
Post-Quantum TLS on Embedded Systems
Integrating and Evaluating Kyber and SPHINCS+ with mbed TLS

Kevin Bürstinghaus-Steinbach
SEW-EURODRIVE
Bruchsal, Germany

kevin@b-steinbach.de

Christoph Krauß∗
Hochschule Darmstadt
Darmstadt, Germany

christoph.krauss@h-da.de

Ruben Niederhagen
Fraunhofer SIT

Darmstadt, Germany
ruben@polycephaly.org

Michael Schneider
Darmstadt, Germany
michael@bizzel.biz

ABSTRACT

We present our integration of post-quantum cryptography (PQC),
more specifically of the post-quantum KEM scheme Kyber for key
establishment and the post-quantum signature scheme SPHINCS+,
into the embedded TLS library mbed TLS. We measure the perfor-
mance of these post-quantum primitives on four different embedded
platforms with three different ARM processors and an Xtensa LX6
processor. Furthermore, we compare the performance of our exper-
imental PQC cipher suite to a classical TLS variant using elliptic
curve cryptography (ECC).

Post-quantum key establishment and signature schemes have
been either integrated into TLS or ported to embedded devices
before. However, to the best of our knowledge, we are the first to
combine TLS, post-quantum schemes, and embedded systems and
to measure and evaluate the performance of post-quantum TLS on
embedded platforms.

Our results show that post-quantum key establishment with
Kyber performs well in TLS on embedded devices compared to
ECC variants. The use of SPHINCS+ signatures comes with certain
challenges in terms of signature size and signing time, whichmainly
affects the use of embedded systems as PQC-TLS server but does not
necessarily prevent embedded systems to act as PQC-TLS clients.

CCS CONCEPTS

• Security and privacy → Digital signatures; • Networks →
Transport protocols; Security protocols; • Theory of compu-

tation→Cryptographic primitives;Cryptographic protocols.

KEYWORDS

PQC; Kyber; SPHINCS+; TLS; embedded systems; mbed TLS

∗Also with Fraunhofer SIT.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ASIA CCS ’20, June 1–5, 2020, Taipei, Taiwan
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6750-9/20/06. . . $15.00
https://doi.org/10.1145/3320269.3384725

ACM Reference Format:

Kevin Bürstinghaus-Steinbach, ChristophKrauß, RubenNiederhagen, andMi-
chael Schneider. 2020. Post-Quantum TLS on Embedded Systems: Integrat-
ing and Evaluating Kyber and SPHINCS+ with mbed TLS. In Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’20), June 1–5, 2020, Taipei, Taiwan. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3320269.3384725

1 INTRODUCTION

Recently, the interest in post-quantum cryptography (PQC) has
been increasing, not only in academia, but also in industry and the
general public. An evidence for this growing interest is the PQC
standardization process byNISTwith a large number of submissions
in the first and second rounds [14]. The fact that stable, large-scale
quantum computers can break popular and wide-spread public key
primitives (in the following referred to as “classical” cryptography)
has reached a growing audience. Companies and research facilities
are starting to evaluate, which field of post-quantum cryptography
might provide the best candidates to replace current primitives in
applications and protocols by post-quantum primitives. TLS as the
main communication protocol for the Internet plays a crucial role
in this process.

In addition, in our modern world, security needs to be integrated
into small embedded devices that surround us in our daily live.
The Internet of Things (IoT), home automation, connected driv-
ing, industry controllers — there are many use cases where small,
embedded devices control sensitive processes or transfer sensitive
data. Therefore, it is very important that embedded, low-power
devices are secured with state-of-the-art cryptographic protocols
and primitives — which soon will be post-quantum primitives.

If it was easy to replace cryptographic algorithms in productive
systems, the need for early adoption of post-quantum schemes
would be minor. In case that large-scale, stable quantum computers
will be built, replacing cryptographic schemes by post-quantum
variants could be done fast. Unfortunately, this requires crypto
agility, which is rarely existing in practice. Systems are running
with legacy software that is hard to replace. This is especially true
for embedded devices, where software (and cryptographic) updates
are even harder to install. Therefore, it is highly required to invest
in research for migrating IT systems to post-quantum primitives,
especially on embedded systems.

https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1145/3320269.3384725

In this work, we combine all three fields — PQC, TLS, and embed-
ded devices. We enable an embedded TLS library (mbed TLS) with
post-quantum key exchange (based on Kyber in its IND-CCA vari-
ant) and post-quantum digital signatures (SPHINCS+). Both Kyber
and SPHINCS+ have been submitted to the NIST PQC standardiza-
tion process and have been selected for the second round, which
makes them likely candidates for future standardization. SPHINCS+
is a member of the hash-based family of signature schemes. This
family has the reputation of being well trusted, reliable, and secure.
However, they have quite large signature sizes, which makes them
challenging for embedded systems. By integrating both Kyber as
compact key-exchange scheme and SPHINCS+ as reliable but large
signature scheme, we show that embedded systems are able to
handle the increased cost of PQC schemes.

SPHINCS+ can be instantiated with different hash functions. In
our test, we use SHA-256 and SHAKE-256 in SPHINCS+. For compar-
ison with Kyber we use ECDH and for comparison with SPHINCS+
we take ECDSA, which are commonly used classical key-exchange
and signature scheme for TLS. In order to test full TLS handshakes,
we create the new prototype cipher suite TLS_KYBER_SPHINCS_-
WITH_AES_256_GCM_SHA256. We then test the selected PQC primi-
tives and the adapted mbed TLS library on four different embedded
platforms: For our tests we use a Raspberry PI 3, an ESP32, an indus-
trial field option card, and an LPC (see Section 4). These platforms
cover a large range of use cases and applications, which gives a
broad view on real-world practicality of our results.

Our modifications to the mbed TLS library and the platform-
specific adaptions are available online1 under Apache 2.0 license.

2 BACKGROUND

In this section, we give a brief overview of Transport Layer Security
(TLS). We focus on the TLS handshake to explain the integration
of PQC schemes as well as TLS libraries for embedded systems. In
addition, we briefly introduce PQC and the chosen PQC schemes
Kyber and SPHINCS+.

2.1 Transport Layer Security

Transport Layer Security (TLS) is the de facto standard for secure
communication on the Internet. The first version has been published
in the year 1994 under the name Secure Sockets Layer (SSL) 1.0 and
the newest version is TLS 1.3, which has been finally standardized
in the year 2018. In this work, we focus on TLS 1.2 [15] and before,
since we use the mbed TLS library which does not support TLS 1.3,
yet. However, most of the changes in TLS 1.3 are not relevant for
our work, e.g., the deprecation of old ciphers, since anyway we
exchange the ciphers to PQC schemes. However, the changes in
the handshake protocol (see below) for improving the efficiency
would be interesting for future work. In the following, we briefly
describe the different TLS protocols and TLS libraries for embedded
systems.

2.1.1 TLS Protocols. TLS consists of a record, handshake, change
cipher spec, alert, and an application data protocol.

1https://github.com/kbuersti/mbedtls

The record protocol is located directly above the transport layer
and uses the Transmission Control Protocol (TCP)2. It provides bulk
data encryption using symmetric cryptographic algorithms such as
AES. On this layer, the protection against quantum computers can
be easily achieved by using keys of length 256 bits and higher [16].
In addition, the record protocol ensures message integrity and
authenticity using either an HMAC or authenticated encryption
schemes such as the Galois/Counter Mode (GCM).

Located above the record protocol are the handshake protocol,
change cipher spec protocol, alert protocol, and application data
protocol. Before sending messages of these protocols, the record
protocol does fragmentation, compression, encryption etc. The ap-
plication data protocol forwards data from the application layer,
e.g., HTTPS, to the record layer. The alert protocol is responsible
for handling errors. The change cipher spec protocol is used for sig-
naling that the cipher suites, negotiated in the handshake protocol,
are now used. The handshake protocol is used for authentication
(server only or mutual), negotiation of the used cryptographic prim-
itives, and the establishment of session keys. These session keys are
then used for ensuring confidentiality, integrity, and authenticity
of the exchanged messages.

