
Wavelet Scattering Transform and Ensemble
Methods for Side-Channel Analysis

Gabriel Destouet1,2, Cécile Dumas1, Anne Frassati1, and Valérie Perrier2

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, 38000 Grenoble, France
gabriel.destouet@cea.fr,cecile.dumas@cea.fr,anne.frassati@cea.fr

2 Univ. Grenoble Alpes, CNRS, Grenoble INP??, LJK, 38000 Grenoble, France
valerie.perrier@univ-grenoble-alpes.fr

Abstract. Recent works in side-channel analysis have been fully relying
on training classification models to recover sensitive information from
traces. However, the knowledge of an attacker or an evaluator is not
taken into account and poorly captured by solely training a classifier on
signals. This paper proposes to inject prior information in preprocessing
and classification in order to increase the performance of side-channel at-
tacks (SCA). First we propose to use the Wavelet Scattering Transform,
recently proposed by Mallat, for mapping traces into a time-frequency
space which is stable under small translation and diffeomorphism. That
way, we address the issues of desynchronization and deformation gener-
ally present in signals for SCA. The second part of our paper extends
the canonical attacks over byte and Hamming weight by introducing a
more general attack. Classifiers are trained on different labelings of the
sensitive variable and combined by minimizing a cross-entropy criterion
so as to find the best labeling strategy. With these two key ideas, we
successfully increase the performance of Template Attacks on artificially
desynchronized traces and signals from a jitter-protected implementa-
tion.

Keywords: Side-Channel Analysis, Time-Frequency Analysis, Wavelet Scatter-
ing Transforms, Machine Learning, Ensemble Methods, Template Attack

1 Introduction

The signal analysis of current consumption and electromagnetic radiations (EM)
from electronic components can leak compromising information. A whole re-
search area and an industry have been developed around the task of assessing
the security of electronic devices. Since the first attacks, the countermeasures
and conversely the attacks have been constantly improved in order to cut the
leak of sensitive information to potential eavesdropper. In the community of
side-channel analysis (SCA), profiled-attacks make use of open-samples so as to
derive an optimal strategy to retrieve information on similar devices.

?? Institute of Engineering Univ. Grenoble Alpes

These attacks are critical when cryptographic algorithms are involved. It has
been shown with the first Template Attacks [1], known in machine learning as
Quadratic Discriminant Analysis (QDA) [2], that cryptographic keys can be re-
covered by training a QDA on traces acquired during an algorithm execution.
From a machine learning perspective, the attacker would like to maximize his
chance to retrieve the right cryptographic key, or at least to lower the time-cost
of a brute force attack by ordering potential keys according to their likelihood.
He would have to choose a classification model that links signals with a sensitive
information depending on the key, and to train this classifier on the open-sample
with the hope that the model will generalize well on other devices with unknown
keys. The training requires a search for parameters of the classifier, e.g covari-
ances matrices and means in the case of a QDA, or weights for neural networks.
This search is usually driven by optimizing a criterion that evaluates the per-
formance of the classifier and can be helped by any prior information about
the device (i.e the physical phenomena involved, a leakage model, etc.) which
constraints the space of parameters or structurally modifies how the criterion is
evaluated.

Given a classification model, we are interested in ways of increasing the per-
formance of attacks by injecting prior information either during preprocessing
with time-frequency analyses or during classification.

The main motivation for pushing time-frequency preprocessing is to con-
sider bases of analysis in which traces are represented in terms of elementary
signals whose characteristics are closer to emanations from physical phenom-
ena. The usual raw temporal representation from the acquisition phase, i.e the
projection of the analogous signal on a dirac basis, is inconsistent with the du-
ration of transients in electric currents. In the case of SCA, we do not know a
priori neither what form the signals leaking sensitive information have, nor at
which time scales the sensitive variable are manipulated. However we know that
the physical processes involved are non-stationary and lasting in time, e.g the
current consumption of a CMOS during a switch. Thus it seems reasonable to
analyze signals with a basis of functions which at least respect these properties.
Decomposing traces into elementary signals is an intuitive process, it is usually
performed in signals realignment by intercorrelating traces with selected pat-
terns. This procedure is a projection on a basis composed of translated versions
of these patterns and is a particular case of time-frequency analysis by using a
custom basis of functions. But this usually needs a know-how and it becomes dif-
ficult to select patterns in deformed and translated traces from jitter-protected
implementation.

In order to improve the performance of profiled attacks, most recent works
have been comparing different machine learning methods for the classification
of traces in SCA but only few of them have considered time-frequency prepro-
cessing. Historically Templates attacks from [1] fit multivariate Gaussian distri-
butions to clusters of fixed temporal points of interest. With the introduction
of neural networks, most deep learning based works such as [3, 4, 5] presented
networks trained on temporal representations, with the exception of the paper

[6] in which a 2D spectrogram based convolutional neural network is used. Other
methods such as [7] make use of histograms of amplitudes of temporal points
in order to characterize patterns for realignment and attacks. This method re-
quires a correct filtering of signals since the presence of a low frequency noise
can produce a shift in histograms and do not take into account deformations of
patterns. It has been early shown by [8] that EM signals of various cryptographic
implementations can be analyzed (by-hand) in the Fourier domain and differen-
tial electromagnetic attacks (DEMA) can be successfully carried with carefully
chosen frequency bands. Non-profiled attacks, which usually need a theoreti-
cal leakage model so as to replace the profiling phase, have proven efficiency
when considering time-frequency representation. The spectrogram representa-
tion used in Differential Frequency Analysis in [9, 10, 11] transposes Differential
Power analysis in the time-frequency domain: these works showed that sensi-
tive information is more easily retrieved by decomposing traces into temporally
localized Fourier atoms. Discrete wavelet transform has been used in [12] for
compressing traces and improving DPA attacks with synchronized traces. The
authors of [13] used it to realign traces with a simulated annealing method. The
work of [14] and [15] improved it by providing more efficient methods inspired by
speech recognition methods and image analysis. However, the main difficulties
with spectrogram and wavelet transform are their instability respectively under
small deformation and translation.

