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Abstract

In this work we give several generalizations of the isotopic shift construction,
introduced recently by Budaghyan et al. (2018), when the starting function is a
Gold function. In particular, we derive a general construction of APN functions
which produces one new APN function for n = 8 and fifteen new APN functions
for n = 9.

Keywords: APN functions, Isotopic shift, Vectorial Boolean functions.

MSC : 94A60, 06E30, 11T71

1. Introduction

For n a positive integer, let F2n be the finite field with 2n elements. By F?2n

we denote the multiplicative group of F2n and, throughout the paper, ζ denotes
one of its primitive elements, so that F?2n = 〈ζ〉 = {1, ζ, ζ2, ζ3, . . . , ζ2n−2}. An
(n, n)-function is a map from F2n to itself. Such a function admits a unique
representation as a univariate polynomial of degree at most 2n − 1, that is

F (x) =

2n−1∑
j=0

ajx
j , aj ∈ F2n .

The kernel of F is defined as ker(F ) = {u ∈ F2n s.t. F (u) = 0}.
The function F is

• linear if F (x) =
∑n−1
i=0 cix

2i

;

• affine if it is the sum of a linear function and a constant;

• DO (Dembowski-Ostrom) polynomial if F (x) =
∑

0≤i<j<n aijx
2i+2j

, with
aij ∈ F2n ;
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• quadratic if it is the sum of a DO polynomial and an affine function.

A function F is called differentially δ-uniform, for δ a positive integer, if
for any pair (a, b) ∈ F2

2n , with a 6= 0, the equation F (x + a) − F (x) = b
admits at most δ solutions. When F is used as an S-box inside a cryptosystem,
the differential uniformity measures its contribution to the resistance to the
differential attack [3]. The smaller δ is, the better is the resistance to this
attack.

Over fields of characteristic 2, the solutions of the equation F (x+a)−F (x) =
b, that is, F (x+a)+F (x) = b, come in pairs {x, x+a}, and δ is even. The best
resistance is then achieved by differentially 2-uniform functions. Such functions
are also called almost perfect nonlinear ; in short, APN. One of the best known
examples of APN functions is Gold function, Gi(x) = x2i+1, which is APN
whenever i is coprime with n.

APN functions have connections to optimal objects in other fields such as
geometry, sequence design and combinatorics.

There are several equivalence relations of functions for which differential
uniformity, and thus the APN property, is preserved. Two functions F and F ′

from F2n to itself are called:

• affine equivalent if F ′ = A1 ◦ F ◦ A2 where A1, A2 : F2n → F2n are affine
permutations;

• EA-equivalent if F ′ = F ′′+A, where the map A : F2n → F2n is affine and
F ′′ is affine equivalent to F ;

• CCZ-equivalent if there exists some affine permutation L of F2n×F2n such
that the image of the graph of F is the graph of F ′, that is, L(GF ) = GF ′ ,
where GF = {(x, F (x)) : x ∈ F2n} and GF ′ = {(x, F ′(x)) : x ∈ F2n}.

CCZ-equivalence is the most general known equivalence relation for functions
which preserves differential uniformity, while affine and EA-equivalences are
particular cases.

Inspired by the notion of isotopic equivalence, originally defined by Albert
[1] in the study of presemifields and semifields, a new construction method for
APN functions, called isotopic shift, was introduced in [5].

More precisely, given p a prime number, F ∈ Fpn [x] a function, and L ∈
Fpn [x] a linear map, the isotopic shift of F by L is defined as the map:

FL(x) = F (x+ L(x))− F (x)− F (L(x)). (1)

As we have shown in [5], for the case p = 2, an isotopic shift of an APN
function can lead to APN functions CCZ-inequivalent to the original map. In
particular, all existing quadratic APN functions over F26 , which are 13 up to
CCZ-equivalence, can be obtained from x3 by isotopic shift. Moreover, a new
family of quadratic APN functions, which generates a new APN function for
n = 9, is constructed by isotopic shift of Gold functions [5]. In [6], the isotopic
shift construction has been investigated for the case of planar functions (p > 2),
i.e. differentially 1-uniform functions. Also here, given a planar function, it is
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possible to obtain an inequivalent planar function from its isotopic shifts.

