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Abstract

We characterize the ANF and the univariate representation of any
vectorial function as parts of the ANF and bivariate representation of
the Boolean function equal to its graph indicator. We show how this
provides, when F is bijective, the expression of F−1 and/or allows de-
riving properties of F−1. We illustrate this with examples and with a
tight upper bound on the algebraic degree of F−1 by means of that of
F . We characterize by the Fourier-Hadamard transform, by the ANF,
and by the bivariate representation, that a given Boolean function is the
graph indicator of a vectorial function. We also give characterizations of
those Boolean functions that are affine equivalent to graph indicators. We
express the graph indicators of the sum, product, composition and con-
catenation of vectorial functions by means of the graph indicators of the
functions. We deduce from these results a characterization of the bijec-
tivity of a generic (n, n)-function by the fact that some Boolean function,
which appears as a part of the ANF (resp. the bivariate representation)
of its graph indicator, is equal to constant function 1. We also address
the injectivity of (n,m)-functions. Finally, we study the characterization
of the almost perfect nonlinearity of vectorial functions by means of their
graph indicators.

1 Introduction

The graphs of functions play an important role in coding theory: a code (i.e.
a set of vectors of a same length n over some finite field Fq), linear (that
is, having the structure of a vector space) or not, is called systematic if, up
to a reordering of the codeword coordinates, it has the form of the graph
GF = {(x, F (x)); x ∈ Fkq} of a function F from Fkq to Fn−kq for some k (equal
to the dimension when the code is linear). All linear codes are systematic and
most important nonlinear codes such as the Kerdock, Preparata and Delsarte-
Goethals codes are systematic [12]. Graphs also play a significant role in sym-
metric cryptography, in the diffusion layers and substitution boxes of block

1



ciphers. This role is essentially hidden in the latter case, but it is actual. For
instance, the Walsh transform of a vectorial function F , which plays a central
role in the determination of its nonlinearity, equals by definition the Fourier-
Hadamard transform of the indicator (i.e. characteristic function) of its graph
GF = {(x, F (x)); x ∈ Fn2} (that we call the graph indicator of the function). The
CCZ equivalence of vectorial functions is also defined by means of their graphs,
see e.g. [5]. A notion of algebraic immunity of vectorial functions is directly
related to graph indicators as well, see [1, 6]. The important notion of almost
perfect nonlinearity is naturally defined by means of the graphs of functions.
And graph indicators play roles in recent advances of cryptography, such as
counter-measures against side channel attacks; see for instance, in [13, 8, 10, 9],
the leakage squeezing method and the related codes, called complementary in-
formation set (CIS) codes. Moreover, looking at these graphs helps simplifying
some studies on vectorial functions. For instance, the graph of a permutation
and the graph of its compositional inverse are equal, up to variable swap; the
indicators are then the same function up to this swap, while computing the ex-
pression of the compositional inverse of a permutation from that of the function
is complex (there are only few known classes of permutation polynomials whose
compositional inverses are also known).

As we can see, it seems then useful to consider with more attention the graph
indicators of vectorial functions. In fact, we shall see that it is often profitable to
view (n,m)-functions through their graph indicators. This increases the number
of variables from n to n + m, but it replaces the study of a vectorial function
by that of a Boolean function. In terms of data complexity, the ANF of the
graph indicator of an (n,m)-function involves 2n+m bits and is then larger than
the ANF of the function, which involves m · 2n bits. The ratio is still larger for
polynomial representations. This is the price to pay for having a representation
including more information, as we shall show. It will be illustrated in this paper
that we can recover the initial investment of calculating the ANF or the bivariate
representation of the graph indicator, when we address compositional inverses
(when they exist) and composition. Indeed, as we already mentioned, inversion
just corresponds to a swap of variables in the graph indicator, and we shall see
that composition can be implemented with graph indicators by simple additions
and multiplications. Note that inversion and composition play central roles in
block ciphers, since deciphering needs, for many ciphers, to invert functions,
and composition is the main tool in iterative ciphers for reaching a sufficient
confusion.

The paper is organized as follows. After preliminaries, we express in Sec-
tion 3 the ANF and the numerical normal form (NNF) of the indicator 1GF of
the graph GF = {(x, F (x)); x ∈ Fn2} of any vectorial function F by means of
the ANF and the NNF of (the coordinate functions of) the function. We also
address the bivariate (polynomial) representation. We show that more infor-
mation, directly exploitable, is contained in these representations of the graph
indicator than in those of the function itself. When the function is bijective
(i.e. one to one and onto), we characterize the ANF, respectively the univari-
ate representation, of the compositional inverse as a part of the ANF of the
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graph indicator (respectively, of its bivariate representation); this allows often
to obtain an explicit (but maybe complex) expression of F−1, without having
to solve the equation F (x) = y algebraically. We study this expression more
in detail in the case of linear permutations. A lot of (future) work is probably
feasible with this approach, revisiting the known (nonlinear) permutations. We
study an example showing how this works in practice. Moreover, we observe
that, even when F−1(y) cannot be explicitly calculated, results on F−1 can
be directly deduced from the graph indicator approach; for instance, the in-
verse of a permutation of algebraic degree d has always algebraic degree at most⌈
(d−1)n+2

d

⌉
− 1 (which equals dn2 e for a quadratic permutation). We complete

the section by studying more in detail the case of the multiplicative inverse
functions, used as substitution box in the AES. In Section 4, we characterize
by the Fourier-Hadamard transform, by the ANF and by the bivariate repre-
sentation, the fact that a given (n+m)-variable Boolean function is the graph
indicator of an (n,m)-function. We characterize in Section 5 the fact that a
given (n+m)-variable Boolean function is affine equivalent to such graph indi-
cator. We address in Section 6 the main operations (addition, multiplication,
composition, concatenation, and an operation related to the so-called switching
method) in terms of graph indicators. In Section 7, we obtain a rather simple
characterization of bijectivity (which plays an important role in all domains,
particularly in cryptography) by the fact that some Boolean function which ap-
pears as a part of its graph indicator equals the constant function 1. We specify
the expression of this Boolean function by means of that of the function. In
Section 8, we address injectivity and find three characterizations. In Section 9,
we characterize the almost perfect nonlinearity property in two different ways
by means of the graph indicator.

2 Preliminaries

In this paper, we denote the additions in F2 by ⊕ and those in R by +, so as
to distinguish when the addition is made modulo 2 and when it is not. We
shall simply use + for the addition in Fn2 since there will never be ambiguity1.
We shall denote by 0 the zero vector in any of the vector spaces over F2. We
call n-variable Boolean function every function from Fn2 to F2 and support of a
Boolean function f the set supp(f) = {x ∈ Fn2 ; f(x) = 1}, while the support of
a vector x ∈ Fn2 equals {i ∈ {1, . . . , n};xi = 1}. The Hamming weight wH(f)
of a Boolean function f (or of a vector) equals the size of its support. The
functions from Fn2 to Fm2 are called (n,m)-functions. Such function F being
given, the n-variable Boolean functions f1, . . . , fm, defined at every x ∈ Fn2
by F (x) = (f1(x), . . . , fm(x)), are called the coordinate functions of F . When
the numbers m and n are not specified, (n,m)-functions are called vectorial
Boolean functions or simply vectorial functions. Those ones whose role is to

1Only additions modulo 2 will be performed, and since we shall sometimes identify Fn
2 with

the finite field F2n , in which the addition is denoted by +, it seems natural to write + as well
in the case of Fn

2 .
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ensure confusion in a block cipher are called substitution boxes (S-boxes). We
refer to e.g. [4, 5] for a more complete state of the art.

Two vectorial functions F and G are called affine equivalent if there exist
two affine permutations L over Fm2 and L′ over Fn2 such that G = L ◦ F ◦ L′;
they are called EA equivalent if there exists an affine function L from Fn2 to Fm2
such that F and G+L are affine equivalent; and they are called CCZ equivalent
if their graphs GF = {(x, F (x)); x ∈ Fn2} and GG = {(x,G(x)); x ∈ Fn2} are
affine equivalent in the sense that one is the image of the other by an affine
permutation over Fn+m2 . These three notions of equivalence are by increasing
order of generality.

Among the classical representations of Boolean functions and of vectorial
functions are the truth-table in the case of Boolean functions and the look-up
table (LUT) in the case of vectorial functions. Both are the table of all pairs
of an element of Fn2 (an ordering of Fn2 being fixed) and of the value of the
function at this input. The algebraic normal form (in brief the ANF ), which
contains a little more information directly usable on the cryptographic strengths
of functions, is the unique n-variable multivariate polynomial representation of
the form

f(x) =
⊕

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

⊕
I⊆{1,...,n}

aI x
I , (1)

where aI belongs to F2 in the case of Boolean functions and to Fm2 in the case of
(n,m)-functions (and where “xI” is a notation that we shall use all along this
paper). Note that we can deduce the ANF of the i-th coordinate function of F
by replacing in (1) each coefficient aI ∈ Fm2 by its i-th coordinate.
The degree of the ANF shall be denoted by dalg(f) (resp. dalg(F )); it is called
the algebraic degree of the function and equals max{|I|; aI 6= 0}, where |I|
denotes the size of I (with the convention that the zero function has algebraic
degree 0). This makes sense thanks to the existence and uniqueness of the
ANF. Note that the algebraic degree of an (n,m)-function F equals the maximal
algebraic degree of its coordinate functions. It also equals the maximal algebraic
degree of its component functions, that is, of the nonzero linear combinations
over F2 of the coordinate functions, i.e. the functions of the form v · F , where
v ∈ Fm2 \ {0} and “·” is an inner product in Fm2 . It is an affine invariant (that
is, its value does not change when we compose F , on the right or on the left, by
an affine automorphism). We have:

f(x) =
⊕

I⊆supp(x)

aI , (2)

which is valid for Boolean and vectorial functions, and where supp(x) denotes
the support of x.
The converse is also true: for all I ⊆ {1, . . . , n}, we have:

aI =
⊕

x∈Fn2 ; supp(x)⊆I

f(x), (3)
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for f Boolean or vectorial. According to Relation (3), we have the well known
property (see [12, 4]):

Proposition 1 An n-variable Boolean function f satisfies dalg(f) = n if and
only if wH(f) is odd.

