
Public-Key Generation
with Verifiable Randomness

Olivier Blazy1, Patrick Towa2,3, Damien Vergnaud4,5

1 Universite de Limoges
2 IBM Research – Zurich

3 DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France
4 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

5 Institut Universitaire de France

Abstract. We revisit the problem of proving that a user algorithm se-
lected and correctly used a truly random seed in the generation of her
cryptographic key. A first approach was proposed in 2002 by Juels and
Guajardo for the validation of RSA secret keys. We present a new secu-
rity model and general tools to efficiently prove that a private key was
generated at random according to a prescribed process, without revealing
any further information about the private key.
We give a generic protocol for all key-generation algorithms based on
probabilistic circuits and prove its security. We also propose a new pro-
tocol for factoring-based cryptography that we prove secure in the afore-
mentioned model. This latter relies on a new efficient zero-knowledge
argument for the double discrete logarithm problem that achieves an ex-
ponential improvement in communication complexity compared to the
state of the art, and is of independent interest.

1 Introduction

Cryptographic protocols are commonly designed under the assumption that the
protocol parties have access to perfect (i.e., uniform) randomness. However, ran-
dom sources used in practical implementations rarely meet this assumption and
provide only a stream of bits with a certain “level of randomness”. The quality
of the random numbers directly determines the security strength of the sys-
tems that use them. Following preliminary work by Juels and Guajardo [35] and
Corrigan-Gibbs, Mu, Boneh and Ford [22], we revisit the problem of proving that
a cryptographic user algorithm has selected and correctly used a truly random
seed in the generation of her cryptographic public–secret key pair.

Related Work. A prominent example that the use of randomness in public-key
cryptography (and especially in key-generation protocols) is error-prone is the
recent randomness failure known as the ROCA vulnerability [42]. This weak-
ness allows a private key to be recovered efficiently from the public key only
(in factoring-based cryptography). The flawed key-generation algorithm selects
specific prime numbers as part of the private key instead of generating uniformly
random primes and many certified devices were shown vulnerable(e.g., Estonian

and Slovakian smartcards and standard cryptographic libraries). This kind of
weaknesses is not new as in 2012, Lenstra, Hughes, Augier, Bos, Kleinjung and
Wachter [36] did a sanity check of factoring-based public keys collected on the
web. They showed that a significant percentage of public keys (0.5%) share a
common prime factor, and this fact was explained [33] by the generation of
these low entropy keys during booting. Since cryptographic failures due to weak
randomness can be dire [42,36,33], designers should build schemes that can with-
stand deviations of the random sources from perfect randomness.

Following seminal works by Simmons on the threat of covert channels (also
called subliminal channels) in cryptography [46], the concept of kleptography
was proposed by Young and Yung [49]. It models the fact that an adversary
may subvert cryptographic algorithms by modifying their implementations in
order to leak secrets using for instance covert channels present in the random-
ized algorithms. Several sources have recently revealed that cryptographic al-
gorithms have effectively been subverted to undermine the security of users.
This raises the concern of guaranteeing a user’s security even when she may be
using a compromised machine or algorithm. Motivated by the (in)famous poten-
tial backdoor on the Dual Elliptic Curve Deterministic Random Bit Generator
(Dual EC DRBG) [21], Bellare, Paterson, and Rogaway [9] initiated a formal
analysis of kleptographic attacks on symmetric key encryption algorithms. For
factoring-based public-key cryptography, in light of the known shortcomings of
implemented key generators, a line of research has focused on proving that RSA
moduli satisfy certain properties [29,17,4], or on attesting that RSA prime fac-
tors were generated with a specified prime generator [12]. This line of work is
only concerned with the structure of the keys, not with the fact that they are
generated with enough entropy. Juels and Guajardo [35] suggested as early as
in 2002 an approach for users to prove to another party (which is typically a
trusted certificate authority or CA) that her public–secret key pair was gen-
erated honestly using proper randomness. In their setting, the CA provides an
additional source of randomness in an interactive process, and the user algorithm
proves that it has not weakened, whether intentionally or unintentionally, the
key-generation procedure6. The security goal of such a primitive is threefold.
1. Maintain User Privacy: if the user uses a randomness source with high en-
tropy, then an adversary (possibly the CA himself) has no additional informa-
tion on the secret-key compared to a key generated by the real key-generation
algorithm on uniform randomness.

2. Improve Randomness Quality: if the user or the CA use a randomness
source with high entropy, then, an adversary (other than the CA) has no
additional information on the secret-key compared to a key generated by the
real key-generation algorithm on uniform randomness.

3. Resist Information Exfiltration: the generated public key leaks no infor-
mation whatsoever to the outer world. In particular, a faulty user algorithm
cannot use it to convey any information. In this sense, the CA certifies to the
end user, that she can securely used to the generated key.

6 This notion is very similar to the more recent cryptographic reverse firewalls [39].

2

A malicious user can obviously publish her secret key, but the problem we tackle
is different: we want the CA to only certify keys that he knows to have been
generated with high-entropy randomness and without covert channels.

Juels and Guajardo proposed a formal security model for verifiable random
key generation with the goal to achieve these three security objectives. Their
model is unfortunately not strong enough to capture real-world threats since
– it is restricted to public-key cryptosystems where a given public-key corre-
sponds to a unique secret key (and cannot be used for many recent schemes);

– it considers only a stand-alone or independent key-generation instances (and
therefore does not prevent attacks such as the one considered in [36,33] where
several public-keys are generated with correlated randomness sources);

– it only bounds the distance that a dishonest user can generate a given key to
that of an honest user executing the key generation protocol.
As a simple example, consider the problem of generating an ElGamal public

key gx in a group G = 〈g〉 of prime order p. Juels and Guajardo outlined a
protocol for generating such a key with verifiable randomness. The natural idea
to generate a public-key gx in this (illusorily) simple setting is to share the
secret key x as x = xU + xCA mod p where xU denotes the user randomness and
xCA denotes the CA randomness. However, this protocol fails to achieve (3) as
the user algorithm can choose xU to match a specify value after seeing xCA.
To overcome this issue, a simple idea would be to make the user first commit
to xU and then prove its knowledge. However, the hiding and zero-knowledge
properties of commitment schemes and proof systems inherently rely on perfect
randomness, which the user algorithm is assumed not to have at its disposal.

Juels and Guajardo also proposed a protocol for the generation of RSA keys
where the distance in (3) increases by a factor which is polynomial in the se-
curity parameter λ (assuming some number-theoretic conjecture). Therefore,
their protocol does not rule out the existence of covert channels with O(log λ)
bits capacity Their model was reconsidered by Corrigan-Gibbs, Mu, Boneh and
Ford [22] in a weaker setting that guarantee (1) and (2) but not (3), and does
not even prevent a malicious user algorithm from generating malformed keys.

Contributions. We revisit the verifiable key-generation primitive and provide
the first strong security models and efficient, provably secure constructions.

Game-Based Security Model. We propose a game-based model that covers con-
current protocol executions with different instances of protocol algorithms. It is
inspired by the Bellare-Pointcheval-Rogaway (BPR) model for authenticated key
exchange [10]. The communication between the user and the CA is assumed to
be carried over an insecure channel. Messages can be tapped and modified by an
adversary, and the communication between the user and the CA is asynchronous.
The adversary is split into two algorithms: (1) the sampler which provides the
randomness sources to the user and the CA (for multiple instances of the proto-
col) and (2) the distinguisher which tries to gain information from the generated
public key. The protocol is deemed secure if the latter is unable to do so under
the assumption that the entropy of one random sources is high enough.

The main difficulty to define the security model for this primitive is to for-
malize the third security objective. A dishonest user algorithm can indeed always

3

execute several instances of the protocol with the CA until she obtains a public-
key which has some specific property which allows to exfiltrate information. This
is similar to the “halting attack” subliminal channel [25] and cannot be avoided7.
We manage to take this narrow-band subliminal channel into consideration in
our security models while capturing the fact that in a secure protocol, this should
be the only possible covert channel for a dishonest user algorithm. In practical
applications, this covert channel can be prevented easily if the CA charges an
important fee for a user that performs too many key generation procedures, or
if an increasing time-gating mechanism for repeating queries is introduced.

This model does not suffer from the shortcomings of the model proposed
from [35] as it allows for multiple dependent runs of the protocol and captures
the resistance to exfiltration of information (with only the narrow-band sublim-
inal channel from the “halting attack”). It guarantees security with concurrent
sessions (and is thus much stronger than security consdered in cryptographic
reverse firewalls [39]) but not composition.

Providing a universal-composability definition seems natural in this setting,
but the main hurdle in doing so comes from the fact that the sampler cannot
communicate at all with the distinguisher since it would otherwise allow for
covert channels (and break property (3)) as further explained in Section 3.2. As
a consequence, a universal-composability definition would need functionalities
with local adversaries, which would change the target of the paper.

Generic Protocol for Probabilistic Circuits. We then present a generic approach
for key generation based on (families of) probabilistic circuits and we prove
its security in our stringent security model. It relies on two-source randomness
extractors, pseudo-random-function families and extractable commitments with
associated zero-knowledge proofs. Since two-party computation (2PC) protocols
rely on perfect randomness, a generic 2PC protocol cannot be used in this setting;
moreover such a protocol guarantees privacy and correctness, but it does not
guarantee that a user cannot influence the result (and thus requirement (3)).

Efficient Protocol for RSA Keys. We also propose a new generic protocol for
factoring-based cryptography and prove it secure in our model. It relies on
classical cryptographic tools (namely commitments, pseudo-random functions
(PRF) and zero-knowledge proofs). We provide an instantiation based on the
Dodis–Yampolskiy PRF [26] in the group of quadratic residue modulo a safe
prime which outputs group elements. The main technical difficulty is to con-
vert the outputs of this PRF into integers while proving that the RSA prime
factors are outputs of the PRF. In the process, we propose a new efficient zero-
knowledge proof system for the so-called double discrete logarithm problem (in
groups of public order). A double discrete logarithm of an element y , 1G in
a cyclic group G of prime order p with respect to bases g ∈ G and h ∈ Z∗p
(generators of G and Z∗p respectively) is an integer x ∈ {0, . . . , p − 1} such that
y = gh

x . Stadler introduced this computational problem for verifiable secret-
sharing [47] and it was used to design numerous cryptographic protocols (e.g.

7 At least without adding a third party to the model as in access control encryp-
tion [24,34].

4

group signatures [18], blind signatures in [3] and e-cash systems [19] and cre-
dential systems [20]). All these constructions rely on a proof system proposed
by Stadler which has Ω(log p) computational and communication complexity (in
terms of group elements). Our new proof system outputs proofs with O(log log p)
group elements only and permits an efficient instantiation of our generic proto-
col for factoring-based cryptography. As a by-product, our new protocol can be
used directly in all the aforementioned applications in a public-order setting to
exponentially reduce their communication complexity.

2 Preliminaries

This section introduces the notation, the hardness assumptions and the building
blocks used throughout this paper (see the appendices for more details).

Notation. For n ∈ N, the set of n-bit strings is denoted by {0, 1}n and the set
of integers {1, . . . , n} is denoted [[n]]. The set of prime numbers is denoted P. The
security parameter is denoted λ, and input lengths are always assumed to be
bounded by some polynomial in λ. A Probabilistic algorithm is said to run in
Polynomial-Time (it is said to be a PPT algorithm) if it runs in time that is
polynomial in λ. A function µ is negligible if µ(λ) = λ−ω(1).

The random variable defined by the value returned by a PPT algorithm A
on input x is denoted A(x). The value returned by A on input x and random
string r is denoted A(x; r). Given a probability distribution S, a PPT algorithm
that samples a random element according to S is denoted by x ←$ S. For a finite
set X , x ←$ X denotes a PPT algorithm that samples an element uniformly at
random from X . Given a group G with neutral element 1G, G∗ denotes G\{1G}.
For any two sets X and Y, denote by YX the set of functions from X to Y.

Vectors are denoted in bold font. For two vectors a and b in Rn where R is
a ring and n a positive integer, a ◦ b denotes the Hadamard product of a and b,
i.e., a ◦ b B

[
a1b1 · · · anbn

]
.

Group Families. A group-family generator G is a PPT algorithm which takes
as input a security parameter λ and returns a tuple (G, `, g), with G a cyclic
multiplicative group of prime order `, and g ∈ G a generator of G (i.e. g ∈ G∗).

Hardness Assumptions. This section recalls classical assumptions on group-
family generators.

Definition 2.1 (Discrete-Logarithm Assumption). Let G be a group-family
generator. The (T, ε)-discrete logarithm assumption on G states that for any
adversary A that runs in time at most T (λ), the probability

Pr
[
x ← A(G, `, g, h) : (G, `, g) ← G(λ); x ←$ Z

∗
` ; h ← gx

]

is at most ε(λ).

5

Definition 2.2 (Decisional Diffie-Hellman Assumption). Let G be a group
family generator. The (T, ε)-Decisional Diffie-Hellman assumption (DDH) over
G states that the advantage (function of λ)

�������
Pr

b = A(G, `, g, gx, gy, gαb) :

(G, `, g) ← G(λ)
(x, y) ←$ Z

∗
`
2, b←$ {0, 1}

α0 ← xy mod `, α1 ←$ Z
∗
`

−
1

2

�������

of any adversary A that runs in time at most T (λ) is most ε(λ).

Definition 2.3 (Decisional Diffie-Hellman-Inversion Assumption [13]).
Let G be a group family generator. The (T, q, ε)-Decisional Diffie-Hellman-Inversion
(DDHI) assumption over G states that the advantage (function of λ)

������������

Pr

b ?
= A(G, `, g, y, z) :

(G, `, g) ← G(λ)
x ←$ Z

∗
`, b←$ {0, 1}

yi ← gx
i
for i ∈ {1, . . . , q(λ)}

α0 ← 1/x mod `, α1 ←$ Z
∗
`,

z ← gαb

−
1

2

������������

of any adversary A that runs in time at most T (λ) is at most ε(λ).

Randomness sources and min-entropy. Imperfect randomness is modeled
as arbitrary probability distributions with a certain amount of entropy. The min-
entropy notion is used to measure the randomness in such an imperfect random
source. A source is said to have k bits of min-entropy if its distribution has the
property that each outcome occurs with probability at most 2−k .

Pseudo-Random Functions. A Pseudo Random Function (PRF) [31] is an
efficiently computable function of which the values are computationally indistin-
guishable from uniformly random values.

Formally, a function PRF : K (λ) × X(λ) → Y (λ) is a (T, q, ε)-secure PRF
with key space K , input space X and range Y (all assumed to be finite) if the
advantage

���Pr
[
1← APRF(K, ·) : K ←$ K

]
− Pr

[
1← A f (·) : f ←$ Y

X
] ���

of every adversary A that runs in time at most T (λ) is at most ε(λ).

Dodis–Yampolskiy Pseudo-Random Function. Let G be a group family
generator. The Dodis–Yampolskiy pseudo-random function [26] in an `-order
group (G, `, g) ←$ G is the map F : (K, x) ∈ K × X 7→ g1/(K+x) ∈ G∗, with
K = Z∗` and X ⊂ Z

∗
` . They proved that it is

(
T/

(
qλO(1)

)
, q, εq

)
-secure under the

(T, q, ε)-DDHI assumption (Definition 2.3) for G, where q(λ) = O(log λ) is an
upper-bound on the bit-size of X for all λ [26, Section 4.2].

6

3 Model

This section formalizes key-generation protocols for arbitrary, predetermined
key-generation algorithms. Such a protocol is executed between a user U and a
certification authority CA. At the end of the protocol, U obtains a pair of pub-
lic–secret keys that CA certifies to be indistinguishable from keys generated by
a fixed algorithm KeyGen, and to have been generated with proper randomness.
These requirements are formally captured by a model for randomness verifia-
bility given below. The security definition of the model ensures that a protocol
satisfying its conditions fulfills the following properties:
1. CA can infer no more information about the secret key than it would from a
public key generated by KeyGen if U ’s randomness source has high entropy

2. no external attacker can distinguish a public key generated via the protocol
from a public key generation with KeyGen if the randomness source of either
U or CA has high entropy

3. U cannot bias the generation of the keys if the randomness source of CA
has high entropy. In particular, U cannot use the public key as a subliminal
channel to convey information.

3.1 Syntax

An interactive asymmetric-key-generation protocol is a triple IKG = (Setup,U,CA)
of algorithms such that Setup

(
1λ

)
→ pp is a probabilistic algorithm which re-

turns public parameters and

〈U(pp; rU)
 CA(pp; rCA)〉 → 〈(pkU, sk), pk CA〉

are interactive algorithms. At the end of the protocol, the user key-generation
algorithm U returns a pair of public–secret keys, and the certificate-authority
key-generation algorithm CA returns a public key.

Algorithm Setup may require some randomness, but the parameters it gen-
erates can be fixed once for all and used across multi sessions and by several
users and authorities. Once parameters are fixed, high-entropy randomness is
still needed to securely generate keys, and this is formalized in Section 3.2.

Definition 3.1 (Correctness). In the O-oracle model, a key-generation pro-
tocol IKG is δ-correct w.r.t. a class A of algorithms if for all λ ∈ N, for every
A ∈ A ,

Pr

pkU = pk CA , ⊥ :

pp ←$ Setup
(
1λ

)
(DU,DCA) ←$ A

O(·) (pp)
rU ←$ DU, rCA ←$ DCA〈
(pkU, sk), pk CA

〉
← 〈U(pp; rU)
 CA(pp; rCA)〉

≥ δ.

Note that the last line of the probability event implicitly implies that U and CA
must terminate.

7

The above definition is given in model in which A has oracle access to O.
This latter is used to “distinguish” different models: it may be a random or-
acle, but it could also simply be an oracle which returns a fixed value (i.e.,
the common-reference-string model) or no value at all (the standard model).
The reason for this distinction is that if a component of the protocol (e.g. a
randomized primality-testing algorithm) is not perfectly correct, then its cor-
rectness probability is only defined for perfect randomness although the parties
only have access to imperfect randomness. However, in the random-oracle model
for instance, this imperfect randomness chosen by the algorithm in the definition
may depend on the random-oracle queries made by this latter.

3.2 Security

This section gives a game-based security model for key-generation protocols with
verifiable randomness. It covers concurrent protocol executions with different in-
stances of protocol algorithms. It is inspired by the BPR model for authenticated
key exchange [10] but with key differences.

Protocol Participants. A set of user identities U and a set of certificate-authority
identities CA are assumed to be fixed. The union of the those sets form the
overall identity space ID . For readability, it is implicitly assumed that during
protocol executions, the messages exchanged are always prepended with the
instance identifier of the receiving party. Note that several instances of the same
algorithm may concurrently run during the game.

Adversaries. The game features a two-stage adversary (A1,A2). Adversaries
A1 and A2 may agree on a common strategy before the beginning of the game.
That is to say, the strategy may be part of their code, and it may dictate which
queries to make (possibly depending on the oracle answers), the order of the
queries and so forth. All but the challenge query can only be made by A1. The
role of A2 is essentially only to guess whether a public key was generated with
KeyGen or with the protocol, while A1 can make arbitrary queries according to
the pre-established strategy.

However, A1 and A2 cannot communicate after the beginning of the game. It
reflects the fact that in practice, an implementer may distribute its key generator,
but does not necessarily wiretap the execution of the key-generation protocol
for a particular user. From a technical viewpoint, the reason is that in a key-
generation protocol, a user has to prove to the authority that she correctly
performed her computation. However, the randomness used in these proofs can
be used as a subliminal channel to convey information about the secret key.
For instance, an engineer could in practice implement a bogus key generator
which only terminates the protocol if the first bits of the proof and secret key
match. The proof then serves as subliminal channel to leak information about the
secret key. Later on, when a user wants to generate a certified public key, if the
engineer could wiretap the protocol execution, he could infer some information
about her secret key through the proof of correct computation. It is the reason
why communication between the adversaries cannot be allowed.

