
1

Multiparty Homomorphic Encryption:
From Theory to Practice

Christian Mouchet Juan Troncoso-Pastoriza Jean-Pierre Hubaux
École polytechnique fédérale de Lausanne

first.last@epfl.ch

Abstract—We propose and evaluate a secure-multiparty-
computation (MPC) solution, in the semi-honest model with
dishonest majority, based on multiparty homomorphic encryp-
tion (MHE). To support this solution, we introduce a mul-
tiparty version of the Brakerski-Fan-Vercauteren lattice-based
homomorphic cryptosystem, implement it in an open-source
library, and evaluate its performance. We show that such MHE-
based MPC solutions have several advantages over current
approaches: Their public transcripts and non-interactive circuit-
evaluation capabilities enable a broad variety of computing
paradigms, ranging from the traditional peer-to-peer setting to
cloud-outsourcing and smart-contract technologies. Exploiting
these properties, the communication complexity of MPC tasks
can be reduced from quadratic to linear in the number of parties,
thus enabling secure computation among thousands of parties.
Additionally, MHE-based approaches can outperform the state-
of-the-art even for a small number of parties. We demonstrate
this for three circuits: component-wise vector multiplication with
application to private-set intersection, private input selection with
application to private-information retrieval, and multiplication
triples generation. For the first circuit evaluated among eight
parties, our approach is 8.6 times faster and requires 39.3 times
less communication than the state-of-the-art approach. The input
selection circuit over eight thousand parties completed in 61.7
seconds and required 1.31 MB of communication per party.

Index Terms—secure multiparty computation, homomorphic
encryption, lattice-based cryptography

I. INTRODUCTION

Secure Multiparty Computation (MPC) protocols enable a
group of parties to securely compute joint functions over
their private inputs while enforcing specific security guarantees
throughout the computation. Although the exact definition
of security depends on how the adversary is modeled, the
most common requirement, input privacy, informally states
that parties should not obtain more information about other
parties’ inputs than what can be deduced from the output
of the computation. Combining this strong security guarantee
with such a general functionality makes the study of MPC
techniques highly relevant, from both a research and a practical
perspective. The last decade has seen this established theoreti-
cal field evolve into an applied one, notably due to its potential
for securing data-sharing scenarios in the financial [1]–[3],
biomedical [4]–[6] and law enforcement [7], [8] sectors, as
well as for protecting digital assets [9], [10].

The transition of MPC techniques to their application do-
mains however still faces significant obstacles. In the settings
where no honest majority of parties can be guaranteed, current
MPC protocols are typically based on secret-sharing [11]

of the input data and interactive circuit evaluation. These
approaches have two practical limitations: First, standard pro-
tocols require many rounds of communication over private
channels between the parties, which makes them inadequate
for low-end devices and unreliable networks. Second, current
approaches require a per-party communication that increases
linearly in the circuit size (that itself increases at least linearly
in the number of parties). Hence, this quadratic factor quickly
presents an efficiency bottleneck for large circuits and/or large
number of parties. As a result, current MPC applications are
mostly focused on two- or three-party settings where the MPC
task is delegated to a set of computing parties that are assumed
not to collude in revealing the inputs [5], [12]–[16].

We propose, implement, and evaluate a passive-adversary
dishonest-majority MPC protocol that can support several
thousands of parties without making such assumption. Based
on multiparty homomorphic encryption (MHE), this protocol
reduces the per-party communication complexity to being
linear in the circuit’s inputs and outputs. We achieve this
by exploiting recent progress in lattice-based homomorphic
encryption that, despite being used in current MPC solutions,
was mostly confined to their offline pre-computations but not
used during the circuit evaluation. We argue that homomorphic
encryption has reached the required level of usability to play
a larger role in the online phase of MPC protocols and to
enable new applications. Notably, we discuss how MHE-based
approaches can be integrated within existing secret-sharing-
based ones to reduce their communication overhead. Further-
more, we show that MHE-based solution can remove the need
for private party-to-party communication channels. Hence, in
addition to the traditional peer-to-peer setting, this solution
can operate in a broad range of computing platforms, ranging
from cloud-outsourcing to distributed-ledger smart-contract
technologies, without requiring non-collusion assumptions.

Our solution is based on a multiparty version of the BFV
homomorphic encryption-scheme [17] and it can be extended
to other mainstream schemes of the same family such as the
CKKS cryptosystem [18]. It uses secret-sharing techniques
[11] to distribute the secret encryption key among the parties,
as proposed by Asharov et al. [19], [20] and Boneh et al. [21].
In addition to bringing these works to more recent cryptosys-
tems and to practice, we make the following contributions:
• We propose a novel multiparty version of the BFV lattice-

based somewhat-homomorphic encryption scheme (Sec-
tion IV). This includes a novel protocol for bootstrapping
a BFV ciphertext in a multiparty setting.

2

• We discuss the features of the MHE-based approach and
how it can both be integrated into existing solutions, and
be used directly as a standalone one, enabling secure
computation among thousands of parties (Section V).

• We provide security arguments for the protocols that
define the multiparty cryptosystem (Section VI).

• We implement our scheme in an open-source library and
evaluate it for three example circuits (Section VII).

We believe this work to be a significant step in bridging
the gap between currently available MPC solutions and well-
established works on multiparty lattice-based cryptosystems.

II. RELATED WORK

We classify N -party dishonest-majority MPC approaches
in two categories: The category (a), data-level secret-sharing,
which is predominantly implemented in generic MPC solu-
tions [9], [22], consists in applying secret-sharing [11] to input
data. The category (b), multiparty encryption schemes , uses
an homomorphic scheme to encrypt and exchange the input
data, that can then be operated on in a non-interactive way
with encrypted arithmetic.

(a) Data-Level Secret-Sharing (for short: secret-sharing-
based): Most of the available generic MPC solutions, such as
Sharemind [23] and SPDZ [24]–[26], rely on applying secret-
sharing to the input data. The evaluation of these arithmetic cir-
cuits is generally enabled by the homomorphism of the secret-
sharing scheme, or by interactive protocols [27], [28] (when
no such homomorphism is available), the most widely im-
plemented protocol being Beaver’s triple-based protocol [27].
The strength of approach (a) is to rely, at the evaluation phase,
on only simple and efficient primitives in terms of which the
circuit can be decomposed by code-to-protocol compilers, thus
providing great usability. However, this approach imposes two
constraints on the system: First, using an interactive protocol
at each multiplication gate requires all parties to be online
and active during the whole computation, and to exchange
private messages with their peers, often at a high frequency
that is determined by the round complexity of the circuit.
Second, the triple-based multiplication protocol requires a
prior distribution of one-time triples; this can be performed in a
pre-computing phase either by a trusted third-party or by the
parties themselves. Interestingly, the latter peer-to-peer case
can also be formulated as an independent, yet equivalent, MPC
task (generating the triples requires multiparty multiplication).
Hence, these approaches are often hybrids that generate the
multiplication triples [22] by using other techniques such as
oblivious transfer [29] or plain homomorphic encryption [24],
[26] in an offline phase.

(b) Multiparty Encryption Schemes: In this approach, each
party holds a secret-share of an ideal secret-key to a ho-
momorphic encryption-scheme. The parties can provide their
inputs encrypted under this secret key and the computation
can be performed using the homomorphic operations of the
HE scheme. Finally, the decryption requires the collaboration
between the parties according to the secret-sharing scheme.
Such constructions are commonly referred to as threshold [30]
and distributed cryptosystem, depending on the decryption

structure they enforce. We use the term multiparty encryption
scheme to designate these constructions in a general way.
We define this term as a primitive and the MPC protocol it
enables in Section III-B. The idea of reducing the volume
of interaction in MPC by using homomorphic encryption can
be traced back to a work by Franklin and Haber [31], later
improved by Cramer et al. [32]. But, at the time, the lack
of homomorphic schemes that preserve two distinct algebraic
operations ruled out complete non-interactivity at the evalua-
tion phase, thus rendering these approaches comparatively less
attractive than approach (a). Recently, task-specific instances
that use multiparty additive-homomorphic encryption have
nevertheless been successful in supporting use-cases in dis-
tributed machine learning [33], [34], highlighting the potential
a generic and usable fully-homomorphic solution would have.
This is possible since 2009, when Gentry proposed the first
fully homomorphic encryption (FHE) scheme [35].

This is the idea behind the joint line of work by Asharov
et al. [19], [20] and López-Alt et al. [36], later generalized by
Boneh et al. [21] by the idea of a universal thresholdizer.
These contributions propose various multiparty schemes in
which the ideal secret-key is additively shared among the
parties, and they analyse the theoretical MPC solution these
schemes enable. Although of great interest, these lines of work
did not find as much echo in applications as approach (a) has.
One possible reason was the lack, at the time, of available
and efficient implementations of Learning with Errors [37]
(LWE) -based homomorphic schemes, in terms of which these
schemes were presented. Today, however, multiple ongoing
efforts aim at standardizing homomorphic encryption [38] and
at making it available to a broader public [39]–[43]. This new
generation of schemes is mostly based on the Ring Learning
with Errors (RLWE) problem [44] and have brought HE from
being practical to being efficient. Therefore, we argue that
MHE-based approaches deserve more than theoretical interest,
as they are now mature and usable enough to support more
than the offline phase of secret-sharing-based approaches.

It is worth mentioning that the multi-key class of multiparty
encryption schemes, as introduced by López-Alt et al. [45],
can also be considered as multiparty cryptosystems. These
schemes enable the parties to provide their input data en-
crypted under their own secret key, and to operate on them
directly by using encrypted arithmetic. As the encryption
scheme is both message-homomorphic and key-homomorphic,
the computation result is then encrypted under an on-the-
fly key that is a joint function of the input secret keys.
Hence, only the involved parties are required to participate in
the decryption sub-protocol. Unfortunately, this feature comes
at a prohibitive performance cost, limiting its applicability
for use-cases with large number of parties. Notably, current
multi-key schemes lack the compactness property: the size of
their ciphertexts and the timing of arithmetic operations are,
respectively, linear and quadratic in the number of keys used
for the inputs. They also require significant interactive pre-
computation of potentially large keys [46]–[48] that usually
increase quadratically or cubically in the number of parties
Hence, we chose to stick with the secret-key-level secret-
sharing approach in our novel MHE scheme.

3

We will show that, in addition to be naturally interoperable
with approach (a), MHE-based solutions also enable scenarios
where an interactive circuit evaluation does not fit the system
model (e.g., parties going offline during evaluation, outsourced
scenarios) or the network model (e.g., low-end devices, public
communication channels). Hence, we propose and build an
open-source MPC solution that brings the theoretical work on
multiparty cryptosystems [19]–[21] to recent state-of-the-art
RLWE cryptography and to practice.

III. BACKGROUND

We first introduce our problem statement and the required
building block of our MHE-based MPC solution.

A. Problem Statement and System Model

We model a secure-multiparty-computation setting in terms
of a problem that needs to be solved under a set of se-
curity constraints (by an MPC protocol). Indeed, different
threat models result in different sets of constraints. Definition
1 formulates the secure-multiparty-computation problem we
consider for the scope of this work.

Definition 1. Let P = {P1, P2, . . . , PN} be a set of N parties
respectively holding inputs (x1, x2, . . . , xN) (input parties)
and let R be a party that can be either inside or outside of
P (receiver party). Let f(x1, x2, . . . , xN) = y be a function
(ideal functionality) over the input parties’ inputs. Let A be a
static semi-honest adversary that can corrupt R and/or up to
N − 1 parties in P .
The secure-multiparty-computation problem consists in pro-
viding the receiver R with y = f(x1, x2, . . . , xN), yet A
must learn nothing more about {xi}Pi /∈A than what can be
deduced from the inputs {xi}Pi∈A and output y it controls
(input-privacy).

The solution to a secure-multiparty-computation problem
is a protocol denoted πf that realizes the problem’s ideal
functionality f and preserves input privacy. Equivalently, this
property requires that the execution of πf emulates an ideal
setting where parties are provided with an incorruptible en-
vironment that, provided with their inputs, will carry out the
computation of f and that will provide R with its output.

Our definition permits that the receiver party R is outside
of the set of input parties P . This reflects the fact that, in
such case, there is no need for R to have an active role in
the input’s access control mechanism. Indeed, only the parties
having input in the ideal functionality should have such role.