We call quadratic the functions of algebraic degree at most 2.
The ANF, because it lives in characteristic 2, is rather unsuitable for working
on those cryptographic parameters which live in characteristic 0 (such as the
Hamming weight, the nonlinearity), and on some other notions such as the
almost perfect nonlinearity (see below). A representation similar to the ANF,
see e.g. [4], but over the reals (over Z when dealing with Boolean functions)
contains all the information given by the ANF and lives in characteristic 0. It
is called the numerical normal form (NNF). Every pseudo-Boolean function ϕ
(from Fn2 to R), and in particular, every Boolean function considered as valued
in {0, 1} ⊂ Z, has a unique representation in the form

f(x) =
∑

I⊆{1,...,n}

λI

(∏
i∈I

xi

)
=

∑
I⊆{1,...,n}

λI x
I ; λI ∈ R, (4)

(λI ∈ Z if f is integer-valued), where the addition is in R.
The ANF of vectorial functions and the NNF of their coordinate functions

are not always convenient for designing functions satisfying the desired cryp-
tographic criteria. The so-called univariate representation of an (n, n)-function
is in some cases a more successful representation, obtained after identification
between the vector space Fn2 and the finite field F2n : the latter, being an n-
dimensional vector space over F2, it can be endowed with a basis (e1, . . . , en)
and x is then represented by

∑n
j=1 xjej that we still denote by x. Then (see

e.g. [5]) there is a unique representation of F in the form

F (x) =

2n−1∑
i=0

aix
i ∈ F2n [x]/(x2

n

+ x)

with ai ∈ F2n . This representation can be obtained by Lagrange’s interpolation,
which in this framework can be simplified as follows: since the function x2

n−1

takes value 1 at any nonzero input and the Dirac (or Kronecker) function over

F2n (i.e. δ0(x) =

{
1 if x = 0
0 otherwise

) equals then 1 + x2
n−1, we have F (x) =∑

a∈F2n
F (a)(1 + (x + a)2

n−1). The algebraic degree of F (x) =
∑2n−1
i=0 aix

i

equals the maximum 2-weight of the exponents i such that ai 6= 0, where the
2-weight is the Hamming weight of the binary expansion (see e.g. [5]). If

F is bijective as a function from F2n onto F2n , then
∑2n−1
i=0 aix

i is called a
permutation polynomial.
Note that for every divisor m of n (for instance, for m = 1), an (n,m)-function
can be viewed as a particular (n, n)-function, since F2m is a subfield of F2n .
The equivalent of Proposition 1 for the univariate representation is:
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Proposition 2 For every (n, n)-function F , we have
∑
x∈F2n

F (x) 6= 0 if and
only if dalg(F ) = n.

Indeed, we have
∑
x∈F2n

xi =

{
0 if i ≤ 2n − 2
1 if i = 2n − 1

.

If n is even, any (n, n/2)-function, viewed as a function from F2
2n/2

to
F2n/2 , can also be represented in bivariate form

∑
0≤i,j≤2n/2−1 ai,jx

iyj , where
ai,j ∈ F2n/2 . We shall use the term of polynomial representation to globally
denominate univariate and bivariate representations.

The Fourier-Hadamard transform of any pseudo-Boolean function ϕ (from
Fn2 to R) is the R-linear mapping which maps ϕ to the function ϕ̂ defined on Fn2
by

ϕ̂(u) =
∑
x∈Fn2

ϕ(x) (−1)u·x, (5)

where “·” is some chosen inner product in Fn2 . It satisfies the so-called inverse
Fourier-Hadamard transform formula: for all a ∈ Fn2 , we have:∑

u∈Fn2

ϕ̂(u) (−1)u·a = 2nϕ(a),

which proves that the Fourier-Hadamard transform is a bijection. And defin-
ing the convolutional product of two pseudo-Boolean functions ϕ and ψ as

(ϕ⊗ ψ)(x) =
∑
a∈Fn2

ϕ(a)ψ(x+ a), we have ϕ̂⊗ ψ = ϕ̂× ψ̂.

If L is an F2-linear automorphism of Fn2 and a ∈ Fn2 , and if L′ is the adjoint op-
erator of L−1, defined by L′(u)·x = u·L−1(x) and whose matrix is the transpose

of that of L−1, the Fourier-Hadamard transform ϕ̂′(u) =
∑
x∈Fn2

ϕ′(x) (−1)u·x

of the function ϕ′(x) = ϕ(L(x) + a) is equal to
∑
x∈Fn2

ϕ(x) (−1)u·L
−1(x+a) =

(−1)u·L
−1(a)

∑
x∈Fn2

ϕ(x) (−1)L
′(u)·x = (−1)L

′(u)·a ϕ̂(L′(u)).

Given an n-variable Boolean function f , we have two associated transforms:
the Fourier-Hadamard transform of f , where f is then viewed as a function
from Fn2 to {0, 1}, and the Walsh transform of f which is the Fourier-Hadamard
transform of the sign function (−1)f :

Wf (u) =
∑
x∈Fn2

(−1)f(x)⊕u·x.

We have:
Wf = 2n δ0 − 2f̂ , (6)

where δ0 denotes the already encountered Dirac (or Kronecker) symbol over
Fn2 (the ANF of δ0(x) equals

∏n
i=1(xi ⊕ 1)). There are relations between the

coefficients λI of the NNF and the values of the Walsh transform, see e.g. [4].
For vectorial functions, we define the Walsh transform as follows, after choos-

ing an inner product in Fn2 and an inner product in Fm2 (that we shall both denote
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by “·”):

WF (u, v) = Wv·F (u) =
∑
x∈Fn2

(−1)v·F (x)⊕u·x; u ∈ Fn2 , v ∈ Fm2 .

An (n, n)-function F is called almost perfect nonlinear (APN) if, for every
nonzero a ∈ Fn2 and every b ∈ Fn2 , the equation DaF (x) = F (x) + F (x + a) =
b has at most two solutions in Fn2 , that is, has either two solutions or none
(see [15, 2, 16, 7]). Function DaF is called a derivative of F . APN functions
contribute optimally to the resistance against differential attacks when they are
used as S-boxes in block ciphers.

We call graph indicator of an (n,m)-function F the indicator (i.e. the char-
acteristic function) 1GF of the graph GF = {(x, F (x)); x ∈ Fn2}. We have
1GF (x, y) = 1 if F (x) = y and 1GF (x, y) = 0 otherwise. Note that for every
z ∈ Fm2 , the size |F−1(z)| of the pre-image of z by F equals the Hamming
weight of the Boolean function x 7→ 1GF (x, z) and that two (n,m)-functions
F and G are equal to each other if and only if 1GF (x,G(x)) equals constant
Boolean function 1; more precisely, the Hamming distance between F and G
equals the complement to 2n of the Hamming weight of 1GF (x,G(x)).
The Walsh transform of F equals the Fourier-Hadamard transform of 1GF , where
the chosen inner product is (x, y)·(u, v) = x·u⊕y ·v. Then, for all (u, v) 6= (0, 0),
we have:

WF (u, v) = −1

2
W1GF

(u, v),

and we have:

WF (0, 0) = 22n−1 − 1

2
W1GF

(0, 0) = 2n.

The nonlinearity of an (n,m)-function equals the minimum Hamming dis-
tance between its component functions v ·F , v 6= 0, v ∈ Fm2 , and affine functions
a · x ⊕ ε, a ∈ Fn2 , ε ∈ F2. It equals 2n−1 − 1

2 maxu∈Fn2 ,v∈Fm2 ,v 6=0 |WF (u, v)|. De-
spite the relation between the Walsh transform of F and the Fourier-Hadamard
transform of 1GF , the nonlinearity of F is not connected to the nonlinearity
of 1GF , because of the case u = v = 0 which is excluded in the definition of
the former and included in that of the latter; for m ≥ 2, the nonlinearity of
any graph indicator equals its Hamming weight 2n because the nearest affine
function is always the zero function.

Remark. The present paper focusses on the characterization by graph indi-
cators of the properties of (n,m)-functions. It would be also interesting, vice
versa, to study the properties of 1GF by means of F . For instance, according
to the so-called Xiao-Massey characterization of correlation immunity by the
Fourier-Hadamard transform (see e.g. [4]), 1GF is t-th order correlation immune

if and only if 1̂GF (u, v) = WF (u, v) equals 0 for every non-zero (u, v) ∈ Fn2 ×Fm2
of Hamming weight at most t. This is equivalent to the fact that WF (u, v) = 0,
for every (u, v) of Hamming weight at most t such that v is non-zero, that is,
for every non-zero v ∈ Fm2 , the component function v ·F is (t−wH(v))-th order
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resilient. The study of such functions has been made for permutations (which
play a role with respect to leakage squeezing, see the introduction) from the
viewpoint of codes in [10]. The general case remains to be studied. Another
example of possible study is that of the algebraic immunity of graph indicators,
see [6]. 2

3 ANF, NNF and bivariate representation of
the graph indicator of a vectorial function

The purpose of this section is to express the two main representations of graph
indicators (their ANF and their bivariate representation) by means of the cor-
responding representations of the vectorial functions, in a way as efficient as
possible for future applications.

3.1 General case

3.1.1 ANF and NNF

Relation (3) applied to 1GF gives that, for every I ⊆ {1, . . . , n} and J ⊆
{1, . . . ,m}, the coefficient of xIyJ in its ANF equals:

aI,J = |{x ∈ Fn2 ; supp(x) ⊆ I and supp(F (x)) ⊆ J}| [mod 2]. (7)

Note that, if F is monotone, in the sense that, for every x, z ∈ Fn2 , the inclusion
“supp(x) ⊆ supp(z)” implies the inclusion “supp(F (x)) ⊆ supp(F (z))”, then for
every z ∈ Fn2 and every I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m} such that I ⊆ supp(z)
and supp(F (z)) ⊆ J , we have aI,J = |{x ∈ Fn2 ; supp(x) ⊆ I}| [mod 2] = 2|I|

[mod 2] =

{
1 if I = ∅
0 otherwise.

But for general functions, Relation (7) is not quite easily exploitable. We shall
give now a formula which sheds more light on the ANF of 1GF (and allows to
recover Relation (7)):

Proposition 3 Let F be any (n,m)-function and let f1, . . . , fm be its coordinate
functions. We have:

1GF (x, y) =

m∏
j=1

(yj ⊕ fj(x)⊕ 1) =
⊕

J⊆{1,...,m}

ϕF,J(x) yJ , (8)

where
ϕF,J(x) =

∏
j∈Jc

(fj(x)⊕ 1), (9)

with Jc = {1, . . . ,m} \ J .

Indeed, for every y, y′ ∈ Fm2 , we have y = y′ if and only if
∏m
j=1(yj⊕y′j⊕1) = 1.

This, with y′ = F (x), proves the first assertion and the rest is straightforward.
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We can see that the information contained in the ANF of 1GF is more com-
plete than that contained in the ANF of F , since all the products of the (com-
plemented) coordinate functions of F appear in it. Of course, the ANF of F
allows to deduce all the information on F , thanks to the uniqueness of the rep-
resentation, but this information is not directly readable. We shall see much
more in the sequel.
Relation (9) shows that a part of the ANF of 1GF , precisely the one correspond-
ing to |J | = m− 1, gives the knowledge of all coordinate functions of F :

Corollary 1 Let F = (f1, . . . , fm) be any (n,m)-function. Then, for every j ∈
{1, . . . ,m}, the x-dependent coefficient of y{1,...,m}\{j} in the ANF of 1GF (x, y)
equals fj(x)⊕ 1.

The following decomposition of 1GF (x, y), which is alternative to the one
given in Proposition 3:

1GF (x, y) =
⊕

I⊆{1,...,n}

ψF,I(y)xI , (10)

will play a role when dealing with composite functions G ◦F in Subsection 6.3.
Note that, as ϕF,J , function ψF,I is (the ANF of) a Boolean function.