Up to TLS 1.2, the handshake protocol can either use RSA or
Diffie-Hellman (DH) in the key exchange and RSA and DSA for
digital signatures as well as the elliptic curve (EC) variants. Since
all of these asymmetric cryptographic schemes are not quantum-
computer resistant, we exchange themwith the PQC schemes Kyber
for key exchange and SPHINCS+ for signatures (see Section 3).

The client initiates a TLS connection by sending a ClientHello
message, which contains the supported TLS version, the supported
cipher suites, the supported compression algorithms, a client ran-
dom, and optional data such as session ID or session ticket for ses-
sion resumption. A cipher suite describes the used cryptographic
algorithms for key exchange, signatures, encryption, message au-
thentication, and the pseudorandom function (PRF) used to generate
keying material. For example, the cipher suite TLS_ECDHE_ECDSA_-
WITH_AES_256_GCM_SHA256 uses ECDHE for key exchange, ECDSA
for digital signatures, and AES-256 in GCM block-cipher mode for
data encryption as well as message integrity and authenticity. The
SHA-256 hash function is used in the PRF for calculating keying
material.

The server answers with a ServerHellomessagewhich contains
the chosen TLS version, chosen cipher suite, chosen compression
algorithm, and a server random. He also sends a Certificatemes-
sage containing the certificate with the public key of the server
as well as the entire certificate chain up to a root certification
authority (CA). Currently, the CAs usually use RSA for the sig-
natures in the certificates. RSA needs to be replaced with a PQC
scheme to be resistant against quantum computer attacks. The
ServerKeyExchange message is sent only in case DH is used for
key exchange. In this work, we are going to focus on cipher suites
that are using an ephemeral key exchange without the use of long-
term keys on the side of either the server or the client. In this
case, the message contains the ephemeral public DH key of the
server and a signature over the public DH key, client random, and

2Datagram Transport Layer Security (DTLS) enables the use of User Datagram Protocol
(UDP) instead of TCP.

https://github.com/kbuersti/mbedtls

server random. We replace DH with the PQC scheme Kyber and
use this message to send an ephemeral Kyber public key from the
server to the client. These data fields and the random values are
signed using SPHINCS+. In case client authentication is required,
the server also sends a CertificateRequest message. With the
ServerHelloDone message the server gives the client the signal to
continue the handshake.

The client sends the client Certificatemessage in case mutual
authentication is required, i.e., the server has sent a Certificate-
Request message. Again, PQC schemes have to be used for signa-
tures in the certificate to be resistant against quantum computer at-
tacks. In any case, the client sends a ClientKeyExchange message.
If RSA is used, the message contains a pre-master-secret, generated
by the client, and is encrypted with the public key of the server.
When using DH, it contains the public DH key of the client. In our
work, we use this message to send a shared secret encrypted as Ky-
ber ciphertext from the client to the server. In case the client needs
to authenticate itself (and has sent a client Certificate message),
the client also sends a CertificateVerifymessage. Basically, this
message contains a digital signature over all handshake messages
sent or received, starting at ClientHello and up to, but not includ-
ing, this message. With the ChangeCipherSpec protocol message,
the client indicates to switch to the negotiated algorithms. The
Finished message completes the handshake and contains a mes-
sage authentication code (MAC) over all handshake messages sent
or received, starting at ClientHello and up to, but not including,
this message.

The server answers also with a ChangeCipherSpec protocol
message and a Finished message. After that, application data can
be securely exchanged.

2.1.2 TLS Libraries. The TLS protocol is already implemented in
various libraries. Very popular open source libraries are for example
OpenSSL3 and LibreSSL4. However, these libraries both are not
suitable for embedded systems since they have not been developed
for highly resource constraint environments. Nevertheless, there
are two popular libraries for embedded systems that are easily
portable to new platforms and have low resource requirements:
mbed TLS5 and wolfSSL6.

The mbed TLS library is fully open source under the Apache
License 2.0, whereas wolfSSL is available under two licenses. It is
open source under the GPLv2 license for non-commercial use and
has to be licensed by businesses for commercial use. Because of
the flexible Apache license and the embedded oriented design, we
chose mbed TLS for our implementation.

2.2 Post-Quantum Cryptography

Post-quantum cryptography (PQC) refers to (asymmetric) crypto-
graphic algorithms that are resistant against attacks using a quan-
tum computer. Running Shor’s algorithm [33, 34] on a quantum
computer, all currently popular asymmetric algorithms based on
the integer factorization problem (e.g., RSA), the discrete logarithm
problem (e.g., DH), or the elliptic-curve discrete logarithm problem

3https://www.openssl.org/
4https://www.libressl.org/
5https://tls.mbed.org/
6https://www.wolfssl.com/

(e.g., ECDH) can be broken in polynomial time. TLS makes heavy
use of RSA, DH, and the EC variants in the handshake protocol for
signing and key exchange. To be resistant against quantum com-
puters, these algorithms have to be exchanged by PQC schemes.

Currently, PQC schemes can be divided into five families: code-
based, lattice-based, hash-based, multivariate, and supersingular
elliptic-curve isogeny cryptography. Most mature are hash-based
schemes for digital signatures. They have been first introduced by
Lamport [23] as well as Merkle and Winternitz [26] in 1979 and
further improved over the last decades. They have been thoroughly
evaluated and provide a high security level. Lattice-based cryptogra-
phy has been introduced by Ajtai [2] in 1996. It has the advantage of
providing very efficient schemes for key encapsulation compared to
other PQC families. However, its security is not as well understood
as that of hash-based schemes, yet.

In order to evaluate these two promising PQC families on em-
bedded devices, in this work, we use the lattice-based scheme Kyber
for key exchange and SPHINCS+ as signature scheme. Both are part
of the ongoing NIST post-quantum standardization process and
are promising candidates for future standard schemes. We selected
security parameter sets for the PQC schemes that have a NIST secu-
rity level of 1 corresponding to AES-128 in order to achieve a fairer
comparison with classical schemes at 128-bit (classical) security.
Our evaluation is based on the round-one versions of the scheme.

2.2.1 Kyber. Bos et al. proposed Kyber [6, 9], a lattice-based IND-
CCA (INDistinguishability under adaptive Chosen Ciphertext At-
tack) key encapsulation mechanism (KEM) which uses similar con-
cecpts as NewHope [3]. Lattice-based cryptography is one of the
most promising candidates for NIST post-quantum standardization,
also most submissions are based on lattices. Kyber uses module-
lattices because they provide an efficient trade-off between security
and performance. It was also designed with embedded devices in
mind, e.g., using precomputed tables of powers for a number theo-
retic transform. Since NewHope was already tested on embedded
and non-embedded platforms [1] including the Google Chrome
browser [12] it seems reasonable to test Kyber, which is based on
NewHope, also on embedded platforms. In their submission to the
NISTs post-quantum standardization process Bos et al. defined also
an unauthenticated key exchange protocol with Kyber.

The main parameters of Kyber are the degree 𝑛 of the polynomial
ring, a prime 𝑞 that defines the underlying ring structure, a positive
integer [used for a binomial distribution, and an integer 𝑘 such
that 𝑘 · 𝑛 is the dimension of the corresponding LWE problem. The
different security levels Kyber512, Kyber768, and Kyber1024 are
achieved by varying 𝑘 and [. In this work, we focus on Kyber512
at NIST PQC security level 1. For this security level, the public key
has a size of 736 B and the cipher text of 800 B.

Kyber is defined as a key encapsulation mechanism (KEM). An
ephemeral key exchange (KEX) scheme can easily be obtained by
creating a new ephemeral public key for each key exchange and
sending it to the communication partner. The other party creates a
random secret key, uses the ephemeral public key to encapsulate
the secret key, and sends the encapsulated key back. Finally, the
first party decapsulates the ephemeral secret key, which gives both
parties a shared secret key.

https://www.openssl.org/
https://www.libressl.org/
https://tls.mbed.org/
https://www.wolfssl.com/

2.2.2 SPHINCS+. Bernstein et al. proposed with SPHINCS+ a state-
less hash-based signature scheme for the NIST post-quantum stan-
dardization process [7] that comes with strong security proofs with
minimal security assumptions. The scheme SPHINCS+ is based on
SPHINCS [8] and for the predecessor Hülsing et al. already showed
a fast implementation for an embedded ARM board [21].