The first idea of this paper is to use the wavelet scattering transform by
Mallat in [16, 17] to tackle these issues. This transform maps signals in a time-
frequency space, stable under small time-shifts and deformations. This prepro-
cessing provides an in-depth analysis of signals while being formally established
to address these problems.

Side-channel attacks also depend on the classification goal we fixed for the
classifier. Generally, it is not clear how a sensitive variable from a cryptographic
algorithm leaks into traces and if the classifier is able to recover it.

Most works in SCA usually consider only one specific leakage model, histor-
ically the Hamming weight of sensitive variables or the variable itself. However
it is known that bits are actually leaking dissymmetrically, suggesting that the
leak is of complex nature, for example Suzuki et al. in [18] proposed leakage
models that consider operations on bits in CMOS logic circuits to explain bi-
ases in power consumption. Schindler et al. in [19] make a linear regression of
the leakage model by assuming that the deterministic part of signals can be ap-
proximated by a weighted sum of a basis of functions defined on the algorithm
variables. More generally the leakage is an unknown function of the manipulated
sensitive variables.

Consequently, the second idea is to act on the goal we fixed for the classifier:
we propose to target partitions of the sensitive information in order to find the
best strategy of attack. By combining clues retrieved on different partitions,

we can reduce the number of likely values and recover the sensitive variable.
The attack becomes less dependent to a specific leakage model while giving
information about how subsets of values are leaking in traces. This involves
combining probabilities from classifiers and refers to Ensemble method [20] in
machine learning.

Contribution

First, we propose to use the Wavelet Scattering Transform as preprocessing so as
to provide a stable representation for analyzing misaligned and deformed signals,
to the best of our knowledge this transform has not been used before in SCA.
Then we develop a combination procedure of classifiers trained on partitions of
the sensitive variable’s values so as to compare and find efficient strategies of
attacks.

These two approaches can be used with any type of classifiers, whose relations
with traces can be arbitrary complex. We demonstrate that these steps success-
fully increase the performance of Template Attacks on the ASCAD database and
on a jitter-protected SoC.

The paper is organized as follow: in Section 2 the problem of profiled side-
channel attacks is reminded, the Wavelet Scattering Transform and its properties
are introduced for preprocessing traces in SCA in Section 3, a combination pro-
cedure for finding the leakage model is developed Section 4 and finally attack
results on ASCAD and traces from jitter-protected SoC are presented in Section
5.

2 Problem Statement

A procedure g is computing a sensitive variable Z with a plaintext E and a key
K. During its execution, the procedure is leaking signals X, or traces, e.g EM
or current consumption signals. Traces have a finite size noted d, thus X ∈ Rd.
From the perspective of the attacker, all of these variables are considered as
random and written uppercase. In the following, calligraphic letters such as X
refers to the set of possible values of the random variable X. Realizations of
random variable is noted with lowercase letter, thus x is a realization of X.

The procedure g(. ,K) : E → Z is assumed to be surjective and maps the
set of plaintexts E to the set of sensitive variables Z. A profiled attack consists
of training a classifier y on signals X to recover Z, which gives clues on K given
E. The training requires a set of observations labelized with their associated
sensitive variable, we notes Dt the set of data acquired from the open-sample
which consists of tuple Dt = {(x1, z1), ... , (xNt , zNt)} with Nt being the size of
the training set. An attack set Da={x1, ... , xNa

} of size Na has a fixed key k∗

and allows us to evaluate the performance of the classifier. Here it is assumed
that plaintexts are always known, thus for each realizations (xi, zi) ∈ Dt or
xi ∈ Da a plaintext ei is associated. The classifier y is trained on Dt in order to

have an approximation of P(Z|X). During an attack, we can get an estimation
of the target key k∗ with a realization xi ∈ Da.

P(K=k|X=xi) ∝ P(Z=g(ei, k)|X=xi) (1)

Where x ∝ y states that the two quantities x, y are proportional.
However, depending on whether g is bijective or not, or if the quality of

estimations are too poor, one-shot estimation of the key k is in general not
enough, i.e given an observation xi, k

∗ 6= argmaxk̂ P(K = k̂|X = xi). Thus the
attacker has to use many observations to obtain better predictions:

P(K=k|Da) =

Na∏
i=1

P(Z=g(ei, k)|X=xi) (2)

After sorting {P(K=kj |Da)}kj∈K in decreasing order, the rank is defined as the
position of P(K = k∗|Da) in the sorted list P(K = ki|Da) > ... > P(K = kj |Da).
In the following, the guessing entropy [21] is estimated by taking the empirical
mean of rank values obtained for many attacks. Note that the less attack data
Na is required to have a low rank, the better is the attack.

The attack involves the task of estimating the posterior P(Z|X) or the like-
lihood P(X|Z) from the data. It requires a preprocessing of the observed traces
X and a statistical learning algorithm to learn P(Z|X).

3 Time-Frequency Analysis with the Wavelet Scattering
Transform

In this section, we will present common Time-Frequency transformations used for
preprocessing traces in SCA, their limits in the case of deformed and misaligned
signals, and we will introduce the Wavelet Scattering Transform of Mallat [16,
17]. In the following, we assume that the attacker acquired traces in the form of
vectors x ∈ Rd, where d is the number of temporal points.

3.1 Some Time-Frequency representations

Analysis in a Dirac Basis (i.e the raw temporal representation) The
sampled trace x from the analogous signal xa, x(p)=xa(pT) with T the sampling
period, can be represented as follow, for each time index p we have:

x(p) =

∫
xa(t)δ(t− pT)dt = [δpT |xa] (3)

Where [. | .] denotes the duality bracket, e.g [δt|x]=x(t). This is the projection
of xa on a Dirac basis {δpT }0≤p≤d−1. The continuous approximation x̃ of xa can
be represented as a sum of weighted Dirac functions:

x̃ =
∑
p

[δpT |xa]δpT =
∑
p

x(p)δpT (4)

This approximation is completely characterized by {x(p)}0≤p≤d−1 which are
assumed to be infinitely concentrated at time pT where Fs=1/T is the sampling
rate. In the following, we equivalently use either the continuous form x̃ or the
vector x to formulate Time-Frequency transformations.

