
MANY-OUT-OF-MANY PROOFS
with applications to Anonymous Zether

Benjamin E. Diamond∗

J.P. Morgan

benediamond@gmail.com

Abstract

Anonymous Zether, proposed by Bünz, Agrawal, Zamani, and Boneh (FC’20), is a private payment
design whose wallets demand little bandwidth and need not remain online; this unique property makes it
a compelling choice for resource-constrained devices. In this work, we describe an efficient construction
of Anonymous Zether. Our protocol features proofs which grow only logarithmically in the size of the
“anonymity sets” used, improving upon the linear growth attained by prior efforts. It also features
competitive transaction sizes in practice (on the order of 3 kilobytes).

Our central tool is a new family of extensions to Groth and Kohlweiss’s one-out-of-many proofs (Eu-
rocrypt 2015), which efficiently prove statements about many messages among a list of commitments.
These extensions prove knowledge of a secret subset of a public list, and assert that the commitments in
the subset satisfy certain properties (expressed as linear equations). Remarkably, our communication re-
mains logarithmic; our computation increases only by a logarithmic multiplicative factor. This technique
is likely to be of independent interest.

We present an open-source, Ethereum-based implementation of our Anonymous Zether construction.

1 Introduction

Blockchain-based cryptocurrencies like Bitcoin [Nak08] allow their mutually distrustful participants to main-
tain shared computational state. These systems generally encode this state—as well as the transactions which
incrementally modify it—“in the clear”, and so afford to these participants only cursory privacy (we refer
to, e.g., Ron and Shamir [RS13]).

This deficiency has impelled the development of “privacy-preserving” alternatives, most notably Zcash
[BSCG+14] and Monero [NMt16]. These systems encode their state cryptographically, and define trans-
actions which privately and securely modify this state (frequently with recourse to non-interactive zero-
knowledge proofs).

Fauzi, Meiklejohn, Mercer, and Orlandi’s Quisquis [FMMO19] identifies an issue with these latter systems,
whereby their computational state grows linearly over time. Indeed, these systems must store all TXOs
(even those which have been spent); in fact, it is impossible to discern which have been consumed. Though
Quisquis’ state size scales linearly in its user-base, it scales only constantly in time.

A subtler issue prevents the use even of Quisquis in the most resource-constrained devices. In fact, all
three systems feature a property whereby each wallet—in order to determine its user’s account state—must
scan through the entirety of the cryptocurrency’s present state. This computational requirement demands, in
practice, that wallets be stateful, and remain synchronized—so as to “amortize” this cost incrementally—as
well as that they “catch up” after each period of inactivity (expending computational effort proportional to
the throughput processed by the network during this period of inactivity). This burden imposes a prohibitive
cost on resource-limited wallets.

∗I would like to thank Markulf Kohlweiss and Michele Ciampi for many helpful discussions and suggestions.

1

mailto:benediamond@gmail.com

1.1 Anonymous Zether

Anonymous Zether is a paradigm for private payment, proposed in Bünz, Agrawal, Zamani, and Boneh
[BAZB20, §D]. Anonymous Zether features an intriguing property whereby a client—who, we presently
assume, has reliable access to the blockchain’s current state—may determine her own account state with
only constant additional computational effort; in fact, this effort is independent of the system’s overall
state size, as well as of the duration elapsed since the client last synchronized. This property distinguishes
Anonymous Zether from Zcash and Monero—as well as from Quisquis—and makes Anonymous Zether a
compelling candidate for use in mobile, low-capacity, and low-power devices.

We pause to review the approach of Anonymous Zether. The system maintains a global table of “ac-
counts”, which associates, to each public key, an El Gamal ciphertext under that key (encrypting that key’s
account balance “in the exponent”). This table, we emphasize, can be queried in constant time.

To send funds, a user selects a ring containing herself and the recipient, and encrypts, under the ring’s
respective keys, the amounts by which she intends to alter each account’s balance. The administering
environment (e.g., smart contract) applies these adjustments homomorphically. Finally, the user proves that
her transaction preserves all monetary invariants. These invariants are expressed by the relation [BAZB20,
(8)] (see also (2) below), which encodes, in particular, that value is conserved, and flows only from some
account whose secret key the prover knows, as well as that no overdrafts occur.

For example, given 8 public keys (y0, . . . , y7), each with a standing account balance of 100, the below
statements do and do not, respectively, have a valid witness in the sense of (2):

{
y0 : Ency0(g0; r),

y1 : Ency1(g−60; r),

y2 : Ency2(g0; r),

y3 : Ency3(g0; r),

y4 : Ency4(g0; r),

y5 : Ency5(g0; r),

y6 : Ency6(g60; r),

y7 : Ency7(g0; r),

}

Valid statement.

{
y0 : Ency0(g0; r),

y1 : Ency1(g−120; r),

y2 : Ency2(g0; r),

y3 : Ency3(g0; r),

y4 : Ency4(g10; r),

y5 : Ency5(g0; r),

y6 : Ency6(g150; r),

y7 : Ency2(g0; r),

}

Invalid statement.

In particular, in the latter statement, y1 overspends, excessively credits the recipient y6, alters the balance
of the non-party y4, and encrypts y7’s adjustment under the wrong key.

1.2 Anonymous Zether as a “Mobile Cryptocurrency”

We now sketch in further detail Anonymous Zether’s unique suitability for lightweight, mobile payments.
Wallets and “light clients” in Zcash, Monero, and Quisquis present serious challenges. In these systems,

account maintenance requires continual work proportional to network’s throughput; worse still, this work
itself requires access to the user’s secrets, and cannot be easily outsourced. For example, Zcash’s reference
wallet must entrust to an external server its user’s secret viewing key; this server in turn must continually
filter for relevant transactions remotely (and, in the process, access the wallet’s full plaintext transaction
activity). A similar issue affects Monero, in that—in order to identify relevant transactions—each wallet
must obtain and scan through each new transaction, using its user’s private “view key”. Finally, Zcash
and Monero additionally demand that each wallet store linearly accumulating secret state (i.e., to remember
which TXOs it owns, and which among these it has spent). In effect, each wallet in these systems must
either assume a substantial resource burden (in both computation and bandwidth), or else outsource the
task to an external entity (and forego its privacy).

2

https://electriccoin.co/blog/zcash-reference-wallet-light-client-protocol/
https://electriccoin.co/blog/zcash-reference-wallet-light-client-protocol/

An Anonymous Zether wallet, by contrast, need only query a constant amount of state from an untrusted
full node for each payment it makes, and moreover is essentially stateless. Specifically, to determine its
user’s own account balance (at any given time), a wallet need only retrieve two 64-byte ciphertexts from an
untrusted full node; likewise, to send funds, the wallet need only retrieve 2 ·N ciphertexts, where N is the
size of the transaction’s anonymity set (the doubling is due to “pending” transfers; see [BAZB20, §3.1]).
This is true regardless of network’s overall throughput and size, and of offline periods of arbitrary duration.
Finally, the wallet—while offline—must remember only its user’s 32-byte secret key (or solicit it freshly for
each payment).

Each wallet must reveal to its full node only what it also reveals to the rest of the network, except
when it makes balance queries; these too can be disguised within “anonymity sets” for extra protection.
To asynchronously receive funds, the wallet must share, with the full node, a list of accounts to which it
would like to “subscribe”. If this list is expanded so as to include the user’s anonymity sets, then no privacy
is lost; in this setting, the wallet must download 2 · N ciphertexts for each transaction whose anonymity
set intersects its subscription list. This contrasts favorably with Zcash and Monero, for which an entity
possessing the user’s viewing key must process every transaction posted to the blockchain.

As in Monero, the wallet should choose plausible anonymity sets, so as not to leak “heuristic” informa-
tion. We emphasize that each user may plausibly deny her involvement in any particular transaction (see
Subsection 6.9).

Though the problem of reliably obtaining blockchain state in the first place is essentially out of scope for
our purposes, we mention in particular Bünz, Kiffer, Luu, and Zamani’s FlyClient [BKLZ19]. FlyClient—
together with standard Merkle-based proofs—could make obtaining convincingly correct state from an un-
trusted full node highly efficient. Our protocol could be used fruitfully in conjunction with FlyClient.

1.3 Technical challenges

We turn to our cryptographic construction. An efficient proof protocol for the relation (2) presents a number
of challenges. Importantly, it entails facts not just about two among a list of ciphertexts (namely, the sender’s
and receiver’s, which are required to encrypt opposite amounts) but also about all of the rest (which are
required to encrypt zero).

This very fact precludes an elementary application of Groth and Kohlweiss’s one-out-of-many proofs
[GK15], whose use [BAZB20] recommends. The tempting approach whereby the prover conducts [GK15]
N times—“handing” to the verifier, in each execution, a distinct element of the list—would be inefficient
(incurring super-linear communication and super-quadratic computation). More subtly, it would prove
nothing about how the N secret indices relate to each other, and in particular whether they’re distinct.
Indeed, the prover must deliver something like a verifiable shuffle of the input ciphertexts (so that the
verifier can perform checks on the shuffled ciphertexts).

Shuffle proofs too, however, fall short of our needs (we again leave aside their inefficiency). Indeed,
the adjustment ciphertexts of the Anonymous Zether relation (2) are encrypted under the ring’s members’
heterogeneous public keys, as are the ciphertexts representing their post-adjustment balances. More subtly,
shuffle proofs also deliver “more than we need”. While they allow a prover to designate a full permutation of
a list of ciphertexts, our prover need only distinguish two among them (namely, the sender’s and receiver’s);
the verifier may complete the permutation arbitrarily. Our protocol fundamentally exploits this insight.

2 Overview of our contribution

One-out-of-many proofs, introduced by Groth and Kohlweiss [GK15], allow a prover to demonstrate knowl-
edge of a secret element among a public list of commitments, together with an opening of this commitment
to 0. This important primitive has been used to construct ring signatures, zerocoin, and proofs of set mem-
bership [GK15], along with “accountable ring signatures” [BCC+15]; it has also been re-instantiated in the
setting of lattices [ESS+19].

By definition, these proofs bear upon only one (secret) element of a list, and establish nothing about the
others; indeed, in general the prover knows nothing about these other elements. As we have seen, however,
certain applications require more flexible assertions (which, in particular, pertain to more than one element

3

of the list). Informally, many-out-of-many proofs allow a prover to efficiently prove knowledge of a certain
(ordered) subset of a fixed list of commitments, as well as that the elements of this subset satisfy certain
properties.

We briefly sketch a representative example. Given some list c0, . . . , cN−1 of commitments, and having
agreed upon some pre-specified linear map Ξ: FNq → Fsq (say), a prover might wish to demonstrate knowledge
of a secret permutation K ∈ SN , as well as of openings to zero of the image points of (cK(0), . . . , cK(N−1))
under Ξ. We show how this can be done, given certain restrictions on K.

This technique is powerful, with an interesting combinatorial flavor. In fact, we situate the above-
described protocol within a natural family of extensions to [GK15], themselves parameterized by permu-
tations κ ∈ SN of a certain form (namely, those whose action partitions {0, 1, . . . , N − 1} into equal-sized
orbits). In this family, κ = id ∈ SN exactly recovers [GK15], whereas the above example corresponds to κ
an N -cycle. Finally, κ = (0, 2, . . . , N − 2)(1, 3, . . . , N − 1) (for N even, and for specially chosen Ξ, described
below) is used in the crucial step of Anonymous Zether (details are given in Subsection 6.3). We sketch
further possible applications in Subsection 4.5. In each case, the prover proves knowledge of exactly one
“ordered orbit” of κ, as well as that the commitments represented by this orbit satisfy prescribed linear
equations.

Remarkably, our communication remains logarithmic (like that of [GK15]). Moreover, under mild condi-
tions on the linear map Ξ (which hold in all of our applications), we add at most a logarithmic multiplicative
factor to both the prover’s and verifier’s computational complexity. We thus have (see Subsection 4.3 below):

Theorem 2.1. There exists a sound, honest verifier zero-knowledge protocol for the many-out-of-many
relation R2 below, which requires O(logN) communication, and moreover can be implemented in O(N log2N)
time for the prover and O(N logN) time for the verifier.

2.1 Review of one-out-of-many proofs

The central technique of one-out-of-many proofs [GK15] (see also [BCC+15]) is the construction, by the
prover, of certain polynomials Pi(X), i ∈ {0, . . . , N − 1}, and the efficient transmission (i.e., using only
O(logN) communication) to the verifier of these polynomials’ evaluations pi := Pi(x) at a challenge x.
Importantly, each Pi(X) has “high degree” (i.e., m, where m = logN) if and only if i = l, where l is a secret
index chosen by the prover.

The utility of the vector (pi)
N−1
i=0 resides in its use as the exponent in a multi-exponentiation. Indeed

multi-exponentiating the public vector of commitments (c0, . . . , cN−1) by (pi)
N−1
i=0 “picks out”, modulo lower-

order terms, exactly that commitment ci for which Pi(X) has high degree—namely, cl—while nonetheless
concealing the value of l. We provide a more thorough overview in Subsection 4.2 below.

2.2 Idea of many-out-of-many proofs

Our first core idea is that, having reconstructed the vector (pi)
N−1
i=0 of evaluations, the verifier may “ho-

momorphically permute” this vector and re-use its components in successive multi-exponentiations. In this
way, the verifier will pick out secret elements among c0, . . . , cN−1 in a highly controlled way (and without
necessitating additional communication).

We fix a permutation κ ∈ SN in what follows. Given the vector (pi)
N−1
i=0 , the verifier may iteratively

permute its components, and so construct the sequence of vectors(
pκ−j(i)

)N−1

i=0
,

for j ∈ {0, . . . , o− 1} (where each κ−j ∈ SN is an “inverse iterate” of κ and o denotes κ’s order in SN).
Despite not knowing l, the verifier nevertheless knows that Pκ−j(i)(X) has high degree if and only if

i = κj(l). In this way, the verifier iteratively applies κ to an unknown initial element l ∈ {0, . . . , N−1}. Under
the additional condition that 〈κ〉 ⊂ SN acts freely on {0, . . . , N − 1}, each sequence (l, κ, κ2(l), . . . , κo−1(l))
is free of repetitions (i.e., regardless of l), and these sequences never “double up”. Permutations κ of this
type thus represent a natural class for our purposes.

4

2.3 Correction terms and linear maps

Of course,
∏N−1
i=0 cpii does not directly yield cx

m

l (where m = logN), but rather the sum of this element
with lower-order terms which must be “cancelled out”. More generally, an analogous issue holds for each

ej :=
∏N−1
i=0 c

pκ−j(i)
i (for j ∈ {0, . . . , o − 1}). Furthermore, there may be up to linearly many such elements

(if o = Θ(N)), and to send correction terms for each would impose excessive communication costs.
Our compromise is to correct not each individual term ej , but rather a “random linear combination” of

these terms; this recourse evokes that used (twice) in Bulletproofs [BBB+18, §4.1]. For additional flexibility,
we also interpose an arbitrary linear transformation Ξ: Foq → Fsq. The prover then sends correction terms
only for the single element

[
1 v . . . vs−1

]
·
[

Ξ
]
·

e0

e1

...

eo−1

 ,
where v is a random challenge chosen by the verifier (the right-hand dot is a “module product”). By
interleaving v with the many-out-of-many process with appropriate delicacy, we ensure that the resulting
protocol is still sound.

2.4 A canonical example

To illustrate these ideas, we describe an example which is essentially canonical: the case κ = (0, 1, . . . , N−1)
(we describe reductions from general κ to this case below). Iterating this permutation corresponds exactly
to circularly rotating the vector (pi)

N−1
i=0 ; this process in turn “homomorphically increments” l modulo N .

In this way, the prover sends the top row of a secret circular shift matrix to the verifier, who constructs the
rest locally.

0, , 1, , 0︸ ︷︷ ︸
1 only at index l

0, , 1, , 0

0, , 1, , 0
...

0, . . . , 1, . , 0

0, , 1, , 0

Figure 1: “Prover’s view”.

(pi)
N−1
i=0︸ ︷︷ ︸

“1” at unknown index

(pi)
N−1
i=0

(pi)
N−1
i=0

...

(pi)
N−1
i=0

(pi)
N−1
i=0

Figure 2: “Verifier’s view”.

The evaluation of the matrix multiplication of Fig. 2 by the vector of curve points (ci)
N−1
i=0 takes O(N2)

time, näıvely. Yet Fig. 2 is a circulant matrix, and this multiplication is a circular convolution; the number-
theoretic transform can thus be applied (see Subsection 2.5 for additional discussion).

The resulting matrix product (ej)
N−1
j=0 yields, modulo lower-order terms, the permuted input vector

(cκl(j))
N−1
j=0 , upon which any linear transformation Ξ (as well as the “linear combination trick”) can be

homomorphically applied. Supposing now, in addition, that the prover and verifier have agreed in advance
upon a linear functional Ξ: FNq → Fq, our general protocol (in this case) thus yields a proof of knowledge of
a secret permutation K ∈ 〈(0, 1, . . . , N − 1)〉, as well as of an opening to zero of the image under Ξ of the
permuted vector (cK(0), . . . , cK(N−1)). Heuristically, it asserts that the “messages” of c0, . . . , cN−1 reside in
some hyperplane of FNq , after being appropriately rotated.

Our communication complexity is still logarithmic; the computational complexity becomes O(N log2N)
for the prover and O(N logN) for the verifier.

5

2.5 Circular convolutions and the number-theoretic transform

We remark further upon our use of Fourier-theoretic techniques. General treatments of these ideas—such as
that of Tolimieri, An and Lu [TAL97]—tend only to treat the convolution of vectors consisting of (complex)
field elements. This remains true even for those surveys, like Nussbaumer’s [Nus82, §8], which address also
the prime field case (often called the “number theoretic transform”).

We fix in what follows a commitment scheme whose commitment space is a q-torsion group (for a prime
q), or in other words an Fq-module (actually, a vector space). (The Pedersen and El Gamal commitment
schemes satisfy this property.) Our setting, unusually, mandates that a vector of module elements (i.e.,
commitments) be convolved with a vector of field elements. Our important observation in this capacity is
that only the module structure, and not the ring structure, of a signal’s domain figures in its role throughout
the fast Fourier transform and the convolution theorem, and that these techniques can be carried out
“homomorphically”. We thus introduce the efficient convolution of a vector of module elements with a
vector of field elements (see also Remark 4.12 below). Though this observation is implicit in existing work,
we have not found it stated explicitly in the literature.

3 Security Definitions

We recall general security definitions, deferring specialized definitions to the appropriate sections below.
We will adopt the “experiment” paradigm, generally following the style of Katz and Lindell [KL15]. In
particular, security definitions will be presented as experiments, or games.

We occasionally use the notation AdvEA,Π(λ), called the advantage of the adversary in the experiment E, to

denote that quantity which E’s security requires be negligible (for all A). That is, AdvEA,Π(λ) denotes either

Pr[EA,Π(λ) = 1] or Pr[EA,Π(λ) = 1]− 1
2 , as the case may be. In this latter case—representing experiments in

which A must correctly output a bit b chosen by the experimenter—we also write outA (EA,Π(λ)) to denote
the output of A in EA,Π(λ) (as distinguished from whether A actually wins the experiment).

3.1 Groups

Following Katz and Lindell [KL15, §8.3.2], we let G denote a group-generation algorithm, which on input 1λ

outputs a cyclic group G, its prime order q (with bit-length λ) and a generator g ∈ G. Moreover, we have:

Definition 3.1 (Katz–Lindell [KL15, Def. 8.62]). The discrete-logarithm experiment DLogA,G(λ) is defined
as:

1. Run G(1λ) to obtain (G, q, g).

2. Choose a uniform h ∈ G.

3. A is given G, q, g, h, and outputs x ∈ Fq.

4. The output of the experiment is defined to be 1 if gx = h, and 0 otherwise.

We say that the discrete-logarithm problem is hard relative to G if, for each probabilistic polynomial-time
algorithm A, there exists a negligible function negl for which Pr[DLogA,G(λ) = 1] ≤ negl(λ).

We also have the decisional Diffie–Hellman assumption, which we adapt from [KL15, Def. 8.63]:

Definition 3.2. The DDH experiment DDHA,G(λ) is defined as:

1. Run G(1λ) to obtain (G, q, g).

2. Choose uniform x, y, z ∈ Fp and a uniform bit b ∈ {0, 1}.

3. Give (G, q, g, gx, gy) to A, as well as gz if b = 0 and gxy if b = 1. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if and only if b′ = b.

We say that the DDH problem is hard relative to G if, for each probabilistic polynomial-time algorithm A,
there exists a negligible function negl for which Pr[DDHA,G(λ) = 1] ≤ 1

2 + negl(λ).

6

3.2 Commitment schemes

A commitment scheme is a pair of probabilistic algorithms (Gen,Com); given public parameters params ←
Gen(1λ) and a message m, we have a commitment com := Com(params,m; r), as well as a decommitment
procedure (effected by sending m and r). For notational convenience, we often omit params.

We now present security definitions.

Definition 3.3 (Katz–Lindell [KL15, Def. 5.13]). The commitment binding experiment BindingA,Com(λ) is
defined as:

1. Parameters params← Gen(1λ) are generated.

2. A is given params and outputs (m0, r0) and (m1, r1).

3. The output of the experiment is defined to be 1 if and only if m0 6= m1 and Com(params,m0; r0) =
Com(params,m1; r1).

We say that Com is computationally binding if, for each PPT adversary A, there exists a negligible function
negl for which Pr[BindingA,Com(λ) = 1] ≤ negl(λ). If negl = 0, w say that Com is perfectly binding.

Definition 3.4 (Katz–Lindell [KL15, Def. 5.13]). The commitment hiding experiment HidingA,com(λ) is
defined as:

1. Parameters params← Gen(1λ) are generated.

2. The adversary A is given input params, and outputs messages m0 and m1.

3. A uniform bit b ∈ {0, 1} is chosen. The commitment com := Com(params,mb; r) is computed (i.e., for
random r) and is given to A.

4. The adversary A outputs a bit b′. The output of the experiment is 1 if and only if b′ = b.

We say that Com is computationally hiding if, for each PPT adversary A, there exists a negligible function
negl for which Pr[HidingA,Com(λ) = 1] ≤ 1

2 + negl(λ). If negl = 0, we say that Com is perfectly hiding.

