
· ŝk. (7)

X views the 2m+ 1 satisfying points (w, ŝk) of (5) as an instance of [vzGG13, (21)] (using the parameters
n = 2m + 1, k = m + 1), and in particular denotes by r and t the (unknown) polynomials (in the
indeterminate W ) which appear in (5)’s left- and right-hand sides. It constructs polynomials rj , tj ∈ Fq[W ]

as in the statement of [vzGG13, Cor. 5.18]; finally, it sets sk = log(yl) as (lc(tj))
−1 · lc(rj).

We argue here exactly as in the proof of Theorem 5.3. Indeed, just as before, we claim from [vzGG13,
Thm. 5.16, (ii)] that there exists some nonzero α ∈ Fq[W ] for which

(r, t) = (α · rj , α · tj), (8)

and consequently that log(yl0) can be expressed as τ−1 · lc(rj) (where τ = lc(tj)). In fact, we further
observe that (8) holds for any polynomials r, t of appropriate degree which satisfy [vzGG13, (21)] (though
in general with different α). In particular, from (6) we deduce the existence of some α as in (8), whose
leading coefficient moreover must equal log(D) ·τ−1; we conclude that log(gb

∗ ·Cl0) = log(D) ·τ−1 · lc(rj) =

log(D) · log(yl0). Similarly, from (7) we see that that log(g−b
′ ·CLn,l0) = log(CRn,l0) · log(yl0). These latter

facts imply (respectively) that Cl0 = g−b
∗
Dsk and CLn,l0 = gb

′
Csk
Rn,l0

, as required by (2).
We continue with the operation of X . For each assignment of values to the challenges v, w, X uses the

equality AD = gsr ·D−c for two values c (and arbitrary y, z, x) to obtain an element r for which gr = D.
Exactly as in the proof of Theorem 4.6, it constructs using the P0,k(W ) and P1,k(W ) an expression:

(
CX , yX

)
=


1,N2 −1∏

ι,j=0

C
ξ2·j+ι
lι+2·j

wm

·
m−1∏
k=0

ĈX,k
−wk

,

1,N2 −1∏
ι,j=0

y
ξ2·j+ι
lι+2·j

wm

·
m−1∏
k=0

ŷX,k
−wk

 ,

where (ξ0, ξ1, ξ2, ξ3, . . . , ξN−1) =
(
1, 1, v, v2, . . . , vN−2

)
, and the elements

(
ĈX,k, ŷX,k

)m−1

k=0
don’t depend

on w. From the verification equation AX = yX
sr · CX

−c
, we observe moreover that CX = yX

r, and hence
that: 1,N2 −1∏

ι,j=0

C
ξ2·j+ι
lι+2·j

wm

·
m−1∏
k=0

ĈX,k
−wk

=


1,N2 −1∏

ι,j=0

y
ξ2·j+ι
lι+2·j

wm

·
m−1∏
k=0

ŷX,k
−wk


r

.

For each v, X uses copies of this equation for m+1 values w (i.e., by inverting a Vandermonde matrix in w

and reading off its bottom row) to derive the equality
(∏1,N2 −1

ι,j=0 C
ξ2·j+ι
lι+2·j

)r
=
∏1,N2 −1
ι,j=0 y

ξ2·j+ι
lι+2·j . Finally, using

copies of this equation for N − 1 values v (and inverting a final Vandermonde matrix, in v), X obtains the

individual equalities (yl0 · yl1)r = Cl0 · Cl1 and {(ylι+2·j)
r = Clι+2·j}

1,N2 −1
ι,j=0,1.

From the equality FwE = Com ((f0,0 · f1,0, (w − f0,0)(w − f1,0)); zE) at three values w, we argue that
the (a priori quadratic) polynomials F0,0,1(W ) ·F1,0,1(W ) and (W −F0,0,1(W )) · (W −F1,0,1(W )) are both
in fact linear in W , and hence that their leading coefficients—namely, b0,0 · b1,0 and (1− b0,0) · (1− b1,0),
respectively—are both 0. This latter fact encodes exactly that the least-significant bits b0,0 and b1,0,
respectively, of l0 and l1 satisfy b0,0 ∧ b1,0 and ¬b0,0 ∧ ¬b1,0, or in other words b0,0 ⊕ b1,0 = 1, and hence

37



that l0 6≡ l1 mod 2. This in turn, together with the equalities {(ylι+2·j)
r = Clι+2·j}

1,N2 −1
ι,j=0,1 obtained above

(and a re-indexing), implies finally the equalities {yri = Ci}i 6∈{l0,l1} required by (2). This completes the
extraction process.

