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Abstract. Protocols for password authenticated key exchange (PAKE) allow two parties who share
only a weak password to agree on a cryptographically strong key. We revisit the notion of PAKE in the
framework of universal composability, and propose a relaxation of the PAKE functionality of Canetti
et al. that we call lazy-extraction PAKE (lePAKE). Roughly, our relaxation allows the ideal-world
adversary to postpone its password guess even until after a session is complete. We argue that this
relaxed notion still provides meaningful security in the password-only setting.

As our main result, we show that several PAKE protocols that were previously only proven secure
with respect to a “game-based” definition can in fact be shown to realize the lePAKE functionality in
the random-oracle model. These include SPEKE, SPAKE2, and TBPEKE, the most efficient PAKE
schemes currently known.
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1 Introduction

Protocols for password authenticated key exchange (PAKE) allow two parties who share only a weak password
to agree on a cryptographically strong key by communicating over an insecure network. PAKE protocols
have been studied extensively in the cryptographic literature [6,5,7,13,23,10,11], and are compelling given the
widespread use of passwords for authentication. Even though the current practice is to implement password-
based authentication by using TLS to set up a secure channel over which the password is sent, there are
many arguments in favor of using PAKE protocols in conjunction with TLS [20]. Several PAKE protocols
are currently under active consideration for standardization by the IETF [26].

Defining security for PAKE protocols is made challenging by the fact that a password shared by the
parties may have low entropy, and so can be guessed by an adversary with noticeable probability. This must
somehow be accounted for in any security definition. Roughly speaking, the security guaranteed by a PAKE
protocol is that an attacker who initiates Q online attacks—i.e., actively interferes in Q sessions of the
protocol—can make at most Q password guesses (i.e., at most one per session in which it interferes) and
can succeed in impersonating a party only if one of those guesses was correct. In particular, this means that
offline attacks, in which an adversary merely eavesdrops on executions of the protocol, should not help the
adversary in any way.

Two paradigms of PAKE security. In the cryptographic literature there are two leading paradigms for
rigorously defining the above intuition. The first is the so-called “game-based” definition introduced by Bellare
et al. [5]. In this definition, a password is chosen from a distribution with min-entropy κ, and the security
experiment considers an interaction of an adversary with multiple instances of the PAKE protocol using
that password. A PAKE protocol is considered secure if no probabilistic polynomial-time (PPT) attacker
can distinguish a real session key from a random session key with advantage better than Q · 2−κ plus a
negligible quantity.

A second approach uses a “simulation-based” definition [7,10]. The most popular choice here is to work
in the framework of universal composability (UC) [9], and this is what we mean from now on when we refer
to a simulation-based definition. This approach works by first defining an appropriate ideal functionality for
PAKE; a PAKE protocol is then considered secure if it realizes that functionality. Canetti et al. [10] pur-
sued this approach, and defined a PAKE functionality that explicitly allows an adversary to make password
guesses; a random session key is generated unless the adversary’s password guess is correct. As argued by
Canetti et al. [10], this approach has a number of advantages. A definition in the UC framework is better
suited for handling general correlations between passwords, e.g., when a client uses unequal but related
passwords with different servers, or when two honest parties in a session use different but closely related
passwords due to mistyping. A UC definition also ensures security under arbitrary protocol composition,
which is useful for arguing security of protocols that use PAKE as a subroutine, e.g., for converting sym-
metric PAKE to asymmetric PAKE [12,18] or strong asymmetric PAKE [20]. This is especially important
in the context of PAKE standardization, because strong asymmetric PAKE protocols can strengthen the
current practice of password-over-TLS authentication while achieving optimal security in the face of server
compromise.

Is there an inherent price for simulation-based security? Simulation-based security for PAKE is
a desirable target. Unfortunately, the current state-of-the-art [10,25,22,8] suggests that this notion is more
difficult to satisfy than the game-based definition. In particular, the most efficient UC PAKE protocol [8] is
roughly a factor of two less efficient than the most efficient game-based PAKEs such as SPEKE [19,28,17],
SPAKE2 [4], or TBPEKE [31].1

Perhaps surprisingly, we show here that this “gap” can be overcome; in particular, we show that the
SPEKE, SPAKE2, and TBPEKE protocols—which were previously only known to be secure with respect to
the game-based notion of security—can be shown to be universally composable (in the random-oracle model).
The caveat is that we prove universal composability with respect to a (slightly) relaxed version of the PAKE

1 Variants of EKE [6] shown to be universally composable [1,8] may appear to be exceptions, but EKE requires an
ideal cipher defined over a cryptographic group, and it is not clear how that can be realized efficiently.
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functionality originally considered by Canetti et al. At a high level, the main distinction is that the UC
PAKE functionality of Canetti et al. [10] requires an attacker conducting an online attack against a session
to make its password guess before that session is completed, whereas the relaxed functionality we consider—
which we call lazy-extraction PAKE (lePAKE)—allows the attacker to delay its password guess even until
after the session completes. (However, the attacker is still allowed to make only a single password guess per
one actively attacked session.) On a technical level, this relaxed functionality is easier to realize because it
allows the simulator to defer extraction of an attacker’s password guess until a later point in the attacker’s
execution (see further discussion in the technical overview below). Nevertheless, the lazy-extraction PAKE
functionality continues to capture the core properties expected from a PAKE protocol. In particular, as a
sanity check on the proposed notion, we show that lePAKE plus key confirmation satisfies the game-based
notion of PAKE with perfect forward secrecy (PFS) [5,2,3].

Implications for PAKE standardization. Recently, the Crypto Forum Research Group (CFRG), which
is an IRTF (Internet Research Task Force) research group focused on the discussion and review of uses of
cryptographic mechanisms, initiated a PAKE selection process with the goal of providing recommendations
for password-based authenticated key establishment for IETF. Originally, 4 candidates were under consider-
ation by the CRFG in the symmetric PAKE category, but currently only SPAKE2 and CPace remain under
consideration. Our results contribute to this selection process by validating SPAKE2 as well as CPace when
the latter includes additional elements such as the protocol transcript in the key derivation hash.

1.1 Technical Overview

There is a fundamental technical justification for an efficiency gap between known game-based-secure PAKE’s
and UC PAKE’s. The reason is that the UC PAKE functionality, as defined by [10] and used in all subsequent
works, requires the adversarial password guesses to be online (and straight-line) extractable from adversary’s
messages to PAKE protocol instances run by honest parties. Recall that for a PAKE to be UC secure there
must exist an efficient simulator which simulates PAKE protocol instances given access to the ideal PAKE
functionality, which in particular requires the simulator to specify a unique explicit password guess for each
PAKE instance which the real-world adversary actively attacks. (The ideal PAKE functionality then allows
the simulator, and hence the real-world adversary, to control the session key output by this instance if the
provided password guess matched the password used by that PAKE instance, and otherwise the session key is
random and thus secure.) The fact that the simulator must specify this explicit password before the attacked
PAKE instance terminates, requires the simulator to online extract the password guess committed in adver-
sary’s messages. Moreover, this extraction must be performed straight-line, because universal composibility
prohibits rewinding the adversary.

Unfortunately, online extraction cannot be done for many efficient game-based PAKE’s listed above,
because in these protocols each party sends a single protocol message which forms a perfectly hiding commit-
ment to the password. Specifically, if g generates group of prime order p then in SPAKE2 each party sends
a message of the form X = gz · (Pi)pw where z ←R Zp , P1, P2 are random group element in the CRS, and
i= 1 or 2 depending on the party’s role. In TBPEKE this message has the form X = (P1 · (P2)H(pw))z, and
in SPEKE it is X = H(pw)z where H is a hash onto the group. These commitments are binding under the
discrete logarithm hardness assumption (the first two are variants of Pedersen commitment [30], the third
one requires ROM), and they equivocable, i.e. the simulator can “cheat” on messages sent on behalf of the
honest parties, but they are perfectly hiding and thus not extractable. These commitments can be replaced
with extractable ones, but it is not clear how to do so without increasing protocol costs (or resorting to ideal
ciphers over a group).

PAKE with post-execution input extraction. However, in all the above schemes the final session
key is computed by hashing the protocol transcript and the Diffie-Hellman key established by this PAKE
interaction, e.g. Z = gz1·z2 in SPAKE2 or Z = (H(pw))z1·z2 in SPEKE. Since this final hash is modeled as
a Random Oracle, an adversary who learns any information on the session key must query this RO hash
on the proper input. If the information in this hash query suffices for the simulator to identify the unique
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password to which this query corresponds, then a protocol message together with the final hash inputs do
form an extractable commitment to the unique password guess the adversary makes on the attacked session.

However, the hash used in the final session key derivation is a local computation each party does in a “post-
processing” stage which can be executed after the counterpart terminates the protocol. Therefore a simulator
which extracts a password guess from adversary’s protocol message(s) and this local hash computation
might extract it after the attacked session terminates. By the rules of the PAKE functionality of Canetti
et al. [10], such extraction would happen too late, because the PAKE functionality allows the simulator
to test a password guess against a session but does so only when this session is still active (and has not
been attacked previously e.g. on a different password guess). Indeed, it would seem counter-intuitive to
allow the ideal-world adversary, i.e. the simulator, to provide the unique effective password guess after the
attacked session completes. Nevertheless, this is exactly how we propose to relax the UC PAKE functionality
in order to accommodate protocols where input-extraction is possible, but succeeds only from adversary’s
post-processing computation.

The relaxation we propose, the lazy-extraction PAKE, will require the ideal-world adversary to “interrupt”
a fresh session while it is active in order to then perform the post-execution password test (we will call such
tests “late” password tests). This models the UC PAKE requirement that an adversary can use an honest
PAKE session as a password-testing oracle only if it actively attacks that session, and in particular it still
holds that passively observed sessions do not provide any avenue for an attack. (To keep the new elements
of the lazy-extraction PAKE model clear we use separate terms, resp. RegisterTest and LateTestPwd, for this
new type of online session interruption and for the late password test, see Section 2.) Moreover, even if the
adversary chooses this “lazy-extraction attack” route, the functionality still allows for only a single password
test on an actively attacked session. This requirement effectively commits a (computationally bounded)
real-world adversary to a unique password guess on each actively attacked session, because an adversary
who performs the local computation related to more than one password test would not be simulatable in
the model where the ideal-world adversary can submit at most one such test to the lazy-extraction PAKE
functionality.

Explicit authentication and perfect forward security. To test the proposed lazy-extraction UC PAKE
notion we show two further things. First, we show that any lazy-extraction UC PAKE followed by a key
confirmation round upgrades lazy-extraction UC PAKE to PAKE with explicit (mutual) authentication
(PAKE-EA) [14], but it also realizes a stronger variant of lazy-extraction PAKE functionality which we call
the relaxed UC PAKE. In the relaxed PAKE model, the adversary can still make a (single) late password
test on an actively attacked session but such sessions are guaranteed to terminate with an abort. Hence, the
attacker cannot use a late password test to compromise a session. Intuitively, if a lazy-extraction PAKE is
followed by a key confirmation and the attacker delays its late password test until after the key confirmation
is sent, then the key confirmation must fail and its counterpart will abort on such session. Hence, the “late
password test” reveals if the tested passworded was correct but it cannot reveal a key of an active session.

Secondly, we show that any relaxed UC PAKE satisfies the game-based notion of PAKE with perfect
forward secrecy (PFS) [5,2,3]. (A similar test was done by Canetti et al. with regard to the original UC PAKE
notion [10].) Intuitively, since the lazy-extraction attack avenue against a relaxed PAKE cannot be used to
compromise keys of any active session, it follows that all active sessions, i.e. all sessions which terminate with
a session key as opposed to an abort, are as secure in the relaxed UC PAKE model as they are in the original
UC PAKE model of Canetti et al. In particular, they are secure against future password compromise.

Relation to prior work. Jarecki et al. [21] recently introduced the relaxed UC PAKE model in the context
of the asymmetric PAKE (aPAKE) functionality [12], and showed that this relaxation is necessary to prove
security of the OPAQUE protocol proposed in [20]. As discussed above, the lazy-extraction PAKE model
goes further than the relaxed PAKE model, and this further relaxation appears to be necessary in order to
model protocols like SPEKE, SPAKE2, and TBPEKE as universally composable PAKEs. (See Section 2 for
the precise specifications of the lazy-extraction PAKE and the relaxed PAKE models.)

Hasse and Labrique [15] have recently argued that CPace [16] realizes a variant of the lazy-extraction UC
PAKE functionality, but the variant of this notion they consider seems unsatisfactory, e.g. it appears not
to imply security of passively observed sessions, and it appears to be not realizable as stated (see Section 2
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for discussion). They also argue that adding a key-confirmation step suffices to convert such protocol into a
standard UC PAKE, while we show that the result is still only a relaxed UC PAKE.2

1.2 Paper Overview

In Section 2, we introduce the two relaxations of the UC PAKE functionality, namely the lazy-extraction
UC PAKE and relaxed UC PAKE functionalities, respectively abbreviated as lePAKE and rPAKE, together
with the extension of the latter to explicit (mutual) authentication. In Section 3, we show that SPAKE2
scheme of [4] is a secure lePAKE under the Gap CDH assumption. In Section 4, we show that any lePAKE
protocol followed by a key confirmation round is a secure rPAKE-EA, i.e. rPAKE with explicit authentication.
In Section 5, we show that that every rPAKE-EA protocol satisfies the game-base notion of PAKE with
perfect forward secrecy, and that every lePAKE protocol by itself already satisfies weak forward secrecy.
In Appendix B, we include the proof that TBPEKE [31] is a secure lePAKE protocol under appropriate
assumptions, and we explain that this proof extends to similar results regarding SPEKE [19,28,17]. Some
details of the above proofs are deferred to Appendices A and C. Finally, we provide game-based proofs for
SPAKE2 as supplementary material.

2 Relaxations of UC PAKE

In Fig. 1, we present the PAKE functionality as defined by Canetti et al. [10], and compare it with two
relaxations that we refer to as relaxed PAKE (rPAKE) and lazy-extraction PAKE (lePAKE). We explain at
a high level the differences between these various formulations. In the original PAKE functionality FPAKE,
after a party initiates a session (but before the party generates a key) the attacker may try to guess the
password used in that session by making a single TestPwd query. If the attacker’s password guess is correct, the
session is marked compromised; if not, the session is marked interrupted. When a session key is later generated
for that session, the attacker is given the ability to choose the key if the session is marked compromised, but
a random key is chosen otherwise. Importantly, the attacker is only allowed to make a password guess for a
session before the key is generated and the session terminates.

In both the relaxed PAKE functionality FrPAKE and the lazy-extraction PAKE functionality FlePAKE, the
attacker is given the ability to make a password guess for a session even after a session key is generated
and that session has completed. Formally, this is allowed only if the attacker makes a RegisterTest query
before the session key is generated; this indicates the attacker’s intention to (possibly) make a password
guess later, and models active interference with a real-world protocol execution. (Of course, the attacker also
has the option of making a password guess before a key is generated as in the original FPAKE.) Having made
a RegisterTest query for a session, the attacker may then make a LateTestPwd query to that session after the
session key K is generated. FrPAKE and FlePAKE differ in what happens next:

– In FrPAKE, the attacker is only told whether or not its password guess is correct, but learns nothing
about K in either case.

– In FlePAKE, the attacker is given K if its password guess is correct, and given a random key otherwise.3

It is easy to see that both FrPAKE and FlePAKE are relaxations of FPAKE, in the sense that any protocol
realizing FPAKE also realizes FrPAKE and FlePAKE. Although, as defined, FlePAKE and FrPAKE are incomparable,
the version of FlePAKE in which the attacker is additionally notified whether its password guess is correct (cf.
Footnote 3) is a strict relaxation of FrPAKE.

Following the work of Groce and Katz [14], we also consider PAKE functionalities that incorporate explicit
(mutual) authentication, which we refer to as PAKE-EA.4 Intuitively, in a PAKE-EA protocol a party should

2 In [15] this is explicitly claimed not for CPace itself but for its asymmetric (aPAKE) version called AuCPace.
3 Note that here the attacker is not explicitly notified whether its password guess is correct. While it is arguably

more natural to notify the attacker, we obtain a slightly stronger functionality by omitting this notification.
4 Although Canetti et al. [10] informally suggest a way of modeling explicit authentication in PAKE, the functionality

they propose seems unacceptably weak in the sense that it does not require a party to abort even when an attacker
successfully interferes with its partner’s session.
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Session initiation

On (NewSession, sid ,P,P ′, pw , role) from P, ignore this query if record 〈sid ,P, ·, ·, ·〉 already exists. Otherwise
record 〈sid ,P,P ′, pw , role〉 marked fresh and send (NewSession, sid ,P,P ′, role) to A.

Active attack

– On (TestPwd, sid ,P, pw∗) from A, if ∃ a fresh record 〈sid ,P,P ′, pw , ·〉 then:
• If pw∗ = pw then mark it compromised and return “correct guess”;
• If pw∗ 6= pw then mark it interrupted and return “wrong guess”.

– On (RegisterTest, sid ,P) from A, if ∃ a fresh record 〈sid ,P,P ′, ·, ·〉 then

mark it interrupted and flag it tested.

– On (LateTestPwd, sid ,P, pw∗) from A, if ∃ a record 〈sid ,P,P ′, pw , ·,K〉
marked completed with flag tested then remove this flag and do:

• If pw∗ = pw then return K “correct guess” to A;

• If pw∗ 6= pw then return K$ ←R {0, 1}κ “wrong guess” to A.