3.2.1 An alternate notion of hiding

A commitment scheme is homomorphic if, for each params, its message, randomness, and commitment spaces
are abelian groups, and the corresponding commitment function is a group homomorphism.

We now present a slightly modified version of Definition 3.4. This definition makes sense only for homo-
morphic schemes; it shall also better suit our purposes below. In this version, the adversary outputs two
challenge commitments, as opposed to messages; one among these is then re-randomized homomorphically
by the experimenter.

Definition 3.5. The modified hiding experiment MHidingA,Com(λ) is defined as:

1. Parameters params← Gen(1λ) are generated.

2. The adversary A is given input params, and outputs elements c0 and c1 of the commitment space.

3. A uniform bit b ∈ {0, 1} is chosen. The commitment com := cb · Com(0) is computed and given to A.

4. The adversary A outputs a bit b′. The output of the experiment is 1 if and only if b′ = b.

Any scheme which is hiding in the sense of Definition 3.5 is also hiding in the classical sense of Definition
3.4. Indeed, any adversary A targeting HidingA,Com yields an adversary A′ targeting MHidingA′,Com in the
obvious way. Upon receiving A’s messages m0 and m1, A′ outputs c0 := Com(m0; 0) and c1 := Com(m1; 0).
Finally, it passes the challenge com to A, and returns whatever A returns.

On the other hand, the reverse implication is also true, as the following lemma argues:

Lemma 3.6. Definitions 3.4 and 3.5 are equivalent for any homomorphic commitment scheme Com.

7

Proof. It remains to convert any A attacking MHidingA,Com into an adversary A′ attacking HidingA′,Com. A′
operates as follows, on input params:

1. For a randomly chosen message r, assign m0 = r and m1 = 0. Output m0 and m1.

2. Upon receiving the experimenter’s challenge com and A’s commitments c0 and c1, select a random bit
b ∈ {0, 1}. Give cb · com to A.

3. When A outputs a bit b′, return whether b′ = b.

If the experimenter’s bit is 0, then its challenge com is completely random, as is hence cb · com; we conclude
in this case that A’s advantage is 0. If on the other hand the experimenter’s bit is 1, then A’s view exactly
matches its view in MHidingA,Com, and in this case A′ wins whenever A does. We conclude that:

Pr[HidingA′,Com(λ) = 1]− 1

2
=

1

2
· (0) +

1

2
·
(

Pr[MHidingA,Com(λ) = 1]− 1

2

)
.

In particular, if Com is hiding, then Pr[MHidingA,Com(λ) = 1]− 1
2 is negligible.

Example 3.7. If a homomorphic commitment scheme is perfectly hiding in the classical sense of Definition
3.4, then it’s also perfectly hiding in the modified sense, as the proof of Lemma 3.6 shows. For example, we
have the Pedersen commitment scheme (as in e.g. [BCC+16, §2.2]).

Example 3.8. Specializing Definition 3.5 to the El Gamal encryption scheme (as in e.g. [KL15, Cons.
11.16])—which we view as a commitment scheme—we obtain the following unusual experiment:

1. Parameters (G, q, g)← G(1λ), as well as a random keypair (y, sk)← Gen(1λ), are generated.

2. A is given (G, q, g) and y. A outputs group-element tuples c0 = (M0,m0) and c1 = (M1,m1).

3. A uniform bit b ∈ {0, 1} is chosen. A random element r ← Fq is generated, and (Mb · yr,mb · gr) is
returned to A.

4. A outputs a bit b′. The output of the experiment is defined to be 1 if and only if b′ = b.

In virtue of [KL15, Thm. 11.18] and of Lemma 3.6, we conclude that, under the DDH assumption, each
adversary A has at most negligible advantage in this experiment.

We assume in what follows that all commitment schemes are homomorphic. We also assume that each
commitment scheme has randomness space given by Fq, for a λ-bit prime q, as well a q-torsion group for its
commitment space.

3.3 Zero-knowledge proofs

We present definitions for zero-knowledge arguments of knowledge, closely following [GK15] and [BCC+16].
We formulate our definitions in the “experiment-based” style of Katz and Lindell.

We posit a triple of interactive, probabilistic polynomial time algorithms Π = (Setup,P,V). Given some
polynomial-time-decidable ternary relation R ⊂ ({0, 1}∗)3, each common reference string σ ← Setup(1λ)
yields an NP language Lσ = {x | ∃w : (σ, x, w) ∈ R}. We denote by tr ← 〈P(s),V(t)〉 the (random)
transcript of an interaction between P and V on auxiliary inputs s and t (respectively), and write the
verifier’s output as 〈P(s),V(t)〉 = b.

We now have:

Definition 3.9. The completeness experiment CompleteA,Π,R(λ) is defined as:

1. A common reference string σ ← Setup(1λ) is generated.

2. A is given σ and outputs (u,w) for which (σ, u, w) ∈ R.

3. An interaction 〈P(σ, u, w),V(σ, u)〉 = b is carried out.

8

4. The output of the experiment is defined to be 1 if and only if b = 1.

We say that Π = (Setup,P,V) is perfectly complete if for each PPT adversary A, Pr[CompleteA,Π,R(λ)] = 1.

Supposing that Π = (Setup,P,V) is a 2µ+ 1-move, public-coin interactive protocol, we have:

Definition 3.10. The (n1, . . . , nµ)-special soundness experiment Sound
(n1,...,nµ)
A,X ,Π,R (λ) is defined as:

1. A common reference string σ ← Setup(1λ) is generated.

2. A is given σ and outputs u, as well as an (n1, . . . , nµ)-tree (say tree) of accepting transcripts whose
challenges feature no collisions.

3. X is given σ, u, and tree and outputs w.

4. The output of the experiment is designed to be 1 if and only if (σ, u, w) 6∈ R.

We say that Π = (Setup,P,V) is computationally (n1, . . . , nµ)-special sound if there exists a PPT extractor X
for which, for each PPT adversary A, there exists a negligible function negl for which Pr[Sound

(n1,...,nµ)
A,X ,Π,R (λ) =

1] ≤ negl(λ). If negl = 0, we say that Π is perfectly (n1, . . . , nµ)-special sound.

Definition 3.11. The special honest verifier zero knowledge experiment SHVZKA,S,Π,R(λ) is defined as:

1. A common reference string σ ← Setup(1λ) is generated.

2. A is given σ and outputs (u,w) for which (σ, u, w) ∈ R, as well as randomness ρ.

3. A uniform bit b ∈ {0, 1} is chosen.

• If b = 0, tr← 〈P(σ, u, w),V(σ, u; ρ)〉 is assigned.

• If b = 1, tr← S(σ, u; ρ) is assigned.

4. The adversary A is given tr and outputs a bit b′.

5. The output of the experiment is defined to be 1 if and only if b′ = b.

We say that Π = (Setup,P,V) is computationally special honest verifier zero knowledge if there exists a
PPT simulator S for which, for each PPT adversary A, there exists a negligible function negl for which
Pr[SHVZKA,S,Π,R(λ) = 1] ≤ 1

2 + negl(λ). If negl = 0, we say that Π is perfect special honest verifier zero
knowledge.

In all of our protocols, Setup(1λ) runs the group-generation procedure G(1λ) and the commitment scheme
setup Gen(1λ), and then stores σ ← Setup(1λ) = (G, q, g, params).

3.4 Rational function interpolation

We now recall a result on rational function interpolation, following the text of von zur Gathen and Gerhard
[vzGG13]. We will have occasion to use the following theorem, which reformulates certain results of [vzGG13,
§5.8]:

Theorem 3.12 (von zur Gathen–Gerhard [vzGG13]). Consider distinct elements x0, . . . , xn−1 ∈ Fq and
further elements v0, . . . , vn−1 ∈ Fq. Suppose that r(X) and t(X) are polynomials for which:

r(xi) = t(xi) · vi for each i ∈ {0, . . . , n− 1} and deg r(X) + deg t(X) < n.

Denote by rj(X), sj(X), tj(X) ∈ Fq[X] the jth row obtained upon executing the Extended Euclidean Algorithm
on the inputs m(X) := (X − x0) · · · (X − xn−1) and g(X), where g(X) ∈ Fq[X] is any polynomial of degree
less than n for which g(xi) = vi for each i ∈ {0, . . . , n− 1}. Then

lc(r(X)) · (lc(t(X)))
−1

= lc(rj∗(X)) · (lc(tj∗(X)))
−1
,

where j∗ is minimal for which deg rj∗(X) ≤ deg r(X), and lc denotes a polynomial’s leading coefficient.

9

Proof. We combine [vzGG13, Lem. 5.15], [vzGG13, Thm. 5.16] and [vzGG13, Cor. 5.18, (ii)]. By the
Chinese Remainder Theorem, the assumed equalities r(xi) = t(xi) · vi = t(xi) · g(xi) for i ∈ {0, . . . , n − 1}
imply in turn that r(X) ≡ t(X)g(X) mod m(X), where m(X) is as above. Obtaining s(X) ∈ Fq[X] for
which r(X) = t(X)g(X) + s(X)m(X), and applying [vzGG13, Lem. 5.15]—whose hypothesis holds, by
assumption on r(X) and t(X)—we establish the existence of a nonzero α(X) ∈ Fq[X] for which:

r(X) = α(X) · rj∗(X) and t(X) = α(X) · tj∗(X).

Taking leading coefficients of all polynomials and rearranging, we obtain the desired result.

Remark 3.13. A polynomial g(X) ∈ Fq[X] for which deg g < n and g(xi) = vi for each i ∈ {0, . . . , n− 1}
can be easily constructed in O(n2) time using Lagrange interpolation; we refer to, e.g., [vzGG13, Thm. 5.1].

4 Many-out-of-Many Proofs

We turn to our main results. We begin with preliminaries on permutations, referring to Cohn [Coh74] for
further background.

The permutation group SN consists of bijections κ : {0, . . . , N − 1} → {0, . . . , N − 1}, with a group law
given by composition. For permutation κ ∈ SN of order o, and some initial element l ∈ {0, . . . , N − 1}, we
mean by l’s ordered orbit under κ the ordered sequence of elements

(
l, κ(l), κ2(l), . . . , κo−1(l)

)
of {0, . . . , N −

1}.

Definition 4.1. We say that a permutation κ ∈ SN is free if it satisfies any, and hence all, of the following
equivalent conditions:

• The natural action of 〈κ〉 ⊂ SN on {0, . . . , N − 1} is free.

• The natural action of 〈κ〉 partitions the set {0, . . . , N − 1} into orbits of equal size.

• κ is a product of equal-length cycles, with no fixed points.

• For each l ∈ {0, . . . , N − 1}, the stabilizer 〈κ〉l ⊂ 〈κ〉 is trivial.

• For each l ∈ {0, . . . , N − 1}, l’s ordered orbit under κ consists of distinct elements.

Freeness is a natural group-theoretic property, with a number of equivalent characterizations. Informally,
that κ is free essentially entails that each of its non-identity iterates lacks fixed points.

Example 4.2. The identity permutation id ∈ SN is trivially free, as each of its ordered orbits are singletons.

Example 4.3. Each power of the N -cycle (0, . . . , N − 1) ∈ SN is free.

Example 4.4. The permutation (0, 1, 2, 3)(4, 5)(6, 7) ∈ S8 (of order 4) is not free, as the ordered orbit of 4
(say) is (4, 5, 4, 5).

4.1 Commitments to bits

We replicate in its entirety, for convenience, the “bit commitment” protocol of Bootle, Cerulli, Chaidos,
Ghadafi, Groth, and Petit [BCC+15, Fig. 4], which we further specialize to the binary case (i.e., n = 2).
This protocol improves the single-bit commitment procedure of [GK15, Fig. 1], and requires slightly less
communication. Following [BCC+15], we have the relation:

R1 = {(B; (b0, . . . , bm−1), rB) | ∀k, bk ∈ {0, 1} ∧B = Com (b0, . . . , bm−1; rB)} ,

and the protocol:

10

P1(σ,B; (b0, . . . , bm−1), rB) V1(σ,B)

rA, rC , rD, a0, . . . , am−1 ←$Fq
A := Com (a0, . . . , am−1; rA)

C := Com
(
(ak · (1− 2bk))m−1

k=0 ; rC
)

D := Com
(
−a20, . . . , a2m−1; rD

) A,C,D

x x←$Fq

∀i : fi := bi · x+ ai Accept if and only if:

zA := rB · x+ rA f0, . . . , fm−1, zA, zC BxA
?
= Com ((f0, . . . , fm−1); zA)

zC := rC · x+ rD CxD
?
= Com

(
(fk · (x− fk))m−1

k=0 ; zC
)

Figure 3: Protocol for the relation R1.

Finally, we have:

Lemma 4.5 (Bootle, et al. [BCC+15]). The protocol of Fig. 3 is perfectly complete. If Com is (perfectly)
binding, then it is (perfectly) (3)-special sound. If Com is (perfectly) hiding, then it is (perfectly) special
honest verifier zero knowledge.

Proof. We refer to [BCC+15, Lem. 1]. We note that [BCC+15, Fig. 4]’s perfect SHVZK relies on its
use of (perfectly hiding) Pedersen commitments; in our slightly more general setting, S must simulate
C ← Com(0, . . . , 0) as a random commitment to zero. As in [BCC+15, Lem. 1], we observe that the
remaining elements of the simulated transcript are either identically distributed to those of real ones or are
uniquely determined given C. The indistinguishability of the simulation therefore reduces directly to the
hiding property of the commitment scheme.

In practice, we incorporate an additional improvement due to Esgin, Zhao, Steinfeld, Liu and Liu
[EZS+19, §1.3]. That is, we commit to all 0th-order components in A (incorporating also D) and to all
1st-order components in B (incorporating also C). Finally, we eliminate zC . This technique reduces the
proof’s size, and simplifies the verifier’s checks.

4.2 Overview of [GK15]

We now review Groth and Kohlweiss [GK15], incorporating also ideas from Bootle, et al. [BCC+15]. These
works describe a proof protocol for the relation:

{(σ, (c0, . . . , cN−1); l, r) | cl = Com(0; r)} ;

in short, the prover proves that she knows an opening to 0 of a secret element cl among a public list of
commitments (c0, . . . , cN−1).

We recall the proof technique, deferring to the papers for further details. The protocol of Fig. 3 above
shows, in fact, that the responses fk,1 := fk sent by the prover are evaluations—at the verifier’s challenge
x—of linear polynomials Fk,1(X) = bk ·X+ak whose first-order coefficients bk are bits (chosen by the prover).
In light of this fact, the quantities fk,0 := x−fk, which the verifier may also compute, are in turn necessarily
evaluations at x of Fk,0(X) := X −Fk,1(X), whose first-order coefficients are also bits (in fact the negations

of the bk). Finally, the verifier may set, for each i ∈ {0, . . . , N − 1}, pi :=
∏m−1
k=0 fk,(i)k , where (i)k denotes

the kth bit of i. By the same reasoning, each pi is the evaluation at x of Pi(X) :=
∏m−1
k=0 Fk,(i)k(X). The key

property of the Pi(X) pertains to their degrees. In fact, by the structure of the Fk,b(X), Pi(X) is of degree
m (and monic) for one and only one index i (namely that i whose binary representation is b0, . . . , bm−1).

11

This fact convinces the verifier that the multi-exponentiation
∏N−1
i=0 cpii is equal to the group-product of

(cl)
xm (for some secret l chosen by the prover) with further terms which depend on lower powers of x. The

verifier allows the prover to “cancel out” these lower-order terms by sending additional group elements; the
prover must send these before seeing x.

4.3 Main protocol

We fix commitments c0, . . . , cN−1, a free permutation κ ∈ SN of order o, and a linear map Ξ: Foq → Fsq.
Our main result in this section is a proof of knowledge of an index l, as well as of openings r0, . . . , rs−1 to 0
of the image points under Ξ of the commitments cl, cκ(l), cκ2(l), . . . , cκo−1(l) represented by l’s ordered orbit.
We represent Ξ as an s× o matrix with entries in Fq in what follows. We thus have the relation:

R2 =
{

(σ, (c0, . . . , cN−1), κ,Ξ; l, (r0, . . . , rs−1)) |
[
Com(0; ri)

]s−1

i=0
=
[

Ξ
]
·
[
cκj(l)

]o−1

j=0

}
.

As indicated above, the essential idea is that the verifier may permute the components of the vector (pi)
N−1
i=0

in accordance with κ, and use each permuted vector in its own multi-exponentiation. Though the verifier
does not know that index l for which degPl(X) = m, the verifier nonetheless knows that degPκ−j(i)(X) = m

if and only if i = κj(l). By consequence, the verifier knows that
∏N−1
i=0 c

pκ−j(i)
i gives the group-product of

(cκj(l))
xm with lower-order terms; likewise,

[
Ξ
]
·
[∏N−1

i=0 c
pκ−j(i)
i

]o−1

j=0
gives the group product of

[
Ξ
]
·[(

cκj(l)
)xm]o−1

j=0
with lower-order terms. As before, these terms may be cancelled out by the prover.

P2(σ, (c0, . . . , cN−1), κ,Ξ; l, (r0, . . . , rs−1)) V2(σ, (c0, . . . , cN−1), κ,Ξ)

rB , ρ0, . . . , ρm−1 ←$ Fq
B := Com(l0, . . . , lm−1; rB)

(A,C,D)← P1(σ,B; (l0, . . . , lm−1, r))
A,B,C,D

v v ←$ Fq

. P2 and V2 evaluate the matrix product
[
1, v, . . . , vs−1

]
· Ξ =: [ξ0, . . . , ξo−1], say .

for k ∈ {0, . . . ,m− 1} do

Gk :=

o−1∏
j=0

(
N−1∏
i=0

c
P
κ−j(i),k
i

)ξj
· Com(0; ρk) G0, . . . , Gm−1

x x←$ Fq

(f0, . . . , fm−1, zA, zC)← P1(x) Accept if and only if

z :=

(
s−1∑
i=0

v
i · ri

)
· xm −

m−1∑
k=0

ρk · xk f0, . . . , fm−1, zA, zC , z V1(σ,B, x,A,C,D, (fk)
m−1
k=0 , zA, zC)

?
= 1

o−1∏
j=0

(
N−1∏
i=0

c
p
κ−j(i)
i

)ξj
·
m−1∏
k=0

G
−xk
k

?
= Com(0; z)

where ∀k, fk,1 := fk, fk,0 := x− fk

and ∀i ∈ {0, . . . , N − 1}, pi :=

m−1∏
k=0

fk,ik

Figure 4: Protocol for the relation R2.

Example 4.6. Setting κ = id ∈ SN the identity permutation, and Ξ = I1 : Fq → Fq the identity map,
exactly recovers the original protocol of Groth and Kohlweiss [GK15].

12

Example 4.7. For o dividing N , we consider the iterate κ := (0, 1, . . . , N − 1)
N/o, and set Ξ = Io as the

identity map on Foq. In this setting, the protocol of this section demonstrates knowledge of a secret residue
class l mod N/o, as well as of openings to 0 (say, r0, . . . , ro−1) of those commitments ci for which i ≡ l
mod N/o.

Example 4.8. Subsection 2.4 sketches the choice κ := (0, 1, . . . , N −1) and Ξ: FNq → Fq a linear functional.
This setting gives a proof of knowledge of a secret permutation K ∈ 〈(0, 1, . . . , N − 1)〉 for which the
“messages” of cK(0), . . . , cK(N−1) reside in a prespecified hyperplane of FNq .

The protocol Π = (Setup,P2,V2) of Fig. 4 is perfectly complete. This follows essentially by inspection;

we note in particular that (0;
∑s−1
i=0 v

i · ri) opens the matrix product

[
1 v . . . vs−1

]
·
[

Ξ
]
·

cl
cκ(l)

...

cκo−1(l)

 ,
by hypothesis on the r0, . . . , rs−1.

Moreover, we have:

Theorem 4.9. If Com is (perfectly) binding, then Π is (perfectly) (s,m+ 1)-special sound.

Proof. We describe an extractor X which, given an (s,m+ 1)-tree of accepting transcripts, either returns a
witness (l, (r0, . . . , rs−1)) or breaks the binding property of the commitment scheme Com. We suppose that
σ ← Setup(1λ) has been generated; we let u and tree be arbitrary. We essentially follow [GK15, Thm. 3],
while introducing an additional (i.e., a second) Vandermonde inversion step. Details follow.

We first consider, for fixed v, accepting responses (f0, . . . , fm−1, zA, zC , z) to m+ 1 distinct challenges x.
With recourse to the extractor of Lemma 4.5 and responses to 3 distinct challenges x, X obtains openings
(b0, . . . , bm−1; rB) and (a0, . . . , am−1; rA) of B and A (respectively) for which each bk ∈ {0, 1}. The bits
lk := bk define the witness l. Moreover, each response (fk)m−1

k=0 either takes the form (bk · x + ak)m−1
k=0 , or

yields a violation of Com’s binding property. Barring this latter contingency, X may construct using bk and
ak polynomials Pi(X), for i ∈ {0, . . . , N − 1}—of degree m if and only if i = l—for which pi = Pi(x) for
each x (where pi are as computed by the verifier).

Using these polynomials, X may, for each x, re-write the final verification equation as:o−1∏
j=0

(cκj(l))
ξj

xm

·
m−1∏
k=0

(G̃k)x
k

= Com(0; z),

for elements G̃k which depend only on the polynomials Pi(X) and the elements Gk (in particular, they
don’t depend on x). Exactly as in [GK15, Thm. 3], by inverting an (m + 1) × (m + 1) Vandermonde
matrix containing the challenges x (and using the inverse’s bottom row as coefficients), X obtains a linear
combination of the responses z, say zv, for which:

o−1∏
j=0

(cκj(l))
ξj = Com (0; zv) .

In fact, an expression of this form can be obtained for each challenge v. Furthermore—now using the
definition of [ξ0, . . . , ξo−1]—we rewrite this expression’s left-hand side as the matrix product:

[
1 v . . . vs−1

]
·
[

Ξ
]
·

cl
cκ(l)

...

cκo−1(l)

 = Com (0; zv) .

13

Using expressions of this form for s distinct challenges v, and inverting a second Vandermonde matrix, X
obtains combinations of the values zv, say r0, . . . , rs−1, for which:

[
Ξ
]
·

cl
cκ(l)

...

cκo−1(l)

 =

Com (0; r0)

Com(0; r1)
...