Let us now address the NNF of graph indicators, which can be used as
we shall see, for checking properties such as APNness and injectivity. To
calculate it, we can, according to Proposition 3, first calculate the NNF of
the function ϕj(x, y) = yj ⊕ fj(x) ⊕ 1. This can be easily calculated as fol-
lows: the equality ϕj(x, y) = yj ⊕ fj(x) ⊕ 1 is equivalent to (−1)ϕj(x,y) =
(−1)yj⊕fj(x)⊕1 = −(−1)yj (−1)fj(x), that is, since ϕj(x, y), yj and fj(x) are
Boolean, to 1− 2ϕj(x, y) = −(1− 2yj)(1− 2fj(x)). Hence, the NNF of ϕj(x, y)
equals 1− fj(x) + yj(2fj(x)− 1). We deduce:

Proposition 4 Let F be any (n,m)-function and let f1, . . . , fm be its coordinate
functions (given by their NNF). The NNF of 1GF (x, y) equals:

m∏
j=1

(
1− fj(x) + yj(2fj(x)− 1)

)
=

∑
J⊆{1,...,m}

φF,J(x) yJ ,

where
φF,J(x) =

∏
j∈Jc

(1− fj(x))
∏
j∈J

(2fj(x)− 1), (11)

with Jc = {1, . . . ,m} \ J .

Remark. It is also possible to deduce the NNF from the ANF: starting from
1GF (x, y) =

⊕
I⊆{1,...,n},J⊆{1,...,m} aI,J x

IyJ , we can determine the (unique) co-

efficients λI,J ∈ Z such that 1GF (x, y) =
∑
I⊆{1,...,n},J⊆{1,...,m} λI,J x

IyJ , by
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writing:

1GF (x, y) =
⊕

I⊆{1,...,n},J⊆{1,...,m}

aI,J x
IyJ ⇐⇒

(−1)1GF (x,y) =
∏

I⊆{1,...,n},J⊆{1,...,m}

(−1)aI,J x
IyJ ⇐⇒

1− 2 1GF (x, y) =
∏

I⊆{1,...,n},J⊆{1,...,m}

(1− 2 aI,J x
IyJ) (12)

and expanding (12).
It is also possible to deduce the NNF of 1GF from the Walsh transform of F :
according to the results recalled in [4] as well, we have:

λI,J = 2−(n+m)(−2)|I|+|J|
∑

u∈Fn2 ; I⊆supp(u)
v∈Fm2 ; J⊆supp(v)

1̂GF (u, v)

= 2−(n+m)(−2)|I|+|J|
∑

u∈Fn2 ; I⊆supp(u)
v∈Fm2 ; J⊆supp(v)

WF (u, v). 2

3.1.2 Polynomial representation

We now address the bivariate representation of graph indicators. Given an
(n, n)-function in univariate form, the graph indicator can be directly obtained,
using the univariate representation of δ0 seen in Section 2 and Lucas’ theorem
[12, page 404]:

Proposition 5 Let F be any (n, n)-function given under its univariate repre-
sentation. The bivariate representation of its graph indicator equals:

1GF (x, y) = 1 + (y + F (x))2
n−1 = 1 +

2n−1∑
j=0

y2
n−1−j(F (x))j ,

where this expression is calculated in F2n [x, y]/(x2
n

+x, y2
n

+y). Conversely, the
univariate representation of F (x) is obtained from 1GF (x, y) as the x-dependent
coefficient of y2

n−2.

We shall write

1GF (x, y) =

2n−1∑
j=0

ϕF,j(x) yj =

2n−1∑
i=0

ψF,i(y)xi. (13)

The reader should not confuse ϕF,j and ψF,i with the functions ϕF,J of Propo-
sition 3 and ψF,I of Relation (10); the former are not even Boolean functions in
general, except for i, j ∈ {0, 2n − 1}, while the latter are; the context and the
second index will always specify unambiguously which function we are dealing
with.

10



3.2 Case of a permutation

Assuming m = n, if F is a permutation, then we have:

1GF (x, y) = 1GF−1 (y, x), (14)

where F−1 is the compositional inverse of F .

3.2.1 ANF

The coefficient of the monomial xI in Relation (14) equals ψF,I(y) = ϕF−1,I(y) =∏
i∈Ic(f

′
i(y)⊕1), where f ′i is the i-th coordinate function of F−1. In particular:

Proposition 6 Let F be any (n, n)-permutation. For every i = 1, . . . , n, the
i-th coordinate function f ′i of F−1 satisfies f ′i(x) = ψF,{1,...,n}\{i}(y)⊕ 1, where
ψF,I is defined by Relation (10).

Hence, the knowledge of the ANF of 1GF also gives direct information on F−1

while the ANF of F gives none. Proposition 6 provides an alternative way for
calculating F−1, without solving the equation F (x) = y by algebraic methods.
Of course, we need to know that F is a permutation, but there are methods
which allow not solving equations, such as applying Hermite’s criterion or using
the characterization we shall obtain in Section 7.
Let us summarize, for future use. Relation (14) writes:

1GF (x, y) =

n∏
j=1

(fj(x)⊕ yj ⊕ 1) =

⊕
J⊆{1,...,m}

yJ
∏
j∈Jc

(fj(x)⊕ 1) =
⊕

I⊆{1,...,n}

xI
∏
i∈Ic

(f ′i(y)⊕ 1) = (15)

n∏
i=1

(f ′i(y)⊕ xi ⊕ 1) = 1GF−1 (y, x).

We shall see that F−1 plays an important role when dealing with composite
functions G ◦ F .

Remark. For any (n,m)-function F , we could consider the (m,n)-function F ′,
playing the role of a pseudo-inverse of F , whose i-th coordinate function, for
i ∈ {1, . . . , n}, equals ψF,{1,...,n}\{i}⊕ 1, where ψF,I is defined by Relation (10).
When F is a permutation, then F ′ equals F−1, according to Proposition 6. For
general function F , considering such F ′ may or may not be of interest:
- It may happen that F ′ is constant (when, in the ANF of 1GF (x, y), there is
no term xIyJ with |I| = n − 1 and |J | > 0). This happens for instance when
F is affine and there exist two pairs of complementary coordinate functions of
F . Indeed, fj1 = fj2 ⊕ 1 implies (fj1 ⊕ 1)(fj2 ⊕ 1) = 0, and for each term xIyJ

with nonzero coefficient in 1GF (x, y), the monomial xI can come only from the
products of at most n−2 coordinate functions of F and has then degree at most

11



n− 2.
- Let F = (f1, . . . , fn, fn+1) be an (n, n+ 1)-function such that π = (f1, . . . , fn)
is a permutation and fn+1 is the zero function. Let f ′1, . . . , f

′
n be the coordi-

nate functions of π−1. Then we have, for every x, y ∈ Fn2 and yn+1 ∈ F2 that
1GF (x, (y, yn+1)) = (yn+1 ⊕ 1)

∏n
j=1(yj ⊕ fj(x) ⊕ 1) = (yn+1 ⊕ 1)

∏n
i=1(xi ⊕

f ′i(y)⊕ 1) and ψF,{1,...,n}\{i}(y, yn+1)⊕ 1 equals (yn+1⊕ 1)(f ′i(y)⊕ 1)⊕ 1. Then
we have F ′(y, yn+1) = (yn+1⊕1)π−1(y)+yn+1(1, . . . , 1). This is an extension of
π−1 obtained by concatenating the look-up table of π−1 and the look-up table
of the constant function (1, . . . , 1).
- Take F = (f1, . . . , fn−1) where the fi’s are the n − 1 first coordinate func-
tions of a permutation π, then for x ∈ Fn2 and y ∈ Fn−12 , we have 1GF (x, y) =
1Gπ (x, (y, 0))+1Gπ (x, (y, 1)) = 1Gπ (x, (y, 0))⊕1Gπ (x, (y, 1)) =

∏n
i=1(xi⊕f ′i(y, 0)⊕

1)⊕
∏n
i=1(xi⊕f ′i(y, 1)⊕1). Then ψF,{1,...,n}\{i}(y)⊕1 equals f ′i(y, 0)⊕f ′i(y, 1)⊕1,

and F ′(y) equals the sum of (1, . . . , 1) and of the restrictions of π−1 to the hy-
perplanes of equations yn = 0 and yn = 1.
- Let F be the monotone function such that, for every j ∈ {1, . . . , n}, fj(x) =
xIj , where Ij is some subset of {1, . . . , n}. Then 1GF (x, y) =

∏m
j=1(yj ⊕xIj ⊕ 1)

and ψF,{1,...,n}\{i}(y)⊕ 1 equals:

1⊕
⊕

J⊆{1,...m}; ∀j 6∈J,i 6∈Ij
and ∀i′ 6=i,∃j 6∈J; i′∈Ij

∏
j∈J

(yj ⊕ 1).

We leave for future work the study of such functions and of other functions F ′

related to other “natural” classes of vectorial functions in ANF form. 2

3.2.2 Polynomial representation

Assuming again that F is a permutation, we have:

1GF (x, y) = 1GF−1 (y, x) = 1 +

2n−1∑
j=0

x2
n−1−j(F−1(y))j , (16)

and we deduce:

Proposition 7 Let F be an (n, n)-permutation. The univariate representation
of F−1(y) equals the y-dependent coefficient of x2

n−2 in the bivariate represen-
tation of 1GF (x, y).

In the case of a power (i.e. monomial) function F (x) = xd over F2n , with

gcd(d, 2n− 1) = 1, we have 1GF (x, y) = 1 +
∑2n−1
j=0 y2

n−1−jxdj , and Proposition

7 only tells us that F−1(y) equals y
1
d where 1

d is calculated in Z/(2n − 1)Z.

In the case of a linear permutation, represented by a linearized permutation
polynomial L(x) =

∑n−1
i=0 bix

2i , let us see that Proposition 7 allows to revisit a

12



well-known property, but also provides more information. The bivariate repre-

sentation of 1GL(x, y) equals
∑2n−1
j=0 y2

n−1−j(
∑n−1
i=0 bix

2i)j . Writing the binary

expansion of j in the form j =
∑
k∈J 2k, with J ⊆ {0, . . . , n − 1}, we have

1GL(x, y) =
∑
J⊆{0,...,n−1} y

2n−1−
∑
k∈J 2k

∏
k∈J(

∑n−1
i=0 b

2k

i x
2k+i (mod n)

). There-
fore, using Proposition 7, we can state:

Corollary 2 Let L(x) =
∑n−1
i=0 bix

2i be any linearized permutation polynomial
over F2n . Then we have:

1GL(x, y) =
∑

J⊆{0,...,n−1}

y2
n−1−

∑
k∈J 2k

∑
κ∈{0,...,n−1}J

(∏
k∈J

b2
k

κk

)
x
∑
k∈J 2k+κk (mod n)

,

and:

L−1(y) =
∑

J⊆{0,...,n−1}

y2
n−1−

∑
k∈J 2k

∑
κ∈{0,...,n−1}J∑

k∈J 2k+κk≡2n−2 (mod 2n−1)

(∏
k∈J

b2
k

κk

)
.