Key generation

On (NewKey, sid ,P,K∗) from A, if ∃ a record 〈sid ,P,P ′, pw , role〉 not marked completed then do:

– If the record is compromised, or either P or P ′ is corrupted, then set K := K∗.
– If the record is fresh and ∃ a completed record 〈sid ,P ′,P, pw , role′,K′〉 with role′ 6= role that was fresh when
P ′ output (sid ,K′), then set K := K′.

– In all other cases pick K ←R {0, 1}κ.

Finally, append K to record 〈sid ,P,P ′, pw , role〉, mark it completed, and output (sid ,K) to P.

Fig. 1. UC PAKE variants: The original PAKE functionality FPAKE of Canetti et al. [10] is the version with all
gray text omitted. The relaxed PAKE functionality FrPAKE includes the gray text but omits the boxed portions; the
lazy-extraction PAKE functionality FlePAKE includes the gray text but omits the dashed portions.
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Session initiation

On (NewSession, sid ,P,P ′, pw , role) from P, ignore this query if record 〈sid ,P, ·, ·, ·〉 already exists. Otherwise
record 〈sid ,P,P ′, pw , role〉 marked fresh and send (NewSession, sid ,P,P ′, role) to A.

Active attack

– On (TestPwd, sid ,P, pw∗) from A, if ∃ a fresh record 〈sid ,P,P ′, pw , ·〉 then:
• If pw∗ = pw then mark it compromised and return “correct guess”;
• If pw∗ 6= pw then mark it interrupted and return “wrong guess”.

– On (RegisterTest, sid ,P) from A, if ∃ a fresh record 〈sid ,P,P ′, ·, ·〉
then mark it interrupted and flag it tested.

– On (LateTestPwd, sid ,P, pw∗) from A, if ∃ a record 〈sid ,P,P ′, pw , ·,K〉
marked completed with flag tested then remove this flag and do:

• If pw∗ = pw then return “correct guess” to A.

• If pw∗ 6= pw then return “wrong guess” to A.

Key generation and explicit authentication

– On (GetReady, sid ,P) from A, if ∃ a record 〈sid ,P,P ′, pw , role〉 marked

fresh then re-label it ready.

– On (NewKey, sid ,P,K∗) from A, if ∃ a record 〈sid ,P,P ′, pw , role〉 not marked completed then do:

• If the record is compromised, or P or P ′ is corrupted, or K∗ = ⊥ , then set K:=K∗.

• Else, if the record is fresh or ready, and ∃ a record 〈sid ,P ′,P, pw , role′〉
marked ready s.t. role′ 6= role then pick K ←R {0, 1}κ.

• Else, if the record is ready and ∃ a completed record 〈sid ,P ′,P, pw , role′,K′〉 with role′ 6= role that was

fresh when P ′ output (sid ,K′), then set K := K′.

• In all other cases, set K := ⊥ .

Finally, append K to record 〈sid ,P,P ′, pw , role〉, mark it completed, and output (sid ,K) to P.

Fig. 2. The FrPAKE-EA functionality for relaxed PAKE-EA. The original PAKE-EA of Groce and Katz [14] corresponds
to the version with gray text omitted. The boxed text highlights the differences from FrPAKE.
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abort if it did not establish a matching session key with its intended partner. As in the case of PAKE, the
original PAKE-EA functionality introduced by Groce and Katz required the attacker to make its password
guess before the session key is generated, while we introduce a relaxed version of the PAKE-EA functionality,
denoted FrPAKE-EA and shown in Fig. 2, that allows the attacker to delay its password guess until after the
session has completed.5 If the attacker’s guess is correct, it is notified of that fact; our relaxation thus parallels
that of FrPAKE. Note that such late password guess can only be performed on aborted sessions, since the
attacker must send a RegisterTest query before the session completes, which marks the session interrupted,
and by the rule of explicit authentication, an interrupted session must result in aborting.

Besides the intuitive appeal of our relaxed definitions, we justify these relaxations by showing that it is
easy to realize FrPAKE-EA in the FlePAKE-hybrid world (Section 4), that any protocol realizing FrPAKE satisfies
perfect forward secrecy (Section 5), and that any protocol realizing FlePAKE satisfies weak forward secrecy
(Section 5.3).

Note on the relaxed PAKE functionality used in [15]. A preliminary version of the lazy-extraction
PAKE functionality, referred as “relaxed PAKE” therein, appeared in an early version of [21] and was
adopted by [15] as a model for the CPace protocol. This version is imprecise in several respects: First, it
does not require the adversary to explicitly attack an online session via a RegisterTest query before issuing a
LateTestPwd query on a completed session. This appears too weak, e.g. because it allows an adversary to issue
LateTestPwd queries even on passively observed sessions. On the other hand, it restricts the adversary from
making a LateTestPwd query upon completion of the matching counterpart’s session (with a matching sid
but not necessarily a matching password), which appears too strong, because a man-in-the-middle attacker
can make P ′ complete with a random key or an abort, and this does not affect its capabilities regarding party
P. Our lazy-extraction PAKE functionality makes this notion more precise, and in Appendix B we show that
TBPEKE [31] and SPEKE [19] realize the lePAKE fuctionality under (Gap) CDH and SDH assumptions.
Since CPace [15,16] is a close variant of SPEKE these results will therefore apply also to CPace if its key
derivation hash is modified to include additional elements such as the protocol transcript (see Section 3.1).

3 Security of SPAKE2

We consider SPAKE2 as a motivating example for our work. SPAKE2 was proposed by Abdalla and
Pointcheval [4] and shown secure in the game-based PAKE model [5] under the CDH assumption in the
ROM. SPAKE2 is, to the best of our knowledge, the most efficient PAKE protocol which does not assume
ideal cipher over a group. Its costs are 2 fixed-base and 1 variable-base exponentiations per party, and it is
round-minimal because it can be executed in a single simultaneous round of bi-directional communication.

We give independent proofs that SPAKE2 realizes lazy-extraction UC PAKE and that it meets the game-
based PFS definition, which was not considered in [4]. The lazy-extraction UC PAKE result is tight with
respect to Gap CDH, but the game-based PFS result is not: we require a special assumption introduced
in [4] for which a reduction to Gap CDH is known, but this is not tight. Still, since we do not know that
lazy-extraction UC PAKE security implies PFS security, this result is the only one we have for the PFS
security of (raw) SPAKE2.6 Below, we only include the proof that SPAKE2 realizes the lazy-extraction UC
PAKE functionality. The direct proofs that SPAKE2 realizes the game-based PAKE (with tight reduction)
and game-based PAKE with PFS (with security degradation) are included as supplementary material.

We recall the two-flow, simultaneous round SPAKE2 protocol of [4] in Fig. 3, with some notational choices
adjusted to the UC setting.

5 While relaxing the Groce-Katz functionality, we also make some minor changes to their original: (1) we make the
parties symmetric, and do not require the server to generate a session key first, and (2) we allow the adversary
to force a party to abort by sending a (NewKey, sid ,P,⊥) message. (This second modification is required, and its
omission appears to be an oversight of Groce and Katz.)

6 Note that the combined results of Sections 4 and 5 show that SPAKE2 followed by a key confirmation round is
PFS secure with tight security with respect to Gap CDH.
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Public parameters: generator g and random elements M,N of group G
of prime order p; hash function H : X → {0, 1}κ

P on (NewSession, sid ,P,P ′, pw , client): P ′ on (NewSession, sid ,P ′,P, pw ′, server):

x←R Zp y ←R Zp

X ← gx ·Mpw Y ← gy ·Npw′

-X � Y

Ŷ ← Y/Npw X̂ ← X/Mpw′

K ← H(sid ,P,P ′, X, Y, pw , Ŷ x) K′ ← H(sid ,P,P ′, X, Y, pw ′, X̂y)
output K output K′

Fig. 3. SPAKE2 protocol of [4]

Theorem 1. SPAKE2 realizes the Lazy-Extraction PAKE functionality FlePAKE in ROM under the Gap-CDH
assumption.

CDH and Gap CDH assumptions. Recall that the Computational Diffie-Hellman (CDH) assumption
states that, given generator g and two random elements X = ga, and Y = gb in a cyclic group of prime
order, it is hard to find Z = CDHg(X,Y ) = gab. In the gap version, the problem must remain hard even if
the adversary has access to a Decisional Diffie-Hellman oracle.

Simulator for SPAKE2. The UC simulator SIM for SPAKE2, given in full in Fig. 4, acts as the ideal
adversary, with access to the ideal functionality FlePAKE (shortened to F in the subsequent discussion and
proof). The goal is to emulate (except for negligible probability), the real-world interactions between the
environment Z, any real adversary A, and the real SPAKE2 protocol.

Thus, SIM must simulate messages that appear to come from the real players, respond appropriately to
adversarial messages, and answer random oracle queries consistently. SIM has access to the F interface, but
not the secret inputs (i.e, the passwords) of the honest players.

We briefly describe how SIM simulates client P’s interaction with Z/A; the server case is similar since the
protocol is symmetric. SIM first embeds trapdoors into the CRS, i.e., it picks m,n←R Zp and sets M = gm

and N = gn. To simulate the protocol message X, SIM picks z ←R Zp and sets X = gz. Since X is also
uniformly distributed in the real protocol, the environment cannot tell the difference. When A queries the
random oracle H(sid ,P,P ′, X, Y ′, pw,W ), SIM decides whether it corresponds to a valid password guess:
SIM first computes the exponent x̂ such that X = gx̂ ·Mpw, using the CRS trapdoor m, and then checks if
W = (Y ′/Npw )x̂. If so, then SIM stores (Y ′, pw). If A later sends a protocol message Y ′ aimed at P, then
this is an online attack: when A makes the RO query, SIM picks a random string K as the output, and stores
K together with (Y ′, pw). Then, when A sends Y ′, SIM sends (TestPwd, sid,P, pw) to F , and if F replies
“correct guess,” then SIM sets P’s key to K by sending (NewKey, sid ,P,K) to F ; if F replies “wrong guess,”
then SIM sends (NewKey, sid ,P, 0κ) to F (and F will set P’s key to a random string). On the other hand, if
A makes the RO query after sending Y ′, then this is a postponed attack, so SIM sends (RegisterTest, sid,P)
to F when A sends Y ′, and later sends (LateTestPwd, sid ,P, pw) to F when A makes the RO query; upon
F replying a key K, SIM “programs” the RO output as K.

Record keeping. For each party identifier P and session identifier sid , the simulator SIM stores a state
πsid
P containing the following values:

– The role role ∈ {client, server} of P in this session.
– The private exponent exp used in the network messages, x for C and y for S. In the first few games,

this exponent has the same meaning as in the protocol, however, in the final simulator, it is the actual
discrete log of the simulated network message.

– The transcript of the session includes variables (C,S, X, Y,X∗, Y ∗), where C,S are party identifiers for
client and server respectively, X,Y are simulated messages, and X∗, Y ∗ are adversarial messages. Note
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that SIM only directly stores messages X and Y ∗ for clients (copying Y from the server if it exists), and
symmetrically stores Y and X∗ for servers (copying X from the client if it exists). Unknown values are
set to ⊥.

– The password pw of the party. This value is only set and used in intermediate games when the simulator
knows the parties’ passwords and needs to directly verify password guesses.

– A table guesses mapping values Z∗ to tuples (pw, k∗), representing potential password guesses, and
corresponding keys, made by the adversary using the random oracle H. If an adversarial network message
Z∗ is received, the simulator can then look up the corresponding password pw, which it sends to F to
test; if the guess is correct, SIM instructs F to set the final key as k∗, and otherwise lets F pick a random
key.

– A flag waiting set to T if no adversarial message Z∗ has been received for this party and sid , and F

otherwise. This flag ensures that the first adversarial message for each (P, sid) pair is processed, and all
others are ignored.

The simulator additionally stores a global value qs which is the maximum number of paired sessions, upper
bounded by the total number of values Z∗ sent by A.

Let RealZ,A,SPAKE2 be the probability of the event that environment Z with adversary A outputs 1 in
the real world, and IdealZ,SIM,SPAKE2 be the corresponding probability in the ideal world. The goal is to
show that |RealZ,A,SPAKE2 − IdealZ,SIM,SPAKE2| is negligible.

We use the well-known sequence-of-games proof strategy to show that we may move from the real game to
the simulator in a manner indistinguishable to the environment, except for negligible probability. We begin
with Game 0, the real game, and move through a series of steps, each of which we show to be indistinguishable
from the previous, to the final simulator. The full code of intermediate Games 1-4 is illustrated in Appendix C.
Throughout the proof, Gi denotes the probability that Z outputs 1 while interacting with Game i.

Proof of Theorem 1.

Game 0. This is the real world, in which A interacts with real players, and may view, modify, and/or drop
network messages.

RealZ,A,SPAKE2 = Pr [G0].

Game 1. (Simulate real world with trapdoors) We now simulate the behavior of the real players and the
random oracle. The simulation is exactly as the real game, except for the inclusion of record keeping, and
embedding of trapdoors in M and N , i.e, setting M = gm;N = gn for known m and n. The embedding of
trapdoors is not noticeable to the environment as M,N are still drawn from from the same distribution as
before, thus:

Pr [G1] = Pr [G0].

Game 2. (Random key if adversary is passive) If the adversary passes a simulated Z message sent to
(sid ,P) without modification, output a random key for P instead of the true random oracle output. The
environment notices this change only if A makes a hash query that would result in an inconsistency, namely
H(sid , C,S, X ′, Y ′, pw ,W = gxy), where X ′ = gxMpw , Y ′ = gyNpw are the simulated messages. We check
for such queries, and abort if any occur.

We may reduce this event to Gap-CDH as follows: Consider an adversary B2 against Gap-CDH. On
generalized CDH challenge7 (A1 = ga1 , · · · , Aqs = gaqs , B1 = gb1 , · · · , Bqs = gbqs ), the reduction indexes
sessions (sid ,P,P ′), and embeds Xi = Ai ·Mpwi , Y = Bi · Npwi when generating the simulated messages
for the ith session. The reduction can re-use the code of G2, except for the cases where it requires the secret
exponents ai and bi: (1) to generate K ← H(sid , C,S, X, Y, pw , Ŷ ai{or X̂bi}) and (2) to check for the “bad
event” of an inconsistency in the hash response. To handle case (1), the reduction stores an additional value
K for each session (sid , C,S) which is set randomly when either the reduction must handle case (1), or when
A queries H(sid , C,S, X ′, Y ′, pw ,W ) such that the password is correct and DDH(X ′, Y ′,W ) holds (checked
via the DDH oracle): if either of these events happens again the same value of K is used. The check of case

7 The generalized CDH problem is tightly equivalent to the CDH problem by random-self reducibility.
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generate CRS

M ← gm;N ← gn for (m,n)←R Zp
return M,N

on (NewSession, sid ,P,P ′, role) from F
if πsid
P 6= ⊥: return ⊥

(X,Y )← (⊥,⊥)
if role = client :

(C,S)← (P,P ′)
z ←R Zp ; X ←Mz; Z ← X

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= client: Y ← πsid
P′ .Y ; πsid

P′ .X ← X
else if role = server :

(C,S)← (P ′,P)
z ←R Zp ; Y ← Nz; Z ← Y

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= server: X ← πsid
P′ .X; πsid

P′ .Y ← Y

πsid
P ← (role, z, C,S, X, Y,⊥,⊥,⊥,⊥, T)

send Z from P to A

on Z∗ from A as msg to (sid ,P)

if πsid
P = ⊥ or πsid

P .waiting = F: return ⊥
(role, ·, C,S, X, Y, ·, ·, ·, guesses, ·)← πsid

P
K ← 0κ

if role = client :

πsid
P .Y ∗ ← Z∗

if Z∗ = Y : jump to end

else if role = server :

πsid
P .X∗ ← Z∗

if Z∗ = X: jump to end

if πsid
P .guesses[Z∗] = (pw , k∗):
reply← (TestPwd, sid ,P, pw) to F
if reply = “correct”: K ← k∗

else: send (RegisterTest, sid ,P) to F
end: πsid

P .waiting = F

send (NewKey, sid ,P,K) to F

on H(sid , C,S, X ′, Y ′, pw ,W ) from A:

if TH[sid , C,S, X ′, Y ′, pw ,W ] = ⊥:
K ←R {0, 1}κ; (x̂, ŷ) ← (⊥,⊥)

if πsid
C 6= ⊥: x̂← m · πsid

C .exp−m · pw

if πsid
S 6= ⊥: ŷ ← n · πsid

S .exp− n · pw

if πsid
C .X = X ′ and πsid

S .Y = Y ′ and W = gx̂ŷ: abort

else if πsid
C .X = X ′ and W = (Y ′/Npw )x̂ :

if Y ′ = πsid
C .Y ∗: P ← C; jump to late test pw

else: πsid
C .guesses[Y ′]← (pw ,K)

else if πsid
S .Y = Y ′ and W = (X ′/Mpw )ŷ:

if X ′ = πsid
S .X∗: P ← S; jump to late test pw

else: πsid
S .guesses[X ′]← (pw ,K)

jump to end

late test pw: reply← (LateTestPwd, sid ,P, pw) to F
K ← reply; if no reply, abort

end: TH[sid , C,S, X ′, Y ′, pw ,W ]← K
send TH[sid , C,S, X ′, Y ′, pw ,W ] to A

Fig. 4. UC Simulator for SPAKE2.
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(2) can be done via the DDH oracle, i.e., by querying DDH(Ai, Bi,W ): if the bad event occurs, B2 solves the
CDH challenge with answer W . Thus:

|Pr [G2]− Pr [G1]| ≤ AdvGCDH
B2

.