Remark B.2. This soundness property, alongside its role in the proof of Theorem 6.4, implies in addition
the a priori untrue fact that CryptA,Π is well-defined, in that A’s intermediate Insert(tx) calls can’t mangle
honest (or even corrupt) accounts yi ∈ S, and hence that each Transact(·, ·, ·, ·) query is guaranteed to yield
a valid transaction. More precisely, any A for which these properties fail in non-negligibly many executions
of CryptA,Π can be converted into an adversary A′ who successfully attacks BindingA′,Com with respect to
the Pedersen scheme. We leave the details of this reduction to the reader.

C Ledger Indistinguishability: Proof

Proof of Theorem 6.5. For any fixed adversary A attacking L-INDA,Π, we define an algorithm A′ for
DDHA′,G(λ). Our construction is analogous to that of Theorem 5.6.
A′ is defined as follows. It is given the inputs G, q, g, h1, h2, and h′.

1. Generate parameters σ ← Setup
(
1λ
)

for which G, q, and g are as given by the experiment input.
Give σ to A.

2. Given the list (bi)
N−1
i=0 , generate a keypair (yi, ski) ← Gen(1λ) for each i ∈ {0, . . . , N − 1}. For a

randomly chosen index l ∈ {0, . . . , N − 1}, overwrite yl := h1. Encrypt acc[yi] := Encyi(bi) for each i
and initialize OSC with acc. Finally, give the modified list S = (yi)

N−1
i=0 to A.

3. Respond to each of A’s random oracle queries with a random element of Fq.

4. For each oracle query Transact(s, y,R, b∗) for which s 6= l, simply compute tx :=
(
(Ci, yi)

N−1
i=0 , D, π

)
←

Trans(acc, sks, y, R, b
∗) as specified by the Anonymous Zether protocol. If instead s = l, construct π

by replacing each Schnorr protocol involving sk by a simulation. More specifically, randomly generate

c and ssk, and set Ay := gssk · y0
−c, as well as Ab := gsb ·

(
D
−z2 · CRn

z3
)ssk
·
(
C0
−z2 · CLn

z3
)−c

.

Compute all other elements as specified by the protocol.

5. For each oracle query Insert(tx), forward tx to OSC.

6. When A outputs s0, s1, r0, r1, b
∗
0, b
∗
1, and R∗ (and if the conditions of step 5. hold), choose a uniform

bit b ∈ {0, 1}. If sb 6= l, abort and return a random bit.

7. If on the other hand sb = l, proceed as follows. Having obtained from A secret keys sk∗i for each
y∗i ∈ R∗, assume without loss of generality that R∗ ⊂ S, and in fact that R∗ = S. (This assumption
just simplifies notation.) Assign D := h2, and construct ((Ci, yi)

N−1
i=0 , D) with the aid of the ski (that

is, set Ci := (h2)ski , multiplying in addition by g−b
∗
b if i = sb and by gb

∗
b if gski = yb). During the

construction of the proof π, perform the replacements:

(ỹ0,k, g̃k) :=

(
N−1∏
i=0

y
P0,i,k

i · (h′)ψk , (h2)ψk

)
,

(
C̃0,k, D̃k

)
:=

(
N−1∏
i=0

C
P0,i,k

i (h′)χk , (h2)χk

)
,

(
C̃Ln,k, C̃Rn,k

)
:=

(
N−1∏
i=0

C
P0,i,k

Ln,i · (h
′)φk ,

N−1∏
i=0

C
P0,i,k

Rn,i · (h2)φk

)
,

for each k ∈ {0, . . . ,m− 1}. Finally, the Schnorr protocols involving ssk, as above.

8. When A outputs b′, return whether b′
?
= b.

38



For notational clarity, we introduce a modified experiment L-IND′A,Π, designed to remove A′’s tendency

to abort from the analysis. L-IND′A,Π differs from L-INDA,Π only in the construction strategy of π. In
particular, the experimenter, upon receiving s0, s1, y0, y1, b

∗
0, b
∗
1, and R, checking the conditions of 5., and

generating b ∈ {0, 1}, generates a further random bit b′′ ∈ {0, 1}. If b′′ = 1, the experimenter proceeds
exactly as in L-INDA,Π. Otherwise, the experimenter, after generating D := h2 and h′ randomly, proceeds
exactly as in step 7. above (i.e., using these elements, as opposed to the DDH challenge elements).