SPHINCS+ uses a hierarchical structure of Merkle hash trees
with one-time and few-time signature schemes at their leafs. The
public key is the root of the top Merkle tree. The leafs of the inner
Merkle trees are one-time signature schemes that are used to sign
the roots of the Merkle trees on the next lower level. The leafs on
the lowest Merkle trees are few-times signature schemes that are
used to sign the actual message digests. For key generation, only
the top Merkle tree needs to be computed in order to obtain its root
as public key. For signing, a Merkle tree on the lowest level and a
few-time signature at its leafs is chosen deterministically (based
on the message digest) and the verification path from the selected
leaf node all the way through the hierarchical tree structure to the
root node of the highest level is computed. For verification, the root
node of the highest Merkle tree is recomputed from the message
digest using the verification path and verified with the public key.
The most expensive operation is the computation of a signature;
key generation and verification are much cheaper.

The proposal of SPHINCS+ [7] contains 18 different parameter
sets based on three different arguments: hash function (SHAKE-256,
SHA-256, and Haraka), security level (NIST level 1, 3, and 5), and
trade-off between signature size (s) and speed (f). We chose two
variants of SPHINCS+-128f at NIST security level 1 and parameter-
optimized for speed with the hash functions SHAKE-256 and SHA-
256 for our post-quantum TLS library. We focused on SHAKE-
256 and SHA-256 as hash functions, because they are already well
studied in contrast to Haraka. The size of the public key is only 32 B;
however, one signature requires about 17 kB.

2.3 Related Work

As far as we know, we are the first to implement two promising post-
quantum standardization candidates into an embedded TLS library,
to perform a complete post-quantum handshake, and to evaluate
the performance on multiple microcontroller boards. Nevertheless,
there has been a lot of research in both directions — post-quantum
TLS (PQ-TLS) and PQC on embedded devices.

2.3.1 PQ-TLS. Chang et al. implemented a complete post-quantum
handshake in the Polar SSL library using a lattice-based key ex-
change and a multivariate signature scheme; they tested their per-
formance on a Intel desktop CPU [13]. Google used lattice-based
post-quantum key exchange (NewHope) on top of standard elliptic
curve-based (X25519) key exchange and tested TLS handshakes
between Chrome browser and Google webservers [12]. In [10], Ring-
LWE based key agreement was integrated into OpenSSL and tested
on classical hardware. Open Quantum Safe7 provides a library with
implementations of PQC primitives and prototype integrations into
OpenSSL. It runs on ARM Cortex A8 and Raspberry Pi. The pqm4
project 8 contains implementations of PQ key-encapsulation mech-
anisms and PQ signature schemes targeting the ARM Cortex-M4
7https://openquantumsafe.org/
8https://github.com/mupq/pqm4/

family of microcontrollers. The work of [29] emulates real network
conditions and evaluates the impact of various post-quantum prim-
itives (including key exchange and signatures) on TLS connection
establishment performance. In [35] the authors integrate and test
the impact of PQ signature algorithms on TLS 1.3 under realistic
network conditions.

2.3.2 PQC on Embedded Devices. There are multiple implemen-
tations of single post-quantum primitives on certain embedded
devices. All those highly targeted implementations were not inte-
grated into a TLS library. Hülsing et al. implemented the SPHINCS
signature scheme on an embedded microprocessor [21] and Howe
et al. also implemented a lattice-based standardization candidate on
an FPGA and microcontroller devices [20]. In [17] the authors test
and compare the lattice-based signature schemes GLP, BLISS, and
Dilithium on ARM Cortex-M4 microcontrollers. The GLP scheme
has been presented in an optimized AVX implementation in [18].
BLISS and its improvement BLISS-B have microcontroller imple-
mentations on AVR [25] and ARM Cortex-M4 [28] [36]. The works
by Kuo et al. [22] and Oder and Güneysu [27] implement the
FrodoKEM scheme on FPGAs and Alkim et al. [4] present a mi-
crocontroller implementation. [30] implements Ring-LWE encryp-
tion and BLISS on an 8-bit Atmel ATxmega128 microcontroller.
[20] implements the FrodoKEM key encapsulation mechanism on
a low-cost FPGA and microcontroller devices. [19] presents an
implementation of the standard lattice-based encryption scheme,
proposed by Lindner and Peikert. In [11], the authors report per-
formance measurements of an optimized software implementation
of Kyber on a Cortex-M4 processor. The EU Horizon 2020 project
SAFEcrypto also investigates the use of (standard) lattice-based
cryptography in hardware, specifically for conservative use cases
such as satellite communications.

3 INTEGRATION OF PQC INTO THE MBED

TLS LIBRARY

In order to perform a post-quantum TLS handshake, we integrated
the reference implementations of the PQC algorithms Kyber and
SPHINCS+ (see Section 2.2) into the mbed TLS library. The mbed
TLS library is written in C and can be divided into three parts:
cryptographic primitives, TLS protocol, and tools as described in
the following paragraphs.

3.1 Cryptographic Primitives

The mbed TLS library capsules cryptographic algorithms into mod-
ules with loosely-coupled interfaces. These modules can be grouped
into symmetric encryption algorithmswithmode of operation, hash
functions, random number generators, and public key algorithms.
We encapsulated Kyber and SPHINCS+ each in its own module
using the reference code of the algorithms as base for the imple-
mentation. They both require the hash functions SHA-256 and
SHAKE-256. Since SHA-256 is already part of the mbed TLS library,
we simply changed the corresponding function calls in the refer-
ence implementation of SPHINCS+ from OpenSSL to the mbed
TLS counterparts. SHAKE-256 is not part of the mbed TLS library
and we kept the source code that was provided with the reference
implementations.

https://openquantumsafe.org/
https://github.com/mupq/pqm4/

The reference implementation of SPHINCS+ only offers to choose
parameters like the hash function at compile time. As described
in Section 2.2, we support two variants of SPHINCS+, which need
to be selected at runtime based on the corresponding server pub-
lic key. The reference implementation already prepared a defined
set of function calls to the hash functions. Following the “light-
weight interfaces” model of the mbed TLS library, we added a data
structure sphincs_md_info_t for parameters and function calls of
the respective hash function. This structure allows to choose the
hash function dynamically, e.g., depending on the SPHINCS+ key
context.

3.2 TLS Protocol

For our evaluation, we focus on TLS connections with server au-
thentication only. For our scenario where client and server agree
on the Kyber-SPHINCS+ post-quantum cipher suite, there are three
messages of particular interest:

• Certificate: The certificate message contains a SPHINCS+
signature. This allows the client to extract all necessary in-
formation about server’s SPHINCS+ public key. Therefore,
we defined an ASN1-based structure for SPHINCS+ to send
X509 certificates.

• ServerKeyExchange: To send a key exchange message, the
server performs two steps: First, a new ephemeral Kyber key
pair is generated and the public key is pasted into the key-
exchange message. Then the key exchange data is signed
with the server’s SPHINCS+ private key and the signature is
added to the key-exchange message, which then is sent to
the client.

• ClientKeyExchange: After receiving the server’s key ex-
change message, the client verifies the SPHINCS+ signature
and generates its own client Kyber key-exchange response.
In our test scenario, the client key exchange is unauthenti-
cated, but client authentication can be easily implemented
since the SPHINCS+ signature scheme is fully integrated
into the TLS library.

3.2.1 Cipher Suites. For the use of Kyber and SPHINCS+, we intro-
duced the new prototype cipher suite TLS_KYBER_SPHINCS_WITH_-
AES_256_GCM_SHA256 to use the post-quantum algorithms during a
TLS handshake. It uses AES-256 in GCM mode for bulk encryption
and SHA-256 for message authentication codes.

The Kyber key exchange is integrated similar to the ECDHE
key exchange. The server generates a new Kyber key-pair and the
other parameters using the make_params function and parses the
client response in the read_public function. On the other end
the client reads the public key information through the function
read_params and generates its own payload with make_public.
They both derive the shared secret with calc_secret.

The SPHINCS+ signature scheme is integrated similar to ECDSA.
The server generates a new SPHINCS+ signature with the write_-
signature function and the client verifies the signature with the
read_signature function.

3.2.2 Certificates. Since the cipher suites do not define which vari-
ant of SPHINCS+ is used, the certificate needs to provide the neces-
sary information. We are using two new OIDs in the certificate for

SPHINCS+, one for the SHA-256 variant and one for the SHAKE-256
variant. Further SPHINCS+ parameters currently are still defined
during compile time; if other variants are required, e.g., parameter
sets with higher security level, changes to the implementation are
necessary.

