
A simplified polynomial protocol for lookup

tables

Ariel Gabizon
Aztec

Zachary J. Williamson
Aztec

March 13, 2020

Abstract

We present a protocol for checking the values of a committed polynomial f ∈
F<n[X] over a multiplicative subgroup H ⊂ F of size n, are contained in the values of
a table t ∈ Fd. Our protocol can be viewed as a simplification of one from Bootle et.
al [BCG+] for a similar problem, with potential efficiency improvements when d ≤ n.
In particular, [BCG+]’s protocol requires comitting to several auxiliary polynomials
of degree d · log n, whereas ours requires three commitments to auxiliary polynomials
of degree n, which can be much smaller in the case d ∼ n.

One common use case of this primitive in the zk-SNARK setting is a “batched
range proof”, where one wishes to check all of f ’s values on H are in a range
[0, . . . ,M]. We present a slightly optimized protocol for this special case, and pose
improving it as an open problem.

1 Introduction

When wanting to use zk-SNARKs to prove statements involving standard primitives
like AES-128 or SHA-256, one runs into the problem that the operations involved in
these primitives are “SNARK unfriendly”, in the sense of having large representations
in the native SNARK language, which typically corresponds to low degree equations over
a large prime field. Examples of operations with large overhead, are ones involving bit
decomposition like bitwise XOR or AND. This has lead to growing research into STARK
and SNARK friendly hash functions and symmetric primitives that are based solely on
native field operations [GKK+19, AAB+19, AGR+16, ACG+19].

We investigate an alternative approach, where for commonly used operations we
precompute a lookup table of the legitimate (input, output) combinations; and the
prover argues the witness values exist in this table.

In polynomial language, this ultimately boils down to proving polynomials are the
same “up to multiplicities”. That is, suppose that the values in the lookup table are

1

{ti}i∈[d] and the values in the witness are {fi}i∈[n]. We want to show that the polynomials

F (X) :=
∏
i∈[n]

(X − fi), G(X) :=
∏
i∈[d]

(X − ti)

have the same roots, ignoring multiplicites; i.e. that for some non-negative integers
{ei}i∈[d] we have F (X) =

∏
i∈[d](X − ti)ei . Bootle et. al [BCG+] gave an algorithm for

this exact problem, also in the context of efficient SNARK arithmetization of a common
operation (in their case, repeatedly checking that field elements correspond to certain
convenient sparse representations of boolean strings).

Their algorithm requires committing to a vector of length d log n that contains for
each i ∈ [d], j ∈ [log n] the value t2

j

i . They also commit to the binary decomposition of
the {ei}, and using the two, prove that F is of the desired form.

We present here an arguably simpler protocol for the same problem, that doesn’t
require explicitly representing the multiplicities. Let us use the notation f ⊂ t as
shorthand for {fi}i∈[n] ⊂ {ti}i∈[d].

The idea is to look at a sorted version {si} of the values {fi}, and compare the set
of non-zero differences in {si} and {ti}. Note that if f ⊂ t, and every element of t
appears at least once in f , we indeed have that these sets of differences are the same.
However, the converse is not true: We can create a sequence of values {si} having the
same difference set as {ti}, but with the differences appearing in different order ; and in
this case we won’t have s ⊂ t. As an illustrating example, take

t = {1, 4, 8} , s = {1, 1, 4, 8, 8, 8} , s′ = {1, 5, 5, 5, 8, 8}

All three sets have the same difference set {3, 4}; but since those differences appear in
different order in s′ and t, we don’t have s′ ⊂ t. We also didn’t address checking the
starting point is the same in s and t. Both these issues can be solved by comparing
randomized difference sets: We choose random β ∈ F, and compare the elements in the
sequences {ti + βti+1}i∈[d−1], {si + βsi+1}i∈[n−1].