Note that for having
∑
k∈J 2k+κk ≡ 2n − 2 (mod 2n − 1), it is necessary that

J has size n − 1 (and that all the k + κk (mod n) are distinct when k ranges
over J), since |J | ≥ n − 1 is clearly necessary, and for |J | = n, that is, for
j = 2n−1, the exponent of y is 0 and the corresponding part in the whole poly-

nomial 1GL(x, y), that is, 1 +
∑2n−1
j=0 x2

n−1−j(L−1(0))j has no term in x2
n−2,

because L−1(0) = 0. Since J has size n−1, the exponent of y is a power of 2 and
the compositional inverse of a linearized permutation is then also a linearized
polynomial, which is of course very well known. With Corollary 2, we have an
explicit expression of L−1(y).

For general permutations, determining explicitly the compositional inverse
is an open problem for a non-negligible part of known bijections. Let us give an
example of how the graph indicator can be used:

Example. Dobbertin has shown that, for every m, the function x2
m+1+1+x3+x

is a permutation over F2n , for n = 2m+1. We have, in F2[x, y]/(x2
n

+x, y2
n

+y):

1GF (x, y) = 1 +

2n−1∑
j=0

y2
n−1−j(x2

m+1+1 + x3 + x)j ,

and denoting respectively by j0 and j1 the remainder and the quotient in the
division of j by 2m, we obtain:

1 +

2m−1∑
j0=0

2m+1−1∑
j1=0

y2
m(2m+1−j1)−j0−1(x2

m+1+1 + x3 + x)2
mj1+j0 =

1+

2m−1∑
j0=0

2m+1−1∑
j1=0

y2
m(2m+1−j1)−j0−1(x3·2

m

+x2
m+1 +x2

m

)j1(x2
m+1+1 +x3 +x)j0 .
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This expression has degree 3·2m(2m+1−1)+(2m+1+1)(2m−1) = 2n+2−2m+2−1
relative to x, and the only positive integers congruent with 2n − 2 modulo
2n − 1 and smaller than or equal to 2n+2 − 2m+2 − 1 are 2n − 2, 2 · 2n − 3
and 3 · 2n − 4. Then, F−1(y) equals the sum of the y-dependent coefficients

of x2
m(2m+1−1)+2m−2, x2

m(2·2m+1−1)+2m−3 and x2
m(3·2m+1−1)+2m−4 in it. The

expression is too complex for being given here, but it is explicit.

Even if, for a given permutation F , it is not possible to obtain an explicit
expression of F−1, the ANF or the univariate representation of the graph indi-
cator can give useful information on F−1, which can be exploited in proofs. We
give an example in the next subsection.

Remark. Similarly with what we did with the ANF, we could consider, when F
is a non-necessarily bijective (n, n)-function, the (n, n)-function F ′ whose uni-
variate representation equals the y-dependent coefficient of x2

n−2 in the bivari-
ate representation of 1GF (x, y). There are important cases where such function
has no interest. For instance, let F (x) = xd be a power function. Then according

to Proposition 5, we have F ′(y) =
∑

j∈{1,...,2n−2}
dj≡−1 (mod 2n−1)

y2
n−1−j =

∑
j∈{1,...,2n−2}
dj≡1 (mod 2n−1)

yj .

If F is not a permutation, then gcd(d, 2n−1) is strictly larger than 1 and divides
dj (mod 2n− 1) for every j ∈ {1, . . . , 2n− 2}. Hence, F ′(y) = 0. We leave open
the question of determining classes of non-bijective functions F presenting in-
terest from coding theoretic or cryptographic viewpoint, and for which F ′ would
also present such interest. 2

3.3 Algebraic degree of the compositional inverse of a per-
mutation

Let us illustrate further the power of the approach by graph indicators, by prov-
ing a general property of the inverses of permutations. This property concerns
the algebraic degree, which we shall handle by the ANF (we could also use
the univariate representation, since the algebraic degree is directly readable on
this representation as well). Applying Corollary 1 to 1GF−1 (y, x) = 1GF (x, y),

we have dalg(F
−1) ≤ d if and only if all terms xIyJ such that |I| = n − 1

and |J | > d in the ANF of 1GF (x, y) have null coefficient, that is (since no
term in x{1,...,n}yJ exists with |J | ≥ 1 in the ANF of 1GF−1

(y, x)): for every
J ⊆ {1, . . . , n}, we have that |J | > d implies dalg(

∏
j∈Jc(fj(x)⊕ 1)) ≤ n− 2, or

equivalently, by replacing J by its complement:

Proposition 8 Let F be any (n, n)-permutation and let f1, . . . , fn be its coor-
dinate functions. The algebraic degree of F−1 is bounded above by d if and only
if, for all J ⊆ {1, . . . , n}, we have:(

|J | ≤ n− d− 1
)

=⇒
(
dalg

(∏
j∈J

fj(x)
)
≤ n− 2

)
.
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Moreover, using the right-hand side of Relation (15), if dalg(F
−1) ≤ d, then all

the terms xIyJ such that |I| ≥ n − k and |J | > kd in 1GF (x, y) = 1GF−1 (y, x)
have null coefficient, since each product of at most k coordinate functions of
F−1 has algebraic degree at most kd. Hence, using now the left-hand side of

Relation (15), |J | > kd implies dalg

(∏
j∈Jc fj(x)

)
≤ n − k − 1. Changing J

into its complement shows that, if dalg(F
−1) ≤ d, then:

|J | ≤ n− kd− 1 =⇒ dalg

∏
j∈J

fj(x)

 ≤ n− k − 1.

Changing now F into F−1, taking k = bn−2d c (which is the largest value ensuring

n− kd− 1 ≥ 1 and for which n− k− 1 =
⌈
(d−1)n+2

d

⌉
− 1), and |J | = 1, we have

then:

Corollary 3 Let n and 1 ≤ d ≤ n − 1 be two positive integers. For every
(n, n)-permutation F of algebraic degree at most d, we have:

dalg(F
−1) ≤

⌈
(d− 1)n+ 2

d

⌉
− 1.

In particular, if F is quadratic, then dalg(F
−1) ≤ dn2 e.

This bound is tight since we know that the inverse of the Gold APN permutation
x2

j+1, with gcd(j, n) = 1, n odd, has algebraic degree n+1
2 , see [16], and since

the inverse of an affine permutation (d = 1) is affine.

3.4 Graph indicator of the multiplicative inverse function

The power function x2
n−2 over F2n (used with n = 8 as an S-box in the AES)

is called the multiplicative inverse function because, for x 6= 0, it takes value
1
x . It is worth a special look. According to Proposition 5, we have 1GF (x, y) =

1 + (y + x2
n−2)2

n−1 = 1 +
∑2n−1
j=0 x(2

n−2)(2n−1−j)yj . Hence, using that, if the
exponent of x is nonzero and divisible by 2n − 1, we can replace it with 2n − 1
and otherwise, we can replace it with the remainder in its division by 2n − 1,

we obtain 1GF (x, y) = 1 + x2
n−1 +

∑2n−2
j=1 x(2

n−2)(2n−1−j)yj + y2
n−1, that is,

1GF (x, y) = x2
n−1 + y2

n−1 +

2n−2∑
j=0

(xy)j , (17)

which has algebraic degree 2n − 2. We have 1GF (x, y) = 1GF (y, x), which is
coherent with the involutivity of F and the coefficient of x2

n−2 equals y2
n−2,

which illustrates Proposition 7.
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4 Characterizations of the graph indicators of
vectorial functions

In this section, we want to characterize those (n + m)-variable Boolean func-
tions which are the graph indicators of (n,m)-functions. We have at least three
reasons why we are interested by such a characterization. Firstly, these func-
tions do play a role as we have seen, and deserve then to be clearly identified.
Secondly, we anticipate that the study of graph indicators may allow finding
more properties of vectorial functions themselves and of their combinations in
the rounds of block ciphers in the future (we have seen a preliminary illustration
in Subsection 3.3). Thirdly, this will allow us to characterize in Section 7 the
graph indicators of permutations.

4.1 Characterization by the Fourier-Hadamard transform

A Boolean function h over Fn2 ×Fm2 is the graph indicator of an (n,m)-function
if and only if, for every x ∈ Fn2 , there exists exactly one y ∈ Fm2 such that
h(x, y) = 1. This can be characterized by the Fourier-Hadamard transform:

Proposition 9 Let n and m be any positive integers. A Boolean function h
over Fn2 × Fm2 is the graph indicator of an (n,m)-function if and only if, for all
u ∈ Fn2 , its Fourier-Hadamard transform satisfies:

ĥ(u, 0) = 2n δ0(u).

Proof. For every a, x ∈ Fn2 , the sum
∑
u∈Fn2

(−1)u·(a+x) equals 2n if x =

a and 0 otherwise. Then, the number of y such that h(a, y) = 1 equals

2−n
∑
u,x∈Fn2 ,y∈Fm2

h(x, y)(−1)u·(a+x) = 2−n
∑
u∈Fn2

(−1)u·aĥ(u, 0). Hence, h is

the graph indicator of an (n,m)-function if and only if, for all a ∈ Fn2 , its

Fourier-Hadamard transform satisfies
∑
u∈Fn2

(−1)u·aĥ(u, 0) = 2n. This is equiv-

alent to saying that the function u ∈ Fn2 7→ ĥ(u, 0) has for Fourier-Hadamard
transform the constant function 2n. Since this constant function equals the
Fourier-Hadamard transform of u ∈ Fn2 7→ 2nδ0(u), this proves the result, by
the bijectivity of the Fourier-Hadamard transform. 2

Denoting by F the (n,m)-function whose h is the graph indicator, ĥ equals
the Walsh transform of F , and satisfies then also that, for all a ∈ Fn2 and v ∈ Fm2 :∑

u∈Fn2

ĥ(u, v)(−1)a·u = 2n(−1)v·F (a) ∈ {−2n, 2n}.

4.2 Characterization by the ANF

Let us use again that a function h is the indicator of the graph of some (n,m)-
function if and only if, for every x ∈ Fn2 , the Boolean function y 7→ h(x, y) is
an atomic function (i.e. the indicator of a singleton), but characterize this by
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means of the ANF. Any atomic function of y has the form
∏m
j=1(yj ⊕ εj) =⊕

J⊆{1,...,m}

(∏
j∈Jc εj

)
yJ , where εj equals the coefficient of y{1,...,m}\{j}. By

uniqueness of the ANF, a Boolean function g(y) given by its ANF g(y) =⊕
J⊆{1,...,m} aJ y

J , aJ ∈ F2, is then atomic if and only if, for every J ⊆
{1, . . . ,m}, we have aJ =

∏
j∈Jc a{1,...,m}\{j} =

∏
K⊆{1,...,m}
|K|=m−1,J⊆K

aK (with a{1,...,m} =

1). We deduce:

Proposition 10 Let h(x, y) be any (n+m)-variable Boolean function given by
its ANF:

h(x, y) =
⊕

I⊆{1,...,n},J⊆{1,...,m}

aI,J x
IyJ =

⊕
J⊆{1,...,m}

hϕ,J(x) yJ .

Then, h is the indicator of the graph of some (n,m)-function if and only if, for
all J ⊆ {1, . . . ,m}, we have:

hϕ,J =
∏

K⊆{1,...,m}
|K|=m−1,J⊆K

hϕ,K ,

and the function hϕ,{1,...,m} equals constant function 1.