We assume that the parties in P have access to a uniformly
random Common Reference String (CRS) [49], and they are
connected through authenticated channels. Note that these
channels are not required to be confidential.

For consistency with our concrete solution, we model MPC
tasks with multiple receivers as the composition of single-
receiver sub-tasks: Let O be a set of NO output parties,
we define FO = (f1, f2, . . . , fNO) (joint ideal functionality),
where fi(x1, x2, . . . , xN) = yi for each output party i ∈ O ,
as the composition of all private ideal functionalities.

B. Multiparty Encryption Schemes

A multiparty encryption-scheme securely splits the secret
key of an encryption scheme among a group of N parties,
according to a secret-sharing scheme. Hence, the operations
that depends on the secret key (in the original scheme) are
implemented as special-purpose secure-multiparty protocols
(in the multiparty scheme). Notably, when considering a tradi-
tional asymmetric encryption scheme, this is the case for the
public encryption-key generation and decryption procedures.
Definition 2 formalizes this intuition. In Section IV, we con-
struct a multiparty version of the Brakerski-Fan-Vercauteren
somewhat-homomorphic encryption scheme [17], where the
secret key is additively shared among the parties.

Definition 2. Let E=(SecKeyGen,PubKeyGen,Enc,Dec) be
an asymmetric encryption scheme, whose security is param-
eterized by λ, and let S = (Share,Combine) be an N -party
secret sharing scheme. The associated multiparty encryption
scheme is obtained by applying the secret-sharing scheme
S to E’s secret key sk (ideal secret key) and is defined as
the tuple ES = (πSecKeyGen, πPubKeyGen, πDec) of multiparty
protocols having the following private ideal functionalities for
each party Pi:

Ideal secret-key generation:
fi,πSecKeyGen

(λ) = ski = S.Sharei(E.SecKeyGen(λ))

Collective public-key generation:
fi,πPubKeyGen

(sk1, sk2, . . ., skN)

= E.PubKeyGen(S.Combine(sk1, sk2, . . ., skN)),

Collective decryption:
fi,πDec

(sk1, sk2, . . ., skN , ct)
= E.Dec(S.Combine(sk1, sk2, . . ., skN), ct).

A direct consequence of Definition 2 is that E and ES are
compatible: secret-sharing a valid secret key for E results in
a valid instantiation of ES where key holders can collectively
decrypt ciphertexts of E. Conversely, reconstructing the ideal
secret key of ES yields a valid secret key for E that can
decrypt ciphertexts of ES . The output of the πPubKeyGen, the
collective public key, is also a valid public key for E.

As the S.Combine operation has to be embedded in fπDec
,

the secret-sharing scheme defines an access structure [11]
that directly characterizes the access structure of ES . For
example, using additive secret-sharing of the secret key results
in a scheme where all parties must collaborate to decrypt a
ciphertext, whereas only a threshold number of them would
be required when using Shamir secret-sharing [11]. As the
strictest security guarantee can be too restrictive for some
system models, our future work comprises threshold access
structures for the RLWE encryption schemes.

C. Multiparty Homomorphic Encryption (MHE)

When considering multiparty homomorphic encryption, E
(and, by extension, ES) is augmented with the Eval procedure

4

Protocol 1: MHE−MPC

Public input: the ideal functionality f to be computed
Private input: xi for each Pi ∈ P
Output for R: y = f(x1, x2, . . . , xN)

Setup: the parties in P instantiate the multiparty scheme E∗

ski = E∗.πSecKeyGen(λ, κ),

cpk = E∗.πPubKeyGen(κ, sk1, . . . , skN),

In: each Pi encrypts its input and provides it to C
ci = E∗.Encrypt(cpk, xi),

Eval: C computes the encrypted output for the ideal
functionality f

c′ = E∗.Eval(f, c1, c2, . . . , cN),

Out: the parties in P execute the decryption protocol
y = E∗.πDec(sk1, . . . , skN , c

′).

that enables encrypted arithmetic on its ciphertexts. We denote
E∗ this augmented scheme:

E∗ = (πSecKeyGen, πPubKeyGen, E.Enc, πDec, E.Eval),

An homomorphic scheme requires proper parametrization in
order to support the evaluation of the target ideal functionality.
Hence, we model this dependency by introducing an abstract
homomorphic capacity parameter, which we denote κ.

D. MHE-Based MPC Protocol

We provide an overview of the MHE-based MPC protocol,
that we formulate for an abstract MHE scheme E∗ in Pro-
tocol 1. The idea of using homomorphic cryptosystems as a
standalone MPC solution has been discussed in cryptographic
research [20], [32]. However, to the best of our knowledge,
no concrete MPC framework has been built to exploit those
ideas. In this work, we take this step and show that we can
build efficient systems, not only in the traditional peer-to-
peer setting but also in the outsourced one: Where parties are
assisted by a semi-honest entity such as a cloud provider.

Hence, we consider an abstract computing party C that car-
ries out the homomorphic evaluation of the ideal functionality.
In purely peer-to-peer settings, the parties themselves assume
the role of C, either by distributing the computed circuit, or
by delegating the computation to one designated party. In the
cloud-assisted setting, a semi-honest cloud service provider
can assume this role. Although it is frequent to define the role
of computing party in current MPC applications [5], [9], [15],
it is usually a part of the N -party to 2-party problem reduction
that introduces non-collusion assumptions. The fundamental
difference with the MHE-based protocol is that R owns no
share of the ideal secret-key, and thus plays no role access-
structure of the private inputs.

The Setup step instantiates the multiparty encryption
scheme. It is independent from the rest of the protocol: it
has to be run only once for a given set of parties and a
given choice (λ, κ) of cryptographic parameters. Whereas it is

tempting to compare this step to the offline phase of the secret-
sharing-based approaches, it is fundamentally different in that
it produces public-keys that can be used for an unlimited
number of circuit evaluations. This implies that the Setup
step does not depend directly on the number of multiplication
gates in the circuit, but only on the maximum circuit depth
the parties want to support. This is because the encryption
scheme has to be parameterized, and the necessary public keys
generated, to support a sufficient homomorphic capacity κ.

The In step corresponds to the input phase: The parties use
the public encryption procedure of E∗ (using the collective
public-key cpk) to encrypt their inputs and to provide them to
C for the evaluation to be carried out.

The Eval step consists in the evaluation of the ideal
functionality, by exploiting the homomorphic property of the
scheme to carry out the computation of the encrypted output.
This step requires no secret input from the parties and can
hence be performed by any semi-honest entity C.

The Out step enables the receiver R to obtain its output.
This requires collaboration among the parties in P , according
to the access structure defined by the sharing of the ideal
secret key. As a public output might not be acceptable in all
scenarios, we augment the distributed cryptosystem E∗ with a
collective key switching protocol πColKeySwitch, which enables
the parties to obliviously re-encrypt a ciphertext that originally
decrypts under a shared secret key sk into a new ciphertext
that decrypts under the receiver’s secret key sk′. This protocol
generalizes πDec; in fact, decryption (or the ability to decrypt)
can be mapped to the particular case of switching to a secret
key sk′ = 0 (or any publicly known value). Given that pk′ is
a public key for the secret key sk′, the ideal functionality of
key switching,

fColKeySwitch = E.Encrypt(pk′, E.Decrypt(sk, ct)),

can be computed with no secret input from the receiver,
hence fully decoupling this party from the secure multiparty
computation problem.

E. Mathematical Notation

We denote [·]q the reduction of an integer modulo q, and d·e,
b·c, b·e the rounding to the next, previous, and nearest integer
respectively. When applied to polynomials, these operations
are performed coefficient-wise. We use regular letters for
integers and polynomials, and boldface letters for vectors of
integers and of polynomials. aT denotes the transpose of a
vector a. Given a probability distribution α over a ring R,
a ← α denotes the sampling of an element a ∈ R according
to α, and a ← R implicitly denotes uniform sampling in R.
For a polynomial a we denote its infinity norm by ‖a‖.

F. The Brakerski-Fan-Vercauteren Encryption Scheme

The BFV cryptosystem is a ring-learning-with-errors [44]
scheme that supports both additive and multiplicative ho-
momorphic operations. Due to its practicality, it has been
implemented in most of the current lattice-based cryptographic
libraries [39], [41]–[43] and is included as part of the ongoing
standardization effort [38].

5

We first recall the original and most common instantiation of
the (centralized) BFV encryption scheme [17] that is detailed
in Scheme 1. The ciphertext space is Rq = Zq[X]/(Xn + 1),
the quotient ring of the polynomials with coefficients in Zq
modulo (Xn + 1), where n is a power of 2. We use [− q2 ,

q
2)

as the set of representatives for the congruence classes modulo
q. Unless otherwise stated, we consider the arithmetic in Rq ,
so polynomial reductions are omitted in the notation. The
relinearization operation relies on an intermediary base w < q,
in which ciphertexts are temporarily decomposed to reduce
the growth this operation incurs on the noise [17]. We write
l = dlogw(q)e and w = (w0, w1, ..., wl)T . The plaintext space
is the ring Rt = Zt[X]/(Xn + 1) for t < q. We denote
∆ = bq/tc, the integer division of q by t.

The scheme is based on two kinds of secrets, commonly
sampled from small-normed yet different distributions: The
key distribution is denoted R3 = Z3[X]/(Xn + 1), where
coefficients are uniformly distributed in {−1, 0, 1}. The RLWE
error distribution χ over Rq has coefficients distributed accord-
ing to a centered discrete Gaussian with standard deviation
σ and truncated support over [−B,B]. Tables V and VI
in Appendix A summarize the cryptosystem parameters and
symbols used in the encryption scheme formulation.

The security of BFV is based on the hardness of the
decisional-RLWE problem [44], that is informally stated as
follows: Given a uniformly random a← Rq , a secret s← R3,
and an error term e ← χ, it is computationally hard for an
adversary that does not know s and e to distinguish between
the distribution of (sa+e, a) and that of (b, a) where b← Rq .

Encrypted arithmetic operations must preserve the plaintext
arithmetic. The BFV.Multiply operation outputs a ciphertext
consisting of three Rq elements; it can be seen as a degree two
ciphertext. This higher degree ciphertext can be further oper-
ated on and decrypted. But it is often desirable to reduce the
ciphertext degree back to one, by using the BFV.Relinearize
operation. This operation is public but requires the generation
of a special type of public key, the relinearization key rlk.

In the BFV scheme, decryption of a ciphertext (c0, c1) can
be seen as a two-step process. The first step requires the secret
key to compute a noisy plaintext in Rq as

[c0 + sc1]q = ∆m+ ect, (1)

where ect is the ciphertext overall error, or ciphertext noise. In
the second step, the message is decoded from the noisy term
in Rq to a plaintext in Rt, by rescaling and rounding:

[b t
q

(∆m+ ect)e]t = [bm+ at+ ve]t, (2)

where m ∈ Rt, a has integer coefficients, and v has coef-
ficients in Q. Provided that ‖v‖ < 1

2 , Eq. (2) outputs m.
Hence, the correctness of the scheme is conditioned on the
noise magnitude ‖ect‖, that must be kept below q

2t throughout
the homomorphic computation, notably by choosing a suffi-
ciently large q. This choice depends on the operations to be
performed, hence on the application.

Scheme 1: BFV

BFV.SecKeyGen(1λ): Sample s← R3. Output: sk = s

BFV.PubKeyGen(sk):
Let sk = s. Sample p1 ← Rq , and e← χ. Output:

pk = (p0, p1) = (−(sp1 + e), p1)

BFV.RelinKeyGen(sk, w):
Let sk = s. Sample r1 ← Rlq , e← χl. Output:

rlk = (r0, r1) = (s2w − sr1 + e, r1)

BFV.Encrypt(pk, m):
Let pk = (p0, p1). Sample u ← R3 and e0, e1 ← χ.