3.2.3 Handshake Fragmentation. SPHINCS+ signatures have a size
of up to 50 kB, which exceeds the maximum single record size of
214 bytes, i.e., 16 kB. Therefore, handshake messages containing
SPHINCS+ signatures (e.g., Certificate and ServerKeyExchange)
need to be fragmented. At the time of writing, mbed TLS does not
support this feature for TLS (but only for DTLS). Thus, we added
an additional record layer where messages exceeding the maxi-
mum content length are disassembled on send and reassembled on
receive.

During the send process, the message length is checked whether
it is greater than MAX_CONTENT_LENGTH. This length cannot be
greater than 214 bytes. If the message length is larger, it is split
into fragments of size MAX_CONTENT_LENGTH. Every fragment con-
tains the standard TLS record header with a version, type, and
length field. The first fragment also contains the handshake header
with the message type and the handshake length after the record
header. The rest of the fragment is the handshake payload. The first
fragment looks like a normal message except that the record length
field does not match the handshake length field. All following frag-
ments do not contain a handshake header, but only the payload
after the record header.

On receipt of a handshake message, the record layer checks if it
is only a fragment by comparing the record length and handshake
length. If the handshake length is larger, more fragments need to be
received in order to reassemble the complete handshake message.
The fragments are stored in a temporary buffer until the stored size
matches the handshake length.

3.3 Tools

Running and measuring a complete post-quantum handshake also
requires some utilities in addition to the TLS library (i.e. for certifi-
cate generation as well as client and server testing applications).
Therefore, we added some extensions to existing tools accompany-
ing the mbed TLS library and to its configuration.

3.3.1 Configuration. All changes we made to the library can be
controlled through the config.h file at compile time. Each module
of the cryptographic primitives can be activated or deactivated sepa-
rately. The defines are MBEDTLS_SPHINCS_C and MBEDTLS_KYBER_C.
The SPHINCS+ and Kyber cipher suite must be activated by setting
MBEDTLS_KEY_EXCHANGE_KYBER_SPHINCS_ENABLED. Finally, since
SPHINCS+ signatures exceed the single record size, handshake frag-
mentation needs to be enabled using MBEDTLS_SSL_HS_FRAGMEN-
TATION and the maximum message size must be set to 214 bytes
using MBEDTLS_SSL_MAX_SIZE.

3.3.2 Test Programs. We modified and added some tools to en-
able PQC key generation, client and server tests, and performance
measurements with our modification.

• Key Generation: We enabled the gen_key tool to generate
keys for Kyber and SPHINCS+. The tool exports the SPHINCS+

keys encoded in the newly defined ASN1-based structure for
SPHINCS+.

• Server/Client: The library already has a test server and client.
We extended these programs to allow various performance
measurements on the target platforms.

• Benchmark:We added a benchmark for SPHINCS+ and Kyber
to the existing benchmark structure.

4 TARGET PLATFORMS

Thembed TLS library has been designed to be able to run on various
platforms. In order to make it easy for developers to port the library
to a different environment, mbed TLS uses a well-documented
platform layer. The platform layer is structured into several parts
that interact with the target platform environment: networking,
timing, entropy sources, hardware acceleration, file system access,
real-time clocks, and diagnostics [31].

Since the main goal of mbed TLS library is to provide TLS con-
nections, it requires a connection to a TCP stack. The library is
based on a Berkeley-socket like interface, which provides blocking
and non-blocking calls optionally with timeouts. The mbed TLS
library provides functionality for secret key generation and uses
nonces in the TLS handshake, all of which are generated as ran-
dom bit sequences. Within the mbed TLS library, entropy sources
are separated in weak and strong sources. For security-relevant
purposes the library needs to be provided with a strong source.
Some operations in the library require correct time information,
e.g., when checking the validity of X509-certificates. For perfor-
mance measurements, it is sufficient to measure a time interval.
However, timing information is not a necessary functionality for
the library to work.

In order to measure the performance on embedded platforms,
we ported the mbed TLS library with our PQC adaptions to four
different platforms. Each platform represents a specific group of
embedded devices: We chose the Raspberry Pi 3B+ as small com-
puter, the ESP32-PICO board with a popular IoT chip, a fieldbus
option card for industrial computers, and a very resource constraint
LPC platform. An overview of the platforms is shown in Table 1.

4.1 Raspberry Pi 3 Model B+

The Raspberry Pi is a small and affordable single-board computer
developed by the Raspberry Pi Foundation for educational pur-
poses9. It is a popular prototyping platform and core of many smart
home projects. The platform has an ARM Cortex-A53 quad-core
processor running at 1.4GHz and 1024MB of RAM. To store oper-
ating system and software, the Raspberry Pi needs to be equipped
with an SD-Card. The Raspberry Pi provides the most resources
within the platforms we are investigating. It is capable of running
multi-process operating system, e.g., the Debian-based Linux distri-
bution Raspbian. Network connectivity is provided with a gigabit
Ethernet interface.

Port. There are no further requirements for using the mbed TLS
library on the Raspberry Pi. It can be used directly, e.g., with the
Raspbian operating system. The mbed TLS library can directly
access all required features like network connections and timers

9https://www.raspberrypi.org/

by default. The Raspberry Pi 3B+ does not provide any hardware
acceleration for cryptographic operations, but mbed TLS provides
highly optimized assembler code for ARM platforms.We only added
a kernel extension to access the CPU cycle counter for timing
measurements [5].

4.2 ESP32-PICO-KIT V4

The ESP32-PICO-KIT V4 platform has an ESP32 microcontroller
that integrates Wi-Fi and Bluetooth 4.2 solutions on a single chip.
Due to its wireless networking features, this platform is popular in
the IoT developer community. The core of the microcontroller is a
Xtensa dual-core 32-bit LX6 processor operating at 240MHz. The
PICO-KIT provides 520 kB of SDRAM and 16MB of flashmemory to
store and run the software. Time measurements can be performed
using a 32-bit hardware timer with microsecond resolution and us-
ing a CPU cycle counter. Some PQC operations, e.g., the SPHINCS+
signing operation, require that many CPU cycles that we had to
integrate cycle-count overflow detection.

Port. The official development framework for the ESP32 platform
is the ESP-IDF10. A port of the mbed TLS library is included as
component in ESP-IDF. The port includes the integration of the
network layer as well as a hardware entropy source. In addition
to that, the ESP32 has hardware acceleration for RSA, ECC, AES,
and SHA, which can be activated in the mbed TLS configuration.
We kept those parts, patched the configuration files with our PQC
modifications and replaced the rest of the library with our test
library. There are no timing functions provided for the library, but
the hardware timer as well as the cycle counter can be accessed
through the ESP32 kernel.

4.3 Fieldbus Option Card

Millions of automated industrial systems in factory plants world-
wide are controlled through programmable logic controllers (PLCs)
with fieldbus communication. Fieldbus connectivity is often pro-
vided by option cards. We performed tests using a fieldbus option
card (FOC) that has an ARM966E-S processor, a system clock run-
ning at 100MHz, an SDRAM of 650kB, and flash storage of 8MB.
There is a real-time clock with nanosecond resolution to support
high real-time constrains. The card was connected via a fast Ether-
net interface.

Port. The mbed TLS library had not been ported to this platform
before and the network layer works in a different way than required
by the mbed TLS platform interface. The mbed TLS library was
designed for a Berkeley socket interface performing synchronous
blocking or non-blocking calls to the network layer. However, the
firmware of the FOC uses mainly asynchronous calls to the net-
work stack such that the task never blocks the real-time system.
In addition to that, a proprietary interface to the network func-
tionality is used. Therefore, we developed two adaption layers: An
application adaption layer within the firmware in order to translate
asynchronous calls from the proprietary interface to the mbed TLS
library interface and a network adoption layer within mbed TLS to
connect the mbed TLS library to the proprietary network stack.

10https://github.com/espressif/esp-idf

https://www.raspberrypi.org/
https://github.com/espressif/esp-idf

Table 1: Processor and peripheral specifications of the evaluated platforms.