Discrete Fourier Transform With the canonical inner product on Cd, the
Discrete Fourier Transform is the projection on periodic signals {e2iπk/d}0≤k≤d−1
and reverses the analysis made in a Dirac basis, i.e instead of considering x as a
sum of time-concentrated signals, the discrete Fourier Transform interprets x as
being composed of periodic signals with an infinitely small frequency bandwidth.
If we note x̂ the Discrete Fourier Transform of x we have for each time index p
and frequency k:

x̂(k) = (x|e2iπk/d) =
∑
p

x(p)e−2iπkp/d (5)

x(p) =
1

d

∑
k

(x|e2iπk/d)e2iπkp/d =
1

d

∑
k

x̂(k)e2iπkp/d (6)

Dirac and Fourier bases interpret x as being composed of signals concen-
trated respectively in time and in frequency. However, the sensitive information
in SCA’s traces are contained in transient patterns, which are not well captured
by these two transforms. Thus we would like to use this prior knowledge and to
interpret x with elementary signals of finite duration and frequency bandwidth.

Short Time Fourier Transform Time-frequency representations such as the
short-time Fourier transform (STFT) analyze signals with a basis {wme2iπp/d}m,p
composed of modulated versions of a window function wm(n)=w(n−m), where
n is the time index and m a translation coefficient. The temporal scale and the
frequency bandwith of the window function w give the precision of analysis in
the time-frequency space. It concentrates the signal energy into time-frequency
boxes of fix area a(t, f)=σtσf where σt and σf are the temporal and frequency
supports of w and remain constant (see Figure 2). Gabor transforms [22] opti-
mize the concentration of the signal energy into time-frequency boxes by using
Gaussian windows.

Wavelet Transform The basis used in Wavelet Transform (WT) {ψu,s}u,s
is composed of scaled and translated versions ψu,s(t) = 1√

s
ψ(t−us) of a mother

wavelet ψ, where respectively u and s are translation and dilation coefficients. In
order to compute the projection over all translation coefficients u and for a given
dilation coefficient s, the signal x̃ is convoluted with ψs= 1√

s
ψ(ts). To facilitate

notation, we formulate the projection on the continuous approximation x̃:

(x̃|ψu,s) =

∫
x̃(t)

1√
s
ψ∗(

t− u
s

)dt = x̃ ∗ ψs(u) (7)

Where x∗ is the complex conjugate of x, x(t) = x∗(−t), ∗ is the convolutional
operator and the inner product is defined on L2(C). In order to pave the time-
frequency plane, the dilation coefficient has to be varied and is usually sampled
on a dyadic scale s= 2−j with j ∈ N. If we note f0 the center frequency of the
mother wavelet, the center frequency of its j-th dilated version is approximately
at f0/2

j . This is due to the scaling property of the Fourier Transform:

FT (ψs)(f) =
√
sFT (ψ)(sf) (8)

Where FT is the Fourier Transform. When changing the dilation coefficient s
the bandwidth σf inversely varies with the temporal support σt, thus allowing
variations of the shape of the area a(t, f)=σt(t)σf (f) across the time-frequency
plane.

Translation invariance and stability under diffeomorphism In the case
of SCA, where a device can produce distorted traces and misalignment due to
countermeasures such as jitter effects, we claim that a good representation Φx
of the traces x should be stable under small translation and deformation.

Let x1, x2 be two acquired traces, we say that x1 is a deformed version of
x2 if there exists a diffeomorphism τ(t) (an invertible transformation) such that
x1(t)=x2(τ(t)).

A practical example in SCA is given Figure 1 where two patterns from EM
signals are plotted. Although both signals contain the same cryptographic in-
formation, the temporal and frequency structure of these patterns has been
translated in the time-frequency space. In fact, the transformations presented
above are unstable for temporal translation δτ > σt/2 and frequency variation
δf > σf/2. In Figure 2, we have illustrated the time-frequency space coverage
of the bases used in WT and STFT. WT is robust to small deformations but
not translation invariant, while the spectrogram is translation invariant but not
stable by deformations.

Identifying a diffeomorphism between traces is a difficult task and we better
find an operator Φ that makes the two signals ”collide” in the sense that Φx ≈
ΦLτx where Lτ denotes the deformation operator induced by the diffeomorphism
τ . According to [16], the operator Φ should be designed with respect to the two
following properties:

– Φ is translation invariant, i.e for c ∈ R and Lcx(t)=x(t− c):

Φx = ΦLcx

– Moreover, Φ is stable by diffeomorphism, i.e it is Lipschitz continuous to the
action of a C2-diffeomorphism τ . For τ ∈ C2(R), Lτx(t) = x(t − τ(t)) and
C ∈ R+:

‖Φx− ΦLτx‖ ≤ C‖x‖(‖
∂τ

∂t
‖∞ + ‖∂

2τ

∂t2
‖∞) (9)

Wavelet Scattering transforms proposed in [16] provide these useful mathe-
matical properties we claim relevant to analyze signals in SCA, it will be exten-
sively used in our experiments and are presented hereafter.

0.00 0.25 0.50 0.75 1.00
-60
-40
-20

0
20
40
60

Time

0.005 0.010 0.015 0.020 0.025 0.030
0.00

0.01

0.02

0.03

0.04

0.05

Normalized frequency

Fig. 1. Jitter effect and deformation taken from Jit signals (see Section 5.2). Two
temporal patterns are plotted on the top with their associated Fourier Transform on the
bottom. The deformation between these patterns is characterized here by a frequency
shift of some components (e.g at frequency 0.026) in the Fourier spectrum.