Seemingly, we have taken “one step forward and one back” by adding the random
β, as now pairs (si, si+1) with si = si+1 will give a non-zero contribution si + β · si+1 =
(1 + β) · si. However, all elements corresponding to a repetition are now multiples of
(1+β) and we are able to use this to “identify” them and not use them in the comparison
with the table. Specifically, we show that this check can be done correctly and efficiently
using a “grand product argument” similar to the one used in [GWC19]’s permutation
argument.

A technicality is that as mentioned this approach assumes all of t’s values appear
at least once in f ; which is one reason we in fact take s to be the sorted version of
the concatenation of f and t. This ends up also helping to batch both checks into one
product: The check that f ⊂ s, and the check that s ⊂ t.

Precise details of the scheme are given in Section 3.

2

2 Preliminaries

Terminology For integer d, we denote by F<d[X] the set of univariate polynomials over
F of degree smaller than d.

Polynomial Protocols We use the ranged polynomial protocol terminology from [GWC19]
to describe our protocols. We repeat the definition for reference.

In such a protocol a prover P sends polynomials of a certain degree bound d to an
ideal party I, and at the end of protocol, the verifier can ask whether certain identities
hold between the polynomials sent during the protocol, the input polynomials, and the
preprocessed polynomials, on a predefined set H.

More precisely,

Definition 2.1. Fix a positive integers d,D, t, ` and H ⊂ F. An H-ranged (d,D, t, `)-
polynomial protocol is a multiround protocol between a prover P, verifier V and trusted
party I that proceeds as follows.

1. The protocol definition includes a set of preprocessed and input polynomials g1, . . . , g` ∈
F<d[X].

2. The messages of P are sent to I and are of the form f for f ∈ F<d[X]. If P sends
a message not of this form, the protocol is aborted.

3. The messages of V to P are arbitrary (but we will concentrate on public coin
protocols where the messages are simply random coins).

4. At the end of the protocol, suppose f1, . . . , ft are the polynomials that were sent
from P to I. V may ask I if certain polynomial identities holds on H between
{f1, . . . , ft, g1, . . . , g`}. Where each identity is of the form

F (X) := G(X,h1(v1(X)), . . . , hM (vM (X))) ≡ 0,

for some hi ∈ {f1, . . . , ft, g1, . . . , g`}, G ∈ F[X,X1, . . . , XM], v1, . . . , vM ∈ F<d[X]
such that F ∈ F<D[X] for every choice of f1, . . . , ft made by P when following the
protocol correctly.

5. After receiving the answers from I regarding the identities, V outputs acc if all
identities hold, and outputs rej otherwise.

It is shown in Section 4 of [GWC19] how such a protocol can be compiled into one
in the algebraic group model using the polynomial commitment scheme of [KZG10].

For such a protocol P, let d(P) be the maximum over f1, . . . , ft sent by an honest

prover during protocol execution of
(∑

i∈[t] deg(fi) + 1
)

+D − |H|.
The prover complexity ends up being closely tied to d(P) as this corresponds to

the number of group operations to commit to all polynomials (including the quotient
polynomial that comes up in translating a ranged polynomial protocol to a polynomial
protocol) using [KZG10]. We will thus attempt to minimize d(P) in our protocols.

We refer the reader to Section 4 of [GWC19] for more details.

3

3 The main scheme

Notation: Fix integers n, d and vectors f ∈ Fn, t ∈ Fd. We use the notation f ⊂ t
to mean {fi}i∈[n] ⊂ {ti}i∈[d]. Let H =

{
g, . . . ,gn+1 = 1

}
be a multiplicative subgroup

of order n + 1 in F. For a polynomial f ∈ F[X] and i ∈ [n + 1] we sometimes denote
fi := f(gi). For a vector f ∈ Fn, we also denote by f the polynomial in F<n[X] with
f(gi) = fi.

When f ⊂ t , we say that f is sorted by t when values appear in the same order in
f as they do in t. Formally, for any i < i′ ∈ [n] such that fi 6= fi′ , if j, j′ ∈ [d] are such
that tj = fi, tj′ = fi′ then j < j′.