Output:
ct = (∆m+ up0 + e0 , up1 + e1)

BFV.Decrypt(sk, ct):
Let sk = s, ct = (c0, c1). Output:

m′ = [b t
q

[c0 + c1s]qe]t

BFV.Add(ct, ct′):
Let ct = (c0, c1) and ct′ = (c′0, c

′
1) Output:

ctadd = (c0 + c′0, c1 + c′1)

BFV.Multiply(ct, ct′):
Let ct = (c0, c1) and ct′ = (c′0, c

′
1) Output:

ctmul = [b t
q

(c0c
′
0 , c0c

′
1 + c′0c1 , c1c

′
1)e]q

BFV.Relinearize(ct, rlk):
Let ct = (c0, c1, c2), rlk = (r0, r1)

Express c2 in base w s.t. c2 =
∑l
b=0 c

(b)
2 wb and output:

ctrelin = (c0 +

l∑
b=0

r0,bc
(b)
2 , c1 +

l∑
b=0

r1,bc
(b)
2)

IV. THE MULTIPARTY BFV SCHEME

We introduce a novel multiparty version of the Brakerski-
Fan-Vercauteren (BFV) cryptosystem [17] that supports the
MPC protocol of Section III-D. It is worth noting that,
although formulated for the BFV scheme, the introduced
protocols can be straightforwardly adapted to other RLWE-
based cryptosystems, such as BGV [50] or the more recent
CKKS [18] that enables homomorphic approximate arithmetic.
In fact, we implemented both multiparty versions for the BFV
and CKKS schemes in an open-source library [43].

We use additive secret-sharing to distribute the BFV secret
key, denoted as s in the following, among the N parties in P .
We denote si the secret key share of party Pi, thus

s =

[∑
Pi∈P

si

]
q

. (3)

As a result, this scheme tolerates up to N −1 colluding
corrupted nodes in the passive adversary model and can be
viewed as a N-out-of-N threshold encryption scheme. Hence,

6

when used as E∗ in the MHE−MPC protocol, this scheme can
solve secure-multiparty-computation problems in the strictest
dishonest-majority formulation: where no set of colluding
parties should be able to extract the inputs of an honest party.

We refer to the original centralized scheme as the ideal
scheme: the ideal centralized functionality that needs to be
emulated in a multiparty setting. By extension, we also refer
to s as the ideal secret key, to emphasize that it exists as
such only through interaction between the parties. In the next
subsections, we reformulate all the private operations of the
original BFV scheme (i.e., those that depend on the secret
key) as secure N -party protocols. In Section VI, we detail the
security arguments.

These protocols follow a round-based approach where each
round decomposes in two phases: share generation (Gen)
and share aggregation (Aggr). In the Gen phase, the parties
generate their public shares for the current round (using their
own private share of the ideal secret key) and they disclose
them to the rest of the parties. In the Aggr phase, the shares of
all the parties are aggregated into a single output for the round.
For each protocol, the output procedure (Out), computes the
final protocol output from the round outputs. In order to
abstract the actual system model, we do not define how parties
disclose and aggregate their shares yet. In Section V, we
present concrete system models and discuss their features.

A. Ideal-Secret-Key Generation

We propose a simple ideal-secret-key generation procedure,
in which each party independently samples its own share
as si = BFV.SecKeyGen(1λ). Thus, the ideal secret-key is
generated in a non-interactive way. Although Eq. (3) applies,
this does not result in a usual sharing of s, in the sense that
the distribution of the shares is not uniform in Rq . This is not
an issue because, as discussed in Section VI, the security of
our scheme does not rely on this property. Moreover, the norm
of the resulting ideal secret key grows with N . This has an
effect on the noise growth that we analyze in Appendix C.

By using techniques such as those described in [51], it might
be possible to generate ideal secret keys in R3 as if they were
produced in a trusted setup. However, this would introduce the
need for private channels between the parties.

B. Collective Encryption-Key Generation (EncKeyGen)

The collective encryption-key generation, detailed in Pro-
tocol 2, emulates the BFV.PubKeyGen procedure. It is part
of the setup phase of the MHE−MPC protocol. In addition to
the public parameters of the cryptosystem (which we will omit
in the following), the procedure requires a public polynomial
p1, uniformly sampled in Rq , to be agreed upon by all the
parties. For this purpose, they sample its coefficients from the
common reference string (CRS).

After the execution of the EncKeyGen protocol, the parties
have access to a copy of the collective public key

cpk = ([
∑
Pi∈P

p0,i]q, p1) = ([−(p1
∑
Pi∈P

si+
∑
Pi∈P

ei)]q, p1) ;

(4)

Protocol 2: EncKeyGen

Public Input: p1 (a common random polynomial)
Private Input for Pi: si = ski (the party’s secret key share)
Public Output:cpk=(p0, p1) (the collective encryption key)

Each party Pi:
1) samples ei ← χ and discloses p0,i = −(p1si + ei)

Out: from p0 =
∑
Pj∈P p0,j , outputs cpk = (p0 , p1)

it has the same form as the ideal public key pk in Scheme 1,
with larger worst-case norms ‖s‖ and ‖e‖. As detailed in
Appendix C, the norm grows linearly in N hence is not a
concern, even for large number of nodes. Another notable
feature of the EncKeyGen protocol is that it would apply to
any kind of additive sharing of s, including uniformly random
shares. In fact, in the multiparty scheme, the magnitude of
the secret-key shares is irrelevant (as long as they have the
required entropy); only their sum in Rq is.

C. Collective Relinearization-Key Generation (RelinKeyGen)

In order to enable the computing entity C to perform non-
interactive relinearizations (hence, non-interactive multiplica-
tions), the parties need to generate a public relinearization
key (rlk) associated with their ideal secret key s. Protocol 3
(RelinKeyGen) emulates the centralized BFV.RelinKeyGen for
this purpose; it produces pseudo-encryptions of s2wb for each
power b = 0 . . . l of the decomposition basis parameter w.
This protocol is also part of the setup phase of the MHE−MPC
protocol. It requires a public input a, uniformly sampled in Rlq
from the CRS. We use vector notation to express that these
pseudo-encryptions are generated in parallel for every element
of the decomposition base w = (w0, w1, ..., wl)T .

Asharov et al. proposed a method to produce relinearization
keys for multiparty schemes based on the LWE problem [20].
This method could be adapted to our scheme but results in
significantly increased noise in the rlk (hence, higher noise
in relinearized ciphertexts) with respect to the centralized
scheme. One cause for this extra noise is the use of the
public encryption algorithm to produce the mentioned pseudo-
encryptions. From the observation that the collective encryp-
tion key is not needed for this purpose (when the secret key is
collectively known), we propose Protocol 3 as an improvement
over the method by Asharov et al., and we compare both
approaches in Appendix D.

After completing Protocol 3, the parties have access to a
relinearization key of the form:

rlk = (r0, r1)

= (−s2a + s2w + se0 + e1 + (u− s)e2 , sa + e2)

= (−sb + s2w + se0 + e1 + ue2 + e3 , b)

= (−sb + s2w + erlk , b), (5)

where b = sa + e2. Hence, as opposed to the technique by
Asharov et al., the additional error with respect to the ideal
generation using BFV.RelinKeyGen is only introduced in the
r0 component. In Appendix C, we show that this results in a
significant reduction in the relinearization noise.

7

Protocol 3: RelinKeyGen

Public Input: a ∈ Rlq , w
Private Input of Pi: sk = si
Output: rlk = (r0, r1)

Each party Pi:
1) samples e0,i ← χl, ui ← R3 and

discloses hi = −uia + siw + e0,i

2) from h =
∑
Pj∈P hj ,

samples e1,i, e2,i ← χl and
discloses

h′0,i = sih + e1,i and h′1,i = sia + e2,i

3) from h′0 =
∑
Pj∈P h′0,j and h′1 =

∑
Pj∈P h′1,j ,

samples e3,i ← χl and
discloses h′′i = (ui − si)h′1 + e3,i

Out: from h′′ =
∑
j h
′′
j ,

outputs rlk = (r0, r1) = (h′0 + h′′ , h′1)

A relevant feature of the proposed RelinKeyGen protocol is
its independence from the actual decomposition basis w: It is
compatible with other decomposition techniques, such as the
one used for type II relinearization [17], and those based on
the Chinese Remainder Theorem, as proposed by Bajard et al.
[52] and Cheon et al. [53]. In our implementation, we use an
hybrid approach for efficiency, but the protocol is unchanged.

D. Collective Key-Switching Protocols
The key-switching functionality enables the oblivious re-

encryption operation to support the output procedure of the
MHE−MPC protocol. That is, given a ciphertext ct decrypting
under some input key s along with an output key s′, the
key-switching procedure computes ct′ such that Dec(s, ct) =
Dec(s′, ct′). Its instantiation as a protocol depends on whether
the parties performing the re-encryption have access to a
sharing of the output secret key (i.e., have a collective access
to it), or only have its corresponding public-key. Therefore,
we develop protocols that perform key-switching for these
two settings: when s′ is collectively known, the ColKeySwitch
protocol is used and when only a public key is known, the
PubColKeySwitch protocol is used.

Both protocols require some fresh noise terms to be sampled
from a special noise distribution χCKS that depends on the
ciphertext that is key-switched. This fresh noise implements
the smudging technique (as introduced by Asharov et al. [20]),
whose motivation and implementation we discuss in Section
IV-G. Given a ciphertext ct, we denote var(ct) the variance of
its noise term (see Eq. (1)).

a) Collective Key-Switching (ColKeySwitch): Protocol 4
details the steps for operating a key switching when the input
parties collectively know the output secret key s′. In the
context of the MHE−MPC protocol, this would be the case
in multiple scenarios such as the decryption procedure (as
discussed below) and in the case of an ideal secret key update
(when a party leaves or joins the system). Also, assuming
confidential party-to-party channels, a receiver could provide
the input parties with secret-shares of a secret key it knows.

Protocol 4: ColKeySwitch

Public input: ct = (c0, c1) with var(ct) = σ2
ct

Private input for Pi: si, s′i
Public output: ct′ = (c′0, c1)

Each party Pi:
1) samples ei ← χCKS(σct) and

discloses hi = (si − s′i)c1 + ei

Out: from h =
∑
j hj ,

outputs ct′ = (c′0, c1) = (c0 + h, c1)

After the execution of the ColKeySwitch protocol on an
input ct = (c0, c1), for which c0 + sc1 = ∆m+ ect where ect
is the ciphertext’s error, the parties have access to ct′ satisfying

BFV.Dec(s′, ct′)=b t
q

[c′0 + s′c1]qe

=b t
q

[c0 +
∑
j

(
(sj−s′j)c1 + ej

)
+ s′c1]qe

= b t
q

[c0 + (s− s′)c1 + eCKS + s′c1]qe

= b t
q

[∆m+ ect + eCKS]qe = m, (6)

where eCKS =
∑
j ej , and where the last equality holds, pro-

vided that ‖ect + eCKS‖ < q/(2t); i.e., if the output ciphertext
noise plus the protocol-induced noise remains within decrypt-
able bounds. The ColKeySwitch protocol yields a decryption
procedure, as the special case where s′j = 0 ∀Pj ∈ P , and
is the basis for bridging MHE-based and secret-sharing-based
approaches, as explained in Section IV-E.

b) Collective Public-Key Switching (PubColKeySwitch):
When considering an external receiver for the output, the
parties in P do not have access to the output secret key s′. In
this case, the ColKeySwitch protocol can only be used when
assuming individual confidential channels between the external
receiver and each party in P . This channel could be used by
the external receiver (i) to collect decryption shares from all
parties, or (ii) to upload an additive sharing of its secret key
to the system. However, (i) would quickly become expensive
for large number of parties, and (ii) would would require R to
trust at least one party in P . Additionally, confidential point-
to-point channels might not fit the system model (e.g., on
public smart-contract technologies). Hence, we introduce the
PubColKeySwitch protocol to overcome this issue.

Protocol 5 details the steps for key switching when the
input parties know only a public key for the output secret
key s′. As it requires only public input from the external
receiver and its output is encrypted under the receiver’s key,
the PubColKeySwitch turns the ColKeySwitch protocol into a
public-transcript, public-output one and decouples the receiver
from the SMC problem at hand.