Fr
eq
ue
nc
y

TimeWavelet
transform STFT

Fig. 2. Illustration of WT and STFT, the black spot is the frequency component we
would like to capture. Under the action of translation the spot moves horizontally and
under small dilation it moves verticaly. Each box is a time-frequency area sized by each
elementary signal of the transform.

3.2 The Wavelet Scattering Transform

In order to have such properties, Mallat proposes in [16, 17] cascading continuous
wavelet transforms defined here in continuous form with x ∈ L2(R) , ψ ∈ L2(C)
by:

W [λ]x(u) = x ∗ ψλ =

∫
x(t)

1√
λ
ψ∗(

u− t
λ

)dt (10)

Where ∗ is the convolutional operator and ψ is a mother wavelet (a zero mean
function). Each wavelet ψλ parametrized with scales λ is followed by a non-linear
operation | . | and averaged on a time domain of 2J samples with AJx=x ∗ φ2J .
The windowed scattering transform SJ of a signal x over a path p=(λ1, ..., λm)
with λi > 2−J is defined by:

SJ [p]x = |||x ∗ ψλ1
| ∗ ψλ2

|... ∗ ψλm
| ∗ φ2J

= |W [λm] ... |W [λ2] |W [λ1]x||| ∗ φ2J
= AJ |W [λm] ... |W [λ2] |W [λ1]x|||
= AJU [λm] ... U [λ2]U [λ1]x (11)

Fig. 3. A two-level wavelet scattering transform

With U [λ]x= |W [λ]x|= |x ∗ ψλ| and AJx= x ∗ φ2J . In practice the windowed
scattering transform is calculated on a path subset ΩJ,m for which a maximum
length m of paths p ∈ ΩJ,m is set and with scales λ > 2−J , meaning that
the Wavelet Transform only captures frequencies superior than 2−J and the
remaining spectral energy will be captured by φ2J . An example of scattering is
displayed on Figure 3.

While wavelet transforms provide stability under the action of small diffeo-
morphism, the nonlinear operation and the integration over time give translation
invariance. Cascading wavelet transforms allows to recover high frequencies lost
when averaging the absolute values of coefficients of previous wavelet transforms.

Depending on the spectral richness of signals we use wavelets on dyadic scales
2−j , 0≤j<J or on intermediate scales 2−j/Q, 0≤j<JQ where Q defines the number
of wavelets used by octave of frequencies. In the following, the Wavelet Scattering
Transform are implemented with the python software proposed in [23]. Morlet
wavelets are used for the first and second levels, and the whole transform is
characterized by three parameters: the scale 2J of averaging J ≥ 2, J ∈ N,
the number of wavelets by octave Q ≥ 1, Q ∈ N and the number of levels of
the scattering transform m ∈ {1, 2}. To tune such parameters, we propose the
following rules of thumb: choose J proportionally with the amount of translation
(i.e jitter) present in signals, Q in proportion to the desired discrimination at
high frequency. If J is set too high, a second level m=2 is required to retrieve the
information lost.

4 A Combination Procedure for Ensemble Methods in
SCA

For the task of classification in SCA, one label is usually considered to pro-
vide an estimation of a sensitive variable Z. Here we focus on the space of
targeted class values with multiple classifiers trained on L different labelings
{Cl}1≤l≤L, each labeling giving clues on the sensitive variable z with a proba-
bility P(Z=z|Cl=cl).

Classification of the sensitive variables considered in SCA lends itself well to
partition our target space Z ∈ Z in complementary regions. We denote βl the
partition function that associates each z to a label cl ∈ Cl, such that βl(z)=cl and
β(z)=(c1, ..., cL)=c ∈ C. For example, if z is the byte 0x12 and β is composed
of labelings respectively over Z8, Hamming weight and the first big-endian bit
value, then β(0x12)=(0x12, 2, 0).

Here we consider the labelings Cl to be conditionally independent and note
Θ the global classifier over all Cl we have: P(C = c|X = x,Θ) =

∏
l P(Cl =

cl|X = x,Θ). For clarity’s sake, we will drop the notation for the conditional
dependence over the model and keep a simplified notation P(C = c|X = x)
instead of P(C=c|X=x,Θ).

We assume here that β is bijective.3 Given a signal x, an estimation for z is
given by:

log(P(Z=z|X=x)) = log(P(C=β(z)|X=x)) (12)

=
∑
l

logP(Cl=βl(z)|X=x)) (13)

A set of L classifiers {y1, . . . , yL} are trained accordingly to partitions βl and
give predictions P(Cl = βl(z)|X = x). Once each classifier is trained, their pre-
dictions can be naively summed, in which case a soft voting (SV) is performed;
or a classifier-specific weight can be applied to each classifier depending on its

3 β is always bijective if it contains the identity.

performance, that is a weighted soft voting (WSV). Remark that SV is a partic-
ular case of WSV where weights are all equal. If we note yl(z, x) = log(P(Cl =
βl(z)|X = x)) the vote accorded to the classifier l for the value z of Z, and
y(z, x)=

∑
l wlyl(z, x) the weighted vote with wl ∈ R. We can iteratively find a

weight vector w ∈ RL such that the following cross-entropy loss is minimized:

Lwsv(X,Z) = − 1

Nt

∑
(xi,zi)∈Dt

P(Z=zi)y(zi, xi) (14)

= − 1

Nt

∑
(xi,zi)∈Dt

∑
l

wlP(Z=zi) log(P(Cl=βl(zi)|x=xi)) (15)

To illustrate our approach, we consider the case where signals x are Gaus-
sian distributed with the same covariance matrix. This is equivalent to choosing
Linear Discriminant Analysis as classifiers [2], we have:

yl(z, x)=log(
1

R
e(x−µl(z))

tΣ(x−µl(z)))