Game 3. (Random simulated messages) On (NewSession, sid ,P,P ′, role), if this is the first NewSession for
(sid ,P), set Z ← gz for z ←R Zp , and send Z to A as a message from P to (P ′, sid). Note that we may now
compute the original exponents via: x̂ = m · πsid

C .exp−m · pw and ŷ = n · πsid
S .exp− n · pw . This change is

not observable to the environment, as it is merely a syntactic change in the calculation of the exponents:

Pr [G3] = Pr [G2].

Game 4. (Random keys if adversary does not correctly guess password) We now detect when an adversarial
hash query corresponds to a password guess. We can detect this event by inspecting the X ′, Y ′, pw and W
values provided to the hash oracle. Let us assume the adversary is guessing the client’s password (the server
case is symmetric). To make a password guess against the client, the adversary must set X ′ = πsid

C .X, i.e.,
use the simulated message sent by the client. The adversary can use any choice of Y ′, but to correspond
with a specific password guess, the following must hold: W = (Y ′/Npw )x̂ (where x̂ is the exponent such that
πsid
C .X = gx̂Mpw ). In other words, W must be the value that would be used by a real client if Y ′ were sent

as the server’s message. If such a password guess query is detected, we check if Y ′ was previously sent as
an adversarial message on behalf of the server: if so, and if the password guess is correct, we program the
random oracle to match the previously sent key. If Y ′ was not previously sent, we note the values Y ′, pw
queried by the adversary and the random key K output by the RO. If Y ′ is later sent as the adversarial
message, and the password is correct, we output the stored key K. If the password is incorrect, we output a
random key independent of the RO table. If at any point a second password guess (correct or incorrect) is
detected for the same sid and party, we abort the game.

This change is noticeable to the environment only in the abort case, i.e, the case where the adversary
makes two password guesses with a single (X ′, Y ′) transcript, i.e.:

H(sid ,P,P ′, X ′, Y ′, pw , Z) and H(sid ,P,P ′, X ′, Y ′, pw ′, Z ′),

such that pw 6= pw ′, and

CDH(gmx/Mpw , gny/Npw ) = Z and CDH(gmx/Mpw ′ , gny/Npw ′) = Z ′.

Call this event bad4. It can be split into two cases: 1) for one of the passwords pw∗ ∈ {pw , pw ′} it holds
that X ′ = Mpw∗ or Y ′ = Npw∗ , i.e., there is a collision between the guessed password pw∗ and the secret
exponent x or y or 2) there is no such collision. Case 2, which we denote bad1

4, can be reduced to Gap-CDH,
as shown in Lemma 1. Case 1 can be reduced to Gap-DL as follows: Adversary B4.2 on Gap DL challenge
A = ga, sets simulated messages as: Xi = A · g∆i,x and Yi = A · g∆i,y , picking a fresh random ∆i,x and ∆i,y

for each session (sid ,P,P ′). In the ith session (for every i), B4.2 uses the DDH oracle to check for bad4. If
true, B4.2 further checks if Y ′ = Npw∗ or X ′ = Mpw∗ for one of the passwords: in the former case this means
that Y ′ = Npw = A · g∆i,y , so npw = a + ∆i,y, and B4.2 can output the DL solution is a = npw/∆i,y, and
the latter case is symmetric. We have that

|Pr [G4]− Pr [G3]| ≤ AdvGDL
B4.1

+ AdvGCDH
B4.2

.

Game 5. (Use FlePAKE interface) In the final game, we modify the challenger so that it uses the RegisterTest,TestPwd
and LateTestPwd interfaces to check passwords, and the NewKey interface to set keys. This is an internal
change that is not noticeable to the environment, thus

Pr [G5] = Pr [G4].

In addition, this simulator perfectly mimics the ideal world except for the cases where it aborts, which
we have already shown to happen with negligible probability, so:

IdealZ,SIM,SPAKE2 = Pr [G5].
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Thus the distinguishing advantage of Z between the real world and the ideal world is:

|IdealZ,SIM,SPAKE2 −RealZ,A,SPAKE2| ≤ AdvGCDH
B2

+ AdvGDL
B4.1

+ AdvGCDH
B4.2

,

which is negligible if Gap-CDH is hard.

Lemma 1. For every attacker A, there exists an attacker B4.1 (whose running time is linear in the running
time of A) such that:

Pr[G4→ bad1
4] ≤ AdvGCDH

B4.1

Proof. Consider an attacker B4.1 against GCDH. It receives a challenge (M = gm, N = gn) and wants to
find CDH(M,N) = gmn. The attacker emulates G4, except for setting the CRS values as M,N from the
challenge instead of randomly. It uses the DDH oracle to carry out the three checks in the if/else if/else if
structure of the hash response, and for detecting the bad event.

In particular, it detects the bad event bad1
4 when it sees two hash queries (sid , X ′, Y ′, pw , Z) and

(sid , X ′, Y ′, pw ′, Z ′) such that pw 6= pw ′, and both of the following hold, where either x or y is known
(i.e, chosen by the attacker as the exponent for a simulated message):

CDH(gmx/Mpw , gny/Npw ) = Z (1)

CDH(gmx/Mpw ′ , gny/Npw ′) = Z ′ (2)

The attacker can then solve for the CDH response, gnm, as follows.
First, write Z = gz;Z ′ = gz

′
for unknown z, z′ ∈ Zp . Considering only the exponents in Eqs. (1) and (2),

we have that:

m(x− pw) · n(y − pw) = z (3)

m(x− pw ′) · n(y − pw ′) = z′ (4)

Assume that the attacker knows the exponent x (the other case is symmetric). Scaling Eqs. (3) and (4)
by resp. (x− pw ′) and (x− pw), gives:

m(x− pw ′)(x− pw) · n(y − pw) = z · (x− pw ′) (5)

m(x− pw)(x− pw ′) · n(y − pw ′) = z′ · (x− pw) (6)

Subtracting Eq. (6) from Eq. (5) allows us to remove the unknown y term:

mn(x− pw)(x− pw ′)(pw ′ − pw) = z · (x− pw ′)− z′ · (x− pw) (7)

Finally, we may solve for the desired CDH value:

gmn = (Z(x−pw ′) · Z ′(pw−x))1/(x−pw)(x−pw ′)(pw−pw ′)

This is possible as long as we are not dividing by zero, i.e., if pw 6= x and pw ′ 6= x, which is explicitly
excluded in the definition of event bad1

4 (see Case 2 of G4 for handling of this case).

Remark. The proof relies on the gap version of CDH [29], and it seems hard to prove security from the
standard CDH assumption. The Decision Diffie-Hellman oracle is used throughout the proof to maintain
consistency of answers to RO queries, and that this is needed even to deal with sessions in which the
adversary is passive: the reduction still needs to be able to consistently deal with the sessions where the
attacker is active and the attacker may adaptively decide to launch an active attack after seeing one of the
protocol messages. The same happens for all the other PAKE protocols we describe next.
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3.1 Extensions to TBPEKE, SPEKE, and their variants

In Appendix B, we prove that the TBPEKE protocol proposed by Pointcheval and Wang [31] also realizes
the lazy-extraction PAKE functionality under the same assumptions which were used to prove its game-
based security. Moreover, since TBPEKE is a representative example of a class of protocols which includes
SPEKE [19,28,17] and CPace [15,16], the same holds for these other protocols as well, or for their close
variants. These additional examples show that the lazy-extraction PAKE model captures a broad class of
practical PAKE protocols.

The proof that TBPEKE is a secure lazy-extraction PAKE follows the same structure as the one we give
for SPAKE2, but a stronger computational assumption is required to exclude the possibility that an attacker
can place multiple consistent queries to the Random Oracle (see Appendix B). It is straightforward to adapt
our security proof for TBPEKE to show that lazy-extraction UC PAKE functionality is realized under the
same assumptions also by SPEKE.8 Since CPace is a close variant of SPEKE, this holds also for CPace if
additional elements, such as the protocol transcript, are included in the key derivation hash.9

4 Adding Explicit Authentication

We will show that any protocol that securely realizes the lazy-extraction UC PAKE functionality FlePAKE,
followed by a key confirmation round, is a secure realization of the relaxed UC PAKE-EA functionality
FrPAKE-EA. (See Section 2 for the definition of these functionalities.) This protocol compiler construction is
shown in Fig. 5.

P on (NewSession, sid ,P,P ′, pw , client): P ′ on (NewSession, sid ,P ′,P, pw ′, server):

-(NewSession, sid ,P,P ′, pw , client) �(NewSession, sid ,P ′,P, pw ′, server)

lePAKE prot. Π

�(sid , k) -(sid , k′)

K = PRFk(1) K′ = PRFk′(1)
τC = PRFk(2) τS = PRFk′(3)
γC = PRFk(3) -τC � τS γS = PRFk′(2)

if τS = γC: output (sid ,K) if τC = γS : output (sid ,K′)
else: output (sid ,⊥) else: output (sid ,⊥)

Fig. 5. Compiler from lePAKE protocol Π to rPAKE-EA protocol Π ′.

Theorem 2. Protocol Π ′ shown in Fig. 5 realizes the Relaxed PAKE-EA functionality FrPAKE-EA if Π realizes
the Lazy-Extraction PAKE functionality FlePAKE and PRF is a secure PRF.

Figure 6 shows the simulator used in the proof of Theorem 2, but the full proof of this theorem is deferred
to Appendix A.

Compiler from PAKE to PAKE with entity authentication. If we replace the lazy-extraction PAKE
functionality with the (standard) PAKE, then the same compiler construction realizes the (standard) PAKE

8 For instance, in the case of SPEKE (in which g = G(pw)), one can adapt the proof for TBPEKE by simulating
the random oracle G as U · V P(pw).

9 In CPace [15] the key derivation hash includes only the session ID and the Diffie-Hellman key, while our proof of
TBPEKE security assumes that it includes also party IDs, the password-dependent base, and the transcript.
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On (NewSession, sid ,P,P ′, role) from F
If there is no record 〈sid ,P, . . .〉 then:

Send (NewSession, sid ,P,P ′, role) to A and store 〈sid ,P,P ′, role〉 marked fresh.
On (TestPwd, sid ,P, pw∗) from A
If there is a fresh record 〈sid ,P, . . .〉 then:

Send (TestPwd, sid ,P, pw∗) to F ;
If F replies “correct guess” then pass it to A and mark this record compromised.
If F replies “wrong guess” then pass it to A and mark this record interrupted.

On (RegisterTest, sid ,P) from A
If there is a fresh record 〈sid ,P, . . .〉 then:

Mark this record interrupted and flag it tested.
On (NewKey, sid ,P, k∗) from A
If there is a record 〈sid ,P,P ′, role〉 not completed then:

Define k as follows:
If this record is compromised, or P or P ′ is corrupted, then set k := k∗.
Else if this record is interrupted (tested or not), then set k ←R {0, 1}κ.
Else set k := ⊥.

If k 6= ⊥ then:
If role = client then set τ := PRFk(2) and γ := PRFk(3);
If role = server then set τ := PRFk(3) and γ := PRFk(2);

Else, i.e., if k=⊥, pick τ ←R {0, 1}κ, set γ :=⊥, and send (GetReady, sid ,P) to F ;
Mark record 〈sid ,P,P ′, role〉 “completed with key k and tag γ”;
Send τ to A as the authenticator from P to P ′.

On delivery of an authenticator from A
If record 〈sid ,P,P ′, role〉 is marked “completed with key k and tag γ”, and A sends a purported authenticator,
denoted τ∗, to protocol instance (sid ,P) then:

If 〈sid ,P,P ′, role〉 is flagged tested:
Send (RegisterTest, sid ,P) to F .

If k 6= ⊥ then:
If τ∗ = γ then send (NewKey, sid ,P,PRFk(1)) to F .
If τ∗ 6= γ then send (NewKey, sid ,P,⊥) to F .

If k = ⊥ (i.e., the record was fresh right before it became completed) then:
If there is a completed record 〈sid ,P ′,P, role′〉 for role′ 6= role, which was

marked fresh right before it became completed, and which sent out
authenticator τ ′ s.t. τ∗ = τ ′, then send (NewKey, sid ,P, 0κ) to F .

Else send (NewKey, sid ,P,⊥) to F .
On (LateTestPwd, sid ,P, pw∗) from A
If there is a record 〈sid ,P, . . .〉 marked “completed with key k”, and flagged tested:

Remove the tested flag from this record;
If A did not send an authenticator to protocol instance (sid ,P) then send

(TestPwd, sid ,P, pw∗) to F ;
Else send (LateTestPwd, sid ,P, pw∗) to F ;
If F replies “correct guess” then send k to A.
If F replies “wrong guess” then send k$ ←R {0, 1}κ to A.

Fig. 6. Simulation for relaxed PAKE-EA protocol in Figure 5.

15



with explicit authentication functionality. In other words, by dropping the “laziness” of the underlying
PAKE protocol, we get a compiler from PAKE to PAKE with explicit authentication. While technically
not a corollary of Theorem 2, it is clear that the proof of Theorem 2 can be slightly modified to prove this
conclusion: In that proof, the simulator SIM sends a password test (i.e., send a LateTestPwd message to
FrPAKE-EA) only if A does so (i.e., sends LateTestPwd message aimed at FlePAKE played by SIM); therefore, if
both SIM and A are not allowed to do a late password test, the simulation will still succeed.

While the fact that PAKE plus “key confirmation” yields PAKE with explicit authentication is well
known, to the best of our knowledge, there has been no proof of this in the UC setting.

SPAKE2 with key confirmation. An immediate corollary of Theorems 1 and 2 is that SPAKE2 with key
confirmation realizes the relaxed UC PAKE-EA functionality FrPAKE-EA under the Gap-CDH assumption in
ROM. Fig. 7 shows the resulting 3-flow protocol with the client as the initiator.

Public parameters: generator g and random elements M,N of group G
of prime order p; hash function H : X → {0, 1}κ

P on (NewSession, sid ,P,P ′, pw , client): P ′ on (NewSession, sid ,P ′,P, pw ′, server):

x←R Zp y ←R Zp

X ← gx ·Mpw Y ← gy ·Npw′

-X X̂ ← X/Mpw′

k′ ← H(sid ,P,P ′, X, Y, pw ′, X̂y)
K′, τS , γS ← PRFk′(1),PRFk′(3),PRFk′(2)

Ŷ ← Y/Npw �(Y, τS)

k ← H(sid ,P,P ′, X, Y, pw , Ŷ x)
K, τC , γC ← PRFk(1),PRFk(2),PRFk(3)

if τS = γC : output K -τC if τC = γS : output K′

else: output ⊥ else: output ⊥

Fig. 7. SPAKE2 with key confirmation.

5 PAKE Relaxations and PFS

In this section we prove that any protocol that realizes the Relaxed PAKE functionality satisfies the stan-
dard game-based notion of security for PAKE protocols offering perfect forward secrecy (PFS). This is an
important sanity check for the definition, as it shows that the extra power given to the ideal-world adver-
sary by the late test feature does not weaken the security guarantee for PAKE sessions that are completed
before passwords are corrupted. We show that a similar argument can be used to show that the weaker
Lazy-Extraction PAKE definition implies a weak form of PFS, referred to as weak FS, where security in the
presence of password leakage is only guaranteed with respect to passive attackers [24,27].

5.1 Defining PFS

We recall the standard game-based notion of security for PAKE protocols and which follows from a series of
works [2,3] that refined the security notion proposed by Bellare, Pointcheval and Rogaway in [5]. Section 3
and supplementary material include the full details.
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The definition is based on an experiment in which a challenger emulates a scenario where a set of parties
P1, . . . ,Pn, each running an arbitrary number of PAKE sessions, relies on a trusted setup procedure to
establish pre-shared long-term (low-entropy) passwords for pairwise authentication. Passwords for each pair
(Pi,Pj) are sampled from a distribution over a dictionary D; we assume here the case where D is any set
of cardinality greater than one, and each password is sampled independently and uniformly at random from
this set.10 A ppt adversary A is challenged to distinguish established session keys from truly random ones
with an advantage that is better than password guessing.

The security experiment goes as follows. The challenger first samples passwords for all pairs of parties,
generates any global public parameters (CRS) that the protocol may rely on and samples a secret bit b. The
challenger manages a set of instances πji , each corresponding to the state of session instance j at party Pi,
according to the protocol definition. The adversary is then executed with the CRS as input; it may interact
with the following set of oracles, to which it may place multiple adaptive queries:

Execute: Given a pair of party identities (Pi,Pj) this oracle animates an honest execution of a new PAKE
session established between the two parties and returns the communications trace to the attacker. This
gives rise to two new session instances πki and πlj , which for correct protocols will have derived the same
established session key.

Send: Given a party identity Pi, an instance j and a message m, this oracle processes m according to the
state of instance πji (or creates this state if the instance was not yet initialized) and returns any outgoing
messages to the attacker.

Corrupt: Given a pair of party identities (Pi,Pj), this oracle returns the corresponding pre-shared pass-
word.

Reveal: Given a party identity Pi and an instance j, this oracle checks πji and, if this session instance has
completed as defined by the protocol, the output of the session (usually either a secret key or an abort
symbol) is returned to the attacker.