In the present paper we further study the isotopic shift construction over
fields of even characteristic. Firstly, we verify that, over F26 , any quadratic APN
map can be obtained as an isotopic shift of any other quadratic APN map. Then,
we consider different generalizations of the isotopic shift construction when the
starting function is a monomial with a Gold exponent. In [5], we studied the

APN property of the isotopic shift of Gi(x) = x2i+1 over F2n , with n = km,
given by

Gi,L(x) = xL(x)2i

+ x2i

L(x), (2)

where L is a 2m-polynomial, that is L(x) =
∑k−1
i=0 Aix

2im

for some Ai ∈ F2n .
This construction provides a new APN function over F29 .

In the present work, we study the APN property of xL1(x)2i

+ x2i

L2(x)
where both L1 and L2 are 2m-polynomials. From this construction, we obtain
one new APN function for n = 8, and fifteen for n = 9. Moreover, we cover
some of the functions in the lists given in [13] which are not contained in any of
the known infinite families. In 2014, a matrix construction for quadratic APN
functions was presented that led to a list of 8180 CCZ-inequivalent quadratic
APN functions over F28 , see [20]. By obtaining a new quadratic APN map, we
show that the list was not complete.

To show the inequivalence between some of the obtained maps, we intro-
duce in Proposition 3.4 a new EA-invariant (this invariant was also noticed in-
dependently in [14]). Note that for quadratic APN functions, CCZ-equivalence
coincides with EA-equivalence [19].

Finally, we consider the case when the isotopic shift of Gi(x) is obtained
using a function L not necessarily linear. In this case we find that all known
power APN functions in odd dimension, except the Dobbertin function, can be
obtained as nonlinear shifts of Gold functions.

2. Further results on the isotopic linear shift over F2n

Before considering generalizations of the isotopic shift, we extend a result
obtained in [5].

We have shown that, given a quadratic APN function F , if the isotopic shift
FL by a linear map L is APN, then the map L is either a permutation or a
2-to-1 map. From the isotopic shifts of the Gold function x3, with both choices
for L being a permutation and a 2-to-1 map, we obtained (computationally) all
the quadratic APN functions over F26 (up to EA-equivalence). That is, for any
given quadratic APN function F over F26 there exist a permutation L and a 2-
to-1 map L′ such that the isotopic shifts G1,L(x) and G1,L′(x) are EA-equivalent
to F . The same result was computationally obtained for any quadratic APN
map over F26 listed in [13, Table 5] (see also [4]) in place of G1. Up to EA-
equivalence (and thus CCZ-equivalence) the list is complete and, since for two
quadratic maps the EA-equivalence implies EA-equivalence of the isotopic shifts
(see [5, Corollary 3.2]), we can state the following result.

Proposition 2.1. Over F26 for any two quadratic APN maps F and G, there
exist a linear permutation L and a linear 2-to-1 map L′ such that FL and FL′

are EA-equivalent to G.
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We conclude with the observation that the isotopic shift can lead to an APN
function also starting from a non-APN function.

Remark 2.2. Consider F26 and the function F (x) = x5, which is not APN.
With L(x) = ζx8 we construct the APN map

FL(x) = x4L(x) + xL(x)4 = ζx12 + ζ4x33,

where FL(x) = M(x3) for the linear permutation M(x) = ζx4 + ζ4x32.

3. Generalized isotopic shift of Gold functions

In this section we generalize the isotopic shift construction for the case of
Gold functions.

3.1. On the generalized linear shift over F2n

In [5], we showed that the isotopic shift can be a useful construction method
for APN functions. Let n = km, where m and k are any positive integers.
An F2m-polynomial is a linear map given by L(x) =

∑k−1
j=0 Ajx

2jm

, for some
Aj ∈ F2n . The construction Gi,L(x) as in (2) leads to a family of APN functions,
producing, in particular, for n = 9 (k,m = 3) a new APN function and for n = 8
(k = 4, m = 2) a function equivalent to x9 + Tr(x3), which is not contained in
any infinite family.

In the following, we generalize the isotopic shift construction. This general-
ization provides further new APN functions, as will be shown below.

Given two positive integers k,m, let us consider the finite field F2n with

n = km. Denoting d = gcd(2m − 1, 2km−1
2m−1 ), let d′ be the positive integer with

the same prime factors as d , satisfying gcd(2m − 1, 2km−1
(2m−1)d′ ) = 1. Now, let

U = 〈ζd′(2m−1)〉 be the multiplicative subgroup of F?2n of order
(

2km−1
2m−1

)
/d′.