Com(0; rs−1)

 .
This completes the extraction process. Finally, any adversary A who wins Sound

(s,m+1)
A,X ,Π,R(λ) can be converted

into an adversary A′ who wins BindingA′,Com(λ) with equal probability. Indeed, on input params, A′ simulates

an execution of Sound
(s,m+1)
A,X ,Π,R(λ) by including params in a common reference string σ and giving it to A; when

A outputs tree, A′ gives it to X . A wins Sound
(s,m+1)
A,X ,Π,R(λ) if and only if its tree causes X to extract a violation

of the binding property; if this happens, A′ returns the binding violation and wins BindingA′,Com(λ).

Finally:

Theorem 4.10. If Com is (perfectly) hiding, then Π is (perfectly) special honest verifier zero knowledge.

Proof. We describe a PPT simulator S which outputs accepting transcripts. Given input σ and u (as
well as the verifier’s randomness ρ, which explicitly determines the challenges y and x), S first randomly
generates B ← Com(0, . . . , 0), and invokes the simulator of [BCC+15, §B.1] on B and x to obtain values
A,C,D, zA, zC , f0, . . . , fm−1. S then randomly selects z, and, for each k ∈ {1, . . . ,m − 1}, assigns to
Gk ← Com(0) a random commitment to 0. Finally, S sets

G0 :=

o−1∏
j=0

(
N−1∏
i=0

c
pκ−j(i)
i

)ξj
·
m−1∏
k=1

G−x
k

k · Com(0;−z),

where [ξ0, . . . , ξo−1] and (pi)
m−1
k=0 are computed exactly as is prescribed for the verifier.

We posit some A attacking SHVZKA,S,Π,R, and define an adversary A′ attacking MHidingA′,Com (see
Definition 3.5) as follows. To simplify the proof, we modify Definition 3.5 so as to give to the adversary an
LR-oracle (in the sense of e.g. [KL15, Def. 11.5]); in this way, we obviate a hybrid argument.
A′ operates as follows. It is given input params.

1. Run G(1λ), and give (G, q, g) and params to A.

2. Upon receiving (c0, . . . , cN−1), κ,Ξ, l, (r0, . . . , rs−1) and the random coins ρ, honestly compute the
elements A,B,C,D, (fk)m−1

k=0 , zA, zC as prescribed by Fig. 3 (i.e., using the witness l). Compute the
polynomials Pi(X), as well as their evaluations pi, in the standard way. For each k ∈ {1, . . . ,m− 1},

submit the pair of commitments

(∏o−1
j=0

(∏N−1
i=0 c

Pκ−j(i),k
i

)ξj
,Com(0)

)
to the LR-oracle, so as to obtain

the commitmentGk. Randomly generate z, and defineG0 using the final verification equation, as above.

3. Give the transcript tr constructed in this way to A. When A outputs a bit b′, return b′.

If the experimenter’s hidden bit b = 0, then A’s view in its simulation by A′ exactly matches its view
in an honest execution of SHVZKA,S,Π,R (i.e., tr follows the distribution 〈P(σ, u, w),V(σ, u; ρ)〉). If on the
other hand b = 1, then A′’s transcript tr differs from the distribution S(σ, u; ρ) only in that its commitments
B and C honestly reflect A’s witness l, whereas S’s do not (i.e., they are simulated as prescribed by Lemma
4.5). This difference at most negligibly impacts A’s advantage, as can be shown by a direct reduction to the
SHVZK of Fig. 3. Finally, A′ wins whenever A does.

4.4 Efficiency

We discuss the efficiency of our protocol, and argue in particular that it can be computed in quasilinear
time for both the prover and the verifier. In order to facilitate fair comparison, we assume throughout that
only “elementary” field, group, and polynomial operations are used (in contrast with [GK15], who rely on
multi-exponentiation algorithms and unspecified “fast polynomial multiplication techniques”).

14

4.4.1 Analysis of [GK15]

We begin with an analysis of [GK15]. The prover and verifier may näıvely compute the polynomials Pi(X)
and the evaluations pi in O(N log2N) and O(N logN) time, respectively. We claim that the prover and
verifier can compute (Pi(X))N−1

i=0 and (pi)
N−1
i=0 (respectively) inO(N logN) andO(N) time. (These are clearly

optimal, in light of the output sizes.) To this end, we informally sketch an efficient recursive algorithm, which
closely evokes those used in bit reversal (see e.g., Jeong and Williams [JW90]).

Having constructed the linear polynomials Fk,1(X) and Fk,0(X) for k ∈ {0, . . . ,m − 1}, the prover
constructs the Pi(X) using a procedure which, essentially, arranges the “upward paths” through the m× 2

array Fk,b(X) into a binary tree of depth m. Each leaf i gives the product
∏m−1
k=0 Fk,(i)k(X) = Pi(X),

which can be written into the ith index of a global array (the index i can be kept track of throughout the
recursion, using bitwise operations). Each edge of this tree, on the other hand, represents the multiplication
of an O(logN)-degree “partial product” by a linear polynomial; we conclude that the entire procedure takes
O(N logN) time. (The m multi-exponentiations of c0, . . . , cN−1 by Pi,k—conducted during the construction
of the Gi—also take O(N logN) time.)

The verifier of [GK15] can be implemented O(N) time. Indeed, the same binary recursive procedure—
applied now to the evaluations fk,b—takes O(N) time, as in this setting the products don’t grow as the
depth increases, and each “partial product” can be extended in O(1) time.

4.4.2 Efficiency analysis of many-out-of-many proofs

We turn to the protocol of Fig. 4. Its communication complexity is clearly O(logN), and in fact is identical
to that of [BCC+15] (in its radix n = 2 variant).

Its runtime, however, is somewhat delicate, and depends in particular on how the map Ξ grows with N .
Indeed—even assuming that the image dimension s ≤ o (which doesn’t impact generality)—Ξ could take as
much as Θ(N2) space to represent; the evaluation of [1, v, . . . vs−1]·Ξ could also take Θ(N2) time in the worst
case. To eliminate these cases (which are perhaps of theoretical interest only), we insist that Ξ has only O(N)
nonzero entries as N grows. This ensures that the expression [1, v, . . . vs−1]·Ξ can be evaluated in linear time.
(We note that the unevaluated matrix product—represented as a matrix in the indeterminate V—can be
computed in advance of the protocol execution, and stored, or even “hard-coded” into the implementation;
under our assumption, it will occupy O(N) space, and require O(N) time to evaluate during each protocol
execution.)

This condition holds in particular if the number of rows s = O(1). Importantly, it also holds in significant
applications (like in Anonymous Zether) for which s = Θ(N); this latter fact makes the “linear combination”
trick non-vacuous.

Even assuming this condition on Ξ, a näıve implementation of the protocol of Fig. 4 uses Θ(N2 logN)
time for the prover and Θ(N2) time for the verifier (in the worst case o = Θ(N)). It is therefore surprising
that, imposing only the aforementioned assumption on Ξ, we nonetheless attain:

Theorem 4.11. Suppose that the number of nonzero entries of Ξ grows as O(N). Then the protocol of Fig.
4 can be implemented in O(N log2N) time for the prover and O(N logN) time for the verifier.

Proof. We first argue that it suffices to consider only the “canonical” case κ = (0, 1, . . . , N − 1). To this
end, we fix a κ′ ∈ SN , not necessarily equal to κ; we assume first that κ′ is an N -cycle, say with cycle
structure (κ′0, κ

′
1, . . . , κ

′
N−1). Given desired common inputs (σ, (c0, c1, . . . , cN−1), κ′,Ξ), and private inputs

(l′, (r0, . . . , rs−1)), we observe that the prover and verifier’s purposes are equally served by running Fig. 4
instead on the common inputs (σ, (cκ′0 , cκ′1 , . . . , cκ′N−1

), κ,Ξ) and private inputs (l, (r0, . . . , rs−1)), where l is

such that κ′l = l′.
Any arbitrary free permutation κ′′ ∈ SN (with order o, say), now, is easily seen to be an iterate (with

exponent N/o) of some N -cycle κ′; in fact, one such κ′ can easily be constructed in linear time by “collating”
through the cycles of κ′′. On desired inputs (σ, (c0, c1, . . . , cN−1), κ′′,Ξ; l′, (r0, . . . , rs−1)), then, the prover
and verifier may use the above reduction to execute (σ, (c0, c1, . . . , cN−1), κ′,Ξ; l′, (r0, . . . , rs−1)); they may
then discard all “rows” except those corresponding to indices j ∈ {0, . . . , N − 1} for which N/o | j.

We therefore turn now to the case κ = (0, 1, . . . , N−1), whose analysis, by the above, suffices for arbitrary

15

κ. The verifier’s bottleneck is the evaluation of the matrix action[
ej
]N−1

j=0
:=
[
pκ−j(i)

]N−1

j,i=0
·
[
ci
]N−1

i=0
.

Yet by hypothesis on κ, the matrix
[
pκ−j(i)

]N−1

j,i=0
is a circulant matrix (see e.g. [TAL97, (6.5)]), and the

above equation’s right-hand side is a circular convolution in the sense of [TAL97, p. 103]. (We assume here
that N is a power of 2 and that N | (q − 1), so that the number-theoretic transform can be applied; see
[Nus82, Thm. 8.2]). The verifier may thus evaluate this product in O(N logN) time using the standard
Cooley–Tukey algorithm [TAL97, Thm. 4.2] and the convolution theorem [TAL97, Thm. 6.1].

We turn to the prover, who must compute the m matrix evaluations:[
Pκ−j(i),k

]N−1

j,i=0
·
[
ci
]N−1

i=0
,

for each k ∈ {0, . . . ,m−1} (in the process of computing the Gk). Using identical reasoning, we see that these
can be computed with the aid of m parallel NTT-aided convolutions; the prover’s complexity is therefore
O(N log2N).

The remaining work, for both the prover and verifier, amounts to evaluating [ξ0, . . . , ξo−1] :=[
1, v, . . . , vs−1

]
· Ξ. By hypothesis on Ξ, this can be done in linear time.

Remark 4.12. The commitment space in which the commitments ci reside is not in general isomorphic
(as an Fq-module) to Fq, let alone efficiently computably so. Nonetheless, we observe that an Fq-module
structure alone on this space suffices for the application of Theorem 4.11. This fact is implicit in, say, the
statement of [TAL97, Thm. 6.1], where the convolution of two vectors is expressed as a matrix product of
the latter.

4.5 Applications

Our main application is described in Section 6. In the remainder of this section, we sketch additional possible
applications of many-out-of-many proofs.

4.5.1 Ring multisignatures

Through a construction analogous to that of [GK15, §4.2], Example 4.7 straightforwardly yields a scheme
whereby a user may demonstrate possession of multiple distinct public keys from a fixed ring. Surprisingly,
the resulting “signature” is no larger than a standard ring signature on the same ring. This protocol thus
yields something akin to a multisignature, which in addition conceals the signing keys.

4.5.2 An application to Monero

We roughly sketch how this idea could in principle improve the efficiency of the Monero [NMt16] cryptocur-
rency. While Monero’s proofs grow logarithmically in the number of mix-ins per honest UTXO (typically
11, in recent versions of Monero), a distinct proof must nonetheless be attached for each UTXO spent. This
leads to transaction sizes which effectively grow linearly in the number of UTXOs spent, and (occasionally)
to large transactions in practice, as well as to unspendable “dust”.

We sketch an improved strategy rooted in “ring multisignatures”. A user who wishes to spend o UTXOs
(let’s say) can situate these UTXOs into a random list of size N := 11 · o (containing 10 · o mix-ins). Finally,
the user may attach a many-out-of-many proof which demonstrates spend authority over a secret subset
consisting of o among the N mix-ins. The resulting proof size will grow as O(log(o · 11)) = O(log(o)) (i.e.,
logarithmically in the number o of UTXOs spent). We leave further development of this idea for future work.

5 An Alternative Ring Signature

In this section, we describe an additional ring signature-based construction, distinct from that of the previous
section. This section generalizes one-out-of-many proofs in a different direction. It demonstrates that a

16

re-encryption protocol—targeting the same secret index—can be carried out concurrently over multiple
rings, and moreover that proofs of knowledge concerning re-encrypted elements obtained in this way imply
analogous knowledge regarding the original elements. Essentially, we show that the Schnorr protocol remains
sound, even when it is conducted over re-encryptions.

This technique is essential in making rigorous the use of basic Zether on re-encrypted ciphertexts, and
will be used in Section 6. Indeed, Anonymous Zether combines many-out-of-many proofs with the techniques
of this section.

The clearest way to express this idea is to present an alternate ring signature construction. This alternate
construction, informally, uses a one-out-of-many proof to anonymize and a Schnorr proof to authenticate.
Importantly, the resulting construction admits flexibility not offered by the original approach of [GK15, §4];
in particular, it can be run concurrently over multiple rings, while ensuring that the same secret key is used
throughout.

We sketch this flexibility through a basic example. Consider first the standard relation below, adapted
from [GK15, §3]:

R3 =
{

(σ, (y0, . . . , yN−1); l, sk) | yl = gsk
}
.

While [GK15, Fig. 2] easily handles R3, it’s less straightforward to see how it might adapt into a proof for,
say, the relation:

R∗3 =
{

(σ, (y0,0, . . . , y0,N−1), (y1,0, . . . , y1,N−1); l, sk) | y0,l = gsk0 ∧ y1,l = gsk1
}
,

for bases g0 and g1 implicit in the reference string σ, and where, crucially, the same secret key sk must be
used in both discrete logarithms. (In another closely related variant, the index l is allowed to be different in
both places.) Significantly, our protocol easily adapts to this setting.

5.1 Security definitions

We pause to define the security of ring signature schemes, closely following the article of Bender, Katz, and
Morselli [BKM09]. We begin with algorithms (Setup,Gen,Sign,Verify). Given parameters σ ← Setup(1λ),
Gen(1λ) outputs a keypair (y, sk), whereas π ← Signi,sk(m,R) signs the message m on behalf of the ring
R = (y0, . . . , yN−1) (where (yi, sk) is a valid keypair); finally, VrfyR(m,π) verifies the purported signature π
on m on behalf of R. We fix a polynomial N(·) in what follows.

Definition 5.1 (Bender–Katz–Morselli [BKM09, Def. 7]). The unforgeability with respect to insider cor-

ruption experiment UnforgeIC
N(·)
A,Π (λ) is defined as:

1. Parameters σ ← Setup(1λ) are generated and given to A.

2. Keypairs (yi, ski)
N(λ)−1
i=0 are generated using Gen(1λ), and the list of public keys S := (yi)

N(λ)−1
i=0 is

given to A.

3. A is given access to a signing oracle Osign(·, ·, ·) such that Osign(i,m,R) returns Signski(m,R), where
we require yi ∈ R.

4. A is also given access to a corrupt oracle Corrupt(·), where Corrupt(i) outputs ski.

5. A outputs (R∗,m∗, π∗), and succeeds if VrfyR∗(m
∗, π∗) = 1, A never queried (?,m∗, R∗), and R∗ ⊂

S \ C, where C is the set of corrupted users.

We say that Π = (Setup,Gen,Sign,Verify) is unforgeable with respect to insider corruption if, for each PPT

adversary A and polynomial N(·), there exists a negligible function negl for which Pr[UnforgeIC
N(·)
A,Π (λ) =

1] ≤ negl(λ).

Definition 5.2 (Bender–Katz–Morselli [BKM09, Def. 3]). The anonymity with respect to adversarially

chosen keys experiment AnonACK
N(·)
A,Π (λ) is defined as:

1. Parameters σ ← Setup(1λ) are generated and given to A.

17

2. Keypairs (yi, ski)
N(λ)−1
i=0 are generated using Gen(1λ), and the list of public keys S := (yi)

N(λ)−1
i=0 is

given to A.

3. A is given access to a signing oracle Osign(·, ·, ·) such that Osign(i,m,R) returns Signski(m,R), where
we require yi ∈ R.

4. A outputs a message m, distinct indices i0 and i1, and a ring R for which yi0 , yi1 ∈ R.

5. A random bit b is chosen, and A is given the signature π ← Signskib
(m,R). The adversary outputs a

bit b′.

6. The output of the experiment is defined to be 1 if and only if b′ = b.

We say that Π = (Setup,Gen,Sign,Verify) is anonymous with respect to adversarially chosen keys if for each

PPT adversaryA and polynomial N(·), there exists a negligible function negl for which Pr[AnonACK
N(·)
A,Π (λ) =

1] ≤ 1
2 + negl(λ).

We note that this definition is not the strongest formulation of anonymity given in [BKM09], and in
particular does not ensure anonymity in the face of attribution attacks or full key exposure [BKM09, Def.
4]. We will argue below that this slightly weaker definition suffices for our purposes (namely, Anonymous
Zether).

5.2 Ring signature protocol

We continue with our protocol for the simple relationR3 above. We construct our correction terms differently
than do the protocols [GK15, Fig. 2] and [BCC+15, Fig. 5]; we also replace the final revelation of z by a
Schnorr knowledge-of-exponent identification protocol (see e.g., [KL15, Fig. 12.2]). Explicitly:

P3(σ, (y0, . . . , yN−1); l, sk) V3(σ, (y0, . . . , yN−1))

rB , rK , ρ0, . . . , ρm−1 ←$Fq
B := Com(l0, . . . , lm−1; rB)

(A,C,D)← P1(σ,B; (l0, . . . , lm−1), rB)

for k ∈ {0, . . . ,m− 1} do

Yk :=

N−1∏
i=0

y
Pi,k
i · yρkl , Gk := gρk A,B,C,D, (Yk, Gk)

m−1
k=0

(f0, . . . , fm−1, zA, zC)← P1(x)
x x←$Fq

g := gx
m−

∑m−1
k=0

ρk·xk set g := gx
m
·
m−1∏
k=0

G−xk
k

K := grK f0, . . . , fm−1, zA, zC ,K set y :=

N−1∏
i=0

y
pi
i ·

m−1∏
k=0

Y −xk
k

where ∀k, fk,1 := fk, fk,0 := x− fk

and ∀i ∈ {0, . . . , N − 1}, pi :=
m−1∏
k=0

fk,ik

c c←$Fq

s := c · sk+ rK
s Accept if and only if

V1(σ,B, x,A,C,D, (fk)m−1
k=0 , zA, zC)

?
= 1

gs · y−c ?
= K

Figure 5: Interactive protocol for the relation R3

18

In effect, the prover sends correction terms for both yl and g; the prover and verifier then conduct a
Schnorr protocol on the “corrected” elements y and g. We remark that the correction terms Yk use the
blinding scalars ρk in the exponent of yl—which, in particular, depends on the witness—and not of a generic
Pedersen base element (or of a global public key, as in [BCC+15]).

We define a ring signature Π = (Gen,Sign,Verify) by applying the Fiat–Shamir transform to Fig. 5 (see
[KL15, Cons. 12.9]). Gen(1λ) runs a group generation procedure (G, q, g) ← G(1λ) and the commitment
scheme setup, and chooses a function H : {0, 1}∗ → Fq. (In our security analyses below, we model H as a
random oracle.) We then define x = H(m,R,A,B,C,D, (Yk, Gk)m−1

k=0) as well as c = H(x,K); the complete
signature of m on R consists of (A,B,C,D, (Yk, Gk)m−1

k=0 , x,K, c, s). The verifier, given a transcript, checks
also that the queries were computed correctly.

Π is complete, as can be seen from the completeness of the Schnorr signature, and from the discrete

logarithm relation y = gsk. In fact, g = gx
m−

∑m−1
k=0 ρk·xk and y = y

xm−
∑m−1
k=0 ρk·xk

l ; the relation immediately
follows. Moreover:

Theorem 5.3. If Com is computationally binding and the discrete logarithm problem is hard with respect to
G, then Π is unforgeable with respect to insider corruption.

Proof. We adopt a game-hopping approach. We first replace the ring signature by an interactive “ring
identification” scheme; we adapt [KL15, Thm. 12.10] and [KL15, Thm. 12.11] in what follows.

Game-0: Corresponds to UnforgeIC
N(·)
A,Π (λ).

Game-1: Same as Game-0, except the ring signature is replaced with an interactive identification scheme.
That is, A is not given a random oracle, and Osign(i,m,R) is replaced by a transcript oracle
Trans(i, R) which returns the transcript of a random execution of Fig. 5 (on (yi)

N−1
i=0 := R, with

secret key ski). At some point during the experiment, A outputs R∗ and A,B,C,D, (Yk, Gk)m−1
k=0 ,

and receives a uniformly random challenge x in return. At some later point, A outputs
f0, . . . , fm−1, zA, zC , and receives a random c in return. Finally, A outputs s. The experiment
outputs 1 if and only if the signature π∗ thus obtained satisfies the condition of Game-0.

Game-2: Same as Game-1, except the experimenter, upon procuring (R∗, π∗), repeatedly reruns A with
the same randomness, but with different challenges x and c, so as to obtain a (2m + 1, 2)-tree
of transcripts, and returns 0 if any of the challenges feature collisions. Finally, the experimenter
imposes the winning condition of Game-1 on all (2m+ 1) · 2 leaves.

Game-3: Same as Game-2, except the experimenter finally runs the extractor X of P1, as in Lemma 4.5,
to obtain openings b0, . . . , bm−1 and a0, . . . , am−1 of the initial commitments B and A, and also
ensures, for each among the 2m+1 challenges x, that the response (fk)m−1

k=0 satisfies fk = bk ·x+ak
for each k ∈ {0, . . . ,m− 1} (aborting if any of these steps fail).

Game-4: Same as Game-3, except the experimenter selects a random element y∗ of the initial list S, and
then ultimately aborts, returning 0, unless R∗[l] = y∗, where l is given in binary by b0, . . . , bm−1.

Claim 5.4. For each PPT adversary A, there exists a PPT adversary A′, a negligible function negl, and a
polynomial q for which AdvGame-0

A,Π (λ) ≤ q(λ)2 · AdvGame-1
A′,Π (λ) + negl(λ).

Proof. This is an adaptation of [KL15, Thm. 12.10]. We fix an adversary A targeting Game-0; we let
qx(λ) and qc(λ) denote polynomial upper bounds on the number of random oracle queries of the forms
H(m,R,A,B,C,D, (Yk, Gk)m−1

k=0) and H(x,K), respectively, which A makes during its execution.

A′ operates as follows, on input σ and S = (yi)
N(λ)−1
i=0 .