Now, given t ∈ Fd, f ∈ Fn, s ∈ Fn+d, define bi-variate polynomials F,G as

F (β, γ) := (1 + β)n ·
∏
i∈[n]

(γ + fi)
∏

i∈[d−1]

(γ(1 + β) + ti + βti+1)

G(β, γ) :=
∏

i∈[n+d−1]

(γ(1 + β) + si + βsi+1)

we have

Claim 3.1. F ≡ G if and only if

1. f ⊂ t, and

2. s is (f, t) sorted by t.

Proof. We write F,G as elements of F(β)[γ] while taking out a (1 + β) factor as follows.

F (β, γ) = (1 + β)n+d−1 ·
∏
i∈[n]

(γ + fi)
∏

i∈[d−1]

(γ + (ti + βti+1)/(1 + β))

G(β, γ) = (1 + β)n+d−1
∏

i∈[n+d−1]

(γ + (si + βsi+1)/(1 + β))

Suppose first that f ⊂ t and s ∈ Fn+d is (f, t) sorted by t.
Then for each j ∈ [d − 1], there is an index i ∈ [n + d − 1] such that (tj , tj+1) =

(si, si+1). The corresponding factors in F,G are equal. That is,

(γ + (tj + βtj+1)/(1 + β)) ≡ (γ + (si + βsi+1)/(1 + β))

Let P ′ ⊂ [n+d−1] the set of these d−1 indices i , and let P := [n+d−1]\P ′. The
n indices i ∈ P are such that si = si+1, and {si}i∈P equals {fi}i∈[n]. For each i ∈ P , the
corresponding factor of G, will be

γ + (si + βsi+1)/(1 + β) = γ + si,

which, for the j such that si = fj will equal the factor (γ + fj) in F .

4

For the other direction, assume F ≡ G as polynomials in F[β, γ]. Then F ≡ G also
as elements of F(β)[γ]. Since F(β)[γ] is a unique factorization domain, we know that the
linear factors of F,G, as written above must be equal. Thus, for each i ∈ [d−1], G must
have a factor equal to (γ+ (ti +βti+1)/(1 +β)). In other words, for some j ∈ [n+d−1],

γ + (ti + βti+1)/(1 + β) = γ + (sj + βsj+1)/(1 + β),

which implies ti + βti+1 = sj + βsj+1, and therefore ti = sj , ti+1 = sj+1. Call P ′ ⊂
[n + d − 1] the set of these d − 1 indices j. For any index j ∈ [n + d − 1] \ P ′, there
must be a factor “coming from f” in F that equals the corresponding factor in G. More
precisely, for such j there exists i ∈ [n] such that

γ + fi = γ + (sj + βsj+1)/(1 + β),

or equivalently
fi + βfi = sj + βsj+1

which implies fi = sj = sj+1.
Thus, we know that whenever consecutive values in s are different, they are exactly

equal to two consecutive values in t, and all values of f are values of t.

Claim 3.1 motivates the following protocol. It will be convenient to assume d = n+1.
(If d ≤ n pad t with n− d+ 1 repetitions of the last element.)

Preprocessed polynomials: The polynomial t ∈ F<n+1[X] describing the lookup values.

Inputs: f ∈ F<n[X]

Protocol:

1. Let s ∈ F2n+1 be the vector that is (f, t) sorted by t. We represent s by h1, h2 ∈
F<n+1[X] as follows. h1(g

i) = si for i ∈ [n + 1]; and h2(g
i) = sn+i for each

i ∈ [n+ 1].