Note that it is possible to write every element x ∈ F?2n as x = ut with u ∈ W
and t ∈ F?2m , where W = {ζsy : y ∈ U, 0 ≤ s ≤ d′ − 1}.
Then it is possible to obtain the following generalization of [5, Theorem 6.3].

Theorem 3.1. Let n = km for m > 1. Let L1(x) =
∑k−1
j=0 Ajx

2jm

and L2(x) =∑k−1
j=0 Bjx

2jm

be two F2m-polynomials. Fix i so that gcd(i,m) = 1 and F ∈
F2n [x] the function given by:

F (x) = xL1(x)2i

+ x2i

L2(x). (3)

Then F is APN over F2n if and only if each of the following statements holds
for any v ∈W :

• (L1(v)
v )2i 6= L2(v)

v ;

• If u ∈W \ {1} and (L1(uv)
uv )2i

= L2(v)
v , then (L1(v)

v )2i 6= L2(uv)
uv ;

• If u ∈W \ {1} and (L1(uv)
uv )2i 6= L2(v)

v , then L1(v)2
i
(uv)+L2(uv)v2

i

L1(uv)2iv+L2(v)(uv)2i
6∈ F?2m .
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Proof. We need that, for any a ∈ F?2n , the function ∆a(x) = F (x+ a) +F (x) +
F (a) is a 2-to-1 map, or equivalently, that ker(∆a(ax)) = {0, 1}. Since F?2n =
W × F?2m , we can rewrite a = st and x = uv with s, u ∈ F?2m and t, v ∈ W .
Since L1 and L2 are F2m-polynomials, we have:

∆a(ax) =L1(a)2i

ax+ L2(a)(ax)2i

+ L1(ax)2i

a+ L2(ax)a2i

=s2i

L1(t)2i

st · uv + sL2(t)s2i

t2
i

· u2i

v2i

+ s2i

u2i

L1(tv)2i

st+ suL2(tv)s2i

t2
i

=us2i+1[(L1(t)2i

tv + L2(tv)t2
i

) + u2i−1(L2(t)t2
i

v2i

+ L1(tv)2i

t)].

Without loss of generality we can assume that s = 1. So, F is APN over F2n if
and only if u = 0 or u = v = 1 are the only solutions to ∆t(uvt) = 0 for any
t ∈ U .

If v = 1, then

∆t(tx) = u(L1(t)2i

t+ L2(t)t2
i

)[1 + u2i−1].

Since gcd(i,m) = 1, x2i−1 is a permutation over F2m and thus ker(∆t(tx)) =

{0, 1} if and only if L1(t)2
i

t2i
6= L2(t)

t .

Assume now that v 6= 1. If L2(t)t2
i

v2i

+ L1(tv)2i

t = 0, then we have:

∆t(tx) = u[(L1(t)2i

tv + L2(tv)t2
i

)].

This implies L1(t)2
i

t2i
6= L2(tv)

tv .

If L2(t)t2
i

v2i

+ L1(tv)2i

t 6= 0, then

[(L1(t)2i

tv + L2(tv)t2
i

) + u2i−1(L2(t)t2
i

v2i

+ L1(tv)2i

t)] = 0

implies u2i−1 = L1(t)2
i
tv+L2(tv)t2

i

L2(t)t2iv2i+L1(tv)2i t
. Since x2i−1 is a permutation over F2m this

equation admits a solution different from zero if and only if L1(t)2
i
tv+L2(tv)t2

i

L2(t)t2iv2i+L1(tv)2i t

is contained in F?2m .

The obtained APN function (3) is of the form

F (x) = (A2i

0 +B0)x2i+1 +

k−1∑
j=1

[A2i

j x
2i+jm+1 +Bjx

2jm+2i

].

Let us see now necessary conditions on the linear functions L1 and L2 for F
to be APN.