1. Choose uniformly random indices jx ∈ {0, . . . , qx(λ)− 1} and jc ∈ {0, . . . , qc(λ)− 1}.

2. Give σ and S = (yi)
N(λ)−1
i=0 to A.

3. Respond to each Osign(i,m,R) query by invoking π ← Trans(i, R), and giving π to A.

4. When A makes its jth query of the type H(m,R,A,B,C,D, (Yk, Gk)m−1
k=0), respond as follows:

19

• If j = jx, output R,A,B,C,D, (Yk, Gk)m−1
k=0 and receive x in return; give x to A.

• If j 6= jx, give A a random element x ∈ Fq.

When A makes its jth query of the type H(x,K),

• If j = jc, and if x has already been obtained from the experimenter as above, then output K,
receive c in return, and give c to A; it hasn’t, then abort.

• If j 6= jc, give A a random element c ∈ Fq.

5. When A outputs (R∗,m∗, π∗), check whether π∗ is valid in the sense of Game-0, and, if it is, whether
π∗ in addition uses the jx

th and jc
th challenges x and c, respectively. If it does, output its final message

s. Otherwise, abort.

A’s view in its simulation by A′ differs from its view in Game-0 only in case some transcript π ← Trans(i, R)
implicitly introduces a random oracle inconsistency; this happens only if π is such that A has already queried
H(m,R,A,B,C,D, (Yk, Gk)m−1

k=0) or H(x,K) and received some response x or c (respectively) unequal to
that contained in π. Such π appear with negligible probability, say, given by negl.

Among the remaining executions, A′ correctly selects the indices jx and jc in exactly 1
qx(λ) ·

1
qc(λ) of those

for which π∗ is valid; moreover, A′ tendency to abort in step 4. impacts none of these latter executions,
as each successful π∗ must query H(m,R,A,B,C,D, (Yk, Gk)m−1

k=0) and H(x,K) in the appropriate order.
Denoting by q(λ) a pointwise upper bound on the polynomials qx(λ) and qc(λ), we therefore have:

Pr[Game-1A′,Π(λ) = 1] ≥ 1

q(λ)2
· (Pr[Game-0A,Π(λ) = 1]− negl(λ)) .

This completes the proof.

Claim 5.5. There exists a negligible function, say negl′, for which, for each PPT adversary A′,(
AdvGame-1

A′,Π (λ)
)(2m+1)·2

≤ AdvGame-2
A′,Π (λ) + negl′(λ).

Proof. This is essentially an extended version of [KL15, Thm. 12.11]. We first note that the probability of a
collision occurring in the challenges x and c is negligible (and in fact independent of A′), say given by negl′.
We now recall a rudimentary form of Jensen’s inequality, whereby:

∑
i

ai · ϕ(bi) ≥ ϕ

(∑
i

ai · bi

)
,

where ϕ is any convex function, and the ai are positive “weights” for which
∑
i ai = 1. In particular, we

may take ϕ to be any univariate monomial.
We introduce additional notation, following [KL15, Thm. 12.11]. We denote by ω the randomness used

by both the experimenter and A′, excluding the random challenges x and c, and write V (ω, x, c) = 1 if
and only if A′, using the randomness ω, responds with a valid signature to the challenges x and c. We
then write δω,x := Prc[V (ω, x, c) = 1]; this is the probability, for fixed ω and x, that A′ responds correctly

to a randomly chosen challenge c. Similarly, we write δω := Prx,{cj}1j=0

[∧1
j=0 V (ω, x, cj) = 1

]
; this is the

probability, for fixed ω, that a randomly chosen x and two random challenges c yield a tree consisting of two
valid signatures. We now have:

Pr[Game-2
N(·)
A′,Π(λ) = 1] = Pr

ω,{xi}2m+1
i=0 ,{ci,j}2m+1,1

i,j=0

2m+1∧
i=0

1∧
j=0

V (ω, xi, ci,j) = 1 ∧ no collisions in x or c

≥ Pr
ω,{xi}2m+1

i=0 ,{ci,j}2m+1,1
i,j=0

2m+1∧
i=0

1∧
j=0

V (ω, xi, ci,j) = 1

− negl′(λ)

=
∑
ω

Pr[ω] · (δω)2m+1 − negl′(λ)

20

=
∑
ω

Pr[ω] ·

(∑
x

Pr[x] · (δω,x)
2

)2m+1

− negl′(λ)

≥
∑
ω

Pr[ω] ·

(∑
x

Pr[x] · δω,x

)(2m+1)·2

− negl′(λ)

≥

(∑
ω

Pr[ω] ·
∑
x

Pr[x] · δω,x

)(2m+1)·2

− negl′(λ)

= Pr[Game-1
N(·)
A′,Π(λ) = 1](2m+1)·2 − negl′(λ),

where we use Jensen’s inequality iteratively in the final two inequalities. This completes the proof.

Claim 5.6. For each PPT adversary A′, there exists a PPT adversary A′′ for which AdvGame-2
A′,Π (λ) =

AdvGame-3
A′,Π (λ) + AdvBindingA′′,Π (λ).

Proof. This is a direct reduction; A′′ simply runs Game-3
N(·)
A′,Π(λ). The latter game’s failure condition is such

that its satisfaction immediately results in a commitment binding violation.

Claim 5.7. For each PPT adversary A′, AdvGame-3
A′,Π (λ) = N(λ) · AdvGame-4

A′,Π (λ).

Proof. Among executions of Game-3 which A′ wins, exactly 1
N(λ) satisfy R∗[l] = y∗ (recall that R∗ ⊂ S).

Claim 5.8. For each PPT adversary A′, there exists a PPT adversary A′′′ for which AdvGame-4
A′,Π (λ) =

AdvDLog
A′′′,Π(λ).

Proof. We convert an adversary A′ targeting Game-4 into an adversary A′′′ which wins DLogA′′′,G(λ) with
equal probability. In short, provided that A′ wins Game-4, A′′′ extracts a discrete logarithm with probability
one. (In fact, the argument below implicitly demonstrates that the interactive protocol Fig. 5 is (2m+ 1, 2)-
special sound for the relation R3.) The difficult part resides in this extraction. Indeed, after seeing x, the
prover could in principle choose sk adaptively, and the extraction of log(yi∗) demands the interpolation of a
rational function (generalizing the Vandermonde-based polynomial interpolation of e.g. [GK15]). We refer
to Theorem 3.12 in the following construction.

We return to the construction of A′′′. A′′′ works as follows, on inputs G, q, g, and h.

1. Generate parameters σ ← Setup(1λ) for which G, q, and g are as given by the experiment input. Give
σ to A′.

2. Generate keys (yi, ski)
N(λ)−1
i=0 using Gen(1λ). For a randomly chosen i∗ ∈ {0, . . . , N(λ) − 1}, re-assign

to yi∗ the discrete logarithm challenge h. Finally, give the modified list S := (yi)
N(λ)−1
i=0 to A′.

3. Respond to each Trans(i, R) query as in Fig. 5, except simulate the final Schnorr protocol.

4. For each query Corrupt(i) for which i 6= i∗, return ski; if i = i∗, abort.

5. When A′ outputs (R∗,m∗, π∗), rewind it (as in Game-2) to obtain a (2m + 1, 2)-tree of signatures π∗

on R∗ and m∗. If any collisions occur between the x or c challenges, then abort. If any among the

(2m+ 1) · 2 signatures fails to meet the winning condition of UnforgeIC
N(·)
A,Π , then abort.

6. By running the extractor of Lemma 4.5, obtain openings b0, . . . , bm−1, a0, . . . , am−1 of the initial
commitments B and A for which bk ∈ {0, 1}. If for any challenge x the response (fk)m−1

k=0 is such that
fk 6= bk · x+ ak for some k ∈ {0, . . . ,m− 1}, abort.

7. For the index l ∈ {0, . . . , N} (where N := |R∗|) given in binary by b0, . . . , bm−1, determine whether
R∗[l] = yi∗ . If it doesn’t, abort.

21

8. Use the openings bk and ak to recover the polynomials {Pi(X)}N−1
i=0 , and hence a representation, for

each challenge x, of the form:

(y, g) =

(
yx

m

i∗ ·
m−1∏
k=0

Ŷk
−xk

, gx
m

·
m−1∏
k=0

G−x
k

k

)
,

where the elements Ŷk (and of course Gk) are independent of x. For each particular x, meanwhile, use

the standard Schnorr extractor on the two equations gs · y−c = K to obtain some quantity ŝk (possibly

depending on x) for which gŝk = y. Each such pair (x, ŝk) thus satisfies:

yx
m

i∗ ·
m−1∏
k=0

Ŷk
−xk

=

(
gx

m

·
m−1∏
k=0

G−x
k

k

)ŝk

.

By taking the discrete logarithms with respect to g, re-express this relationship as an algebraic equation
in two variables, with unknown coefficients, which each point (x, ŝk) satisfies:

log(yi∗) · xm −
m−1∑
k=0

log(Ŷk) · xk =

(
1 · xm −

m−1∑
k=0

log(Gk) · xk
)
· ŝk. (1)

Denote by r(X) and t(X) the (unknown) polynomials in the indeterminate X which appear in (1)’s
left- and right-hand sides; that is, set:

r(X) := log(yi∗) ·Xm −
m−1∑
k=0

log(Ŷk) ·Xk and t(X) := 1 ·Xm −
m−1∑
k=0

log(Gk) ·Xk.

Construct a polynomial g(X) ∈ Fq[X] for which g(x) = ŝk for each among the 2m+ 1 satisfying pairs

(x, ŝk) of (1), and obtain polynomials rj∗(X) and tj∗(X) as in the statement of Theorem 3.12 above.

Finally, return sk = log(yi∗) = lc(rj∗(X)) · (lc(tj∗(X)))
−1

.

We pause to argue that step 8. correctly returns sk = log(yi∗). By construction, the 2m+ 1 satisfying pairs

(x, ŝk) and the polynomials r(X) and t(X) above form an instance of Theorem 3.12 (with n = 2m + 1).
The conclusion of this theorem, together with the fact that t(X) is monic, finally imply that log(yi∗) =

lc(r(X)) = lc(rj∗(X)) · (lc(tj∗(X)))
−1

.
We argue that A′′′’s tendency to abort in step 4. doesn’t decrease A′′′’s winning probability. In fact,

A′’s mere attempt to call Corrupt(i∗) already precludes its eventual satisfaction of the winning condition of
Game-4; indeed, yi∗ ∈ C implies that yi∗ 6∈ R∗ for any R∗ ⊂ S \C. Finally, A′′′ wins whenever A′ does.

Putting these facts together, we see that for arbitrary A, and A′, negl, q, negl′, A′′, and A′′′ as above:

AdvUnforgeICA,Π (λ) ≤ q(λ)2 ·
(
N(λ) · AdvDLog

A′′′,G(λ) + AdvBindingA′′,Com(λ) + negl′(λ)
) 1

(2m+1)·2
+ negl(λ).

The result immediately follows from discrete logarithm assumption on G and the binding property.

We turn to anonymity. We note that the interactive protocol of Fig. 5 is not zero-knowledge, or even
witness-indistinguishable (see e.g. [GK15, Def. 8]). Indeed, having chosen a statement and candidate
witnesses (l0, sk0) and (l1, sk1), A (say) may simply return whichever b′ ∈ {0, 1} satisfies:

yx
m

lb′
·
m−1∏
k=0

(
Yk · (Gk)−skb′

)xk ?
=

N−1∏
i=0

ypii .

Analogously, Π is not anonymous against full key exposure (recall [BKM09, Def. 4]). Heuristically, these
failures stem from the pairs (Yk, Gk), which are “El Gamal ciphertexts” under yl, and can be retrospectively
“decrypted” if (and only if) sk is exposed. Nonetheless, we obtain:

22

Theorem 5.9. If Com is computationally hiding and the DDH problem is hard relative to G, then Π is
anonymous with respect to adversarially chosen keys.

Proof. The essential difficulty is that both the “messages” of the “ciphertexts” (Yk, Gk) and the key under
which they are encrypted depend on the experimenter’s hidden bit b ∈ {0, 1}. This makes the argument
below somewhat delicate. We invoke a sequence of game hops:

Game-0: Corresponds to AnonACK
N(·)
A,Π .

Game-1: Same as Game-0, except that the experimenter simulates the Schnorr proof in the final part of
each signature it constructs (as in [KL15, p. 456]), and also aborts if any simulation yields an
implicit clash with some prior random oracle query.

Game-2: Same as Game-1, except the experimenter uses a freshly sampled key y∗—instead of yib—in its
computation of the final challenge signature π; that is, it computes:

(Yk, Gk) :=

(
N−1∏
i=0

y
Pi,k
i · (y∗)ρk , gρk

)

for each k ∈ {0, . . . ,m− 1}.

Game-3: Same as Game-2, except the experimenter simulates the commitment B in the final signature
π, and then uses the simulator S of Lemma 4.5 to simulate the prover P1’s output; finally, the
experimenter aborts if these simulations yield a random oracle clash.

Claim 5.10. For each PPT adversary A, there exists a negligible function, say negl, for which AdvGame-0
A,Π (λ) ≤

AdvGame-1
A,Π (λ) + negl(λ).

Proof. As above, Game-1 aborts only in case the experimenter simulates some Schnorr proof using random
quantities s, c for which A has already queried H(x,K) (where K := gs · y−c) and for which H(x,K) 6= c.
This happens in at most negligibly many executions of Game-1, say negl. Barring this contingency, A’s view
is indistinguishable from its view in Game-0. Therefore:

Pr[Game-1A,Π(λ) = 1]− 1

2
≥ Pr[Game-0A,Π(λ) = 1]− negl(λ)− 1

2
.

Claim 5.11. For each PPT adversary A, there exists a PPT adversary A′ for which AdvGame-1
A,Π (λ) =

AdvGame-2
A,Π (λ) + 2 · AdvDDH

A′,G(λ).

Proof. It suffices to construct an adversary A′ for which Pr[Game-1A,Π(λ) = 1] and Pr[Game-2A,Π(λ) = 1]
equal Pr[outA′ (DDHA′,G(λ)) = 1 | b′′ = 1] and Pr[outA′ (DDHA′,G(λ)) = 1 | b′′ = 0], respectively, where b′′

here refers to the DDH experimenter’s hidden bit. Indeed, for any such A′,

AdvGame-1
A,Π (λ)− AdvGame-2

A,Π (λ) = Pr[Game-1A,Π(λ) = 1]− Pr[Game-2A,Π(λ) = 1]

= Pr[outA′ (DDHA′,G(λ)) = 1 | b′′ = 1]− Pr[outA′ (DDHA′,G(λ)) = 1 | b′′ = 0]

= Pr[DDHA′,G(λ) = 1 | b′′ = 1] + Pr[DDHA′,G(λ) = 1 | b′′ = 0]− 1

= 2 ·
(
AdvDDH

A′,G(λ)
)
.

To this end, we convert an adversary A which distinguishes Game-1 and Game-2 into an adversary A′
which attacks DDHA′,G .
A′ works as follows. It is given G, q, g, h1, h2, and h′ as input.

1. Generate parameters σ ← Setup(1λ) for which G, q, and g are as given by the experiment input. Give
σ to A.

23

2. Generate random scalars (ψi)
N(λ)−1
i=0 , and set yi := (h1)ψi for each i ∈ {0, . . . , N(λ) − 1}. Give

S := (yi)
N(λ)−1
i=0 to A.

3. Respond to each Osign(·, ·, ·) query as in Fig. 5, except simulate the final Schnorr protocol, aborting if
necessary.

4. When A outputs m, i0, i1, R, choose a uniform bit b ∈ {0, 1}. Construct a signature π on behalf of yib
exactly as specified in Fig. 5, except set:

(Yk, Gk) :=

(
N−1∏
i=0

y
Pi,k
i · (h′)ψib ·ρk , (h2)ρk

)

for each k ∈ {0, . . . ,m−1}. Moreover, simulate the final Schnorr protocol. Give the resulting signature
to A.

5. When A outputs a bit b′, return whether b′
?
= b.

We consider the two possible values of the DDH experimenter’s hidden bit. If the experimenter’s bit is
1, then A’s view exactly matches its view in Game-1; if the experimenter’s bit is 0, then A’s view exactly
matches its view in Game-2. Moreover, A′ outputs 1 whenever A wins. This completes the construction.

Claim 5.12. For each PPT adversary A, there exists a PPT adversary A′′ and a negligible function negl′

for which AdvGame-2
A,Π (λ) ≤ AdvGame-3

A,Π (λ) + 2 · AdvHidingA′′,Com(λ) + negl′(λ).

Proof. We describe an adversary A′′ attacking the “LR-oracle” variant of the hiding experiment; that is, A′′
is given access to an oracle LRparams,b′′ , where b′′ here refers to the experimenter’s hidden bit.
A′′ works as follows, on input params.

1. Generate parameters σ ← Setup(1λ) for which G, q, and g are as in params; give σ to A.

2. Generate keys (yi, ski)
N(λ)−1
i=0 and give them to A.

3. Respond to each Osign(·, ·, ·) query as in Fig. 5, except simulate the final Schnorr protocol, aborting if
necessary.

4. When A outputs m, i0, i1, R, choose a uniform bit b ∈ {0, 1}, and assign

B ← LRparams,b′′ ((0, . . . , 0), (b0, . . . , bm−1)) ,

where b0, . . . , bm−1 give the binary representation of ib. Likewise, sample scalars a0, . . . , am−1, and set

C ← LRparams,b′′
(
(0)m−1

k=0 , (ak · (1− 2bk))m−1
k=0

)
.

5. Randomly generate x, (fk)m−1
k=0 , zA, zC , and construct A,D as in Lemma 4.5. Set ak := fk − bkx for

each k ∈ {0, . . . ,m − 1}, where bk := (ib)k is the kth bit of ib, and define Fk,1(X) := bkX + ak and

Fk,0(X) := X − Fk,1(X). Finally, construct Pi(X) :=
∑m
k=0 Pi,k · Xk :=

∏m−1
k=0 Fk,ik(X) (for each

i ∈ {0, . . . , N − 1}). Define (Yk, Gk)m−1
k=0 as in Game-2 (that is, using a random key y∗ and these Pi,k).

6. If the signature π constructed in this way introduces a random oracle inconsistency—that is, if
H(m,R,A,B,C,D, (Yk, Gk)m−1

k=0) was already queried, and yielded a result unequal to x—then abort.
Otherwise, give π to A.

7. When A outputs a bit b′, return whether b = b′.

The event in which A′′ aborts occurs with negligible probability, say given by negl′. Moreover, if the
experimenter’s bit is 1 and no abort occurs, A’s view exactly matches its view in Game-2. It follows that
Pr[outA′′ (DDHA′,G(λ)) = 1 | b′′ = 1] ≥ Pr[Game-2A,Π(λ) = 1] − negl′(λ). Finally, it holds trivially that
Pr[outA′′ (DDHA′,G(λ)) = 1 | b′′ = 0] = Pr[Game-3A,Π(λ) = 1]. The conclusion finally follows as in Claim
5.11 above.

24

Claim 5.13. For each PPT adversary A, there exists a PPT adversary A′′′ for which AdvGame-3
A,Π (λ) =

AdvPubKA′′′,E(λ), where the multiple encryptions experiment PubKLR-cpa
A′′′,E is as in [KL15, Def. 11.5].

Proof. We describe an adversary A′′′ who, given an algorithm A targeting Game-3
N(·)
A,Π , attacks PubKLR-cpa

A′′′,E .
(We specialize this latter experiment to the El Gamal scheme.) A′′′ operates as follows, upon receiving a
public key y∗:

1. Generate keys (yi, ski)
N(λ)−1
i=0 and give them to A.

2. Respond to each Osign(·, ·, ·) query as in Fig. 5, except simulate the final Schnorr protocol, aborting if
necessary.

3. Upon receiving m, i0, i1, R from A, run the SHVZK simulator of Lemma 4.5 to construct quantities
A,B,C,D, x, (fk)m−1

k=0 , zA, zC , aborting if a random oracle clash occurs. For each b ∈ {0, 1}, proceed
as in step 5. of Claim 5.12 above. That is, assign bb,k := (ib)k (i.e., the kth bit of the index ib)
and set ab,k := fk − bb,kx; then define Fb,k,1(X) := bb,kX + ab,k and Fb,k,0(X) := X − Fb,k,1(X).

Finally, set Pb,i(X) :=
∑m
k=0 Pb,i,k · Xk :=

∏m−1
k=0 Fb,k,ik(X) (for each i ∈ {0, . . . , N − 1}). For each

k ∈ {0, . . . ,m− 1}, submit the pair
(∏N−1

i=0 y
P0,i,k

i ,
∏N−1
i=0 y

P1,i,k

i

)
to the oracle LRy∗,b′′ , so as to obtain

the encryption (Yk, Gk). Simulate the final Schnorr proof. Give the resulting signature to A.

4. When A returns a bit b′, return whatever A returns.

A’s view in its simulation by A′′′ exactly matches its view in Game-3; moreover, A′′′ wins whenever A wins.
This completes the construction.

Putting these facts together, we see that for arbitrary A, and for negl, A′, A′′ and A′′′ as given above:

AdvAnonACKA,Π (λ) ≤ negl(λ) + 2 · AdvDDH
A′,G(λ) + 2 · AdvHidingA′′,Com(λ) + negl′(λ) + AdvPubKA′′′,E(λ).

In light of [KL15, Thm. 11.18] and [KL15, Thm. 11.6], PubKLR-cpa
A′′′,E is secure under the DDH assumption.

The result immediately follows from the DDH assumption on G and the hiding property.

6 Application: Anonymous Zether

We turn to our main application, Anonymous Zether.

6.1 Review of basic and anonymous Zether

We briefly summarize both basic and anonymous Zether; for further details we refer to [BAZB20].
Zether’s global state consists of a mapping acc from El Gamal public keys to El Gamal ciphertexts; each

y’s table entry contains an encryption of y’s balance b (in the exponent). In other words:

acc : G→ G2,

y 7→ acc[y] = Ency(b, r) =
(
gbyr, gr

)
,

for some randomness r which y in general does not know. (For details on the synchronization issues sur-
rounding “epochs”, we refer to [BAZB20].)