RPi3 ESP32 FOC LPC

Platform Raspberry Pi 3 ESP32-PICO-KIT Fieldbus LPC11U68
Model B+ V4 Option Card LPCXpresso

CPU ARM Cortex-A53 Xtensa LX6 ARM966E-S ARM Cortex-M0+
Clock 1400MHz 240MHz 100MHz 50MHz
RAM 1024MB 520 kB 650 kB 32 kB
Flash SD-Card 16MB 8MB 256 kB
Network Ethernet/Wi-Fi Wi-Fi Ethernet —

The application adaption layer is designed to connect calls to
the mbed TLS library, e.g., mbedtls_send or mbedtls_receive,
to the application running on the PLC using a transparent stack
adaption. The application is not aware if the socket it is using is
in fact a TLS socket provided by the application adaption layer or
just a regular socket. For example, we implemented a synchronous
non-blocking pull mechanism for asynchronous receive operations
using a separate task.

The network adaption layer provides the connection between
mbed TLS and the proprietary network stack of the firmware. We
designed the network adaption layer to manage a specific amount
of virtual TCP sockets and connect them when needed to calls from
the mbed TLS library. To maintain a logical connection between
the TLS socket from the application layer to the network socket,
we use an identifier in the mbedtls_net_context. When opening
a TLS socket in the application adaption layer, all TLS contexts are
initialized and a socket identifier from the network layer is received,
which is then registered in the mbedtls_net_context.

We are using the real-time clock on the platform for timing
measurements, which is not capable of holding the date and time but
provides only relative timing information. For entropy generation,
we only have a weak source based on time and network statistics
on this platform. Since the platform has no file system, we store
the server certificate as byte array in the code.

4.4 LPC11U68 LPCXpresso

The LPC11U68 LPCXpresso development board provides a 32-bit
ARM Cortex-M0+ running at 50MHz. The platform has 32 kB of
RAM and 256 kB of flash memory. Since this board has no network
connectivity, we do not evaluate the performance of the complete
post-quantum handshake but we developed a benchmark program
that measures the performance of SPHINCS+ and Kyber. We mea-
sured the runtime using the real-time clock of the LPC11U68 CPU
with millisecond resolution.

5 EVALUATION

We created a test setup in order to test the performance of the PQC
primitives and the entire TLS handshake on the different target plat-
forms. The center of the test setup is a desktop PC withWindows 10
64-bit and an Intel Xeon E3-1231v3 running on 3.40GHzwith 16GB
RAM. When measuring the TLS handshake performance, the desk-
top PC performs the remote role of client or server depending on
the use case. To get practical results, the boards are connected to
the desktop PC according to their network capabilities. The FOC

and the Raspberry Pi are connected via Ethernet, while the ESP32
is connected via WiFi. The LPC11U68 has no network connectivity
and therefore, we do not provide performance data for the entire
handshake operation but only for the cryptographic primitives.

For timing measurements, we used the respective timing re-
sources of the target platform. Since not all of the platforms provide
cycle-accurate timing measurements, we converted the measure-
ments of all platforms from their respective time domain to millisec-
onds for comparison. We measured the handshake performance
at the level of the handshake state machine. Therefore, our mea-
surements do not include network round-trip time, response time
of the remote machine, and network-stack overhead but only the
time of the handshake routines and the cryptographic primitives.
In addition, we measured the performance of the cryptographic
primitives directly using stand-alone benchmarking test benches.
For a fair comparison, we measured each test case multiple times
and report the minimum of the measurements.

5.1 Evaluation of the Cryptographic Primitives

First, we evaluate the performance of the SPHINCS+ signature
algorithm compared to ECDSA and of the Kyber key exchange com-
pared to ECDHE on the embedded target platforms (both ECDSA
and ECDHE using the curve SECP256R1).

5.1.1 Signature Algorithm. We report the performance of the sig-
nature operations in Table 2. The key generation of SPHINCS+-128f
using SHA-256 is only slightly slower than that of ECDSA for most
platforms; only on the LPC and the FOC, the difference is signifi-
cant. On both the LPC and the FOC, key generation of SPHINCS+
SHA-256 requires several seconds (6 s and 12 s respectively as op-
posed to around 3 s for ECDSA). The SHAKE-256 variant however
is much slower than ECDSA, reaching up to several seconds on the
ESP32 (2 s), the FOC (17.3 s), and the LPC (44 s). Key generation for
the signing key is typically only required very rarely and is not
included in the handshake performance measurements.

Signing with SPHINCS+ is more expensive than verifying a signa-
ture. This can be shown by the number of calls to the hash function.
We used a counter in the implementations of the hash functions to
document the number of calls. The runtime of the signature algo-
rithm is highly correlated with this number. The number of calls
depends on the chosen parameter set for the signature algorithm.
For our parameter sets, the total number of calls to the hash func-
tion is for SPHINCS+ using SHA-256 12,000 calls for verification
compared to 280,000 calls for signing. Using SHAKE-256, it requires
11,500 calls for verification and 260,000 for signing.

Table 2: Runtime of SPHINCS
+
(SPHINCS

+
-128f) and ECDSA

(SECP256R1) operations (rounded to two significant figures).

Method RPi3 ESP32 FOC LPC
Key Generation

SPHINCS+
SHA-256 26ms 710ms 6,000ms 12,000ms
SHAKE-256 200ms 2,100ms 17,000ms 45,000ms
ECDSA 28ms 260ms 3,700ms 2,800ms

Signing
SPHINCS+
SHA-256 840ms 22,000ms 51,000ms 380,000ms
SHAKE-256 5,100ms 64,000ms 200,000ms 1,300,000ms
ECDSA 15ms 290ms 1,500ms 1,100ms

Verification
SPHINCS+
SHA-256 66ms 950ms 2,200ms 16,000ms
SHAKE-256 240ms 2,800ms 8,900ms 60,000ms
ECDSA 25ms 580ms 2,900ms 4,100ms

On the Raspberry Pi, signing performance with slightly less
than one second for the SHA-256 variant is much higher than the
15ms for ECDSA. The SHAKE-256 variant even requires over 5 s.
On the other platforms, signing performance degrades even more
severely. Most notably signing using the SHAKE-256 variant of
SPHINCS+ take almost 22min on the LPC as opposed to “only” 1 s
for ECDSA. The signing operation is typically used by the server
in a TLS handshake scenario.

Since the Raspberry Pi can take full advantage from its powerful
CPU and the optimized SHA-256 implementation, the SPHINCS+
verify operation only needs 66ms for the SHA-256 variant and
239ms for SHAKE-256. The ESP32 needs 0.951 s for verification
with the SHA-256 variant and with the SHAKE-256 variant 2.774 s.
The FOC is even slower and needs for the same operation 2.244 s
with SHA-256 and 8.879 s with SHAKE-256. The LPC provides the
lowest performance with 375 s (SHA-256) and 1313 s (SHAKE-256).

The runtime for the SPHINCS+ operations key generation, sign-
ing, and verification compared to ECDSA is also shown in Table 2.
In particular the signing operation takes significantly longer using
the SPHINCS+ variants than a classical ECDSA signature operation.
This shows that using SPHINCS+ as post-quantum secure signature
scheme comes at much higher cost than using ECDSA. However, if
a platform-optimized implementation or hardware support for the
hash function (SHA-256 or SHAKE-256) is available, this negative
performance impact probably can be ameliorated.

5.1.2 Key Exchange. In contrast to the SPHINCS+ signatures, the
Kyber key exchange with parameter set Kyber512 does not stress
the computationally boundaries of the target platforms. We report
our measurements in Table 3. The three operations key genera-
tion, encryption, and decryption can each be done in about 1ms.
The differences become more significant on the ESP32 were a key
generation needs 12ms, encryption 16ms, and a decryption 18ms.
This trend is also visible in the measurements from the FOC with

Table 3: Runtime of Kyber (Kyber512) and ECDHE

(SECP256R1) operations (rounded to two significant figures).

Method RPi3 ESP32 FOC LPC
Key Generation

Kyber 0.79ms 12 ms 51ms 220ms
ECDHE 14 ms 290 ms 1,400ms 2,900ms

Encryption
Kyber 1.1 ms 16 ms 73ms 300ms
ECDHE 12 ms 250 ms 2,800ms 990ms

Decryption
Kyber 1.1 ms 18 ms 83ms 300ms
ECDHE 14 ms 290 ms 1,400ms 3,000ms

51ms for the key generation, 73ms for the encryption, and 83ms
for decryption. Even on the LPC with a Cortex M0, all operations
can be finished in at most 300ms each.