Proposition 3.2. Let n,L1, L2 and F be as in Theorem 3.1. If F is APN over
F2n , then the following statements hold:

(i) ker(L1(x) + rx) ∩ ker(L2(x) + r2i

x) = {0} for any r ∈ F2n ;

(ii) | ker(L1(x)2i

+ rx) ∩ ker(L2(x) + w2i

x2i

)| ≤ 2 for any r, w ∈ F2n ;

(iii) If ker(L1) ∩ ker(L2(x) + x) 6= {0}, then ker(L1(x) + x) ∩ ker(L2) = {0};
(iv) ker(L1(x) + rx2j

)∩ker(L2(x) + r2i

x(2j−1)2i+1) = {0} for any r ∈ F2n and
j ≥ 0.
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Proof. For any nonzero a, we define the function ∆a(x) = F (x+a)+F (x)+F (a).

Suppose there exists a non-zero a ∈ ker(L1(x) + rx) ∩ ker(L2(x) + r2i

x). As

∆a(x) = aL1(x)2i

+ xL1(a)2i

+ x2i

L2(a) + a2i

L2(x),

we clearly have aF2m ⊆ ker(∆a), but since m > 1, this contradicts | ker(∆a)| =
2. This establishes (i).

For (ii), suppose {0, a, b} ⊂ ker(L1(x)2i

+ rx) ∩ ker(L2(x) + w2i

x2i

). Then

∆a(b) = a(rb) + b(ra) + a2i

(w2i

b2
i

) + b2
i

(w2i

a2i

) = 0.

Next suppose a ∈ ker(L1)∩ker(L2(x)+x). Then we have ∆a(x) = a(L1(x)+

x)2i

+ a2i

L2(x). Clearly any b ∈ ker(L1(x) + x) ∩ ker(L2) satisfies ∆a(b) = 0.
Since f is APN, ker(∆a) = {0, a}, so that ker(L1(x) + x) ∩ ker(L2) ⊂ {0, a}.
However, ker(L1) ∩ ker(L1(x) + x) = {0}, so that no non-zero element of F2n

can lie in both ker(L1) ∩ ker(L2(x) + x) and ker(L1(x) + x) ∩ ker(L2). This
establishes (iii).

For (iv), suppose a ∈ ker(L1(x) + rx2j

)∩ ker(L2(x) + r2i

x(2j−1)2i+1) is non-
zero. Then for any t ∈ F2m we have

∆a(ta) = ar2i

t2
i

a2j+i

+ tar2i

a2j+i

+ (ta)2i

r2i

a(2j−1)2i+1 + a2i

r2i

ta(2j−1)2i+1

= r2i

a2j+i+1
(
t2

i

+ t+ t2
i

+ t
)

= 0,

so that aF2m ⊆ ker(∆a), a contradiction.

3.2. The case n = 8

Applying the construction of Theorem 3.1 in dimension 8 with k = 4 and
m = 2, restricting the coefficients of L1 and L2 to the subfield F24 we obtained
one new APN function CCZ-inequivalent to any of the 8180 APN functions
known (see Appendix in [20] for a complete list1 of all APN functions). More-
over, this construction leads to several APN functions given in [13, Table 9]
which have not been previously identified as a part of any APN family. The
functions mentioned are listed in Table 1.

The following results were obtained for n = 8.

• A new function was found as generalized isotopic shift of x3,

F (x) = ζ136x66 + ζ85x33 + ζ85x18 + ζ102x9 + ζ221x6 + x3,

where L1(x) = ζ170x16 + ζ102x4 + x and L2(x) = ζ136x64 + ζ85x16 +
ζ221x4, with the following CCZ-invariants Γ-rank=14034, ∆-rank=438
and |MGF

| = 210 · 3 (see [13] for more details on these invariants).

• Considering generalized isotopic shifts of x3 it is possible to obtain maps
EA-equivalent to nos. 1.2, 1.5, 1.7, 1.8, 1.10, 1.11, 1.12, 1.16, 1.17, 3.1 in
Table 9 [13].

• Considering generalized isotopic shifts of x9 it is also possible to obtain
maps EA-equivalent to no. 1.3 in the same table.

1An up-to-date table can also be found at https://boolean.h.uib.no/mediawiki/index.

php/Known\_quadratic\_APN\_polynomial\_functions\_over\_GF(2\^{}8)
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Table 1: APN polynomials over F28 derived from Theorem 3.1. All are either new or corre-
spond to the known but unclassified cases.