6.1.1 Basic Zether

In “basic” (non-anonymous) Zether, a non-anonymous sender y may transfer funds to a non-anonymous
recipient y. To do this, y should publish the public keys y and y, as well as a pair of ciphertexts (C,D)
and (C,D) (i.e., with the same randomness). These should encrypt, under y and y’s keys, the quantities
g−b

∗
and gb

∗
, respectively, for some integer b∗ ∈ {0, . . .MAX} (MAX is a fixed constant of the form 2n − 1).

To apply the transfer, the administering system (e.g., smart contract) should group-add (C,D) and (C,D)

25

to y and y’s account balances (respectively). We denote by (CLn, CRn) y’s balance after the homomorphic
deduction is performed.

Finally, the prover should prove knowledge of:

• sk for which gsk = y (knowledge of secret key),

• r for which:

◦ gr = D (knowledge of randomness),

◦ (y · y)r = (C · C) (ciphertexts encrypt opposite balances),

• b∗ and b∗ in {0, . . . ,MAX} for which C = g−b
∗ · D and CLn = gb

′ · CRn (overflow and overdraft
protection).

Formally, we have the relation below, which essentially reproduces [BAZB20, (2)]:

stConfTransfer :

{
(y, y, CLn, CRn, C, C,D; sk, b∗, b′, r) |

gsk = y ∧ C = g−b
∗
·Dsk ∧ CLn = gb

′
· Csk

Rn∧
D = gr ∧ (y · y)r = C · C∧

b∗ ∈ {0, . . . ,MAX} ∧ b′ ∈ {0, . . . ,MAX}
}
.

6.1.2 Anonymous Zether

In Anonymous Zether [BAZB20, §D], a sender may hide herself and the recipient in a larger ring (yi)
N−1
i=0 .

To an observer, it should be impossible to discern which among a ring’s members sent or received funds.
Specifically, a sender should choose a list (yi)

N−1
i=0 , as well as indices l0 and l1 for which yl0 and yl1 belong to

the sender and recipient, respectively. The sender should then publish this list, as well as a list of ciphertexts
(Ci, D)N−1

i=0 , for which (Cl0 , D) encrypts g−b
∗

under yl0 , (Cl1 , D) encrypts gb
∗

under yl1 , and (Ci, D) for each
i 6∈ {l0, l1} encrypts g0 under yi. To apply the transfer, the contract should homomorphically add (Ci, D)
to yi’s balance for each i; we denote the list of new balances by (CLn,i, CRn,i)

N−1
i=0 .

Finally, the prover should prove knowledge of:

• l0, l1 ∈ {0, . . . , N − 1} (sender’s and recipient’s secret indices),

• sk for which gsk = yl0 (knowledge of secret key),

• r for which:

◦ gr = D (knowledge of randomness),

◦ (yl0 · yl1)
r

= Cl0 · Cl1 (sender’s and receiver’s ciphertexts encrypt opposite balances),

◦ for each i 6∈ {l0, l1}, yri = Ci (all ciphertexts other than the sender’s and recipient’s encrypt 0),

• b∗ and b′ in {0, . . . ,MAX} for which Cl0 = g−b
∗ ·D and CLn,l0 = gb

′ · CRn,l0 (overflow and overdraft
protection).

We group these facts into a formal relation, adapting [BAZB20, (8)]. For technical reasons (discussed in
Subsection 6.3 below), we actually prove a slight variant of this relation, in which N is required to be even
and l0 and l1 are required to have opposite parities. Formally:

stAnonTransfer :

{(
(yi, Ci, CLn,i, CRn,i)

N−1
i=0 , D, u, gepoch; sk, b

∗, b′, r, l0, l1
)
|

gsk = yl0 ∧ Cl0 = g−b
∗
Dsk ∧ CLn,l0 = gb

′
Csk
Rn,l0∧

D = gr ∧ (yl0 · yl1)
r

= Cl0 · Cl1 ∧
∧

i6∈{l0,l1}

yri = Ci∧

gskepoch = u ∧ b∗ ∈ {0, . . . ,MAX} ∧ b′ ∈ {0, . . . ,MAX}∧

N ≡ 0 mod 2 ∧ l0 6≡ l1 mod 2
}
.

(2)

26

6.2 Insider and “rogue-key” attacks

We now turn to anonymous payment. We begin with a comment regarding the Anonymous Zether statement ;
in particular, this subsection applies equally to this work and to [BAZB20, §D].

An important aspect of the statement (2) is that the same randomness D is used in each El Gamal
ciphertext (Ci, D). Yet the appeal of [BAZB20] to Kurosawa [Kur02] (in defense of this measure) appears to
misunderstand the latter work. Indeed, as Bellare, Boldyreva and Staddon [BBS03, §1.2] observe, Kurosawa’s
security definitions are weak, and assume in particular that each adversary is an “outsider”.

In contrast, we sketch a plausible insider attack on privacy—analogous to that described in [BBS03,
§4]—on any protocol following the paradigm of [BAZB20, §D] (i.e., regardless of its proof system). The
attacker, targeting some honest user y, generates a rogue public key y∗ := ysk

∗
(for some secret and arbitrary

sk∗). The attacker then induces some honest user (possibly, but not necessarily, y) to include both the
attacker and y in the honest user’s anonymity set. The attacker finally obtains the quantity b of y’s change
in balance (and in particular, determines whether y was the sender, the recipient, or neither) using the
following procedure. If y and y∗ reside at the indices l and l∗ (respectively) of the anonymity set (yi)

N−1
i=0

(and assuming for simplicity that y∗ was neither the recipient nor the sender), the attacker simply determines

b using gb = Cl ·
(

(Cl∗)
(sk∗)−1

)−1

. The essential mechanism is that the Diffie–Hellman elements of y and y∗

with respect to D differ by the same logarithm by which y and y∗ differ (namely, sk∗).
We observe that the conduct of the attacker is completely undetectable to y. We emphasize, moreover,

that y is at risk even during transactions which she does not initiate; indeed, the sender whom y∗ tricks (i.e.,
into including y and y∗) may be arbitrary (say, unknown to y, for example).

Finally, we note that recourse whereby separate randomnesses (Di)
N−1
i=0 are used is (even were we to

leave aside its inefficiency, and in particular its almost-doubling of each transaction’s size) not available. In
fact, the reuse of D is critical in our cryptographic approach to Anonymous Zether, as we explain below (in
Subsection 6.3).

We adopt the remedy suggested by [BBS03, §1.2]. That is, we require each participant to prove knowledge
of her own public key before participating in the contract (i.e., before appearing in any anonymity set). We
implement a “registration” procedure, whereby each public key must sign a specified, fixed message before
it participates. This requirement is minimally cumbersome (especially in light of the superfluity of multiple-
account use in Anonymous Zether). We suggest the elimination of this requirement as a problem for future
work.

We note that this issue does affect basic Zether, but vacuously so, in that each transaction’s “insiders”
(i.e., its sender and recipient) already know each other’s respective roles, as well as the amount of funds sent.

6.3 Cryptographic approach to anonymity

We now summarize our proof protocol for Anonymous Zether; our approach uses many-out-of-many proofs in
a crucial way. The most significant challenge of the Anonymous Zether relation (2) is that all N ciphertexts
(Ci, D)N−1

i=0 appear; in particular, it requires not just that (yl0 · yl1)
r

= Cl0 ·Cl1 , but also that
∧
i 6∈{l0,l1} y

r
i =

Ci, where gr = D (and l0 and l1 are the sender’s and receiver’s secret indices, respectively).
We first describe our approach informally. Roughly, using standard one-out-of-many proofs, the prover

may efficiently convey to the verifier two vectors of field elements (p0,i)
N−1
i=0 and (p1,i)

N−1
i=0 , each of which

provably takes a special form (i.e., each consists of evaluations of polynomials, exactly one of which is degree-
m and monic; see Subsection 4.2). Using these vectors—and standard one-out-of-many proofs—the verifier
may obtain re-encryptions (i.e., same message, but different randomness) of the sender’s and receiver’s
ciphertexts, respectively, without learning the original indices of these ciphertexts. The prover and verifier
may then (using Section 5) run a variant of basic Zether upon these re-encrypted ciphertexts, in order to
certify spend authority, overdraft protection, and conservation of value (for these two ciphertexts only).

It remains only for the verifier to ensure that the remaining ciphertexts are encryptions of 0. This cannot
be done directly, as the verifier does not know which two indices to exclude from the checks. The verifier
can, however, “iterate” through the remaining ciphertexts by circularly rotating the vectors (p0,i)

N−1
i=0 and

(p1,i)
N−1
i=0 , and iteratively re-running the one-out-of-many process. Importantly, the secret indices represented

by these vectors’ rotations relate to the original secret indices in a predictable way. In fact, in order to produce

27

a perfect re-ordering of the original list, the verifier uses two-step rotations (and even N), and also ensures
that the original secret indices feature opposite parities.

Put differently, the prover implicitly sends two rows of a matrix, each of which contains exactly one 1; by
performing two-step rotations, the verifier constructs the N − 2 remaining rows. The matrix so constructed
is necessarily a permutation matrix, so long as the top two rows attain the value 1 at indices of opposite
parity.

0, , 1, , 0︸ ︷︷ ︸
1 only at index l0

0, , 1, , 0︸ ︷︷ ︸
1 only at index l1

0, . , 1, . . . , 0

0, , 1, , 0
...

0, , 1, , 0

0, . . . , 1, . , 0

Figure 6: “Prover’s view”.

(p0,i)
N−1
i=0︸ ︷︷ ︸

“1” at unknown even (resp.) or odd index

(p1,i)
N−1
i=0︸ ︷︷ ︸

“1” at unknown odd (resp.) or even index

(p0,i)
N−1
i=0

(p1,i)
N−1
i=0

...

(p0,i)
N−1
i=0

(p1,i)
N−1
i=0

Figure 7: “Verifier’s view”.

We can also express the prover’s choice of the secrets l0 and l1 group-theoretically, as that of a certain
permutation. Indeed, any indices l0 and l1 with opposite parities implicitly yield in this way a permutation
K ∈ SN , defined by setting, for any i ∈ {0, . . . , N − 1}:

i 7→ K(i) :=

{
(l0 + 2 · k) mod N if i = 2 · k
(l1 + 2 · k) mod N if i = 2 · k + 1.

Such permutations K are exactly those residing in the subgroup of SN (of order N2

2) given by the generators
〈(0, 1, . . . , N − 1), (0, 2, . . . , N − 2)〉.

We now express this procedure as a direct application of many-out-of-many proofs, for which an efficient
algorithm exists (see Theorem 4.11). The above procedure is exactly that of running many-out-of-many
proofs twice, using in each case the free permutation κ = (0, 2, . . . , N − 2)(1, 3, . . . , N − 1). The verifier in
this way iterates over the respective ordered orbits of two secret indices l0 and l1 under κ. If (and only if)
l0 and l1’s parities are opposite, then these orbits are disjoint, and together exhaust {0, . . . , N − 1}. Finally,
the verifier interleaves the respective rows yielded by the two executions, and sets Ξ as the (N − 1) × N
matrix:

Ξ =

1 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1

 .
This matrix controls the messages of the permuted ciphertexts (CK(0), D), (CK(1), D) . . . , (CK(N−1), D).
Indeed, it encodes exactly that the sum (Cl0 , D) · (Cl1 , D) is an encryption of 0, whereas the ciphertexts
(Ci, D) for i 6∈ {l0, l1} individually encrypt 0. (This matrix has O(N) nonzero entries, and so satisfies the
hypothesis of Theorem 4.11.)

We remark finally on the heterogeneity of the keys y0, . . . , yN−1 under which the ciphertexts
(C0, D), . . . , (CN−1, D) are encrypted. We accommodate this challenge using a further trick. We view each
pair (Ci, yi) as a “ciphertext” under the “public key” D (whose “private key” is r). Viewed this way, these
pairs indeed are homomorphic; we thus conduct our many-out-of-many proofs on the vector (Ci, yi)

N−1
i=0 .

Finally, instead of revealing its “randomness” (which the prover generally doesn’t know), the prover instead

28

argues that the final result is an encryption of 0 under the “public key” D (using a simple Σ-protocol). Put
differently, the prover shows that the linear combination(

Cl0 · Cl1 · Cvl0+2 · Cv
2

l1+2 · · · · · Cv
N−2

l1−2 , yl0 · yl1 · yvl0+2 · yv
2

l1+2 · · · · · yv
N−2

l1−2

)
is an “encryption” of 0 under the “public key” D. This fact suffices for our purposes. The indices l0 and l1
of course remain secret.

In a sense, this approach directly generalizes that of basic Zether, which proves that (y · y)
r

= C · C
(where gr = D).

6.4 Reducing prover runtime to O(N logN)

We reduce the prover’s runtime complexity from O(N log2N) to O(N logN) using a further trick, which we
presently sketch. We exploit the special structure of the Anonymous Zether ciphertexts (Ci, D)N−1

i=0 , only
O(1) (i.e., 2) of whose messages are nonzero.

We continue to view the pairs (Ci, yi) as “encryptions” under the “public key” D. A direct application of
Fig. 4 would prescribe, for each k, that the prover construct—and the verifier eliminate—the entire kth-order

part
∏1,N2 −1
ι,j=0

(∏N−1
i=0 (Ci, yi)

Pι,i,k
)ξ2·j+ι

of the uncorrected many-out-of-many product. Each such correction

term alone would require O(N logN) time for the prover to compute (see the treatment of Theorem 4.11).
Yet the messages of (Ci, D)N−1

i=0 are nonzero only at 2 indices i (namely, l0 and l1), so that, for each k, a
“messages-only” version of the above correction term can be computed in O(N) time (the messages of the
inner expression can be accumulated in constant time for each value (ι, j) of the outer index). The total
runtime of the prover is thus O(N logN). Our approach is to subtract these messages alone; the resulting
ciphertext is still an encryption of 0 under D (just with more complicated randomness), and so passes
verification all the same.

6.5 The opposite parity requirement

We comment further on the requirement that l0 6≡ l1 mod 2 (whose necessity is explained by the discussion
above).

6.5.1 Technique

Cryptographically, we must ensure that two executions of the many-out-of-many procedure correspond to
secrets l0 and l1 featuring opposite parities. We recall the two lists of polynomials F0,0(X), . . . , F0,m−1(X)
and F1,0(X), . . . , F1,m−1(X), corresponding respectively to the two witnesses l0 and l1. Our technique
is to require that the prover commit to the constant- and first-order parts (i.e., respectively, in separate
commitments E and F) of the polynomials F0,0(X) · F1,0(X) and (X − F0,0(X)) · (X − F1,0(X)). These
products are both a priori quadratic in X, with leading coefficients given respectively by b0,0 · b1,0 and
(1− b0,0) · (1− b1,0) (where b0,0 and b1,0 are the least-significant bits of l0 and l1).

The verifier’s check F xE
?
= Com ((f0,0 · f1,0, (x− f0,0)(x− f1,0))), then, enforces exactly that both poly-

nomials above are in fact linear, and hence that their leading coefficients are zero. This in turn exactly
encodes the logical fact that both b0,0 ∧ b1,0 = 0 and ¬b0,0 ∧¬b1,0 = 0, or in other words that b0,0 ⊕ b1,0 = 1
(and hence l0 6≡ l1 mod 2).

Methodologically, this approach naturally extends the standard bit-commitment protocol of [BCC+15,

Fig. 4]. In that protocol, the check Bx · A ?
= Com

(
(fι,k)1,m−1

ι,k=0

)
encodes exactly the requirement that

each Fι,k(X) be linear, whereas the additional check CxD
?
= Com

(
(fι,k(x− fι,k))1,m−1

ι,k=0

)
enforces that each

Fι,k(X) · (X − Fι,k) is linear (and hence that Fι,k(X)’s leading coefficient bι,k ∈ {0, 1}). Of course, as
discussed above, in practice we consolidate all 0th- and 1th-order commitments, following the optimization
of Esgin, Zhao, Steinfeld, Liu and Liu [EZS+19, §1.3].

29

6.5.2 Privacy implications

The requirement that l0 6≡ l1 mod 2 decreases privacy, but only minimally so. Indeed, it decreases the

cardinality of the set of possible pairs (l0, l1) ∈ {0, . . . , N − 1}2 from N · (N − 1) to N2

2 ; put differently, it
restricts the set of possible sender–receiver pairs to those represented by the edges of the complete bipartite
directed graph on {0, . . . , N − 1}, where the coloring is given by parity (i.e., as opposed to the complete
directed graph).

This restricted cardinally still grows quadratically in N , and in mainnet applications the deficit can
essentially be remedied simply by picking larger anonymity sets. This recourse would not be available in
consortium settings, however, where the total size of the network is limited. We consider this to to be an
acceptable limitation for practical use.

6.5.3 Eliminating the requirement

We briefly mention, though do not further pursue, an avenue by the aid of which the opposite parity
requirement could be eliminated. The prover and verifier could run standard many-out-of-many proofs just
once, using the “canonical” permutation κ = (0, 1, . . . , N − 1), as well as a single secret l0 representing the
sender’s index. Moreover, they could set for Ξ the simple “summation” matrix

Ξ =
[
1 1 . . . 1

]
,

ensuring thereby that the (respective) quantities encrypted by (Ci, D)N−1
i=0 sum to 0. (In fact, this could be

done independently of the many-out-of-many procedure, as this transformation is a symmetric function.)
The non-trivial use of many-out-of-many proofs would arise in the protocol’s range checks. Whereas standard
Anonymous Zether checks the ranges only of (CLn,l0 , CRn,l0) and (the negation of) (Cl0 , D), this approach
would check the ranges of (CLn,l0 , CRn,l0) and of all other ciphertexts (Ci, D)i 6=l0 . (We continue to use a sign
representation whereby (Cl0 , D) encrypts a nonpositive amount and all other ciphertexts encrypt nonnegative
amounts.) Effectively, the many-out-of-many proof would guide the verifier as to which adjustment ciphertext
to exempt from range checking (while concealing its index in the original list). This approach would convey
the additional benefit of allowing more general sorts of transactions, in which a single sender “spreads funds”
to many receivers (as is possible in Quisquis [FMMO19]).

Unfortunately, these range checks would require that theN permuted ciphertexts be corrected individually
(i.e., prior to the application of Ξ). In effect, “being in range” is not invariant under linear transformation.
Correcting each term individually would require at least Ω(N) communication. (In fact, it could be made
Θ(N) by setting the radix of [BCC+15, Fig. 4] equal to N , and sending only 1 correction term per element.)

As this approach would require Θ(N)-sized proofs, we consider it an inferior point in the design space. In
fact, its use of Bulletproofs on N quantities (as opposed to just two) would further mandate, in addition to
increased computation, a linearly-sized common reference string containing n ·N (in practice, 32 ·N) curve
points. This too would be cumbersome, as contract storage is expensive.

6.6 Use of ring signatures

We describe how Anonymous Zether uses the ring signature of Fig 5. The relation (2) demands not just that
yl0 = gsk, but also that Cl0 = gb

∗
Dsk and CLn,l0 = gb

′
Csk
Rn,l0

; importantly, the same l0 and the same sk must
be used in all three equalities.

Roughly, our approach is as follows. The prover and verifier run the first part of Fig. 5 simultaneously on
(yi)

N−1
i=0 and on (Ci)

N−1
i=0 , as well as on the list of pairs (CLn,i, CRn,i)

N−1
i=0 (in this latter case, the prover adds

appropriate correction elements to both components of each random pair (yρkl0 , g
ρk)). In particular, they use

the same values A,B,C,D, fk, zA, zC in each execution, though the prover sends separate correction terms
for each. The verifier obtains in this way re-encryptions y0, g, C0, D,CLn, CRn, respectively, of the elements
yl0 , g, Cl0 , D,CLn,l0 , CRn,l0 , where the index l0 is necessarily chosen consistently throughout. Finally, after
conducting the Schnorr protocol for yl0 = gsk, as specified by Fig. 5—that is, after verifying that gssk ·
y0
−c = Ay—the prover and verifier continue to use the same values ksk and ssk during the rest of the
Σ-Bullets procedure (and perform it likewise on the re-encrypted elements). In particular, the prover sets

30

Ab := gkb ·
(
D
−z2 · CRn

z3
)ksk

, whereas the verifier checks

g−sb ·Ab
?
=

(
D
−z2 · CRn

z3
)ssk
·
(
C0
−z2 · CLn

z3
)−c

.

This technique ensures that the same sk for which yl0 = gsk is used to decrypt (Cl0 , D) and (CLn,l0 , CRn,l0).
Explicit details are given in our security analyses below.

6.7 Security definitions

We present security definitions for Anonymous Zether, adapting those of Quisquis [FMMO19, §4], as well
as the original treatment of [BAZB20, §C]. We refer also to Ben-Sasson, Chiesa, Garman, Green, Miers,
Tromer and Virza [BSCG+14]. Unlike [BAZB20, §C], we treat a simplified version of Anonymous Zether
in which only transfers—and no funds or burns—exist (and in which the contract is initialized with its full
capacity). This version is simpler to analyze, and evokes the approach of Quisquis [FMMO19, §4.3]. For
simplicity, we also ignore the existence of epochs in our analysis, and assume that each transaction takes
effect immediately.

We first recall the auxiliary algorithms:

• (y, sk)← Gen(1λ) returns a random keypair (satisfying y = gsk).

• b← Read(acc, sk) decrypts acc[y], where y := gsk, and returns its balance b (obtained by “brute-forcing”
the exponent, assumed to be in the range {0, . . . ,MAX}).

We now have the constituent algorithms:

• σ ← Setup
(
1λ
)

runs a group-generation algorithm G(1λ) and generates commitment scheme params.

• tx :=
(
(Ci, yi)

N−1
i=0 , D, π

)
← Trans(acc, sk, y, R, b∗) generates a transfer transaction, given an anonymity

set R = (yi)
N−1
i=0 containing both y := gsk and y (at indices of opposite parity), as well as the contract’s

current state.

• acc ← Verify(acc, tx) verifies the transaction tx against acc. If tx =
(
(Ci, yi)

N−1
i=0 , D, π

)
is invalid

with respect to acc, Verify sets acc = ⊥; otherwise, it returns a new state acc obtained by updating
acc[yi] ·= (C−1

i , D−1) for each i ∈ {0, . . . , N − 1}.

We denote by Π = (Setup,Trans,Verify) the payment system defined by these algorithms. For each such
Π, we define in addition a stateful smart contract oracle OSC, which maintains a global state acc : G→ G2,
and also accepts transactions (upon each of which it calls Verify). OSC’s state, as well as each transaction
sent to it, are visible to all adversaries defined below.