According to Proposition 3, the j-th coordinate function of the (n,m)-function
F whose graph indicator equals h equals fj(x) = hϕ,{1,...,m}\{j} ⊕ 1.

4.3 Characterization by the bivariate representation

We shall similarly characterize by means of the bivariate representation the fact
that a 2n-variable function h is the indicator of the graph of some (n, n)-function.
Given x ∈ F2n , the Boolean function y 7→ h(x, y) is an atomic function if and

only if it has the form 1+(y+u)2
n−1 = 1+

∑2n−1
j=0 y2

n−1−juj . By uniqueness of

the representation and u being the coefficient of y2
n−2, a Boolean function g(y)

given by its univariate representation g(y) =
∑2n−1
j=0 ajy

j , aj ∈ F2n , is atomic

if and only if: 1) a0 = 1 + (a2n−2)2
n−1, 2) for every j = 1, . . . , 2n − 2, we have

a2n−1−j = (a2n−2)j , and 3) a2n−1 = 1. We deduce:

Proposition 11 Let h(x, y) be any (n+m)-variable Boolean function given by
its bivariate form:

h(x, y) =
∑

i,j∈{0,...,2n−1}

ai,j x
iyj =

∑
j∈{0,...,2n−1}

hϕ,j(x) yj ; ai,j ∈ F2n .

Then, h is the indicator of the graph of some (n, n)-function if and only if:

1) hϕ,0 = 1 + (hϕ,2n−2)2
n−1,

2) ∀ j ∈ {1, . . . , 2n − 2}, hϕ,2n−1−j = (hϕ,2n−2)j ,

3) ∀x ∈ F2n , hϕ,2n−1(x) = 1.
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According to Proposition 5, the (n, n)-function F whose graph indicator equals
h equals the x-dependent coefficient of y2

n−2 in h(x, y).

5 Characterization of the Boolean functions affine
equivalent to graph indicators

We need to characterize the functions h(x, y) which are affine equivalent to a
graph indicator because the affine equivalence of graph indicators corresponds
to the important CCZ equivalence notion (see [7, 3]) recalled in Section 2.
Proposition 9 is easily extended by affine equivalence:

Proposition 12 Let n and m be any positive integers. A Boolean function h
over Fn2 × Fm2 is affinely equivalent to the graph indicator of an (n,m)-function
if and only if there exists an n-dimensional vector space on which its Fourier-
Hadamard transform equals 0, except at the 0 point where it takes value 2n.

Indeed, according to what is recalled in Section 2 about the Fourier-Hadamard
transform, if L is an F2-linear automorphism of Fn2 × Fm2 and a ∈ Fn2 × Fm2 ,
and if L′ is the adjoint operator of L−1 and h′(x) = h(L(x) + a), we have

ĥ′(u, v) = (−1)L
′(u,v)·a ϕ̂(L′(u, v)). The condition of Proposition 12 is then

necessary (the n-dimensional space being L′−1(Fn2 × {0}). Conversely, if the
condition is satisfied, then up to affine equivalence, we may assume that this
n-dimensional vector space equals Fn2 × {0} and the condition is sufficient.

It seems difficult to extend the characterization of Proposition 10 or that of
Proposition 11 by affine equivalence in an efficient way. Of course, we could write
“there exists an affine automorphism L such that h◦L is a graph indicator” and
use for instance that (h◦L)ϕ,J(x) =

⊕
supp(y)⊆J h(L(x, y)) for deducing a char-

acterization from Proposition 10, but getting rid of “there exists” seems difficult.

Another characterization is possible, that is more complex but gives more
information. According to Proposition 3, for every (n,m)-function F , function
1GF (x, y) factorizes into the product of the m Boolean functions hj(x, y) = yj⊕
fj(x)⊕1 which are F2-linearly independent. Denoting by ej the j-th vector of the

canonical basis of Fm2 , we have Whj (u, v) =
∑

x∈Fn2 ,y∈Fm2

(−1)yj⊕fj(x)⊕1⊕u·x⊕v·y =

−
( ∑
x∈Fn2

(−1)fj(x)⊕u·x
)( ∑

y∈Fm2

(−1)yj⊕v·y
)

=

{
−2nWfj (u) if v = ej
0 otherwise.

. Hence,

the Walsh transforms of these m functions have their supports included in par-
allel n-dimensional affine spaces Aj (of equation v = ej) which are such that
each element of Fn2 × Fm2 can be expressed uniquely in the form

∑m
j=1 aj with

aj ∈ Aj . We shall say that the Aj ’s uniquely generate Fn2 × Fm2 , F2-linearly.
Let L be an F2-linear automorphism of Fn2 × Fm2 and L′ the adjoint operator of
L−1. The images by L′ of the affine spaces Fn2 ×{ej} are parallel n-dimensional
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affine spaces that uniquely generate Fn2 × Fm2 , F2-linearly. Then, according to
what is recalled above, if h(x, y) is affine equivalent to the graph indicator of
F , its ANF factorizes into the product of m Boolean functions whose Walsh
supports are parallel n-dimensional affine spaces uniquely generating Fn2 × Fm2 ,
F2-linearly.
Conversely, assume that an (n + m)-variable Boolean function h equals the
product of n Boolean functions, each of which has for Walsh support an n-
dimensional affine space, and that these affine spaces are parallel and uniquely
generate Fn2 × Fm2 , F2-linearly. Then there exists a linear automorphism which
maps these n-dimensional affine spaces to the spaces Fn2 ×{ej}. Since it is easily
seen that any (n + m)-variable Boolean function having Fn2 × {ej} for Walsh
support has the form yj ⊕ fj(x)⊕ 1, we deduce:

Proposition 13 Any (n+m)-variable Boolean function is affine equivalent to
the graph indicator of a function if and only if it equals the product of n Boolean
functions, each of which has for Walsh support an n-dimensional affine space
and these affine spaces are parallel and uniquely generate Fn2 × Fm2 , F2-linearly.

6 Graph indicators of sums, products, composi-
tions and concatenations of vectorial functions

We can apply Proposition 3 or 5 to F ∗G, where ∗ is some binary operation, to
deduce the expression of the ANF or of the polynomial representation of 1GF∗G ,
by means of the corresponding representations of F and G. It may be also useful
to have such an expression by means of the corresponding representations of 1GF
and 1GG . We address this below for the main operations and modifications on
vectorial functions.

6.1 Sums of functions

According to Proposition 3, given two (n,m)-functions F and G, we have
1GF+G

(x, y) =
∏m
j=1(yj ⊕ fj(x) ⊕ gj(x) ⊕ 1), where the fj ’s and the gj ’s are

the coordinate functions of F and G, respectively. The ANF of 1GF+G
(x, y)

(that we shall denote the same way as the function itself, as it is usual) writes
then:

1GF+G
(x, y) = 1GF (x, y +G(x)) = 1GG(x, y + F (x)), (18)

where 1GF , 1GG , F and G stand here also for the ANF of the functions. But
this does not give 1GF+G

by means of 1GF and 1GG , and it involves compositions
of functions, which are more complex to calculate/compute than additions and
multiplications. Let us then use another approach.
Relation (18) corresponds to expressing that the equality F (x) + G(x) = y is
equivalent to F (x) = y + G(x) and to G(x) = y + F (x). This same equality is
also equivalent to “∃z ∈ Fn2 ;F (x) = z and G(x) = y+ z”. Then, since F (x) = z
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cannot be true simultaneously for a same x and two different z, we deduce:

1GF+G
(x, y) =

∑
z∈Fn2

1GF (x, z)1GG(x, y + z) =
⊕
z∈Fn2

1GF (x, z)1GG(x, y + z), (19)

and since we have here a sum modulo 2, we can replace these indicator functions
by their ANF or by their univariate representation.

Remark. Relation (19) replaces the complexity of a composition by that of a
multiplication combined with a sum of 2n terms. This represents a considerable
gain. 2

Remark. It seems that the case of a direct sum of functions (i.e. when F and
G depend on disjoint variables) is not significantly simpler than the general case
of a sum. 2

6.1.1 Graph indicator of a derivative

The derivatives DaF (x) = F (x)+F (x+a) of vectorial functions play an impor-
tant role, in particular for APN functions. Let us then apply the result above
to derivatives. We have, using that, for any Boolean functions f and g, we have

fg = f+g−(f⊕g)
2 :

1GDaF (x, y) =
∑
z∈Fn2

1GF (x, z)1GF (x+ a, y + z)

=
∑
z∈Fn2

1GF (x, z) + 1GF (x+ a, y + z)−D(a,z)1GF (x, y)

2

= 1− 1

2

∑
z∈Fn2

D(a,z)1GF (x, y), (20)

where D(a,z)1GF (x, y) = 1GF (x, y) ⊕ 1GF (x + a, y + z). We shall exploit this in
Section 9).

6.2 Products of functions

The situation with the product is slightly more tricky than with the sum, be-
cause of the zero absorbance. Let F and G be two (n, n)-functions, that we
shall take valued in F2n so as to be able to multiply their outputs, and let their
graph indicators be therefore in bivariate form. According to Proposition 5, we
have 1GFG(x, y) = 1 + (y + F (x)G(x))2

n−1. For every x such that G(x) 6= 0,
we have (G(x))2

n−1 = 1 and dividing (y + F (x)G(x))2
n−1 by (G(x))2

n−1 gives
1GFG(x, y) = 1 + [y(G(x))2

n−2 + F (x)]2
n−1. The bivariate representation of

1GF+G
(x, y) writes then:

1GFG(x, y) = (G(x))2
n−11GF (x, y(G(x))2

n−2) + ((G(x))2
n−1 + 1)(1 + y2

n−1).
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Here again, this does not give 1GFG by means of 1GF and 1GG , and it involves
compositions of functions. It is possible to get rid of compositions but it seems
difficult to completely avoid the use of F (x) and G(x). The relation F (x)G(x) =
y when G(x) 6= 0 is equivalent to “∃z ∈ F∗2n ;G(x) = z and F (x) = yz2

n−2” and
we have:

1GFG(x, y) = (G(x))2
n−1

∑
z∈F∗

2n

1GF (x, yz2
n−2)1GG(x, z)+((G(x))2

n−1+1)(1+y2
n−1).