Functions equiv. to no. in Table 9 in [13]

ζ136x66 + ζ85x33 + ζ85x18 + ζ102x9 + ζ221x6 + x3 New

ζ102x66 + ζ204x9 + x3 1.2

ζ153x129 + ζ204x66 + ζ170x33 + ζ85x18 + ζ204x6 + x3 1.5

ζ102x129 + ζ153x66 + ζ170x33 + ζ221x18 + ζ221x9 + ζ187x6 + x3 1.7

x66 + ζ85x33 + x18 + x9 + x3 1.8

ζ204x129 + ζ170x66 + ζ153x33 + ζ85x18 + ζ153x9 + ζ17x6 + x3 1.10

ζ204x66 + x33 + x18 + ζ153x9 + x3 1.11

ζ170x129 + ζ204x66 + ζ17x33 + ζ68x18 + ζ221x9 + ζ204x6 + x3 1.12

ζ238x129 + ζ204x66 + ζ119x33 + ζ68x18 + ζ85x9 + ζ119x6 + x3 1.16

ζ17x129 + ζ85x66 + ζ34x33 + ζ34x18 + ζ187x9 + ζ187x6 + x3 1.17

ζ17x129 + ζ238x66 + ζ153x33 + ζ85x18 + ζ238x9 + ζ102x6 + x3 3.1

ζ153x129 + ζ221x72 + ζ170x33 + ζ102x24 + x12 + x9 + ζ136x3 1.3

Remark 3.3. The new function has the same CCZ-invariants (Γ-rank, ∆-rank
and MGF

) as function number 1.9 in Table 9 of [13].
Since two quadratic APN functions are CCZ-equivalent if and only if they are
EA-equivalent [19], the CCZ-inequivalence between these two functions can be
obtained by checking another invariant with respect to the EA-equivalence that
we shall introduce in the next subsection.

3.3. A new EA-equivalence invariant

Let S(F ) = {b ∈ F2n : ∃ a ∈ F2n s.t. WF (a, b) = 0}, where WF (a, b) =∑
x∈F2n

(−1)Tr(ax+bF (x)) is the Walsh coefficient of F in a and b. This set was
used in [7] to study some relations between the CCZ-equivalence and the EA-
equivalence.

It is easy to check that:

• if F ′(x) = F (x)+L(x) with L linear, then b ∈ S(F ) if and only if b ∈ S(F ′).

• If F ′(x) = A1 ◦ F ◦A2(x) with A1, A2 affine permutations, then b ∈ S(F )
if and only if Ā∗1(b) ∈ S(F ′), where Ā∗1 is the adjoint operator of the linear
map A1(x) +A1(0).

From this we have the following.

Proposition 3.4. Let Ni be the number of the F2-vector subspaces of F2n con-
tained in S(F ) of dimension i. Then, the values Ni for i = 1, ..., n are EA-
invariant.

Proof. If F ′ is EA-equivalent to F , then there exist A1, A2 affine permutations
and L linear such that F ′(x) = A1 ◦ F ◦ A2(x) + L(x). From the arguments
above, denoting Ā1(x) = A1(x) +A1(0) we have that S(F ′) = Ā∗(S(F )).

Remark 3.5. We computed the values Ni for the two functions and we got
N1 = 86, N2 = 340 and N3 = 4 for the new function, and N1 = 86, N2 = 340
and N3 = 8 for the function number 1.9. Thus from Proposition 3.4 we have
that the two functions are not EA-equivalent.
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Remark 3.6. Note that when n is odd, a quadratic APN function F is Almost
Bent (i.e. for all b ∈ F?2n we have {WF (a, b) : a ∈ F2n} = {0,±2(n+1)/2}),
which implies S(F ) = F2n . Thus, this new invariant cannot be used for testing
the CCZ-equivalence of quadratic APN functions in the case n odd.

Remark 3.7. In fact, this EA-invariant was tackled independently by Göloğlu
and Pavl̊u in [14]. In their work, they focused on plateaued functions and looked
at the subspaces in the set {b : WF (0, b) 6= ±2n/2} (n even). For plateaued
functions, this set coincides with S(F ).