We introduce a generic experiment setup, upon which our further definitions will build:

Definition 6.1. The generic cryptocurrency experiment CryptA,Π(λ) is defined as:

1. Parameters σ ← Setup
(
1λ
)

are generated and given to A.

2. A outputs a list (bi)
N−1
i=0 for which each bi ∈ {0, . . . ,MAX} and

∑N−1
i=0 bi = MAX. For each i ∈

{0, . . . , N − 1}, a keypair (yi, ski) ← Gen(1λ) is generated, and acc[yi] := Encyi(bi) is stored. OSC is
initialized using the table acc, and S = (yi)

N−1
i=0 is given to A.

3. A is given access to an oracle Transact(·, ·, ·, ·). For each particular call Transact(i, y, R, b∗) for which
yi and y reside in R (and occupy indices of opposite parity), a transaction tx← Trans(acc, ski, y, R, b

∗)
is generated, and is sent to OSC (which executes acc← Verify(acc, tx)).

4. A is given access to an oracle Insert(·), where Insert(tx) sends tx directly to OSC.

31

We define our security properties by adding steps to the above setup.
We first consider “overdraft safety”, called “theft prevention” in Quisquis [FMMO19]. The adversary, to

win, must produce a valid transaction which increases the total balance of a set of accounts she controls (or,
alternatively, which siphons value from an honest account). Unlike Quisquis, we explicitly allow adversarially
generated keys; in this light, we require the adversary to reveal its accounts’ secret keys (mirroring the
revelation of coins in [BSCG+14, Def. C.3]).

Definition 6.2. The overdraft-safety experiment OverdraftA,Π(λ) is defined by adding the following step to
CryptA,Π(λ):

5. A is given access to an oracle Corrupt(·), where Corrupt(i) returns ski. (Denote by C ⊂ S the set of
corrupted public keys at any particular time.)

6. A outputs a transaction tx∗, as well as a list of keypairs (y∗i , sk
∗
i). Consider the following conditions:

(i) There exists some i for which yi ∈ S \ C and b← Read(acc, ski) decreases as a result of tx∗.

(ii) The sum
∑
y∗i 6∈S\C

Read(acc, sk∗i) increases as a result of tx∗.

The result of the experiment is defined to be 1 if (tx∗ is valid and) either of these conditions hold.
The result is also 1 if any of the Read calls fail to terminate (i.e., with a result b ∈ {0, . . . ,MAX}).
Otherwise, the result is 0.

We say that Π is overdraft-safe if, for each PPT adversary A, there exists a negligible function negl for which
Pr[OverdraftA,Π(λ) = 1] ≤ negl(λ).

We now consider privacy, which we call ledger-indistinguishability (following [BSCG+14, Def. C.1]).
Importantly, we must heed the insecurity of multi-recipient El Gamal under insider attacks, discussed for
example in Bellare, Boldyreva and Staddon [BBS03, §4]. Our solution is exactly that of [BBS03, Def. 4.1];
in other words, we require that the adversary reveal the secret keys of all adversarially chosen accounts. In
particular, this measure prevents the adversary from using a public keys whose secret key it does not know
(as in the attack of Subsection 6.2).

In practice, this requirement is captured by our registration procedure, which demands that each ac-
count issue a signature on its own behalf. As [BBS03, §4] mention, we could equally well perform key
extractions (i.e., from these signatures) during our security proofs; this alternative would be unenlightening
and cumbersome.

We finally compare this requirement (i.e., that the secret keys be revealed) with that of step 6. of
OverdraftA,Π above. Though the two requirements are syntactically similar, that of step 5. below is more
restrictive, as we explain now. Requiring that an adversary reveal the keys of those accounts whose value
it inflates does not materially hinder the adversary, who needs those keys anyway to spend the accounts’
funds (as the soundness property of the proof protocol guarantees). On the other hand, an adversary seeking
only to distinguish two transactions could a priori use arbitrary keys—on whose behalf it does not plan to
sign—with no consequence.

Definition 6.3. The ledger-indistinguishability experiment L-INDA,Π(λ) is defined by adding the following
steps to CryptA,Π(λ):

5. A outputs indices i0, i1, public keys y0, y1, quantities b∗0, b
∗
1, and an anonymity set R∗. A also outputs

a secret key ski for each yi ∈ R∗ \ S. Consider the conditions:

(i) For each b ∈ {0, 1}, both yib and yb reside in R∗ (and occupy indices of opposite parity).

(ii) If either y0 6∈ S or y1 6∈ S, then y0 = y1 (i.e., at the same index) and b∗0 = b∗1.

If either of these conditions fails to hold, the result of the experiment is 0. Otherwise, the experimenter
selects a random bit b ← {0, 1} and generates tx ← Trans(acc, skib , yb, R

∗, b∗b); finally, it sends tx to
OSC.

6. A outputs a bit b′. The output of the experiment is defined to be 1 if and only if b′ = b.

32

We say that Π is ledger-indistinguishable if, for each PPT adversary A, there exists a negligible function negl
for which Pr[L-INDA,Π(λ) = 1] ≤ 1

2 + negl(λ).

The condition 5.(ii), inspired by Quisquis [FMMO19, §4.3], also exactly encodes the consistency condition
of [BBS03, Def. 4.1] (namely that adversary’s message vectors coincide over the corrupt keys).

6.8 Protocol and security properties

An explicit (interactive) protocol for Anonymous Zether relation (2) is given in Appendix A. We define the
algorithms Trans and Verify by applying the Fiat–Shamir heuristic to this interactive protocol. In this way,
we obtain a payment system Π = (Setup,Trans,Verify).

Theorem 6.4. If the discrete logarithm problem is hard with respect to G, then Π is overdraft-safe.

Proof. Deferred to Appendix B.

We turn to ledger-indistinguishability. We remark that the interactive protocol of Appendix A is not
zero-knowledge, for the same reason that that of Fig. 5 fails to be. Yet just as Fig. 5’s non-interactive version
is anonymous with respect to adversarially chosen keys, so is Anonymous Zether ledger-indistinguishable:

Theorem 6.5. If the DDH problem is hard with respect to G, then Π is ledger-indistinguishable.

Proof. Deferred to Appendix C.

6.9 Overview of prior work

We now undertake a thorough overview of related work.

6.9.1 Zerocash

Ben-Sasson, Chiesa, Garman, Green, Miers, Tromer and Virza [BSCG+14]’s Zerocash represents the first
fully-featured, cryptographically rigorous payment system; it enhances the efficiency and security of Miers, et.
al’s Zerocoin [MGGR13] in a number of respects. Zerocash is currently deployed live in the cryptocurrency
Zcash. Zerocash features succinct proofs and constant-time verification. Zerocash’s requires a trusted setup,
features a constantly growing UTXO set (cf. [FMMO19]), and is not “deniable” (cf. [FMMO19, §1]); finally,
it also does not admit an efficient, autonomous wallet. Anonymous Zether has no trusted setup, requires
constant storage for full nodes, is deniable, and features an efficient wallet with no trust assumptions.

6.9.2 Monero

Monero [NMt16] is a live cryptocurrency which hides UTXO values; it also obscures each transaction’s input
UTXOs by hiding them within larger rings. Monero is deniable. On the other hand, Monero features a con-
stantly growing UTXO set (cf. [FMMO19]), moreover, it also boasts a relatively weak form of anonymity,
and is vulnerable to “intersection attacks” (see [FMMO19, §8.3]). Monero’s transaction overhead (in com-
putation and communication) grows linearly in the number of UTXOs consumed, which may grow with the
quantity of funds spent. Finally, Monero does not admit an efficient wallet. Anonymous Zether requires
constant storage; it also satisfies a strong notion of anonymity (see Definition 6.3 and Theorem 6.5). Anony-
mous Zether’s overhead is independent of the quantity of funds spent. Finally, Anonymous Zether features
an efficient wallet.

6.9.3 Lelantus

Jivanyan’s Lelantus [Jiv19] enriches Zerocoin so as to feature certain Zerocash-like functionalities—like
arbitrary-denomination coins, hidden coin values, and direct payments—while nonetheless avoiding a trusted
setup. Lelantus’ prover and verifier time grow quasilinearly and linearly, respectively, in the size of the
entire list CMList of coins, a source of inefficiency which explicitly motivated the development of Zero-
cash (cf. [BSCG+14, §1.3]). This list itself, moreover, grows linearly over time, and must be stored (cf.

33

[FMMO19]). Light clients too must store a linearly increasing list of coins. A transaction must include one
separate proof for each coin spent; this overhead may grow with the quantity of funds being spent. Finally,
Lelantus’ direct payments require out-of-band communication over a private channel; anyone who observes
this communication—including, crucially, the sender—can detect when the recipient spends her coins (cf.
[BSCG+14, §1.3]).

Anonymous Zether’s payments require no out-of-band communication, and each transaction’s recipient
is protected from its sender. Its storage is constant in time (per full node and per client); its overhead is
also constant in time (for each particular level of anonymity) and in the quantity being spent.

6.9.4 Quisquis

Fauzi, Meiklejohn, Mercer and Orlandi’s Quisquis [FMMO19] is a cryptocurrency design whose full-node
storage need only grow constantly in time (per user). It also lacks a trusted setup, and is deniable. Quisquis
nonetheless requires that wallets continually scan the blockchain for account state changes [FMMO19, 5.2.3].
Its constant storage property requires that users voluntarily submit DestroyAcct proofs [FMMO19, §5.2.4]; as
the system does not economically incentivize these proofs’ inclusion, it is unclear whether Quisquis’ signature
property would obtain in practice. Finally, Quisquis suffers from a certain race condition [FMMO19, §5.2.6]
which could cause even honest users’ transactions to fail in practice (cf. “front-running”, [BAZB20, §3.1]).

Anonymous Zether’s wallets need not scan the blockchain for incoming transactions. Its constant storage
property is automatic, and does not require voluntary cooperation on the part of users. Finally, it natively
protects against front-running, and honest users’ transactions necessarily succeed.

6.9.5 Zether

Bünz, Agrawal, Zamani and Boneh’s Zether [BAZB20] introduces the account-based paradigm to private
payment; it also prioritizes interoperation with Ethereum. Zether solves many practical challenges associated
with account-based secure payment (such as those concerning “front-running” [BAZB20, §3.1]), and also
admits an efficient wallet. Zether features constant storage per-user, which moreover is automatic.

Zether is confidential (in the sense of hiding transaction amounts), but is not anonymous (in the sense of
hiding participants’ identities) or deniable. An appendix [BAZB20, §D] suggests the anonymous approach
pursued by this paper. Our Anonymous Zether construction efficiently combines the attractive features of
Zether with anonymity.

The attributes of this section are summarized below.

Table 1: Attributes of various anonymous cryptocurrencies.

System Standard
Assump-
tions and

No Trusted
Setup

Strong
Anonymity

Deniability Direct
Payments
w/o Out-
of-Band
Comm.

Full Node’s
Storage is
Constant
Per User

Overhead
Indep. of
Amt. of
Funds
Spent

Honest
Transac-

tions
Necessarily

Succeed

Efficient
Wallet

Zcash X X X
Monero X X X X
Lelantus X X
Quisquis X X X X ? X
Basic Zether X X X X X X
Anon. Zether X X X X X X X X

6.10 Performance

We now describe our implementation of Anonymous Zether. This implementation is open-source, available
at jpmorganchase / anonymous-zether. Surprisingly, Anonymous Zether is competitive—in traditional
measures of efficiency (that is, proving time, verification time, and proof size)—with the standalone cryp-
tocurrencies Zcash, Monero and Quisquis, despite its additional advantages (see Table 1) and the fact that
it operates entirely within an Ethereum smart contract (a highly constrained computing environment).

Our implementation is fully equipped for use “today”. It not only supports the generation and verification
of proofs, but also includes a fully-featured, efficient wallet.

34

https://github.com/jpmorganchase/anonymous-zether

Each Anonymous Zether contract necessarily interoperates with some ERC-20-compliant token contract.
Given an Anonymous Zether contract, our client may either generate a new account or “mount” an existing
one (whose private key has been supplied). Mounting entails querying only 128 bytes from an untrusted full
node, and furthermore takes place in constant time (i.e., it need not scan through prior transactions). Our
client’s “fund” and “burn” methods facilitate the transfer of ERC-20 funds (of the appropriate type) into and
out of, respectively, the Anonymous Zether contract’s escrow pool. Finally, our client’s “transfer” method
fully encapsulates the process of constructing a statement (which requires querying 128 ·N bytes from the
untrusted full node), generating a proof, dispatching both to the Anonymous Zether contract, and finally
updating the wallet’s local account state appropriately if the transaction succeeds. It also asynchronously
receives incoming transfers, using Ethereum’s “event” system.

Our web3-based wallet is written in JavaScript; proving takes place in a Node.js module. Verification
takes place in Solidity contracts. We use only native Solidity code, and do not introduce ad-hoc precompiles.
Our contracts are stringently optimized; our primary verification contract, upon being compiled, yields just
under 20 kilobytes of EVM bytecode, and can be deployed using 6,135,943 gas.

We report online performance measurements below. Each number next to “Transfer” indicates the size
of the anonymity set used (including the actual sender and recipient). Our proving times were obtained on a
standard MacBook Pro, with a 2.6GHz Intel Core i7 processor. The verification time given reflects the time
taken by the local EVM in evaluating a read-only call to the verification contract. Our proof size assumes
32-byte field elements and 64-byte (i.e., uncompressed) points, as Ethereum’s precompiled contracts require.
Our transaction size reflects the size of the full Solidity ABI-encoded data payload, which itself includes both
a statement and its proof. Gas used incorporates not just verification itself, but also the relevant account
maintenance associated with the Zether Smart Contract; our gas measurements do incorporate EIP-1108.
Our “Burn” transaction is actually a “partial burn”, in contrast to that of [BAZB20]; in other words, it
allows a user to withdraw only part of her balance (using a single range proof).

Proving Time Verif. Time Proof Size Tx. Size Gas Used

(ms) (ms) (bytes) (bytes) (units)

Burn 992 50 1,152 1,380 2,405,339

Transfer (2) 1,864 82 2,048 2,628 5,152,200

Transfer (4) 2,052 91 2,624 3,460 5,929,196

Transfer (8) 2,281 110 3,200 4,548 8,519,260

Transfer (16) 2,842 170 3,776 6,148 13,670,599

Transfer (32) 4,286 254 4,352 8,772 24,427,623

Transfer (64) 7,655 491 4,928 13,444 48,764,759

Transfer (N) O(N logN) O(N logN) O(logN) O(N) O(N logN)

We recommend setting N = 8 for practical use; we note that this setting’s gas cost resides well under
the Ethereum block gas limit (currently around 10,000,000).

We now compare our protocol concretely to others along more traditional metrics. We stress that Zcash
and Monero depend on the number of input and output UTXOs consumed and produced. We thus restrict
to transactions in which two (shielded) UTXOs are consumed and two are produced, and use 11 mix-ins per
UTXO in Monero. We fix anonymity sets of size 16 in Quisquis and Anonymous Zether, for comparison.

A few additional factors complicate the comparison. Zcash, Monero and Quisquis use compressed (33-
byte) point representations, whereas Ethereum’s precompiles—and hence Anonymous Zether—do not; this
“inflates” our transaction size. Additionally, our prover and verifier are written in JavaScript and Solidity;
Zcash, Monero and Quisquis are written in C++ and Go. This language difference plausibly inflates our
prover and verifier time by an order of magnitude.

35

https://bitbucket.org/oakland-submission/anonymous-zether/src/master/packages/protocol/contracts/ZetherVerifier.sol

Proving Time (ms) Verification Time (ms) Transaction Size (bytes)

Zcash 5,600 9 2,757

Monero 982 46 2,543

Quisquis 471 72 26,060

Anonymous Zether 2,842 170 6,148

We stress again that Zcash and Monero depend on the quantity of funds spent, whereas Quisquis and
Anonymous Zether do not. For example, fixing N = 16, our transactions become smaller than Monero’s
as soon the latter consumes 7 UTXOs or more (with the number of output UTXOs again fixed at 2). Our
proving time is faster than Zcash’s so long as at least 2 Sapling notes are spent.

We compare in further detail our transaction sizes with those of Quisquis. Our full transactions (i.e.,
each including statement and its proof) feature 2N + 8 log(N) + 20 group elements and 2 log(N) + 10 field
elements (plus an additional 196 bytes used in the Solidity ABI encoding). Quisquis’s (assuming the amount
of recipients t = 1) contain 30N + 22

√
N + 52 group elements and 6N + 10

√
N + 39 field elements. Were an

uncompressed point representation used in both systems, this would amount, in the case N = 16, to total
transaction sizes of 6.1 kB and 45.3 kB, respectively.

References

[BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy
in a smart contract world. In International Conference on Financial Cryptography and Data
Security, 2020. Full version.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE
Symposium on Security and Privacy (S&P), volume 1, 2018. Full version.

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in multi-recipient
encryption schemes. In Proceedings of the 6th International Workshop on Theory and Practice
in Public Key Cryptography, pages 85–99, 2003. Full version.

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and Christophe
Petit. Short accountable ring signatures based on DDH. In Günther Pernul, Peter Y A Ryan,
and Edgar Weippl, editors, Computer Security – ESORICS 2015, volume 9326 of Lecture Notes
in Computer Science, pages 243–265. Springer International Publishing, 2015.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin
and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, volume 9666
of Lecture Notes in Computer Science, pages 327–357. Springer Berlin Heidelberg, 2016.

[BKLZ19] Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. FlyClient: Super-light clients for
cryptocurrencies. Cryptology ePrint Archive, Report 2019/226, 2019. https://eprint.iacr.

org/.

[BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions,
and constructions without random oracles. Journal of Cryptology, 22:114–138, 2009.

[BSCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, pages 459–474, 2014. Full version.

[Coh74] P.M. Cohn. Algebra, volume 1. John Wiley & Sons, 1974.

36

https://eprint.iacr.org/
https://eprint.iacr.org/

[ESS+19] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and Dongxi Liu. Short
lattice-based one-out-of-many proofs and applications to ring signatures. In Robert H. Deng,
Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, Applied Cryptography and
Network Security, pages 67–88. Springer International Publishing, 2019.

[EZS+19] Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Ma-
trict: Efficient, scalable and post-quantum blockchain confidential transactions protocol. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’19, pages 567–584, New York, NY, USA, 2019. Association for Computing Machinery.

[FMMO19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new
design for anonymous cryptocurrencies. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology – ASIACRYPT 2019. Springer International Publishing, 2019.

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how to leak a secret and
spend a coin. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EU-
ROCRYPT 2015, volume 9057 of Lecture Notes in Computer Science, pages 253–280. Springer
Berlin Heidelberg, 2015.

[Jiv19] Aram Jivanyan. Lelantus: Towards confidentiality and anonymity of blockchain transactions
from standard assumptions. Unpublished whitepaper, June 2019.

[JW90] J. Jeong and W. J. Williams. A fast recursive bit-reversal algorithm. In International Conference
on Acoustics, Speech, and Signal Processing, volume 3, pages 1511–1514, 1990.

[KL15] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC Press, second
edition, 2015.

[Kur02] Kaoru Kurosawa. Multi-recipient public-key encryption with shortened ciphertext. In David
Naccache and Pascal Paillier, editors, Public Key Cryptography, volume 2274 of Lecture Notes
in Computer Science, pages 48–63, 2002.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous
distributed E-cash from Bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages
397–411, 2013.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[NMt16] Shen Noether, Adam Mackenzie, and the Monero Research Lab. Ring confidential transactions.
Ledger, 1:1–18, May 2016.

[Nus82] H. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag, 1982.

[RS13] Dorit Ron and Adi Shamir. Quantitative analysis of the full Bitcoin transaction graph. In
Ahmad-Reza Sadeghi, editor, Financial Cryptography and Data Security, pages 6–24, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[TAL97] Richard Tolimieri, Myoung An, and Chao Lu. Algorithms for Discrete Fourier Transform and
Convolution. Springer New York, second edition, 1997.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University
Press, third edition, 2013.

A Full Anonymous Zether Protocol

We provide a detailed proof protocol for the Anonymous Zether relation (2). We denote by n that integer
for which MAX = 2n − 1, and by m that integer for which N = 2m. All vector indices are taken modulo the
size of the vector (in case of overflow). We define and make use of the following functions:

37

• Shift(v, i) circularly shifts the vector v of field elements (i.e., Fq) by the integer i.

• MultiExp(V,v) multi-exponentiates the vector V of curve points by the vector v of field elements.

We mark in blue font those steps which do not appear in [BAZB20], [BBB+18], [GK15] or [BCC+15].

1: P computes...
2: α, ρ←$Fq . begin Bulletproof [BBB+18, §4]
3: aL ∈ {0, 1}2·n s.t.