6.3 Composition of functions

We now study the graph indicators of composite functions G ◦ F . Composition
plays a central role in block ciphers, since these are iterative, and the whole
cipher is the composition of all the transformations performed by the rounds.
An (n,m)-function F (x) being given (by its ANF or by its univariate represen-
tation) and an (m, r)-function G(y) being given by the indicator 1GG(y, z) of its
graph (which can be represented by its ANF or by its bivariate representation),
the equality (G ◦ F )(x) = G(F (x)) results in:

1GG◦F (x, z) = 1GG(F (x), z); x ∈ Fn2 , z ∈ Fr2. (21)

But here again, Relation (21) still involves a composition, which is complex to
calculate. Moreover, this hybrid expression using 1GG and F instead of 1GG and
1GF is not easily iterable while in block ciphers, composition is iterated. So
let us address the case where we are given the ANF of 1GF rather than that
of F (x). The equation of the support of 1GG◦F (x, z) can be obtained by the
elimination of y from the two equations 1GF (x, y) = 1 and 1GG(y, z) = 1. This
can be handled easily, similarly to what we did with addition in Subsection 6.1.
Indeed, for every x, there is exactly one y such that 1GF (x, y) = 1, and this
gives the possibility of expressing 1GG◦F (x, z) by addition in Z or in F2, and
multiplication:

1GG◦F (x, z) =
∑
y∈Fm2

1GF (x, y)1GG(y, z) =
⊕
y∈Fm2

1GF (x, y)1GG(y, z). (22)

Remark. If F is identity, then since 1GF (x, y) equals 1 if y = x and equals 0
otherwise, this formula gives correctly 1GG◦F (x, z) = 1GG(x, z) and if G is iden-
tity it gives also 1GG◦F (x, z) = 1GF (x, z). 2

Remark. Here also, replacing the complexity of a composition by that of
a multiplication combined with a sum of 2n terms represents a considerable
gain. Moreover, Relation (22) can be interpreted, thanks to Proposition 1, in
a rather efficient way: 1GG◦F (x, z) equals 1 if and only if the Boolean function
y 7→ 1GF (x, y)1GG(y, z) has algebraic degree m. 2
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6.3.1 ANF

According to Relation (22) and using Relations (8) and (10) and Proposition 1,
we have:

1GG◦F (x, z) =
⊕

I⊆{1,...,n}
K⊆{1,...,r}

xIzK

⊕
y∈Fn2

(
ψF,I(y)ϕG,K(y)

)
=

⊕
I⊆{1,...,n},K⊆{1,...,r};

dalg(ψF,I (y)
∏
k∈Kc (gk⊕1))=m

xIzK , (23)

where Kc = {1, . . . , r} \K and the gk’s are the coordinate functions of G.
Note that Relation (23) simplifies when F is a permutation: we have then

1GG◦F (x, z) =
⊕

I⊆{1,...,n}
K⊆{1,...,r}

xIzK

⊕
y∈Fn2

(∏
i∈Ic

(f ′i ⊕ 1)
∏
k∈Kc

(gk ⊕ 1)

)
=

⊕
I⊆{1,...,n},K⊆{1,...,r};

dalg(
∏
i∈Ic (f

′
i
⊕1)

∏
k∈Kc (gk⊕1))=n

xIzK ,

where Ic = {1, . . . , n} \ I and the f ′i ’s are the coordinate functions of F−1.

Relation (22) can be iterated to the composition of r functions G1, . . . , Gr
where Gt is from Fmt−1

2 to Fmt2 : for x ∈ Fm0
2 and z ∈ Fmr2 , we have:

1GGr◦···◦G1
(x, z) =

⊕
(y1,...,yr−1)∈

Fm1
2 ×···×F

mr−1
2

(
1GG1

(x, y1)

(
r−1∏
t=2

1GGt (yt−1, yt)

)
1GGr (yr−1, z)

)
. (24)

6.3.2 Polynomial representation

We restrict ourselves here to n = m = r. According to Relations (13) and (22),
we have:

1GG◦F (x, z) =

2n−1∑
i=0

2n−1∑
k=0

∑
y∈Fn2

ψF,i(y)ϕG,k(y)

xizk.

Assuming again that F is an (n, n)-permutation, we have, according to Propo-
sition 5 and Relations (16) and (22), that:

1GG◦F (x, z) =

2n−1∑
i=0

 ∑
y∈F2n

(F−1(y))i

x2
n−1−i +

2n−1∑
k=0

 ∑
y∈F2n

(G(y))k

 z2
n−1−k+
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∑
i,k∈{0,...,2n−1}

 ∑
y∈F2n

(F−1(y))i(G(y))k

x2
n−1−iz2

n−1−k.

We have
∑2n−1
i=0

(∑
y∈F2n

(F−1(y))i
)
x2

n−1−i =
∑
y∈F2n

(1 + 1GF (x, y)) = 1 and∑2n−1
k=0

(∑
y∈F2n

(G(y))k
)
z2
n−1−k =

∑
y∈F2n

(1+1GG(y, z)) = |G−1(z)| [mod 2].

Hence, according Proposition 2:

1GG◦F (x, z) = 1 + |G−1(z)| [mod 2] +
∑

i,k∈{0,...,2n−1}
dalg((F−1(y))i(G(y))k)=n

x2
n−1−iz2

n−1−k.

6.4 Concatenated functions

Concatenation plays a central role in block ciphers, since their S-boxes, for
instance the (128, 128)-function used in the AES, are most often, for reasons of
speed, the concatenations of small S-boxes ((8, 8)-functions in the case of the
AES).
The concatenation F = (F1, . . . , Fk) of (n,m)-functions F1, . . . , Fk is defined as

F : (x(1), . . . , x(k)) ∈ (Fn2 )k 7→ (F1(x(1)), . . . , Fk(x(k))) ∈ (Fm2 )k.

Graph indicators behave very simply with respect to it. Indeed, since we have
F (x(1), . . . , x(k)) = (y(1), . . . , y(k)) if and only if ∀i = 1, . . . , k, Fi(x

(i)) = y(i),
we have then:

1GF ((x(1), . . . , x(k)), (y(1), . . . , y(k))) =

k∏
i=1

1GFi (x
(i), y(i)). (25)

Note the similarity with the relation:

WF ((u(1), . . . , u(k)), (v(1), . . . , v(k))) =

k∏
i=1

WFi(u
(i), v(i)),

which is also true (note however that the fact that x(1), . . . , x(k) have no coor-
dinate in common is necessary for the latter relation and not for the former).
In the S-boxes of block ciphers, the functions Fi(x

(i)) will be given in practice in
univariate form, with x(i) ∈ F2n . According to Proposition 5, Expression (25)
gives then:

1GF ((x(1), . . . , x(k)), (y(1), . . . , y(k))) =

k∏
i=1

(
1 +

(
y(i) + Fi(x

(i))
)2n−1)

=

∑
L⊆{1,...,k}

(∏
i∈L

(
y(i) + Fi(x

(i))
)2n−1)

=
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∑
L⊆{1,...,k}

∑
λ∈{0,...,2n−1}L

(∏
i∈L

(
(y(i))2

n−1−λi(Fi(x
(i)))λi

))
. (26)

For each Fi which is a permutation, we can change Fi into F−1i while exchang-
ing x(i) and y(i).
In the case where each Fi equals the multiplicative inverse function, then, start-
ing again from Relation (25) and using Relation (17), we obtain:

1GF ((x(1), . . . , x(k)), (y(1), . . . , y(k))) =

k∏
i=1

(x(i))2
n−1 + (y(i))2

n−1 +

2n−2∑
j=0

(x(i)y(i))j

 =

∑
L⊆{1,...,k}

∑
λ∈{0,...,2n−2}L

(∏
i∈Lc

(
(x(i))2

n−1 + (y(i))2
n−1
)∏
i∈L

(
(x(i)y(i))λi

))
.

(27)

6.4.1 Composing a function obtained by concatenation by another
function

In the model of block cipher called substitution-permutation network (SPN), a
round is made of a global S-box (often made by the concatenation of smaller
S-boxes, see above), followed by a diffusion layer (which is most often a lin-
ear permutation, for reasons of speed), followed by the addition of the round
key. Looking at two rounds leads then to considering a function which is the
composition of a function F = (F1, . . . , Fk) equal to the concatenation of small
S-boxes Fi, and of a function G equal to an affine automorphism composed with
a global S-box. Using Relation (26) and that 1GG◦F (x, z) equals 1 if and only if
the Boolean function y 7→ 1GF (x, y)1GG(y, z) has algebraic degree m = kn, and
expressing 1GG((y(1), . . . , y(k)), z) in the form:∑

K⊆{1,...,r}

ϕG,K(y(1), . . . , y(k))zK ,

we deduce the expression:

1GG◦F ((x(1), . . . , x(k)), z) =

∑
L⊆{1,...,k},K⊆{1,...,r},λ∈{0,...,2n−2}L

dalg(hL,K,λ)=kn

(∏
i∈L

(Fi(x
(i)))λi

)
zK ,

where

hL,K,λ(y) =

(∏
i∈L

(
(y(i))2

n−1−λi
))

ϕG,K(y(1), . . . , y(k)).
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In the case where each Fi equals the multiplicative inverse function, using Rela-
tion (27) and again that 1GG◦F (x, z) equals 1 if and only if the Boolean function
y 7→ 1GF (x, y)1GG(y, z) has algebraic degree m = kn, we obtain:

1GG◦F ((x(1), . . . , x(k)), z) =

∑
L⊆{1,...,k},K⊆{1,...,r},λ∈{0,...,2n−2}L,b∈{0,1}Lc

dalg(hL,K,λ,b)=kn

(∏
i∈Lc

(x(i))(2
n−1) (1−bi)

∏
i∈L

(x(i))λi

)
zK ,

where

hL,K,λ,b(y) =

(∏
i∈Lc

(y(i))(2
n−1) bi

∏
i∈L

(y(i))λi

)
ϕG,K(y(1), . . . , y(k)).

6.5 Functions obtained by the switching method

The switching method has been used to construct new APN functions from
known ones [11]. It consists of adding a Boolean function to an (n, n)-function
(in univariate form). Up to affine equivalence, this is equivalent to modifying
one of the coordinate functions of the vectorial function. This latter viewpoint
generalizes to (n,m)-functions. So let F = (f1, . . . , fm) be any (n,m)-function
and let f be any n-variable Boolean function. Let us denote by Ff the (n,m)-
function whose last coordinate equals fm ⊕ f and whose other coordinates are
kept unchanged, and by F ′ the (n,m−1)-function obtained from F by discarding
its last coordinate. Then, denoting y′ = (y1, . . . , ym−1), it is straightforward to
see, either by using Proposition 3 or by checking separately each case f(x) = 0
and f(x) = 1 and using that if 1GF ′ (x, y

′) = 0 then 1GF (x, y) = 0, that:

1GFf (x, y) = 1GF (x, y)⊕ f(x) 1GF ′ (x, y
′). (28)

7 Characterizing bijectivity by means of graph
indicators

Bijectivity is needed in many situations of cryptography and coding (it plays
in fact a role in all domains where vectorial functions are used). For instance,
in SPN, the S-boxes must be bijective; in leakage squeezing and in the related
CIS codes, the function used must be bijective; and the so-called threshold im-
plementation with uniformity (see [14]) of an (n, n)-permutation is an (nk, nk)-
permutation.
An (n, n)-function F is bijective if and only if 1GF (y, x) is the indicator of the
graph of a function.

7.1 Characterization by the Fourier-Hadamard transform

Proposition 9 applied to 1GF (y, x) gives the well-known:
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Proposition 14 Let n be any positive integer. An (n, n)-function is bijective
if and only if, for all v ∈ Fn2 , the Fourier-Hadamard transform of its graph
indicator satisfies:

1̂GF (0, v) = 2n δ0(v).