RoR: Given a party identity Pi and an instance j, this oracle checks πji and, if this session instance has
completed as defined by the protocol and this session instance is fresh, the adversary is challenged on
guessing bit b: if b = 0 then the derived key is given to the attacker; otherwise a new random key is
returned.11

Eventually the adversary terminates and outputs a guess bit b′. The definition of advantage excludes trivial
attacks via the notion of session freshness used in the RoR oracle. Formal definitions are given in the
supplementary material, here we give an informal description. Two session instances are partnered if their
views match with respect to the identity of the peer, exchanged messages and derived secret keys—the first
two are usually interpreted as a session identifier. A session is fresh if: a) the instance completed; b) the
instance was not queried to Ror or Reveal before; c) at least one of the following four conditions holds:
i. the instance accepted during a query to Execute; ii. there exists more than one partner instance; iii. no
partner instance exists and the associated password was not corrupted prior to completion; iv. a unique fresh
partner instance exists (implies not revealed).

A PAKE protocol is secure if, for any ppt attacker interacting with the above experiment and placing at
most qs queries to the Send oracle, we have that

|Pr[b′ = b]− 1/2| ≤ qs/|D|+ ε ,

10 This assumption is standard for the corruption model captured by this game-based definition. If correlated pass-
words were allowed, then corrupting one password might reveal information that allows the attacker to trivially
infer another one; preventing trivial attacks in this setting leads to a definition in the style of [5], where the cor-
ruption of a password must invalidate RoR queries associated with all correlated passwords; this means the whole
dictionary if no restrictions is imposed on the distribution. The finer-grained definition of password corruption we
adopt here does not easily extend to the case of arbitrary correlations between passwords. See the supplementary
material for a discussion. The UC definition covers arbitrary password sampling distributions and the results we
prove in this section should extend to any reasonable game-based definition that deals with more complex password
distributions. This is clearly the case for the concrete distributions discussed in the supplementary material.

11 We use RoR (Real-or-Random) for this oracle rather than the standard Test oracle designation to avoid confusion
with the test and late test requests that are included in the UC PAKE ideal functionality definitions.
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where ε is a negligible term.
The original definition proposed by Bellare, Pointcheval and Rogaway [5] allows for stronger corruption

models—fixing the corrupt password maliciously and revealing the internal state of session instances—which
we omit here; it is straightforward to adapt our proof to the case of malicious password setting. We also do
not deal with the asymmetry between client and server (also known as augmented PAKE) as this is outside
the scope of this paper.

Known results for UC PAKE. Canetti et al. [10] introduced the notion of UC-secure PAKE and proved
that this definition implies game-based security of the protocol as defined in [5]. Our proof that Relaxed
PAKE implies game-based PAKE with PFS follows along the same lines and relies on two auxiliary results
from that original proof that we recover here; the first result concerns a generic mechanism for the handling
of session identifiers called SID-enhancement and the second one is a general result for security against
eavesdroppers.

Given a two-party protocol Π, its SID-enhancement Π ′ is defined as the protocol that has the parties
exchange nonces and then uses the concatenation of these nonces as SID. This transformation converts
any protocol Π that assumes SIDs provided by an external environment as the means to define matching
sessions, into another one that generates the SID on-the-fly as required by the syntax of the game-based
security definition. Both the original proof and the one we give here show that the UC security of Π implies
the game-based security of Π ′. Intuitively, an environment simulating the PFS-game above can wait until
the SID for the enhanced protocol is defined before calling NewSession to initiate the session of the parties
in the UC setting.

For security against eavesdroppers, Canetti et al. show that no successful ideal world adversary can place
TestPwd queries on sessions for which the environment Z instructed the adversary to pass messages between
the players unmodified (i.e., to only eavesdrop on the session). We give here the intuition on why this is the
case and refer the interested reader to [10] for a detailed proof.

The crucial observation is that, for eavesdropped sessions, the ideal-world adversary generates all the trace
and hence has no side information on the password;this means that for every environment Z for which the
ideal-world attacker might place such a query, there exists an environment Z ′ that can catch the simulator; Z ′
operates as Z, but it uses a high-entropy password for the problematic session: in the real-world a session the
two honest parties will end-up with matching keys with probability 1—one assumes perfect correctness here
for simplicity—whereas an ideal-world adversary placing a TestPwd can never match the same behaviour.
Indeed, querying a wrong password to TestPwd leads to mismatching keys with overwhelming probability
in the ideal world and the ideal-world adversary cannot guess the password correctly except with small
probability.

This argument extends trivially to LateTestPw queries, as these must be preceded by a RegisterTest query
prior to session completion that also leads to mismatching keys with overwhelming probability. Furthermore,
the above reasoning also applies when the ideal-world adversary may have the extra power of simulating
an ideal object, i.e., the UC-secure PAKE protocol is defined in an F-hybrid model. Indeed, whatever
environment Z may have leaked to the ideal-world adversary via calls to F , there exists an environment Z ′
that catches S as above.

5.2 Relaxed PAKE Implies PFS

Theorem 3. Let F be an ideal object such as a random-oracle or an ideal-cipher. If Π securely realizes
FrPAKE without explicit authentication, in the (FCRS,F)-hybrid model, then its SID-enhanced version Π ′ is
PFS-secure according to the game-based definition given above.

Proof. (Sketch) The overall structure of the proof matches that given in [10].
Fix some dictionary D with |D| > 1 and any ppt adversary A′ attacking Π ′ in the game-based setting

and placing at most qs queries to the Send oracle. Construct an environment Z that either interacts with
the “canonical” (dummy) real world adversary A or with the ideal-world adversary S and FrPAKE. This
environment runs A′ as a subroutine and emulates the entire PFS game for it; in particular, it creates all
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the pre-sampled passwords itself, as well as the secret bit b. The CRS is initially obtained via the real/ideal
world adversary, and it is provided to A′. The oracle queries placed by A′ are answered as follows:

– Execute and Send queries are answered by first instructing the real/ideal world adversary to perform
the necessary message exchanges, and then providing the observable trace or response to A′. We omit
here the details on how to handle SIDs, which we handle as in [10]: Z can wait until the SID is fixed in
Π ′ before calling NewSession and then proceed as stated for subsequent steps in the protocol.

– Corrupt queries are simply answered by giving the password to A′.
– Reveal and RoR queries are answered by looking at the output tape of the corresponding party session

to obtain the generated session key, and then proceeding as in the game-based definition.
– F queries are passed on to the real/ideal-world adversary and the answer is returned back to A′.

When the adversary terminates, Z returns 1 if and only if b = b′. In short, the environment is constructed
such that the probability that Z outputs 1 when interacting with A in the real world is identical to the
probability that the game-based PFS experiment returns 1 when interacting with A′.

Let us now look at the ideal world. The UC security of the protocol guarantees the existence of an ideal
world adversary S that presents a view to Z that is computationally close to that which is observable in the
real world. We consider the setting of Z running A′ as a subroutine and interacting with this S.

The first observation is that here the PFS attacker A′ only gets information on the hidden bit b when
querying RoR on a session declared fresh by the PFS experiment. We will show that the PFS attacker has
no information on the derived keys for such fresh sessions for four different cases: 1) all sessions created by
Execute queries placed by PFS attacker A′; 2) sessions where the PFS attacker was active and S placed a
LateTestPw query after the session completed; 3) sessions where the PFS attacker was active and S did not
place a TestPw query before the session completed; and 4) sessions where the PFS attacker was active and
S placed a TestPw before the session completed for an incorrect password. Note that this leaves a fifth case
yet untreated, which is the same as the fourth one, except that password is correct. We handle this case at
the end of the proof.

Case 1. Let us first consider sessions established as a result of Execute queries placed by A′. Recall all
such sessions are fresh unless the session key is explicitly revealed to A′. Here we apply the argument stated
for eavesdroppers by Canetti et al, which excludes any TestPwd or LateTestPwd queries. Note that in this
case, the session key output by the ideal functionality can only be revealed to A′ by Z through a reveal
query. However, if this occurred for either of the partner sessions, the freshness condition would not hold.
This means that the session key established for a created via an Execute query is totally hidden from A′
in the ideal world.

Case 2. Note that all sessions not captured in the previous case were established as a consequence of Send
queries placed by the PFS adversary and recall that at most qs such sessions can occur.

We next show that, for these sessions, if S placed a LateTestPwd query, this does not help S and A′ in
obtaining information about a key that is used by the RoR oracle. To see this, note that any session that
is late-tested gives rise to an independent session key in the ideal world that cannot be fixed via TestPwd;
moreover, LateTestPwd reveals nothing about this key to S. Again, any session that is declared fresh by
the game-based experiment cannot have been revealed explicitly to A′, which means the session key is
information-theoretically hidden from it. Note that the above argument holds independently of the fact that
the password might have been corrupted prior to session acceptance and somehow included in a query to F .

Cases 3 and 4. For remaining cases of fresh sessions where A′ might get information about b, we cannot
exclude that the ideal-world adversary S has made a successful TestPwd query prior to session acceptance.
However, it is clear that, if such a query is not placed, then the same argument we used for the previous
cases applies and the established key is also information-theoretically hidden from the adversary A′, which
covers case 3. For Case 4, we note that the same argument still applies if the TestPwd query is placed with
a wrong password, as in this case S can get no side-information on the session key via the functionality.
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We can now conclude the proof as in [10]. We have shown that all secret keys on whichA′ can be challenged
in the ideal world are information theoretically from it hidden from A′, unless S is able to make a successful
TestPwd query on a session that was established as a result of a Send query placed by the PFS adversary.
We know that there are at most qs such sessions. We argue that the overall probability that S makes such a
TestPwd query is at most qs/|D|. This is because, for those sessions to be fresh, the associated password was
not corrupted by A′ before session completion, and hence cannot have been leaked to S before the TestPwd
query was placed. Note that this argument holds for any possible because all prior communication between
Z and S that could transfer information on the password to S (both protocol messages and calls to F) are
created by A′, and A′ cannot have information on the password if the session is fresh.

This means that an up-to-bad argument can be used to show that the ideal-world view of Z is qs/|D|-
close to that of a modified experiment in which Z outputs 1 with probability exactly 1/2. Combining the
various terms one derives that the game-based advantage is upper-bounded by qs/|D| + ε, where ε is the
distinguishing advantage of Z.

5.3 Lazy-Extraction PAKE Implies Weak FS

The proof of the above theorem can be adapted to show that any protocol that realizes the Lazy-Extraction
UC PAKE functionality is secure under a weak form of game-based security: the attacker is not allowed
to corrupt the passwords of sessions against which it launches an active attack. This notion of game-based
security for PAKE is sometimes called weak FS. We summarize how the proof can be adapted.

The first step is to notice that the same argument that excludes any simulator that places TestPwd or
LateTestPwd queries for eavesdropped sessions under the relaxed UC PAKE definition still applies in the lazy
extraction setting. This means that all cases in the proof except for case 2) can be handled as before: case
1) concerns eavesdropped sessions, whereas all other cases are related with the TestPwd query, for which the
behavior of the ideal functionality is the same as in the theorem. This leaves LateTestPwd queries.

The important observation here is that LateTestPwd can be handled exactly as TestPwd queries: under
weak FS the attacker A′ can no longer corrupt a password for an actively attacked session, and hence
the relevant password is hidden from the simulator during the entire execution. The probability that the
simulator gets the password right is therefore 1/|P| in each LateTestPwd query. On the other hand, if the
simulator guesses wrong, it receives no information about the correct session key (it gets a random string
from the lazy-extraction UC PAKE functionality). Since we know that the ideal world adversary can place at
most one LateTestPwd or TestPwd query, and that at most qs actively attacked sessions exist, the implication
follows from the same up-to-bad reasoning and holds with the same bound.

5.4 Practical implications

Putting together the results in Section 3 and Section 4 we obtain positive results for rPAKE secure protocols
in the Universal Composability framework, namely SPAKE2, TBPEKE, CPACE and SPEKE, followed by
a round of key confirmation (although we did not give a detailed proof for the latter two, and regarding
CPACE we expect that the proof will require that additional elements, such as the protocol transcript, are
included in the key derivation hash). The result in this section shows that all such protocols are also PFS
secure in the game-based setting. The caveat here is that this proof involves modifying the protocol to deal
with session identifiers: The UC PAKE model requires a unique session identifier as an input of the protocol,
while in practice agreeing on such identifier before the protocol starts can add extra communication rounds
to the protocol. For completeness, we include a direct proof that SPAKE2 with key confirmation provides
game-based PFS with a tight reduction to Gap CDH in ROM as supplementary material.
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A Proof of Theorem 2

Proof. We construct a simulator SIM as in Fig. 6, which interacts with functionality FrPAKE-EA and an
environment Z, and we show that for any efficient environment Z and any real-world adversary A, Z cannot
distinguish the ideal-world execution, created by SIM in interaction with FrPAKE-EA, from the real-world
execution, created by A in interaction with real-world parties executing protocol Π ′. However, since we
assume that sub-protocol Π realizes functionality FlePAKE, the real-world adversary can be without loss of
generality replaced by a hybrid-world adversary, where the lazy-extraction PAKE sub-protocol Π executed
by the real-world parties within protocol Π is replaced by the ideal functionality FlePAKE. Indeed, in the
proof we assume that A is operates in such FlePAKE-hybrid world, although to simplify the terminology we
persist in calling A a “real-world” adversary. Also for notational simplicity, we denote functionality FrPAKE-EA
throughout the proof as simply F . Finally, as is standard, without loss of generality we assume that the
adversary A is a “dummy” adversary who merely passes all messages and computation to Z.

The proof goes by a sequence of games, starting from the real world and ending at the simulated world;
and we prove that Z’s views in any pair of adjacent games are indistinguishable. In all of these games we
divide all possible scenarios into several cases (which are unchanged throughout the sequence of games),
according to whether A performs an online attack on party P’s rPAKE session, and if so, whether it is an
online attack or a postponed attack on P’s lePAKE session.12 Throughout the argument below we assume
that P’s role is client; the other case, i.e., P’s role is server, can be argued similarly. Let P’s counterpart be
P ′, and P ′’s password be pw ′.

Case 1 (online attack on lePAKE → online attack on rPAKE): A sends (TestPwd, sid ,P, pw∗) to FlePAKE

when P’s lePAKE session is fresh. There are two sub-cases:
Case 1a (correct guess): pw∗ = pw (thus P’s lePAKE session becomes compromised).
Case 1b (wrong guess): pw∗ 6= pw (thus P’s lePAKE session becomes interrupted).

Case 2 (postponed attack on lePAKE → online attack on rPAKE): A sends (RegisterTest, sid ,P) when
P’s lePAKE session is fresh, followed by (NewKey, sid ,P, k∗); and then sends (LateTestPwd, sid ,P, pw∗) to
FlePAKE (cauing P’s rPAKE session to complete) before sending a tag τ∗ to P. There are two sub-cases:

Case 2a (correct guess): pw∗ = pw .
Case 2b (wrong guess): pw∗ 6= pw .

Case 3 (postponed attack on lePAKE → postponed attack on rPAKE): This is the complementary case of
Case 2, i.e., A sends (RegisterTest, sid ,P) when P’s lePAKE session is fresh, followed by (NewKey, sid ,P, ?);
and then an tag τ∗ to P before sending any (LateTestPwd, sid ,P, pw∗) message to FlePAKE. (Eventually A
may or may not send LateTestPwd.)

Case 4 (no attack on lePAKE): A sends neither a (TestPwd, sid ,P, ?) nor a (RegisterTest, sid ,P) query to
FlePAKE when P’s lePAKE session is fresh (thus P’s lePAKE session remains fresh until it becomes completed).
There are two sub-cases:

Case 4a (no attack on counterpart, passwords match): P ′’s lePAKE session is completed when A sends
τ∗ aimed at P, and P ′’s lePAKE session was also fresh right before it becomes completed. Furthermore,
pw ′ = pw (i.e., P and P ′’s passwords match).

Case 4b: This is the complementary case of Case 4a.

Game 0. This is the real world, in which A interacts with real players, and may view, modify, and/or drop
network messages.

12 Note that each rPAKE session runs a lePAKE session as a subprotocol, and these two sessions should not be
confused. When we mention a party’s session, we always explicitly point out which one it refers to. Similarly, each
party has a lePAKE output (which is always a string) and a PAKE output (which is either a string derived from
its lePAKE output or ⊥).
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Game 1. In Cases 1b, 2b and 4 (except for the subcase of Case 4a that P outputs after P ′ does), set
K, τ, γ ←R {0, 1}κ (instead of K = PRFk(1), τ = PRFk(2) and γ = PRFk(3)).

Note that in all these cases, k is a random string in {0, 1}κ, and is only used in computing K, τ and
γ. (That is, k is never revealed to Z, and is never used in P ′’s algorithm.) Therefore, any environment Z
which distinguishes between Game 0 and Game 1 can be turned into an adversary B1 against the security
of PRF: B1, given access to an oracle O(·) (which computes either PRFk(·) or a random function), runs the
code of Game 0, except that (1) it aborts if the condition of Game 1 does not hold, and (2) if the condition
of Game 1 holds, it sets K = O(1), τ = O(2) and γ = O(3) instead of K = PRFk(1), τ = PRFk(2) and
γ = PRFk(3). Then B1 copies Z’s output. We have that

|Pr [G1]− Pr [G0]| ≤ AdvPRF
B1

.

Game 2. In the subcase of Case 4a that P outputs after P ′ does, set K = K ′ and τ ←R {0, 1}κ (instead
of K = PRFk(1) and τ = PRFk(2)).