With R the normalization factor, µl(z) the mean value of signals for the labeling
l and the label value z, and Σ the inverse covariance matrix. We assume a
balanced dataset, i.e P(Z=zi) = p is constant, and constraint weights such that∑
l wl=1, we get:

Lwsv(X,Z) =− p

Nt

∑
(xi,zi)∈D

∑
l

wl
(
(xi−µl(zi))tΣ(xi−µl(zi))−log(R)

)
(16)

=− p

Nt

∑
(xi,zi)∈D

(
(xi−µ∗(zi))tΣ(xi−µ∗(zi))+cµ(zi)−log(R)

)
(17)

∝ log(
∏

(xi,zi)∈D

1

R
e(−(xi−µ∗(zi))

tΣ(xi−µ∗(zi)))) (18)

Where µ∗=
∑
l wlµl and cµ =

∑
l wlµ

t
lΣµl −

∑
l,k wlwkµ

t
lΣµk that depends on

estimated means µl, on weights wl and on the inverse covariance matrix Σ. In
the Gaussian distributed case with a fixed covariance matrix, we can see that the
minimization of Lwsv(X,Z) is equivalent to minimizing (xi−

∑
l wlµl(zi))

tΣ(xi−∑
l wlµl(zi)) which is a simple linear regression with parameters w.
Our combination procedure can be seen as a generalization of the Linear

Regression Analysis of Schindler et al [19] where no assumption is made on
the linearity of the leakage model. Arbitrary complex classifiers can be used
to draw relations between signals and labels and the relevance of such relation
can be evaluated by minimizing the cross-entropy criterion, i.e classifiers with
the highest weights are the most relevant. To obtain the overall estimation,
log probabilities are linearly summed according to a simple Bayes rule, in case
classifiers output scores, a logistic regression layer [2] can be added and trained
to get probabilities.

As remarked Zhou in [20, Chap 4.3.5.2] the global score obtained after min-
imization can be worse than considering the best classifier in the model. This

procedure is interesting when no knowledge about the leakage model is avail-
able and can be iteratively improved by removing bad classifiers, i.e when their
weights are too low.

In practice, classifiers are individually trained on their associated labeling Cl
and their predictions are combined after minimizing (15) with the weight vector
w.

5 Experiments

In this section, we integrate the two previous methods presented Section 3 and
4 to perform attacks on desynchronized traces from ASCAD and signals from
jitter-protected SoC. Attack results are compared with other preprocessings:
raw temporal signals and spectrogram of traces. We also study the effect of
optimizing the weights of the combination procedure (15) on attack results.

5.1 Method used

We propose the method displayed on Figure 4. First, traces are preprocessed
with the Wavelet Scattering Transform (WST), then a PCA is applied to reduce
the dimension and finally QDA classifiers trained on predefined labelings Cl
outputs predictions which are merged with a Weighted Soft Voting (WSV) (15).

The set of classifiers is trained on canonical partitions, i.e identity on z,
Hamming weight and bit values:

{Id : z → z, HW : z → HW(z), Biti : z → (z � i) & 1 ∀i ∈ {0, 1, . . . , 7}}

The optimal weights of the combination procedure are found by iterating a
state of the art gradient descent algorithm AMSGrad [24].

WST PCA

QDA on Z

QDA on HW

QDA on bit0 WSV

QDA on bit7

Our model

PCA/QDA

Fig. 4. Illustration of the global method in black with the Wavelet Scattering Trans-
form (WST) and the Weighted Soft Voting (WSV) from Sections 3 and 4. We also
depicted in green a standard Template Attack with PCA. We replace the WST with
the modulus of a Short-Time Fourier Transform (see Section 3.1) when comparing with
Spectrogram preprocessing.

5.2 Datasets

The ASCAD dataset [5] is composed of EM traces emitted from a device running
a masked AES implementation, an artificial jitter is simulated by randomly
translating traces with an uniformly distributed random variable δN ∼ U{0, N}.
Three sets of traces are available, the first one ASCAD0 is composed of aligned
traces while ASCAD50 and ASCAD100 are desynchronized respectively with δ50
and δ100. We tested our model on all three sets but for purpose of clarity we
present results with δ100 and δ0. The targets are the outputs of the third SBox
processing of the first round of AES. Each set consists of 60, 000 traces of 700
points.

The second dataset noted Jit is composed of traces acquired from an AES
hardware implementation on a modern secure smartcard with a strong jitter.
The Sboxes are processed sequentially and all traces start with the processing of
the first byte while the rest of the SBox processing is misaligned. In total 160, 000
traces of 8, 192 points were acquired, 150, 000 (or 75, 000) traces have random
keys and are used for the training set. 10, 000 traces with a fix key are used for
the attack set. The targets are the output from the second SBox processing. An
example of deformations and translation in Jit signals is displayed on Figure 1.

5.3 Choosing the Parameters

Hyperparameters for the preprocessing with Wavelet Scattering Transform and
Spectrogram are chosen accordingly to the dataset and attack results.

For ASCAD, we used 54, 000 traces for the training set and 6, 000 traces for
the attack set. For the scattering transform, traces are first upsampled to 1, 024
points, we fixed Q=1 since a fine resolution between high frequency bands is
not required. We obtained good results with time scales J=3 and J=7, and lim-
ited the scattering transform to one layer m=1. For Spectrogram preprocessing,
traces are also upsampled to 1, 024. The best result in terms of guessing entropy
is obtained with a sliding window of 128 points which corresponds to a time
scale of 88 in the original traces, the overlap was set to 64.

For Jit, we considered a restrained dataset of 75, 000 since spectrogram and
raw representation had too many features to fit the whole dataset in memory
and to perform the PCA based dimension reduction. We managed to fit traces
preprocessed with WST in memory when considering the whole training set of
size 150, 000. For WST, we expected the Jit dataset to have a strong jitter so we
set the following parameters J=10, Q=8, m=2 which gave preprocessed traces
of size 2, 992. For spectrogram, we used a sliding window of size 1, 024 with an
overlap of 512 which gave spectrogram of 7, 680 features.