2. P computes the polynomials h1, h2 and sends them to the ideal party I.

3. V chooses random β, γ ∈ F and sends them to P.

4. P computes a polynomial Z ∈ F<n+1[X] that aggregates the value F (β, γ)/G(β, γ)
where F,G are as described above. Specifically, we let

(a) Z(g) = 1,

(b) For 2 ≤ i ≤ n

Z(gi) =
(1 + β)n

∏
j<i(γ + fj) ·

∏
1≤j<i(γ(1 + β) + tj + βtj+1)∏

1≤j<i(γ(1 + β) + sj + βsj+1)(γ(1 + β) + sn+j + βsj+1)
,

and

5

(c) Z(gn+1) = 1.

5. P sends Z to I.

6. V checks that Z is indeed of the form described above, and that Z(gn+1) = 1.
More precisely, V checks the following identities for all x ∈ H.

(a) L1(x)(Z(x)− 1) = 0.

(b)
(x− gn+1)Z(x)(1 + β) · (γ + f(x))(γ(1 + β) + t(x) + βt(g · x))

= (x−gn+1)Z(g ·x)(γ(1+β)+h1(x)+βh1(g ·x))(γ(1+β)+h2(x)+βh2(g ·x))

(c) Ln+1(x)(h1(x)− h2(g · x)) = 0.

(d) Ln+1(x)(Z(x)− 1) = 0.

and outputs acc iff all checks hold.

Lemma 3.2. Suppose that
{
f(gi)

}
i∈[n] is not contained in

{
t(gi)

}
i∈[n+1]

. Then for any

strategy of A playing the role of P in the above protocol P, the probability that V accepts
is negl(λ). Furthermore, we have d(P) = 5n+ 4.

Proof. We start by computing d(P). The prover sends h1, h2, Z ∈ F<n+1[X], which
aggregates to 3n+3. The second identity checked by the verifier is of the highest degree,
containing a product of these three and the linear term X−gn+1, which gives us another
3n+ 2 from which we subtract |H| = n+ 1. In total we get 5n+ 4.

We proceed to prove correctness. The check in step 6c shows that h1(g
n+1) = h2(g),

and thus h1, h2 indeed consistently describe a single vector s ∈ F2n+1. Using Claim
3.1 we know that when f ’s range is not contained in t’s for any choice of s sent by P
the polynomials F (X,Y), G(X,Y) are different. From the SZ lemma e.w.p negl(λ) V
chooses β, γ such that F (β, γ) 6= G(β, γ). In this case we have Z(gn+d) 6= 1 which means
V rejects.

4 Generalizing to vector lookups and multiple tables

Suppose we have several witness polynomials f1, . . . , fw ∈ F<n[X], and a table of values
t∗ ∈ (Fw)d. We wish to check that for each j ∈ [n] (f1(g

j), . . . , fw(gj)) ∈ t∗. We can use
randomization to efficiently reduce to the case of Section 3.

For each i ∈ [w] we will include in the set of preprocessed polynomials ti ∈ F<d[X]
with ti(g

j) = t∗i,j for each j ∈ [d].
The verifier will choose random α ∈ F.
Then we will define t :=

∑
i∈[w] α

iti, f :=
∑

i∈[w] α
ifi.

Assume that for some j ∈ [n], (f1(g
j), . . . , fw(gj)) /∈ t∗. Then e.w.p d · w/|F|,

f(gj) /∈ t. Thus, after the selection of α, we can run the protocol of the previous section
on f, t.

6

As alluded to in the introduction, a natural use case for this vector lookup primitive
is a key-value setting, where we have a function f with w− 1 inputs, and wish to verify
a vector is of the form (x1, . . . , xw−1, f(x1, . . . , xw−1)) for some input (x1, . . . , xw−1).

4.1 Multiple tables

Suppose further that we have in fact have multiple tables t∗1, . . . , t
∗
` and for each i ∈ [n]

wish to check that for some predefined j = j(i) ∈ [`] (f1(g
i), . . . , fw(gi)) ∈ t∗j . We

can reduce to the previous setting as follows. We create a preprocessed table containing
t∗1, . . . , t

∗
` as sub-tables, by adding a column specifying the table index.