We first analyze A’s advantage in L-IND′A,Π. If b′′ = 1, this advantage exactly equals that of A in
L-INDA,Π, by construction of the former experiment. We claim that if b′′ = 0, A’s probability of guessing
b′ = b at most negligibly exceeds 1

2 . To make this explicit, we define a further experiment L-IND′′A,Π
representing the case b′′ = 0 of L-IND′A,Π; that is, the experimenter always assigns h2 and h′ randomly,

and proceeds as in step 7. We claim that Pr[L-IND′′A,Π(λ) = 1]− 1
2 ≤ negl(λ) for some negligible function

negl, a fact whose proof we defer to a lemma below.
Assuming this result for now, we observe finally that A’s view in its simulation by A′ exactly matches

its view in L-IND′A,Π, provided that A′ doesn’t abort (i.e., if sb = l) and no random oracle inconsistencies
occur during A′’s Transact(·, ·, ·, ·) simulations. The latter event happens in negligibly many executions of
A′ (say negl′′); among the remaining executions, A′ tendency to abort impacts exactly 1

N of those execution
paths in which A “wins” (i.e., satisfies the winning condition of L-IND′A,Π).

Putting these facts together, we conclude that:

Pr[DDHA′,G(λ) = 1]− 1

2
≥ 1

N
·
(

Pr[L-IND′A,Π(λ) = 1]− 1

2

)
− negl′(λ)

≥ 1

N
·
(

1

2
· (−negl(λ)) +

1

2
·
(

Pr[L-INDA,Π(λ) = 1]− 1

2

))
− negl′(λ).

This completes the proof.

It thus remains to prove the lemma below. To this end, we invoke the multi-recipient, randomness-
reusing encryption experiment of [BBS03, Def. 4.1], and in particular its specialization to the multi-
recipient, randomness-reusing El Gamal scheme Π = (Setup,Gen,Enc,Dec). For convenience, we reproduce
this specialization below. We give also to the adversary an LR-oracle for the “both sides El Gamal”
experiment sketched in Example 3.8 above, under an unrelated key (see step 4. below). Explicitly:

Definition C.1 (Bellare–Boldyreva–Staddon [BBS03, Def. 4.1]). The multi-recipient, randomness-reusing

El Gamal experiment RR-MREG
N(·)
A,G (λ) is defined as:

1. Parameters (G, q, g)← G(1λ) are generated and given to A.

2. A outputs an integer N ≤ N(λ).

3. Keypairs (yi, ski) ← Gen(1λ) for i ∈ {0, . . . , N − 1} are generated, and (yi)
N−1
i=0 is given to A. A

uniform bit b← {0, 1} is chosen.

4. An extra key y∗ is also generated. A is given access to y∗ and to an oracle LRb,y∗(·, ·), where
LRb,y∗((M0,m0), (M1,m1)) returns (Mb ·(y∗)r,mb ·gr) for a fresh randomly generated element r ← Fq.

5. At any point during the experiment, A outputs vectors (m0,i)
N−1
i=0 and (m1,i)

N−1
i=0 , together with a

vector (mi)
N(λ)−1
i=N and additional keypairs (yi, ski)

N(λ)−1
i=N . For (fresh) random r ← Fq, A is given

D := gr, as well as, for each i ∈ {0, . . . , N(λ)− 1}, the element Ci := mi ·Dski (where mi := mb,i).

6. A outputs a bit b′. The output of the experiment is defined to be 1 if and only if b′ = b.

We say that multi-recipient, randomness-reusing El Gamal is secure if, for each PPT adversary A, there

exists a negligible function negl for which Pr[RR-MREG
N(·)
A (λ) = 1] ≤ 1

2 + negl(λ).

From the DDH assumption (see [KL15, Thm. 11.18]), and the “reproducibility” of El Gamal encryption
[BBS03, Lem. 7.1], we conclude from [BBS03, Thm. 6.2] that multi-recipient, randomness-reusing El Gamal
is secure (i.e., under the DDH assumption).