8

Init
(
1λ,U ,CA, I

)
h ←$ Ω; pp ←$ Setup

(
1λ

)
ID ← U ∪ CA
for i ∈ [[I]] and id ∈ ID do

st i
id
← ri

id
← ⊥

used i
id
← FALSE

acci
id
← term i

id
← flag i

id
← FALSE

sid i
id
← pid i

id
← ⊥

sk i
id
← pk i

id
← ⊥

QReveal ← QCorrupt ← ∅
return (pin, sin)

Oracle(M) return h(M)
Dist

(
id, i,Di

id

)
ri
id
←$ D

i
id

// ri
id

is simply generated and not returned to A1

Exec(U, i, CA, j) if
(
U < U or CA < CA or used i

U
or used

j
CA

)
return ⊥

if r i
U
, ⊥ and r

j
CA
, ⊥

return
〈
Ui

(
pp, r i

U

)
, CAj

(
pp, r

j
CA

)〉
return ⊥ // A1 must specify distributions beforehand

Send(id, i,M) if ri
id
= ⊥ return ⊥ // A1 must specify a distribution beforehand

if term i
id

return ⊥
used i

id
← TRUE〈

mout, acc, term, sid, pid, pk, sk, st i
id

〉
←

〈
IKG

(
id, st i

id
,M ; ri

id

)〉
if acc and ¬acci

id
sid i

id
← sid ; pid i

id
← pid

acci
id
← acc

if term and ¬term i
id

// Set keys only after termination
pk i

id
← pk ; sk i

id
← sk

return
(
mout, sid, pid, pk, sk, acc, term i

id

)
Reveal(id, i) QReveal ← QReveal ∪ {(id, i)}

return
(
pk i

id
, sk i

id

)
Corrupt(id) QCorrupt ← QCorrupt ∪ {id }

for i ∈ [[I]]
{
if ¬acci

id
then flag i

id
← TRUE

}

return {st i
id
}i∈~I�

Testb (id∗, i∗) if
(
∃(id0, id1, i, j) : pid i

id0
= id1 and pid

j
id1
= id0 and acci

id0

and ¬term
j
id1

)
return ⊥

// Once an instance accepts, its partner must eventually terminate
if ¬term i∗

id∗
return ⊥

if flag i
∗

id∗
return ⊥

// Reject if id∗ was corrupt before (id∗, i∗) accepted
if

(
id∗, i∗

)
∈ QReveal or

(
∃(id ′, j) : pid i∗

id∗
= id ′ and pid

j

id′
= id∗

and
(
id ′, j

)
∈ QReveal

)
return ⊥

// Reject if the key of
(
id∗, i∗

)
or of its partner has been revealed

if pk i∗

id∗
, ⊥

if b = 0

(pk, sk) ←$ KeyGen
(
1λ

)
return pk

return pk i∗

id∗

return ⊥ // Reject if (id∗, i∗) does not have a key

Fig. 1. Oracles for the Key-Generation Indistinguishability Experiment.

9

The restriction that A1 and A2 cannot communicate after the beginning of
the game means that the attacks in which the protocol executions are listened
to are excluded, but as explained above, it seems to be a minimal requirement.

Game Overview. At the beginning of the game, the challenger first runs an
initialization algorithm. After that,A1 can make several queries to the algorithm
instances. It can in particular
∗ specify distributions from which randomness is drawn and given as an input
to the instances,

∗ ask for the protocol to be executed between different instances of the protocol
algorithms without its intervention, i.e., perform passive attacks,

∗ perform active attacks by sending messages to algorithm instances of its choice,
∗ later on reveal the keys that were generated by a particular instance,
∗ corrupt a party (user or certificate authority), and thereby gain access to the
state of all its algorithm instances.

As for A2, it can reveal keys or make a test query that returns either (with
probability 1/2 each) keys freshly generated by the key-generation algorithm or
keys generated by instances of its choice via queries made by A1. Adversary A2

must eventually return a guess for the origin of the keys it was returned, and
(A1,A2) wins the game if the guess of A2 is correct.

Initialization & Game Variables. During the initialization phase, game variables
are declared for every instance of the protocol algorithms. Assume that there
are at most I = I (λ) instance of any participant id . Each instance i ∈ I of
a participant id maintains a state st i

id
. A session identity sid i

id and a partner
identity pid i

id allow to match instances together in protocol executions. It is
assumed that for each sid i

id there can be at most one partner instance, i.e., one
pair (id ′, j) such that pid i

id = id ′ and sid i
id B

(
id, i, id ′, j, sid i

id

′
)
.

Public/secret-key variables (denoted pk i
id and sk i

id) hold the keys that were
output, if any, by the ith instance of the algorithm of party id at that step of
the computation. For certificate authorities, the secret keys are always set to ⊥.

A variable used i
id indicates whether the adversary has performed an active

attack on the ith algorithm instance of participant id .
Variables acci

id
and term i

id
respectively indicate whether the algorithm of

the ith instance of participant id has accepted and terminated. As in the BPR
model [10], termination and acceptance are distinguished. When an instance
terminates, it does not output any further message. However, it may accept at a
certain point of the computation, and terminate later. In the present context, it
may for instance occur when an instance expect no further random input from its
partner instance, and the rest of its computation is purely deterministic. It may
then only terminate after finishing its computation. This distinction is crucial
for the security definition. It is important to exclude the trivial case in which,
although every computation was honestly performed, a user discards the public
key if it does not follow a certain pattern, thereby influencing the distribution
of the output public key (i.e., perform rejection sampling), and possibly using it
a subliminal channel to convey information about the secret key.

10

Another variable flag i
id (new compared to the BPR model) indicates whether

party id was corrupted before its ith instance had accepted. Recall that accep-
tance intuitively means that an instance expects no further random input from
its partner instance. As long as flag i

id is set to FALSE, the only information the
adversary has about r i

id
is its distribution and therefore, if this distribution has

high min-entropy, the adversary cannot bias the generation of the keys.
A variable r i

id
holds the random string to be used the ith instance of the

algorithm of id .
The challenger maintains a set (initially empty) QReveal of identity–instance

pairs of which the keys were revealed. It also maintains a set (initially empty)
QCorrupt of corrupt identities.

At the end of the initialization phase, the encryption parameters, the sets of
participants and the user public keys are returned in a public input pin, and the
rest is set in a secret input sin. That is, pin ←

(
pp,U ,CA, I, (pk id)id

)
and sin ←(

pin, (sk id)id,
(
st i

id
, sid i

id, pid i
id, acci

id
, term i

id
, used i

id

)
i,id

, QCorrupt, QReveal). The se-
cret input sin is later made available to all oracles.

Oracles. Throughout the game, adversary A1 is given access to the oracles
summarized below and defined in Figure 1. It can query them one at a time.
∗ Oracle : gives access to a function h chosen uniformly at random from a prob-
ability space Ω. The adversary and the protocol may depend on h. The prob-
ability space Ω specifies the model in which the protocol is considered. If it is
empty, then it is the standard model. If it a space of random functions, then
it is the random oracle model. As for the Common-Reference String (CRS)
model, Ω is a space of constant functions.

∗ Dist : via this oracle, the adversary specifies the distribution Di
id

from which
the randomness of the ith instance of id is drawn. These distributions are
always assumed to be independent of oracle Oracle. However, the distributions
specified by the adversary for different instances can be correlated in any way.
Oracle Dist then generates a bit string r i

id
according to the input distribution

and does not return it to the adversary. Whenever oracle Exec or Send is
queried on (id, i), it uses randomness r i

id
for its computation.

This new (compared to the BPR model) oracle is essential to express require-
ments on the minimal entropy used by the instances, and also to express
reasonable winning conditions. It allows to properly capture properties like
the fact that (1) the authority cannot infer any information about the se-
cret key if the randomness of the user algorithm has high entropy, (2) that the
output keys are indistinguishable from keys generated with the key-generation
algorithm if the randomness used by the algorithm of either of the parties has
high entropy, or (3) that a potentially malicious user algorithm cannot bias
the distribution of the output keys if the randomness of the authority algo-
rithm has high entropy. That is first because the test query later made by A2

requires the min-entropy of the randomness of either the challenge instance or
of its partner to be high. It is also due to the fact that the adversary cannot
corrupt the challenge instance (thus learning its randomness) before the part-
ner randomness necessary to generate the challenge key is committed, which

11

is monitored by the flags. It for instance means that if the CA is the target of
the test and the adversary plays the role of a user algorithm (in which case the
partner randomness is considered to have nil entropy) and possibly deviates
from the protocol, then the test CA must be given high-entropy randomness
and the definition ensures that the resulting key is indistinguishable from keys
generated with KeyGen.

∗ Exec : returns the transcript of an honest (i.e., without the interference of
the adversary) protocol execution between the ith instance of U and the jth
instance of CA. The protocol is executed with the random strings generated
for theses instances by oracle Dist on the input of adversarial distributions.
The notations Ui and CAj mean that algorithms U and CA are executed using
the state of the ith instance of U and the jth instance of CA respectively. It
is implicitly assumed that the states acci

U
, term i

U
, acc

j
CA

and term
j
CA

are
set to TRUE after an honest protocol execution. Moreover, if the termination
variable of either party is set to TRUE, the protocol is not executed and ⊥ is
returned. In essence, by querying oracle Exec, adversary A1 performs a passive
eavesdropping attack.

∗ Send : adversary A1 can perform active attack via this oracle. A1 can send any
message to an instance of its choice, e.g., the ith instance of a user algorithm,
which runs the honest protocol algorithm of the corresponding party on the
input of the message chosen by the adversary.
To prompt the ith instance of id to initiate a protocol execution with the jth
instance of id ′, adversary A1 can make a Send query on

(
id, i, (id ′, j)

)
.

IKG(id, ∗) denotes the IKG algorithm of party id , i.e., either U or CA. The
algorithm is executed using the randomness generated by oracle Dist for that
instance. (Note that the input random string may be used only at certain
steps of the computation.) The oracle then returns the output of the instance
to the adversary. It also specifies if this instance accepted and/or terminated,
and returns the session identifier and the identity of its partner in the protocol
execution, as well as the public and secret keys returned by this instance, if
any. Note that if the instance is that of a certificate-authority algorithm, the
secret key is always set to ⊥.

∗ Reveal : on input (id, i), returns the keys held by the ith instance of the
algorithm of id . The couple (id, i) is added to the set QReveal of revealed keys.

∗ Corrupt : on input id , returns the states of all the instances of the algorithm of
id . The identity id is added to the set QCorrupt of corrupt identities. Besides,
for any instance i of id , if it has not yet accepted, flag i

id is set to TRUE.

Remark 3.1. The first main difference with the BPRmodel is the new oracle Dist.
It allows to capture an adversary running several instances of the protocol with
correlated randomness. In the new model, it is also important to express winning
conditions that exclude the trivial (and unavoidable) rejection-sampling attack.
Another difference is that the variable flag i

id is set to TRUE if A1 corrupts id
before its ith instance has accepted. It is to say that for instance, if an adversary
(e.g. a malicious user algorithm) knows the randomness of the other party (by
corrupting the CA) before it has “committed” to its randomness, then that party
can influence the resulting key and break property (3).

12

As for adversary A2, it is given access to oracles Oracle, Reveal and to oracle
∗ Testb : on input (id ∗, i∗), it returns the public key pk i∗

id∗ generated via IKG
(with an Exec query or Send queries) if b = 0 or a fresh public key generated
via KeyGen if b = 1.
An important restriction on this query is that the following condition must
be satisfied: for any instance i of the algorithm of a party id0, once it has
accepted, i.e., once acci

id0
is set to TRUE, the partner instance algorithm, say

the jth instance of id1, must eventually terminate, i.e., term
j
id1

must have been
set to TRUE as well by the time of query Test. It prevents A1 from biasing
the distribution of the keys by prematurely aborting the protocol although it
was followed, if the resulting key does not follow a certain pattern, and which
would allow A2 to guess b with a non-negligible advantage.
The other restrictions are simply that i∗-th instance of id ∗ must have termi-
nated, that id∗ was not corrupt before (id ∗, i∗) had accepted8, that neither the
key of the i∗th instance of id ∗ nor of its partner instance has been revealed,
and that the i∗th instance of id ∗ must already hold a key.
Note that A2 can query Test only once. A definition with multiple queries
would be asymptotically equivalent via a standard hybrid argument.
Adversary A2 must eventually return a bit b′ as a guess for the origin (i.e.,

either IKG or KeyGen) of the key returned by oracle Testb.
To achieve any form of indistinguishability from a key-generation algorithm,

it is clear that either the distribution Di∗

id∗
or the distributions D j

id′
for the part-

ner instance (j, id ′) of (i∗, id ∗) must have high entropy. Indeed, if distributions
with low entropy were allowed, A1 and A2 could agree on these identities, in-
stances and distributions beforehand. Adversary A2 could then simply return 1
if and only if the challenge key is the most likely key w.r.t. Di∗

id∗
and D j

id′
, and

thereby win the game with a non-negligible advantage.
A parameter κ for the maximal min-entropy of Di∗

id∗
and D j

id′
specified by

A1 is therefore introduced. If the adversary modified any message from the
partner (j, id ′) of (id ∗, i∗) before (id ∗, i∗) accepts, then D j

id′
is set to be the Dirac

mass at the zero bit-string by convention (and it thus has no entropy). The
underlying idea is that as long as at least one of the two parties has a randomness
source with high entropy, the key returned at the end of the protocol should be
indistinguishable from a key generated by the KeyGen algorithm, which implies
properties (1), (2) and (3). The security of a key-generation protocol is then
defined for adversaries that specify challenge distributions with min-entropy at
least κ.

8 To understand why it is necessary for id∗ not to be corrupt before (id∗, i∗) accepts
even though A1 and A2 do not communicate, suppose that this condition were not
imposed and consider the following strategy which allows (A1,A2) to trivially win:
A1 and A2 agree on (id∗, i∗) and on a distribution Di∗

id∗
. Adversary A1 prompts

(id∗, i∗) to initiate a protocol execution by making a Send query. It then corrupts id∗

and obtains st i
∗

id∗
, from which it can read ri

∗

id∗
. Adversary A1 could then play the

role of its partner and adapt the messages it sends to make sure that the resulting
public key follows a certain pattern known to A2. This latter would then be able to
win the game with a non-negligible advantage.

13

Definition 3.2 (Indistinguishability). An interactive key-generation proto-
col IKG is (T, qOracle, qDist, qExec, qSend, qReveal, qCorrupt, κ, ε)-indistinguishable from
a key-generation algorithm KeyGen (running on uniform randomness) if for all
λ ∈ N, for every adversary (A1,A2) that runs in time at most T (λ) and makes at
most qO queries for O ∈ {Oracle,Dist,Exec, Send,Reveal,Corrupt}, and such that
max

(
H∞

(
Di∗

id∗

)
, H∞

(
D

j

id′

))
≥ κ for query Test, the advantage (function of λ)

������������������

Pr

b = b′ :

(pin, sin) ← Init
(
1λ,U ,CA, I

)
O1 ← {Oracle,Dist,Exec, Send,Reveal,Corrupt}
A
O1 (sin, ·)
1 (pin)

b←$ {0, 1}
O2 ← {Oracle,Reveal,Testb }
b′ ← AO2 (sin, ·)

2 (pin)
return (b, b′)

− 1/2

������������������
of (A1,A2) is at most ε(λ).

From a practical perspective, this definition (which implies requirement 3
as it enforces indistinguishability from keys generated by IKG) means that keys
generated via a protocol satisfying the definition above are not subject to ran-
domness vulnerabilities such as the ROCA vulnerabilities [42] mentioned in in-
troduction (in which only specific primes were selected by user key generation
algorithms) or such as those [36,33] in which several public keys are generated
with correlated randomness sources.

4 Generic Constructions

This section presents two that covers a wide class of key-generation algorithms,
namely those that can be represented as probabilistic circuits, and another pro-
tocol specific to the generation of RSA keys. The first protocol is of theoretical
interest and shows that randomness verifiability can be achieved for wide class
of key-generation algorithms, whereas the second protocol is a solution that can
actually be used in practice.

4.1 Key-Generation Protocol with Verifiable Randomness for
Probabilistic Circuits

This section gives a key-generation protocol with verifiable randomness for a
large class of key-generation algorithms. The focus is here on the class of key-
generation algorithms that can be modeled as probabilistic circuits.

The advantage of probabilistic circuits compared to general Turing Machines
for this purpose is that the running time of a probabilistic circuit is independent
of the random inputs. In a key-generation protocol with verifiable randomness,
the user has to prove to the authority that she correctly performed her com-
putation. Having a constant running time then ensures that no one can infer
any information about the secret key from the statement proved by the user or

14

the proof itself. It prevents malicious user algorithms from using the proofs as
subliminal channels to pass information about the secret key.

To understand why it is important for the running time to be constant,
consider the artificial random number generator described on Algorithm 1. To
generate a k-bit string t = (t0, . . . , tk−1), it essentially consists in flipping a ran-
dom coin s several times for each bit ti and to set this bit to the parity of the
number of flipped coins to obtain the first “Head”. It produces a k-bit string
uniformly distributed within expected time complexity O(k) and it could be
used as a secret-key generation algorithm (and the public key would then be a
deterministic function of the generated secret key). For a user to prove that she

Algorithm 1 RNG with Non-Constant Running Time.
Require: Integer k.
Ensure: Uniformly random k bit-string x.
1: for i = 0 to k − 1 do
2: c ← 0
3: while TRUE do
4: c ← (c + 1 mod 2)
5: s ←$ {0, 1}
6: if s = 0 then
7: ti ← c
8: break
9: end if
10: end while
11: end for
12: t ← t0‖ · · · ‖tk−1
13: return t

correctly generated the random bit string t, she would have to commit to the ti
values and compute a proof on the successive s values. However, each ti is simply
the parity of the number of trials before s = 0. Therefore, from the number of
s values for which the user has to perform a proof, the authority can infer ti.
For example, if the user generated two s values for t1, the authority knows that
t1 = 0.

In other words, the statement of the proof itself reveals some information
about the secret key to the certification authority; and the issue is here that
the running time changes from one random run of the algorithm to the other.
Restricting to probabilistic circuits eliminates this issue.

The restriction to circuits comes at a cost though. It for instance excludes
the class of algorithms for which there is no known circuit that can represent
them. It is for instance the case of algorithms that must efficiently generate
primes during the process. Indeed, there is no known circuit that can efficiently
generate prime numbers.On this ground, the generic protocol for probabilistic

15

circuits of Section 4.1 does not apply to the RSA-key generation for instance9.
See rather Section 4.2 for the specific case of RSA-key generation with verifiable
randomness for arbitrary properties that the keys must satisfy.

Before describing our protocol, we first formally define probabilistic circuits.

Probabilistic Circuits. A probabilistic circuit (as defined by Belaïd et al. [6])
is essentially a deterministic circuit augmented with uniformly random gates.
The random gates produce independent and uniform random bits that are sent
along their output wires.