After the execution of the PubColKeySwitch protocol on an
input ciphertext ct = (c0, c1) for which c0 + sc1 = ∆m+ ect,
and a target public key pk = (p′0, p

′
1) such that p′0 = −(s′p′1+

8

Protocol 5: PubColKeySwitch

Public input: pk′ = (p′0, p
′
1),

ct = (c0, c1) with var(ct) = σ2
ct

Private input for Pi: si
Public output: ct′ = (c′0, c

′
1)

Each party Pi:
1) samples ui ← R3, e0,i ← χCKS(σct), e1,i ← χ and

discloses
h0,i = sic1 + uip

′
0 + e0,i and h1,i = uip

′
1 + e1,i

Out: from h0 =
∑
j h0,j and h1 =

∑
j h1,j ,

outputs ct′=(c′0, c
′
1)=(c0 + h0, h1)

epk), the parties have access to ct′ satisfying

BFV.Dec(s′, ct′) = b t
q

[c′0 + s′c′1]qe

=b t
q

[c0 +
∑
j

(
sjc1 + ujp

′
0 + e0,j

)
+ s′

∑
j

(
ujp
′
1 + e1,j

)
]qe

=b t
q

[c0 + sc1 + up′0 + s′up′1 + e0 + s′e1]qe

=b t
q

[∆m+ ect + ePCKS]qe = m, (7)

where ed =
∑
j ed,j for d = 0, 1, u =

∑
j uj , and the

total added noise ePCKS = e0 + s′e1 + uepk depends on both
the protocol-induced and the public-key noises. Provided that
‖ect + ePCKS‖ < q/(2t), Equation (7) holds.

E. Bridging MPC approaches

The flexibility of the ColKeySwitch protocol can be har-
nessed to bridge MHE-based and secret-sharing-based MPC
approaches. We provide two procedures enabling encryption-
to-shares and shares-to-encryption functionalities:

1) Encryption-to-Shares (Enc2Share): Given an encryption
(c0, c1) of a plaintext m ∈ Rt, the parties can produce an
additive sharing of m over Rt by masking their share in the
decryption (i.e., ColKeySwitch with s′ = 0) protocol: Each
party Pi ∈ {P2, PN} samples its own additive share Mi ←
Rt and adds a −∆Mi term to its decryption share hi before
disclosing it. Party P1 does not disclose its decryption share
h1 and derives its own additive secret-share of m as

M1 = BFV.Decrypt(s1, (c0 +

N∑
i=2

hi, c1)) = m−
N∑
i=2

Mi.

2) Shares-to-Encryption (Share2Enc): Given a secret
shared value m ∈ Rt such that m =

∑N
i=1Mi, the parties

can produce an encryption ct = (c0, c1). To do so, each party
Pi samples a from the CRS and and produces a ColKeySwitch
share for the ciphertext (∆Mi, a) with input key 0 and output
key s. The ciphertext centralizing the secret-shared value m
is then ct = (

∑N
i=1 c0,i, a). This is equivalent to a multiparty

encryption protocol.

F. Collective Bootstrapping (ColBootstrap)

The Share2Enc and Enc2Share protocols can be combined
into a multiparty bootstrapping procedure (Protocol 6), en-

Protocol 6: ColBootstrap

Public input: a and ct = (c0, c1) with var(ct) = σ2
ct

Private input for Pi: si
Public output: ct′ = (c′0, c

′
1) with var(ct′) = Nσ2

Each party Pi:
1) samples Mi ← Rt, e0,i ← χCKS(σct), e1,i ← χ and

discloses
h0,i = sic1−∆Mi+e0,i and h1,i = −sia+∆Mi+e1,i,

Out: from h0 =
∑
j h0,j and h1 =

∑
j h1,j ,

outputs ct′ = (c′0, c
′
1) =

([b t
q

([c0 + h0]q)e]t∆ + h1 , a)

abling the parties to reduce the ciphertext noise back to a fresh-
looking one, which further enable homomorphic computation
to be performed even when reaching the homomorphic capac-
ity limits. This is a crucial functionality for the BFV scheme,
for which no practical bootstrapping procedure exists.

Intuitively, the ColBootstrap protocol consists in a con-
version from an encryption to secret-shares and back, im-
plemented as a parallel execution of the Enc2Share and
Share2Enc protocols. It compensates the absence of a public
bootstrapping with an efficient single-round protocol that the
parties can use during the evaluation phase. Note, however,
that making use of that functionality introduces interaction at
the evaluation step of the MHE−MPC protocol. In practice,
a broad range of applications would not (or seldom) need
to rely on this primitive, as the circuit complexity enabled
by the practical parameters of the BFV scheme would suffice
(e.g., this is the case for all three examples in Section VII).
But, MHE−MPC offers a trade-off between computation and
communication, and more flexibility when the computation
circuit is not known in advance.

G. Smudging

RLWE-based cryptosystems have the fundamental property
of decrypting to noisy plaintext messages (Eq. (1)) that are
then decoded by the decryption algorithm (Eq. (2)). As the
noise depends on the evaluation circuit and its intermediate
values (this dependency is characterized in Appendix C), this
cryptosystem family does not ensure circuit privacy. This has
an important implication for our multiparty scheme, where
Equations (6) and (7) show that both ColKeySwitch and
PubColKeySwitch permit the final error term to be obtained
by the receiver. Two important facts must be considered: (a)
The hardness assumption for the cryptosystem holds only if
the adversary has sufficient uncertainty about the noise terms,
and (b) the key-switched ciphertext noise distribution depends
on the source secret key and can depend on the plaintext
messages when the ciphertext is not fresh (see Appendix C).
By exploiting the aforementioned dependencies, an attacker
with knowledge of the output key could attempt to extract
some information about the input key intermediate plaintext
values in the computation.

9

Although characterizing this indirect leakage in a compu-
tational setting is currently an open question, we can already
address this problem by means of smudging techniques, as
introduced by Asharov et al. [20]. Conceptually, smudging
with a noise distribution χCKS ensures that the decryption of
a key-switched ciphertext, before quantization and rounding,
is indistinguishable from the decryption of a fresh one that
would be encrypted using χCKS as its error distribution. This
is achieved by sampling part of the noise introduced during
the ColKeySwitch and PubColKeySwitch protocols from a
χCKS(σct) distribution that must have variance σ2

smg signifi-
cantly larger than that of the input ciphertext noise distribution
(represented by σ2

ct). Concretely, choosing
σ2

smg = 2λσ2
ct (8)

guarantees that this is the case. Analogously to the fresh noise
distribution, the smudging noise can also be drawn from a trun-
cated Gaussian. This technique assumes that the system keeps
track of the ciphertext noise-level throughout the MHE−MPC
protocol, which must already be the case to ensure correctness
of the computation. We introduce smudging noise exclusively
during the ColKeySwitch and PubColKeySwitch protocols
(and their derivatives Enc2Share and ColBootstrap), where
it is a single additive term in the c′0 element. This differs from
the method of Asharov et al., where they introduce smudging
noise also during evaluation. We detail the corresponding
security argument in Section VI-B.

H. Vector Packed-Encoding and Rotation Keys

One of the most powerful features of RLWE-based schemes
is the ability to embed vectors of plaintext values into a single
ciphertext. Such techniques, commonly referred to as packing,
enable arithmetic operations to be performed in a single-
instruction multiple-data fashion, where encrypted arithmetic
results in component-wise plaintext arithmetic. Provided with
public so-called rotation keys, any semi-honest party can
operate arbitrary rotations over the vector components, which
opens up homomorphic function evaluation to a broad kind of
non-linear functions. Producing these rotation keys requires
the secret key and can be done in the multiparty scheme, by
means of an RotKeyGen sub-protocol. We do not detail the
RotKeyGen protocol, as it is a straightforward adaptation of
EncKeyGen. The generation and usage of rotation keys is part
of our implementation and is showcased in Section VII.

V. FEATURES ANALYSIS

The MHE-based MPC solution can be used in conjunction
with secret-sharing-based protocols or as a standalone one. In
both cases, the MHE-based solution covers several limitations
of the traditional ones. In this section, we summarize the
fundamental features of the MHE−MPC protocol and relate
them to new design and system model they enable.

A. Public Non-interactive Circuit Evaluation

Although the homomorphic operations of HE schemes
are computationally more expensive than local operations of

secret-shared arithmetic, the former do not require private
inputs from the parties. Hence, as long as no key switching
or bootstrapping is needed, the procedure is non-interactive
and can be performed by any semi-honest party. This not
only enables the circuit evaluation to be efficiently distributed
among the parties in the traditional peer-to-peer setting, but
also enables new computation models for MPC:

1) Cloud-Outsourced Model: The homomorphic circuit
evaluation can be outsourced to a cloud-like service, by pro-
viding it with the inputs and necessary public-keys (encryption
and evaluation keys). The parties can arbitrarily go offline
during the evaluation and reconnect for the final output phase.
In this model, resource-constrained parties can take part in
MPC tasks involving thousands of other parties.

2) Smart Contracts: A special case of an outsourced MPC
task is the execution of a smart contract over private data,
which becomes feasible under the MHE-based MPC solution.

B. Public-Transcript Protocols

All the protocols of Section IV have public transcripts,
which effectively removes the need for direct party-to-party
communication. Hence, the whole MHE−MPC protocol can
be executed over any public authenticated channel. This also
brings new possibilities in designing MPC systems:

1) Efficient Communication Pattern: The presented proto-
cols rely solely on the ability for the parties to publicly disclose
their shares and to aggregate them, thus leaves flexibility for
using efficient communication patterns: The parties can be
organized in a topological way, as nodes in a tree, where each
node would interact solely with its parent and children nodes.
We observe that for all the protocols, the shares are always
combined by computing their sum. Hence, for a given party
in our protocols, a round would consist in

1) Computing its own share in the protocol,
2) Collecting and aggregating the share of each of its

children and its own,
3) Sending the result up the tree to its parent.
Such an execution enables the parties to compute their

shares in parallel and results in a constant network traffic at
each node. Inbound traffic can be kept low by ensuring that
the branching factor of the tree (i.e., the number of children
per node) is manageable for each node. Because the share
aggregation can also be computed by any semi-honest third-
party, the tree can contain nodes that are not part of P (i.e.,
nodes that would not have input in the MPC problem and have
no share of the ideal secret key) and are simply aggregating
and forwarding their children’s shares. We demonstrate the
efficiency of the tree topology in the multiplication triple
generation example benchmark in Section VII-D.

2) Cloud-Assisted MPC Model: The special case of a
single root node holding no share of the key corresponds
to a cloud-assisted setting where parties run the protocols,
while interacting solely with a central node. This model
complements the circuit evaluation outsourcing feature by
completely removing the need for synchronous and private
party-to-party communication. It reduces the number of party-
cloud interactions to two per circuit evaluation: one to provide

10

input and one to decrypt the output. We use the cloud-assisted
model for the first two example circuits of Section VII.

C. Discussion

By re-balancing the cost of MPC tasks from interaction to
computation, the MHE-based approach enables new multiparty
settings that other approaches did not always cover efficiently.
Notably, it supports MPC tasks that involve thousands of
parties, without having to introduce non-collusion assumptions
or impractical network loads. Its cloud-assisted instantiation
strongly reduces the need for input parties to be online and
active during the evaluation phase.

VI. SECURITY ANALYSIS

We analyze the security of the proposed multiparty BFV
scheme in the passive adversary model. This section provides
an intuition of the security argument for our specific proto-
cols that are based on the decision ring-learning-with-errors
problem [44]. For a more thorough analysis, we refer the
reader to the works by Asharov et al. [20] and Boneh et al.
[21]. Thanks to their generality, these works already cover
most of our constructions (although they are formulated for
the learning-with-errors problem [37]). We provide arguments
in terms of the ideal/real simulation formalism [54] for the
EncKeyGen (Section VI-A) and ColKeySwitch (Section VI-B)
protocols, as the arguments for the remaining protocols are
very similar to the latter. Because our RelinKeyGen protocol
differs from the one by Asharov et al., we provide the security
argument in Appendix E. We also extend their proofs by
integrating smudging directly into the simulation-based proof
for the ColKeySwitch protocol, instead of presenting it as an
ad-hoc security measure.

Let A denote the adversary, defined as a subset of at most
N−1 corrupted parties in P . We prove by construction that,
for every possible A, there exists a simulator program S that,
when provided only with A’s input and output, can simulate
A’s view in the protocol. To achieve the privacy requirement,
we require that A must not be able to distinguish the real view
(generated from the honest parties’ inputs) from the simulated
one (generated with the adversary’s inputs and outputs only).
For a given value x, we denote x̃ its simulated equivalent.
Unless otherwise stated, we consider computational indistin-
guishability between distributions, denoted x̃

c≡ x.
Our threat model implies that there is at least one honest

player that we denote Ph. The choice for Ph, among multiple
honest parties, does not reduce generality. It does, however,
help simplify the formulation of the security argument. We
denote H the set P \ (A ∪ {Ph}) of all other honest par-
ties. Hence, the tuple (A,H) can represent any partition of
P \ {Ph}. In particular, both A and H can be empty in the
following arguments.