Note that in this case K = K ′ = PRFk(1), so redefining K = K ′ does not change Z’s view. k is a random
string in {0, 1}κ, and is only used in computing K, K ′, τ and γ. (That is, k is never revealed to Z.) Therefore,
any environment Z which distinguishes between Game 1 and Game 2 can be turned into an adversary B2
against the security of PRF: B2, given access to an oracle O(·), runs the code of Game 1, except that (1) it
aborts if the condition of Game 2 does not hold, and (2) if the condition of Game 2 holds, it sets τ = O(2)
instead of τ = PRFk(2). Then B2 copies Z’s output. We have that

|Pr [G2]− Pr [G1]| ≤ AdvPRF
B2

.

Game 3. In Case 3, let P output (sid ,⊥).
In Game 2 P outputs (sid ,⊥) in Case 3 unless τ∗ = γ = PRFk(3). Therefore, Z’s views in Game 2 and

Game 3 are identical unless τ∗ = PRFk(3) in Case 3. Denote this event bad . Note that at the time when
A sends τ∗, k is a random string in {0, 1}κ, and is only used in computing τ = PRFk(2). Therefore, any
environment Z which causes bad to happen can be turned into an adversary B3 against the security of PRF:
B3, given access to an oracle O(·), runs the code of Game 2, except that (1) it aborts if Case 3 does not
happen, (2) in Cases 3, it sets τ = O(2) instead of τ = PRFk(2). Then B3 outputs 1 if τ∗ = O(3), and 0
otherwise (and breaks the game). We have that

AdvPRF
B3

=

∣∣∣∣Pr[bad ]− 1

2κ

∣∣∣∣ ,

so

|Pr [G3]− Pr [G2]| ≤ Pr[bad ] ≤ AdvPRF
B3

+
1

2κ
.

Game 4. In Cases 1b, 2b and 4b, let P output (sid ,⊥).
In Game 3 P outputs (sid ,⊥) in Cases 1b, 2b and 4b unless τ∗ = γ ←R {0, 1}κ. Therefore, Z’s views in

Game 3 and Game 4 are identical unless τ∗ = γ in Cases 1b, 2b and 4b. Since γ is independent of everything
else, this probability is at most 1/2κ. We have that

|Pr [G4]− Pr [G3]| ≤ 1

2κ
.

Game 5. In Cases 1b and 2b, set τ := PRFk(2) where k ←R {0, 1}κ (instead of τ ←R {0, 1}κ).
Any environment Z which distinguishes between Game 4 and Game 5 can be turned into an adversary

B4 against the security of PRF: B4, given access to an oracle O(·), runs the code of Game 4, except that (1)
it aborts if neither of Cases 1b and 2b happens, and (2) in Cases 1b and 2b, it sets τ = O(2) instead of
τ ←R {0, 1}κ. Then B4 copies Z’s output. We have that

|Pr [G5]− Pr [G4]| ≤ AdvPRF
B4

.

We now argue, case by case, that Z’s views in Game 5 and the ideal world are identical.
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Case 1a:

– Game 5: In this case there is no change from Game 0 to Game 5. Therefore, Z’s view consists of
“correct guess” when A sends (TestPwd, sid ,P, pw∗ = pw) to FlePAKE, τ = PRFk∗(2) when A sends
(NewKey, sid ,P, k∗) to FlePAKE, and (sid ,K = PRFk∗(1)) if A sends τ∗ = PRFk∗(3) and (sid ,⊥) other-
wise.

– Ideal world: When A sends (TestPwd, sid ,P, pw) aimed at FlePAKE, SIM passes this message to F ; when
F replies “correct guess,” SIM passes this message to A. At this time P’s lePAKE session (kept in SIM)
and rPAKE session (kept in F) are both compromised. Then when A sends (NewKey, sid ,P, k∗) aimed
at FlePAKE, SIM sets k := k∗ and sends τ := PRFk(2) to A; when A sends τ∗, if τ∗ = PRFk∗(3) then
SIM sends (NewKey, sid ,P,K := PRFk(1)) to F , and F sends (sid ,K) to P (who outputs this message);
otherwise SIM sends (NewKey, sid ,P,⊥) to F , and F sends (sid ,⊥) to P (who outputs this message).

According to the analysis above, we can see that Z’s views in Game 5 and the ideal world are identical in
this case.

Case 1b:

– Game 5: In this case the changes from Game 0 are done in Game 1, Game 4 and Game 5. Z’s view consists
of “wrong guess” when A sends (TestPwd, sid ,P, pw∗) to FlePAKE, τ = PRFk(2) (where k ←R {0, 1}κ)
when A sends (NewKey, sid ,P, k∗) to FlePAKE, and (sid ,⊥) when A sends τ∗.

– Ideal world: When A sends (TestPwd, sid ,P, pw∗) aimed at FlePAKE, SIM passes this message to F ;
when F replies “wrong guess,” SIM passes this message to A. At this time P’s lePAKE session (kept
in SIM) and rPAKE session (kept in F) are both interrupted. Then when A sends (NewKey, sid ,P, k∗)
aimed at FlePAKE, SIM picks k ←R {0, 1}κ and sends τ := PRFk(2) to A; when A sends τ∗, SIM sends
(NewKey, sid ,P, ?) to F , and F sends (sid ,⊥) to P (who outputs this message). (Note that P’s rPAKE
session is interrupted, so F always sends (sid ,⊥) to P when SIM sends NewKey.)

According to the analysis above, we can see that Z’s views in Game 5 and the ideal world are identical in
this case.

Case 2a: This case is the same with Case 1a, except that A’s message sequence TestPwd and NewKey
is replaced by RegisterTest, NewKey and LateTestPwd. With an argument similar to Case 1a (we omit the
details), Z’s views in Game 5 and the ideal world are identical in this case.

Case 2b: Again, this case is the same with Case 1b, except that A’s message sequence TestPwd and NewKey
is replaced by RegisterTest, NewKey and LateTestPwd. With an argument similar to Case 1b (we omit the
details), Z’s views in Game 5 and the ideal world are identical in this case.

Case 3:

– Game 5: In this case the changes from Game 0 are done in Game 3. Z’s view consists of τ = PRFk(2)
(where k ←R {0, 1}κ) when A sends (NewKey, sid ,P, k∗) to FlePAKE, (sid ,⊥) when A sends τ∗, and k if
A sends (LateTestPwd, sid ,P, pw∗ = pw) to FlePAKE and k$ ←R {0, 1}κ otherwise.

– Ideal world: When A sends (RegisterTest, sid ,P) aimed at FlePAKE, SIM passes this message to F . At
this time P’s lePAKE session (kept in SIM) and rPAKE session (kept in F) are both interrupted and
flagged tested. Then when A sends (NewKey, sid ,P, k∗) aimed at FlePAKE, SIM picks k ←R {0, 1}κ and
sends τ := PRFk(2) to A; when A sends τ∗, SIM sends (NewKey, sid ,P, ?) to F , and F sends (sid ,⊥) to
P (who outputs this message). (Note that P’s rPAKE session is interrupted, so F always sends (sid ,⊥)
to P when SIM sends NewKey.) Finally, when A sends (LateTestPwd, sid ,P, pw∗) aimed at FlePAKE, SIM
passes this message to F and removes the tested flag; if pw∗ = pw , then F replies “correct guess,” and
SIM sends k to A; if pw∗ 6= pw , then F replies “wrong guess,” and SIM sends k$ ←R {0, 1}κ to A.

According to the analysis above, we can see that Z’s views in Game 5 and the ideal world are identical in
this case.
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Case 4a, P outputs before P ′ does:

– Game 5: In this case the changes from Game 0 are done in Game 1. Z’s view consists of τ ←R {0, 1}κ
when A sends (NewKey, sid ,P, k∗) to FlePAKE, and (sid ,K ←R {0, 1}κ) if A sends τ∗ = γ = τ ′ and
(sid ,⊥) otherwise.

– Ideal world: When A sends (NewKey, sid ,P, k∗) to FlePAKE, SIM picks τ ←R {0, 1}κ, sets γ := ⊥, and
sends (GetReady, sid ,P) to F ; F marks P’s rPAKE session ready. When A sends τ∗, if τ∗ = τ , then SIM
sends (NewKey, sid ,P, 0κ) to F , and F sends (sid ,K ←R {0, 1}κ) to P (who outputs this message); if
τ∗ 6= τ , then SIM sends (NewKey, sid ,P,⊥) to F , and F sends (sid ,⊥) to P (who outputs this message).

According to the analysis above, we can see that Z’s views in Game 5 and the ideal world are identical in
this case.

Case 4a, P outputs after P ′ does: This case is the same with the subcase of Case 4a that P outputs
before P ′ does, except that K ←R {0, 1}κ is replaced by K = K ′. With an argument similar to Case 1b (we
omit the details), Z’s views in Game 5 and the ideal world are identical in this case.

Case 4b:

– Game 5: In this case the changes from Game 0 are done in Game 1 and Game 4. Z’s view consists of
τ ←R {0, 1}κ when A sends (NewKey, sid ,P, k∗) to FlePAKE, and (sid ,⊥) when A sends τ∗.

– Ideal world: When A sends (NewKey, sid ,P, k∗) to FlePAKE, SIM picks τ ←R {0, 1}κ, sets γ := ⊥,
and sends (GetReady, sid ,P) to F ; F marks P’s rPAKE session ready. When A sends τ∗, SIM sends
(NewKey, sid ,P,⊥) to F , and F sends (sid ,⊥) to P (who outputs this message).

According to the analysis above, we can see that Z’s views in Game 5 and the ideal world are identical in
this case.

Combining all results above, we conclude that Z’s views in the real world and the ideal world are
indistinguishable. This concludes the proof.13

B Security of TBPEKE

We recall the two-flow, simultaneous round TBPEKE protocol [31] in Fig. 8, with some notational choices
adjusted to the UC setting.

The proof that TBPEKE is lazy-extraction UC PAKE secure is structurally similar to that of SPAKE2.
In particular, the simulator adopts the same high-level strategy for dealing with passive and active attacks,
while simulating the random oracle that is used for key derivation by taking advantage of knowing the CRS.
(Random oracle P is trivially simulated, excluding collisions to avoid ambiguity between passwords.) The
sequence of games that justifies the simulation also follows the same pattern. The only significant difference
lies in the step where one must exclude the possibility that the adversary places two random-oracle queries for
two different passwords that are consistent with the same protocol trace, which would prevent the simulator
from maintaining consistency. In the SPAKE2 proof, this event can be reduced to Gap CDH. For TBSPEKE,
the reduction to Gap CDH does not work and the stronger Gap SDH assumption, which we state here, is
needed as in [31].

SDH and Gap SDH assumptions. The Simultaneous Diffie-Hellman (SDH) assumption states that, given
three random elements X, g = Xa, and h = Xb in a cyclic group of prime order, it is hard to find Y 6= 1 and
R,S that simultaneously satisfy R = CDHg(X,Y ) = Y 1/a and S = CDHh(X,Y ) = Y 1/b. In the gap version,
the problem must remain hard even if the adversary has access to a Decisional Diffie-Hellman oracle.

13 The proof is done in the single-session setting, i.e., we assume that there is only one sid . By a standard hybrid
argument, we can extend the result to the multi-session setting: If Z’s distinguishing advantage is ε for a single
session, then it is qε for q sessions.
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Public parameters: Random elements U, V of group G of prime order p;
hash function H : X → {0, 1}κ;

hash function P : X → Zp

P on (NewSession, sid ,P,P ′, pw , client): P ′ on (NewSession, sid ,P ′,P, pw ′, server):

gpw ← U · V P(pw) gpw′ ← U · V P(pw′)

x←R Zp y ←R Zp

X ← gxpw Y ← gypw′
-X � Y

K ← H(sid ,P,P ′, gpw , X, Y, Y x) K′ ← H(sid ,P,P ′, gpw′ , X, Y,Xy)
output K output K′

Fig. 8. TBPEKE protocol of [31], which uses an additional random oracle P for deriving the generator gpw .

Theorem 4. TBPEKE realizes the Lazy-Extraction PAKE functionality FlePAKE in ROM under the Gap-
CDH and Gap Simultaneous Diffie-Hellman (Gap-SDH) assumptions.

Simulator for TBPEKE. As for SPAKE2, for each party identifier P and session identifier sid , the
simulator SIM for TBPEKE stores a state πsid

P containing the following values:

– The role role ∈ {client, server} of P in this session.
– The private exponent exp used in the network messages, x for C and y for S.
– The transcript of the session includes variables (C,S, X, Y,X∗, Y ∗), where C,S are party identifiers for

client and server respectively, X,Y are simulated messages, and X∗, Y ∗ are adversarial messages.
– The password pw of the party.
– The key k sent in the NewKey query on behalf of the party.
– A table guesses mapping values Z∗ to tuples (pw, k∗), representing potential password guesses, and

corresponding keys, made by the adversary using the random oracle H.
– A flag waiting set to T if no adversarial message Z∗ has been received for this party and sid , and F

otherwise.

Let RealZ,A,TBPEKE be the event that environment Z with adversary A outputs 1 in the real world, and
IdealZ,SIM,TBPEKE be the corresponding event in the ideal world. The goal is to show that the difference in
the probability of these events is negligible.

Proof of Theorem 4.

Game 0. This is the real world, in which A interacts with real players, and may view, modify, and/or drop
network messages.

RealZ,A,TBPEKE = Pr [G0].

Game 1. (Emulate real world with trapdoors) We now emulate the behavior of the real players and
the random oracle. This game is exactly as the real game, except for the inclusion of record keeping, and
embedding of trapdoors in U and V , i.e, setting U = gu;V = gv for known u and v. The embedding of
trapdoors is not noticeable to the environment as U and V are still drawn from the same distribution as
before, thus:

Pr [G1] = Pr [G0].

Game 2. (Remove P collisions) We now abort whenever there is a collision on the output of the random
oracle P. Let qP denote the number of queries to P. Clearly, this bad event can be upper bounded by q2P/p
using the birthday bound. Thus:

|Pr [G2]− Pr [G1]| ≤ q2P/p.
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generate CRS

U ← gu;V ← gv for (u, v)←R Zp
return U, V

on (NewSession, sid ,P,P ′, role) from P
if πsid
P 6= ⊥: return ⊥

(X,Y )← (⊥,⊥)
if role = client :

(C,S)← (P,P ′)
z ←R Zp ; X ← gz; Z ← X

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= client: Y ← πsid
P′ .Y ; πsid

P′ .X ← X
else if role = server :

(C,S)← (P ′,P)
z ←R Zp ; Y ← gz; Z ← Y

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= server: X ← πsid
P′ .X; πsid

P′ .Y ← Y

πsid
P ← (role, z, C,S, X, Y,⊥,⊥,⊥,⊥, T)

send Z from P to A

on Z∗ from A as msg to (sid ,P)

if πsid
P = ⊥ or πsid

P .waiting = F: return ⊥
(role, ·, C,S, X, Y, ·, ·, ·, guesses, ·)← πsid

P
K ← 0κ

if role = client :

πsid
P .Y ∗ ← Z∗

if Z∗ = Y : jump to end

else if role = server :

πsid
P .X∗ ← Z∗

if Z∗ = X: jump to end

if πsid
P .guesses[Z∗] = (pw , k∗):
reply← (TestPwd, sid ,P, pw) to F
if reply = “correct”: K ← k∗

else: send (RegisterTest, sid ,P) to F
end: πsid

P .waiting = F

send (NewKey, sid ,P,K) to F

on H(sid , C,S, gpw , X ′, Y ′,W ) from A:

if TH[sid , C,S, gpw , X ′, Y ′,W ] = ⊥:
K ←R {0, 1}κ
find pw ∈ TP s.t. TP[pw ] = gpw ; if none found, jump to end

(x̂, ŷ) ← (⊥,⊥)

if πsid
C 6= ⊥: x̂← πsid

C .exp/(u+ v · pw)

if πsid
S 6= ⊥: ŷ ← πsid

S .exp/(u+ v · pw)

if πsid
C .X = X ′ and πsid

S .Y = Y ′ and W = gx̂ŷpw : abort

else if πsid
C .X = X ′ and W = (Y ′)x̂ :

if Y ′ = πsid
C .Y ∗: P ← C; jump to late test pw

else: πsid
C .guesses[Y ′]← (pw ,K)

else if πsid
S .Y = Y ′ and W = (X ′)ŷ:

if X ′ = πsid
S .X∗: P ← S; jump to late test pw

else: πsid
S .guesses[X ′]← (pw ,K)

jump to end

late test pw: reply← (LateTestPwd, sid ,P, pw) to F
K ← reply; if no reply, abort

end: TH[sid , C,S, gpw , X ′, Y ′,W ]← K
send TH[sid , C,S, gpw , X ′, Y ′,W ] to A

on P(pw) from A:

if TP[pw ] = ⊥:
p̂←R Zp ; if p̂ ∈ TP.values: abort
TP[pw ]← p̂

send TP[pw ] to A

Fig. 9. UC Simulator for TBPEKE.
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Game 3. (Random key if adversary is passive) If the adversary passes a simulated Z message to (sid ,P)
without modification, output a random key for P instead of the true random-oracle output. The envi-
ronment notices this change only if A makes a hash query that would result in an inconsistency, namely
H(sid , C,S, gpw , X, Y,W = gxypw ), where gpw = g(u+P(pw)·v), X = gxpw , Y = gypw are the simulated messages.
We check for such queries, and abort if any occurs.

We may reduce this event to Gap-CDH as follows. Consider an adversary B3 against Gap-CDH. On
challenge (A = ga, B = gb), it first chooses u and v at random and sets U = gu and V = gv. Then, it embeds
A in X = Aαsid (u+P(pw)·v), for a random known value αsid whenever it simulates a client message in session
sid .14Likewise, it embeds B in Y = Bβsid (u+P(pw)·v) for a random known value βsid whenever it simulates a
server message in session sid . Next, whenever a party P receives a message Z from the adversary, it checks
whether Z was received without modification.