7.2 Characterization by the ANF

The characterization of the graph indicators of functions in Proposition 10 al-
lows characterizing the graph indicators of permutations. We write h(x, y) =∑
J⊆{1,...,n} hϕ,J(x) yJ =

∑
I⊆{1,...,n} hψ,I(y)xI (so that if h = 1GF , then hϕ,J =

ϕF,J and hψ,I = ψF,I). Then we know that h is the graph indicator of an (n,m)-
function if and only if, for all J ⊆ {1, . . . , n}, we have:

hϕ,J =
∏

K⊆{1,...,n}
|K|=n−1,J⊆K

hϕ,K ,

and hϕ,{1,...,n} equals the constant function 1. This double condition being
assumed satisfied, h is then the graph indicator of a permutation if and only if,
for all I ⊆ {1, . . . , n}, we have:

hψ,I =
∏

K⊆{1,...,n}
|K|=n−1,I⊆K

hψ,K ,

and hψ,{1,...,n} equals the constant function 1. In fact, the second condition

suffices. Indeed, hψ,{1,...,n}(y) being the y-dependent coefficient of x{1,...,n} in
1GF (x, y), the fact that it equals the constant function 1 translates, according
to Proposition 1, that for every y ∈ Fn2 , the size of F−1(y) is odd and this is
sufficient for F to be a permutation.

Theorem 1 Let F be an (n, n)-function and

1GF (x, y) =
⊕

I,J⊆{1,...,n}

aI,J x
IyJ =

⊕
I⊆{1,...,n}

ψF,I(y)xI .

Then, F is a permutation if and only if the function ψF,{1,...,n} equals constant
function 1. Moreover, we have then for all I ⊆ {1, . . . , n}:

ψF,I =
∏

K⊆{1,...,n}
|K|=n−1,I⊆K

ψF,K

Remark. This characterization by a single n-variable Boolean function is
conceptually simple and therefore appealing. The expression of the ANF of
ψF,{1,...,n}(y) by means of the coefficients of the ANF of the coordinate func-
tions fj(x); j = 1, . . . , n, can be deduced from the decomposition given by
Proposition 3, after expanding each product

∏
j∈Jc(fj(x)⊕1) and keeping only

the coefficient of its term x{1,...,n}. We shall study below more in detail the case
where F (x) is given in polynomial form, which is slightly simpler. 2
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7.3 Characterization by the bivariate representation

According to Proposition 11, an (n + m)-variable Boolean function h(x, y) =∑
i,j∈{0,...,2n−1} ai,j x

iyj =
∑
j∈{0,...,2n−1} hϕ,j(x) yj ; ai,j ∈ F2n , is the graph

indicator of an (n, n)-function if and only if:

1) hϕ,0 = 1 + (hϕ,2n−2)2
n−1,

2) ∀ j ∈ {1, . . . , 2n − 2}, hϕ,2n−1−j = (hϕ,2n−2)j ,

3) hϕ,2n−1 = 1.

Writing h(x, y) =
∑
i∈{0,...,2n−1} hψ,i(y)xi, we have then that h is the graph

indicator of a permutation if and only if:

1) hψ,0 = 1 + (hψ,2n−2)2
n−1,

2) ∀ i ∈ {1, . . . , 2n − 2}, hψ,2n−1−i = (hψ,2n−2)i,

3) hψ,2n−1 = 1.

Here again, knowing that h is a graph indicator, the last condition suffices (the
proof is similar):

Theorem 2 Let F be an (n, n)-function and

1GF (x, y) =
∑

i,j∈{0,...,2n−1}

ai,j x
iyj =

2n−1∑
i=0

ψF,i(y)xi; ai,j ∈ F2n .

Then, F is a permutation if and only if the function ψF,2n−1 equals constant
function 1. Moreover, we have then:

1) ψF,0 = 1 + (ψF,2n−2)2
n−1,

2) ∀ i ∈ {1, . . . , 2n − 2}, ψF,2n−1−i = (ψF,2n−2)i.

According to Proposition 5, we have:

1GF (x, y) = 1 +
∑

K⊆{0,...,n−1}

y2
n−1−

∑
k∈K 2k

∏
k∈K

(F (x))2
k

.

Writing F (x) =
∑2n−2
r=0 arx

r (without loss of generality, since we know that F
can be a permutation only if it has algebraic degree strictly less than n), we
have then:

1GF (x, y) =

1 +
∑

K⊆{0,...,n−1}

y2
n−1−

∑
k∈K 2k

∏
k∈K

(
2n−2∑
r=0

a2
k

r x
2kr (mod 2n−1)

)
=

1 +
∑

K⊆{0,...,n−1}

y2
n−1−

∑
k∈K 2ka

∑
k∈K 2k

0 +
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∑
K⊆{0,...,n−1}

b∈{0,...,2n−2}K ; b 6=0,...,0

y2
n−1−

∑
k∈K 2k

(∏
k∈K

a2
k

bk

)
xλK,b ,

where {0, . . . , 2n − 2}K denotes the set of sequences b = (bk)k∈K valued in
{0, . . . , 2n − 2} and indexed in K, and λK,b equals

∑
k∈K 2kbk [mod 2n − 1] if

2n − 1 does not divide
∑
k∈K 2kbk, and equals 2n − 1 otherwise. We deduce:

ψF,2n−1(y) =
∑

K⊆{0,...,n−1},b∈{0,...,2n−2}K

b6=0,...,0 and
∑
k∈K 2kbk≡0 [mod 2n−1]

(∏
k∈K

a2
k

bk

)
y2
n−1−

∑
k∈K 2k .

Corollary 4 Let F (x) =
∑2n−2
r=0 arx

r; ar ∈ F2n , be any (n, n)-function. Then
F is bijective if and only if, for all K ( {0, . . . , n− 1}, we have:

∑
b∈{0,...,2n−2}K,b 6=0,...,0∑
k∈K 2kbk≡0 [mod 2n−1]

(∏
k∈K

a2
k

bk

)
= 0,

and: ∑
b∈{0,...,2n−2}{0,...,n−1}

b 6=0,...,0 and
∑n−1
k=0

2kbk≡0 [mod 2n−1]

(
n−1∏
k=0

a2
k

bk

)
= 1.

Remark. A permutation polynomial is called complete if the polynomial F (x)+
x is also a permutation polynomial. Complete polynomials are useful in many
domains of applied mathematics (e.g. in the construction of bent functions).
Theorem 2 provides a characterization of complete polynomials among permu-
tation polynomials, by applying it to F (x) + x. Writing a program and check-
ing the condition with a computer for a given function F in a small number
of variables is easy. Determining the mathematical condition to be satisfied
by F is more complex. Applying Proposition 5 to F (x) + x, using Lucas’
theorem, denoting by k � i the fact that the binary expansion of i covers
that of k and using the definition of ϕF,j given after Proposition 5, we have

1GF (x)+x
(x, y) = 1 + (y+ x+F (x))2

n−1 = 1 +
∑2n−1
j=0 y2

n−1−j(x+F (x))j = 1 +∑2n−1
j=0

∑
k�j y

2n−1−jxj−kF (x)k = 1 +
∑2n−1
j=0

∑
k�j y

2n−1−jxj−kϕF,2n−1−k(x).

Then, a permutation F (x) =
∑2n−2
r=0 arx

r is complete if and only if the coeffi-
cient of x2

n−1 in this expression equals the constant function 1.
An alternate way is to use Relation (19) and to use that

∑
z∈F2n

zk equals 1 if
k is nonzero and is divisible by 2n − 1, and 0 otherwise, but this results in the
same kind of calculations. 2

7.4 Characterization up to CCZ equivalence

The two main parameters, see e.g. [5], that one wishes to optimize when choos-
ing S-boxes for block ciphers – the nonlinearity (which should be large), and the
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differential uniformity (which should be small) – are preserved by CCZ equiv-
alence and are in fact properties of their graph indicators. Since bijectivity is
needed in many cases, it is then important to be able to determine whether a
2n-variable Boolean function (equal to a graph indicator or not) is affine equiv-
alent to the graph indicator of a permutation.
We could try to combine the results of Section 5 with those of Subsections 7.2
and 7.3, but we saw in Section 5 that it seems already difficult to characterize by
the ANF and by the polynomial representation the functions affine equivalent to
graph indicators, not speaking of bijectivity. The characterization of Subsection
7.1 by the Fourier-Hadamard transform behaves better. Propositions 12 and 14
give:

Proposition 15 A (2n)-variable Boolean function h is affine equivalent to the
graph indicator of a permutation if and only if there exist two supplementary
n-dimensional vector spaces (whose intersection is trivial and whose direct sum
equals the whole space) on each of which the Fourier-Hadamard transform van-
ishes except at 0, where it takes value 2n.

Proposition 13 extends also nicely:

Proposition 16 Any (2n)-variable Boolean function h is affine equivalent to
the graph indicator of a permutation if and only if there exist two supplementary
n-dimensional vector spaces E1 and E2 such that, for every i = 1, 2, function
h equals the product of n Boolean functions having for Walsh supports cosets of
Ei that uniquely generate Fn2 × Fn2 , F2-linearly.

8 Characterizing injectivity by means of graph
indicators

We first observe that an (n,m)-function F (with m ≥ n) is injective (i.e. one to
one) if and only if there exists a subset E of Fm2 and an (m,n)-function G, such
that, for every x ∈ Fn2 and every y ∈ Fm2 , we have 1GF (x, y) = 1E(y)1GG(y, x),
and that this set E is unique. Indeed, the existence of E and G satisfying such
equality is necessary since, taking for E the image set Im(F ) of F , for every
y 6∈ E, this equality writes 0 = 0, and for every y ∈ E, there is a unique x ∈ Fn2
such that y = F (x), and denoting by G any function such that, for every y ∈ E,
the value of G(y) equals this unique x, the equality writes 1 = 1. Conversely,
if 1GF (x, y) = 1E(y)1GG(y, x) for some set E and some (m,n)-function G, then
for every y ∈ E, there exists a unique x ∈ Fn2 such that y = F (x). Moreover,
if |E| < 2n then there exists x ∈ Fn2 such that 1GF (x, y) = 0 for every y ∈ Fm2 ,
a contradiction, hence |E| = 2n and E = Im(F ) (that is, E satisfying the
condition is necessarily unique) and F is then injective.
When checking this condition, we can avoid visiting all the sets E of size 2n

since, when F is injective and E is its image set, we clearly have 1E(y) =⊕
a∈Fm2

1GF (a, y). Hence:
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Proposition 17 Let n ≤ m and let F be any (n,m)-function. Then F is
injective if and only if:

1GF (x, y) =

⊕
a∈Fm2

1GF (a, y)

 1GG(y, x),

for some (m,n)-function G.

This characterization writes in a nicely simple way, but is in fact highly complex
to check, because it needs to visit all (m,n)-functions. Let us then propose other,
more practical, characterizations.
For every y ∈ Fm2 , the sum

∑
x∈Fn2

1GF (x, y) equals the size of F−1(y). If we

have the NNF of 1GF , then we deduce that F is injective if and only if, for every

y ∈ Fm2 , we have2
(∑

x∈Fn2
1GF (x, y)

)2
=
∑
x∈Fn2

1GF (x, y).

This has the advantage of being generalizable to k-to-1 functions in a strong
sense (i.e. such that each preimage F−1(z) has size either 0 of k): the condition

is then that, for all y ∈ Fn2 ,
(∑

x∈Fn2
1GF (x, y)

)2
= k

∑
x∈Fn2

1GF (x, y).