A. Collective-Key Generation

We consider an adversary A that attacks the EncKeyGen
protocol defined in Protocol 2. Along with si, we consider
ei as private inputs to the protocol for each party Pi (as

if they were sampled before the protocol starts). Thus, we
model the ideal functionality of the EncKeyGen protocol as
fCKG({si, ei | Pi ∈ P}) = cpk, where cpk = (p0, p1) is the
output for all parties, as in Eq. (4).

We observe that the view of each party in the ex-
ecution of the EncKeyGen protocol comprises the tuple
(p0,1, p0,2, . . . , p0,N) of all the players’ shares, which corre-
sponds to an additive sharing of p0. S can simulate these shares
by randomizing them under two constraints: (1) the simulated
shares must sum up to p0, and (2) the adversary shares must
be equal to the real ones (otherwise, it could easily distinguish
them). S can generate the share p̃0,i of party Pi as

p̃0,i =

[−(sip1 + ei)]q if Pi ∈ A
← Rq if Pi ∈ H
[p0 −

∑
Pj∈A∪H

p̃0,j]q if Pi = Ph .

To show that (p̃0,1, p̃0,2, . . . , p̃0,N)
c≡ (p0,1, p0,2, . . . , p0,N),

we observe that any probabilistic-polynomial-time adversary
that distinguishes, with non-negligible advantage, between real
and simulated shares of those players inH would directly yield
a distinguisher for the decision-RLWE problem [44]. For the
share of player Ph, we consider two cases: (1) When H 6= ∅,
the share p0,h is a uniformly random element in Rq because
[
∑
Pj∈H p0,j]q is itself so, and the same indistinguishability

argument as above applies. (2) In the presence of N − 1
adversaries, H = ∅, and S computes the real value for the
honest party’s share, hence outputting the real view.

B. Collective Key-Switching

The security argument for the ColKeySwitch protocol is
inherently more complex than the previous ones, as the real
protocol output only approximates the ideal one. As we show
below, this enables us to formally express and characterize
the need for smudging in multiparty lattice-based schemes.
We show the analysis for the ColKeySwitch protocol only.
However, the argument easily transfers to the other protocols
that perform some form of decryption (either of messages or
of the involved noise terms), such as the special case of collec-
tive decryption, the PubColKeySwitch and the ColBootstrap
protocols.

Given a ciphertext ct = (c0, c1) decrypting under s, the
ideal functionality of the ColKeySwitch protocol (Protocol 4)
is to compute ct′ = (c′0, c1) decrypting under secret key s′. We
first formulate this functionality implicitly: as the computation
of c′0 satisfying

c0 + sc1 − e = c′0 + s′c1 − e′,

where e and e′ are the noise terms resulting from the de-
cryption of ct and ct′, respectively. Hence, we consider its
explicit form as an equivalent and minimal ideal multiparty
functionality f̂CKS, such that
f̂CKS({si, s′i, e′i|∀Pi ∈ P}) = c′0−c0 = (s−s′)c1− ê+e′ = ĥ,

where c0, c1 are considered public, s =
∑
i si, s

′ =
∑
i s
′
i,

and ê = e is an ideal error term cancelling e. This is because,
ideally, the output ciphertext must look fresh, even for an

11

adversary that knows all shares of s′; this is allowed in the
ColKeySwitch protocol. As this term cannot be efficiently
computed in practice, the real output differs from the ideal
one. Simulation-based proofs permit this difference, as long
as it can be proven that the ideal and real outputs are undis-
tinguishable for the adversary (Property 1). This formalizes
the need of smudging within the security argument. Then, we
show that, even when the adversary has access to the real
output, it cannot distinguish the simulated view from the real
one (Property 2). Therefore, Properties (1) and (2) imply

(h̃1, h̃2, ..., h̃N , ĥ)
c≡ (h1, h2, ..., hN , h):

that the ColKeySwitch securely computes its functionality.
1) Output indistinguishability: We want to show that

(s+ s′)c1 − ê+ e′ = ĥ
c≡ h = (s+ s′)c1 + e′,

where h denotes the real protocol output. As the adversary
is allowed to know s′, we cannot rely on computational
indistinguishability of the RLWE-like structure of h. Such an
adversary can extract the noise from the decryption of the key-
switched ciphertext, as e+e′ = c′0+h+s′c1−∆m. Hence, we
require this extracted noise to be statistically indistinguishable
(denoted

s≡) from the fresh noise of the ideal output:

e′ = e− ê+ e′
s≡ e+ e′.

As e is the key-switched ciphertext error, it follows a
centered Gaussian distribution whose variance we denote
σ2
ct. The second term e′ is the sum of all the noise terms

protecting the key-switching shares. It contains the smudging
noise and are sampled according to the χColKeySwitch(σct)
distribution with variance σ2

ColKeySwitch. Thus, as long as the
ratio σ2

ct/σ
2
ColKeySwitch is negligible, the two distributions are

statistically indistinguishable, which implies that ĥ
c≡ h.

2) View Indistinguishability: The view of any party in the
ColKeySwitch protocol is an additive sharing (h1, h2, ..., hN)
of h, which S can simulate as

h̃i =

[(−si + s′i)c1 + e′i]q if Pi ∈ A
ai ← Rq if Pi ∈ H
[h−

∑
Pi∈A∪H

h̃i]q if Pi = PH .

When considering the distribution of the simulated and real
views alone, the usual decision-RLWE assumption suffices:
(−sic1 + e′i, c1) is undistinguishable from (a ← Rq, c1) for
an adversary that does not know si and e′i. However, we
need to consider this distribution jointly with that of the
real output. We recall that an adversary having access to s′

can extract e + e′ from the output and might be able to
estimate e′i for i /∈ A. Hence, we need to make sure that the
uncertainty the adversary has in estimating e′i is sufficiently
large to protect each share hi in the ColKeySwitch protocol.
As such requirement is application-related, we formalize it in
the following condition.

Condition 1. An input ciphertext (c0, c1) to the ColKeySwitch
protocol is such that c0 + sc1 = ∆m+ ect where ect = eA +
eh includes a term eh that is unknown to, and independent

from, the adversary. Furthermore, eh follows a distribution
according to the RLWE hardness assumptions.

If Condition 1 holds, we know that A can only approximate
the term eh up to an error ect,h, which is enough to make
(hh, c1) indistinguishable from (a← Rq, c1). In the scope of
the MHE−MPC protocol, as long as all parties provide at least
one input (for which the noise will be fresh), the requirement
of Condition 1 is satisfied.

VII. PERFORMANCE ANALYSIS

We implemented the multiparty BFV scheme in an open-
source library [43]. It provides Go implementations of the
two most widespread RLWE homomorphic schemes: BFV
and CKKS, along with their multiparty versions. The library
uses state-of-the-art optimizations based on the chinese re-
mainder theorem [52], number theoretic transforms [55], and
generalized key switching procedures [56]. We evaluate the
performance of the MHE−MPC protocol in example circuits,
both in the cloud-assisted and peer-to-peer settings.

In the cloud-assisted setting, we consider two example
circuits: (i) The component-wise product of large integer
vectors, for which we discuss its application as a simple mul-
tiparty private-set-intersection protocol (Section VII-B). (ii) A
multiparty input selection circuit, and its application to multi-
party private-information-retrieval circuits (Section VII-C). We
compare the performance for both circuits against a baseline
system that uses a data-level secret-sharing approach: The MP-
SPDZ library implementation [57] of the Overdrive protocol
[26] for the semi-honest, dishonest majority setting. This sys-
tem generates multiplication triples using plain homomorphic
encryption (offline phase), then proceeds to compute the circuit
using secret-shared arithmetic (the online phase).

In the peer-to-peer setting, we consider the generation of
multiplication triples, commonly referred to as the "offline"
phase of data-level secret-sharing-based approaches (Section
VII-D). Finer-grained benchmarks at the primitive-operation
level are presented in Appendix B. All experiments operate on
private vector inputs for which the embedding in the plaintext
space Rt is implicitly using packed representation.

A. Experimental Setup

For the cloud-assisted setting, the client-side timings were
measured on a MacBook Pro with a 3.1 GHz Intel i5 processor.
The server-side timings were measured on a 2.5 GHz Intel
Xeon E5-2680 v3 processor (2x12 cores). For the peer-to-peer
setting, we used the latter machine for all parties. We evaluate
the network-related cost in terms of number of communicated
bytes, to make it independent from the actual setting (note
that this could slightly favor the baseline system, as it is more
sensitive to the round-trip time delays in its online phase).
Hence, we run all benchmarks over the localhost interface.

B. Component-Wise Vector Product

We consider a scenario in which each of the N input
parties holds a private vector xi of 32-bit integers. The
ideal functionality consists in providing an external receiver

12

R (with secret key sR), with the component-wise product
between the N private vectors. Thus, fR(x1,x2, . . . ,xN) =
x1�x2�· · ·�xN = y where � denotes the component-wise
product over integer vectors.

This circuit could be used, for example, to implement
efficient multiparty private-set-intersection for very large
number of parties. In its most simple instantiation, the
parties could encode their sets as binary vectors and use
this functionality to compute the bit-wise AND between them.

The steps in the MHE−MPC protocol unfolds as follow:
Setup The parties use the EncKeyGen and RelinKeyGen pro-

tocols to produce the public encryption cpk and relin-
earization rlk keys for to their joint secret key sP .

In Each input party Pi ∈ P encodes its input vector xi as
a polynomial xi using packed plaintext encoding. Then,
it encrypts this vector under the collective public key
and sends EncsP (xi) it to the cloud.

Eval The cloud computes the overall product using the
BFV.Mul operation (with intermediary BFV.Relinearize
operations). This results in EncsP (y) where y is the
packed representation of y. The cloud sends EncsP (y)
to the input parties.

Out The input parties use the PubColKeySwitch protocol to
reencrypt EncsP (y) into EncsR(y). Then, the receiver
can come online and decrypt the result.

We set the vector size to d = 214. The communication is
the sum of upstream and downstream. The baseline system
[57] was configured for computation over the domain Zp with
a 32-bit p. The MHE system computes the same circuit with
the multiparty BFV scheme, instantiated with n = 214, 438-
bit q and plaintext modulus t of 32 bits. Table I reports on the
evaluation of our implementation of the MHE solution against
the baseline. We report the cost repartition per phase of the
computation in Table II. The setup is the same as for Table
I, only with a 16-bit plaintext modulus. This illustrates how
the MHE−MPC protocol can solve large secure-multiparty-
computation problems, even for resource-constrained clients,
by delegating all the heavy computation and the storage
requirements. We also show that parallelizing the evaluation of
the homomorphic circuit can yield even lower response times.

Transferred to the PSI application, the results can, to some
extent, be compared with the special purpose multiparty PSI
protocol by Kolesnikov et al. [58]. For the standard semi-
honest model with dishonest majority setting, set size 212

and 15 parties (the largest evaluated value in [58]) in the
LAN setting, the MHE solution was 1029 times faster and
required 15.3 times less communication to compute the inter-
section. However, encoding the sets as binary vectors limits
the application to finite sets. More advanced encodings should
be investigated to match the flexibility of the approach by
Kolesnikov et al.

C. Multiparty Input Selection

We consider a simple yet powerful multiparty input selec-
tion functionality where a party P1 selects one among N − 1
other parties’ P2, . . . , PN inputs x2, . . . , xN while keeping

TABLE I: Component-wise product: Baseline comparison
Time [s] Com./party [MB]

Parties 2 4 8 2 4 8

[57]
Offline 0.21 1.19 5.33 3.42 29.13 156.06
Online 0.02 0.04 0.10 1.05 6.29 29.36
Total 0.24 1.24 5.52 4.47 35.42 185.42

MHE Setup 0.18 0.20 0.25 25.17 25.17 25.17
Circuit 0.29 0.41 0.64 4.72 4.72 4.72

TABLE II: Component-wise product: Phases costs
Party Cloud

Time [ms] Com. [MB] CPU time (Wall time) [s]
Parties indep. indep. 32 64 128
Setup 96.41 25.17 0.49 0.85 1.99
In 20.02 1.57 0.04 0.04 0.15
Eval 0.00 0.00 4.5(0.8) 10.3(1.0) 22.7(1.5)
Out 25.38 3.15 0.05 0.10 0.21

TABLE III: Input selection: Baseline comparison
Time [s] Com./party [MB]

Parties 2 4 8 2 4 8

[57]
Offline 0.35 1.04 3.56 6.58 25.74 101.82
Online 0.02 0.04 0.07 1.31 4.72 17.83
Total 0.37 1.08 3.66 7.89 30.46 119.65

MHE Setup 0.59 0.58 0.69 42.93 42.93 42.93
Circuit 0.27 0.28 0.31 1.31 1.31 1.31

TABLE IV: Input selection: Phase Costs
Party Cloud

Time [ms] Com. [MB] Wall time / CPU time [s]
Parties indep. indep. 32 64 128
Setup 262.58 42.93 0.85 1.68 3.38
In 6.22 0.52 0.01 0.01 0.02
Eval 0.00 0.00 8.1(0.4) 23.4(0.8) 62.1(1.6)
Out 3.34 0.79 0.01 0.02 0.02

the selector r private. This corresponds to the private ideal
functionality f1(r, x2, . . . , xN) = xr for player P1.