3.4. The case n = 9

For the case k = m = 3 we consider the generalized linear shift as in (3)
with L1 and L2 having coefficients in the subfield F23 . In Table 2 we list all
known APN functions for n = 9, as reported in [5, Table 1]. In Table 3, we list
all new APN functions obtained from Theorem 3.1. We observe that the family
of Theorem 3.1 covers the only known example of an APN function for n = 9,
function 8.1 of Table 11 in [13], which had not been previously identified as part
of an APN family. Hence, currently, all known APN functions for n = 9 are
now covered by an APN family. Note that this latter function was not obtained
from the approach studied in [13] (it does not belong to a switching class of a
previously known APN map). Finally, Table 3 indicates 15 new APN functions
all obtained from Theorem 3.1. In both tables we include, for each function,
the CCZ-invariants Γ-rank, ∆-rank and |MGF

|.
The CCZ-inequivalence of some of these functions was obtained by checking

with MAGMA the equivalence of some linear code which can be associated to
an APN function (see [4]).

Table 2: Previously known CCZ-inequivalent APN polynomials over F29 and their relation to
previously known families of APN functions.

Functions Families no. Table 11 in [13] Γ-rank ∆-rank |MGF
|

x3 Gold 1.1 38470 872 9 · 29 · 511

x5 Gold 2.1 41494 872 9 · 29 · 511

x17 Gold 3.1 38470 872 9 · 29 · 511

x13 Kasami 4.1 58676 3086 9 · 511

x241 Kasami 6.1 61726 3482 9 · 511

x19 Welch 5.1 60894 3956 9 · 511

x255 Inverse 7.1 130816 93024 2 · 9 · 511

Tr91(x9) + x3 [8] 1.2 47890 920 9 · 29

Tr93(x18 + x9) + x3 [9] 1.3 48428 930 9 · 29

Tr93(x36 + x18) + x3 [9] 1.4 48460 944 9 · 29

x3 + x10 + ζ438x136 – 8.1 48608 938 3 · 7 · 29

ζ337x129 + ζ424x66 + ζ2x17 + ζx10 + ζ34x3 [5] – 48596 944 3 · 7 · 29

3.5. Isotopic shifts with nonlinear functions

In this section we consider the case when the function used in the shift is
not necessarily linear.

In [5], it has been proved that, in even dimension, an isotopic shift of the
Gold function with a linear function defined over F2[x] cannot be APN. In
the following, we show that for any quadratic function F in even dimension, we
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Table 3: APN polynomials over F29 derived from Theorem 3.1. All, except for the first one,
are either new or correspond to the one known but unclassified case.

Gi Function Eq. to known ones Γ-rank ∆-rank |MGF
|

i = 1 x129 + ζ146x66 + x17 + ζ365x10 + x3 eq. to APN function in [5] 48596 944 29 · 3 · 7
i = 1 ζ219x129 + ζ292x66 + ζ292x17 + ζ219x10 + x3 new 48506 936 29 · 3 · 7
i = 1 ζ365x129 + ζ292x66 + ζ365x17 + ζ73x10 + x3 new 48610 938 29 · 3 · 7
i = 1 ζ365x129 + ζ365x66 + ζ146x17 + ζ365x10 + x3 new 48612 938 29 · 3 · 7
i = 1 ζ365x129 + ζ219x66 + ζ292x17 + ζ73x10 + x3 new 48548 928 29 · 3 · 7
i = 1 ζ73x129 + ζ365x66 + ζ73x17 + ζ73x10 + x3 new 48548 928 29 · 3 · 7
i = 1 ζ365x129 + ζ438x66 + ζ292x10 + x3 new 48506 936 29 · 3 · 7
i = 1 ζ365x129 + x66 + ζ438x10 + x3 new 48604 928 29 · 3 · 7
i = 1 ζ73x129 + ζ292x66 + x10 + x3 new 48564 942 29 · 3 · 7
i = 1 ζ73x129 + x66 + ζ219x17 + x3 new 48604 928 29 · 3 · 7
i = 2 ζ146x257 + ζ438x68 + ζ438x12 + x5 new 48546 938 29 · 3 · 7
i = 2 ζ146x257 + ζ365x33 + ζ365x12 + x5 eq. to 8.1 48608 938 29 · 3 · 7
i = 2 ζ73x257 + ζ146x68 + x33 + x5 new 48564 942 29 · 3 · 7
i = 2 ζ365x257 + ζ438x68 + ζ365x33 + ζ438x12 + x5 new 48594 944 29 · 3 · 7
i = 2 ζ146x257 + ζ219x68 + ζ73x33 + x12 + x5 new 48520 932 29 · 3 · 7
i = 2 ζ73x257 + ζ219x68 + ζ365x33 + x5 new 48602 938 29 · 3 · 7
i = 4 ζ292x3 + ζ146x80 + ζ73x24 + x17 new 48520 932 29 · 3 · 7

cannot obtain APN functions by shifting F with a polynomial whose coefficients
belong to F2.