For each dataset we limited the PCA to 50 components which corresponds to
the number of components used for SoA template attack combined with a PCA
on aligned temporal traces. When minimizing the loss function (15), we stopped
the gradient descent after 200 iterations.

5.4 Results

In order to evaluate our model, we performed our attack on 3 folds. For each fold
an intermediate guessing entropy (GE) measure [21] is calculated by averaging
100 rank curves obtained by shuffling the order of traces in equation (2). The
final guessing entropy is obtained by averaging the guessing entropy of the three
folds.

In the following we use the following notations: SV and WSV (15) when re-
spectively a soft voting and weighted soft voting is applied with all the classifiers,
SumBits a soft voting with the classifiers on bits, Z when considering only the
classification on the byte and HW with the hamming weight. ”Temp”,”Spec” and
”Scat” respectively denote the raw temporal representation, the Spectrogram
preprocessing and the Wavelet Scattering Transform. Attack results on SumBits,
Z, HW and SV are used to characterize the performance of each preprocessing.
The rank gap between SV and WSV indicates the efficiency of the combination
procedure (15) for merging prediction of differently performing classifiers. We
displayed on Table 1, the weights obtained after optimizing the WSV and the
number of attack traces required to have a guessing entropy of 40 (NGE40) when
considering classifier individually (Z and HW), with SumBits, SV and WSV.

Results for ASCAD are displayed Figure 5 and on Table 1. When no desyn-
chronization is present, preprocessings with a small time scale of analysis per-
form the best: attack results on SumBits are almost identical when considering
WST with J=3, spectrograms and raw temporal traces; the same WST performs
slightly better for Z and SV. Intriguingly the effect of desynchronization on at-
tack results in ASCAD100 strongly varies with labelings. The large scale WST
with J=7 performs the best on Z and SV and shows its robustness to desynchro-
nization; the attack on SumBits is better with spectograms and might be due
to the overlap between frames of analysis. The combination procedure resulted
differently: it decreased the rank of SV of 2, 000 with spectograms preprocessing
and of only 5 with WST. Globally, as expected the WSV is better than SV and
makes all models converge to rank 1 except for temporal attacks on ASCAD100.

In presence of a strong jitter and deformations in Jit, spectrogram and tem-
poral attacks indubitably fail for any classifier while preprocessing with WST
provides better attack results and becomes possible on SumBits (see Figure 6
and Table 1). On Jit, the WSV performed well and decreased the rank of SV for
WST of approximately 1, 600.

The weights of the WSV seem to be correlated with the guessing entropy of
classifiers, e.g when considering temporal attacks we see that weights on bits are
higher than weights on H or Z. On ASCAD, the weights for the WST seem to
be more distributed among classifiers and could explain why the weighted soft
voting did not converged as well as for Spectrogram preprocessing where the
classifier over Z was heavily penalized. In other words, the iterative optimization
of WSV seems to be facilitated with classifiers of unbalanced performance. We
also notice the fact that bits are leaking dissymmetrically as proposed by Suzuki
et al. in [18], e.g on ASCAD the classifier on bit0 has a higher weight than

the average on bits (SumBits), while on Jit the weight on bit7 is higher when
considering successful models (Scattering with Jit 75k and 150k).

From our results on these datasets and given QDAs as classification models,
Z and HW leakage models are globally disadvantaged when looking at the guess-
ing entropy and the weights associated. The WSV has approximated a leakage
model that relies more on individual bits. The difference of performance between
Sumbits, Z and HW is also explained by the number of samples required to es-
timate the parameters of QDAs, which makes attacks on individual bits more
stable since less parameters are required. Thus a trade-off has to be made on
the number of components for the PCA: while a high number of components in-
creases the number of parameters to estimate, the attack results can be improved
by selecting more eigenvectors with lower eigenvalues and better discriminating
power.

10
0

10
1

10
2

10
3

0

20

40

60

80

100

120

N traces

G
E

temp desync 0
temp desync 100
scat desync 0 J=3 Q=1
scat desync 100 J=3 Q=1
scat desync 0 J=7 Q=1
scat desync 100 J=7 Q=1
spec desync 0 J=7
spec desync 100 J=7

(a) GE SumBits

10
0

10
1

10
2

10
3

0

20

40

60

80

100

120

N traces

G
E

(b) GE Z

10
0

10
1

10
2

10
3

0

20

40

60

80

100

120

N traces

G
E

(c) GE SV

10
0

10
1

10
2

10
3

0

20

40

60

80

100

120

N traces

G
E

(d) GE WSV

Fig. 5. Guessing entropy as a function of the number of attack traces on ASCAD with
classifiers trained on Z, SumBits, with naive combination of prediction (SV) and with
WSV.

5.5 Visualizing leakages

We previously showed results in terms of guessing entropy. Now, one could won-
der how does the leakage look like in traces from the point of view of the QDA
classifiers. We propose here an easy computation of a SNR score on the pre-
processed traces by taking into account the covariances and means estimated

0 2500 5000 7500 10000
0

20

40

60

80

100

120

N traces

G
E

temp N_t=75k
scat N_t=75k
scat N_t=150k
spec N_t=75k

(a) GE SumBits

0 2500 5000 7500 10000
0

20

40

60

80

100

120

N traces

G
E

(b) GE Z

0 2500 5000 7500 10000
0

20

40

60

80

100

120

N traces

G
E

(c) GE SV

0 2500 5000 7500 10000
0

20

40

60

80

100

120

N traces
G

E

(d) GE WSV

Fig. 6. Guessing entropy as a function of the number of attack traces on Jit with
classifiers for Z, SumBits, with naive combination of prediction (SV) and with WSV.
Nt is the number of traces used for training.