This selection circuit can be seen as generalizing an obliv-
ious transfer functionality to the N -party setting, and can
directly implement an N -party PIR system where a requestor
party can retrieve a row in a database partitioned across
multiple parties. We represent inputs as d-dimensional vectors
in Zp for p a 32-bit prime. We denote ui the vector having
all-zero coefficients but its i-th one, which is set to 1.

To compute the ideal functionality, the parties engage in the
MHE−MPC protocol, the steps of which unfold as follows:

Setup The parties run EncKeyGen, RelinKeyGen and
RotKeyGen to produce the encryption-, relinearization-
and rotation- keys for their joint secret key s.

In Each Provider Pi encodes its input in Rt, encrypts it
using the cpk as cti and sends it to the cloud.
The Requester generates its selector as the ur vector,
encrypts it under the cpk as ctr and sends it to the cloud.

Eval For each provider input i, the cloud computes an en-
crypted mask mi by (1) multiplying ctr with ui using
ciphertext-plaintext multiplication and (2) replicating the
i-th encrypted slot to the other slots by repeated column
rotation and addition. Hence, mi always encrypts the
zero vector, except for i = r, for which it is all-
ones. The cloud then multiplies each provider input
xi with the mask mi using BFV.Mul, aggregates all
N resulting ciphertexts with BFV.Add and applies the
BFV.Relinearization to the resulting ciphertext ctout.

13

Out The providers engage in the ColKeySwitch protocol
(excluding the receiver) with target ciphertext ctout, input
key s and output key 0. They send their decryption
shares to the cloud, that can then aggregate them to
produce an output ciphertext encrypting xr under the
receiver secret-key share (as he did not participate in
the ColKeySwitch protocol).

We set the vector size to d = 213 and a p of 32 bits. The
communication is the sum of upstream and downstream. We
used the same parameters for the baseline as for the previous
experiment. The MHE system was instantiated with n = 213,
218-bit q and 32-bit plaintext modulus t. Table III shows a
comparison with the baseline system. The MHE-based system
matches the response time of the baseline in the two-party
setting, and it is more efficient in terms of network usage.
The generation of rotation keys accounts for approximately
75% of the setup cost and is the main overhead of the protocol.
However, they enable the unpacking of the receiver query filter
from a single ciphertext during the evaluation phase. When
considering the case with 8 parties, the MHE setup cost is
already 5.2× faster and requires 2.4× less communication
than the baseline’s offline phase, yet is a one-time setup.

We report on the per-phase cost for the MHE-based so-
lution in Table IV, for larger number of parties. Again, the
parallelization of the circuit computation over multiple core
yields a very low response-time, regardless of the algorithmic
complexity of homomorphic operations. Our choice for t
enables 32.8 kilobytes to be packed into each ciphertext. For
the 8-party setting, this yields a throughput of 117.1 kB/s and
an expansion of only 40× the communication cost of an
insecure plaintext system. We ran the same experiment for
N = 8000 and the response time was 61.7 seconds.

D. Multiplication Triples Generation

We evaluated how the MHE-based system can be used to
produce multiplication triples in a peer-to-peer setting. This
use-case is of particular interest, as triple generation is the
bottleneck cost for secret-sharing-based MPC approaches. We
consider the following functionality:

Let xi = (ai,bi) ∈ Zn×2p be the input of party Pi, where n
is the number of generated triples and p is a prime. The joint
ideal functionality is FP(x1,x2, . . . ,xi) = (c1, c2, . . . , cN)
such that c =

∑N
i=1 ci = (

∑N
i=1 ai) � (

∑N
i=1 bi) =

a � b, where � denotes the coefficient-wise product. The
MHE−MPC protocol is instantiated as follows:

Setup The parties run the RelinKeyGen protocol to generate a
relinearization key rlk.

In The parties use the Share2Enc protocol to produce
encryptions of a and b. The aggregation of the shares
is done along the tree so that this phase ends with the
root having access to cta = Enc(a) and ctb = Enc(b).

Eval The root computes ctc = Relin(Mult(cta, ctb),rlk) and
sends it down the tree.

Out The parties use the Enc2Share protocol to produce an
additive sharing of c from Enc(c). The aggregation is
done along the tree with the root being P1.

Figure 1 shows a comparison with two currently prevalent
techniques: oblivious-transfer-based and plain homomorphic-
encryption-based. We implemented both the plain HE and our
MHE-based approaches with our library [43]. For the OT-
based one, we used the Multi-Protocol SPDZ library [57] that
provides an implementation of the SPDZ2K [59] in the semi-
honest setting. Both HE-based generators where parameterized
to produce triples in Zp for p a 32-bit prime and the OT-
based generator to produce triples in Z232

1. For the HE-based
generators, we used polynomial degree n = 213, coefficient
modulus size of 218 bits, and plaintext modulus t = p. Thus,
after the setup phase, the parties can loop over the In-Eval-
Out steps to produce a stream of triples in batches of 213. To
report on the steady regime of the systems, we do not include
the setup phase costs in the measurements in Figure 1.

Fig. 1: Beaver triple generation in terms of number of triples
per second (throughput, left) and triples per megabyte of
communication (efficiency, right).

E. Discussion

The presented experiments confirm that the asymptotic cost-
reduction of the MHE-based solution yields a significant
advantage over secret-sharing-based systems, both in terms
of response time and communication cost. Additionally, we
discover that this advantage appears for surprisingly small
circuit and low number of parties. We observe that, in general,
MHE-based solutions have a setup cost higher than the secret-
sharing-based ones due to the need for evaluation keys (e.g.,
relinearization, rotation). Hence, in scenarios where a single
evaluation of a circuit with few multiplication gates and small
number of input parties, the MHE-based solution would not
be efficient. However, we observe that, as this setup is a one-
time cost, it is quickly amortized when considering circuits
with a few thousands multiplication gates and more than
two parties. Evaluating where the decision-boundary stands
regarding which system to use for smaller use-cases is a crucial
question to be investigated as a future work.

VIII. CONCLUSIONS

In this work, we have proposed a novel solution to mul-
tiparty computation problems, based on multiparty homo-
morphic encryption (MHE). To support this approach, we
have introduced and implemented a multiparty version of

1At the time of writing, the MP-SPDZ library does not implement a
standalone benchmark for OT-based generation of triples in a prime field.

14

the BFV encryption scheme. We have analyzed the features,
security, and performance of the proposed solution, and have
confirmed that re-balancing the cost of MPC toward com-
putation time brings crucial advantages: First, our MHE-
based solution substantially reduces the latency of MPC tasks,
mainly because the computation costs can be conveniently
amortized by parallelization over multiple cores or nodes,
whereas this cannot be the case for network costs in current
approaches. In fact, our implementation in three example use-
cases shows a net improvement ranging between 1 and 2
orders of magnitude in both response time and communication
complexity compared to the current approaches. Second, MHE
enables new computation models for MPC, that go beyond
peer-to-peer, including outsourced cloud-assisted models that
can reduce the communication cost per party to be constant
in the number of parties. Moreover, the cloud-assisted model
enables new opportunities for MPC-as-a-service, which we
view as a promising application and adoption driver for both
the HE and the MPC research.

Future research directions comprise using Shamir secret-
sharing [11] to enable flexible threshold access structures, and
extending the MHE-based approach to malicious settings.

Our proposed MHE-based solution brings MPC at a new
level of scalability and flexibility, by supporting secure com-
putation among thousands of parties in a wide spectrum of
outsourced and distributed scenarios.

ACKNOWLEDGMENTS

The authors would like to thank Jean-Philippe Bossuat
for the implementation of the distributed cryptosystem, and
Henry Corrigan-Gibbs for the valuable reviews and comments.
This work was supported in part by the grant #2017-201 of
the Strategic Focal Area “Personalized Health and Related
Technologies (PHRT)” of the ETH Domain.

REFERENCES

[1] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter et al.,
“Secure multiparty computation goes live,” in International Conference
on Financial Cryptography and Data Security. Springer, 2009, pp.
325–343.

[2] D. Bogdanov, R. Talviste, and J. Willemson, “Deploying secure multi-
party computation for financial data analysis,” in International Confer-
ence on Financial Cryptography and Data Security. Springer, 2012,
pp. 57–64.

[3] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste,
“Students and taxes: a privacy-preserving study using secure computa-
tion,” Proceedings on Privacy Enhancing Technologies, vol. 2016, no. 3,
pp. 117–135, 2016.

[4] H. Cho, D. J. Wu, and B. Berger, “Secure genome-wide association
analysis using multiparty computation,” Nature biotechnology, vol. 36,
no. 6, p. 547, 2018.

[5] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, and G. Bejer-
ano, “Deriving genomic diagnoses without revealing patient genomes,”
Science, vol. 357, no. 6352, pp. 692–695, 2017.

[6] J. L. Raisaro, J. Troncoso-Pastoriza, M. Misbach, J. S. Sousa, S. Prader-
vand, E. Missiaglia, O. Michielin, B. Ford, and J.-P. Hubaux, “MedCo:
Enabling secure and privacy-preserving exploration of distributed clin-
ical and genomic data,” IEEE/ACM transactions on computational
biology and bioinformatics, 2018.

[7] D. Bogdanov, M. Jõemets, S. Siim, and M. Vaht, “How the estonian
tax and customs board evaluated a tax fraud detection system based
on secure multi-party computation,” in International Conference on
Financial Cryptography and Data Security. Springer, 2015, pp. 227–
234.

[8] J. Kroll, E. Felten, and D. Boneh, “Secure protocols for accountable
warrant execution,” See http://www. cs. princeton. edu/felten/warrant-
paper. pdf, 2014.

[9] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I.
Pagter, N. P. Smart, and R. N. Wright, “From Keys to Databases—Real-
World Applications of Secure Multi-Party Computation,” The Computer
Journal, vol. 61, no. 12, pp. 1749–1771, 2018.

[10] “Transforming trust by changing how cryptographic keys are secured,”
Online: https://www.unboundtech.com/, 2020.

[11] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[12] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions
of records,” in Security and Privacy (SP), 2013 IEEE Symposium on.
IEEE, 2013, pp. 334–348.

[13] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in 2017 38th IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 19–38.

[14] H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust, and scalable
computation of aggregate statistics,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017, pp.
259–282.

[15] A. B. Alexandru, M. Morari, and G. J. Pappas, “Cloud-based MPC with
encrypted data,” in 2018 IEEE Conference on Decision and Control
(CDC). IEEE, 2018, pp. 5014–5019.

[16] S. Englehardt, “Next steps in privacy-preserving telemetry
with prio,” https://blog.mozilla.org/security/2019/06/06/
next-steps-in-privacy-preserving-telemetry-with-prio/, 2019.

[17] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption.” IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

[18] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[19] G. Asharov, A. Jain, and D. Wichs, “Multiparty Computation with
Low Communication, Computation and Interaction via Threshold FHE,”
Cryptology ePrint Archive, Report 2011/613, 2011, https://eprint.iacr.
org/2011/613.

[20] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and
D. Wichs, “Multiparty computation with low communication, computa-
tion and interaction via threshold FHE,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2012, pp. 483–501.

[21] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. Rasmussen,
and A. Sahai, “Threshold cryptosystems from threshold fully homo-
morphic encryption,” in Annual International Cryptology Conference.
Springer, 2018, pp. 565–596.

[22] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “SoK: General
purpose compilers for secure multi-party computation,” in Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1220–1270.