Proposition 3.8. For two integers k and m let n = km and q = 2k. Consider
a function F ∈ F2n [x] of the form

F (x) =
∑
i<j

bijx
qi+qj +

∑
i

bix
qi + c,

If F4 ⊆ F2n or k > 1, then any isotopic shift FL with L ∈ F2k [x] cannot be APN.
In particular, this holds for any quadratic function F ∈ F2n [x] with n even and
L ∈ F2[x].

Proof. For F and L as outlined, we have

FL(x) =
∑
i<j

bij [x
qiL(x)q

j

+ xq
j

L(x)q
i

] + c

and L(xq) = L(x)q. Note that for any x ∈ F2k , FL(x) = c. For a ∈ F2n , we set
∆a(x) = FL(x+ a) + FL(x) + FL(a).

If k > 1, then ∆a(x) = c for all x, a ∈ F2k , so that FL is not APN. If
F4 = {0, 1, α, α+ 1} ⊆ F2n , then consider ∆α(x). Clearly ∆α(0) = c, while it is
easily observed that ∆α(α+ 1) = ∆α(1). We have

∆α(α+ 1) =FL(α+ 1) + FL(α) + c

=c+
∑
i<j

bij [L(α+ 1)q
i

(α+ 1)q
j

+ (α+ 1)q
i

L(α+ 1)q
j

+ L(α)q
i

αq
j

+ αq
i

L(α)q
j

]

=c+
∑
i<j

bij [L(α+ 1)(α+ 1)q
j−i

+ (α+ 1)L(α+ 1)q
j−i

+ L(α)αq
j−i

+ αL(α)q
j−i

]q
i

.
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When j−i is odd and F4 6⊆ F2k , the term in the sum is zero as αq
j−i

= α2 = α+1,

L(α)q
j−i

= L(α + 1) and L(α + 1)q
j−i

= L(α). If j − i even or F4 ⊆ F2k ,

then the term in the sum is again zero due to the fact that αq
j−i

= α and
L(α)q

j−i

= L(α). In either case, we have ∆α(x) = c for x = 0, 1, α+ 1, so FL is
not APN.

3.5.1. Nonlinear shift for the Gold functions

If we consider an isotopic shift of a Gold function without the restriction

that L(x) is a linear function, then L(x) =
∑2n−1
j=0 cjx

j and the isotopic shift
will be of the form

Gi,L(x) = x2i

L(x) + xL(x)2i

. (4)

We have Gi,L(x2)2−1

= x2i

M(x) + xM(x)2i

, where M(x) =
∑
c2
−1

j xj , and also

ζ−2i−1Gi,L(ζx) = x2i

N(x) + xN(x)2i

, where N(x) =
∑
cjζ

j−1xj . Hence we
obtain the following.

Proposition 3.9. Let F?2n = 〈ζ〉. Assume that Gi,L is constructed with L(x) =∑2n−1
j=0 cjx

j. Then, for any integers k, t, we have that Gi,L is linear equivalent

to Gi,M , where M(x) =
∑2n−1
j=0 (cjζ

k(j−1))2t

xj.

As for the linear shifts, it is possible to restrict the search of one possible
non-zero coefficient of the function.

In the following table we recall the list of known APN power maps (the list
was conjectured to be complete in [11]).

Table 4: Known APN power functions xd over F2n

Functions Exponents d Conditions Degree Proven

Gold 2i + 1 gcd(i, n)=1 2 [15, 18]

Kasami 22i − 2i + 1 gcd(i, n)=1 i+1 [16, 17]

Welch 2t + 3 n = 2t+ 1 3 [10]

Niho 2t + 2
t
2 − 1, t even n = 2t+ 1 t+2

2 [11]

2t + 2
3t+1

2 − 1, t odd t+1

Inverse 22t − 1 n = 2t+ 1 n− 1 [2, 18]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [12]

In odd dimension it is possible to obtain all power APN functions, except the
Dobbertin functions, as the isotopic shifts of a Gold function by a monomial.