Compared to the ECDHE key exchange, Kyber performs better
in every operation on every platform. Especially on the FOC the
difference is significant. Each ECDHE operation is at least one
order and up to two orders of magnitude slower than a Kyber
operation. The ESP32 has hardware acceleration for ECC operations
that reduces the runtime for ECDHE operations, but the runtime
of Kyber it still lower by one order of magnitude. The results of
Botros et. al. in [11] indicate that even further improvements are
possible with platform specific optimizations for Kyber.

5.2 Evaluation of the TLS Handshake

We measured performance indicators for our PQC cipher suite
TLS_KYBER_SPHINCS_WITH_AES_256_GCM_SHA256 compared to a
classical handshake based on elliptic curve cryptography using
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA256.We investigate six
different use cases: Every platform is tested as server and as client
(with server authentication only) and we performed measurements
for both SPHINCS+ variants and the classical cipher suite as ref-
erence. The classical reference cipher suite consists of ephemeral
Diffie-Hellman and DSA both using the elliptic curve variant with
the SECP256R1 curve, which provides a 128-bit (classical) security
level. As mentioned above, we do not measure a complete TLS key
exchange on the LPC, because it does not have a network interface,
but only on the Raspberry Pi, the ESP32, and the FOC.

5.2.1 Handshake Message Sizes. Table 4 shows the impact of the
chosen PQC schemes on the size of the different TLS messages
that are exchanged during the handshake. Due to the large size of
SPHINCS+ signatures, the size of both ServerCertificate and
ServerKeyExchange is increased by two orders of magnitude. The
ClientKeyExchange mainly contains the key exchange data from
the client, i.e., a Kyber cipher text, which results in a more moderate
increment of the message size by a factor of more than 10.

5.2.2 Runtime. We measure the runtime of each handshake for all
use cases. As mentioned before, we only measure the handshake
routines and cryptographic primitives but not the network stack
and network response times. Since client and server process the

Table 4: Comparison of handshake message sizes between

the classical and the post-quantum cipher suite.

Type Server- Server- Client-
Certificate KeyExchange KeyExchange

PQC 17, 330 B 17, 780 B 800 B
Classical 553 B 144 B 60 B

exchangedmessages differently, there are two kinds of data sets. The
cryptographic workload for the server is the signature generation
with SPHINCS+, the generation of an ephemeral Kyber keypair, and
the decryption of the Kyber key-exchange data. On the other side,
the client needs to verify a SPHINCS+ signature and encrypts the
key-exchange data with Kyber.

Depending on the platform, the measurements are more or less
reliable and also differ in granularity. While the FOC provides
nanosecond resolution and a reliable industrial grade real-time
clock, the Raspberry Pi uses a cycle counter, and the ESP32 uses an
external clock that has a resolution of microseconds.

The performance results of the entire TLS handshake comparing
the PQC-version to the current version using classical cryptography
are shown in Table 5 and explained in the following.

Raspberry Pi. A classical client handshake takes a minimum of
49ms on a Raspberry Pi 3B+. The SHA-256 variant of KYBER_-
SPHINCS+ needs 67ms and thus is about 1.3 times slower. The
SHAKE-256 variant has an about 4.9 times smaller runtime than the
classical variant. The difference becomes even more significant for
the server. A 43ms classical server handshake runtime increases by
almost 20 times (SHA-256) and even by about 120 times (SHAKE-
256) when performed with post-quantum primitives.

ESP32. Performing a classical client handshake on a ESP32 takes
a minimum of 1134ms, while the SHA-256 variant of KYBER_-
SPHINCS+ needs 974ms, so the post-quantum handshake performs
about 1.2 times faster. The SHAKE-256 variant needs about 2.5 times
more runtime than the classical variant. While at least one post-
quantum handshake variant on the client is faster than the classical
handshake, on the server side the classical variant completely takes
over. This is because the ESP32 provides accelerators for big integer
arithmetic. The port of mbed TLS makes use of this for the ECDHE
and ECDSA computations, while the hash functions are computed
entirely in software. Even though the ESP32 has an accelerator for
the SHA-256 algorithm, mbed TLS does not take advantage of it for
computing the post-quantum signatures. A 892ms classical server
handshake runtime increases by about 25 times (SHA-256) and even
72 times (SHAKE-256) when performed with PQC primitives.

FOC. Performing a classical client handshake on the fieldbus
option card takes a minimum of 5743ms, while the SHA-256 variant
of KYBER_SPHINCS+ needs only 2349ms and therefore is about
2.4 times faster than the classical variant. The SHAKE-256 variant
has an about 1.6 times longer runtime than the classical variant.
While one of the post-quantum handshake variants on the client is
faster than the classical handshake, on the server side the cost for
SPHINCS+ signatures dominates the runtimes. The SHA-256 post-
quantum handshake is almost 12 times slower than the classical

Table 5: Comparison of handshake runtime for different ci-

pher suites (rounded to two significant figures).

Cipher Suite RPi3 ESP32 FOC
Server

KYBER-SPHINCS+-SHA-256 840ms 23,000ms 52,000ms
KYBER-SPHINCS+-SHAKE-256 5,100ms 64,000ms 200,000ms
ECDHE-ECDSA 43ms 890ms 4,400ms

Client
KYBER-SPHINCS+-SHA-256 67ms 970ms 2,300ms
KYBER-SPHINCS+-SHAKE-256 240ms 2,800ms 9,000ms
ECDHE-ECDSA 49ms 1,100ms 5,700ms

server handshake runtime of 4401ms and the SHAKE-256 variant
of the post-quantum handshake is even about 46 times slower.
Here, the distribution between server and client workload for the
post-quantum algorithms is very unbalanced, while the classical
algorithm has similar runtimes for client and server.

The runtime measurements we are reporting in Tables 2 and 3 for
the cryptographic primitives and in Table 5 for the TLS handshake
are the optimal values achieved in several independent test runs
and are not correlated to each other. We also measured both the
runtime of the cryptographic primitives and of the corresponding
TLS handshake in additional tests. In most cases, the cryptographic
primitives take over 98% of the runtime of the entire handshake, i.e.,
the overhead within the TLS library for parsing data etc. is marginal.
However, for the classical cipersuite with ECDHE and ECDSA on
the ARM-platforms (Raspberry PI and FOC), the cryptographic
operations take only about 65% of the overall handshake — due to
the optimized ECC implementations in the mbed TLS library for
ARM processors.

5.2.3 Code Size. The size of the mbed TLS dynamic library is
not a good indicator for the actual code size in order to achieve
a fair assessment of the PQC overhead, because it contains code
that is not required by the use cases and thus might lead to and
underestimation of the impact of the PQC primitives. Instead, the
actual code sizes of a server and a client are more meaningful. The
map files of these programs include the parts of the mbed TLS
library that are actually used, which is a more practically relevant
definition for the code size. We evaluated the following sections of
the client and server binaries:

• DATA holds initialized static variables. For these variables,
space is reserved on the read-write section of the flash mem-
ory that stores the constant initialization values. During
runtime, this section may be copied to RAM.

• BSS contains uninitialized static variables. Depending on the
platform, these values are initialized differently on startup.
The value of this variable will always be in RAM since there
is no constant for initialization. Generally, RAM is a very
constrained resource on embedded devices.

• TEXT contains the executable instructions and constant val-
ues. This section is stored in flash memory.

Table 6: Code sizes of client and server.