[23] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework
for fast privacy-preserving computations,” in European Symposium on
Research in Computer Security. Springer, 2008, pp. 192–206.

[24] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Advances in
Cryptology–CRYPTO 2012. Springer, 2012, pp. 643–662.

[25] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure MPC for dishonest majority–or: breaking
the SPDZ limits,” in European Symposium on Research in Computer
Security. Springer, 2013, pp. 1–18.

[26] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: making SPDZ great
again,” in Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 2018, pp. 158–189.

[27] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Annual International Cryptology Conference. Springer, 1991, pp.
420–432.

[28] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified vss and fast-track
multiparty computations with applications to threshold cryptography,”
in podc, vol. 98. Citeseer, 1998, pp. 101–111.

[29] M. Keller, E. Orsini, and P. Scholl, “Mascot: faster malicious arithmetic
secure computation with oblivious transfer,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 830–842.

[30] Y. G. Desmedt, “Threshold cryptography,” European Transactions on
Telecommunications, vol. 5, no. 4, pp. 449–458, 1994.

[31] M. Franklin and S. Haber, “Joint encryption and message-efficient secure
computation,” Journal of Cryptology, vol. 9, no. 4, pp. 217–232, 1996.

https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://eprint.iacr.org/2011/613
https://eprint.iacr.org/2011/613

15

[32] R. Cramer, I. Damgård, and J. B. Nielsen, “Multiparty computation from
threshold homomorphic encryption,” in International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2001,
pp. 280–300.

[33] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Maliciously
secure coopetitive learning for linear models,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 724–738.

[34] D. Froelicher, J. R. Troncoso-Pastoriza, J. S. Sousa, and J. Hubaux,
“Drynx: Decentralized, secure, verifiable system for statistical queries
andmachine learning on distributed datasets,” IEEE Transactions on
Information Forensics and Security, pp. 1–1, 2020.

[35] C. Gentry and D. Boneh, A fully homomorphic encryption scheme.
Stanford University Stanford, 2009, vol. 20, no. 09.

[36] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “Cloud-Assisted
Multiparty Computation from Fully Homomorphic Encryption.” IACR
Cryptology ePrint Archive, vol. 2011, p. 663, 2011.

[37] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[38] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Homo-
morphic Encryption Security Standard,” HomomorphicEncryption.org,
Toronto, Canada, Tech. Rep., November 2018.

[39] “Microsoft SEAL (release 3.2),” https://github.com/Microsoft/SEAL,
Feb. 2019, microsoft Research, Redmond, WA.

[40] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE:
Fast fully homomorphic encryption library,” August 2016,
https://tfhe.github.io/tfhe/.

[41] C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O. Killijian,
and T. Lepoint, “NFLlib: NTT-based fast lattice library,” in Cryptogra-
phers’ Track at the RSA Conference. Springer, 2016, pp. 341–356.

[42] Y. Polyakov, K. Rohloff, and G. W. Ryan, “PALISADE lattice cryptog-
raphy library,” https://git.njit.edu/palisade/PALISADE, 2018.

[43] “Lattigo 1.3.1,” Online: http://github.com/ldsec/lattigo, Feb. 2020,
EPFL-LDS.

[44] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2010, pp. 1–23.

[45] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in Proceedings of the forty-fourth annual ACM symposium on Theory
of computing. ACM, 2012, pp. 1219–1234.

[46] H. Chen, I. Chillotti, and Y. Song, “Multi-Key Homomophic Encryption
from TFHE.”

[47] L. Chen, Z. Zhang, and X. Wang, “Batched multi-hop multi-key FHE
from ring-LWE with compact ciphertext extension,” in Theory of Cryp-
tography Conference. Springer, 2017, pp. 597–627.

[48] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key homomor-
phic encryption with packed ciphertexts with application to oblivious
neural network inference,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp. 395–
412.

[49] R. Canetti and M. Fischlin, “Universally composable commitments,” in
Annual International Cryptology Conference. Springer, 2001, pp. 19–
40.

[50] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, p. 13, 2014.

[51] D. Rotaru and N. P. Smart, “Actively secure setup for spdz,” IACR
Cryptology ePrint Archive, 2019.

[52] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A full RNS
variant of FV like somewhat homomorphic encryption schemes,” in
International Conference on Selected Areas in Cryptography. Springer,
2016, pp. 423–442.

[53] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for
approximate homomorphic encryption,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2018, pp. 360–384.

[54] Y. Lindell, “How to simulate it–a tutorial on the simulation proof
technique,” in Tutorials on the Foundations of Cryptography. Springer,
2017, pp. 277–346.

[55] G. Seiler, “Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography.” IACR Cryptology ePrint Archive, vol. 2018, p. 39,
2018.

[56] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” IACR Cryptology ePrint Archive, 2019.

[57] “MP-SPDZ,” Online: https://github.com/data61/MP-SPDZ/, Jan. 2020.
[58] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu, “Practi-

cal multi-party private set intersection from symmetric-key techniques.”
in ACM Conference on Computer and Communications Security, 2017,
pp. 1257–1272.

[59] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing, “SPDZ2k :
Efficient mpc mod 2k for dishonest majority,” in Annual International
Cryptology Conference. Springer, 2018, pp. 769–798.

APPENDIX A
SYMBOL TABLE

Tables V and VI respectively show the notation and a brief
description for the parameters and symbols used in this work.

TABLE V: BFV Parameters
Parameter Description

q Coefficient modulus in ciphertext space
t Coefficient modulus in plaintext space
n Polynomial degree
w Intermediary relinearization base
σ Error standard deviation
B Error-norm upper bound

TABLE VI: BFV Symbols
Symbol Description

∆ Quotient of the integer division of q by t
[q]t Remainder of the integer division of q by t
Rq Ciphertext space ring Zq [X]/(Xn + 1)
Rt Plaintext space ring Zt[X]/(Xn + 1)
R3 Key space ring Z3[X]/(Xn + 1)
l Length dlogw(q)e of the base-w decomposition of a ∈ Rq

w (w0, w1, ..., wl)T base-w reconstruction vector
χ Error distribution, discrete normal N (0, σ2) over [−B,B]

APPENDIX B
LOCAL OPERATIONS BENCHMARKS

We executed our benchmarks on an Intel i5 processor at
3.1 GHz, with 16 GB of memory, running Go 1.13.4 (dar-
win/amd64). The open-source library includes Go benchmarks
for reproducibility; as a design decision, we considered that
the most efficient parallelization happens at the application
layer, so to give freedom to the application developer, all the
primitives in the library run in one thread.

TABLE VII: Benchmarking parameter sets
Set n log2 q log2 w

P8192 8192 218 60
P16384 16384 438 110
P32768 32756 881 180

TABLE VIII: Centralized BFV operation performance (ms)
P8192 P16384 P32768

Encryption Encrypt 4.91 18.16 69.42
Decrypt 1.93 8.06 34.58

Evaluation

Add 0.07 0.29 1.26
Multiply 15.15 71.59 390.53
Relin 5.64 30.03 157.31
Rotate 5.77 31.15 154.67

Table VII shows the parameter sets used in our benchmarks,
all guaranteeing a security level of at least 128 bits [38].
These parameters are application dependent, but their choice
represents typical sizes of q that correspond to different ho-
momorphic capacities (e.g., set P8192 enables approximately
twice the noise level as P4096).

Table VIII shows the timings for the operations of the
centralized scheme that are used in our MHE-based solution.

https://github.com/Microsoft/SEAL
https://git.njit.edu/palisade/PALISADE
http://github.com/ldsec/lattigo
https://github.com/data61/MP-SPDZ/

16

TABLE IX: Distributed BFV local operations performance
(ms)

P8192 P16384 P32768

EncKeyGen
Gen 1.80 5.72 19.65
Agg 0.05 0.18 0.68
Out 0.11 0.37 1.45

RelinKeyGen
Gen 21.95 70.46 319.61
Agg 0.55 2.27 11.34
Out 0.62 2.78 13.68

RotKeyGen
Gen 6.07 20.45 90.62
Agg 0.14 0.54 2.92
Out 0.27 1.20 6.09

ColBootstrap
Gen 5.97 21.20 82.43
Agg 0.07 0.28 1.17
Out 2.13 8.60 36.43

ColKeySwitch
Gen 3.73 11.69 41.16
Agg 0.03 0.14 0.55
Out 0.03 0.14 0.60

PubColKeySwitch
Gen 7.33 25.39 97.59
Agg 0.07 0.27 1.14
Out 0.05 0.21 0.93

TABLE X: Cryptographic objects size (MB)
P8192 P16384 P32768

Ciphertext 0.39 1.57 6.29
Public key 0.39 1.57 6.29
Relin. key 1.57 6.29 31.46
Rot. key 1.57 6.29 31.46
EncKeyGen-share 0.26 1.05 3.93
RelinKeyGen-share 3.15 12.58 62.91
RotKeyGen-share 0.79 3.15 15.73
ColBootstrap-share 0.39 1.57 6.29
ColKeySwitch-share 0.20 0.79 3.15
PubColKeySwitch-share 0.39 1.57 6.29

For each protocol of the distributed scheme, Table IX shows
the following values:

Gen corresponds to the cost for a given party to generate
its own public share in the protocol. Hence, this cost is
independent of the number of parties. For the RelinKeyGen
protocol, the party’s share consists in multiple round shares
and this cost is aggregated across all rounds.

Agg corresponds to the cost of combining two shares in
the protocol. The way these costs are reflected on the system
and the involved network traffic depends on the chosen system
model. Table X shows the share size for each protocol, from
which the network cost of a given system model can be easily
derived: In peer-to-peer settings, a party having Nc children
in the tree will receive and aggregate Nc shares, aggregate its
own share if it is in P , and send 1 share to its parent. In the
cloud-assisted model, the cloud takes care of the aggregation
for all the N parties, so parties do not have inbound traffic
and only need to send a single share.

Out corresponds to the cost of computing the final output of
the protocol (i.e., obtaining the collective secret key, the key-
switched ciphertext, etc.) when provided with the aggregate
of all the shares (i.e., after the Aggr phase completed). In a
tree-like topology, this task is normally performed by the root,
hence, by the cloud in the helper-cloud model.

APPENDIX C
NOISE ANALYSIS

In BFV-like lattice-based cryptosystems, the correct decryp-
tion of a given ciphertext is guaranteed only if the magnitude
of its error term, called noise, is kept below a certain threshold
fraction of q (Eq. 2). Whereas each ciphertext contains only

a very small initial amount of noise that is introduced by
the BFV.Encrypt procedure, the ciphertext noise grows with
homomorphic operations. Hence, it is crucial to ensure that
evaluating a given homomorphic circuit will not result in
the noise growing out of bounds, which is usually done by
computing the corresponding worst-case noise magnitude and
by choosing q to accommodate this bound.

We analyze the effect that distributing the BFV cryptosys-
tem has on the ciphertext noise. As distribution affects only
the magnitude of the scheme’s secrets (key and noise), the
original cryptosystem analysis [17] directly applies, though
with a larger worst-case error norm that we express as a
function of the number of parties N in the following.

A. Ideal Secret Key

The magnitude of the secret key plays a major role in the
noise growth of BFV-like cryptosystems. For the distributed
scheme, it is crucial that the magnitude of the ideal key, which
would be output by the S.Combine operation (see Def. 2),
remains small even for a large number of parties. As a result
of the secret-key generation procedure, where each additive
share si is sampled from R3 (see Section IV-A), we know
that ‖s‖ ≤ N . This linear dependency is the main advantage
over multi-key schemes (approach (b) in Section II), for which
the flexibility brought by on-the-fly keys requires a much more
complex Combine operation for which the dependency with
the input keys is multiplicative in most cases.

As a result of the EncKeyGen protocol, the collective public
key noise is ecpk =

∑N
i=1 ei (see Eq. (4)), which implies that

‖ecpk‖ ≤ NB, where B is the worst-case norm for an error
term sampled from the RLWE error distribution χ.

B. Fresh Encryption

Let ct= (c0, c1) be a fresh encryption of a message m under
a collective public key. The first step of the decryption (Eq.
(1)) under the ideal secret key outputs c0 +sc1 = ∆m+efresh,
where

‖efresh‖ ≤ B(2nN + 1). (9)

Thus, for a key generated by the EncKeyGen protocol, the
worst-case fresh ciphertext noise is linear in the number N of
parties.