Dataset Preprocessing Z H Bit0 Bit4 Bit7 SumBits SV WSV

ASCAD100

Temp
w <0.01 <0.01 0.29 0.18 0.19 0.19

NGE40 ∞ ∞ - - - 485 ∞ 1465

Spec
w 0.02 0.22 0.39 0.31 0.32 0.31

NGE40 3527 3392 - - - 57 2126 242

Scat
w 0.29 0.15 0.32 0.23 0.21 0.20

NGE40 676 675 - - - 70 428 423

Jit 75k

Temp
w <0.01 0.15 0.34 0.43 0.34 0.39

NGE40 ∞ ∞ - - - ∞ ∞ ∞

Spec
w 0.08 0.17 0.20 0.27 0.25 0.24

NGE40 ∞ ∞ - - - ∞ ∞ ∞

Scat
w 0.19 0.18 0.42 0.48 0.48 0.47

NGE40 9371 8851 - - - 1561 6102 4513

Jit 150k Scat
w 0.11 0.12 0.41 0.41 0.48 0.45

NGE40 7837 8023 - - - 884 3770 2149

Table 1. For each preprocessing : number of traces for a guessing entropy of 40 (NGE40)
when considering individual classifiers with labeling over Z and H, with a soft voting
over bits noted SumBits, with a overall Soft Voting SV and finally with a Weighted
Soft Voting. We also indicated the weights of the classifiers obtained after optimizing
the WSV for classifiers over Z, H, some individual bits and their average for SumBits.
For ASCAD100: we displayed the results obtained with a WST with J=7 and Q=1. For
Jit: results with training on 75, 000 and 150, 000 traces.

during training. It is also possible to compute a SNR score without consider-
ing classifiers with an analysis of variance (ANOVA). For each classifier l we
compute a SNR score in the subspace induced by the PCA with a projection
P ∈ Rd×p, where p is the number of components chosen for the PCA and d is the
original dimension.4 Each QDA classifier is defined by means µl,i ∈ Rp and co-
variances matrices Σl,i ∈ Rp×p for each label values cl,i, ∀i. We note SNRs

l ∈ Rp
and SNRo

l ∈ Rd respectively the SNR in the subspace and in the original space
before the PCA, we have:

SNRs
l [r] =

Vari
[
µl,i[r]

]
Ei
[

Diag(Σl,i)[r]
] , r = 1, . . . , p

SNRo
l = (P SNRs

l).ˆ2 (19)

Where .ˆ defines the entry-wise power. This score (19) gives some indication on
the temporal and frequency aspects of the leakage. We computed some visual-
izations of this score for attacks on Jit respectively in Figure 7. Remark that
these analyses can be perturbed by the subspace induced by the PCA’s eigen-
vectors. When the SNR is high we suppose that it gives some indication about
how signals are leaking information. For SumBits we summed the SNR scores.

On Jit Figure 7, the SNR visualization with the scattering transform po-
sitions the leakage around time index 2,000 when considering SumBits and Z.
The two-level scattering transform has proven useful, the SNR score indicates
for bits that the frequency band 1.0e-01 is leaking. For Z the 1.1e0-1 frequency
path gives clues about a leakage around time index 8,000, which is also shown
but more discretely at the first level for z or for both level with SumBits.

6 Conclusion

Independently of choosing a classification model, we proposed two ways of in-
jecting prior information in preprocessing and classification in order to easily
increase the performance of SCA.

First, we adress the problem of desynchronization and deformation generally
encountered in side-channel analysis by using Wavelet Scattering Transform as a
preprocessing step. This transform maps traces in a time-frequency space stable
under translation and small deformation. In contrast with other time-frequency
representations, such as Spectrogram and Wavelet Transform, it provides robust
representations which are easily implemented and configured according to jitter
effects present in traces and their spectral richness.

Secondly, based on the fact that in general the leakage model is an unknown
function of the sensitive variable, we proposed a way of resolving this by con-
sidering various labelings of the sensitive variable. For that, we train classifiers

4 After preprocessing, wavelet scattering transform and spectrogram representations
are vectorized before the PCA.

9.2e-02, 1.1e-02

1.0e-01, 3.4e-04

1.0e-01, 1.1e-02

1.0e-01, 2.2e-02

1.1e-01, 3.4e-04

1.1e-01, 5.5e-03

1.1e-01, 1.1e-02

1.1e-01, 2.2e-02

1.8e-01, 5.5e-03

1.8e-01, 1.1e-02

m=2

F
re

qu
en

cy
 p

at
h

0 2000 4000 6000 8000

8.1e-03

8.8e-03

9.6e-03

1.0e-02

1.1e-02

1.8e-02

1.9e-02

2.3e-02

2.5e-02

3.2e-02

m=1

Time index

F
re

qu
en

cy

(a) Scat SumBits

9.2e-02, 1.1e-02

1.0e-01, 3.4e-04

1.0e-01, 1.1e-02

1.0e-01, 2.2e-02

1.1e-01, 5.5e-03

1.1e-01, 1.1e-02

1.1e-01, 2.2e-02

1.3e-01, 2.2e-02

1.4e-01, 1.1e-02

1.7e-01, 1.1e-02

m=2

F
re

qu
en

cy
 p

at
h

0 2000 4000 6000 8000

0

8.8e-03

1.0e-02

1.1e-02

1.2e-02

1.4e-02

1.5e-02

1.9e-02

2.3e-02

3.2e-02

m=1

Time index

F
re

qu
en

cy

(b) Scat Z

Fig. 7. Leakage visualization on Jit. On top the second level of the WST. Below the
first level of the WST. We selected the top 10 frequency bands (and frequency paths
for the second level) that contains the highest values of SNR. Amplitudes are scaled
between 0 and 1

on different partitions of the sensitive variable‘s values and combine their pre-
dictions. Our combination method involves finding a weight vector which as-
sesses the contribution of each classifier in the global prediction. To this end, the
weights are found by iteratively minimizing a cross-entropy criterion.