TEXT BSS DATA
Cipher Suite Client Server Client Server Client Server

RPi3
KYBER-SPHINCS+-SHA-256 91, 900 B 114, 340 B 8, 812 B 8, 820 B 5, 811 B 63, 505 B
KYBER-SPHINCS+-SHAKE256 91, 900 B 114, 340 B 8, 812 B 8, 820 B 5, 811 B 63, 505 B
ECDHE-ECDSA 93, 492 B 94, 336 B 8, 824 B 8, 824 B 8, 170 B 12, 541 B

ESP32
KYBER-SPHINCS+-SHA-256 61, 682 B 64, 602 B 32 B 32 B 8, 803 B 33, 175 B
KYBER-SPHINCS+-SHAKE256 61, 682 B 64, 602 B 32 B 32 B 8, 803 B 33, 175 B
ECDHE-ECDSA 46, 463 B 49, 346 B 36 B 36 B 7, 225 B 8, 509 B

FOC
KYBER-SPHINCS+-SHA-256 62, 976 B 64, 840 B 8, 764 B 8, 764 B 7, 897 B 31, 894 B
KYBER-SPHINCS+-SHAKE256 62, 976 B 64, 840 B 8, 764 B 8, 764 B 7, 897 B 31, 894 B
ECDHE-ECDSA 66, 056 B 67, 312 B 8, 770 B 8, 770 B 6, 564 B 7, 676 B

To ensure that the memory footprint is as small as possible, we
optimizedmbed TLS specifically for the test cases by using thembed
TLS configuration file config.h to disable as many features of the
library as possible and by using compiler settings for size-optimized
code. Depending on the test case or platform, we used different
sets of configurations, but some options in the configuration are
mandatory for every test setting:

• Base system: These are basic library functions, e.g., public
key algorithms, that are needed by most of the modules.

• TLS: All test cases are using TLS version 1.2.
• Cipher suites: All tested cipher suites have some algorithms
in common, e.g., AES-256 in GCM mode for bulk encryption
and SHA-256 as hash function for the MACs.

• X509: Certificates are used in all handshakes. All variants of
SPHINCS+ and ECDSA use X509 certificates for the public
key of the server.

Further options depend on the test case. For the classical hand-
shakewe used the cipher suite TLS_ECDHE_ECDSA_WITH_AES_256_-
GCM_SHA256 with the elliptic curve SECP256R1 for ECDHE key ex-
change and ECDSA signatures. We used our PQC cipher suite TLS_-
KYBER_SPHINCS_WITH_AES_256_GCM_SHA256 for the post-quantum
handshakewith Kyber key exchange and SPHINCS+ signatureswith
SHA-256 or SHAKE-256 as hash functions. In addition to that, we
enabled handshake fragmentation for the post-quantum handshake,
because of the large message sizes.

According to the mbed TLS developers it is possible to reduce the
combined size in ROM and RAM to only 30 kB [24]. Our implemen-
tation is not that tiny, but with a complete code size minimum of
54 kB for a classical handshake and 70 kB for a post-quantum client
is quite close. For the server, the minimum is 60 kB with the classi-
cal handshake and the smallest post-quantum server has a size of
98 kB, because of the storage requirements for certificate handling.
While an ECDSA server certificate can be stored within 1 kB, the
SPHINCS+ certificate takes 25 kB. Independent of the public key
algorithms the BSS section is nearly empty on the ESP32 and about
9 kB large on all other platforms. This is because of the hardware

acceleration for AES on the ESP32. On the other platforms, the AES
implementation is responsible for nearly the complete BSS size. The
post-quantum variants have always the exact same code size. The
only difference between these two is the use of the hash function
in SPHINCS+. However, it is not possible to save the code size of
the unused hash function, because the SHAKE-256 implementation
is also used by Kyber and the SHA-256 implementation is also used
in other parts of the TLS protocol. The overall differences between
classical and post-quantum handshake are not significant, except
for the server certificate.

In Table 6 it can be seen that the client code sizes per platform are
quite equal for FOC and Raspberry Pi, the ESP32 uses its hardware
accelerator for big number operations, which saves some code size
for the classical handshake. On the server there are more significant
differences, but Table 6 shows that at least on the FOC the code
sizes for post-quantum and classical server are equal when adjusted
by the certificate size.

5.2.4 RAM Usage. To measure peak stack usage, we filled the en-
tire available stack space with a specific pattern (i.e., 0xAA) at the
beginning. After performing the test run, we checked the occur-
rence of this pattern on the stack as indication on stack usage. In
addition, we used map-file information.

The full TLS handshake can be performed with a stack peak of
only about 20kB. While this is really small, the library dynamically
allocates buffers during runtime. An analysis of the allocations
showed the potentially smallest practical memory footprint.

Most notable allocations are the incoming and outgoing message
buffers as well as a temporary buffer for the handshake fragmenta-
tion. The rest are mostly small buffers and contexts. The minimum
size of the message buffers is the size of the biggest handshake
message. These messages turned out to be messages that contain
a SPHINCS+ signature, Certificate, and ServerKeyExchange. A
single self-signed X509 certificate with a SPHINCS+ signature and
public key is about 17kB big and a Kyber key exchange data with a
SPHINCS+ signature have a size of about 17.8kB. From these values,
a safe message buffer size of 20kB can be derived.

6 CONCLUSION

In this paper, we described our integration of the post-quantum
KEM scheme Kyber (for key exchange) and the post-quantum signa-
ture scheme SPHINCS+ into the embedded TLS library embed TLS.
First, we measured the performance of the PQC primitives on four
embedded platforms, a Raspberry Pi, an ESP32, a fieldbus option
card, and a heavily resource restricted LPC. Then, we evaluated
the performance of a PQC-TLS variant using Kyber and SPHINCS+
on three embedded platforms (excluding the LPC due to its lack of
network interfaces) and compared the performance to classical TLS
with corresponding ECC primitives.

We measured the required time for performing the PQC primi-
tives and their ECC counterparts on the different platforms. Kyber
performs on all platforms better than the ECDHE key exchange.
However, as expected, SPHINCS+ is in general slower than ECDSA.
Especially signing takes significantly longer using SPHINCS+ in
both tested variants with SHAKE-256 and with SHA-256. Since
there is optimized source code of SHA-256 for ARM platforms, the
SHA-256 variant performed significantly better than the SHAKE-
256 on all platforms that we tested. However, we expect that by
integrating hardware support for calculating the hash function
(SHAKE-256 or SHA-256) the performance can be significantly im-
proved. Thus, for enabling current embedded systems to efficiently
calculate digital signatures using hashed-based PQC schemes, ap-
propriate hardware acceleration for the required hash functions
should be integrated.

We also performed measurements of the TLS handshake, which
showed that the most of the time is consumed by performing the
PQC schemes. The size of all related handshake messages increases
significantly in particular if SPHINCS+ signatures need to be trans-
mitted. In addition, we measured code and RAM size and showed
that the integration of PQC schemes on embedded devices is feasible
with relatively low overhead.

The cost of computing signatures with SPHINCS+ poses the
biggest obstacle for using the selected embedded platforms as a TLS
server. However, the performance of the PQC-TLS client is similar
for the PQC variant as for the ECC variant. Thus, even without
dedicated hardware acceleration, PQC can be used in embed TLS
as of today in scenarios where the embedded device has the role of
the TLS client. For the use of PQC in an embedded TLS server, we
recommend the addition of hardware accelerators in order to speed
up the SPHINCS+ signing computations or to use a more resource
friendly PQC signature primitive.

ACKNOWLEDGMENTS

The work presented in this paper has been partly funded by the
German Federal Ministry of Education and Research (BMBF) under
the project “QuantumRISC” (ID 16KIS1033K) [32].

REFERENCES

[1] Infineon Technologies AG. 2017. Ready for tomorrow: Infineon demonstrates first
post-quantum cryptography on a contactless security chip. https://www.infineon.
com/cms/en/about- infineon/press/press- releases/2017/INFCCS201705- 056.
html

[2] Miklós Ajtai. 1996. Generating Hard Instances of Lattice Problems (Extended
Abstract). In ACM Symposium on Theory of Computing — STOC ’96. ACM, 99–108.

[3] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-
quantum Key Exchange – A NewHope. In USENIX Security Symposium— USENIX

Security 2016. USENIX Association, 327–343.
[4] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. 2016. NewHope on ARM

Cortex-M. In Security, Privacy, and Applied Cryptography Engineering — SPACE
2016 (LNCS), Claude Carlet, M. Anwar Hasan, and Vishal Saraswat (Eds.),
Vol. 10076. Springer, 332–349.

[5] Matthew Arcus. 2018. Using the Cycle Counter Registers on the Raspberry Pi 3.
https://matthewarcus.wordpress.com/2018/01/27/using- the- cycle- counter-
registers-on-the-raspberry-pi-3/

[6] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. 2017. CRYSTALS-Kyber — Submission to the NIST post-quantum project.