We equivalently define a probabilistic circuit as a uniform random variable
over a finite collection of deterministic boolean circuits. These boolean circuits
are restricted to have the same amount n of input variables, and r fixed inputs.
The number r of fixed inputs depends on the security parameter 1λ. Denote such
a circuit as Γb1 · · ·br (x1, . . . , xn), with x1, . . . , xn the input variables and b1, . . . , br
the fixed inputs. To each element in {0, 1}r corresponds a circuit in the collection
with the bit string as fixed inputs, so that there are 2r circuits in the collection.
However, theses circuits are not required to form a uniform family (i.e., they are
not required to be output by a single Turing machine); the circuit families here
considered can be non-uniform.

A probabilistic circuit Γ is then defined as a uniform random variable over the
set (of circuits) {Γb }b∈{0,1}r . Namely, for input variables x1, . . . , xn, the evaluation
Γ(x1, . . . , xn) is a uniform random variable over the set (of values) {Γb (x1, . . . ,
xn)}b∈{0,1}r . If ω ∈ {0, 1}r denotes the random input to the probabilistic circuit
Γ, the evaluation Γ(x1, . . . , xn;ω) is then Γω (x1, . . . , xn).

The advantage of this second definition is that randomness is invoked only
once instead of invoking it for each of the r random gates. To generate keys,
PRFs are often used to provide random bit strings from small secret seeds. As
the goal is to build a key-generation protocol which allows the CA to certify
that the keys are generated with high-entropy randomness, the user will have
to prove that she correctly performed the pseudo-random evaluations. Invoking
randomness only once then allows to invoke the PRF only once in the protocol.

Generic Protocol. We now give a two-party protocol in the CRS model to
generate, with verifiable randomness, keys computed by probabilistic circuits.
Requiring that keys are generated with verifiable randomness here means that
the random inputs to the circuits must be uniformly generated in a verifiable
manner. The deterministic inputs to the circuitscan simply be considered as
public parameters.

9 One can construct families of probabilistic “circuits” which output an RSA key but
only with overwhelming probability (and not probability 1) by relying on the prime
number theorem and Chernoff’s bound. However, to obtain a b-bit RSA public key
with probability 1 − 2λ, such constructions would have O

(
λ2b4

)
gate complexity

and O
(
λ2b2

)
randomness complexity (based on Miller-Rabin’s primality test) or

O
(
λb7

)
gate complexity and O

(
λb2

)
randomness complexity (based on Agrawal-

Kayal-Saxena primality test [2]). Applying our generic construction to such circuits
family would result in schemes with prohibitive efficiency.

16

Building Blocks. The protocol involves
– a function family H = {Hhk }hk ∈{0,1}d (λ) which is a universal computational
extractor w.r.t. unpredictable sources (App. A.5)

– a two-source extractor Ext (App. A.4) with key space {0, 1}δ(λ)

– an extractable commitment scheme C =
(
Setup,Com,ComVf,TSetup,ExtCom

)
(App. A.1) for the user algorithm to commit to its random string before receiv-
ing any input from the CA, thereby preventing it from biasing the distribution
of the keys. The parameters returned by Setup are implicit inputs to the other
algorithms of C

– a non-interactive, extractable, zero-knowledge proof system (App. A.3) Π =(
Setup,Prove,Verf,TSetupzk, Sim,TSetupext,Ext

)
for relation

RΠ B
{(

(xi)i, k, C, rCA, pk ; r ′
U
, d, sk

)
: ComVf

(
C, r ′

U
, d

)
= 1

∧(pk, sk) = Γ
(
x1, . . . , xn;Extk

(
r ′
U
, rCA

))}
,

– a pseudo-random function PRF to generate the randomness for Π.Prove.

Parameters. Given a circuit Γ with deterministic inputs x1, . . . , xn, to generate
public parameters for the protocol on the input of a security parameter 1λ,
run ppC ← C .Setup

(
1λ

)
(ppC is a tacit input to the algorithms of C), crs ←

Π.Setup
(
1λ

)
, and generate hk ←$ {0, 1}

d(λ) and k ←$ {0, 1}
δ(λ). Return pp ←(

crs, ppC , hk, k, x1, . . . , xn
)
.

Formal Description. Consider the interactive protocol IKGΓ on Figure 2 between
a userU and a certification authority CA. Each algorithm maintains acceptance
and termination variables accid and termid , for id ∈ {U, CA}, initially set to
FALSE. On the input of pp and of their respective random strings rU and rCA ,
the party algorithms proceed as follows:
1. U separates the domain of Hhk in two and applies it to its randomness. It
commits to the first output with the second output as randomness, and sends
the resulting commitment C to CA

2. CA, upon receiving the commitment from U , sets accCA ← TRUE and sends
its random string rCA to U

3. U, upon receiving rCA from CA, sets accU ← TRUE. Next, it extracts a
seed s with Ext from the joint randomness. It evaluates Γ on x1, . . . , xn and
s, and obtains a key pair (pk, sk). It generates another seed s ′ with Hhk .
Algorithm U then evaluates PRF mode on s ′ to generate the randomness
necessary to compute Π.Prove since U has no other random string than rU
available, i.e., it computes rΠ ← PRF(s ′, 0). Algorithm U then proves that it
followed the protocol and correctly evaluated Γ at x1, . . . , xn, i.e., it computes
a proof π ← Π.Prove

(
crs, ((xi)i, k, C, rCA, pk) ,

(
r ′
U
, d, sk

)
; rΠ

)
. After that, it

erases all variables but pk, sk, π, sends pk and π to CA, returns (pk, sk) and
sets termU ← TRUE

4. CA, upon receiving (pk, π) from U , verifies the proof. If the proof is valid, it
returns pk , otherwise it returns ⊥. It then sets termCA ← TRUE.

17

U
(
crs, ppC , hk, k, x1, . . . , xn; rU

)
CA

(
crs, ppC , hk, k, x1, . . . , xn; rCA

)
r ′
U
← Hhk

(
0‖rU , 1

|r ′
U
|
)

ρU ← Hhk

(
1‖rU , 1

|ρU |
)

(C, d) ← Com
(
r ′
U
; ρU

)
C
−−→
rCA
←−−−−

s ← Extk
(
r ′
U
, rCA

)
(pk, sk) ← Γ(x1, . . . , xn; s)
s ′ ← Hhk

(
2‖rU , 1

|s′ |
)

π ← Π proof of correct computation
with random string PRF

(
s ′, 0

)
Erase all variables but pk, sk, π

pk,π
−−−−→ Π.Verf

(
crs,

(
(xi)i, k, C, rCA, pk

)
, π

) ?
= 1

return (pk, sk) return pk

Fig. 2. Key-Generation Protocol with Verifiable Randomness for Probabilistic Circuits.

Theorem 4.1 (Correctness). Protocol IKGΓ is 1-correct w.r.t. all algorithms
if C is correct and if Π is complete.

Proof. The theorem immediately follows from the correctness of C and the com-
pleteness of Π. ut

Theorem 4.2 (Indistinguishability). Suppose that H is
(
Tuce
H

, 3, εuce
H

)
-UCE

secure w.r.t. simply unpredictable sources of min-entropy at least κH . Suppose
also that Ext is a (κExt, εExt)-extractor for κExt ≤ min(|r ′

U
|, |rCA |). If C is

(
Thide

C , εhideC

)
-

hiding, and satisfies
(
T setup−ind

C
, ε

setup−ind
C

)
-setup indistinguishability and

(
Tbiding

C,ExtCom,

Tbiding
C,A

, 0, εbiding
C

)
-binding extractability, if Π is

(
Text
Ext ,T

ext
A,Π, ε

ext
)
-extractable and(

Tzk
Π
, εzk

)
-composable zero-knowledge, and if PRF is (TPRF, 1, εPRF)-secure, then

protocol IKGΓ is
(
T, qO, κ, ε

)
-indistinguishable from Γ in the CRS model, for T =

min
(
Tuce
H

, Thide
C ,T setup−ind

C
,Tbiding

C,ExtCom,T
biding
C,A

,Text
Π,Ext,T

ext
Π,A,T

zk
Π
,TPRF

)
, O ∈ {Dist,Exec,

Send,Reveal,Corrupt}, κ = max(κH , κExt) and ε B 5εuce
H
+ 5εExt + εPRF + ε

zk
Π
+

εext
Π
+ ε

setup−ind
C

+ εbind−extC + εhideC .

Proof. First note that if (A1,A2) wins the indistinguishability game with a
probability at least ε, then there exists an adversary (A ′1,A

′
2) which wins with

probability at least ε/|ID | |I | a variant of the game in which the adversary is
required to specify the pair (id ∗, i∗) of its Test query before being given access to
the game oracles, i.e., a selective variant of the indistinguishability game. Indeed,
(A ′1,A

′
2) can simply run (A1,A2) as a subroutine and guess the pair (id ∗, i∗) at

the beginning of the game. If (A1,A2) later makes its Test query on a different
pair, (A ′1,A

′
2) simply aborts and sends to the challenger a bit chosen uniformly

at random.

18

A message is subsequently said to be oracle-generated if it was computed by
the challenger as a response to a Send query and it was not altered. Otherwise,
the message is said to be adversarially generated.

Further distinguish two cases

1. id ∗ ∈ CA, or id ∗ ∈ U and the random string rCA the i∗th instance of id ∗

receives is oracle-generated.
2. id ∗ ∈ U and the random string rCA the i∗th instance of id ∗ receives is adver-

sarially generated.

In the first case, as the commitment scheme satisfies binding extractability and
as the proof system satisfies simulation extractability, the randomness used to
generate the keys is really drawn from Di∗

id∗
and D j

id′
. Moreover, since either

Di∗

id∗
or D j

id′
has min-entropy at least κ, family H and extractor Ext guarantee

that the public key generated during the protocol execution is indistinguishable
from a one from the key-generation algorithm.

To prove it, consider the following sequence of games.

Game 0. This is the real selective game.
Game 1. In this game, to generate the common-reference string, the challenger
runs (crs, τext) ← Π.TSetupext

(
1λ

)
instead of Π.Setup. This game is perfectly

indistinguishable from the previous one since Π is extractable.
Game 2. To answer an Exec query on

(
id ∗, i∗, ∗, ∗

)
or on

(
∗, ∗, id ∗, i∗

)
, the chal-

lenger generates a transcript of an honest protocol execution. However, in-
stead of setting pk i∗

id∗ ← pk , it generates a uniformly random string σ, runs
(pk ′, sk ′) ← Γ(x1, . . . , xn;σ) and sets pk i∗

id∗ ← pk ′.
Recall that A ′1 and A ′2 share no state, and that in the event in which

the Test query of A ′2 is not replied to with ⊥, key pk i∗

id∗ is not in QReveal
(nor is the key of the partner instance of (id ∗, i∗)). Denoting by (id, j ′) the
partner instance of

(
id ∗, i∗

)
, since max

(
H∞

(
Di∗

id∗

)
, H∞

(
D

j

id′

))
≥ κ, adversary(

A ′1,A
′
2

)
can distinguish this game from the previous one with an advantage

of at most εuce
H
+ εExt.

Indeed, first suppose that id ∗ ∈ U . If H∞
(
Di∗

id∗

)
≥ κ ≥ κH , then r ′

U
is

εuce
H

-computationally indistinguishable from a uniformly random value. Since
���r
′
U

��� ≥ κExt,max
(
H∞

(
r ′
U

)
, H∞

(
r j

id′

))
≥ κExt and s is then εext-computationally

indistinguishable from a uniformly random value. On the other hand, if H∞
(
D

j

id′

)
≥

κ ≥ κExt thenmax
(
H∞

(
r ′
U

)
, H∞ (rCA)

)
≥ κExt and s is thus εext-computationally

indistinguishable from a uniformly random source. In either sub-case,
(
A ′1,A

′
2

)
can distinguish this game from the previous one with an advantage of at most
εuce
H
+ εExt.
In case id ∗ ∈ CA, a symmetric argumentation implies that

(
A ′1,A

′
2

)
can

distinguish this game from the previous one with an advantage of at most
εuce
H
+ εExt.

19

Game 3. If id ∗ ∈ U , the challenger answers a Send query on
(
id ∗, i∗, rCA

)
as

follows. It computes (pk, π) honestly, but instead of setting pk i∗

id∗ ← pk , it
generates a uniformly random string σ, runs

(
pk ′, sk ′

)
← Γ(x1, . . . , xn;σ) and

sets pk i∗

id∗ ← pk ′.
Recall that in case 1), since rCA is always oracle-generated. Therefore, the

same indistinguishability between the last two games still apply and
(
A ′1,A

′
2

)
can distinguish this game from the previous one with an advantage of at most
εuce
H
+ εExt.

Game 4. If id ∗ ∈ CA, the challenger answers a Send query on
(
id ∗, i∗, (pk, π)

)
as follows. If (pk, π) is adversarially generated and valid, the challenger runs(
r ′
U
, d, sk

)
← Π.Ext (crs, τext, ((xi)i, k, C, rCA, pk) , π) and checks whether ((xi)i,

k, C, rCA, pk ; r ′
U
, d, sk

)
is in RΠ. If not, it aborts.

This game can be distinguished from the one only if the extractability of
Π is contradicted. Therefore,

(
A ′1,A

′
2

)
can distinguish this game from the one

with an advantage of at most εext
Π

.

Game 5. The challenger now runs
(
ppCom, τCom

)
← C .TSetup

(
1λ

)
instead of

running C .Setup. The setup indistinguishability of C implies that adversary(
A ′1,A

′
2

)
can distinguish this game from the previous one with an advantage

of at most εsetup−ind
C

.
Game 6. If id ∗ ∈ CA, the challenger of this game answers a Send query on(

id ∗, i∗, (pk, π)
)
as follows. If (pk, π) is adversarially generated and valid, the

challenger runs
(
r ′
U
, ρU, sk

)
← Π.Ext (crs, τext, ((xi)i, k, C, rCA, pk) , π). If ((xi)i,

k, C, rCA, pk ; r ′
U
, d, sk

)
is in RΠ, it extracts r ′′

U
← ExtCom(τCom, C) and if

r ′
U
, r ′′
U
, the challenger aborts.

This game can be distinguished from the previous one only if the binding
extractability of C is contradicted. It follows that adversary

(
A ′1,A

′
2

)
can

distinguish this game from the previous with an advantage of at most εbind−extC .
Game 7. If id ∗ ∈ CA, to answer a Send query on

(
id ∗, i∗, (pk, π)

)
, the challenger

proceeds as the challenger of the previous game, and if it does not aborts, it
generates a uniformly random string σ, computes (pk ′, sk ′) ← Γ (x1, . . . , xn;σ)
and sets pk i∗

id∗ ← pk ′.
Note that if C is adversarially generated, then H∞

(
Di∗

id∗

)
≥ κ as the dis-

tribution of the partner instance is set to a Dirac mass since (id ∗, i∗) has
not yet accepted, by definition of oracle Test. If C is oracle-generated, then
max

(
H∞

(
Di∗

id∗

)
, H∞

(
D

j

id′

))
≥ κ. The same arguments for the computational

indistinguishability of Game 2 and Game 1 imply that
(
A ′1,A

′
2

)
can distin-

guish this game from the previous one with an advantage of at most εuce
H
+εExt.

In the last game, the condition that if an instance accepts then its partner
must eventually terminate implies that pk i∗

id∗ is computed by generating a uni-
formly random string σ and evaluating Γ at (x1, . . . , xn;σ). The advantage of the
adversary in the last game is thus nil. IT follows that in case 1), the advantage

20

of (A1,A2) is at most

|ID | |I |
(
3
(
εuce
H
+ εExt

)
+ εextΠ + ε

setup−ind
C

+ εbind−extC

)
.

In the second case, id ∗ ∈ U and since rCA is adversarially generated, Di∗

id∗
has

min-entropy at least κ. The security of H and of Ext ensure that the commit-
ment scheme is hiding and that the proof is zero-knowledge, which ensures that
the protocol execution leaks no information about seed s. In addition to that,
the high min-entropy of Di∗

id∗
also guarantees that s is indistinguishable from a

uniformly random string. As a consequence, the resulting key is indistinguishable
from one generated by the key-generation algorithm.

To prove it, consider the following sequence of games.

Game 0. This is the real selective game.
Game 1. In this game, to generate the common-reference string, the challenger
runs (crs, τzk) ← Π.TSetupzk

(
1λ

)
instead of Π.Setup. Adversary

(
A ′1,A

′
2

)
can

distinguish this game from the previous one with an advantage of at most εzk
Π
.

Game 2. This game is defined as in the previous case, and
(
A ′1,A

′
2

)
can distin-

guish this game from the previous one with an advantage of at most εuce
H
+εExt.

Game 3. To answer a prompting Send query on
(
id ∗, i∗, (∗, ∗)

)
, the challenger

now generates r ′
U
, ρU and s ′ uniformly at random. Since rCA is adversarially

generated in case 2) and that U accepts only after receiving it, the only
information

(
A ′1,A

′
2

)
has about rU is that it has a distribution Di∗

id∗
such

that H∞
(
Di∗

id∗

)
≥ κ ≥ κH . In the event in which the Test query of A ′2 is not

replied to with ⊥, instance (id ∗, i∗) is not corrupt before it accepts, so the only
information A ′1 has about r i

∗

id∗
is that its distribution is Di∗

id∗
. Moreover, if

id ∗ is later corrupt before the end of the protocol execution, (id ∗, i∗) will have
already erased r ′

U
and ρU and s ′.

Consequently, the UCE security of H can be reduced to distinguishing
this game from the previous one, and

(
A ′1,A

′
2

)
can thus distinguish this game

from the previous one with an advantage of at most εuce
H

.
Game 4. In this game, the challenger answers a Send query on

(
id ∗, i∗, rCA

)
,

with rCA adversarially generated, by generating uniformly random values in-
stead of evaluating PRF at (s ′, 0). If id ∗ is later corrupt before the end of
the protocol execution, (id ∗, i∗) will have already erased s ′ and rΠ. Adversary(
A ′1,A

′
2

)
can distinguish this game from the previous one with an advantage

of at most εPRF.
Game 5. To answer a Send query on

(
id ∗, i∗, rCA

)
such that rCA is adversarially

generated, the challenger simulates a proof π ← Π.Sim
(
crs, τzk, ((xi)i, k, C,

rCA, pk)). By the composable zero-knowledge property of Π, this game is
perfectly indistinguishable from the previous one.

Game 6. To answer a prompting Send query on
(
id ∗, i∗, (∗, ∗)

)
, the challenger

runs (C, d) ← Com
(
0 |r

′
U
|; ρU

)
and sends C. In the event in which the Test

query of A ′2 is not replied to with ⊥, adversary A ′1 does not corrupt id ∗ before
(id ∗, i∗) accepts, so not before ρU is erased. As C is εhideC -hiding,

(
A ′1,A

′
2

)
21

can distinguish this game from the previous one with an advantage of at most
εhideC .

Game 7. To answer a Send query on
(
id ∗, i∗, rCA

)
such that rCA is adversarially

generated, the challenger generates s uniformly at random. As |r ′
U
| ≥ κExt,

s is εext-computationally indistinguishable from a uniformly random value.(
A ′1,A

′
2

)
can then distinguish this game from the previous one with an ad-

vantage of at most εExt.

In the last game, the condition that if an instance accepts then its partner
must eventually terminate then implies that pk i∗

id∗ is computed by evaluating
Γ at (x1, . . . , xn;σ), where σ is a uniformly random string. The advantage of(
A ′1,A

′
2

)
in that game is then nil. As a result, the advantage of (A1,A2) in the

second case is at most

|ID | |I |
(
εzk
Π
+ 2εuce

H
+ 2εExt + εPRF + ε

hide
C

)
.

ut

Discrete-Logarithm Keys. App. B presents a simple illustration of this generic
protocol (but rather in the random-oracle model for better effiency) applied to
discrete-logarithm keys.