These two propositions have been evaluated by integrating them in a new
attack method, which successfully increased the performance of Template At-
tacks on artificially desynchronized traces and signals from a jitter-protected
implementation. The wavelet scattering transform improves the performance of
Template Attacks when jitter effects and distortion are present in traces. Al-
though, we restricted ourself to Template Attacks as classification models, this
preprocessing could be particularly interesting when followed by more complex
classifiers, e.g a convolutional neural network. We argue that it could reduce
the amount of data required to normally make any classifier robust under small
translation and deformations. The experimental results showed that the com-
bination procedure makes attacks successful as long as some classifiers manage
to get information from partitions of the sensitive variable. While specifying a
fixed leakage model constraints the classifier to a given goal, the proposed com-
bination procedure allows an attacker to test various leakage models and quickly
evaluate which ones he should focus on.

References

[1] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”.
In: Cryptographic Hardware and Embedded Systems - CHES 2002, 4th In-
ternational Workshop, Redwood Shores, CA, USA, August 13-15, 2002,
Revised Papers. 2002, pp. 13–28.

[2] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction, Second
Edition (Springer Series in Statistics). Springer, 2009.

[3] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
Cryptographic Implementations Using Deep Learning Techniques. Cryptol-
ogy ePrint Archive, Report 2016/921. 2016.

[4] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. “Convolutional Neu-
ral Networks with Data Augmentation Against Jitter-Based Countermea-
sures”. In: Cryptographic Hardware and Embedded Systems – CHES 2017.
Ed. by Wieland Fischer and Naofumi Homma. Cham: Springer Interna-
tional Publishing, 2017, pp. 45–68.

[5] Emmanuel Prouff et al. Study of Deep Learning Techniques for Side-Channel
Analysis and Introduction to ASCAD Database. Cryptology ePrint Archive,
Report 2018/053. 2018.

[6] Guang Yang et al. “Convolutional Neural Network Based Side-Channel
Attacks in Time-Frequency Representations”. In: Smart Card Research
and Advanced Applications. Ed. by Begül Bilgin and Jean-Bernard Fischer.
Cham: Springer International Publishing, 2019, pp. 1–17.

[7] Hugues Thiebeauld et al. “SCATTER: A New Dimension in Side-Channel”.
In: Constructive Side-Channel Analysis and Secure Design. Ed. by Jun-
feng Fan and Benedikt Gierlichs. Cham: Springer International Publishing,
2018, pp. 135–152.

[8] Dakshi Agrawal et al. “The EM Side-Channel(s)”. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2002. Ed. by Burton S. Kaliski, çetin
K. Koç, and Christof Paar. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 29–45.

[9] Thomas Plos, Michael Hutter, and Martin Feldhofer. “Evaluation of side-
channel preprocessing techniques on cryptographic-enabled HF and UHF
RFID-tag prototypes”. In: Workshop on RFID Security. 2008, pp. 114–
127.

[10] Catherine H Gebotys, Simon Ho, and Chin Chi Tiu. “EM analysis of ri-
jndael and ECC on a wireless java-based PDA”. In: International Work-
shop on Cryptographic Hardware and Embedded Systems. Springer. 2005,
pp. 250–264.

[11] Pierre Belgarric et al. “Time-Frequency Analysis for Second-Order At-
tacks”. In: Smart Card Research and Advanced Applications. Ed. by Aurélien
Francillon and Pankaj Rohatgi. Cham: Springer International Publishing,
2014, pp. 108–122.

[12] Nicolas Debande et al. “Wavelet transform based pre-processing for side
channel analysis”. In: 2012 45th Annual IEEE/ACM International Sym-
posium on Microarchitecture Workshops. Dec. 2012, pp. 32–38.

[13] Xavier Charvet and Herve Pelletier. “Improving the DPA attack using
Wavelet transform”. In: NIST Physical Security Testing Workshop. Vol. 46.
2005.

[14] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker.
“Improving Differential Power Analysis by Elastic Alignment”. In: Topics
in Cryptology – CT-RSA 2011. Ed. by Aggelos Kiayias. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 104–119.

[15] Ruben A Muijrers, Jasper GJ van Woudenberg, and Lejla Batina. “RAM:
Rapid alignment method”. In: International Conference on Smart Card
Research and Advanced Applications. Springer. 2011, pp. 266–282.

[16] Stéphane Mallat. “Group invariant scattering”. In: Communications on
Pure and Applied Mathematics 65.10 (2012), pp. 1331–1398.

[17] Joakim Andén and Stéphane Mallat. “Deep scattering spectrum”. In: IEEE
Transactions on Signal Processing 62.16 (2014), pp. 4114–4128.

[18] Daisuke Suzuki, Minoru Saeki, and Tetsuya Ichikawa. “DPA leakage mod-
els for CMOS logic circuits”. In: International Workshop on Cryptographic
Hardware and Embedded Systems. Springer. 2005, pp. 366–382.

[19] Werner Schindler, Kerstin Lemke, and Christof Paar. “A Stochastic Model
for Differential Side Channel Cryptanalysis”. In: Cryptographic Hardware
and Embedded Systems – CHES 2005. Ed. by Josyula R. Rao and Berk
Sunar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 30–46.
isbn: 978-3-540-31940-5.

[20] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. Chapman
and Hall/CRC, 2012.

[21] James L Massey. “Guessing and entropy”. In: Proceedings of 1994 IEEE
International Symposium on Information Theory. IEEE. 1994, p. 204.

[22] Dennis Gabor. “Theory of communication. Part 1: The analysis of infor-
mation”. In: Journal of the Institution of Electrical Engineers-Part III:
Radio and Communication Engineering 93.26 (1946), pp. 429–441.

[23] Mathieu Andreux et al. “Kymatio: Scattering Transforms in Python”. In:
CoRR abs/1812.11214 (2018). arXiv: 1812.11214.

[24] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. “On the Convergence
of Adam and Beyond”. In: 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. 2018.