[7] Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-
Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange,
Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,
Joost Rijneveld, and Peter Schwabe. 2017. SPHINCS+ — Submission to the NIST
post-quantum project.

[8] Daniel J. Bernstein, DairaHopwood, AndreasHülsing, Tanja Lange, RubenNieder-
hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko
Wilcox-O’Hearn. 2015. SPHINCS: Practical Stateless Hash-Based Signatures. In
Advances in Cryptology — EUROCRYPT 2015 (LNCS), Elisabeth Oswald and Marc
Fischlin (Eds.), Vol. 9056. Springer, 368–397.

[9] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. CRYSTALS -
Kyber: A CCA-Secure Module-Lattice-Based KEM. In IEEE European Symposium
on Security and Privacy — EuroS&P 2018. IEEE, 353–367.

[10] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. 2015. Post-
Quantum Key Exchange for the TLS Protocol from the Ring Learning with Errors
Problem. In IEEE Symposium on Security and Privacy — SP 2015. IEEE, 553–570.

[11] Leon Botros,Matthias J. Kannwischer, and Peter Schwabe. 2019. Memory-Efficient
High-Speed Implementation of Kyber on Cortex-M4. In Progress in Cryptology
— AFRICACRYPT 2019 (LNCS), Johannes Buchmann, Abderrahmane Nitaj, and
Tajje-eddine Rachidi (Eds.), Vol. 11627. Springer, 209–228.

[12] Matt Braithwaite. 2016. Experimenting with Post-Quantum Cryptography. https:
//security.googleblog.com/2016/07/experimenting-with-post-quantum.html

[13] Yun-An Chang, Ming-Shing Chen, Jong-Shian Wu, and Bo-Yin Yang. 2014.
Postquantum SSL/TLS for Embedded Systems. In Service-Oriented Computing
and Applications — SOCA 2014. IEEE Computer Society, 266–270.

[14] NIST CSRC. 2017. Post-Quantum Cryptography Round 1 Submissions. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

[15] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246.

[16] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt.
2016. Applying Grover’s Algorithm to AES: Quantum Resource Estimates. In
Post-Quantum Cryptography — PQCrypto 2016 (LNCS), Tsuyoshi Takagi (Ed.),
Vol. 9606. Springer, 29–43.

[17] Tim Güneysu, Markus Krausz, Tobias Oder, and Julian Speith. 2018. Evaluation
of Lattice-Based Signature Schemes in Embedded Systems. In IEEE International
Conference on Electronics, Circuits and Systems — ICECS 2018. IEEE, 385–388.

[18] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. 2013. Soft-
ware Speed Records for Lattice-Based Signatures. In Post-Quantum Cryptography
— PQCrypto 2013 (LNCS), Philippe Gaborit (Ed.), Vol. 7932. Springer, 67–82.

[19] James Howe, Ciara Moore, Máire O’Neill, Francesco Regazzoni, Tim Güneysu,
and K. Beeden. 2016. Standard Lattices in Hardware. In Design Automation
Conference — DAC 2016. ACM, 162:1–162:6.

[20] James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu. 2018. Standard
Lattice-Based Key Encapsulation on Embedded Devices. IACR Transactions on
Cryptographic Hardware and Embedded Systems — TCHES 2018, 3 (Aug. 2018),
372–393.

[21] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. 2016. ARMed SPHINCS –
Computing a 41 KB Signature in 16 KB of RAM. In Public-Key Cryptography —
PKC 2016 (LNCS), Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang (Eds.), Vol. 9614. Springer, 446–470.

[22] Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng, Chen-
Mou Cheng, and Bo-Yin Yang. 2017. High Performance Post-Quantum Key
Exchange on FPGAs. Cryptology ePrint Archive, Report 2017/690.

[23] Leslie Lamport. 1979. Constructing digital signatures from a one way function.
Technical Report SRI-CSL-98. SRI International Computer Science Laboratory.

[24] ARM Limited. [n.d.]. Tiny SSL Library. https://tls.mbed.org/tiny-ssl-library
[25] Zhe Liu, Thomas Pöppelmann, Tobias Oder, Hwajeong Seo, Sujoy Sinha Roy, Tim

Güneysu, Johann Großschädl, Howon Kim, and Ingrid Verbauwhede. 2017. High-
Performance Ideal Lattice-Based Cryptography on 8-Bit AVR Microcontrollers.
ACM Trans. Embedded Comput. Syst. 16, 4 (2017), 117:1–117:24.

[26] Ralph C. Merkle. 1990. A Certified Digital Signature. In Advances in Cryptology
— CRYPTO’ 89 Proceedings, Gilles Brassard (Ed.). Springer New York, New York,
NY, 218–238.

[27] Tobias Oder and Tim Güneysu. 2019. Implementing the NewHope-Simple Key
Exchange on Low-Cost FPGAs. In Progress in Cryptology — LATINCRYPT 2017
(LNCS), Tanja Lange Orr and Dunkelman (Eds.), Vol. 11368. Springer, 128–142.

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html
https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html
https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html
https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-registers-on-the-raspberry-pi-3/
https://matthewarcus.wordpress.com/2018/01/27/using-the-cycle-counter-registers-on-the-raspberry-pi-3/
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://tls.mbed.org/tiny-ssl-library

[28] Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. 2014. Beyond ECDSA
and RSA: Lattice-based Digital Signatures on Constrained Devices. In Design
Automation Conference — DAC 2014. ACM, 110:1–110:6.

[29] Christian Paquin, Douglas Stebila, and Goutam Tamvada. 2020. Benchmark-
ing Post-Quantum Cryptography in TLS. Cryptology ePrint Archive, Report
2019/1447. In Post-Quantum Cryptography — PQCrypto 2020 (LNCS), Jintai Ding
and Jean-Pierre Tillich (Eds.). Springer.

[30] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. 2015. High-Performance
Ideal Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers. In Progress
in Cryptology — LATINCRYPT 2015 (LNCS), Vol. 9230. Springer, 346–365.

[31] Manuel Pégourié-Gonnard. 2017. Porting mbed TLS to a new environment or
OS. https://tls.mbed.org/kb/how- to/how-do- i-port-mbed- tls- to-a-new-
environment-OS

[32] QuantumRISC. 2020. QuantumRISC — Next Generation Cryptography for Embed-
ded Systems. https://www.quantumrisc.org/

[33] Peter W. Shor. 1994. Algorithms for quantum computation: discrete logarithms
and factoring. In Foundations of Computer Science. IEEE, 124–134.

[34] Peter W. Shor. 1999. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM Rev. 41, 2 (1999), 303–332.

[35] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020. Post-
Quantum Authentication in TLS 1.3: A Performance Study. Cryptology ePrint
Archive, Report 2020/071. In Network and Distributed System Security Symposium
— NDSS 2020. The Internet Society.

[36] Julian Speith, Tobias Oder, Marcel Kneib, and Tim Güneysu. 2018. A lattice-based
AKE on ARM Cortex-M4. In BalkanCryptSec 2018. https://www.emsec.ruhr-uni-
bochum.de/research/publications/ake-m4/

https://tls.mbed.org/kb/how-to/how-do-i-port-mbed-tls-to-a-new-environment-OS
https://tls.mbed.org/kb/how-to/how-do-i-port-mbed-tls-to-a-new-environment-OS
https://www.quantumrisc.org/
https://www.emsec.ruhr-uni-bochum.de/research/publications/ake-m4/
https://www.emsec.ruhr-uni-bochum.de/research/publications/ake-m4/

	Abstract
	1 Introduction
	2 Background
	2.1 Transport Layer Security
	2.2 Post-Quantum Cryptography
	2.3 Related Work

	3 Integration of PQC into the mbed TLS Library
	3.1 Cryptographic Primitives
	3.2 TLS Protocol
	3.3 Tools

	4 Target Platforms
	4.1 Raspberry Pi 3 Model B+
	4.2 ESP32-PICO-KIT V4
	4.3 Fieldbus Option Card
	4.4 LPC11U68 LPCXpresso

	5 Evaluation
	5.1 Evaluation of the Cryptographic Primitives
	5.2 Evaluation of the TLS Handshake

	6 Conclusion
	Acknowledgments
	References