4.2 RSA-Key Generation Protocol with Verifiable Randomness

This section gives a two-party protocol for RSA-key generation with verifiable
randomness between a user U and a certification authority CA. The resulting
keys can be used in any RSA cryptosystem. The protocol attests that the re-
sulting keys were generated with high-entropy randomness and that they satisfy
(fixed) arbitrary properties. These properties are captured by a relation

RW B {(N, e ∈ Z; p, q ∈ W ⊆ P) : p , q ∧ N = pq ∧ gcd(e, ϕ(N)) = 1}

to which the keys generated should belong, where W is a set that defines the
predicates p and q must satisfy, e.g., p = q = 3 mod 4 or p and q are safe primes.
Its relative language is denoted RW . Efficient proof systems for such properties
exist [48,17,4], though none of them aims at proving that the keys were generated
with proper randomness.

In comparison, the protocol by Juels and Guajardo [35] only guarantees the
first two properties, and does not ensure that the user algorithm cannot bias
the distribution of the keys. Without the third property, an interactive key-
generation protocol is only beneficial if the user does not have high-entropy
randomness locally whereas the CA does, otherwise it is only a burden for the
user. On the other hand, the third property additionally guarantees the end user
that if the CA has high-entropy randomness, her keys are not faulty.

As for the attestation scheme of Benhamouda et al. [12], it allows to prove
that the RSA primes were generated with an arbitrary generator; and the pro-
tocols of Camenisch and Michels [17], of Auerbach and Poettering [4], and of

22

Goldberg et al. [30], only allow to prove that RSA primes satisfy certain prop-
erties, not that they were generated with high entropy. In a sense, our goal is
complementary to that of proving that RSA moduli satisfy certain properties
without proving that the keys were generated with high-entropy randomness.

RSA Key-Generation Algorithm. The NIST standard [43] for the RSA [45] key-
generation algorithm, further denoted KeyGenRSA, is the following:
– choose at random two distinct large primes p and q
– compute N ← pq and ϕ(N) ← (p − 1)(q − 1)
– choose an integer 216 < e < 2256 such that gcd(e, ϕ(N)) = 1 (e may be chosen
deterministically or at random); compute d ← e−1 mod ϕ(N)

– Return pk ← (N, e) and sk ← (N, d).
Equivalently, the secret key sk can be set to (p, q, e) instead of (N, d) as one
can compute (N, d) from (p, q, e) and vice-versa. It is this variant that is here-
after considered. To formally capture the requirement on p and q to be large, a
parameter b = b(λ) that specifies the bit-length of p and q is introduced.

Interpretation. There is some ambiguity as to how p and q are generated. The
interpretation (which follows how the algorithm would implemented in prac-
tice) of KeyGenRSA in the rest of the paper is first that there exists a PPT
primality-test algorithm PrimeTestW (λ, b, e, p) → ζ ∈ {0, 1} (parameter λ is fur-
ther omitted from its syntax) which tests whether an integer p is in W , b-bit
long and such that gcd(e, (p − 1)) = 1. Algorithm KeyGenRSA then generates,
uniformly at random, integers in

�
2b−1, 2b − 1

�
until it finds an integer p such

that PrimeTestW (b, e, p) = 1, and continues until it finds a second one q , p such
that PrimeTestW

(
b, e, q

)
= 1. If no such two integers are found in a specified

number of iterations TRSA(λ), the algorithm aborts and returns an invalid pair,
e.g., (0, 0). The random variable with values in {0, 1, 2} that counts the number
of distinct primes found in at most TRSA(λ) iterations is further denoted ctrRSA.

Protocol. We now describe our protocol, further denoted IKGRSA, to generate
RSA keys with verifiable randomness. The protocol is given in the random-oracle
model to allow for practical efficiency.

Building Blocks. The protocol builds on
– the same primality-test algorithm PrimeTestW as the one run by KeyGenRSA. It
is said to be δ-correct if with probability at most 1− δ, PrimeTestW (b, e, p) = 0

for p ∈ W∩
�
2b−1, 2b − 1

�
such that gcd(e, (p−1)) = 1, or PrimeTestW (b, e, p) = 1

for p < W ∩
�
2b−1, 2b − 1

�
or such that gcd(e, (p − 1)) > 1 (i.e., it is an upper-

bound on the probability that it returns a false negative or a false positive)
– a random oracle of which the domain is separated to obtain pairwise indepen-
dent random oracles H , HC , HΠ and HΠW

– a commitment scheme C =
(
Setup,Com,ComVf

)
(App. A.1) for the user algo-

rithm to commit to its random string before receiving any input from the CA.
The parameters returned by Setup are tacit inputs to C other algorithms.

– a pseudo-random function PRF with range (non-empty) RPRF ⊆ N for U to
generate the RSA primes from the seed extracted with H

23

– an extractable non-interactive zero-knowledge (NIZK) argument system ΠC =
(Setup, Prove,Verf, Sim,Ext

)
for the relation

{(
C; r ′

U
, d

)
: ComVf (C, r ′

U
, d) = 1

}

with random oracle HC , i.e., for the user to prove knowledge of an opening to
her committed randomness

– an extractable NIZK argument system Π = (Setup, Prove,Verf, Sim,Ext
)
with

random oracle HΠ for the relation
{(

C, rCA, N, (aγ)γ,i, j ; r ′U, d, ai, a j

)
: ComVf

(
C, r ′

U
, d

)
= 1, s = r ′

U
⊕ H (rCA),

∀γ ∈ [[j]] aγ = PRF(s, γ), 2b(λ)−1 ≤ ai, a j ≤ 2b(λ) − 1, N = aia j in N
}
,

i.e., for the user to prove the RSA primes are really the first two primes
generated with the seed derived from the committed randomness and the
randomness of the CA. This relation is further denoted RΠ

– a NIZK argument system ΠW =
(
Setup,Prove,Verf, Sim) with random oracle

HΠW for relation RW
– another pseudo-random function PRF′ with variable output length (encod-
ing in unary as last input) for U to generate the randomness necessary10 to
compute ΠC .Prove, PrimeTestW , Π.Prove and ΠW .Prove, as the only available
randomness to the parties are their input random bit strings.
Throughout the protocol, e is assumed (without loss of generality) to be a

fixed11, hard-coded value in U. For the sake of simplicity, e is further assumed
to be prime, e.g., e = 65537 (it is a value commonly used in practice).

Parameters. Given a security parameter 1λ and a function T : N → N>1 that
gives an upper bound on the number of iterations in Algorithm 2 (and thus the
running time of U), to generate parameters for IKGRSA, run ppC ← C .Setup

(
1λ

)
,

ppΠC ← ΠC .Setup
(
1λ

)
, ppΠ ← Π.Setup

(
1λ

)
and ppΠW

← ΠW .Setup
(
1λ

)
. Set

and return pp ←
(
b(λ),T (λ), ppC , ppΠC, ppΠ, ppΠW

)
.

Formal Description. Consider the interactive protocol on Figure 3 between a
user U and a certification authority CA. Each algorithm maintains acceptance
and termination variables accid and termid for id ∈ {U, CA} initially set to
FALSE. The party algorithms proceed as follows:
1. U applies the random oracle H twice to its randomness rU to compute r ′

U
←

H (0‖rU) and ρU ← H (1‖rU), commits to r ′
U

with ρU as random string.
Next, a seed s ′ ← H (2‖rU) from which it derives the randomness necessary
to compute ΠC .Prove, and computes of proof of knowledge of an opening to
the commitment. U sends the commitment and the proof to CA

10 Juels and Guajardo’s protocol [35] allows for probabilistic primality-test algorithms
and makes uses of proof systems, but does not specify the origin of the randomness
necessary for their computation or the zero-knowledge property of the proof systems.

11 Alternatively, in the protocol on Figure 3, after N is computed, U could continue
to generate pseudo-random values until it finds one that is coprime with ϕ(N) and
then sets it as e. Algorithm U would then also have to reveal the values that did not
satisfy this property and prove that they did not, and also to prove that the chosen
e and ϕ(N) are coprime. Assuming e to be fixed in advance avoids this complication.

24

2. CA, upon receiving the commitment and the proof from U , sets accCA ←
TRUE. It verifies the proof and if it holds, sends its randomness to U , and
otherwise returns ⊥ and sets termCA ← TRUE

3. U, upon receiving rCA from CA, sets accU ← TRUE. It extracts a seed s
with H from the joint randomness. It continues by generating by running(
(aγ) jγ=1, i

)
← Algorithm 2.

Algorithm 2
Require: PrimeTestW , integers T, b, e, pseudo-random function PRF, seed s.
Ensure: Pseudo-random numbers aγ and integer i.
1: ctr, i, j ← 0
2: while ctr < 2 and j < T do
3: j ← j + 1; a j ← PRF(s, j)
4: if PrimeTestW

(
b, e, a j ;PRF(s, j)

)
then

5: if ctr = 0 then
6: i ← j
7: end if
8: ctr ← ctr + 1
9: end if
10: end while
11: if ctr < 2 then
12: return

(
(aγ) jγ=1,⊥

)
13: else
14: return

(
(aγ) jγ=1, i

)
15: end if

(a) if i = ⊥ (i.e., Algorithm 2 did not find 2 primes such that PrimeTestW (b, e,
a j ;PRF(s, j)) = 1 in T iterations; this case is not depicted on Figure 3),
U sends

(
rU, (aγ) jγ=1

)
to CA, returns (0, 0) and sets termU ← TRUE

(b) if i , ⊥, U computes a proof π that it correctly performed its computation
with Π, and a proof πW that the RSA public key is in LW with ΠW .
After computing the proofs, U erases all variables but N , e, p, q, i, π,
πW and (aγ)γ,i, j . It sends these latter to CA, except p and q, returns
(pkU ← (N, e), sk ← (p, q, e)), and sets termU ← TRUE

4a. CA, upon receiving
(
rU, (aγ) jγ=1

)
fromU , computes r ′

U
, ρU and s as U, com-

putes (C′, d ′) ← Com
(
r ′
U
, ρU

)
, and verifies that C′ = C and that PRF(s, γ) =

aγ for all γ ∈ [[j]]. If all verification succeeds, CA returns 0, otherwise it returns
⊥. It sets termCA ← TRUE

4b. CA, upon receiving
(
N, e, π, πW , i, (aγ)γ,i, j

)
from U , generates a seed s ′′ with

H from its randomness, and uses it to generate the randomness necessary to
compute PrimeTestW . The resulting random string is denoted r ′W . It verifies
that for all γ ∈ [[j − 1]] \ {i}, PrimeTestW

(
b, e, aγ; r ′W

)
= 0, and that π and πW

are valid. If one of the verifications did not succeed, CA returns ⊥, otherwise
it returns pk CA ← (N, e). It sets termCA ← TRUE.

25

Discussion. U proves among other things that p and q are really the first two
random primes in W such that gcd(e, p − 1) = gcd(e, q − 1) = 1, and therefore
cannot have chosen primes with additional conditions to these. It is a subtle
but crucial aspect of the protocol which ensures that U cannot bias the distri-
bution of the keys; and not doing so is precisely what allowed for the ROCA
vulnerabilities [42] in which specific primes where chosen by the user algorithm.

U
(
pp, e; rU

)
CA

(
pp; rCA

)
r ′
U
← H

(
0‖rU

)
; ρU ← H

(
1‖rU

)
(C, d) ← Com

(
r ′
U
; ρU

)
s ′ ← H

(
2‖rU

)
; rΠC ← PRF′

(
s ′, 0, 1

���rΠC
���
)

πC ← ΠC .Prove
(
ppΠC , C,

(
r ′
U
, d

)
; rΠC

)
C,πC
−−−−→ ΠC .Verf

(
ppΠC , C, πC

)
?
= 1

rCA
←−−−−

s ← r ′
U
⊕ H (rCA)(

(aγ) jγ=1, i
)
← Alg.2 with random string

PRF′
(
s′, γ, 1 |rW |

)
for PrimeTestW

p← ai , q ← a j , N ← pq

π ← Π proof of correct computation with
random string PRF′

(
s ′, j + 1, 1 |rΠ |

)
πW ← ΠW proof that (N, e) ∈ LW with

random string PRF′
(
s ′, j + 2, 1

���rΠW
���
)

Erase all variables but N, e, i, p, q s ′′ ← H (rCA)

(aγ)γ,i, j, π and πW
(N,e),π,πW
−−−−−−−−−−→
i, (aγ)γ,i, j

r ′W ← PRF′
(
s ′′, 0

)
∀γ , i, j, PrimeTestW

(
b, e, aγ; r ′W

)
?
= 0

Π.Verf
(
ppΠ,

(
C, rCA, N, (aγ)γ,i, j

)
, π

)
?
= 1

ΠW .Verf
(
ppΠW

, (N, e), πW
)

?
= 1

return
(
(N, e), (p, q, e)

)
return (N, e)

Fig. 3. RSA-Key Generation Protocol with Verifiable Randomness for an Arbitrary
Relation RW .

Theorem 4.3 (Correctness). Let j be the number of iterations of Algorithm 2,
and suppose that PrimeTestW is δ-correct and that PRF′ is (TPRF′, j + 3, εPRF′)-
secure for TPRF′ = Ω(T · TPrimeTest). If C is correct and if ΠC, Π and ΠW are
complete, protocol IKGRSA is max

(
1 − j (1 − δ) − 2εPRF′ − qH

(
2−κU + 2−κCA

)
, 0

)
-

correct in the random-oracle model w.r.t. to the class of algorithms that run in
time at most TPRF′, make at most qH queries to H and return distributions DU
and DCA independent of the random oracle and with min-entropy at least 2−κU
and 2−κCA , respectively.

26

Proof. Assuming C to be correct and ΠC , Π and ΠW to be complete, a pro-
tocol in which uniformly random values are generated instead of s ′ and s ′′ is
max (1 − j (1 − δ), 0)-correct as an honest protocol execution fails only if PrimeTest
does.

Since DU and DCA are assumed to be independent of the random oracle and
to have min-entropy at least with min-entropy at least 2−κU and 2−κCA , respec-
tively, a protocol in which s and s ′ are uniformly random is q

(
2−κU + 2−κCA

)
-

statistically indistinguishable from the previous one.
Consider now the following algorithm which interacts with the PRF chal-

lenger for PRF′. Given user and certification-authority distributions, the algo-
rithm runs the key-generation protocol as a subroutine with random strings
drawn from the specified distributions, and queries the challenger when PRF′ is
to be evaluated on s ′ (which is exactly j+3 times). The algorithm returns 1 if the
protocol execution fails and 0 otherwise. The security of PRF′ implies that a pro-
tocol execution with PRF′ evaluations on s ′ ismax

(
1 − j (1 − δ) − εPRF′ − q

(
2−κU +

2−κCA
)
, 0

)
-correct.

Likewise, consider another algorithm which runs the key-generation protocol
as a subroutine with random strings drawn from the specified distributions, and
queries the challenger when PRF′ is to be evaluated on s ′′ (which is exactly
once). The algorithm returns 1 if the protocol execution fails and 0 otherwise.
The security of PRF′ implies that a protocol execution with PRF′ evaluations on
s ′ and on s ′′ is max

(
1 − j (1 − δ) − 2εPRF′ − q

(
2−κU + 2−κCA

)
, 0

)
-correct. ut

The following theorem shows that IKGRSA is indistinguishable from KeyGenRSA

in the random oracle if C is hiding and binding, if ΠC and Π are zero-knowledge
and extractable, if ΠW is zero-knowledge and sound, if PRF and PRF′ are se-
cure PRFs, if the probability that Algorithm 2 fails although IKGRSA does not
is small, and if the adversary makes few random-oracle queries compared to the
min-entropy of the test distributions.

Theorem 4.4 (Indistinguishability). Suppose that C is
(
Thide

C , εhideC

)
-hiding

and
(
Tbind

C , εbindC

)
-binding, that PRF is (TPRF, j, εPRF)-secure, that PRF′ is (TPRF′,

j + 3, εPRF′)-secure, that ΠC is
(
Text
ΠC
, qHC, ε

ext
ΠC

)
-extractable and

(
Tzk
ΠC
, qHC, 1, ε

zk
ΠC

)
-

zero-knowledge, that Π is
(
Text
Π
, qHΠ, ε

ext
Π

)
-extractable and

(
Tzk
Π
, qHΠ, 1, ε

zk
Π

)
-zero-

knowledge, and that ΠW is
(
T sound
ΠW

, qHW
, εsound
ΠW

)
-extractable and

(
Tzk
ΠW

, qHW
, 1, εzk

ΠW

)
-

zero-knowledge. Protocol IKGRSA is
(
T, qO, κ, ε

)
-indistinguishable from KeyGenRSA

in the random-oracle model, for T = min
(
Thide

C ,Tbind
C , TPRF,TPRF′,Text

ΠC
,Tzk
ΠC
,Text
Π
,

Tzk
Π
,T sound
ΠW

,Tzk
ΠW

)
, O ∈ {Oracle,Dist,Exec, Send,Reveal,Corrupt}, qOracle ≥ qH +

qHC + qHΠ + qHW
, and

ε B |ID | |I |
(
2−κqH + 5

(
2−κqH + εPRF + |RPRF |

−1 + Pr[ctr < 2, ctrRSA = 2]
)

+ εPRF′ + ε
ext
ΠC
+ εzkΠC + ε

ext
Π + ε

zk
Π + ε

sound
ΠW

+ εzkΠW
+ εbindC + εhideC

)
.

Proof. First note that if (A1,A2) wins the indistinguishability game with a
probability at least ε, then there exists an adversary (A ′1,A

′
2) which wins with

27

probability at least ε/|ID | |I | a variant of the game in which the adversary is
required to specify the pair (id ∗, i∗) of its Test query before being given access to
the game oracles, i.e., a selective variant of the indistinguishability game. Indeed,
(A ′1,A

′
2) can simply run (A1,A2) as a subroutine and guess the pair (id ∗, i∗) at

the beginning of the game. If (A1,A2) later makes its Test query on a different
pair, (A ′1,A

′
2) simply aborts and sends to the challenger a bit chosen uniformly

at random.
A message is subsequently said to be oracle-generated if it was computed by

the challenger as a response to a Send query and it was not altered. Otherwise,
the message is said to be adversarially generated.

Further distinguish two cases

1. id ∗ ∈ CA, or id ∗ ∈ U and the random string rCA the i∗th instance of id ∗

receives is oracle-generated.
2. id ∗ ∈ U and the random string rCA the i∗th instance of id ∗ receives is adver-

sarially generated.

In the first case, the situation is similar to the first case of the proof of Theo-
rem 4.2, except that the arguments are in the random-oracle model, and that
C is not assumed to be extractable, so the extraction is rather done via ΠC .
Consider then the following sequence of games.

Game 0. This is the real selective game.
Game 1. To answer an Exec query on

(
id ∗, i∗, ∗, ∗

)
or on

(
∗, ∗, id ∗, i∗

)
, the chal-

lenger generate an honest transcript of the protocol. However, instead of set-
ting pk i∗

id∗ ← pk , it generates a uniformly random string σ, runs (pk ′, sk ′) ←
KeyGenRSA(b, e,W ;σ) and sets pk i∗

id∗ ← pk .
Recall that A ′1 and A ′2 share no state, and that in the event in which the

Test query of A ′2 is not replied to with ⊥, key pk i∗

id∗ is not in QReveal (nor is
the key of the partner of (id ∗, i∗). Denoting by (id, j ′) the partner instance
of

(
id ∗, i∗

)
, since max

(
H∞

(
Di∗

id∗

)
, H∞

(
D

j

id′

))
≥ κ, adversary

(
A ′1,A

′
2

)
can

distinguish this game from the previous one with an advantage of at most
2−κqH + εPRF + |RPRF |

−1 + Pr[ctr < 2, ctrRSA = 2].
Indeed, in Algorithm 2, if ctr < 2 after T iterations (with ctr depending on

Di∗

id∗
and D j

id′
), then the key pair generated by IKGRSA is (0, 0), i.e., invalid

RSA keys, although the key pair generated by KeyGenRSA is valid. Moreover,
since s = H (0‖rU) ⊕ H (rCA), it is 2−κqH -statistically indistinguishable from
a uniformly random value if H∞

(
Di∗

id∗

)
≥ κ or H∞

(
D

j

id′

)
≥ κ, for Di∗

id∗
and

D
j

id′
are independent of H .