We turn to the remaining claim:

39



Lemma C.2. If the DDH problem is hard with respect to G, then Pr[L-IND′′A,Π(λ) = 1] ≤ 1
2 + negl(λ), for

some negligible function negl.

Proof. We fix an arbitrary adversary A attacking L-IND′′A,Π; we denote by N(·) a polynomial upper bound

on the sum of the sizes of A’s initial list (bi)
N−1
i=0 and of the ring R∗ of step 5. (where both sizes are viewed

as functions of the security parameter λ). We define an algorithm A′′ attacking RR-MREG
N(·)
A′′,G (i.e., its

modified version given above) as follows. It is given inputs G, q, g.

1. Construct parameters σ which are compatible with the inputs G, q, g, and give σ to A.

2. When A outputs (bi)
N−1
i=0 , output N . Upon receiving S := (yi)

N−1
i=0 , compute acc[yi] := Encyi(bi) for

each yi (i.e., using standard El Gamal) and initialize OSC with acc. Give S to A.

3. Respond to each of A’s random oracle queries with a random element of Fq.

4. For each oracle query Transact(s, y,R, b∗), construct tx as follows. Use the implicit “CPA oracle” of
multi-recipient El Gamal to construct the statement ((Ci, yi)

N−1
i=0 , D). When constructing the proof

π, replace all Schnorr protocols involving sk by simulations, exactly as specified in 4. above.

5. For each oracle query Insert(tx), forward tx to OSC.

6. When A outputs s0, s1, y0, y1, b
∗
0, b
∗
1, and R∗, together with secret keys ski for those yi ∈ R∗\S (and

if the conditions of step 5. hold), proceed as follows. After extending R∗ with any unused elements
of S, as well as possibly generating extra keypairs (yi, ski), and finally re-ordering elements, assume
(without loss of generality) that R∗ takes the form (y0, . . . , yN−1, yN , . . . , yN(λ)−1) (i.e., where yi for
i ∈ {N, . . . , N(λ) − 1} are adversarially generated). Initialize empty (i.e., identity-element) vectors

(m0,i)
N−1
i=0 , (m1,i)

N−1
i=0 , and (mi)

N(λ)−1
i=N . Set m0,s0 := g−b

∗
0 and m1,s1 := g−b

∗
1 . If y0 ∈ S and y1 ∈ S,

set m0,r0 := gb
∗
0 and m1,r1 := gb

∗
1 , where r0 and r1 are the indices in S of y0 and y1, respectively.

Otherwise, set mr := gb
∗
, where r ∈ {N, . . . , N(λ) − 1} is the index of y := y0 = y1 in R∗ and

b∗ := b∗0 = b∗1 (we use 5.(ii) here).

7. Simulate elements A,S, y, z, T1, T2, x, t̂, µ using the Bulletproofs SHVZK simulator [BBB+18, §3].
Simulate the elements A,B,C,D,E, F, v, w, (fι,k)1,m−1

ι,k=0 using (an obvious extension of) the SHVZK
simulator of Lemma 4.2. (Note that, as in Appendix A, two executions of Fig. 3, corresponding
respectively to the indices ι ∈ {0, 1}, are combined.)

Using the simulated quantities w, (f0,k)m−1
k=0 and the candidate indices s0 and s1, construct exactly as

in step 3. of Theorem 5.6 above degree-m polynomials P0,0,i(X) =
∑m−1
k=0 P0,0,i,k ·Xk and P1,0,i(X) =∑m−1

k=0 P1,0,i,k ·Xk (for i ∈ {0, . . . , N(λ) − 1}). Similarly, use (f1,k)m−1
k=0 and the recipient indices r0

and r1 defined above to construct P0,1,i(X) and P1,1,i(X).

Assume without loss of generality the existence of log(N(λ)) further unused honest keys in S,
say (ỹX,k)m−1

k=0 . (Tacitly, we replace N(λ) with N(λ) + log(N(λ)); to keep our notation reason-
able, we avoid making this explicit.) For each k ∈ {0, . . . ,m − 1}, over the index corresponding
to the key ỹX,k, write into the respective message vectors (m0,i)

N−1
i=0 and (m1,i)

N−1
i=0 the elements∏1,N2 −1

ι,j=0

(
gb
∗
0 ·(−P0,ι,s0−2·j,k+P0,ι,r0−2·j,k)

)ξ2·j+ι
and

∏1,N2 −1
ι,j=0

(
gb
∗
1 ·(−P1,ι,s1−2·j,k+P1,ι,r1−2·j,k)

)ξ2·j+ι
.