〈
aL[:n],2

n
〉

= b∗,
〈
aL[n:],2

n
〉

= b′

4: aR = aL − 12·n

5: A = hαgaLhaR

6: sL, sR←$F2·n
q

7: S = hρgsLhsR

8: rA, rB ←$Fq . begin many-out-of-many proof
9: for all ι ∈ {0, 1}, k ∈ {0, . . . ,m− 1} do

10: sample aι,k←$Fq
11: set bι,k = (lι)k, i.e., the kth (little-endian) bit of lι
12: end for
13: A = Com

(
(a0,0, . . . , a1,m−1) ‖ (−a2

0,0, . . . ,−a2
1,m−1) ‖ (a0,0 · a1,0, a0,0 · a1,0); rA

)
14: B = Com

(
(b0,0, . . . , b1,m−1) ‖ (aι,k(1− 2bι,k))

1,m−1
ι,k=0 ‖ (ab0,0,0,−ab1,0,0); rB

)
15: . the bits b0,0 and b1,0 are used as indices here.
16: end P
17: P → V : A,S, A,B
18: V : v←$Fq
19: V → P : v
20: P computes... . in what follows, we denote by ik the kth bit of i.
21: for all ι ∈ {0, 1} do
22: for all k ∈ {0, . . . ,m− 1} do
23: set Fι,k,1(W) := bι,k ·W + aι,k
24: set Fι,k,0(W) := W − Fι,k,1(W)
25: end for
26: for all i ∈ {0, . . . , N − 1} do

27: set Pι,i(W) :=
∑m
k=0 Pι,i,k ·W k :=

∏m−1
k=0 Fι,k,ik(W)

28: end for
29: end for
30: (φk, χk, ψk, ωk)m−1

k=0 ←$Fq
31: set (ξ0, ξ1, ξ2, ξ3, . . . , ξN−1) =

(
1, 1, v, v2, . . . , vN−2

)
32: for all k ∈ {0, . . . ,m− 1} do

33: C̃Ln,k = MultiExp
(

(CLn,i)
N−1
i=0 , (P0,i,k)N−1

i=0

)
· (yl0)φk

34: C̃Rn,k = MultiExp
(

(CRn,i)
N−1
i=0 , (P0,i,k)N−1

i=0

)
· gφk

35: C̃0,k = MultiExp
(

(Ci)
N−1
i=0 , (P0,i,k)N−1

i=0

)
· (yl0)

χk

36: D̃k = gχk

37: ỹ0,k = MultiExp
(

(yi)
N−1
i=0 , (P0,i,k)N−1

i=0

)
· (yl0)

ψk

38: g̃k = gψk

39: C̃X,k =
∏1,N2 −1
ι,j=0

(
gb
∗·(−Pι,l0−2·j,k+Pι,l1−2·j,k)

)ξ2·j+ι
·Dωk

40: ỹX,k = gωk

41: end for
42: end P

Protocol Anonymous Zether

38

43: P → V :
(
C̃Ln,k, C̃Rn,k, C̃0,k, D̃k, ỹ0,k, g̃k, C̃X,k, ỹX,k

)m−1

k=0
44: V : w←$Fq
45: V → P : w
46: P computes...
47: for all ι ∈ {0, 1}, k ∈ {0, . . . ,m− 1} do
48: set fι,k := Fι,k,1(w)
49: end for
50: zA = rB · w + rA
51: end P
52: P → V : (fι,k)

1,m−1
ι,k=0 , zA

53: V : y, z←$Fq
54: V → P : y, z
55: P :
56: l(X) = (aL − z · 1n) + sL ·X
57: r(X) = yn ◦ (aR + z · 1n + sR ·X) + z2 · (2n ‖ 0n) + z3 · (0n ‖ 2n)
58: t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X2 . l and r are elements of F2·n

q [X]; t ∈ Fq[X]
59: τ1, τ2←$Fq
60: Ti = gtihτi for i ∈ {1, 2}
61: end P
62: P → V : T1, T2

63: V : x←$Fq
64: V → P : x
65: P computes...
66: l = l(x) = aL − z · 12·n + sL · x
67: r = r(x) = y2·n ◦ (aR + z · 12·n + sR · x) + z2 · (2n ‖ 0n) + z3 · (0n ‖ 2n)
68: t̂ = 〈l, r〉 . l and r are elements of F2·n

q ; t̂ ∈ Fq
69: τx = τ2 · x2 + τ1 · x
70: µ = α+ ρ · x
71: CRn = (CRn,l0)

wm ·
(∏m−1

k=0 g−φk·w
k
)

. prover “anticipates” certain re-encryptions

72: D = Dwm · g−
∑m−1
k=0 χk·wk

73: y0 = (yl0)w
m ·
(∏m−1

k=0 y−ψk·w
k

l0

)
74: g = gw

m−
∑m−1
k=0 ψk·wk

75: yX =
∏1,N2 −1
ι,j=0 MultiExp

(
(yi)

N−1
i=0 ,Shift

(
(Pι,i(w))N−1

i=0 , 2 · j
))ξ2·j+ι · (∏m−1

k=0 g−ωk·w
k
)

76: ksk, kr, kb, kτ ←$Fq . begin Σ-protocol proving
77: Ay = gksk

78: AD = gkr

79: Ab = gkb ·
(
D−z

2 · CRnz
3
)ksk

80: AX = yX
kr . in some sense, AX replaces Ay

81: At = g−kbhkτ

82: Au = gkskepoch

83: end P
84: P → V : t̂, µ, Ay, AD, Ab, AX , At, Au
85: V : c←$Fq
86: V → P : c
87: P computes...
88: ssk = ksk + c · sk
89: sr = kr + c · r
90: sb = kb + c · wm · (b∗z2 + b′z3)
91: sτ = kτ + c · wm · τx
92: end P

39

93: P → V : ssk, sr, sb, sτ
94: V requires...
95: for all ι ∈ {0, 1}, k ∈ {0, . . . ,m− 1} do
96: set fι,k,1 = fι,k
97: set fι,k,0 = w − fι,k
98: for all i ∈ {0, . . . , N − 1} do

99: set pι,i =
∏m−1
k=0 fι,k,ki

100: end for
101: end for
102: BwA

?
= Com

(
(f0,0, . . . , f1,m−1) ‖fι,k (w − fι,k)

1,m−1
ι,k=0 ‖(f0,0 · f1,0, (w − f0,0)(w − f1,0)); zA

)
103: . including opposite parity check, see Subsection 6.5

104: CLn = MultiExp
(

(CLn,i)
N−1
i=0 , (p0,k)N−1

i=0

)
·
∏m−1
k=0 C̃Ln,k

−wk
. begin comp. of re-encryptions

105: CRn = MultiExp
(

(CRn,i)
N−1
i=0 , (p0,k)N−1

i=0

)
·
∏m−1
k=0 C̃Rn,k

−wk

106: C0 = MultiExp
(

(Ci)
N−1
i=0 , (p0,k)N−1

i=0

)
·
∏m−1
k=0 C̃0,k

−wk

107: D = Dwm ·
∏m−1
k=0 D̃k

−wk

108: y0 = MultiExp
(

(yi)
N−1
i=0 , (p0,k)N−1

i=0

)
·
∏m−1
k=0 ỹ0,k

−wk

109: g = gw
m ·
∏m−1
k=0 g̃k

−wk

110: set (ξ0, ξ1, ξ2, ξ3, . . . , ξN−1) =
(
1, 1, v, v2, . . . , vN−2

)
111: CX =

∏1,N2 −1
ι,j=0 MultiExp

(
(Ci)

N−1
i=0 ,Shift

(
(pι,i)

N−1
i=0 , 2 · j

))ξ2·j+ι ·∏m−1
k=0 C̃X,k

−wk

112: yX =
∏1,N2 −1
ι,j=0 MultiExp

(
(yi)

N−1
i=0 ,Shift

(
(pι,i)

N−1
i=0 , 2 · j

))ξ2·j+ι ·∏m−1
k=0 ỹX,k

−wk

113: . begin Σ-Bullets verification, with modifications for many-out-of-many setting

114: Ay
?
= gssk · y0

−c

115: AD
?
= gsr ·D−c

116: g−sb ·Ab
?
=
(
D−z

2 · CRnz
3
)ssk
·
(
C0
−z2 · CLnz

3
)−c

117: AX
?
= yX

sr · CX
−c

118: δ(y, z) = (z − z2) ·
〈
12·n,y2·n〉− (z3 · 〈1n,2n〉+ z4 · 〈1n,2n〉

)
119: gw

m·c·t̂ · hsτ ?
= gw

m·c·δ(y,z) · gsb ·At ·
(
T x1 · T x

2

2

)wm·c
120: Au

?
= gsskepoch · u−c

121: end V
122: h′ =

(
h0, h

y−1

1 , hy
−2

2 , . . . , hy
−2·n+1

2·n−1

)
. complete inner product argument

123: P = A · Sx · g−z · h′z·y
2·n+z2·(2n‖0n)+z3·(0n‖2n)

124: P and V engage in Protocol 1 of [BBB+18] on inputs (g,h′, Ph−µ, t̂; l, r)

B Overdraft Safety: Proof

Proof of Theorem 6.4. We use a sequence of game hops, following the proof of Theorem 5.3 above.

Game-0: Corresponds to OverdraftA,Π(λ).

Game-1: Same as Game-0, except that the Anonymous Zether protocol is replaced with an interactive
scheme. That is, OSC implements the interactive protocol of Appendix A above, both for “honest”
transactions (carried out by the experimenter, upon calls to Transact(i, y, R, b∗)) and for direct
transactions (effected through Insert(tx)). For the final transaction tx∗, the experimenter itself
randomly generates all challenges.

Game-2: Same as Game-1, except the experimenter, upon procuring the final (interactive) transcript (tx∗),
repeatedly reruns A with the same randomness, but with different challenges v, w, y, z, x, c, so as

40

to obtain a (N − 1, 2m + 1, 2 · n, 4, 3, 2)-tree of accepting transcripts, and returns 0 if any of the
challenges feature collisions. Finally, the experimenter imposes the winning condition of Game-1
on all leaves.

Game-3: Same as Game-2, except the experimenter finally runs the extractor X of P1, as in Lemma 4.5,
to obtain openings b0,0, . . . , b1,m−1, a0,0, . . . , a1,m−1 of the initial commitments B and A, and also

ensures, (for each d and) each challenge w, that the response (fι,k)1,m−1
ι,k=0 satisfies fι,k = bι,k ·w+aι,k

for each ι, k (aborting if any of these steps fail).

Game-4: Same as Game-3, except that the winning condition is narrowed, so as to require in addition that
R∗[l0] ∈ S, where l0 is given in binary by b0,0, . . . , b0,m−1.

Game-5: Same as Game-4, except the experimenter selects a random element y∗ of the initial list S, and then
ultimately aborts, returning 0, unless R∗[l0] = y∗, where l0 is given in binary by b0,0, . . . , b0,m−1.

Recalling that n denotes the bit-length of MAX, we have:

Claim B.1. For each PPT adversary A, there exists a PPT adversary A′, a negligible function negl, and a
polynomial q for which AdvGame-0

A,Π (λ) ≤ q(λ)5+log(2n) · AdvGame-1
A′,Π (λ) + negl(λ).

Proof. This result is analogous to Claim 5.4. There are exactly 5 challenge–response points in the main
Anonymous Zether protocol. In fact, the final Bulletproofs inner product protocol requires an additional
log(2n) rounds; recall that we aggregate two n-bit range proofs. (We suppress this fact from the description
of Game-2 above.)

Abusing notation, we write N in what follows for the size of the final ring R∗, and m for its logarithm.
(Strictly speaking, we should instead introduce some polynomial parameter N(λ) which upper-bounds the
size N of the initial list (bi)

N−1
i=0 .)

Claim B.2. There exists a negligible function, say negl′, for which, for each PPT adversary A′,(
AdvGame-1

A′,Π (λ)
)(N−1)·(2m+1)·2n·24·4n2

≤ AdvGame-2
A′,Π (λ) + negl′(λ).

Proof. This statement merely extends Claim 5.5 above; we iteratively apply Jensen’s inequality for each
level in the tree of transcripts. The quantity 4n2 comes from the inner product proof. Indeed, each inner
product proof (concerning vectors of length 2n) can be extracted only with the aid of an additional 4-ary
tree of depth log(2n) (see [BBB+18, §B]). These trees impose an additional multiplicative constant of

4 · · · · · 4︸ ︷︷ ︸
log(2n)

= 4log(n)+1 = 4 · n2.

Claim B.3. For each PPT adversary A′, there exists a PPT adversary A′′ for which AdvGame-2
A′,Π (λ) =

AdvGame-3
A′,Π (λ) + AdvBindingA′′,Π (λ).

Proof. As in Claim 5.6 above, this is a direct reduction to the binding property.

Claim B.4. Let X be an extractor which—on any tree of valid transcripts tx∗ = ((Ci, yi)
N−1
i=0 , D, π) satisfying

the condition of Game-3—either returns a witness (sk, b∗, b′, r, l0, l1) for which l0’s bits are b0,0, . . . , b1,m−1,

or fails. Then for each PPT adversary A′, there exists a PPT adversary A′′′ for which AdvGame-3
A′,Π (λ) ≤

AdvGame-4
A′,Π (λ) + AdvSoundA′′′,Π(λ). (The latter advantage refers to Sound

(N−1,2m+1,2·n,4,3,2)
A′,X ,Π,R (λ).)

Proof. For X satisfying the hypothesis of the claim, any tree satisfying the condition of Game-3 also satisfies
the condition of Game-4 (unless X fails). Indeed, so long as a witness (sk, b∗, b′, r, l0, l1) in the sense of (2)
exists, the condition 6.(ii) implies 6.(i), which in turn implies that R∗[l0] ∈ S \C. The hypothesis on X then
implies that (if X succeeds) l0’s bits are moreover given by b0,0, . . . , b1,m−1; the condition of Game-4 follows.

Given an arbitrary adversary A′, A′′′ may thus simulate an execution of Game-3 on A′, and return the
tree it obtains from A′. A′′′ wins whenever the tree satisfies Game-3 but not Game-4.

41

Claim B.5. For each PPT adversary A′, AdvGame-4
A′,Π (λ) = N · AdvGame-5

A′,Π (λ).

Proof. The event whereby R∗[l0] = y∗ occurs in exactly 1
N of those executions of Game-4 which A′ wins.

Claim B.6. For each PPT adversary A′, there exists a PPT adversary A′′′′ for which AdvGame-5
A′,Π (λ) =

AdvDLog
A′′′′,Π(λ).

Proof. We convert an adversary A′ targeting Game-5 into an adversary A′′′′ which wins DLogA′′′′,G(λ) with
equal probability. We follow the strategy of Claim 5.8 above.
A′′′′ works as follows, on inputs G, q, g, and h.

1. Generate parameters σ ← Setup(1λ) for which G, q, and g are as given by the experiment input. Give
σ to A′.

2. Given the list (bi)
N−1
i=0 , generate a keypair (yi, ski) ← Gen(1λ) for each i ∈ {0, . . . , N − 1}. For a

randomly chosen index i∗ ∈ {0, . . . , N − 1}, overwrite yi∗ := h. Encrypt acc[yi] := Encyi(bi) for each i,
and initialize OSC with acc. Finally, give the modified list S = (yi)

N−1
i=0 to A′.

3. For each oracle query Transact(i, y, R, b∗), replace each Schnorr protocol involving sk by a simulation,
exactly as specified in Game-1.

4. For each query Corrupt(i) for which i 6= i∗, return ski; if i = i∗, abort.

5. When A outputs tx∗ =
(
(Ci, yi)

N−1
i=0 , D, π∗

)
, then rewind it (as in Game-2) so as to obtain an (N −

1, 2m+ 1, 2 · n, 4, 3, 2)-tree of proofs π∗. If any collisions occur between the challenges, then abort. If,
for any among the resulting proofs, either of the conditions of step 6. fails to hold, then abort.

6. By running the extractor of Lemma 4.5, obtain openings b0,0, . . . , b1,m−1, a0,0, . . . , a1,m−1 of the initial
commitments B and A for which bι,k ∈ {0, 1}. If for any w it holds that fι,k 6= bι,k · w + aι,k for some
ι, k, abort.

7. Determine whether R∗[l0] = yi∗ , where l0 is given in binary by b0,0, . . . , b0,m−1. If it doesn’t, abort.

8. Given these conditions, use the exact same procedure as in Claim 5.8, step 8. (on the first list of bits,
b0,0, . . . , b0,m−1) to obtain, with probably 1, an element sk for which gsk = yi∗ . Return sk.

A′’s view in its simulation by A′′′′ exactly matches its view in Game-5 (provided that A′′′′ doesn’t abort
upon a call Corrupt(i∗)), and A′′′′ wins whenever A′ does. Finally, as in Claim 5.8, A′′′′’s tendency to abort
in step 4. doesn’t impact its probability of success.

Putting these facts together, we see that for arbitrary A, and for A′, negl, q, negl′, A′′, X , A′′′, and A′′′′
as above, AdvOverdraft

A,Π (λ) is bounded from above by:

q(λ)5+log(2n) ·
(
N · AdvDLog

A′′′′,G(λ) + AdvSoundA′′′,Π(λ) + AdvBindingA′′,Com(λ) + negl′(λ)
) 1

(N−1)·(2m+1)·2n·24·4n2

+ negl(λ).

In light of the discrete logarithm assumption on G and the binding property, it remains only to construct an
extractor X which satisfies the hypothesis of Claim B.4 and for which AdvSoundA′′′,Π(λ) is negligible. We defer
this fact to Lemma B.8 below, which completes the proof.

Remark B.7. The looseness of this bound owes in large part to Bulletproofs, whose extractor requires a
large tree (both in depth and branching factor). We increase the size of the tree only modestly, i.e., by
adding two levels (with branching factors N − 1 and 2m+ 1, respectively). A further level comes from the
Σ-Bullets challenge c.

The following lemma shows that Anonymous Zether is sound, so long as Com is binding:

Lemma B.8. There exists an extractor X which satisfies the hypothesis of Claim B.4, and for which, for
each PPT adversary A′′′, there exists an adversary A′′′′′ for which AdvSoundA′′′,Π(λ) = AdvBindingA′′′′′,Com(λ).

42

Proof. It suffices to construct an extractor X which satisfies the hypothesis of Claim B.4, and for which,
given an arbitrary statement ((yi, Ci, CLn,i, CRn,i)

N−1
i=0 , D) and an arbitrary (N − 1, 2m + 1, 2 · n, 4, 3, 2)-

tree of accepting transcripts, returns either a witness (sk, b∗, b′, r, l0, l1) as in (2) or a binding viola-
tion. Indeed, given such X and an arbitrary adversary A′′′, A′′′′′ may simply simulate an execution of

Sound
(N−1,2m+1,2·n,4,3,2)
A′′′,X ,Π,R (λ), and return the binding violation if and only if X fails.

We begin with the description of X . X first performs a Σ-Bullets extraction, as in [BAZB20, §G], modified
to suit the “re-encrypted” setting. For notational convenience, we assume in what follows that each challenge
w 6= 0.

For each particular assignment of values to the challenges w, y, z, x (and for arbitrarily chosen v), by using
the standard Schnorr extractor on the two leaves c, X obtains from the verification equation Ay = gssk · y0

−c

a quantity ŝk (a priori unequal to sk) for which gŝk = y0. Similarly, from the two copies of the Σ-Bullets
verification equation 116, X obtains a quantity b (which we tacitly divide by wm) and an equality:

gw
m·b =

(
D
−ŝk · C0

)−z2
·
(
CRn

−ŝk · CLn
)z3

(3)

for ŝk as above. Finally, from the two copies of the Bulletproofs verification equation 119 (and again dividing
throughout by wm), X obtains a quantity τx, as well as an expression:

gt̂ · hτx = gδ(y,z) · gb · T x1 · T x
2

2 . (4)

X now performs a Bulletproofs extraction, essentially as in [BBB+18, §C]. For completeness, we carry
through the details. For each assignment of values to the challenges w, y, z (and v as before), X runs for each
value x the inner product extractor, so as to obtain vectors l and r for which P = hµ ·gl · (h′)r and t̂ = 〈l, r〉.
(Technically, our tree of transcripts should be augmented so as to incorporate, for each x, a log(n)-depth tree
containing O(n2) further transcripts, upon which the inner product extractor may operate. For notational
convenience, we suppress this matter.) Using the resulting vectors for two distinct challenges x—and the

representations P = A · Sx · g−z · h′z·y
2·n+z2·(2n‖0n)+z3·(0n‖2n)

—X obtains openings α,aL,aR and ρ, sL, sR
of A and S (respectively). If, for any x, equalities of the form of lines 66 and 67 do not hold, X returns the
corresponding binding violation of P .

Otherwise, we observe that necessarily t̂ = t(X) for each x, where t(X) := 〈l(X), r(X)〉 (and l(X) and
r(X) are defined as in 56 and 57 with respect to the above openings). By constructing a Vandermonde
matrix in the challenges x and multiplying the vector of values (t̂, τx) by its inverse, X obtains, in view of
(4), openings for gb+δ(y,z) as well as for T1 and T2. Barring a second binding violation, we conclude in fact
that b+ δ(y, z) = t0 for each x. Indeed, both sides of this equality are (in this case) uniquely characterized
as the first component of that vector whose image equals t̂ under each “evaluation-at-x” linear functional.

We conclude in particular from the definitions of t(X) and δ(y, z) that:

b = t0 − δ(y, z) =
〈
aL,y

2·n ◦ aR
〉

+
〈
aL − 12·n − aR,y

2·n〉 · z +
〈
aL[:n],2

n
〉
· z2 +

〈
aL[n:],2

n
〉
· z3

for each w, y and z. Exponentiating both sides of this equality by g (and also multiplying them by wm), we
derive the following alternative expression for the right-hand side of (3):

gw
m·〈aL,y2·n◦aR〉 ·

(
gw

m·〈aL−12·n−aR,y2·n〉
)z
·
(
gw

m·〈aL[:n],2
n〉
)z2
·
(
gw

m·〈aL[n:],2
n〉
)z3

.

We conclude immediately (i.e., after inverting a 4×4 Vandermonde matrix in the challenges z and applying it
to both representations) that

〈
aL,y

2·n ◦ aR
〉

= 0 and
〈
aL − 12·n − aR,y

2·n〉 = 0, as well as that g−w
m·b∗ =

D
−ŝk · C0 and gw

m·b′ = CRn
−ŝk · CLn, where we denote b∗ :=

〈
aL[:n],2

n
〉

and b′ :=
〈
aL[n:],2

n
〉
. From the

first two equalities at all 2 · n challenges y, we conclude that aL ∈ {0, 1}2·n. It follows immediately that b∗

and b′ reside in {0, . . . ,MAX} (from the construction of these latter values).
X continues as follows. By running the extractor of Lemma 4.5 on three values w, X obtains openings

b0,0, . . . , b1,m−1, a0,0, . . . , a1,m−1 of the initial commitments B and A for which bι,k ∈ {0, 1}. If for any w
it holds that the response fι,k 6= bι,k · w + aι,k for some ι, k, X returns the corresponding binding violation

43

of BwA. Otherwise, it uses the bits bι,0, . . . , bι,m−1 to determine the witness lι (for each ι ∈ {0, 1}). It
then uses the openings bι,k and aι,k to reconstruct the polynomials Pι,k(W) (for each ι, k), and in particular
representations, valid for each w, of the form:

(y0, g) =

(
yw

m

l0 ·
m−1∏
k=0

ŷ0,k
−wk

, gw
m

·
m−1∏
k=0

g̃k
−wk

)
,

(
C0, D

)
=

(
Cw

m

l0 ·
m−1∏
k=0

Ĉ0,k

−wk
, Dwm ·

m−1∏
k=0

D̃k

−wk
)
,

(
CLn, CRn

)
=

(
Cw

m

Ln,l0 ·
m−1∏
k=0

ĈLn,k
−wk

, Cw
m

Rn,l0 ·
m−1∏
k=0

ĈRn,k
−wk

)
,

for easily computable elements
(
ŷ0,k, Ĉ0,k, ĈLn,k, ĈRn,k

)m−1

k=0
which don’t depend on w.