In the case where Z was not modified, then B3 checks whether a query (sid , C,S, gpw , X, Y,W ) has been
asked to H, where gpw = g(u+P(pw)·v). If no such queries exist or if DDH(X,Y,W (u+P(pw)·v)) does not hold for
all such queries, then B3 chooses K at random in {0, 1}κ, sets TH[sid , C,S, gpw , X, Y,⊥] = K, and returns K
to the adversary. If DDH(X,Y,W (u+P(pw)·v)) holds for one such query, then B3 outputs W 1/[αsidβsid (u+P(pw)·v)]

as the solution to the Gap-CDH problem15.
In the case where Z was modified and P is a client, then B3 checks whether a query (sid , C,S, gpw , X, Z,

W ) has been asked to H, using its state information, where gpw = g(u+P(pw)·v). If any such query exists and
DDH(X,Z,W (u+P(pw)·v)) holds, then B3 returns TH[sid , C,S, gpw , X, Z,W ] to the adversary16. Otherwise,
B3 chooses K at random in {0, 1}κ, sets TH[sid , C,S, gpw , X, Z,⊥] = K, and returns K to the adversary.

Next, whenever the adversary queries H on input (sid , C,S, gpw , X, Y,W ), B3 returns K = TH[sid , C,S,
gpw , X, Y,W ] if K 6= ⊥. If TH[sid , C,S, gpw , X, Y,W ] = ⊥, B3 then checks whether there exists an entry
such TH[sid , C,S, gpw , X, Y,⊥] 6= ⊥. If no such query exists, then B3 chooses K at random in {0, 1}κ,
sets TH[sid , C,S, gpw , X, Y,W ] = K, and returns K to the adversary. If such a query exists and both X
and Y are simulated, then B3 outputs W 1/[(αsidβsid )(u+pw ·v)] as the solution to the Gap-CDH problem if
DDH(X,Y,W (u+P(pw)·v)) holds. If such a query exists but only X is simulated, then B3 outputs K =
TH[sid , C,S, gpw , X, Y,⊥] if DDH(X,Y,W (u+P(pw)·v)) is true and updates the table entry by replacing ⊥
with W . The case in which only Y is simulated is similar. Finally, if neither X or Y is simulated or if
the DDH oracle returns false, B3 chooses K at random in {0, 1}κ, sets TH[sid , C,S, gpw , X, Y,W ] = K, and
returns K to the adversary.

Since B3 solves the CDH challenge whenever the bad event occurs, we have:

|Pr [G3]− Pr [G2]| ≤ AdvGCDH
B3

.

Game 4. (Random simulated messages) On (NewSession, sid ,P,P ′, role), if this is the first NewSession for
(sid ,P), set Z ← gz for z ←R Zp , and send Z to A as a message from P to (P ′, sid). Note that we may
now compute the original exponents via ẑ = πsid

P .exp/(u + P(pw) · v). This change is not observable to the
environment, as it is merely a syntactic change in the calculation of the exponents:

Pr [G4] = Pr [G3].

Game 5. (Random keys if adversary does not correctly guess password) We now detect when an adversarial
hash query corresponds to a password guess. We can detect this event by inspecting the X∗, Y ∗, gpw and
W values provided to the hash oracle H and the pw values provided to the hash oracle P. Let us assume
the adversary is guessing the client’s password (the server case is symmetric). To make a password guess
against the client, the adversary must set X∗ = πsid

C .X, i.e., use the simulated message sent by the client.

14 For simplicity, we assume that u + P(pw) · v 6= 0, since this event happens with negligible probability due to the
use of the random oracle P.

15 For simulated values, X = Aαsid (u+P(pw)·v) = g
aαsid
pw and Y = Bβsid (u+P(pw)·v) = g

bβsid
pw . Hence, to pass the test, the

correct value for W should be g
[aαsid ]·[bβsid ]
pw = gaαsidbβsid (u+P(pw)·v) and W 1/[αsidβsid (u+P(pw)·v)] = gab.

16 When X is simulated, X = Aαsid (u+P(pw)·v) = g
aαsid
pw . Let Z = gz = g

z/(u+P(pw)·v)
pw . Hence, in order to pass the test,

W should be g
[aαsid ][z/(u+P(pw)·v)]
pw = gaαsidz, which can be verified via DDH(X,Z,W (u+P(pw)·v))
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The adversary can use any choice of Y ∗, but to correspond with a specific password guess, the following
condition must hold: W = (Y ∗)x̂ (where gpw = U · V P(pw) and x̂ is the exponent such that X = gx̂pw ). In
other words, W must be the value that would be used by a real client if Y ∗ were sent as the server’s message.
If such a password guess query is detected, we check if Y ∗ was previously sent as an adversarial message
on behalf of the server: if so, and if the password guess is correct, we program the random oracle to match
the previously sent key. If Y ∗ was not previously sent, we note the values Y ∗, gpw queried by the adversary
and the random key K output by the random oracle H. If Y ∗ is later sent as the adversarial message, and
the password is correct, we output the stored key K. If the password is incorrect, we output a random key
independent of the RO table for H. If at any point a second password guess (correct or incorrect) is detected
for the same sid and party, we abort the game.

This change is noticeable to the environment only in the abort case, i.e, the case where the adversary
makes two hash queries that represent a password guess for the same values of X∗, Y ∗. We may reduce the
latter event to the Gap Simultaneous Diffie-Hellman (Gap-SDH) problem as follows.

Consider an adversary B5 against Gap-SDH. On challenge (A,G1 = Aa1 , G2 = Aa2), it first chooses two

random values p1 and p2 at random from Zp and sets V ← (G1/G2)
1/(p1−p2) and U ← G1/V

p1 . Using this
setting, we have U · V pi = Gi for i = 1, 2. Let us assume the adversary is guessing the client’s password (the
server case is symmetric). The idea of the reduction is to program the random oracle P so that P(pw i) = pi
for i = 1, 2, where pw1 and pw2 are the two password guesses. Since we do not know in advance the values of
pw1 and pw2, we just guess the respective queries to the random oracle P and abort if our guess is incorrect.
Moreover, whenever we need to compute a client message X in session sid , we choose αsid at random from
Zp and set X ← Aαsid . Finally, if the bad event happens and our guesses for pw1 and pw2 are correct,
which happens with probability 1/q2P, then we know that (X∗, Y ∗,Wi) is valid DDH tuple with respect to
the generator Gi for i = 1, 2, which can be checked with the DDH oracle. Let αsid be the value used in the

computation of X∗. Then, it follows that (Y ∗,W 1/αsid

1 ,W
1/αsid

2 ) is a valid solution to the Gap-SDH problem.
Thus,

|Pr [G5]− Pr [G4]| ≤ q2P ·AdvGSDH
B5

.

Game 6. (Use FlePAKE interface) In the final step, we modify the game so that it uses the RegisterTest,
TestPwd and LateTestPwd interfaces to check passwords, and the NewKey interface to set keys. This is an
internal change that is not noticeable to the environment, thus

Pr [G6] = Pr [G5].

In addition, this game behaves exactly as the ideal-world simulator, so:

Pr [G6] = IdealZ,SIM,TBPEKE.

Thus the total advantage of Z is:

|IdealZ,SIM,TBPEKE −RealZ,A,TBPEKE| ≤ AdvGCDH
B3

+ q2P ·AdvGCDH
B5

+ q2P/p,

which is negligible if Gap-CDH and Gap-SDH are hard.

C Supplementary Figures for SPAKE2 Proof

This section contains figures illustrating the explicit game changes that occur in the proof of Theorem 1.
Blue text indicates modifications from the previous game.
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generate CRS

M ← gm;N ← gn for (m,n)←R Zp
return M,N

on (NewSession, sid ,P,P ′,pw , role) from P
if πsid
P 6= ⊥: return ⊥

(X,Y )← (⊥,⊥)
if role = client :

(C,S)← (P,P ′)
z ←R Zp ; X ← gzMpw ; Z ← X

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= client: Y ← πsid
P′ .Y ; πsid

P′ .X ← X
else if role = server :

(C,S)← (P ′,P)
z ←R Zp ; Y ← gzNpw ; Z ← Y

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= server: X ← πsid
P′ .X; πsid

P′ .Y ← Y

πsid
P ← (role, z, C,S, X, Y,⊥,⊥, pw ,,⊥, T)

send Z from P to A

on Z∗ from A as msg to (sid ,P)

if πsid
P = ⊥ or πsid

P .waiting = F: return ⊥
(role, z, C,S, X, Y, ·, ·, pw , guesses, ·)← πsid

P
if role = client :

Ŷ ← Z∗/Npw ; πsid
P .Y ∗ ← Z∗

K ← H(sid , C,S, Z∗, Y, pw , X̂z)
else if role = server :

X̂ ← Z∗/Mpw ; πsid
P .X∗ ← Z∗

K ← H(sid , C,S, X, Z∗, pw , Ŷ z)

πsid
P .waiting = F

output K

on H(sid , C,S, X ′, Y ′, pw ,W ) from A:

if TH[sid , C,S, X ′, Y ′, pw ,W ] = ⊥:
K ←R {0, 1}κ
TH[sid , C,S, X ′, Y ′, pw ,W ]← K

send TH[sid , C,S, X ′, Y ′, pw ,W ] to A

Fig. 10. Perfect emulation of real-world interaction, with record keeping and trapdoors (Game 1).
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Game 2
generate CRS

(omitted - identical to previous game)

on (NewSession, sid ,P,P ′,pw , role) from P
(omitted - identical to previous game)

on Z∗ from A as msg to (sid ,P)

if πsid
P = ⊥ or πsid

P .waiting = F: return ⊥
(role, z, C,S, X, Y, ·, ·, pw , guesses, ·)← πsid

P
K ← {0, 1}κ
if role = client :

Ŷ ← Z∗/Npw ; πsid
P .Y ∗ ← Z∗

if Z∗ = Y : jump to end

else: K ← H(sid , C,S, X, Z∗, pw , Ŷ z)
else if role = server :

X̂ ← Z∗/Mpw ; πsid
P .X∗ ← Z∗

if Z∗ = X: jump to end

else: K ← H(sid , C,S, Z∗, Y, pw , X̂z)

end: πsid
P .waiting = F

output K

on H(sid , C,S, X ′, Y ′, pw ,W ) from A:

if TH[sid , C,S, X ′, Y ′, pw ,W ] = ⊥:
K ←R {0, 1}κ; (x, y)← (⊥,⊥)

if πsid
C 6= ⊥: x← πsid

C .exp
if πsid
S 6= ⊥: y ← πsid

S .exp
if πsid
C .X = X ′ and πsid

S .Y = Y ′ and W = gxy: abort
TH[sid , C,S, X ′, Y ′, pw ,W ]← K

send TH[sid , C,S, X ′, Y ′, pw ,W ] to A

Fig. 11. Game 2 in SPAKE2 proof.
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Game 3
generate CRS

(omitted - identical to previous game)

on (NewSession, sid ,P,P ′,pw , role) from P
if πsid
P 6= ⊥: return ⊥

(X,Y )← (⊥,⊥)
if role = client :

(C,S)← (P,P ′)
z ←R Zp ; X ←Mz; Z ← X

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= client: Y ← πsid
P′ .Y ; πsid

P′ .X ← X
else if role = server :

(C,S)← (P ′,P)
z ←R Zp ; Y ← Nz; Z ← Y

if πsid
P′ 6= ⊥ and πsid

P′ .role 6= server: X ← πsid
P′ .X; πsid

P′ .Y ← Y

πsid
P ← (role, z, C,S, X, Y,⊥,⊥, pw ,⊥, T)

send Z from P to A

on Z∗ from A as msg to (sid ,P)

if πsid
P = ⊥ or πsid

P .waiting = F: return ⊥
(role, z, C,S, X, Y, ·, ·, pw , guesses, ·)← πsid

P
K ← {0, 1}κ
if role = client :

x̂ = mz −mpw ; πsid
P .Y ∗ ← Z∗

if Z∗ = Y : jump to end

else: K ← H(sid , C,S, X, Z∗, pw , Ŷ x̂)
else if role = server :

ŷ = nz − npw ; πsid
P .X∗ ← Z∗

if Z∗ = X: jump to end

else: K ← H(sid , C,S, Z∗, Y, pw , X̂ ŷ)

end : πsid
P .waiting = F

output K

on H(sid , C,S, X ′, Y ′, pw ,W ) from A:

if TH[sid , C,S, X ′, Y ′, pw ,W ] = ⊥:
K ←R {0, 1}κ; (x̂, ŷ) ← (⊥,⊥)

if πsid
C 6= ⊥: x̂← m · πsid

C .exp−m · pw

if πsid
S 6= ⊥: ŷ ← n · πsid

S .exp− n · pw

if πsid
C .X = X ′ and πsid

S .Y = Y ′ and W = gx̂ŷ: abort
TH[sid , C,S, X ′, Y ′, pw ,W ]← K

send TH[sid , C,S, X ′, Y ′, pw ,W ] to A

Fig. 12. Game 3 in SPAKE2 proof.
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Game 4
generate CRS

(omitted - identical to previous game)

on (NewSession, sid ,P,P ′,pw , role) from P
(parts omitted - identical to previous game)

πsid
P ← (role, z, C,S, X, Y,⊥,⊥,⊥,⊥, T)

send Z from P to A

on Z∗ from A as msg to (sid ,P)

if πsid
P = ⊥ or πsid

P .waiting = F: return ⊥
(role, z, C,S, X, Y, ·, ·,⊥, guesses, ·)← πsid

P
K ← {0, 1}κ
if role = client :

x̂ = mz −mpw ; πsid
P .Y ∗ ← Z∗

if Z∗ = Y : jump to end

else: K ← H(sid , C,S, X, Z∗, pw , Ŷ ŷ)
else if role = server :

ŷ = nz − npw ; πsid
P .X∗ ← Z∗

if Z∗ = X: jump to end

else: K ← H(sid , C,S, Z∗, Y, pw , X̂ ŷ)

if πsid
P .guesses[Z∗] = (pw , k∗): K ← k∗

end: πsid
P .waiting = F

output K

on H(sid , C,S, X ′, Y ′, pw ,W ) from A:

if TH[sid , C,S, X ′, Y ′, pw ,W ] = ⊥:
K ←R {0, 1}κ; (x̂, ŷ) ← (⊥,⊥)

if πsid
C 6= ⊥: x̂← m · πsid

C .exp−m · pw

if πsid
S 6= ⊥: ŷ ← n · πsid

S .exp− n · pw

if πsid
C .X = X ′ and πsid

S .Y = Y ′ and W = gx̂ŷ: abort

else if πsid
C .X = X ′ and W = (Y ′/Npw )x̂ :

if Y ′ = πsid
C .Y ∗: P ← C; jump to late test pw

else: πsid
C .guesses[Y ′]← (pw ,K)

else if πsid
S .Y = Y ′ and W = (X ′/Mpw )ŷ:

if X ′ = πsid
S .X∗: P ← S; jump to late test pw

else: πsid
S .guesses[X ′]← (pw ,K)

jump to end

late test pw: if late test pw has already been called, abort;

else if πsid
P .guesses[Z∗] = (pw , k∗): K ← k∗

end: TH[sid , C,S, X ′, Y ′, pw ,W ]← K
send TH[sid , C,S, X ′, Y ′, pw ,W ] to A

Fig. 13. Game 4 in SPAKE2 proof.
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1 Overview

In this supplementary material, we provide further security analyses for SPAKE2 [AP05,LK19]. More
precisely, we demonstrate that SPAKE2 achieves perfect forward security even without key confirma-
tion. Our proof of security is based on the Gap Diffie-Hellman assumption [OP01] in the random-oracle
model [BR93]. Note that this does not contradict the impossibility result about the perfect forward
security of 2-message key-exchange protocols in in the HMQV [Kra05] paper since the SPAKE2 pro-
tocol assumes the pre-existence of secure shared state between parties which is the password itself. We
also include an analysis of the protocol when key confirmation is added, which yields a better bound.

Finally, our proofs also demonstrate that SPAKE2 is flexible with respect to the generation of its
global parameters M and N . This includes the cases where M is a uniform group element and M = N
or the case where M and N are chosen as the output of a random oracle.

2 Preliminaries

Notation. We write x ← y for the action of assigning the value y to the variable x. We write
x1, . . . , xn ←$X for sampling x1, . . . , xn from a finite set X uniformly at random. If A is a probabilistic
algorithm we write y1, . . . , yn ← $A(x1, . . . , xn) for the action of running A on inputs x1, . . . , xn
with independently chosen coins, and assigning the result to y1, . . . , yn. ppt as usual abbreviates
probabilistic polynomial-time. We use notation T [x] to denote access to a dictionary/table T at index
x, and { } to denote the empty table. We abuse notation and use T to also represent the set of assigned
indices in table T .

Games. We use the code-based game-playing language [BR04]. Each game has an Initialize and
a Finalize procedure. It also has specifications of procedures to respond to an adversary’s various
queries. A game is run with an adversary A as follows. First Initialize runs and its outputs are
passed to A. Then A runs and its oracle queries are answered by the procedures of the game. When
A terminates, its output is passed to Finalize which returns the outcome of the game.