Theorem 3.10. Over F2n with n an odd integer, let F be any known APN
power function outside the class of Dobbertin functions. Then there exists a
monomial L(x) = axd and a Gold function Gi = x2i+1 such that the shift Gi,L
is EA-equivalent to F .

Proof. As shown in Table 4, excluding the Dobbertin function, the known APN
power functions are the Gold functions, the Kasami functions, the Welch func-
tion, the Niho functions and the inverse function. In the following we will show
that it is possible for any of the mentioned functions, to construct an isotopic
shift of a Gold function that is EA-equivalent to it.

10



1. Consider the Kasami function x22t−2t+1. If t is odd, then let i be an integer
such that n = 2i+ t. Then, considering L = ax2n−i+2n−i+1...+2n−i+t−1

we
have

Gi,L = a2i

x2t

+ ax2n−i+2n−i+1...+2n−i+t−1+2i

= a2i

x2t

+ ax2i(2t+2t+1...+22t−1+1)

= a2i

x2t

+ ax2i(22t−2t+1).

If t is even, let i be an integer such that t = 2i. Then, with L =
ax2i+2i+1+...+23i−1

we have Gi,L = a2i

x22t−2t+1 + ax23i

.

2. For the inverse function, x2n−2, considering L(x) = ax22t−2, where t is

such that n = 2t+ 1, we have G1,L = a2x2(2n−2) + ax22t

.

3. Let n = 2t + 1 and consider the Welch function x2t+3. If t is odd, then
consider i such that t = 2i− 1. With L(x) = ax2i+2i+1

we obtain Gi,L =

a2i

x22i(22i−1+3) + ax2i+2

. If t is even, then consider i such that t = 2i.
Using L(x) = ax23i+1+23i+2

we obtain Gi,L = a2i

x4 + ax23i+1(22i+3).

4. For n = 2t + 1, with t odd, let t = 2i − 1. Then, with L = ax2n−2i

we
obtain that

Gi,L = a2i

x2i−22i+1 + ax = a2i

x22i(2−i+2−2i−1) + ax

= a2i

x22i(23i−1+22i−1−1) + ax = a2i

x22i(2(3t+1)/2+2t−1) + ax

is equivalent to the Niho function (indeed (3t + 1)/2 = (6i − 3 + 1)/2 =

3i− 1). If t is even, let t = 2i. Then with L = ax2n−i+2n−i+1...+2n−1

Gi,L = a2i

x2i

+ ax2n−i+2n−i+1...+2n−1+2i

= a2i

x2i

+ ax2n−i(1+2...+2i−1+22i)

= a2i

x2i

+ ax2n−i(2i−1+22i)

is equivalent to the Niho function.

5. Let n = 2i + 1 and j be an integer such that gcd(n, j) = 1. Then with

L = ax2i+j−2i

Gi,L = a2i

x22i+j−22i+1 + ax2i+j

= a2i

x22i(2j+2−2i−1) + ax2i+j

= a2i

x22i(2j+1) + ax2i+j

is equivalent to the Gold function with parameter j.

Remark 3.11. From computational results, for n even, it seems that it is not
possible to obtain APN functions as the isotopic shifts of a Gold map by (non-
linear) monomials. The search has been performed for n = 4, 6, 8, 10, consider-
ing also non-APN Gold exponents.

Problem 3.12. Is it possible to obtain the Dobbertin function as an isotopic
shift of a Gold function by a non-linear L?

Problem 3.13. Is it possible to obtain the same result for n an even integer
and L a non-linear multinomial?
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4. Conclusions

Starting from the work [5], we introduced some generalizations of the iso-
topic shift construction for the case when the starting function is a Gold power
function. In particular, using a generalized form of the isotopic shift with F2m-
polynomials, we were able to construct a general family of quadratic APN func-
tions. This allowed us to classify into a family some of the previously known
unclassified examples of APN functions for n = 8, 9, and to provide new APN
functions on F28 and F29 . The computations performed were restricted to linear
maps with coefficients in the subfield. We expect that, without such restriction,
it is possible to find additional new APN functions.

We also investigated the case of constructing an isotopic shift with a nonlin-
ear function. In this case, for any odd n, we can obtain all known power APN
functions (except the Dobbertin ones) using a nonlinear monomial function.
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