That is, suppose for simplicity that for each j ∈ [`], t∗j ∈ (Fw)d/`. We construct

t∗ ∈ (Fw+1)d, containing for each j ∈ [`], i ∈ [d/`] of the element (j, (t∗j)i). We preprocess
a polynomial q ∈ F<n[X] such that qi = j(i), where again j(i) is the subtable we wish
the i’th value to be in. Now apply the method above to check that for each i ∈ [n],
(q(gi), f1(g

i), . . . , fw(gi)) ∈ t∗

5 An optimized solution for continuous ranges

Suppose we wish to check that f ⊂ {0, . . . , d− 1} for some integer d < n. We could use
our above protocol while setting ti = i − 1 for i ∈ [d]. By using d = n + 1, the above
protocol allowes us to check f ⊂ {0, . . . , n} with complexity d(P) = 5n + 4 as stated
in Lemma 3.2. We present an alternative protocol with the same complexity that will
allow us to check f ⊂ {0, . . . , 2n− 2}. In fact, the protocol naturally generalizes for
ranges {0, . . . , c(n− 1)} while only increasing the degree of verifier constraints. Thus,
one may choose a larger c in protocols where the range proof is a subroutine, according
to the maximal constraint degree in other parts of the protocol.

The idea is the following. (We emphasize we are assuming the range is in fact
contained in F, i.e. cn < |F|.) Suppose that we enforce that the sorted witness s starts
from zero and ends at c ·(n−1), i.e. s1 = 0, s2n+1 = c ·(n−1), and that for each i ∈ [2n],
si+1 − si ≤ c. This sufficies to deduce that si ∈ {0, . . . , c(n− 1)} for each i ∈ [2n+ 1].

The condition si+1−si ≤ c can be enforced by a constraint that plugs in this difference
into the degree c + 1 polynomial that vanishes on {0, . . . , c}. Enforcing the increments
this way obviates the need to look at a permutation between differences, and instead we
can directly check a permutation between the values of (f, t) and s; where t is the table
of c’th multiples, i.e. ti = c · (i− 1) for i ∈ [n].

We proceed to describe the protocol in detail. As in the first protocol, we assume H
is a multiplicative subgroup of order n+ 1 with generator g.

The protocol is parameterized by a positive integer parameter c. And we denote by
P the polynomial P (X) :=

∏c
i=0(X − i).

Preprocessed polynomials: The polynomial t ∈ F<n[X] with ti = c · (i− 1) for i ∈ [n].

Inputs: f ∈ F<n[X]

7

Protocol:

1. Let s ∈ F2n+1 be the vector that is (f, t) sorted by t. We represent s by h1, h2 ∈
F<n+1[X] as follows. h1(g

i) = si for i ∈ [n+ 1]; and h2(g
i) = sn+i for each i ∈ [n]

and h2(g
n+1) = c(n− 1).

2. P computes the polynomials h1, h2 and sends them to the ideal party I.

3. V chooses random γ ∈ F and sends it to P.

4. P computes a polynomial Z ∈ F<n+1[X] that aggregates the value F (β, γ)/G(β, γ)
where F,G are as described above. Specifically, we let

(a) Z(g) = 1,

(b) For 2 ≤ i ≤ n

Z(gi) =

∏
j<i(γ + fj) ·

∏
1≤j<i(γ + tj)∏

1≤j<i(γ + sj)(γ + sn+j)
,

and

(c) Z(gn+1) = 1.

5. P sends Z to I.

6. V checks the following identities for all x ∈ H.

(a) L1(x)(h1(x)) = 0.

(b) P (h1(g · x)− h1(x)) = 0.

(c) P (h2(g · x)− h2(x)) = 0.

(d) Ln+1(x)(h1(x)− h2(g · x)) = 0

(e) Ln+1(x)(h2(x)) = c · n.

(f) L1(x)(Z(x)− 1) = 0.