3 SPAKE2

Fig. 1 shows a SPAKE2 protocol execution between a user U and a server S.
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Client Server

accept← F accept← F

x←$Zq y ←$Zq

X ← gx Y ← gy

X? ← X ·Mpw X ← X? /Mpw

Y ← Y ? /Npw Y ? ← Y ·Npw

K ← H(U, S,X?, Y ?, pw, Y x) K ← H(U, S,X?, Y ?, pw, Xy)

accept← T accept← T

pw ∈ P,M,N ∈ G

U,X?

S, Y ?

Fig. 1. The SPAKE2 protocol [AP05].

4 Security Model

Our proof of security uses the indistinguishability-based model by Bellare, Pointcheval, and Rog-
away [BPR00] and its extension to multiple Test queries proposed by Abdalla, Fouque, and Pointcheval
(AFP) [AFP05,AFP06]. In the latter, all Test queries are answered with the same challenge bit b.

The security game already instantiated with SPAKE2 can be seen as G1 in Fig. 3. The name spaces
for servers S and users U are assumed to be disjoint; oracles reject queries inconsistent with these
name spaces.

In the following, we describe more precisely the state of a party instance, the notion of partnering,
and the freshness condition used in the proof.

Definition 4.1 (Instance state). The state of an instance i at party P , denoted πiP is a tuple of
the form (e, tr,K, ac) where

– e is the secret exponent (x or y) chosen by the party in that instance
– tr is a session trace of the form (U, S,X?, Y ?)
– K is the accepted session key
– ac is a boolean flag that indicates whether the instance accepted (ac = T) or is expecting a response

(ac = F)

We will use πiP .e, π
i
P .tr, π

i
P .K, πiP .ac to denote the individual components of the state.

Definition 4.2 (Partnering). A server instance πiS and a user instance πjU are partnered iff

πiS .ac = T ∧ πjU .ac = T ∧ πiS .tr = πjU .tr

Two user instances are never partnered. Two server instances are never partnered.

This is a definition in the style of matching-conversations. Note that partnering together with cor-
rectness implies that the the associated keys are the same.

Definition 4.3 (Freshness). Instance i at party P is fresh, written Fresh(P, i) if and only if all the
following conditions hold:

1. the instance accepted;
2. the instance was not queried to Test or Reveal before;
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3. At least one of the following conditions holds:

(a) The instance accepted during a query to Execute;
(b) There exists more than one partner instance;
(c) No partner instance exists and Corrupt(U, S) was not called prior to acceptance;
(d) A unique fresh partner instance exists.

5 Assumptions

The perfect forward security of SPAKE2 is based on the difficulty of solving the Computational Diffie-
Hellman (CDH) problem by attackers that have access to a Decisional Diffie-Hellman (DDH) oracle.
This is usually known as the Gap Diffie-Hellman problem (GCDH) [OP01].

The proof is carried out in the Random-Oracle (RO) model and, to prove perfect forward secret,
we need to restrict our attention to algebraic adversaries [FKL18]. Note that the GCDH problem has
been shown to be equivalent to the standard discrete logarithm problem (DL) in the Algebraic and
Generic Group models [FKL18, Los19] so, our proof implies reductions to the DL problem in these
idealized models of computation.1

Our proof is structured to highlight which problem an attacker would need to solve to break the
protocol. On the one hand, we give tight reductions to well-known computational assumptions. On
the other hand, it follows sequence of hops that clarifies how the assumptions map to the generation
of SPAKE2 global parameters and runtime operation. We show that, as expected, passive behavior by
the attacker implies that it needs to solve the standard Gap CDH problem to break the established
session. Intuitively attackers have access to a DDH oracle by comparing random oracle outputs to
the keys revealed by the game. Active attackers that may try to take advantage of leaked passwords
must compute the CDH of the global parameters M and N or at least compute the squared version
of this problem CDH(M,M), with the help of a DDH oracle. We show that the protocol is flexible
with respect to the generation procedure, provided that the previous problem is hard to solve. This
includes, in particular, the case where M is a uniform group element and M = N .

To this end, we formalize a family of assumptions parametrized by a distribution D that outputs
a pair of elements in Zq, where q is a large prime. The assumptions are stated with respect to a group
G of order q and generator g.

Definition 5.1 (Gap Computational Diffie-Hellman (D-GCDH)). The D-GCDH assumption
states that, for any ppt adversary A, the following probability is small.

AdvGCDH
A := Pr

[
Z = gxy : Z ←$ADDH(·,·,·)(gx, gy); x←$Zq; y ←$D(x)

]

The standard GCDH assumption is a particular case when D is the uniform distribution over
Zq. We denote this by U-GCDH. The Gap Squared Diffie-Hellman (GSqDH) assumption is another
particular case, when we restrict the previous case to D outputting x = y. For simplicity, in our
analysis, we will restrict our attention to global parameter sampling operations where we exclude the
possibility that x = 0 or y = 0. This means that the bound for our proof includes an extra statistical
when we remove this restriction (this will be of the form (qs + qe)/q for standard GCDH). We will
also rely on the weaker Gap Discrete Logarithm assumption.

1 There is a subtlety here which further justifies our presentation with gap assumptions. Our proof in the
algebraic model uses the gap oracles on values queried by attackers to a random oracle. As random oracles are
an abstraction of local computation, it is perhaps unreasonable to ask that the algebraic adversary provides
us with representations of those values. If this is not required from the adversary, then our proof does not
necessarily imply a reduction to DL for algebraic attackers, and we must rely on the gap assumptions. For
this reason, in our proof we only make explicit use of the algebraic nature of the adversary on messages
that it explicitly delivers.
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Definition 5.2 (Gap Discrete Logarithm (GDL)). The GDL assumption states that, for any ppt
adversary A, the following probability is small.

AdvGDL
A := Pr

[
x′ = x : x′ ←$ADDH(·,·,·)(gx); x←$Zq

]

Finally, for the version of our result where we do not rely on the assumption that the adversary
is algebraic, we require the following assumption introduced in [AP05], which we extend to the gap
version.

Definition 5.3 (Gap Discrete Logarithm Password-based Chosen-basis Computational
Diffie-Hellman assumption (GPCCDH)). The D-GPCCDH assumption states that, for any ppt
adversary A, the following probability is small.

AdvD-GPCCDH
A := Pr



C = CDH(A1/B

pw
1 , A2/B

pw
2 )

∣∣∣∣∣∣∣∣∣∣

b1 ←$Zq; b2 ←$D(b1)
A1 ←$G;B1 ← gb1 ;B2 ← gb2

(A2, st)← AGPCCDH(·,·,·)
2 (B1, B2, A1)

pw←$P
C ← AGPCCDH(·,·,·)

2 (pw, st)




It was shown in [AP05] that the assumption above without the DDH oracle is implied by the
standard CDH problem. The proof extends naturally to gap versions of the problems, so we have the
following.

Lemma 5.4 ([AP05], Lemma 3.4). For all GPCCDH adversaries A there exists an adversary B
such that:

2

|P| ≥ AdvD-GPCCDH
A ≥ 1

|P| + ε =⇒ AdvD-GCDH
B ≥ |P|

128
· ε3 .

Here we present the lemma for the version where 1/|P| is large when compared to ε, i.e., we are dealing
with passwords with significantly lower entropy than the security parameter.

In the proof of SPAKE2 with key confirmation, we will assume that the Key Derivation Function
(KDF) is a Pseudorandom-Function (PRF). This assumption is implied by the standard notions of
security for KDFs [Kra10].

Definition 5.5 (Pseudorandom Function). A Key Derivation Function KDF with key space K,
domain D and range R is PRF-secure if, for any ppt adversary A, the following advantage term is
small.

AdvPRFA :=
∣∣∣Pr
[
b = 1 : b←$AKDF(K,·)( );K ←$K

]
− Pr

[
b = 1 : b←$AF (·)( ); F ←$F

]∣∣∣

Here F is the set of all functions with domain D and range R.

In our proof, we actually only require a PRF that is pseudorandom for one input per key, and we will
denote this weaker requirement by 1PRF.

Finally, in the proof of SPAKE2 with key confirmation, we require the standard unforgeability
property for a one-time MAC.

Definition 5.6 (One-time MAC security). A MAC scheme with key space K and domain D is
one-time unforgeable if, for any ppt adversary A, the following advantage term is small.

Adv1UFA := Pr [ t = MAC(K,m) : (m, t)←$A( );K ←$K ]
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6 Perfect Forward Security Proof

Theorem 6.1. SPAKE2 is tightly PFS-secure in the random-oracle model under the Gap Squared
Diffie-Hellman assumption. More precisely, for every algebraic attacker A against SPAKE2, there exist
attackers B1 and B3 against the Gap Diffie-Hellman problem, attacker B2 against the Gap Discrete
Logarithm problem, and attacker B4 against the Gap Squared Diffie-Hellman problem such that

Advspake2A ( ) ≤ 2qs
|P| + AdvU-GCDH

B1
( ) + AdvGDL

B2
( ) + AdvD

?-GCDH
B3

( ) + AdvGSqDH
B4

( ) +
(qs + qe)

2

2q

Here there is an extra qs/|P| term that is a consequence of our game hopping strategy, which has
been chosen for clarity by separating the weak forward secrecy property from the strong one that
relies on algebraic adversaries. Using a different sequence of hops, one can remove the extra term by
aggregating the two bad events that give rise to these terms into a single one.

Theorem 6.2. SPAKE2 is PFS-secure in the random-oracle model under the Gap Computational
Diffie-Hellman assumption. More precisely, for every attacker A against SPAKE2, there exist attackers
B1 and B3 against the Gap Diffie-Hellman problem, attacker B2 against the Gap Discrete Logarithm
problem, and attacker B4 against the Gap GPCCDH Diffie-Hellman problem such that

Advspake2A ( ) ≤ qs
|P| + AdvU-GCDH

B1
( ) + AdvGDL

B2
( ) + AdvD

?-GCDH
B3

( ) + 2qs · AdvGPCCDH
B5

( ) +
(qs + qe)

2

2q

Note that in the above bound there exists an extra 2qs/|P| within the GPCCDH advantage, since
we only have guarantees based on GCDH once that advantage term grows above this limit, so this
bound is worse than the one in Theorem 6.1.

We give a joint proof for both theorems, since they only differ in the proof of the last game hop.
The code of all games and adversaries is given in Appendix A.

Proof. We prove the security of SPAKE2 using a sequence of games shown in Figs. 3 to 5. In Table 1
we give a summary of the meaning of bad events in each game.

Game G1. This is the initial security game, so we have:

Advspake2A ( ) = |Pr[G1 ⇒ T ]− 1/2 |

Game G2. From game G1 to game G2 we introduce a bad flag bad2. The bad2 flag is set whenever

– a session is about to be accepted on the server side that collides on (U, S,X?, Y ?) with any
previously accepted session;

– a session is about to be accepted on the user side that collides on (U, S,X?, Y ?) with any previously
accepted user session.

If bad2 is set, then the oracle call is ignored and the session is not accepted.
Note that this implies that all accepted sessions on the server (resp. client) side are unique and

that no session can have more than one partner. The two games are identical until bad occurs, and
this event can be bound by a statistical term. More precisely, for an attacker placing at most qe queries
to Execute and qs queries to the Send oracles, we have for large q denoting the order of the group:

|Pr[G1 ⇒ T ]− Pr[G2 ⇒ T ] | ≤ (qe + qs)
2

2q

Here, qe+qs denotes the maximum number of accepted sessions (we count passively partnered sessions
as one here) and this is a birthday bound computed pessimistically for an attacker that makes accepted
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sessions collide by fixing the user, server and one of the transmitted group elements in all accepted
sessions.

Game G3. In this game we take advantage of the fact that accepted sessions have unique traces
(modulo partnering) to make the freshness condition explicit in the game (we extend the state of
sessions to keep track of freshness with a new field fr). We also remove the code that refers to bad2.
Since nothing changes, we have

Pr[G3 ⇒ T ] = Pr[G2 ⇒ T ]

Game G4. In this game we make the keys of sessions accepted as a result of calls to Execute
independent from the random oracle accessible to the attacker. These sessions obtain keys from a new
random oracle Te that is indexed by the session trace (U, S,X?, Y ?). Note that, due to the guarantee
of session uniqueness on the server and client sides, there is no room for ambiguity. We set a bad flag
bad4 if ever the answers given to the attacker could be inconsistent with the previous game: either
because a new accepted session in Execute collides with a previous call to H, or because a new call to
H collides with a previously accepted session in Execute. The games are identical until bad occurs,
so we have:

|Pr[G3 ⇒ T ]− Pr[G4 ⇒ T ] | ≤ Pr[G4 ⇒ bad4 ]

The probability of bad4 occurring in G4 can be tightly reduced to the standard Gap CDH prob-
lem,which means that:

Pr[G4 ⇒ bad4 ] ≤ AdvU-GCDH
B1

( )

The reduction to Gap CDH is given in Lemma 6.4.

Game G5. In game G5 we again rearrange code in preparation for the next hop. We remove the code
that deals with bad events, and we change Execute so that nothing depends on passwords. We can
do this because the random oracle that generates these keys only depend on the trace, which can be
sampled independently of passwords. We have

Pr[G5 ⇒ T ] = Pr[G4 ⇒ T ]

Game G6. In this game we change the way in which we generate keys for Send queries. We treat
corrupt sessions, for which the attacker may trivially compute the key, as before. The remaining keys
are derived using an independent random oracle Ts. We set a bad flag bad6 if ever there could be an
inconsistency with the main random oracle. As before, this means that:

|Pr[G5 ⇒ T ]− Pr[G6 ⇒ T ] | ≤ Pr[G6 ⇒ bad6 ]

We also observe that, since all fresh sessions that can be tested now have keys derived using random
oracles independent from H, accepted keys of fresh sessions are independently distributed from any-
thing else in the game. This means that the attacker has no information on bit b and has therefore 0
advantage in this game. From the previous equations we can derive that:

Advspake2A ( ) ≤ (qs + qe)
2

2q
+ AdvU-GCDH

B1
( ) + Pr[G6 ⇒ bad6 ]

To bound the probability of bad6 we need to continue our sequence of hops.

Game G7. We modify the way in which X? and Y ? are generated, removing the component that
depends on the password. The distribution of the X? and Y ? values does not change with respect to
the previous game, but we need to adapt the way in which the Diffie-Hellman tuples are computed, to
make sure we obtain the same values as in the previous game. After we make this change, passwords
associated with fresh sessions are still (and only) used to check for the bad event bad6. We add a
flag bad7 to account for the unlikely case that a password occurring in the game (either queried by
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the adversary or sampled by the challenger) collides with the secret exponents used in X? and Y ?

sampled by the challenger. If this happens, we reset bad6 at the end of the game. The probability of
this event occurring can be easily reduced to the GDL problem, as shown in Lemma 6.5. We therefore
have:

Pr[G6 ⇒ bad6 ] ≤ Pr[G7 ⇒ bad6 ] + AdvGDL
B2

( )

Game G8. We now change the checking of bad6 to allow delaying all password samplings as late
as possible in the game: upon corruption or at the end of the game. This means we stop verifying
password equality when checking for bad6 in the Send oracles (there is no impact in the random oracle
simulation because the attacker provides the password explicitly there). Without additional changes,
we might not be able to tightly relate the probability of bad6 in this new game to its probability in the
previous game, since we have relaxed the check that detects it. We therefore need to add additional
checks that allow us to continue the proof. There are two important cases to distinguish:

– the attacker causes bad6 for a password that has not been generated yet (this includes all occur-
rences in the Send oracles and some in the random oracle simulation).

– the attacker causes bad6 by querying the random oracle on the correct password after the password
has been corrupted (intuitively it does not need to guess the password in this case);

For the second case we set a bad flag bad28 and no longer set bad6.
For the other cases we add the potentially problematic random oracle entries to a list Tbad, so that

we can delay the analysis of potential inconsistencies until the end of the game. At the end of the game
we split the checking of bad6 into two cases. We set a bad flag bad18 if in the Tbad log of problematic
H calls there are two entries consistent with a single entry in Ts, i.e., with different passwords; in this
case we no longer set bad6. Finally, we check for bad6 simply by going through the list of problematic
entries and checking whether there is a password match.

The combined actions of the three bad flags in this game account for all possible cases in which
bad6 can occur in game G7, so we can write:

Pr[G6 ⇒ bad7 ] ≤ Pr[G8 ⇒ bad6 ] + Pr[G8 ⇒ bad18 ] + Pr[G8 ⇒ bad28 ]

The probability of bad18 occurring in G8 can be tightly reduced to Gap CDH, where we use here the
generalized version for any parameter distribution D where the CDH problem is hard to compute with
the help of a DDH oracle;2 the reduction is given in Lemma 6.6.

We complete the analysis of this game by further observing that the probability of bad6 happening
is easy to bound. Indeed, the size of the log in which bad6 is checked has size at most qs (since there
can be no duplicates for the same trace) and all entries are added to this set before the corresponding
password is sampled. We therefore have

Pr[G8 ⇒ bad6 ] ≤ qs
|P|

Putting these results together, we obtain:

Pr[G7 ⇒ bad6 ] ≤ Pr[G8 ⇒ bad6 ] + Pr[G8 ⇒ bad18 ] + Pr[G8 ⇒ bad28 ]

≤ qs
|P| + AdvD

?-GCDH
B3

( ) + Pr[G8 ⇒ bad28 ]

To complete the proof we need to bound the probability of bad28 occurring in G8, and so we continue
our sequence of hops.