C. Collective Key-Switching

Let ct = (c0, c1) be an encryption of m under the col-
lective secret key s, and ct′ = (c′0, c1) be the output of
the ColKeySwitch protocol on ct with target key s′. Then,
c′0 + s′c1 = m+ efresh + eCKS with

‖eCKS‖ ≤ BsmgN, (10)

where Bsmg is the bound of the smudging distribution. We
observe that the additional noise does not depend on the
destination key s′.

17

D. Public Collective Key-Switching

Let ct = (c0, c1) be an encryption of m under the
collective secret key s, and ct′ = (c′0, c

′
1) be the output

of the PubColKeySwitch protocol on ct and target public
key pk′ = (p′0, p

′
1), such that p′0 = −sp′1 + epk′ . Then,

c′0 + s′c′1 = m+ efresh + ePCKS with
‖ePCKS‖ ≤ N(nBpk′ + n‖s′‖B +Bsmg), (11)

where ‖epk′‖ ≤ Bpk′ , and Bsmg is the bound on the smudging
noise. Note that in this case, the smudging noise should
dominate this term.

E. Arithmetic Operations

Let ct1 and ct2 be two ciphertexts with worst-case noise
norm B1 and B2 and let ctadd = BFV.Add(ct1, ct2). The noise
eadd of ctadd is such that

‖eadd‖ ≤ B1 +B2,

whose overhead is thus independent of N .
Let ctmul = BFV.Multiply(ct1, ct2) and emul be the error

term of ctmul. Then, by relying on the upper bound given by
Lemma 2 in [17], we have

‖emul‖ < nt(B1 +B2)(nN + 1) + 2t2n2(N + 1)2.

Hence, as for the original scheme, the noise after a multi-
plication is expanded by a factor ‖s‖, which brings a linear
dependence in N (it also adds a quadratic, yet less significant,
term in N). Note that this dependency is due solely to the
magnitude of the secret key (i.e., no fresh noise is added by
homomorphic operations).

F. Relinearization (Type I)

We analyze the noise resulting from a Type I relinearization
[17] performed with a key generated by the RelinKeyGen
protocol (Protocol 3). For a ciphertext ct = (c0, c1, c2), we can
write its 2-component equivalent as ctrelin = (c′0, c

′
1), where

c′0 + sc′1 = m+ efresh + erelin with

‖erelin‖ ≤
wn

2
(l + 1)BN(2nN + 2). (12)

Therefore, the noise introduced by the relinearization in-
creases by a factor that is quadratic in N ; this factor stems
from the noise introduced in the relinearization key (see Eq.
(13)): The RelinKeyGen protocol outputs relinearization keys
that have noise in their r0 component only, as opposed to
the approach by Asharov et al. [20], for which the noise
added in the r1 component introduces noise in c′1. As the
latter noise term is multiplied by the secret key at decryption,
their approach results in a significantly larger erelin than ours.
Analogously to the original scheme, the noise introduced by
the relinearization is independent of the noise already present
in the input ciphertext.

G. Discussion

The distributed BFV scheme keeps the noise within man-
ageable bounds, even for a large number of parties. The

noise overhead is predominantly linear in N , with only the
relinearization-incurred noise being quadratic (but is still small
w.r.t. the multiplication-incurred overhead). Therefore, for a
fixed size of the modulus q, the multiparty version of BFV
can accommodate much larger number of parties than the
multi-key counterparts. In Section VII-B, we show that the
framework can be used with hundreds of parties in an efficient
way.

H. Derivation of Noise-Growth Equations

This appendix details the derivations of the noise growth
equations presented in the previous sections. The infinity norm
of a polynomial p (i.e., its largest coefficient in absolute value)
is denoted ‖p‖ (‖p‖ ≤ q/2 for p ∈ Rq). We also recall
that, since the polynomial modulus in Rq is a degree-n power
of 2 cyclotomic, we have ‖ab‖ ≤ n‖a‖‖b‖. We consider an
instantiation of our distributed BFV scheme with N parties.

1) Derivation of Eq. (9): From the ideal decryption of a
fresh encryption of m under the collective public key cpk =
(p0, p1):

c0 + sc1 = ∆m+ p0u+ e0 + sp1u+ se1

= ∆m− uecpk + e0 + se1,

where we substituted the expression of BFV.Encrypt. As
‖u‖ = 1 and ‖ei‖ ≤ B for i = 0, 1, Eq. (9) follows.

2) Derivation of Eq. (10): From the decryption expression
of ct′,

c′0 + s′c1 = c0 +
∑
j

((−s′j + sj)c1 + eCKS,j) + s′c1

= c0 + sc1 +
∑
j

eCKS,j

= ∆m+ efresh +
∑
j

eCKS,j .

As eCKS,j ≤ Bsmg, Eq. (10) follows.
3) Derivation of Eq. (11): From the decryption expression

of ct′,
c′0 + s′c′1 = c0 +

∑
j

(sjc1 + ujp
′
0 + e0,j) + s′

∑
j

(ujp
′
1 + e1,j)

= c0 + sc1 + up′0 + s′up′1 +
∑
j

e0,j + se1,j

= ∆m+ efresh +
∑
j

ujepk′ + e0,j + s′e1,j ,

and Eq. (11) follows.
4) Derivation of Eq. (12): Let rlk = (r0, r1) be the

collectively generated relinearization key. It has the same form
as in the original scheme, except for the magnitude of its erlk

components:

‖e(i)rlk ‖ < ((n‖s‖+ 2)N + nN2)B . (13)

Thus, the same analysis as in the original scheme applies.
Let c2 be the base-w decomposition vector of c2, such that

18

Protocol 7: NoisyRelinKeyGen

Public Input: cpk = (p0, p1), w
Private Input for Pi: sk = si
Output:rlk = (r0, r1)

Each party Pi:
1) samples e0,i , e1,i ← χl, ui ← Rl3 and

broadcasts
h0,i = p0ui + siw + e0,i and h1,i = p1ui + e1,i

2) waits for h0,j , h1,j from all Pj , computes

h0 =
∑
Pj∈P

h0,j and h1 =
∑
Pj∈P

h1,j

samples e2,i, e3,i ← χl , vi ← Rl3 and
broadcasts
h′0,i=sih0+p0vi+e2,i and h′1,i=sih1,i+p1vi+e3,i

3) waits for h′0,j , h
′
1,j from all Pj ,

outputs rlk = (
∑
j h
′
0,j ,

∑
j h
′
1,j)

the inner product c2 ·w equals c2. We have
c′0 + sc′1 = c0 + c2 · r0 + s(c1 + c2 · r1)

= c0 + sc1 + c2 · (r0 + sr1))

= c0 + sc1 + c2 · s2w + c2 · erlk
= ∆m+ efresh + c2 · erlk,

where the upper bound for the inner product term is derived
from the expression for erlk in Eq. (13), by observing that each
of the l + 1 elements in c2 have coefficients in [−w2 ,

w
2].

APPENDIX D
COMPARISON BETWEEN RelinKeyGen AND PREVIOUS

WORK

We show here how to adapt the classic method of [20] to
our scheme, resulting in the Protocol 7.

After the execution of NoisyRelinKeyGen, each party holds
a copy of the public rlk corresponding to the collective secret
key s. This enables them and, potentially, other external
entities, to use the BFV.Relinearize algorithm in the trust
domain defined by s. The resulting key is of the form

rlk = (r0, r1)

= (p0(su+v)+s2w+se0+e2 , p1(su+v)+se1+e3)

= (−sb+s2w−(su+v)ecpk+se0+e2 , b+se1+e3),

where b = p1(su + v). Hence, with respect to the key pro-
duced by BFV.RelinKeyGen, rlk holds a significantly increased
noise, not only in r0, but also in r1, which is not noisy when
generated in a centralized way.

By producing a noise-free r1 term and a less noisy r0 term,
our solution significantly improves on the simple method.
Although it requires one more round of communication, our
protocol has the same volume of network traffic, and is
computationally less expensive.

APPENDIX E
COLLECTIVE RELINEARIZATION-KEY GENERATION

SECURITY

The private input for each party Pi in the RelinKeyGen
protocol is the tuple xi = (si, ui, e0,i, e1,i, e2,i, e3,i): its ideal
secret-key share si, its ephemeral secret ui, and the error
terms added in each round. The output for each party is
f(x1, . . . , xN) = (r0, r1), the generated relinearization key
defined in Eq. (5). Throughout the protocol execution, the
parties compute the public values h, h′ = (h′0,h

′
1) and

h′′. These values can be simulated, with the constraints
r0 = h′0 +h′′ and r1 = h′1. For every round, the parties’ view
in the protocol comprises additive sharings of these values,
which S can simulate as

h̃i =

{
[−uia + siw + e0,i]q if Pi ∈ A
← Rlq if Pi /∈ A

,

h̃′i =

([sih̃ + e1,i]q , [sia + e2,i]q) if Pi ∈ A
← R2×l

q if Pi ∈ H
(← Rlq , [r1 −

∑
Pj∈A∪H

h̃′1,j]q) if Pi = Ph
,

h̃′′i =

[(ui − si)h̃′1 + e3,i]q if Pi ∈ A
← Rlq if Pi ∈ H
[r0 − h̃′0 −

∑
Pj∈A∪H

h̃′′j]q if Pi = Ph
.

The indistinguishability argument for the shares is similar to
the one of Section VI-A. To prove indistinguishability for their
composition, we consider the combined view of the adversary,

h
h′0
h′1
h′′

 =

−ua + sw + e0

−sua + s2w,+se0 + e1
sa + e2

(u− s)sa + (u− s)e2 + e3

 .

Lemma 1 extracts the sought property for the transcript
(note that h′0 − h′′ ≈ s2a + s2w).

Lemma 1. Let a ← Rq , s1, s2 ← R3 be two RLWE
secrets, and e1, e2, e3, e4 ← χ be four RLWE error terms.
The distribution

(a, s1a+ e1, s2a+ e2, s2s1a+ e3, s21a+ e4) (14)

is computationally indistinguishable from the uniform distri-
bution over R5

q for any adversary not knowing the secrets
and error terms.

We do not provide the proof for Lemma 1, as the assumption
that we can chain RLWE sample generators is already required
by all mainstream RLWE-based cryptosystems. For an intu-
ition, note that the first two elements of Eq. (14) correspond
to a public key with secret key s = s1, and the next two
(together) can be seen as an encryption of 0 under this key,
with randomness u = s2.

	Introduction
	Related Work
	Background
	Problem Statement and System Model
	Multiparty Encryption Schemes
	Multiparty Homomorphic Encryption (MHE)
	MHE-Based MPC Protocol
	Mathematical Notation
	The Brakerski-Fan-Vercauteren Encryption Scheme

	The Multiparty BFV Scheme
	Ideal-Secret-Key Generation
	Collective Encryption-Key Generation (EncKeyGen)
	Collective Relinearization-Key Generation (RelinKeyGen)
	Collective Key-Switching Protocols
	Bridging MPC approaches
	Encryption-to-Shares (Enc2Share)
	Shares-to-Encryption (Share2Enc)

	Collective Bootstrapping (ColBootstrap)
	Smudging
	Vector Packed-Encoding and Rotation Keys

	Features Analysis
	Public Non-interactive Circuit Evaluation
	Cloud-Outsourced Model
	Smart Contracts

	Public-Transcript Protocols
	Efficient Communication Pattern
	Cloud-Assisted MPC Model

	Discussion

	Security Analysis
	Collective-Key Generation
	Collective Key-Switching
	Output indistinguishability
	View Indistinguishability

	Performance Analysis
	Experimental Setup
	Component-Wise Vector Product
	Multiparty Input Selection
	Multiplication Triples Generation
	Discussion

	Conclusions
	References
	Appendix A: Symbol Table
	Appendix B: Local Operations Benchmarks
	Appendix C: Noise Analysis
	Ideal Secret Key
	Fresh Encryption
	Collective Key-Switching
	Public Collective Key-Switching
	Arithmetic Operations
	Relinearization (Type I)
	Discussion
	Derivation of Noise-Growth Equations
	Derivation of Eq. (9)
	Derivation of Eq. (10)
	Derivation of Eq. (11)
	Derivation of Eq. (12)

	Appendix D: Comparison between RelinKeyGen and previous work
	Appendix E: Collective Relinearization-Key Generation Security