8. Output the (extended) vectors (m0,i)
N−1
i=0 and (m1,i)

N−1
i=0 , along with (mi)

N(λ)−1
i=N , and (yi, ski)

N(λ)−1
i=N .

In this way, obtain shared-randomness encryptions (Ci, D)
N(λ)−1
i=0 under (yi)

N(λ)−1
i=0 ; from the exten-

sions defined above, obtain “encryptions” (C̃X,k, D)m−1
k=0 (let’s say) under the “public keys” (ỹX,k)m−1

k=0 .

9. By submitting tuples
(

(
∏N−1
i=0 y

P0,0,i,k

i , id), (
∏N−1
i=0 y

P1,0,i,k

i , id)
)

to LRy∗,b, obtain standard El Gamal

encryptions (ỹ0,k, g̃k) under y∗ (i.e., for each k ∈ {0, . . . ,m− 1}). Similarly, by submitting the tuples

40



(
(
∏N−1
i=0 C

P0,0,i,k

i , id), (
∏N−1
i=0 C

P1,0,i,k

i , id)
)

, obtain standard encryptions (C̃0,k, D̃k) under y∗. Finally,

submit tuples ((N−1∏
i=0

C
P0,0,i,k

Ln,i ,

N−1∏
i=0

C
P0,0,i,k

Rn,i

)
,
(N−1∏
i=0

C
P1,0,i,k

Ln,i ,

N−1∏
i=0

C
P1,0,i,k

Rn,i

))
,

for k ∈ {0, . . . ,m − 1}, to obtain the “both-sides encryptions” (C̃Ln,k, C̃Rn,k). In particular, these
responses determine the intermediate quantities y0, g, C0, D,CLn, CRn.

Simulate all Σ-protocols using the Σ-Bullets simulator [BAZB20, §G]. In particular, simulate all
Schnorr protocols involving sk, exactly as in A′ above. Simulate those involving sr, by randomly

generating sr, and setting AD := gsr ·D−c, as well as AX := yX
sr ·CX

−c
. Randomly generate sb and

sτ , and assign At := gw
m·c·(t̂−δ(y,z)) · hsτ ·

(
T x1 · T x

2

2

)−wm·c
· g−sb . Submit the resulting transaction

tx := ((Ci, yi)
N(λ)−1
i=0 , D, π) to OSC.

10. When A outputs a bit b′, return the bit b′.

To simplify our analysis, we specialize all commitments to the Pedersen scheme, which is perfectly hiding.
We note now that A’s view in its simulation by A′′ above exactly matches its view in the experiment
L-IND′′A,Π, provided that all Schnorr simulations succeed (we use the perfect SHVZK of Bulletproofs, of

many-out-of-many proofs, and of Σ-Bullets). Finally, A′′ wins RR-MREG
N(·)
A′′,G whenever A “wins” L-IND′′A,Π

(i.e., chooses the right bit). This observation completes the proof.

41


	Introduction
	Overview of Anonymous Zether
	Technical challenges

	Overview of our contribution
	Review of one-out-of-many proofs
	Idea of many-out-of-many proofs
	Correction terms and linear maps
	A canonical example
	Circular convolutions and the number-theoretic transform
	Additional innovations

	Security Definitions
	Groups
	Commitment schemes
	An alternate notion of hiding

	Zero-knowledge proofs

	Many-out-of-Many Proofs
	Commitments to bits
	Main protocol
	Efficiency
	Analysis of Groth:2015aa
	Efficiency analysis of many-out-of-many proofs


	An Alternative Ring Signature
	Security definitions
	Ring signature protocol

	Application: Anonymous Zether
	Review of basic and anonymous Zether
	Basic Zether
	Anonymous Zether

	Insider and ``rogue-key'' attacks
	Cryptographic approach to anonymity
	Reducing prover runtime to O(N logN)
	The opposite parity requirement
	Technique
	Privacy implications
	Eliminating the requirement

	Use of ring signatures
	Security definitions
	Protocol and security properties
	Performance

	Full Anonymous Zether Protocol
	Overdraft Safety: Proof
	Ledger Indistinguishability: Proof