From the equalities g−w
m·b∗ = D

−ŝk · C0, gw
m·b′ = CRn

−ŝk · CLn, and gŝk = y0, X obtains in turn the
relationships

yw
m

l0 ·
m−1∏
k=0

ŷ0,k
−wk

=

(
gw

m

·
m−1∏
k=0

g̃k
−wk

)ŝk

,

(
gb
∗
· Cl0

)wm
·
m−1∏
k=0

Ĉ0,k

−wk
=

(
Dwm ·

m−1∏
k=0

D̃k

−wk
)ŝk

,

(
g−b

′
· CLn,l0

)wm
·
m−1∏
k=0

ĈLn,k
−wk

=

(
Cw

m

Rn,l0 ·
m−1∏
k=0

ĈRn,k
−wk

)ŝk

.

The discrete logarithms with respect to g of these equalities give three algebraic equations, with unknown
coefficients, which each point (w, ŝk) simultaneously satisfies:

log(yl0) · wm −
m−1∑
k=0

log(ŷ0,k) · wk =

(
1 · wm −

m−1∑
k=0

log(g̃k) · wk
)
· ŝk, (5)

log(gb
∗
· Cl0) · wm −

m−1∑
k=0

log(Ĉ0,k) · wk =

(
log(D) · wm −

m−1∑
k=0

log(D̃k) · wk
)
· ŝk (6)

log(g−b
′
· CLn,l0) · wm −

m−1∑
k=0

log(ĈLn,k) · wk =

(
log(CRn,l0) · wm −

m−1∑
k=0

log(ĈRn,k) · wk
)
· ŝk. (7)

Applying Theorem 3.12 (with n = 2m + 1) to the polynomials r(W) and t(W) given by (5)’s left- and
right-hand sides, we conclude exactly as in Claim 5.8 that sk := log(yl0) is computable using the Extended

Euclidean algorithm, and in particular is given by lc(r(W)) = lc(rj∗(W)) · (lc(tj∗(W)))
−1

.

In fact, the right-hand side lc(rj∗(W)) · (lc(tj∗(W)))
−1

is independent of the choice of polynomials r(W)

and t(W) for which r(w) = t(w) · ŝk for all (w, ŝk). (We note that (5), (6), and (7) simultaneously hold for all

2m+1 pairs (w, ŝk).) Applying Theorem 3.12 to (6), then, we see that log(gb
∗ ·Cl0) · log(D)−1 = lc(rj∗(W)) ·

(lc(tj∗(W)))
−1

= log(yl0). Similarly, from (7) we see that log(g−b
′ ·CLn,l0) · log(CRn,l0)−1 = log(yl0). These

latter facts themselves imply (respectively) that Cl0 = g−b
∗
Dsk and CLn,l0 = gb

′
Csk
Rn,l0

, as required by (2).
We continue with the operation of X . For each assignment of values to the challenges v, w, X uses the

equality AD = gsr · D−c for two values c (and arbitrary y, z, x) to obtain an element r for which gr = D.
Exactly as in the proof of Theorem 4.9, it constructs using the P0,k(W) and P1,k(W) an expression:

(
CX , yX

)
=

1,N2 −1∏

ι,j=0

C
ξ2·j+ι
lι+2·j

wm

·
m−1∏
k=0

ĈX,k
−wk

,

1,N2 −1∏
ι,j=0

y
ξ2·j+ι
lι+2·j

wm

·
m−1∏
k=0

ŷX,k
−wk

 ,

44

where (ξ0, ξ1, ξ2, ξ3, . . . , ξN−1) :=
(
1, 1, v, v2, . . . , vN−2

)
, and the elements

(
ĈX,k, ŷX,k

)m−1

k=0
don’t depend on

w. From the verification equation AX = yX
sr · CX

−c
, it holds moreover that CX = yX

r, and hence that:1,N2 −1∏
ι,j=0

C
ξ2·j+ι
lι+2·j

wm

·
m−1∏
k=0

ĈX,k
−wk

=

1,N2 −1∏

ι,j=0

y
ξ2·j+ι
lι+2·j

wm

·
m−1∏
k=0

ŷX,k
−wk

r

.

For each v, X uses copies of this equation for m+ 1 values w (i.e., by inverting a Vandermonde matrix in w

and reading off its bottom row) to derive the equality
(∏1,N2 −1

ι,j=0 C
ξ2·j+ι
lι+2·j

)r
=
∏1,N2 −1
ι,j=0 y

ξ2·j+ι
lι+2·j . Finally, using

copies of this equation for N − 1 values v (and inverting a final Vandermonde matrix, in v), X obtains the

individual equalities (yl0 · yl1)r = Cl0 · Cl1 and {(ylι+2·j)
r = Clι+2·j}

1,N2 −1
ι,j=0,1.

From the equality FwE = Com ((f0,0 · f1,0, (w − f0,0)(w − f1,0)); zE) at three values w, it follows that the
(a priori quadratic) polynomials F0,0,1(W) ·F1,0,1(W) and (W −F0,0,1(W)) ·(W −F1,0,1(W)) are both in fact
linear in W , and hence that their leading coefficients—namely, b0,0 ·b1,0 and (1−b0,0)·(1−b1,0), respectively—
are both 0. This latter fact encodes exactly that the least-significant bits b0,0 and b1,0, respectively, of l0 and
l1 satisfy b0,0 ∧ b1,0 and ¬b0,0 ∧ ¬b1,0, or in other words b0,0 ⊕ b1,0 = 1, and hence that l0 6≡ l1 mod 2. This

in turn, together with the equalities {(ylι+2·j)
r = Clι+2·j}

1,N2 −1
ι,j=0,1 obtained above (and a re-indexing), implies

finally the equalities {yri = Ci}i 6∈{l0,l1} required by (2). This completes the extraction process.

Remark B.9. This soundness property, alongside its role in the proof of Theorem 6.4, implies in addition
the a priori untrue fact that CryptA,Π is well-defined, in that A’s intermediate Insert(tx) calls can’t mangle
honest (or even corrupt) accounts yi ∈ S, and hence that each Transact(·, ·, ·, ·) query is guaranteed to yield
a valid transaction. More precisely, any A for which these properties fail in non-negligibly many executions
of CryptA,Π can be converted into an adversary A′ who successfully attacks BindingA′,Com with respect to
the Pedersen scheme.

C Ledger Indistinguishability: Proof

Proof of Theorem 6.5. We again use a sequence of game hops, following the proof of Theorem 5.9 above.

Game-0: Corresponds to L-INDA,Π(λ).

Game-1: Same as Game-0, except that the experimenter simulates all Schnorr proofs involving sk in each
transaction it constructs. That is, the experimenter randomly generates c and ssk, and sets Ay :=

gssk ·y0
−c, as well as Ab := gsb ·

(
D
−z2 · CRn

z3
)ssk
·
(
C0
−z2 · CLn

z3
)−c

. Finally, the experimenter

aborts if any simulation yields an implicit clash with some prior random oracle query.

Game-2: Same as Game-1, except the experimenter uses a freshly sampled key y∗—instead of yib—in its
computation of the final challenge signature tx← Trans(acc, skib , yb, R

∗, b∗b); that is, it computes:

(ỹ0,k, g̃k) :=

(
N−1∏
i=0

y
P0,i,k

i · (y∗)ψk , gψk
)
,

(
C̃0,k, D̃k

)
:=

(
N−1∏
i=0

C
P0,i,k

i (y∗)χk , gχk

)
,

(
C̃Ln,k, C̃Rn,k

)
:=

(
N−1∏
i=0

C
P0,i,k

Ln,i · (y
∗)φk ,

N−1∏
i=0

C
P0,i,k

Rn,i · g
φk

)
,

for each k ∈ {0, . . . ,m− 1}.

45

Game-3: Same as Game-2, except the experimenter, in the final transaction tx← Trans(acc, skib , yb, R
∗, b∗b),

simulates additional zero-knowledge proofs. That is, the experimenter also simulates the quantities
A,B,C,D,E, F, v, w, (fι,k)1,m−1

ι,k=0 , using the many-out-of-many simulator of Theorem 4.10. The ex-

perimenter simulates A,S, y, z, T1, T2, x, t̂, µ using the Bulletproofs SHVZK simulator [BBB+18,
§3]. Finally, the experimenter runs the Σ-Bullets simulator [BAZB20, §G]. In particular, the exper-

imenter randomly generates sr, and sets AD := gsr ·D−c and AX := yX
sr ·CX

−c
; the experimenter

also randomly generates sb and sτ , and assigns At := gw
m·c·(t̂−δ(y,z)) ·hsτ ·

(
T x1 · T x

2

2

)−wm·c
· g−sb .

The experimenter aborts if any of these simulations induce random oracle inconsistencies.

Claim C.1. For each PPT adversary A, there exists a negligible function, say negl, for which AdvGame-0
A,Π (λ) ≤

AdvGame-1
A,Π (λ) + negl(λ).

Proof. All Schnorr simulations are perfect; the proof proceeds exactly as in Claim 5.10.

Claim C.2. For each PPT adversary A, there exists a PPT adversary A′ for which AdvGame-1
A,Π (λ) =

AdvGame-2
A,Π (λ) + 2 · AdvDDH

A′,G(λ).

Proof. We proceed as in Claim 5.11. We define an algorithm A′ attacking DDHA′,G(λ), which “interpolates”
between the games Game-1 and Game-2. A′ operates as follows, on the inputs G, q, g, h1, h2, and h′.

1. Generate parameters σ ← Setup
(
1λ
)

for which G, q, and g are as given by the experiment input. Give
σ to A.

2. Given the list (bi)
N−1
i=0 , generate random scalars (ψi)

N−1
i=0 , and set yi := (h1)ψi for each i ∈ {0, . . . , N−1}.

Encrypt acc[yi] := Encyi(bi) for each i, and initialize OSC with acc. Finally, give S := (yi)
N−1
i=0 to A.

3. For each query Transact(i, y, R, b∗), simulate all Schnorr protocols involving sk, as prescribed in Game-1.
Compute all other elements as specified by the protocol.

4. For each oracle query Insert(tx), forward tx to OSC.

5. When A outputs i0, i1, r0, r1, b
∗
0, b
∗
1, and R∗ (and if the conditions of step 5. hold), choose a uniform

bit b ∈ {0, 1}. During the construction of the proof π, perform the replacements:

(ỹ0,k, g̃k) :=

(
N−1∏
i=0

y
P0,i,k

i · (h′)ψib ·ψk , (h2)ψk

)
,

(
C̃0,k, D̃k

)
:=

(
N−1∏
i=0

C
P0,i,k

i (h′)ψib ·χk , (h2)χk

)
,

(
C̃Ln,k, C̃Rn,k

)
:=

(
N−1∏
i=0

C
P0,i,k

Ln,i · (h
′)ψib ·φk ,

N−1∏
i=0

C
P0,i,k

Rn,i · (h2)φk

)
,

for each k ∈ {0, . . . ,m− 1}. Finally, simulate the Schnorr protocols involving ssk, as above.

6. When A outputs b′, return whether b′
?
= b.

A′ is designed precisely so that Pr[Game-1A,Π(λ) = 1] = Pr[outA′ (DDHA′,G(λ)) = 1 | b′′ = 1] and
Pr[Game-2A,Π(λ) = 1] = Pr[outA′ (DDHA′,G(λ)) = 1 | b′′ = 0], where b′′ here refers to the DDH experi-
menter’s hidden bit. The result follows exactly as in Claim 5.11.

Claim C.3. For each PPT adversary A, there exists a PPT adversary A′′ and a negligible function negl′

for which AdvGame-2
A,Π (λ) ≤ AdvGame-3

A,Π (λ) + 2 · AdvHidingA′′,Com(λ) + negl′(λ).

Proof. The proof of this claim is analogous to that of Claim 5.12. We observe that all protocols are perfectly
SHVZK except for (perhaps) the bit commitment protocol, whose reduction is discussed in Claim 5.12.

46

We now recall the multi-recipient, randomness-reusing encryption experiment of [BBS03, Def. 4.1],
and in particular its specialization to the multi-recipient, randomness-reusing El Gamal scheme Π =
(Setup,Gen,Enc,Dec). For convenience, we reproduce this specialization below. We give also to the ad-
versary an LR-oracle for the “both sides El Gamal” experiment sketched in Example 3.8 above, under an
unrelated key (see step 4. below). Explicitly:

Definition C.4 (Bellare–Boldyreva–Staddon [BBS03, Def. 4.1]). The multi-recipient, randomness-reusing

El Gamal experiment RR-MREG
N(·)
A,G (λ) is defined as:

1. Parameters (G, q, g)← G(1λ) are generated and given to A.

2. A outputs an integer N ≤ N(λ).

3. Keypairs (yi, ski)← Gen(1λ) for i ∈ {0, . . . , N−1} are generated, and (yi)
N−1
i=0 is given to A. A uniform

bit b← {0, 1} is chosen.

4. An extra key y∗ is also generated. A is given access to y∗ and to an oracle LRy∗,b(·, ·), where
LRy∗,b((M0,m0), (M1,m1)) returns (Mb · (y∗)r,mb ·gr) for a fresh randomly generated element r ← Fq.

5. At any point during the experiment, A outputs vectors (m0,i)
N−1
i=0 and (m1,i)

N−1
i=0 , together with a

vector (mi)
N(λ)−1
i=N and additional keypairs (yi, ski)

N(λ)−1
i=N . For (fresh) random r ← Fq, A is given

D := gr, as well as, for each i ∈ {0, . . . , N(λ)− 1}, the element Ci := mi ·Dski (where mi := mb,i).

6. A outputs a bit b′. The output of the experiment is defined to be 1 if and only if b′ = b.

We say that multi-recipient, randomness-reusing El Gamal is secure if, for each PPT adversary A, there

exists a negligible function negl for which Pr[RR-MREG
N(·)
A (λ) = 1] ≤ 1

2 + negl(λ).

Finally:

Claim C.5. For each PPT adversary A, there exists a PPT adversary A′′′ for which AdvGame-3
A,Π (λ) =

AdvRR-MREG
A′′′,E (λ).

Proof. We fix an arbitrary adversary A attacking Game-3; we denote by N(·) a polynomial upper bound on
the sum of the sizes of A’s initial list (bi)

N−1
i=0 and of the ring R∗ of step 5. (where both sizes are viewed

as functions of the security parameter λ). We define an adversary A′′′ attacking RR-MREG
N(·)
A′′′,G (i.e., its

modified version given above) as follows. A′′′ is given inputs G, q, g.

1. Construct parameters σ which are compatible with the inputs G, q, g, and give σ to A.

2. When A outputs (bi)
N−1
i=0 , output N . Upon receiving S := (yi)

N−1
i=0 , compute acc[yi] := Encyi(bi) for

each yi (i.e., using standard El Gamal) and initialize OSC with acc. Give S to A.

3. Upon each oracle query Transact(i, y, R, b∗), construct tx as follows. Use the implicit “CPA oracle” of
multi-recipient El Gamal to construct the statement ((Ci, yi)

N−1
i=0 , D). When constructing the proof π,

replace all Schnorr protocols involving sk by simulations, as specified in Game-1 above.

4. For each oracle query Insert(tx), forward tx to OSC.

5. When A outputs i0, i1, y0, y1, b
∗
0, b
∗
1, and R∗, together with secret keys ski for those yi ∈ R∗ \ S (and

if the conditions of step 5. hold), proceed as follows. Without loss of generality—i.e., after possibly
shrinking S, N , and N(λ)—assume that R∗ takes the form (y0, . . . , yN−1, yN , . . . , yN(λ)−1) (i.e., where
yi for i ∈ {N, . . . , N(λ) − 1} are adversarially generated). Initialize empty (i.e., identity-element)

vectors (m0,i)
N−1
i=0 , (m1,i)

N−1
i=0 , and (mi)

N(λ)−1
i=N . Set m0,i0 := g−b

∗
0 and m1,i1 := g−b

∗
1 . If y0 ∈ S

and y1 ∈ S, set m0,r0 := gb
∗
0 and m1,r1 := gb

∗
1 , where r0 and r1 are the indices in S of y0 and y1,

respectively. Otherwise, set mr := gb
∗
, where r ∈ {N, . . . , N(λ) − 1} is the index of y := y0 = y1 in

R∗ and b∗ := b∗0 = b∗1 (we use 5.(ii) here).

47

6. Simulate the elements A,B,C,D,E, F, v, w, (fι,k)1,m−1
ι,k=0 as prescribed by Game-3. (Note that, as in

Appendix A, two executions of Fig. 3, corresponding respectively to the indices ι ∈ {0, 1}, are com-
bined.) Using the simulated quantities w and (f0,k)m−1

k=0 and the candidate indices i0 and i1, construct

exactly as in step 3. of Claim 5.13 above degree-m polynomials P0,0,i(X) =
∑m−1
k=0 P0,0,i,k · Xk and

P1,0,i(X) =
∑m−1
k=0 P1,0,i,k ·Xk (for i ∈ {0, . . . , N(λ) − 1}). Similarly, use (f1,k)m−1

k=0 and the recipient
indices r0 and r1 defined above to construct P0,1,i(X) and P1,1,i(X).

Assume without loss of generality the existence of log(N(λ)) further unused honest keys in S, say
(ỹX,k)m−1

k=0 . (Tacitly, we replace N with N + log(N(λ)) and N(λ) with N(λ) + log(N(λ)); we avoid
making this explicit for notational reasons.) For each k ∈ {0, . . . ,m− 1}, over the index corresponding
to the key ỹX,k, write into the respective message vectors (m0,i)

N−1
i=0 and (m1,i)

N−1
i=0 the elements∏1,N2 −1

ι,j=0

(
gb
∗
0 ·(−P0,ι,i0−2·j,k+P0,ι,r0−2·j,k)

)ξ2·j+ι
and

∏1,N2 −1
ι,j=0

(
gb
∗
1 ·(−P1,ι,i1−2·j,k+P1,ι,r1−2·j,k)

)ξ2·j+ι
.

7. Output the (extended) vectors (m0,i)
N−1
i=0 and (m1,i)

N−1
i=0 , along with (mi)

N(λ)−1
i=N , and (yi, ski)

N(λ)−1
i=N .

In this way, obtain shared-randomness encryptions (Ci, D)
N(λ)−1
i=0 under (yi)

N(λ)−1
i=0 ; from the extensions

defined above, obtain “encryptions” (C̃X,k, D)m−1
k=0 (let’s say) under the “public keys” (ỹX,k)m−1

k=0 .

8. By submitting tuples
(

(
∏N−1
i=0 y

P0,0,i,k

i , id), (
∏N−1
i=0 y

P1,0,i,k

i , id)
)

to LRy∗,b, obtain standard El Gamal

encryptions (ỹ0,k, g̃k) under y∗ (i.e., for each k ∈ {0, . . . ,m− 1}). Similarly, by submitting the tuples(
(
∏N−1
i=0 C

P0,0,i,k

i , id), (
∏N−1
i=0 C

P1,0,i,k

i , id)
)

, obtain standard encryptions (C̃0,k, D̃k) under y∗. Finally,

submit tuples ((N−1∏
i=0

C
P0,0,i,k

Ln,i ,

N−1∏
i=0

C
P0,0,i,k

Rn,i

)
,
(N−1∏
i=0

C
P1,0,i,k

Ln,i ,

N−1∏
i=0

C
P1,0,i,k

Rn,i

))
,

for k ∈ {0, . . . ,m − 1}, to obtain the “both-sides encryptions” (C̃Ln,k, C̃Rn,k). In particular, these
responses determine the intermediate quantities y0, g, C0, D,CLn, CRn.

9. Simulate the remaining quantities AD, AX , and At as in Game-3. Abort if any random oracle incon-
sistencies occur. Give the final proof π to A.

10. When A outputs a bit b′, return the bit b′.

A’s view in its simulation by A′′′ exactly matches its view in Game-3; moreover, A′′′ wins whenever A wins.
This completes the construction.

Putting these facts together, we see that for arbitrary A, and for negl, A′, A′′ and A′′′ as given above:

AdvL-INDA,Π (λ) ≤ negl(λ) + 2 · AdvDDH
A′,G(λ) + 2 · AdvHidingA′′,Com(λ) + negl′(λ) + AdvRR-MREG

A′′′,E (λ).

Under the DDH assumption, the El Gamal scheme is CPA-secure (see [KL15, Thm. 11.18]); in view of its
“reproducibility” [BBS03, Lem. 7.1], we conclude from [BBS03, Thm. 6.2] that multi-recipient, randomness-
reusing El Gamal is secure (i.e., under the DDH assumption). The result thus follows from the DDH
assumption on G and the hiding property.

48

	Introduction
	Anonymous Zether
	Anonymous Zether as a ``Mobile Cryptocurrency''
	Technical challenges

	Overview of our contribution
	Review of one-out-of-many proofs
	Idea of many-out-of-many proofs
	Correction terms and linear maps
	A canonical example
	Circular convolutions and the number-theoretic transform

	Security Definitions
	Groups
	Commitment schemes
	An alternate notion of hiding

	Zero-knowledge proofs
	Rational function interpolation

	Many-out-of-Many Proofs
	Commitments to bits
	Overview of Groth:2015aa
	Main protocol
	Efficiency
	Analysis of Groth:2015aa
	Efficiency analysis of many-out-of-many proofs

	Applications
	Ring multisignatures
	An application to Monero

	An Alternative Ring Signature
	Security definitions
	Ring signature protocol

	Application: Anonymous Zether
	Review of basic and anonymous Zether
	Basic Zether
	Anonymous Zether

	Insider and ``rogue-key'' attacks
	Cryptographic approach to anonymity
	Reducing prover runtime to O(N logN)
	The opposite parity requirement
	Technique
	Privacy implications
	Eliminating the requirement

	Use of ring signatures
	Security definitions
	Protocol and security properties
	Overview of prior work
	Zerocash
	Monero
	Lelantus
	Quisquis
	Zether

	Performance

	Full Anonymous Zether Protocol
	Overdraft Safety: Proof
	Ledger Indistinguishability: Proof