For a uniformly random seed s, the security of PRF implies that its j + 3
evaluations on s are εPRF-computationally indistinguishable from uniformly
random values.

Lastly, if p = q, then the key generated is not a valid RSA key, but it only
occurs with probability at most |RPRF |

−1.
Therefore,

(
A ′1,A

′
2

)
can distinguish this game from the previous one with

an advantage of at most 2−κqH + εPRF + |RPRF |
−1 + Pr[ctr < 2, ctrRSA = 2].

28

Game 2. If id ∗ ∈ U , the challenger answers a Send query on
(
id ∗, i∗, rCA

)
as

follows. It computes (pk, π) honestly, but instead of setting pk i∗

id∗ ← pk , it gen-
erates a uniformly random string σ, runs (pk ′, sk ′) ← KeyGenRSA(b, e,W ;σ)
and sets pk i∗

id∗ ← pk .
Recall that in case 1), since rCA is always oracle-generated. Therefore, the

same indistinguishability between the last two games still apply and
(
A ′1,A

′
2

)
can distinguish this game from the previous one with an advantage of at most
2−κqH + εPRF + |RPRF |

−1 + Pr[ctr < 2, ctrRSA = 2].
Game 3. If id ∗ ∈ CA, the challenger answers a Send query on

(
id ∗, i∗, (N, e, π, πW ,

i, (aγ)γ,i, j
))

as follows. If
(
N, e, π, πW , i, (aγ)γ,i, j

)
is adversarially generated,

for all γ , i, j, PrimeTestW
(
b, e, aγ; r ′W

)
= 0, and proofs π and πW are valid,

then the challenger runs Π.(Ext0,Ext1) on A ′1. If extraction fails, the chal-
lenger aborts; otherwise it obtains a tuple (r ′

U
, d, ai, a j), and checks whether(

C, rCA, N, (aγ)γ,i, j ; r ′U, d, ai, a j

)
is in RΠ. If not, it aborts. If so, N = aia j in N,

and the challenger checks whether (N, e; ai, a j) of (N, e; a j, ai) is in RΠW . If not,
it aborts. Indeed, Since W ⊆ P, if ai and a j are not prime, then the soundness
of ΠW is contradicted. If ai and a j are prime, then unless the soundness of
ΠW is contradicted, the only possible witness for (N, e) is (ai, a j) or (a j, ai) by
the fundamental theorem of arithmetic. Therefore, if neither (N, e; ai, a j) nor
(N, e; a j, ai) is in RΠW , the soundness of ΠW is contradicted.

This game can be distinguished from the one only if the extractability of Π
or the soundness of ΠW is contradicted. Therefore,

(
A ′1,A

′
2

)
can distinguish

this game from the one with an advantage of at most εext
Π
+ εsound
ΠW

.
Game 4. If id ∗ ∈ CA, the challenger answers a Send query on

(
id ∗, i∗, (N, e, π, πW ,

i, (aγ)γ,i, j
))

the challenger proceeds as the one of the previous game, but if(
C, rCA, N, (aγ)γ,i, j ; r ′U, d, ai, a j

)
is in the relation, it runs ΠC .(Ext0,Ext1). If

extraction fails, the challenger aborts; otherwise it obtains a tuple (r ′′
U
, d ′). If

r ′
U
, r ′′
U
, the challenger aborts.

This game can be distinguished from the previous one only if the ex-
tractability of ΠC or the binding property of C is contradicted. It follows
that adversary

(
A ′1,A

′
2

)
can distinguish this game from the previous with an

advantage of at most εext
ΠC
+ εbindC .

Game 5. If id ∗ ∈ CA, to answer a Send query on
(
id ∗, i∗, (N, e, π, πW , i, (aγ)γ,i, j

))
,

the challenger proceeds as the one of the previous game, and if it does not
aborts, it generates a uniformly random string σ, runs (pk ′, sk ′) ← KeyGenRSA(b,
e,W ;σ) and sets pk i∗

id∗ ← pk .
Note that if C is adversarially generated, then H∞

(
Di∗

id∗

)
≥ κ as the dis-

tribution of the partner instance is set to a Dirac mass since (id ∗, i∗) has
not yet accepted, by definition of oracle Test. If C is oracle-generated, then
max

(
H∞

(
Di∗

id∗

)
, H∞

(
D

j

id′

))
≥ κ. The same arguments for the computational

indistinguishability of Game 2 and Game 1 imply that
(
A ′1,A

′
2

)
can distin-

guish this game from the previous one with an advantage of at most 2−κqH +
εPRF + |RPRF |

−1 + Pr[ctr < 2, ctrRSA = 2].

29

In the last game, the condition that if an instance accepts then its part-
ner must eventually terminate implies that pk i∗

id∗ is computed by generating a
uniformly random string σ and running KeyGenRSA on input (b, e,W ;σ). The
advantage of the adversary in the last game is thus nil. IT follows that in case
1), the advantage of (A1,A2) is at most

|ID | |I |
(
3
(
2−κqH + εPRF + |RPRF |

−1 + Pr[ctr < 2, ctrRSA = 2]
)

+ εextΠ + ε
sound
ΠW

+ εextΠC + ε
bind
C

)
.

In the second case, the situation is similar to the second case of the proof of The-
orem 4.2, except that the arguments are in the random-oracle model, and that
ΠW is only assumed to be sound, not extractable. Consider then the following
sequence of games.

Game 0. This is the real selective game.
Game 1. This game is defined as in the previous case, and

(
A ′1,A

′
2

)
can distin-

guish this game from the previous one with an advantage of at most 2−κqH +
εPRF + |RPRF |

−1 + Pr[ctr < 2, ctrRSA = 2].
Game 2. To answer a prompting Send query on

(
id ∗, i∗, (∗, ∗)

)
, the challenger

now generates r ′
U
, ρU and s ′ uniformly at random. Since rCA is adversarially

generated in case 2) and that U accepts only after receiving it, the only
information

(
A ′1,A

′
2

)
has about rU is that it has a distribution Di∗

id∗
such that

H∞
(
Di∗

id∗

)
≥ κ. In the event in which the Test query ofA ′2 is not replied to with

⊥, instance (id ∗, i∗) is not corrupt before it accepts, so the only information A ′1
has about r i

∗

id∗
is that its distribution is Di∗

id∗
. Moreover, if id ∗ is later corrupt

before the end of the protocol execution, (id ∗, i∗) will have already erased r ′
U

and ρU and s ′.
Consequently,

(
A ′1,A

′
2

)
can thus distinguish this game from the previous

one with an advantage of at most 2−κqH .
Game 3. In this game, the challenger answers a Send query on

(
id ∗, i∗, rCA

)
,

with rCA adversarially generated, if ctr < 2, the challenger aborts.
(
A ′1,A

′
2

)
can thus distinguish this game from the previous one with an advantage of at
most Pr[ctr < 2, ctrRSA = 2].

Game 4. In this game, the challenger answers a Send query on
(
id ∗, i∗, rCA

)
,

with rCA adversarially generated, by generating uniformly random values in-
stead of evaluating PRF′ at (s ′, 0). If id ∗ is later corrupt before the end of
the protocol execution, (id ∗, i∗) will have already erased s ′ and rΠ. Adversary(
A ′1,A

′
2

)
can distinguish this game from the previous one with an advantage

of at most εPRF′ .
Game 5. Denoting by QHΠ the of queries to H and their responses, and the
challenger now runs Π.Sim(0,QHΠ, ·) to answer random-oracle queries. To an-
swer a Send query on

(
id ∗, i∗, rCA

)
such that rCA is adversarially generated, the

challenger simulates a proof π ← Π.Sim
(
1,QHΠ,

(
C, rCA, N, (aγ)γ,i, j ; r ′U, d,

ai, a j

))
. Likewise, the challenger simulates a proof πW .

30

In the event in which the Test query of A ′2 is not replied to with ⊥, adver-
sary A ′1 does not corrupt id ∗ before (id ∗, i∗) accepts, so not before rΠ and rΠW

are erased. By the zero-knowledge property of Π and ΠW , adversary
(
A ′1,A

′
2

)
can distinguish this game from the previous one with an advantage of at most
εzk
Π
+ εzk
ΠW

.
Game 6. To answer a prompting Send query on

(
id ∗, i∗, (∗, ∗)

)
, the challenger

simulates a proof ΠC . In the event in which the Test query of A ′2 is not replied
to with ⊥, adversary A ′1 does not corrupt id ∗ before (id ∗, i∗) accepts, so not
before rΠC is erased.

By the zero-knowledge property of ΠC adversary
(
A ′1,A

′
2

)
can distinguish

this game from the previous one with an advantage of at most εzk
ΠC

.
Game 7. To answer a prompting Send query on

(
id ∗, i∗, (∗, ∗)

)
, the challenger

runs (C, d) ← Com
(
0 |r

′
U
|; ρU

)
and sends C. In the event in which the Test

query of A ′2 is not replied to with ⊥, adversary A ′1 does not corrupt id ∗ before
(id ∗, i∗) accepts, so not before ρU is erased. As C is εhideC -hiding,

(
A ′1,A

′
2

)
can distinguish this game from the previous one with an advantage of at most
εhideC .

Game 8. To answer a Send query on
(
id ∗, i∗, rCA

)
such that rCA is adversarially

generated, the challenger generates s uniformly at random. As H∞
(
Di∗

id∗

)
≥

κ, seed s is 2−κqH -statistically indistinguishable from a uniformly random
value.

(
A ′1,A

′
2

)
can then distinguish this game from the previous one with an

advantage of at most 2−κqH .
Game 9. To answer a Send query on

(
id ∗, i∗, rCA

)
such that rCA is adversari-

ally generated, the challenger generates uniformly random numbers instead of
evaluating PRF on s. Algorithm

(
A ′1,A

′
2

)
can distinguish this game from the

previous one with an advantage of at most εPRF.
Game 10. To answer a Send query on

(
id ∗, i∗, rCA

)
such that rCA is adver-

sarially generated, the challenger aborts if p = q. Algorithm
(
A ′1,A

′
2

)
can

distinguish this game from the previous one with an advantage of at most
|RPRF |

−1.

In the last game, the condition that if an instance accepts then its part-
ner must eventually terminate then implies that pk i∗

id∗ is computed by running
KeyGenRSA(b, e,W ;σ), where σ is a uniformly random string. The advantage of(
A ′1,A

′
2

)
in that game is then nil. As a result, the advantage of (A1,A2) in the

second case is at most

|ID | |I |
(
3qH 2−κ + 2εPRF + εPRF′ + ε

zk
Π
+ εzkΠW

+ εzkΠC + ε
hide
C + 2 |RPRF |

−1

+2Pr[ctr < 2, ctrRSA = 2]
)
.

ut

Theorems 4.5 and 4.7 show that by tuning the running time of Algorithm 2
depending on the number of primes in the range of PRF that satisfy the condi-
tions on p and q, the probability that Algorithm 2 fails although IKGRSA does
not is small.

31

Theorem 4.5 (Running Time of IKGRSA). Let n(b,W, e, RPRF) denote the
number of primes p in

�
2b−1, 2b − 1

�
∩W ∩ RPRF such that gcd(e, p− 1) = 1, and

let β denote n(b,W, e, RPRF) |RPRF |
−1. If n(b,W, e, RPRF) ≥ 1, then for numbers

chosen uniformly at random in RPRF, the number of trials necessary to obtain
two primes that satisfy the above conditions is 2/β in expectation. Moreover, for
any δ > 0, setting J ← d2(1 + δ)/βe, if PRF is (TPRF, J, εPRF)-secure and DU
and DCA are independent of the random oracle, have respective min-entropy at
least 2−κU and 2−κCA , and are returned by an algorithm that runs in time at most
TPRF and makes at most qH queries to H , then, in Algorithm 2, Pr [j > J] ≤
exp

(
− (2δ/βJ)2 βJ/2

)
+ qH

(
2−κU + 2κCA

)
+ εPRF.

Proof. Let (Xµ)µ≥1 be a family of independent random variables with the same
binomial distribution of parameter β. In essence, Xµ indicates whether the µth
trial, if it were done with a uniformly random function, would result in a prime
number. For an integer ν ≥ 1, let Tν B min{µ ≥ 1: X1 + · · · + Xµ = ν}. It is
a stopping time which indicates the number of trials before getting ν primes
numbers. The variable Tν − ν, which indicates the number of non-primes before
ν primes are found, has a negative binomial distribution with parameters ν and
1 − β. Its expectation is then ν(1 − β)/β. Therefore, by E[Tν] = ν/β. In the case
of RSA keys, ν = 2.

Moreover, the Chernoff bound (App. A.6) implies that the probability that
the number of trials is higher that this expectation decreases exponentially fast.
Formally, consider a real number δ > 0, and set J ← d2(1 + δ)/βe. Note that
T2 > J if and only if X1 + · · ·+ XJ < 2, which is equivalent to X1 + · · ·+ XJ − J β <
2 − J β ≤ −2δ. Note also that 0 < 2δ/βJ ≤ 1 for all δ > 0. The Chernoff bound
implies that Pr(T2 > J) ≤ P(X1 + · · · + XJ − J β < −2δ) ≤ exp(−(2δ/βJ)2 βJ/2).

In Algorithm 2, integers are not generated uniformly at random, but rather
with PRF. However, for any δ > 0, setting J ← d2(1 + δ)/βe, if PRF is (TPRF, J, εPRF)-
secure and DU and DCA are independent of the random oracle, have respective
min-entropy at least 2−κU and 2−κCA , and are returned by an algorithm that runs
in time at most TPRF and makes at most qH queries to H , then, the inequality
of the theorem statement holds.

To show it, first notice that an execution of protocol IKGRSA is qH (2κU + 2κCA)-
statistically indistinguishable from one in which s is generated uniformly at ran-
dom. Consider now an adversary for the PRF game with the DY PRF which
makes oracle queries until it either obtains two primes (possibly at the Jth query)
or reaches J query with at most one prime returned by the oracle. The adversary
returns 1 in the first case and 0 in the second. The number of trials with PRF
is then at most the number of trials with a uniformly random function plus the
advantage of this adversary in the PRF game, and the theorem follows. ut

Corollary 4.6. In Algorithm 2, if T > 2/β, setting δ ← βT/2 − 1 and J ←
d2(1 + δ)/βe, Pr [ctr < 2] ≤ exp

(
− (2δ/βJ)2 βJ/2

)
+ qH

(
2−κU + 2κCA

)
+ εPRF.

Theorem 4.7 (Running Time of KeyGenRSA). Let n(b,W, e) denote the num-
ber of primes p in

�
2b−1, 2b − 1

�
∩W such that gcd(e, p−1) = 1, and let βRSA de-

note n(b,W, e)2−b+1. If n(b,W, e) ≥ 1, then the expected running time of KeyGenRSA

32

is 2/βRSA. Moreover, for TRSA > 2/βRSA, setting δRSA ← βRSATRSA/2 − 1 and
JRSA ← d2(1 + δRSA)/βRSAe,

Pr [ctrRSA = 2] ≥ 1 − exp *
,
−

(
2δRSA

βRSAJRSA

)2
βRSAJRSA

2
+
-
.

Proof. It follows by the exact same analysis as in the first part of the proof of
Theorem 4.5. ut

As ctr and ctrRSA are independent random variables (the randomness of
by KeyGenRSA in query Test is independent of the distributions given by A ′1),
Pr[ctr < 2, ctrRSA = 2] is upper-bounded by the product of the upper-bounds
of Corollary 4.6 and Theorem 4.7, and this upper bound mainly (but not only)
depends on T , TRSA and RPRF.

5 Instantiation of the RSA-Key Generation Protocol

In this section, we instantiate the protocol of Section 4.2 for RSA key-generation
with verifiable randomness. To do so, we provide efficient instantiations for each
of the building blocks.

Recently, several important advancements have been made on the efficiency
of the commit-and-prove paradigm on committed values which combine algebraic
and non-algebraic statements [20,16,5]. These improvements for cross-domains
statements allow to prove efficiently for instance that some committed value
corresponds to a pre-image of some value of a given hash function such as SHA-
256 or that some value is the output of some non-algebraic PRF (i.e. HMAC-
SHA-256 or AES) using some committed key. To generate an RSA modulus of
3072 bits (for 128-bit security) using the generic protocol from Section 4.2, the
PRF must return 1536-bit integers and the use of non-algebraic PRF with the
technique from [20,16,5] would result in prohibitive schemes.

On this account, we present an instantiation based on an algebraic PRF,
namely the Dodis–Yampolskiy PRF, and use techniques [16] due to Bünz, Bootle,
Boneh, Poelstra, Wuille and Maxwell for range proofs and arithmetic-circuit
satisfiability to obtain short proofs of correct computation (i.e., Π in Section 4.2).

In the process, we give the first logarithmic-size (in the bit-length of the group
order) argument of knowledge of double discrete logarithms, and argument of
equality of a discrete logarithm in a group and a double discrete logarithm in
another related group. In contrast, the protocol of Camenisch and Stadler [18]
for the first relation, and the protocol of Chase et al. [20] for the second are
linear in the security parameter.
Parameters. We consider two related group-family generators GroupGen1 and

GroupGen2. Given a security parameter λ, to generate an RSA modulus which
is the product of two b(λ)-bit prime numbers, let ` be the smallest prime
of binary length equal to b(λ) such that 2` + 1 is also a prime number (i.e.
` is a Sophie Germain prime number, or equivalently 2` + 1 is a b(λ) + 1-
bit safe prime). GroupGen2 returns, on input λ, the group G2 of quadratic

33

residues modulo 2`+1 (which is of prime order `). The group-family generator
GroupGen1 returns on input λ some group G1 of prime order Λ such that `
divides Λ − 1 and Λ > (2` + 1)2. In practice12, G1 can be taken as a prime
order subgroup Λ of Z∗r for some prime number r such that Λ divides r − 1.
The restriction to quadratic residues is necessary for assumptions like the
DDH and the q-DDHI assumptions to hold over G2. However, it introduces
a bias by design (not from the user algorithm) in the RSA keys generated: p
and q are necessarily quadratic residues modulo 2` + 1. The reason is that the
values returned by the DY PRF are not actually integers but G2 elements.
Nonetheless, it is already the case for 1/4 of all RSA moduli since the factors
p and q returned by KeyGenRSA.

Commitment Scheme. Scheme C is the Pedersen commitment scheme [44]
in G2 for the user to commit her randomness.
used to commit to the secret RSA primes p and q, and the same Pedersen
scheme.

Pseudo-Random Functions. PRF is the Dodis–Yampolskiy (DY) PRF (see
Section 2) in the group G2 = QR2`+1 of quadratic residues modulo 2` + 1. It
is used to generate the secret RSA primes p and q. Since 2` + 1 is b(λ) + 1
bits long, p and q are b(λ) bits long with probability close to 1/2. The reason
2` + 1 is chosen to be one bit larger than p and q is to ensure that all primes
of b(λ) bits can be returned by the PRF so as not to introduce a bias. As for
PRF′, it can be any efficient pseudo-random function, e.g., HMAC [7].