(g)

(x−gn+1)(Z(x)(γ+f(x))(γ+t(x)) = (x−gn+1)·Z(g·x)(γ+h1(x))(γ+h2(x)))

(h) Ln+1(x)(Z(x)− 1) ≡ 0.

and outputs acc iff all checks hold.

Remark 5.1. Note that if we are in a situation where the sorted values of f alone
already have a consecutive gap of at most c, we can use a simpler protocol showing a
permutation between f and s without needing to use t.

Lemma 5.2. Fix positive integer c. Suppose that
{
f(gi)

}
i∈[n] is not contained in

{0, . . . , c(n− 1)}. Then for any strategy of A playing the role of P in the above pro-
tocol P, the probability that V accepts is negl(λ). Furthermore, for c ≥ 2 we have
d(P) = (3 + c)n+ 2.

8

Proof. We compute d(P): As in the previous protocol P sends Z, h1, h2 ∈ F<n+1[X],
which aggregates to 3n+ 3. Now, for c ≥ 2 the highest degree constraints are the check
P (h1(g ·X)− h1(X)) ≡ 0 (and the same check for h2). Which gives degree (c+ 1) ·n to
which we add one and subtract |H| = n+ 1; totalling in 3n+ 3 + (c+ 1) · n− (n+ 1) =
(3 + c)n+ 2.

Now for the main claim, assume that for some i ∈ [n], fi /∈ {0, . . . , cn}. The
checks in steps 6a-6e imply that the values

{
h1(g

i), h2(g
i)
}
i∈[n] are all in the range

{0, . . . , c(n− 1)}. Define polynomials

F (X) :=
∏
i∈[n]

(X − f(gi))(X − t(gi)), G(X) :=
∏
i∈[n]

(X − h1(gi))(X − h2(gi)))

Under the assumption that for some i ∈ [n], fi /∈ {0, . . . , cn}, we have that F and G are
distinct polynomials.

The checks in steps 6f-6h imply that F (γ) = G(γ).
Since γ ∈ F is chosen uniformly it follows that V accepts with probability negl(λ).

Acknowledgements

We thank Jens Groth for introducing us to the lookup protocol of [BCG+].

References

[AAB+19] A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe, and A. Szepieniec. Efficient
symmetric primitives for advanced cryptographic protocols (A marvellous
contribution). IACR Cryptology ePrint Archive, 2019:426, 2019.

[ACG+19] M. R. Albrecht, C. Cid, L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rech-
berger, and M. Schofnegger. Algebraic cryptanalysis of stark-friendly de-
signs: Application to marvellous and mimc. In Advances in Cryptology -
ASIACRYPT 2019 - 25th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Kobe, Japan, December
8-12, 2019, Proceedings, Part III, pages 371–397, 2019.

[AGR+16] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. Mimc:
Efficient encryption and cryptographic hashing with minimal multiplicative
complexity. In Advances in Cryptology - ASIACRYPT 2016 - 22nd Interna-
tional Conference on the Theory and Application of Cryptology and Infor-
mation Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I,
pages 191–219, 2016.

[BCG+] J. Bootle, A. Cerulli, J. Groth, S. K. Jakobsen, and M. Maller. Arya: Nearly
linear-time zero-knowledge proofs for correct program execution. In Advances

9

in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part I, volume 11272 of
Lecture Notes in Computer Science, pages 595–626.

[GKK+19] L. Grassi, D.l Kales, D. Khovratovich, A. Roy, C. Rechberger, and
M. Schofnegger. Starkad and poseidon: New hash functions for zero knowl-
edge proof systems. IACR Cryptology ePrint Archive, 2019:458, 2019.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge.
IACR Cryptology ePrint Archive, 2019:953, 2019.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to
polynomials and their applications. pages 177–194, 2010.

10

	Introduction
	Preliminaries
	The main scheme
	Generalizing to vector lookups and multiple tables
	Multiple tables

	An optimized solution for continuous ranges
	References