Moreover, we have
(∑

x∈Fn2
1GF (x, y)

)2
≥
∑
x∈Fn2

1GF (x, y) for every (n,m)-

function F and every y ∈ Fm2 , with equality if and only if the function is Boolean,
since the value of any sum

∑
x∈Fn2

1GF (x, y) is an integer. Hence, F is injective

if and only if we have
∑
y∈Fm2

(∑
x∈Fn2

1GF (x, y)
)2

=
∑
y∈Fm2

∑
x∈Fn2

1GF (x, y),

and therefore:

Proposition 18 Let F be any (n,m)-function. Then, F is injective if and only
if we have: ∑

y∈Fm2

∑
x∈Fn2

1GF (x, y)

2

= 2n,

that is, ∑
x,x′∈Fn2

1GF (x′, F (x)) = 2n.

Note that this characterization does not generalize to k-to-1 functions, except
for k = 2 when the size of each pre-image by F is necessarily even (such as in the
case of a derivative; we shall exploit this in Section 9). Indeed, for every integer
k ≥ 2, there exist sequences of positive integers λi such that

∑
i λ

2
i = k

∑
i λi

and ∃i; λi 6∈ {0, k} (an example for k = 2 is 3,2,1,1,1).

Remark. Translating Proposition 18 by means of the NNF gives the con-

dition
∑
x,x′∈{0,1}n

∏m
j=1

(
1 − fj(x) − fj(x

′) + 2fj(x)fj(x
′)
)

= 2n, that is,

2Note that, if m = n, this provides one more characterization of permutations.
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∑
x,x′∈{0,1}n

∏m
j=1

(
1⊕ fj(x)⊕ fj(x′)

)
= 2n, which obviously characterizes in-

jectivity. 2

Let us see now what we can do with the ANF and the polynomial represen-
tation of 1GF . An (n,m)-function is injective if and only if, for every y ∈ Fm2 , the
Boolean function x 7→ 1GF (x, y), which is the characteristic function of F−1(y),
is either an atomic function or the zero function. We have seen that a Boolean
function g(x) =

⊕
I⊆{1,...,n} aI x

I , aI ∈ F2, is atomic if and only if, for every

I ⊆ {1, . . . , n}, we have aI =
∏
i∈{1,...,n}\I a{1,...,n}\{i} =

∏
K⊆{1,...,n}
|K|=n−1,I⊆K

aK (and

a{1,...,n} = 1). The same function is the zero function if and only if all its coef-
ficients are zero, that is, the coefficients of degree n− 1 are null and the others
satisfy the same relation. We deduce:

Proposition 19 Let F be an (n,m)-function F and

1GF (x, y) =
⊕

I⊆{1,...,n},J⊆{1,...,m}

aI,J x
IyJ =

⊕
I⊆{1,...,n}

ψF,I(y)xI .

Then, F is injective if and only if, for all I ( {1, . . . , n}, we have:

ψF,I =
∏

K⊆{1,...,n}
|K|=n−1,I⊆K

ψF,K

and ψF,{1,...,n} = 0 implies ψF,I = 0, for all I ⊂ {1, . . . , n}.

Similarly:

Proposition 20 Let F be an (n, n)-function F and

1GF (x, y) =
∑

i,j∈{0,...,2n−1}

ai,j x
iyj =

∑
i∈{0,...,2n−1}

ψF,i(y)xi.

Then, F is injective if and only if, for all i ∈ {1, . . . , 2n − 1}, we have:

ψF,2n−1−i = (ψF,2n−2)i

and ψF,2n−1 = 0 implies that ψF,i = 0, for all i ∈ {0, . . . , 2n − 2}.

9 Characterizing APNness by means of graph
indicators

9.1 A first attempt

By definition (see Section 2), an (n, n)-function F is APN if and only if the
multiset GF +GF equals 2n {(0, 0)} ∪ 2 ∆, where ∆ is a subset of (Fn2 \{0})×Fn2
and 2 ∆ is the multiset whose value on ∆ equals 2 and whose value elsewhere
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equals 0. Let us translate this in terms of graph indicators. We denote by ⊗ the
convolutional product. Viewing Boolean functions as pseudo-Boolean, that is,
valued in Z, we have, for univariate functions: (f⊗g)(x) =

∑
a∈Fn2

f(a)g(x+a),

and for bivariate functions: (f ⊗ g)(x, y) =
∑
a,b∈Fn2

f(a, b)g(x+ a, y+ b), where

these sums are calculated in Z. The value at (a, b) ∈ (Fn2 \ {0}) × Fn2 of the
pseudo-Boolean function 1GF ⊗ 1GF equals then the number of (x, y) ∈ GF such
that (x+ a, y+ b) ∈ GF . Then, denoting by γF the indicator of ∆ (which is the
notation used in [7]), we have:

Proposition 21 Any (n, n)-function F is APN if and only if we have:

1GF ⊗ 1GF = 2n · δ(0,0) + 2 γF , (29)

where δ(0,0) is the Dirac (or Kronecker) symbol and γF is a Boolean function
over Fn2 × Fn2 , equal to zero on {0} × Fn2 .

Remark. Using that the Fourier-Hadamard transform is R-linear bijective, and
applying the property seen in Section 2 that the Fourier-Hamard transform of
the convolutional product of two pseudo-Boolean functions equals the product
of their Fourier-Hadamard transforms, we deduce that any (n, n)-function F is
APN if and only if we have W 2

F = 2n + 2 γ̂F , where γF is a Boolean function;
this revisits the result of [7, Lemma 4]. 2

Let us see now if Proposition 21 can be used practically for checking APN-
ness. In this proposition, 1GF is seen as a pseudo-Boolean function. It is then
not possible to replace it by its ANF nor by its univariate form, which both live
in characteristic 2. If we wish to replace it by a polynomial representation, we
can use the NNF. According to Propositions 4 and 21, we have that F is APN
if and only if

∑
a,b∈Fn2

∏m
j=1

(
1 + 2bjfj(a) − bj − fj(a)

)∏m
j=1

(
1 + 2(bj + yj −

2bjyj)fj(x+a)−(bj+yj−2bjyj)−fj(x+a)
)

= 2n ·δ(0,0)(x, y)+2γF (x, y), where
the additions when writing fj(x + a) are additions in Fn2 , and the other addi-
tions/substractions are in Z, and where γF is a Boolean function over Fn2 × Fn2 ,
equal to zero on {0}×Fn2 . So, applying Proposition 21 and using the NNF leads
to a characterization mixing sums in characteristic 2 and sums in characteristic
0, which is rather inconvenient.

Remark We know that F is APN if and only if
∑
u,v∈Fn2

W 4
F (u, v) = (3 · 2n −

2)23n. We know that WF (u, v) = 1̂GF (u, v) = 22n−1δ0(u, v) − 1
2W1GF

(u, v).

Hence,
∑
u,v∈Fn2

W 4
F (u, v) = 1

16

∑
u,v∈Fn2

W 4
1GF

(u, v) − (22n−1 − 2n−1)4 + 24n−4

(indeed, 1̂GF (0, 0) = WF (0, 0) = 2n and W1GF
(0, 0) = 22n−1 − 2n−1). 2

Remark. If F is APN and if we apply the switching method to it (see Subsec-
tion 6.5), Relation (28) writes: 1GFf (x, y) = (1−2f(x))1GF (x, y)+f(x) 1GF ′ (x, y

′)

(indeed, 1GF (x, y) 1GF ′ (x, y
′) equals 1GF (x, y)). 2
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9.2 A second attempt

Let us apply the very definition of APNness (by the derivatives, see Section
2) and the expression of the graph indicators of derivatives given by Rela-
tion (20), which writes 1GDaF (x, y) = 1 − 1

2

∑
z∈Fn2

D(a,z)1GF (x, y), where the

sum is in Z. Since F is APN if and only if, for every nonzero a ∈ Fn2 , the
function y 7→

∑
x∈Fn2

1GDaF (x, y) equals 2 times a Boolean function, and since∑
x∈Fn2

1GDaF (x, y) being even for every y, we have
∑
y∈Fn2

(
∑
x∈Fn2

1GDaF (x, y))2 ≥
2
∑
y∈Fn2

(
∑
x∈Fn2

1GDaF (x, y)) = 2
∑
x,y∈Fn2

1GDaF (x, y) = 2n+1, with equality if

and only the function y 7→
∑
x∈Fn2

1GDaF (x, y) equals 2 times a Boolean function,

the condition becomes then
∑
y∈Fn2

(∑
x∈Fn2

(1− 1
2

∑
z∈Fn2

D(a,z)1GF (x, y))
)2

=

2n+1, that is,
∑
y∈Fn2

(
2n+1 −

∑
x,z∈Fn2

D(a,z)1GF (x, y)
)2

= 2n+3, that is, 23n+2−

2n+2
∑
x,y,z∈Fn2

D(a,z)1GF (x, y)+
∑
y∈Fn2

(∑
x,z∈Fn2

D(a,z)1GF (x, y)
)2

= 2n+3. We

have
∑
x,y,z∈Fn2

D(a,z)1GF (x, y) = 2
∑
x,y∈Fn2

(1 − 1GDaF (x, y)) = 22n+1 − 2n+1.

We have then:

Proposition 22 Let F be any (n, n)-function. Then F is APN if and ony if,
for every nonzero a ∈ Fn2 , we have:

∑
y∈Fn2

 ∑
x,z∈Fn2

D(a,z)1GF (x, y)

2

= 23n+2 − 22n+3 + 2n+3.

Note that here also, we have both kinds of additions, which is rather inconve-
nient: additions in characteristic 0 with the sums

∑
and an addition modulo 2

hidden in the notation D(a,z)1GF (x, y).

Conclusion

We have studied the diverse representations of the graph indicators of vectorial
functions in characteristic 2, and shown that, thanks to the information they
provide on the functions, they constitute a useful tool. The size of such repre-
sentations is larger than for the functions themselves, but we have shown that
the benefit due to this increase of information is significant (for instance, in the
case of a permutation, this provides the expressions of both the function and its
compositional inverse), so that working with these indicators may be quite prof-
itable. We have also characterized in different ways the representations of these
graph indicators, and obtained original results on vectorial functions thanks to
the study of these representations; for instance, we could show a tight bound on
the algebraic degree of the inverse of a permutation. We have shown that all the
main properties of vectorial functions (injectivity, bijectivity, APNness) can be
characterized by the graph indicators. Some more work on them will be useful.
We intend to study in particular more in detail the algebraic degree of composite
functions by using this approach. We plan also to study the graph indicators
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of those known permutations whose expression of the inverse is unknown, and
to try deducing such expression for some of them. More characterizations (if
possible by the ANF and the polynomial representation) of those (2n)-variable
Boolean functions which are affine equivalent to the graph indicators of permu-
tations would be also useful. And better characterizations of APNness would be
quite interesting, as well as viewing the butterfly construction of [17] through
representations of graph indicators. Studying the bentness and resiliency of vec-
torial functions may also take advantage of the approach by graph indicators.
Secondary constructions of vectorial functions based on graph indicators may
be also possible. Finally, we plan to study graph indicators in odd characteristic
and to deduce a characterization of their bijectivity, which would probably lead
to new results on planar functions.
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