Argument for RW . The argument system ΠW depends on the properties that
the prime factors of N must satisfy, e.g., they must be congruent to 3 modulo
4 or be safe primes. To prove that p = q = 3 mod 4, one can prove that
N is of the form prqs with p = q = 3 mod 4 using the protocol of van de
Graaf and Peralta [48], and run in parallel the protocol of Boyar et al. [15] to
prove that N is square-free. To prove that p and q are safe primes, there exist
proof systems in the literature such as Camenisch and Michel’s [17]. Besides,
Goldberg et al. [30] recently built a protocol to prove that gcd (e, φ(N)) = 1.

Argument of Correct Computation. The last component is an extractable
zero-knowledge argument system Π in the random-oracle model for the user
algorithm to prove that it correctly performed its computation, i.e., an ar-
gument system for RΠ. Section 5.1 presents a perfectly honest-verifier zero-
knowledge interactive protocol for RΠ that also satisfies witness-extended em-
ulation. Lemma A.1 implies that it is extractable in the random-oracle model.

5.1 Zero-Knowledge Argument with the Dodis–Yampolskiy PRF

This section gives a zero-knowledge argument Π in the case of the DY PRF in
G2 = QR2`+1. Formally, let 2`+1 be a b(λ)+1-bit (i.e., b(λ)+1 = blog(2`+1)c+1)
safe prime (i.e., ` is a Sophie Germain prime) and let Λ be a prime integer such
that ` divides Λ−1 and Λ > (2`+1)2. Consider G1 = 〈G1〉 a group of prime order

12 To generate RSA moduli which are products of two 1536-bit primes, the instantiation
with the Dodis–Yampolskiy PRF uses ` = 21535 +554415 which is a Sophie Germain
prime, Λ = (4` + 18)` + 1 and r = 1572 · Λ + 1.

34

Λ (in which p and q will be committed) and G2 = 〈G2〉 = QR2`+1 the group of
quadratic residues modulo 2` + 1, which is a cyclic group of order `. Recall that
the DY PRF is defined as the map (K, x) 7→ G1/(K+x)

2 .

Proof Strategy. To prove knowledge of a witness for the membership of(
C, rCA, N, (aγ)γ,i, j

)
to the language relative to RΠ, the user algorithm com-

mits to p = ai and q = a j in G1 with the Pedersen commitment scheme and
respective randomness rp and rq. The commitments are denoted P and Q.

The user algorithm then proves knowledge of a witness for R0 ∩ R1, with

R0 B
{
(C, rCA, N, P,Q, (aγ)γ,i, j ; r ′U, ρu, ai, a j, rp, rq) :

ComVf (C, r ′
U
, ρu) = 1, s = r ′

U
+H (rCA) mod `

∀γ ∈ [[j]], aγ = PRF(s, γ),ComVf (P, ai, rp) = ComVf (Q, a j, rq) = 1
}

and

R1 B
{
(C, rCA, N, P,Q, (aγ)γ,i, j ; r ′U, ρu, ai, a j, rp, rq) : ComVf (P, ai, rp) = 1

ComVf (Q, a j, rq) = 1, 2b(λ)−1 ≤ ai, a j ≤ 2b(λ) − 1, N = aia j in N
}
.

To prove knowledge of a witness for relation R, it then suffices to prove in
parallel knowledge of a witness for R0 and of a witness for R1 on the same public
inputs. Note that the binding property of the Pedersen commitment scheme in
G1 (relying on the DLOG assumption) guarantees that the ai and a j values used
in both proofs are the same (up to a relabeling).

Relation R0. We start by giving two preliminary protocols:
– a logarithmic-size zero-knowledge argument of knowledge of a double-discrete
logarithm (Section 5.2) using Bulletproof techniques [16]. The resulting proofs
are of size logarithmic in the bit-length of the group order. In comparison, the
protocol of Camenisch and Stadler [18] has proofs of size linear in the security
parameter

– a logarithmic-size argument of equality of a discrete logarithm in a group
and a double discrete logarithm in another related group (Section 5.3). In
contrast, the protocol of Chase et al. [20, Section 4.3] for this relation uses the
techniques of Camenisch and Stadler and therefore has proofs of size linear in
the security parameter.

We then combine the latter proof with the proof in Section 5.4 to obtain a proof
for relation R0.

Relation R1. The aggregated logarithmic range proof of Bünz et al. [16, Sec-
tion4.2] is sufficient to prove that the values committed in P and Q modulo Λ
are in

�
2b−1, 2b − 1

�
(which is equivalent to proving that the values committed

in PG−2
b−1

1 and QG−2
b−1

1 are in
{
0, . . . , 2b−1 − 1

}
). With the hypotheses on the

parameters Λ and `, the verifier is convinced that the equation N = aia j holds
in N. Indeed, the equation N = aia j mod Λ implies that there exists m ∈ Z
such that N = aia j + mΛ. Integer m cannot be strictly positive as otherwise N
would be strictly greater than Λ. Besides, m cannot be strictly negative since
Λ > (2` + 1)2 > aia j ; it is therefore nil and the equation N = aia j holds in N.

35

5.2 Logarithmic-Size Argument of Double Discrete Logarithm

This section gives a zero-knowledge argument with logarithmic communication
size for proving knowledge of a double discrete logarithm. It uses as a sub-
argument the logarithmic-size inner-product argument for arithmetic-circuit sat-
isfiability of Bünz et al. [16, Section 5.2], which is complete, perfectly honest-
verifier zero-knowledge, and satisfies witness-extended emulation (App. A.2).

Following the ideas of Bootle et al. [14], Bünz et al. convert any arithmetic
circuit with n multiplications gates into a Hadamard product aL ◦ aR = aO and
Q ≤ 2n linear constraints of the form

〈wL,q, aL〉 + 〈wR,q, aR〉 + 〈wO,q, aO〉 = cq

for q ∈ ~Q�, with wL,q, wR,q, wO,q ∈ Z
n
p and cq ∈ Zp. The vectors aL, aR respec-

tively denote the vectors of left and right inputs to the multiplications gates, and
aO the vector of outputs. The linear constraints ensure the consistency between
the outputs and the inputs of two consecutive depth levels of the circuit. Bootle
et al. [14, App. A] give a general method to find such linear constraints, though
it may not always result in the most compact ones for a specific circuit.

Bünz et al. actually give an argument for a more general relation which
includes Pedersen commitments of which the openings are included in the linear
consistency constraints. Concretely, given a group G of prime order p and positive
integers n, m and Q, Bünz et al. give a zero-knowledge argument for the relation

{(g, h ∈ G, g, h ∈ Gn,V ∈ Gm,WL,WR,WO ∈ Z
Q×n
p ,WV ∈ Z

Q×m
p ,

c ∈ ZQp ; aL, aR, aO ∈ Z
n
p, v, γ ∈ Z

m
p

)
: Vj = gvj hγj∀ j ∈ ~m�

∧aL ◦ aR = aO ∧WLaL +WRaR +WOaO =WVv + c} .

The soundness of their argument relies on the discrete logarithm assumption
over the generator of G. Concerning the proof size, the prover sends 2dlog2 ne +8
group elements and 5 Zp elements.

The main difficulty in the case of a proof of a double discrete logarithm
relation is to re-write the problem in a way that is suitable to apply the proof
for arithmetic circuits. The goal is to give a zero-knowledge argument for:

R2DLOG B
{

(G1, H1,G2,Y ; x ∈ Z`, r ∈ ZΛ) : Y = GGx
2

1 Hr
1

}
.

First, let n(λ) + 1 B b(λ) be the bit-length of `. Given the bit representation
(xi)ni=0 of x, Gx

2 = G
∑n

i=0 xi2
i

2 =
∏

i

(
G2i

2

)xi . An important observation is that for

xi ∈ {0, 1},
(
G2i

2

)xi
= xiG2i

2 + (1− xi) = xi
(
G2i

2 − 1
)
+ 1. The addition here is over

ZΛ, although the notation is purely formal since xi ∈ {0, 1}. It thus follows that
an argument for R2DLOG is equivalent to an argument for:

(G1, H1,G2,Y ; (xi)ni=0 ∈ {0, 1}
n, r ∈ ZΛ) : Y = G

∏
i

(
xi

(
G2i

2 −1
)
+1

)
1 Hr

1

,

36

which is also equivalent to an argument for:
{
(G1, H1,G2,Y ; (ai)ni=0, r ∈ ZΛ) : Y = G

∏
i ai

1 Hr
1 ∧ ai ∈

{
1,G2i

2

}}
.

To this end, consider the following array
a0 a1 a2 · · · an

1 a0 a0a1 · · · a0a1 · · · an−1

a0 a0a1 a0a1a2 · · · a1 · · · an.

Notice that its third row is the product of the first two. In other words, if a ←
(a0, a1, . . . , an) ∈ Zn+1

Λ
and b ← (b0 = a0, b1 = a0a1, . . . , bn−1 = a0a1 · · · an−1) ∈

Zn
Λ
, then a ◦ (1 b) = (b y) for y B Gx

2 .

Moreover, for aL B
[
a a − 1n+1

]T
, aR B

[
1 b a −G2n+1

2

]T
and aO B

[
b y 0n+1

]T

∈ Z2(n+1)
Λ

where G2n+1

2 denotes the vector
(
G2,G2

2,G
22

2 , . . . ,G
2n

2

)
, one has aL ◦aR =

aO. If one can prove knowledge of scalars y, r ∈ ZΛ and of vectors aL, aR and aO
such that Y = Gy

1Hr
1 and aL ◦ aR = aR, and such that the vectors are of the form

above, then one can prove knowledge of (ai)ni=0 ∈
∏

i

{
1,G2i

2

}
and (bi)n−1i=0 such

that y = anbn−1 = anan−1bn−2 = · · · = anan−1 · · · a1b0 = an · · · a0 and Y = Gy
1Hr

1 .
That is to say, one can prove knowledge of a double discrete logarithm.

To prove such a relation, one can use the argument of Bünz et al. [16] for
arithmetic circuits with the right linear constraints to ensure that the vectors
are of the appropriate form. To express these constraints, consider matrices

WL B

0(n+2)×2(n+1)
In+1 −In+1
In+1 0(n+1)×(n+1)
0(n+1)×2(n+1)

,WR B

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...
...
. . .

. . .
. . .

...
0 0 · · · 0 1 0
0 0 · · · 0 0 1
0 0 · · · 0 0 0
1 0 · · · 0 0 0

0(n+2)×(n+1)

0(n+1)×2(n+1)
0(n+1)×(n+1) −In+1

0(n+1)×2(n+1)

,

WO B

−In

0
...
0

0 · · · 0 1
0 · · · 0 0

0(n+2)×(n+1)

02(n+1)×2(n+1)
0(n+1)×(n+1) In+1

,WV B

0n×2
0 1
1 0

03(n+1)×2

,

and vectors v B
[
1
y

]
, cT B

[
01×(n+2) 1

n+1 G2n+1

2 01×(n+1)

]
.

Three vectors aL, aR and aO ∈ Z
2(n+1)
Λ

satisfy the equation WLaL +WRaR +

WOaO = WVv + c if and only if there exists a ∈ Zn+1
Λ

and b ∈ Zn
Λ

such that
aTL B

[
a a − 1n+1

]
, aTR B

[
1 b a −G2n+1

2

]
and aTO B

[
b y 0n+1

]
∈ Z2(n+1)
Λ

.

37

Indeed,

∗ the first n rows of the equation guarantee that for i = 0, . . . , n−1, aO,i = aR,i+1,
∗ the n + 1th line ensures that aO,n+1 = y,
∗ the n + 2th line imposes aR,1 = 1 (G1 is here used a commitment to 1),
∗ the next n + 1 lines are satisfied if and only if aL,[:n+1] = aL,[n+1:] + 1

n+1,
∗ the next n + 1 lines guarantee that aR,[:n+1] = aL,[n+1:] +G

2n+1

2 ,
∗ the last n + 1 lines ensure that aO,[2(n+1):] = 0n+1.

If vectors aL, aR and aO additionally satisfy aL ◦ aR = aO, then ai = aL,i ∈{
1,G2i

2

}
for i = 0, . . . , n and a ◦ (1 b) = (b y).

The argument of Bünz et al. is therefore sufficient to prove in zero-knowledge
knowledge of a double discrete logarithm. The soundness of the proof relies on
the discrete logarithm assumption over G1.

Regarding the proof size, the prover sends (2dlog2 2(n + 1)e + 8) G1 elements
and 5 ZΛ elements. Notice that the argument of Bünz et al. requires 4(n + 1)
elements of G∗1 in addition to G1 and H1. To guarantee its soundness, no discrete
logarithm relation between these elements, G1 and H1 must be known to the
prover. They can then be choosen uniformly at random during set-up.

5.3 Logarithmic-Size Argument of Discrete-Logarithm Equality in
two Groups

Building on the argument of double discrete logarithm of Section 5.2, this section
gives a zero-knowledge argument for the relation

RDLOG−2 B
{

(G1, H1,G2, H2,Y, X ; x ∈ Z`, r1, r2 ∈ ZΛ) : Y = GGx
2

1 Hr1
1 ,

X = Gx
2Hr2

2

}
.

As in Section 5.2, write Gx
2 as

∏
i

ai︷ ︸︸ ︷(
xi (G2i

2 − 1) + 1
)
for xi ∈ {0, 1}, and Hr2

2 as

∏
i

ci︷ ︸︸ ︷(
r2,i (H2i

2 − 1) + 1
)
for r2,i ∈ {0, 1}. Note that GX

1 = G
∏

i ai
∏

i ci
1 .

An argument for R is then equivalent to an argument for
{
(G1, H1,G2, H2,Y, X ; (ai)ni=0, (ci)

n
i=0, r ∈ ZΛ) : Y = G

∏
i ai

1 Hr
1,

GX
1 = G

∏
i ai

∏
ci

1 ∧ ai, ci ∈
{
1,G2i

2

}}
.

To give an argument for this latter relation, consider the following array
(written over several lines)

a0 a1 · · · an c0
1 b0 = a0 · · · bn−1 = a0 · · · an−1 bn−1an

a0 b1 = a0a1 · · · Gx
2 = a0 · · · an a0 · · · anc0

38

· · · c1 · · · cn
· · · d0 = a0 · · · anc0 · · · dn−1 = a0 · · · anc0 · · · cn−1
· · · a0 · · · anc0c1 · · · X =

∏
i ai

∏
i ci .

Its third row is the product of the first two. It follows that for

aTL B
[
a a − 1n+1 c c − 1n+1

]
,

aTR B
[
1 b a −G2n+1

2

∏
i ai d c −H2n+1

2

]
,

aTO B
[
b

∏
i ai 0n+1 d X 0n+1

]
∈ Z4(n+1)
Λ

,

the equality aL ◦ aR = aO holds.
As in Section 5.2, it suffices to find linear constraints, i.e., matrices ML, MR,

MO and MV , and a vector c, to enforce that three vectors aL, aR and aO that

satisfy the equation MLaL +MRaR +MOaO =MVv + c, where v =

[
1
X

]
(G1 and

GX
1 are respectively used as commitments to 1 and X), are of the form above.
To express such constraints, consider the matrices WL, WR and WO of Sec-

tion 5.2, and let W′
L, W

′
R and W′

O be their respective sub-matrices obtained by
removing the n+1th line (the one that enforced that aO,n+1 = y therein) and W′′

L ,
W′′

R and W′′
O their sub-matrices obtained by removing the n + 2th line (the one

which imposed that aR,1 = 1). Define also W′
V as the sub-matrix of WV obtained

by removing its n+ 1th line and its second column and W′′
V as the sub-matrix of

W′
V obtained by removing its n + 2th line and its first column.
Consider then the following matrices

ML B

[
W′

L
W′′

L

]
, MR B

[
W′

R
W′′

R

]

MO B

[
W′

O
W′′

O

]
, MV B

[
W′

V
W′′

V

]
.

By definitions of ML, MR, MO, MV , v and c, three vectors aL, aR and aO ∈
Z(n+1)(n+8)
Λ

satisfy the equationsMLaL+MRaR+MOaO =MVv+d and aL◦aR = aO
if and only if they are of the form above.

The argument of Bünz et al. is therefore sufficient to prove the relation
RDLOG−2. The prover sends 2

⌈
log2 4(n + 1)

⌉
+ 8 G1 elements and 5ZΛ elements.

5.4 An Intermediate Protocol in G2

This section gives an perfect honest verifier zero-knowledge protocol for relation

R ′0 B
{(

G2, H2, Xp, Xq,U, Ku, (Kγ)γ,i, j, (aγ)γ; xp, xq, rp, rq, u, ρu
)
:

∀π ∈ {p, q}, Xπ = Gxπ
2 Hrπ

2 ,U = Gu
2Hρu

2 ,

∀γ, aγ = Gxγ
2 , xπ (u + Kπ) = xγ (u + Kγ) = 1 mod `

}
.

39

Note that for π ∈ {p, q},
(
UGKπ

2

)xπ H−xπρu2 = G2, and that ∀γ, au
γ = G2a−Kγγ , i.e.,

the discrete logarithms of G2a−Kγγ in base aγ for all γ are the same.
The protocol is given on Figure 4). As the proof system is public-coin, it can

be made non-interactive in the random-oracle model via the Fiat–Shamir heuris-
tic by computing c as H (G2, H2, (Xπ),U, (Kπ), (Kγ)γ, (aγ)γ, (Yπ),V, (Hπ), (Aγ)) for
a random oracle H with Z` as range. The proof then consists of (c, (zπ, tπ)π∈{p,q },
w, τu, (τπ)π), i.e., 9 Z` elements.

The protocol is complete, perfectly honest-verifier zero-knowledge, and sat-
isfies witness-extended emulation under the discrete logarithm assumption over
G2. The protocol completeness and its zero-knowledge property are straightfor-
ward. To prove that the protocol satisfies the witness-extended-emulation prop-
erty, note that from two distinct accepting transcripts (((Yπ), V, (Hπ), (Aγ)γ),
c, ((zπ), (tπ),w, τu, (τπ))) and

(
((Yπ),V, (Hπ), (Aγ)γ), c′, ((z′π), (tπ)′, w′, τ′u, (τ

′
π))

)
, one

has

G(zπ−z′π)/(c′−c)
2 H (tπ−t′π)/(c′−c)

2 = Xπ,

G(w−w′)/(c′−c)
2 H (τu−τ′u)/(c′−c)

2 = U,(
UGKu

2

) (zπ−z′π)/(c′−c)
H (τπ−τ′π)/(c′−c)

2 = G2,

a(w−w′)/(c′−c)
γ = G2a−Kγγ .

Replacing U in the third line with the expression in the second, one has
G(w−w′)+Ku (z−z′))/(c′−c)

2 H (τu−τ′u)(z−z′)/(c′−c)2+(τπ−τ′π)/(c′−c)
2 = G2. Under the discrete-

logarithm assumption over G2, (τu − τ′u)(zπ − z′π)/(c′ − c)2 + (τπ − τ′π)/(c′ − c) =
0 mod ` and (w − w′)/(c′ − c) + Ku (zπ − z′π)/(c′ − c) = 1 mod `. Moreover,
a(w−w′)/(c′−c)
γ = G2a−Kγγ for all γ , i, j.

It follows that setting xπ ← (zπ − z′π)/(c′ − c), r ← (tπ − t ′π)/(c′ − c), u ←
(w−w′)/(c′− c) and ρu ← (τu − τ′u)/(c′− c), the tuple ((xπ), (rπ), u, ρu) is a valid
witness for relation R ′0.

To extract a witness from a prover with a fixed random string, it suffices to
repeat the following procedure:

1. run the protocol once, rewind the protocol to the computation step right after
the prover sent its first message and run it a second time with a fresh verifier
randomness

2. if the verifier accepts both executions, and the challenges of these executions
are different, extract a witness as above; otherwise restart.

The expected running time of this procedure is at most
(
ψ2 − `−1

)−1
, with ψ the

probability that the verifier accepts a protocol execution.
To produce an indistinguishable transcript, the emulator simply runs the

protocol with uniform challenges as the protocol is honest verifier.

5.5 Protocol for R0

To prove knowledge of a witness for R0, the prover starts setting by setting
Kp B H (rCA) + i, Kq B H (rCA) + j, and u B r ′

U
. It then

40

P (· · · ; (xπ)π∈{p,q }, (rπ), u, ρu) V
(
G2, H2, (Xπ),U, (Kπ), (Kγ)γ, (aγ)γ

)
yπ, sπ, v, σu, σ ←$ Z`
Yπ ← Gyπ

2 Hsπ
2

V ← Gv
2Hσu

2

(Yπ)π,V, (Hπ)π, (Aγ)γ
−−−−−−−−−−−−−−−−−−−→

Hπ ←
(
UGKu

2

)yπ Hσπ
2

Aγ ←
(
aγ

)v
c ←$ Z`

c
←−

zπ ← yπ − cxπ, tπ ← sπ − crπ Gzπ
2 H tπ

2 Xc
π

?
= Yπ

w ← v − cu, τu ← σu − cρu
(zπ,tπ)π
−−−−−−−−−−→
w,τu, (τπ)π

Gw
2 Hτu

2 Uc ?
= V

τπ ← σπ + cxπ ρu
(
UGKu

2

)zπ Hτπ
2 Gc

2
?
= Hπ

awγ
(
G2a

−Kγ
γ

)c
?
= Aγ

Fig. 4. Honest-Verifier Zero-Knowledge Protocol for Relation R1.

– computes two commitments Xp = Gxp
2 Hrp

2 and Xq = Gxq
2 Hrq

2 , for xp = (u +
Kp)−1 mod ` and xq = (u + Kq)−1 mod `

– computes a proof πDLOG−2,p that the double discrete-logarithm of P is the
discrete logarithm of Xp, and similarly a proof πDLOG−2,q for Q and Xq

– computes a proof π′ for relation R ′0 with Xp and Xq.
The final proof π0 for R0 consists of

(
Xp, Xq, πDLOG−2,p, πDLOG−2,q, π

′
0

)
.

Security. It is important to note that the security of the generated key is weak-
ened compared to an RSA-key of the same size since the CA can recover seed s
(and thus the prime factors) by solving a discrete logarithm problem in G2. For
3072-bit RSA moduli, this protocol therefore only provides 96 bits of security
(with respect to the CA) instead of the expected 128-bit security level. To avoid
this issue, one can increase the bit size of the prime numbers to 3072 bits (but at
the cost of generating RSA moduli of twice this size). Another possibility is to
use other groups for G2 with (alleged) harder discrete logarithm problem, e.g.,
the group of points of an elliptic curve over Fp or an algebraic torus defined over
Fp2 (with compact representation of group elements in Fp) for a 1536-bit prime
p. This may however introduce a new bias for the generated primes and require
to adapt the zero-knowledge proofs.
Efficiency. The asymptotic complexity of the communication size depends on
the number of trials to obtain two primes in W since the prover has to send
(aγ)γ,i, j . However, even though the communication is asymptotically linear in
the number of trials, the overhead incurred by the proof of correct computation
should in practice be small.

Total Proof Size. As discussed in Section 5.3, proofs πDLOG−2,p and πDLOG−2,q

both consists of 2
⌈
log2 4(n + 1)

⌉
+ 8 G1 elements and 5ZΛ elements.

Proof π′ consists of 9 Z` elements (see Section 5.4). Proof π0 for R0 therefore
consists of 2 G2 elements, 4

⌈
log2 4(n + 1)

⌉
+ 16 G1 elements, 10 ZΛ elements

41

Z` ZN ZΛ G1 G2 Total (kB)
R0 9 0 10 4

⌈
log2 4b

⌉
+ 16 2 346

R1 0 0 5 2dlog2 2(b − 1)e + 4 0 142

Fig. 5. Size of the Arguments (for a 96-bit security level and 3072-bit RSA moduli).

and 9 Z` elements. As for the proof for R1, the aggregated proof that 2 values
committed in G1 are in

�
0, 2b−1 − 1

�
consists of 2dlog2 2(b − 1)e + 4 G1 elements

(recall that n + 1 = b) and 5 ZΛ elements.

Running Time. An important question about the protocol is the number of
necessary PRF trials to obtain two primes that satisfy the conditions required
for the factors of N (captured by W ⊆ P). We estimate the number j of necessary
trials in the case W = P ∩

�
2b−1, 2b − 1

�
, i.e., when U simply has to prove that

p and q are prime of b(λ) bits. The following analysis shows (using a number-
theoretic heuristic) that the number of trials exceeds 17b(λ) = O(log λ) (so the
DY PRF remains secure), and that the probability that it is larger than that
decreases exponentially fast.

For an integer x, denote by π(x) the number of primes smaller or equal
to x. For x ≥ 30, Chebyshev’s theorem [27, p. 9] ensures that 0.92x/ ln(x) <

π(x) < 1.11x/ ln(x). Therefore, if b > log2 30 + 1, π
(
2b

)
> 0.92 · 2b/b ln(2) and

π
(
2b−1

)
< 1.11 · 2b/2(b − 1) ln(2).

For two integers q and a and an integer x, denote by π(x; q, a) the number
of primes congruent to a modulo q and smaller or equal to x. For all x > q, then
the Brun–Titchmarsh theorem [40] implies that π(x; q, a) ≤ 2x

ϕ(q) ln(x/q) .

The number of primes in
�
2b−1, 2b − 1

�
which are not congruent to 1 modulo

e where e is a prime number greater than 17 is then at least

0.92·
2b

b ln(2)
−

2 · 2b

(e − 1)(b ln(2) − ln(e))
−1.11·

2b

2(b − 1) ln(2)
≥ 0.12

2b

(b − ln(e)/ ln(2))

for b ≥ 6 ln(e)/ ln(2).
To apply Theorem 4.5, it remains to estimate the number of b-bit primes p

in QR2`+1 and such that gcd(e, p − 1) = 1.
Assuming that around half of the primes in

�
2b−1, 2b − 1

�
that are not con-

gruent to 1 modulo are quadratic residues modulo 2` + 1, the factor β in Theo-
rem 4.5 is at least 0.12/(b − ln(e)/ ln(2)) ≥ 0.12/b (the range of the PRF is has
size `).

This heuristic is supported by the fact that half of the integers in [[2`]] are
quadratic residues, and that primes chosen uniformly at random often have prop-
erties similar to those of general integers chosen uniformly at random.

Overall Communication Size. In the last flow of the protocol, the prover
then sends an integer N , two commitments in G1, 17b(λ) − 2 integers in ~0, 2`�
with high probability, i.e., the (aγ)γ,i, j values which are integers returned by the
PRF and not in W , and the proof of correct computation of which the size is
summarized in Table 5.

42

Acknowledgements

The authors thank Jonathan Bootle for fruitful discussions. This work was
supported by the French ANR ALAMBIC Project (ANR-16-CE39-0006), the
CHIST-ERA USEIT project and the EU H2020 Research and Innovation Pro-
gram under Grant Agreement No. 786725 (OLYMPUS).

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (Dec
2013)

2. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. (2) 2004(2),
781–793 (2004)

3. Au, M.H., Susilo, W., Mu, Y.: Proof-of-knowledge of representation of committed
value and its applications. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 10. LNCS,
vol. 6168, pp. 352–369. Springer, Heidelberg (Jul 2010)

4. Auerbach, B., Poettering, B.: Hashing solutions instead of generating problems:
On the interactive certification of RSA moduli. In: Abdalla, M., Dahab, R. (eds.)
PKC 2018, Part II. LNCS, vol. 10770, pp. 403–430. Springer, Heidelberg (Mar
2018)

5. Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-
interactive zero-knowledge proofs in cross-domains without trusted setup. In: Lin,
D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 286–313. Springer,
Heidelberg (Apr 2019)

6. Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 397–426. Springer, Heidelberg
(Aug 2017)

7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (Aug 1996)

8. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (Aug 2013)

9. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (Aug 2014)

10. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (May 2000)

11. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993)

12. Benhamouda, F., Ferradi, H., Géraud, R., Naccache, D.: Non-interactive provably
secure attestations for arbitrary RSA prime generation algorithms. In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017, Part I. LNCS, vol. 10492, pp.
206–223. Springer, Heidelberg (Sep 2017)

43

13. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (May 2004)

14. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (May 2016)

15. Boyar, J., Friedl, K., Lund, C.: Practical zero-knowledge proofs: Giving hints and
using deficiencies. In: Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT’89.
LNCS, vol. 434, pp. 155–172. Springer, Heidelberg (Apr 1990)

16. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018)

17. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp.
107–122. Springer, Heidelberg (May 1999)

18. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (ex-
tended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (Aug 1997)

19. Canard, S., Gouget, A.: Divisible e-cash systems can be truly anonymous. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 482–497. Springer, Heidelberg
(May 2007)

20. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp.
499–530. Springer, Heidelberg (Aug 2016)

21. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M.,
Heninger, N., Weinmann, R.P., Rescorla, E., Shacham, H.: A systematic analy-
sis of the juniper dual EC incident. In: Weippl, E.R., Katzenbeisser, S., Kruegel,
C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 468–479. ACM Press (Oct
2016)

22. Corrigan-Gibbs, H., Mu, W., Boneh, D., Ford, B.: Ensuring high-quality random-
ness in cryptographic key generation. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013. pp. 685–696. ACM Press (Nov 2013)

23. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol.
1462, pp. 13–25. Springer, Heidelberg (Aug 1998)

24. Damgård, I., Haagh, H., Orlandi, C.: Access control encryption: Enforcing informa-
tion flow with cryptography. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B, Part II.
LNCS, vol. 9986, pp. 547–576. Springer, Heidelberg (Oct / Nov 2016)

25. Desmedt, Y.: Simmons’ protocol is not free of subliminal channels. In: Ninth IEEE
Computer Security Foundations Workshop, March 10 - 12, 1996, Dromquinna
Manor, Kenmare, County Kerry, Ireland. pp. 170–175 (1996)

26. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (Jan 2005)

27. Dusart, P.: Autour de la fonction qui compte le nombre de nombres premiers. Ph.D.
thesis, Université de Limoges (1998)

28. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987)

44

29. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-
knowledge proof system for quasi-safe prime products. In: Gong, L., Reiter, M.K.
(eds.) ACM CCS 98. pp. 67–72. ACM Press (Nov 1998)

30. Goldberg, S., Reyzin, L., Sagga, O., Baldimtsi, F.: Efficient noninteractive cer-
tification of RSA moduli and beyond. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 700–727. Springer, Heidelberg (Dec
2019)

31. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (ex-
tended abstract). In: 25th FOCS. pp. 464–479. IEEE Computer Society Press (Oct
1984)

32. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (Aug 2006)

33. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your ps and
qs: Detection of widespread weak keys in network devices. In: Kohno, T. (ed.)
USENIX Security 2012. pp. 205–220. USENIX Association (Aug 2012)

34. Izabachène, M., Pointcheval, D., Vergnaud, D.: Mediated traceable anonymous
encryption. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS,
vol. 6212, pp. 40–60. Springer, Heidelberg (Aug 2010)

35. Juels, A., Guajardo, J.: RSA key generation with verifiable randomness. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 357–374. Springer,
Heidelberg (Feb 2002)

36. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (Aug 2012)

37. Li, X.: Improved two-source extractors, and affine extractors for polylogarithmic
entropy. In: Dinur, I. (ed.) 57th FOCS. pp. 168–177. IEEE Computer Society Press
(Oct 2016)

38. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computa-
tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer,
Heidelberg (Aug 2001)

39. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686.
Springer, Heidelberg (Apr 2015)

40. Montgomery, H.L., Vaughan, R.C.: The large sieve. Mathematika 20(2), 119–134
(1973)

41. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge International Se-
ries on Parallel Computation, Cambridge University Press (1995)

42. Nemec, M., Sýs, M., Svenda, P., Klinec, D., Matyas, V.: The return of copper-
smith’s attack: Practical factorization of widely used RSA moduli. In: Thuraising-
ham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1631–1648.
ACM Press (Oct / Nov 2017)

43. NIST: National Institute of Standards and Technology – Digital signature standard
(dss). https://csrc.nist.gov/publications/detail/fips/186/4/final (2013)

44. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (Aug 1992)

45. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the Association for Computing
Machinery 21(2), 120–126 (1978)

46. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D.
(ed.) CRYPTO’83. pp. 51–67. Plenum Press, New York, USA (1983)

45

https://csrc.nist.gov/publications/detail/fips/186/4/final

47. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EURO-
CRYPT’96. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (May 1996)

48. van de Graaf, J., Peralta, R.: A simple and secure way to show the validity of your
public key. In: Pomerance, C. (ed.) CRYPTO’87. LNCS, vol. 293, pp. 128–134.
Springer, Heidelberg (Aug 1988)

49. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In:
Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 62–74. Springer, Heidel-
berg (May 1997)

A Additional Preliminaries

This section gives further preliminary material.

A.1 Non-interactive Commitments

The definitions in this section are derived from those of Abdalla et al. [1]. A
(non-interactive) commitment scheme consists of the following algorithms.

Setup
(
1λ

)
→ pp : generates public parameters (or common-reference string) on

the input of a security parameter 1λ. These parameters are implicit inputs to
the other algorithms.

Com (x) → (C, d) : computes a commitment C to a value and an opening or
decommitment information d.

ComVf (C, x, d) → b ∈ {0, 1}: a deterministic returns a bit indicating whether the
decommitment d is valid (bit 1) for C and x, or not (bit 0). It is assumed that
if x = ⊥, then it returns 0.

A commitment scheme is correct if for all λ ∈ N, for all pp ← Setup
(
1λ

)
and

for all x Pr [ComVf (C, x, d) = 1: (C, d) ← Com(x)] = 1.
A commitment scheme is

(
T, εhide

)
-hiding (statistically hiding) if for all λ ∈

N, for every (computationally unbounded) adversary A that runs it time at most
T (λ),

���������������

Pr

b = b′ :

pp ← Setup
(
1λ

)
(x0, x1, st) ← A(pp)
b←$ {0, 1}
(C, d) ← Com(xb)
b′ ← A(st, C)
return (b, b′)

− 1/2

���������������

≤ εhide(λ).

A 0-statistically hiding scheme is said to be perfectly hiding.
A commitment scheme is

(
T, εbind

)
-binding if for all λ ∈ N, for every adver-

sary A that runs in time at most T (λ),

Pr

[
ComVf (C, x0, d0) = ComVf (C, x1, d1) = 1

∧x0 , x1
:

pp ← Setup
(
1λ

)
(C, x0, d0, x1, d1) ← A(pp)

]

≤ εbind(λ).

46

Pedersen Commitments. The protocol in Section 5 uses the Pedersen com-
mitment scheme which is homomorphic and allows to algebraic prove properties
of a committed values. Given G a group-family generator, let G be a cyclic group
of prime order ` generated by G. Let g1, g2 denote two generators of G. The
Pedersen-commitment [44] common reference string is (G, `, g1, g2). For a value
x ∈ Z` , the pedersen-commitment algorithm computes generates r ←$ [[0, ` − 1]]
and computes h ← ga1 g

r
2. Note that the commitments are perfectly hiding. To

verify a commitment h to a with decommitment information r, the opening al-
gorithm simply verifies that h = ga1 g

r
2. Under the discret-logarithm assumption

over G, the scheme is binding.

Extractable Commitments. A commitment scheme
(
Setup,Com,ComVf

)
is

extractable if there exists an algorithm TSetup
(
1λ

)
→ (pp, τ) which generates

public parameters and a trapdoor, and an algorithm ExtCom (τ, C) → x/⊥ which,
on the input of a trapdoor and of a commitment, returns a message or ⊥ if the
commitment is invalid.

The scheme then satisfies trapdoor correctness if for all 1λ, for all (pp, τ) ←
TSetup

(
1λ

)
, for all x, Pr [ExtCom(τ, C) = x : (C, δ) ← Com(x)] = 1. The commit-

ment scheme satisfies
(
T, εsetup−ind

)
-setup indistinguishability if no algorithm

running in time at most T (λ) can distinguish the output of Setup from the first
component of the output of TSetup with an advantage greater than εsetup−ind(λ).
Lastly, an extractable commitment scheme satisfies

(
TExtCom,TA, q, εbind−ext

)
-

binding extractability if ExtCom runs in time at most TExtCom(λ) and if for all
1λ, for every adversary A that runs in time at most T (λ) and makes at most q
oracle queries,

Pr

ComVf (C, x, d) = 1
∧x , x ′ :

(pp, τ) ← TSetup
(
1λ

)
(C, x, d) ← AExtCom(τ, ·) (pp)
x ′ ← ExtCom (τ, C)

≤ εbind−ext(λ).

Public-key encryption schemes secure against chosen-ciphertext attacks such
as Cramer and Shoup’s [23] are perfectly binding commitment schemes which
are additionally extractable since the secret key can be used as a trapdoor.

A.2 Interactive Argument Systems

An argument system for a language L = Lpp (with corresponding relation R)
consists of a triple Π =

(
Setup,Prove,Verf

)
such that Setup

(
1λ

)
→ pp returns

public parameters on the input of a security parameter and 〈Prove(pp, x,w)

Verf (pp, x)〉 → (τ, b) ∈ {0, 1}∗ × {0, 1} are interactive algorithms (τ denotes the
transcript of the interaction and b the decision bit of Verf).
Π is complete if for all λ ∈ N, for all pp ← Setup

(
1λ

)
, for all (x,w) ∈ R

Pr [(∗, 1) ← 〈Prove(pp, x,w)
 Verf (pp, x)〉] = 1.

47

Π satisfies
(
T, εsound

)
-soundness if for all λ ∈ N, for every adversary A that

runs in time at most T (λ)

Pr

b = 1 ∧ x < L :

pp ← Setup
(
1λ

)
(st, x) ← A(pp)
(τ, b) ← 〈A(st, x)
 Verf (pp, x)〉

≤ εsound(λ).

Π satisfies
(
TProve∗,TE,TA, εw2e

)
-witness-extended emulation [38] if for all λ ∈

N, for every deterministic algorithm Prove∗ running in time at most TProve∗ (λ),
there exists an algorithm (emulator) E running in expected time TE (λ) and such
that for every adversary A that runs in time at most TA (λ),

����������

Pr

b = 1 :

pp ← Setup
(
1λ

)
(st, x, s) ← A(pp)
(τ, β) ←

〈
Prove∗(pp, x, s)
 Verf (pp, x)

〉
b← A (st, (τ, β))

− Pr

b = 1∧
(β = 0 ∨ (x,w) ∈ R) :

pp ← Setup
(
1λ

)
(st, x, s) ← A(pp)
((τ, β) ,w) ← E〈Prove∗ (pp,x,s)
Verf (pp,x)〉(pp, x)
b← A (st, (τ, β))

����������

≤ εw2e(λ).

Algorithm E is given access to a transcript oracle
〈
Prove∗(pp, x, s)
 Verf (pp, x)

〉
which can be rewound to any step of its computation and run anew on fresh
verifier-randomness.

This definition means that if Π satisfies witness-extended emulation, then
whenever Verf accepts its interaction with Prove∗, emulator E can produce a
closely distributed transcript, but also extract a valid witness. Π is thus also an
argument of knowledge, which implies that it is sound. The string s given to
Prove∗ can considered as an internal state which includes its random string.
Π is T-perfectly honest-verifier zero-knowledge if there exists an algorithm

Sim such that for all λ ∈ N, for every adversary A running in time at most T (λ),

Pr
[

(x,w) ∈ R ∧ b = 1 :

pp ← Setup
(
1λ

)
(st, x,w, r) ← A(pp)
(τ, β) ← 〈Prove(pp, x,w)
 Verf (pp, x; r)〉
b← A(st, (τ, β))

= Pr

(x,w) ∈ R ∧ b = 1 :

pp ← Setup
(
1λ

)
(st, x,w, r) ← A(pp)
(τ, β) ← Sim(pp, x, r)
b← A(st, (τ, β))

.

Π is said to be public coin if all messages sent by Verf are chosen uniformly
at random and independently of the messages sent by Prove.

Fiat–Shamir Heuristic. The Fiat–Shamir heuristic [28] can be used to turn
a public-coin, interactive argument system into a non-interactive one in the

48

random-oracle model [11]. Given a random oracle H , the messages of the verifier
are computed by evaluating H at the word and the transcript of the interactive
until that point of the computation of the prover. With oracle access to H , the
prover can then compute a full transcript (or argument), further denoted π in-
stead of τ, without interacting with the verifier, and this latter can also verify
the transcript without any interaction.

The non-interactive argument system derived from an interactive one Π =(
Setup,Prove,Verf

)
via the Fiat–Shamir heuristic with a random oracle H is

denoted ΠH B
(
SetupH ,ProveH ,VerfH

)
.

A non-interactive argument system ΠH B
(
SetupH ,ProveH ,VerfH

)
is said

to be complete if for all λ ∈ N, for all pp ← Setup
(
1λ

)
, for all (x,w) ∈ R

Pr
[
VerfH

(
pp, x,ProveH (crs, x,w)

)
= 1

]
= 1.

ΠH satisfies
(
T, qH , εsound

)
-soundness if for all λ ∈ N, for every adversary A

that runs in time at most T (λ) and makes at most qH queries to H ,

Pr

VerfH (pp, x, π) = 1 ∧ x < L :

pp ← Setup
(
1λ

)
(x, π) ← AH (·) (crs)

≤ εsound(λ).

ΠH is
(
TProve∗,TA,TExt, qH , ε

)
-extractable if for every deterministic algorithm

Prove∗ running in time at most TProve∗ (λ) there exists an algorithm
(
Ext0(Q, q) → Q′,

Ext1(pp, x) → w) such that for all λ ∈ N, for every adversary A running in time
at most TA (λ), if Prove∗ and A together make at most qH (λ) queries to H ,

∗ Pr

(x,w) < R :

pp ← Setup
(
1λ

)
;Q ← ∅

(x, s) ← AExt0 (Q, ·) (pp)

w ← ExtProve∗Ext0 (Q, ·) (pp,x,s)
1 (pp, x)

≤ ε(λ),

∗ the running time of Ext is at most TExt in expectation, with TExt depending on
TProve∗ and

εA,Prove∗ B Pr

b = 1 :

pp ← Setup
(
1λ

)
(x, s) ← AH (·) (pp)
π ← Prove∗H (·) (pp, x, s)
b← VerfH (·) (pp, x, π)

.

Algorithm (Ext0,Ext1) is given access to a Prove∗ oracle which can be rewound
to any step of its computation and run anew with fresh Ext0 randomness.

This definition means that if ΠH is extractable, then whenever Prove∗ is able
to compute a valid proof, extractor (Ext0,Ext1) can extract a valid witness. Π
is thus an argument of knowledge, which implies that it is sound. The string s
given to Prove∗ can considered as an internal state which includes its random
string.

Lemma A.1. Let Π =
(
Setup,Prove,Verf

)
be an argument system for a language

L and ΠH B
(
SetupH ,ProveH ,VerfH

)
be the non-interactive argument system

for L derived from Π =
(
Setup,Prove,Verf

)
via the Fiat–Shamir heuristic with a

49

random oracleH . If Π is a public-coin protocol which satisfies
(
TProve∗,TE,TA, εw2e

)
-

witness-extended emulation, assuming that there are m coins, then ΠH is (TProve∗,
TExt,TA, qH , εext

)
-extractable, with

qH ≤ TProve∗ + TE + TA, TExt ≤ TE + qH and εext ≥ εw2e −
TE · m · qH

2c
,

where c(λ) denotes the bit-length of the smallest public coin sent by algorithm
Verf.

Proof. The proof follows readily from the definitions. Assuming that Π satis-
fies

(
TProve∗,TE,TA, εw2e

)
-witness-extended emulation, there exists an algorithm

(emulator) E running in expected time TE as described above.
The extractor (Ext0,Ext1) for ΠH can be simply constructed as follows. The

first algorithm Ext0 is the classical simulation for the random oracle: Ext0 lazily
samples a lookup table for the random oracle H using a state Q. Each time it
is queried on q, it checks whether H (q) is already defined. If this is the case, it
returns the previously assigned value in Q, otherwise it returns and sets a fresh
random value (of appropriate length).

The second algorithm Ext1 consists simply in running E using the random
oracle H to simulate oracle

〈
Prove∗(pp, x, s)
 Verf (pp, x)

〉
. More precisely, since

Π is public-coin, the execution of Verf (pp, x) corresponds to queries to Ext0.
The simulation aborts only if a previous query to Ext0 was made on the same
(random) input. The number of such queries made by E is clearly upper-bounded
by TE and for each coin in each of them, the probability that the simulation
aborts is upper-bounded by qH 2−c. The random oracle is then simply modified
when Prove∗ is rewound to any step of its computation and run anew on fresh
verifier randomness.

When E eventually returns ((τ, β) ,w), Ext1 simply returns w. If Ext1 does
not abort, then by the simulation and the definition of E,

Pr

(x,w) < R :

pp ← Setup
(
1λ

)
;Q ← ∅

(x, s) ← AExt0 (Q, ·) (pp)

w ← ExtProve∗Ext0 (Q, ·) (pp,x,s)
1 (pp, x)

≤ εw2e,

and the claimed inequalities are satisfied. ut

ΠH is
(
TA, qH , qProve, ε

zk
)
-zero-knowledge if there exists an algorithm Sim

such that Sim(0,Q, q) → (h,Q′) and Sim(1,Q, x) → (π,Q′), and such that for all
λ ∈ N, for every adversary A that runs in time at most TA (λ) and makes at
most qH queries to oracle H and qProve queries to oracle Prove,

��Pr [b = 1:
pp ← Setup

(
1λ

)
b← AH (·),ProveH (pp, ·) (pp)

− Pr

[
b = 1:

pp ← Setup
(
1λ

)
;Q ← ∅

b← AOSim0 (Q, ·),OSim1 (Q, ·) (pp)

] �����
≤ εzk(λ),

50

with OSim0
an oracle that computes (h,Q′) ← Sim(0,Q, q) on input (Q, q) and

returns h, and OSim1
an oracle that computes (π,Q) ← Sim(1,Q, x) if (x,w) ∈ R

and returns π, and returns ⊥ if (x,w) < R. Set Q can be considered as a state
which stores all pairs (q, h) of queries and responses.

Whenever Π and ΠH are not mentioned in the same context and it is clear
that it is the non-interactive variant which is considered (e.g., in Section 4.2),
superscript H is omitted.

A.3 Non-interactive Proof Systems

A non-interactive proof system Π for a language L = Lcrs (with corresponding
relation R) consists of an algorithm Setup

(
1λ

)
→ crs which returns a common

reference string, an algorithm Prove(crs, x,w) → π which computes a proof on the
input of a word x and of a witness w, and an algorithm Verf (crs, x, π) → b ∈ {0, 1}
which returns a bit indicated whether the proof is considered valid.
Π is complete if for all λ ∈ N, for all crs ← Setup

(
1λ

)
, for all (x,w) ∈ R,

Pr [Verf (crs, x,Prove(crs, x,w)) = 1] = 1.
Π satisfies

(
T, εsound

)
-soundness if for all λ ∈ N, for every adversary A

running in time at most T (λ),

Pr

[
Verf (crs, x, π) = 1 ∧ x < L :

crs ← Setup
(
1λ

)
(x, π) ← A(crs)

]
≤ εsound(λ).

Π is
(
TExt,TA, εext

)
-extractable if there exists an algorithm TSetup

(
1λ

)
→

(crs, τ) and an algorithm Ext(crs, τ, x, π) → w running in time at most TExt(λ)
such that the distribution of the first component of TSetup is the same as that
of Setup, and such that for all λ ∈ N, for every adversary A running in time at
most TA (λ),

Pr

[
Verf (crs, x, π) = 1 ∧ (x,Ext(crs, τ, x, π)) < R : (crs, τ) ← TSetup

(
1λ

)
(x, π) ← A(crs)

]
≤ εext(λ).

Π is
(
T, εzk

)
-composable zero-knowledge if there exist two algorithms TSetup

(
1λ

)
→ (crs, τ) and Sim(crs, τ, x) → π such that for all λ ∈ N, for every adversary A
running in time at most T (λ),

��Pr [1← A(crs) : crs ← Setup
(
1λ

)]
−

Pr
[
1← A(crs) : (crs, τ) ← TSetup

(
1λ

)] ��� ≤ ε
zk(λ)

and

Pr [1← A(st, crs, π) :
(crs, τ) ← TSetup

(
1λ

)
(st, x,w) ← A(crs, τ)
π ← Prove(crs, x,w)

= Pr

1← A(st, crs, π) :

(crs, τ) ← TSetup
(
1λ

)
(st, x,w) ← A(crs, τ)
π ← Sim(crs, τ, x)

.

51

Proof Systems for Circuit Satisfiability. Groth, Ostrovsky and Sahai de-
signed [32, Section 4.2] a pairing-based non-interactive, extractable, composable
zero-knowledge proof system for circuit satisfiability. The reader is referred to
their paper for mode details.

A.4 Randomness Extractors

For a discrete distribution X over a set S, its min-entropy is denoted H∞(X) =
minx←$X {− log Pr[X = x]}. A distribution X is called a κ-source if H∞(X) ≥ κ.

A randomness extractor is a function which, applied to the output of one
or several discrete distributions (possibly together with an additional uniformly
random seed), returns a value indistinguishable from a uniformly random one. It
is well known that there does not exist good deterministic extractors for a single
random source (i.e. without the additional random seed). In this paper, we use
two-source extractors defined as follows.

Let H = {Hx : {0, 1}
n × {0, 1}n → {0, 1}m}x∈{0,1}d be a hash function family. H

is said to be a (κ, ε)-two-source extractor if for any pair of discrete distributions
I, J over {0, 1}n such that max(H∞(I), H∞(J)) ≥ κ, for X uniformly random over
{0, 1}d and U is uniformly random over {0, 1}m, the distributions of (X, HX (I, J))
and (X,U) are ε-close. For some parameter sets, there exist deterministic two-
source extractors (i.e., with d = 0) (e.g. [37]). Using the random-oracle heuristic,
two-source extractors with high security and efficient parameters can be effi-
ciently constructed. Alternatively, one can also rely on the weaker notion of
universal computational extractor [8].

A.5 Universal Computational Extractors

Bellare, Hoang and Keelveedhi introduced Universal Computational Extrac-
tors [8] (UCEs) as a standard-model security notion for keyed hash functions
which relates them to random-oracles. Their definition features a two-stage ad-
versary, i.e., a source S and a distinguisher D. The source is given access to an
oracle which either computes the hash function or is a random oracle, whereas
the distinguisher is only given the hash-function key and some leakage informa-
tion from the source. D is then suppose to guess whether the oracle computed
a hash function or was a random oracle.

The formal definition of a UCE is actually given w.r.t. source classes instead
of a single source. Formally, given a class of sources S and maps d : N→ N and

N, M : N → 2N, a family H =
{

Hx ∈
⋃

n∈N (λ),m∈M (λ)
({0, 1}m) {0,1}

n×{1}m
}
x∈{0,1}d (λ)

of (variable-input-length and variable-output-length) functions is (T, q, ε)-UCE
secure w.r.t. S if for all λ ∈ N, for every T (λ)-time adversary (S,D) such that

52

S ∈ S and such S makes at most q oracle queries,

�������������

Pr

b = b′ :

x ←$ {0, 1}
d(λ);Q ← ∅

b←$ {0, 1}

L ← SOb (x,Q, ·)
(
1λ

)
b′ ← D

(
1λ, x, L

)
return (b, b′)

− 1/2

�������������

≤ ε(λ),

with Ob (x,Q, ·) an oracle which, on input (a, 1m) such that a ∈
⋃

n∈N (λ)
{0, 1}n and

m ∈ M (λ), proceeds as follows:

– if there exists h ∈ {0, 1}m such that (a, 1m, h) ∈ Q, return h
– else

∗ if b = 1, return Hx (a, 1m)
∗ else, generate h ←$ {0, 1}

m, add (a, 1m, h) to Q and return h.

As S could simply return one of its query and the response from the oracle in
the leakage information, restrictions must imposed on the source for the security
notion to be achievable. A classical requirement is then that S should be a class
of unpredictable sources. A source S is unpredictable if it is computationally
hard to determine its hash queries even given its leakage information L, in case
it interacts with a random oracle. Formally, a source S is (T, q, ε)-simply unpre-
dictable if for any λ ∈ N, for every adversary or simple13predictor P running in
time at most T (λ) and making at most q oracle queries,

Pr

Q ∩Q′ , ∅ :

x ←$ {0, 1}
d(λ);Q ← ∅

L ← SO(x,Q, ·)
(
1λ

)
Q′ ← P

(
1λ, L

)
return (Q,Q′)

≤ ε(λ),

with O(x,Q, ·) an oracle which, on input (a, 1m) such that a ∈
⋃

n∈N (λ)
{0, 1}n and

m ∈ M (λ), returns h if there exists h ∈ {0, 1}m such that (a, 1m, h) ∈ Q, and
otherwise generates h ←$ {0, 1}

m, adds (a, 1m, h) to Q and returns h.

A.6 Chernoff’s Bound

The Chernoff bound gives bound on the tail distribution of sums of independent
Bernoulli random variables.

Theorem A.1 ([41, Theorem 4.2]). Let X1, X2, . . . , Xn be independent Bernoulli
random variables such that, for 1 ≤ i ≤ n, Pr[Xi = 1] = pi, with 0 < pi < 1. Then,
for X =

∑n
i=1 Xi, µ = E[X] =

∑n
i=1 pi, and any 0 < δ ≤ 1,

Pr [X < (1 − δ)µ] < exp
(
−µδ2/2

)
.

13 The predictor is qualified as simple as it is not given access to oracle O. Bellare,
Hoang and Keelveedhi proved [8, Lemma 4.3] that a source is unpredictable (i.e.,
with a predictor which is given oracle access) if and only if it is simply unpredictable.

53

B Protocol for Discrete-Logarithm Keys

This section instantiate the generic protocol of Figure 2 in the case of discrete-
logarithm keys. For simplicity, we present a scheme based on Pedersen commit-
ments and classical Schnorr-like zero-knowledge proofs.

Let G be a group family generator, λ be an integer and (G, `, g) ← G(λ). Let
g1, g2 denote two generators of G used for the Pedersen commitment scheme.
The key-generation protocol for discrete-logarithm keys is then the following.

1. U applies the random oracle H twice to its randomness rU to compute r ′
U
←

H (0‖rU) and ρU ← H (1‖rU), commits to r ′
U

(with randomness ρU) using
Pedersen’s commitment, computes a proof πC of knowledge of an opening to
the commitment with a Schnorr-type proof ΠC in the random-oracle model
(with an oracle HC), and sends the resulting commitment to CA.

2. CA sets accCA ← TRUE, verifies the proof, and it is correct, sends its ran-
domness rCA to U ; otherwise it returns ⊥ and sets termCA ← TRUE

3. U extracts a seed from the joint randomness by computing

s = r ′
U
+H (rCA) mod `.

It then computes a non-interactive zero-knowledge proof that it correctly per-
formed its computation, i.e., it computes, in the random oracle model (with a
different oracle HΠ), a proof

π ← Π.Prove
{
r ′
U
: C = g

r ′
U

1 g
ρU
2 ∧ pk = g

r ′
U

1 · g
H (rCA)
1

}
which is a standard Schnorr-like proof of representation. Since the only ran-
domness available to U is rU , it is also used to generate the randomness neces-
sary to compute the zero-knowledge proof. For this reason, U derives another
seed s ′ ← H (0‖s) and then uses H with a counter on s ′.

After computing π, U erases rU , s and all temporary variables used to
compute π. Algorithm U then sends pk ← (g1, gs1) and π to CA, returns
(pkU ← pk, skU ← s) and sets termU ← accU ← TRUE

4. CA verifies π. If this verification did not succeed, it returns ⊥, otherwise it
returns pk CA ← pk . It sets termCA ← TRUE.

This protocol is 1-correct as Schnorr proofs are. In the random-oracle model
and under the discrete-logarithm assumption over G, it also satisfies the indistin-
guishability security notion of Section 3.2 w.r.t. randomness sources with Ω(λ)
min-entropy which are independent of the random-oracle.

54

U
(
pp, rU

)
CA

(
pp, rCA

)
C ← g

H (0‖rU)
1 g

H (1‖rU)
2

πC ← ΠC .Prove
{
r ′
U
, ρU : C = g

r ′
U

1 g
ρU
2

}
C,πC
−−−−→ ΠC .Verf (C, πC) ?

= 1
rCA
←−−−−

s ← rU +H (rCA) mod `

(pk, sk) ←
((
g1, g

s
1

)
, s

)
π ← Π.Prove

{
r ′
U
, ρU : C = g

r ′
U

1 g
ρU
2

∧pk = g
r ′
U

1 · g
H (rCA)
1

}
Erase all variables but (pk, sk)

pk,π
−−−−→ Π.Verf (C, pk, π) ?

= 1
return (pk, sk) return pk

Fig. 6. Discrete-Logarithm Key-Generation Protocol with Verifiable Randomness.

55

	Public-Key Generation with Verifiable Randomness
	Introduction
	Preliminaries
	Hardness Assumptions.

	Model
	Syntax
	Security
	Oracles.

	Generic Constructions
	Key-Generation Protocol with Verifiable Randomness for Probabilistic Circuits
	Discrete-Logarithm Keys.

	RSA-Key Generation Protocol with Verifiable Randomness
	Protocol.

	Instantiation of the RSA-Key Generation Protocol
	Zero-Knowledge Argument with the Dodis–Yampolskiy PRF
	Proof Strategy.

	Logarithmic-Size Argument of Double Discrete Logarithm
	Logarithmic-Size Argument of Discrete-Logarithm Equality in two Groups
	An Intermediate Protocol in G2
	Protocol for R0

	Additional Preliminaries
	Non-interactive Commitments
	Pedersen Commitments.
	Extractable Commitments.

	Interactive Argument Systems
	Fiat–Shamir Heuristic.

	Non-interactive Proof Systems
	Proof Systems for Circuit Satisfiability.

	Randomness Extractors
	Universal Computational Extractors
	Chernoff's Bound

	Protocol for Discrete-Logarithm Keys