Game G9. For clarity of presentation, in game G9 we perform a cleanup, removing all code unrelated
to bad28. We also add the possibility that the attacker passes an additional parameter alg when it
delivers a message. This additional parameter is ignored for now, so clearly

2 Note that this does not weaken our result, as one can take D to be the uniform distribution. On the other
hand, it makes it clear that different parameter generation procures can be used and our proof stil applies.
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Pr[G8 ⇒ bad28 ] = Pr[G9 ⇒ bad28 ]

To complete the proof for Theorem 6.2 we give in Lemma 6.8 a reduction of the above probability
to GPCCDH, which yields the desired bound:

Advspake2A ( ) ≤ qs
|P| + AdvU-GCDH

B1
( ) + AdvGDL

B2
( ) + AdvD

?-GCDH
B3

( ) + 2qs · AdvGPCCDH
B5

( ) +
(qs + qe)

2

2q

We proceed with a final game hop to complete the proof for Theorem 6.1.

Game G10. This is our final game. Here we restrict our attention to algebraic adversaries. This means
that, when performing an active attack, the adversary provides an additional input alg to the Send
oracles that gives a representation of the group element it is producing in terms of the other group
elements it observed in the game. These elements include g, M , N and all the honestly generated
X? = Mx and Y ? = Ny. We note that this means that any group element produced by A can be
rewritten as a representation of the form alg = [(ga), (M b), (N c)].

We now add a bad flag bad10 that excludes some password guessing events related to bad28. When
these happen, we no longer set bad28, whereas this would have been set in the previous game. This
means that:

Pr[G9 ⇒ bad28 ] ≤ Pr[G10 ⇒ bad28 ] + Pr[G10 ⇒ bad10 ]

Event bad10 is detected whenever a password is sampled at the moment of corruption, and it hits an
already fixed representation of a group element produced by the attacker. The offending values are
b+λ(c−pw) for group elements delivered at SendTerm and b−pw+λc for group elements delivered
at SendResp. If this event is detected, then we never set bad28, so in this game the analysis of bad28
can proceed under the assumption that bad10 did not occur. The probability of this event is easy to
bound as

Pr[G10 ⇒ bad10] ≤ qs
|P|

The remaining cases where we set bad28 can be reduced to the Gap Squared Diffie-Hellman problem
(GSqDH), as shown in Lemma 6.7. This completes the proof and yields the bound.

Advspake2A ( ) ≤ 2qs
|P| + AdvU-GCDH

B1
( ) + AdvGDL

B2
( ) + AdvD

?-GCDH
B3

( ) + AdvGSqDH
B4

( ) +
(qs + qe)

2

2q

A different sequence of games permits removing a qs/|P| term, yielding the expected bound for PAKE.
ut

Corollary 6.3. SPAKE2 is weak PFS-secure in the random-oracle model under the Gap Computa-
tional Diffie-Hellman assumption. More precisely, for every attacker A against SPAKE2, there exist
attackers B1 and B3 against the Gap Diffie-Hellman problem and attacker B2 against the Gap Discrete
Logarithm problem such that

Advspake2A ( ) ≤ qs
|P| + AdvU-GCDH

B1
( ) + AdvGDL

B2
( ) + AdvD

?-GCDH
B3

( ) +
(qs + qe)

2

2q

Proof. In the weak forward secrecy model, corruption of password pwus makes all fresh session where
the adversary was active immediately unfresh and, furthermore, corruption is not allowed if such a
session was already tested. It is easy to see that a simple adaptation of the previous proof can be done
for this setting, where the probability of event bad28 occurring is 0 and the advantage of the adversary
is still 0: for such cases where the event would occur we simply return Ts[tr] as the answer to the
problematic H query. ut

We now prove the auxiliary lemmas supporting the proofs of Theorems 6.1 and 6.2.
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Lemma 6.4. For every attacker A, there exists an attacker B1, such that

Pr[G4 ⇒ bad4 ] ≤ AdvU-GCDH
B1

( )

Proof. Let us consider the GCDH attacker B1 in Fig. 6. It gets a generalized challenge of the form
(X1, . . . , Xqe , Y1, . . . , Yqe) and finds CDH(Xi, Yj), for some 1 ≤ i, j ≤ qe. This problem is tightly
equivalent to U-GCDH by random self-reducibility. The attacker embeds Xi and Yj in traces for
protocol executions that result from calls to Execute. For all calls to Send oracles, the attacker runs
everything as in G4. The DDH oracle is used to check for the bad event, in which case a solution to
the GCDH problem was found. It uses the DDH oracle whenever the rules of the game require it, and
it can also use it to check if bad4 occurred, in which case it can solve the Gap CDH challenge.3 ut

Lemma 6.5. For every attacker A, there exists an attacker B2, such that

Pr[G7 ⇒ bad7 ] ≤ AdvGDL
B2

( )

Proof. Let us consider a GDL attacker B2 in Fig. 6. It gets a challenge of the form A and finds
DL(A). The attacker uses A in Send queries to compute X? = A · g∆ and Y ? = A · g∆. Note that
the distribution of these values is correct. The checking of CDH tuples, which is needed for correctly
maintaining random-oracle consistency, is carried out using the DDH oracle.

If bad7 occurs, our reduction recovers the discrete logarithm of A offset by a known quantity.
Indeed, suppose the attacker guessed pw = x or pw = y in game G7, which means we have X? = gmpw

or Y ? = gnpw. In our reduction we program both X? and Y ? as ga+∆, where a is the unknown discrete
logarithm, and we know all of m, pw and ∆. This means that, if the guess was successful, we can
compute the discrete logarithm as a = mpw −∆ or a = npw −∆. ut

Lemma 6.6. For every attacker A, there exists an attacker B3, such that

Pr[G7 ⇒ bad18 ] ≤ AdvD
?-GCDH
B3

( )

Proof. Let us consider a D?-GCDH attacker B3 in Fig. 6. It gets a challenge of the form (M,N)
and finds CDH(M,N). The attacker uses (M,N) as the variables of the same name in game G8. The
checking of CDH tuples, which is needed for correctly maintaining random-oracle consistency and
detecting bad events, is carried out using the DDH oracle.

Once the game terminates, the attacker checks for the occurrence of bad18 and if offending entries
exist, it recovers (X?, Y ?, pw, Z) and (X?, Y ?, pw′, Z ′) such that pw 6= pw′ and the following holds for
known x or known y, and known pw and pw′:

CDH(gmx/Mpw, gny/Npw) = Z ∧ CDH(gmx/Mpw′ , gny/Npw′) = Z ′

Letting Z = gz, Z ′ = gz
′
, we can rewrite these equations as

{
m(x− pw) · n(y − pw) = z
m(x− pw′) · n(y − pw′) = z′

Let us assume that the attacker knows x (the other case is symmetric). We scale the equations and
rearrange the formula as follows:

{
m(x− pw)(x− pw′) · n(y − pw) = z · (x− pw′)
m(x− pw′)(x− pw) · n(y − pw′) = z′ · (x− pw)

3 Note that it actually suffices to have a restricted DDH oracle in which one of the inputs is fixed as in the
Strong Diffie-Hellman (SDH) problem [ABR01], so a tight reduction to SDH is also possible. Furthermore,
storing all possible values that cause the bad event and returning one at random gives a reduction to CDH
that loses a linear factor in the maximum size of the random-oracle table.
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Subtracting the two equations, we get

z(x− pw′)− z′(x− pw) = mn(x− pw)(x− pw′)(pw′ − pw)

And we can derive a formula for the desired CDH:

gmn =
(
Zx−pw

′ · Z ′pw−x
) 1

(x−pw)(x−pw′)(pw′−pw)

This formula can be computed by the attacker, provided that x 6= pw and x 6= pw′, which we know to
be the case as otherwise the bad event would not have occurred due to the action of bad7. ut
Lemma 6.7. For every algebraic attacker A, there exists an attacker B4, such that

Pr[G10 ⇒ bad28 ] ≤ AdvGSqDH
B4

( )

Proof. The reduction is given in Fig. 7. In the unlikely event that M = 1 there is nothing to do, as
the problem is trivial to solve. We can also assume that the conditions checked to activate bad7 all
failed, as otherwise bad28 would have been reset. This implies, in particular, that there are no entries
in Ts such that the secret exponent x or y collides with the password pwus.

Given M , the reduction sets N = Mλ, for random non-zero λ, which yields correctly distributed
global parameters. Similarly to what happened in the proof of Lemma 6.6, we use the DDH oracle to
ensure the simulation is perfect, so it remains to show that our reduction can compute CDH(M,M)
whenever bad28 occurs. There are two cases to consider, depending on whether we are dealing with a
session accepted by a user or by a server.

Sessions accepted in SendTerm. We know that the following equation holds.

Z = CDH

(
Mx

Mpw
,
gaM bN c

Npw

)

This can be rewritten as:

Z = CDH(Mx−pw, gaM bN c−pw)⇔ Z

Ma(x−pw) = CDH(Mx−pw,M bN c−pw)

Replacing N = Mλ and rearranging the exponents we get

Z

Ma(x−pw) = CDH(M,M)(x−pw)(b+λ(c−pw))

We can therefore recover the desired SqDH provided that (x−pw)(b+λ(c−pw)) 6= 0. So see that this
can never happen, note b + λ(c − pw) 6= 0, as otherwise bad10 would have happened and this entry
would not be in the list, and we also excluded x = pw above. This means that we can compute the
SqDH.

Sessions accepted in SendResp. In this case we know that the following equation holds.

Z = CDH

(
gaM bN c

Mpw
,
Ny

Npw

)

This can be rewritten as:
Z = CDH(gaM b−pwN c, Ny−pw)

Replacing N = Mλ and rearranging the exponents we get

Z = CDH(gaM b−pw+λc,Mλ(y−pw))⇔ Z

Maλ(y−pw) = CDH(M,M)(b−pw+λc)(y−pw)

We can therefore recover the desired SqDH provided that (b− pw + λc)(y − pw) 6= 0. So see that this
can never happen, note that we know that y − pw 6= 0 and it must be the case that b− pw + λc 6= 0,
as otherwise bad210 would have happened and this entry would not be in the list. This means that the
SqDH can be computed. ut
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Lemma 6.8. For every attacker A, there exists an attacker B5, such that

Pr[G9 ⇒ bad28 ] ≤ 2qs · AdvGPCCDH
B5

( )

Proof. The reduction is given in Fig. 7. Our adversary B5 guesses a query in the range [0..qs-1]
and chooses a role uniformly at random to guess whether the challenge should be injected on the
responder side or on the initiator side. The behavior conditioned on these guesses is shown in the
figure as two different versions of B5, one for initiator side and another for responder side. Similarly
to what happened in the proof of Lemma 6.6, we use the DDH oracle to ensure the simulation is
perfect, and the correct result is produced as long as the guesses are correct. On the initiator side,
the reduction is slightly more intricate as one needs to embed A1 in all possible initiator sessions that
might lead to the bad event. The bound on the theorem follows from the fact that the reduction only
works if our attackers guesses are correct. ut

7 Security with Key Confirmation

The result we obtained in the previous section provides guarantees even if the derived secret keys are
used before a key confirmation step. However, in most practical settings a key confirmation step exists
and, in this case, a much better security bound can be proved. This is what we do in this section. We
show the modified protocol in Fig. 2. Note that a one-time secure MAC suffices.

Client Server

accept← F accept← F

x←$Zq y ←$Zq

X ← gx Y ← gy

X? ← X ·Mpw X ← X? /Mpw

Y ? ← Y ·Npw

(Ka,Ke)← H(U, S,X?, Y ?, pw, Xy)

(KU,S ,KS,U )← KDF(Ka, const)

Y ← Y ? /Npw tagS,U ← MAC(KS,U , sid)

(Ka,Ke)← H(U, S,X?, Y ?, pw, Y x)

(KU,S ,KS,U )← KDF(Ka, const)

Abort if tagS,U 6= MAC(KS,U , sid)

tagU,S ← MAC(KU,S , sid) Abort if tagU,S 6= MAC(KU,S , sid)

accept← T accept← T

pw ∈ P,M,N ∈ G

U,X?

S, Y ?, tagS,U

tagU,S

Fig. 2. The SPAKE2 protocol [AP05] with key confirmation. Here, const is a fixed point in the domain of the
KDF, sid = (U, S,X?, Y ?) and Ke is the accepted session key.
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G2 bad2
Accepted trace on responder side collides with any previously accepted trace or accepted trace on ini-
tiator side collides with trace of any previously accepted initiator session. Bounded by a statistical term.

G4 bad4

Random oracle query consistent with the trace accepted as a result of a query to Execute. Such an
event would allow attacker to detect an inconsistency between the outputs of Test or Reveal and the
random oracle. Bounded by a tight reduction to GCDH.

G6 bad6

Random oracle query consistent with the trace accepted as a result of a query to one of the Send
oracles and declared fresh. Such an event would allow attacker to detect an inconsistency between the
outputs of Test or Reveal and the random oracle. Adversary’s view is independent of b in this game,
but bad6 is hard to bound.

G7 bad6
The meaning is the same as in the previous game, but it now is only triggered in cases where the other
bad event in this game does not occur.

bad7

Either there is a call to the random oracle with pw = x or pw = y, where x or y is one of the random
values sampled in the game. Or a password was sampled by the game that also collides with one of
these values. Bounded by a tight reduction to GDL.

G8 bad6

The meaning is the same as in the previous games, but it now is only triggered in cases where the
other bad event in this game does not occur. At this point this event can only happen for random
oracle queries placed before the associated password was sampled in the game. Furthermore, we know
there can be at most qs entries, which results in a q/|P| term.

bad18

The attacker made two different random oracle queries consistent with the trace of the same fresh
session, i.e. with different passwords, before the corresponding password was sampled. Bounded by a
tight reduction to GCDH.

bad28

The attacker made a random oracle query consistent with the trace of a fresh session, after the
corresponding password was corrupted and hence sampled by the game. We delay bounding the
probability of this event until game G9 for clarity.

G9 bad28

Same meaning as in the previous game and same probability of occurrence. We fork here the proofs
of Theorems 6.1 and 6.2. For the latter we immediately bound the event with a tight reduction to
GPCCDH, which yields a loose reduction to GCDH via the splitting lemma of [PS00, AP05]. For
Theorem 6.2 we delay bounding this event until G10.

G10 bad28
Same meaning as in the previous game, but now only set when the other bad flag in this game is not
set. Bound using a reduction to GSqDH assuming an algebraic adversary.

bad10

The adversary commited to a representation of a group element in a Send query that predicts a password
sampled later in the game. The probability of this event occurring can be easily bound as qs/|P|.
We also note here that the set of traces for which this event needs to be checked is disjoint from
the set of traces for which bad6 needs to be checked in game G8. This is why the bound we give for
Theorem 6.1 can be improved by removing a qe/|P| term using a different sequence of games.

Table 1. Meaning of the bad events in the different games.
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Theorem 7.1. SPAKE2 with key confirmation is tightly PFS-secure in the random-oracle model un-
der the GCDH assumption. More precisely, for every attacker A against SPAKE2, there exist attackers
B6 and B3 against the Gap Diffie-Hellman problem, attacker B2 against the Gap Discrete Logarithm
problem, attacker B7 against the pseudorandomness of KDF and attacker B8 against the unforgeability
of the MAC scheme such that

Advspake2A ( ) ≤ qs
|P|+AdvU-GCDH

B6
( )+AdvGDL

B2
( )+AdvD

?-GCDH
B3

( )+qs·
(
Adv1PRFB7

( ) + Adv1UFB8
( )
)

+
(qs + qe)

2

2q

Proof. Again we use a sequence of hops, but we explain here only the differences to the proofs in the
previous section. We give the games in Figs. 8 to 10 in Appendix B.

The hops up to game G4 are identical to those for the proofs in the previous section. In game G4, as
before, we exclude the possibility of the adversary breaking a session where it behaved passively but,
in addition to Execute queries, we handle also the sequences of Send queries where the adversary
establishes sessions with traces (U, S,X?, Y ?) where the messages were generated by the game. We
give a modified reduction to deal with this case in Lemma 7.3 and note that here the gap oracle is not
only used to detect the correct CDH answer, but to maintain consistency of all other sessions where
the attacker is active.

We now carry on the the discussion of the following hops in detail from game G6.

Game G6. This game introduces an independent random oracle for keys derived for (possibly aborted)
fresh sessions. Flag bad6 corresponds to the attacker observing an inconsistency in the hash queries
for H. As in the previous proof, we have

Advspake2A ( ) ≤ (qs + qe)
2

2q
+ AdvU-GCDH

B6
( ) + AdvGDL

B2
( ) + Pr[G7 ⇒ bad6 ],

where the term corresponding to B6 highlights the fact that the reduction that deals with passive
sessions is the one given in Lemma 7.3. Furthermore, as before, the adversary’s view in this game is
independent of the secret bit b and it only remains to bound the probability of bad6 occurring. Let us
take a closer look at game G6 to confirm that this is the case.

First of all, let us confirm that all the session keys corresponding to fresh accepted sessions have
been moved to an independent random oracle, whereas all revealable (accepted) non-fresh keys have
not. Notice that random oracle queries are added to Ts rather than T in two occasions:

– When a Send query starts a responder session for an uncorrupted password; this session may or
may not turn out to be accepted and, if it is, it may or may not be fresh.

– When a Send query is about to conclude a fresh initiator session (such an entry has not yet been
previously added to Ts since we never do this for sessions where the attacker is passive); this
session may or may not be accepted due to MAC verification.

For the latter type of entries, if the MAC verification passes, then the session will be accepted as fresh,
so we must ensure that such an entry is never removed from Ts in this case. Removal could only occur
in the Corrupt oracle, but here the check performed guarantees that entries are only removed from
Ts when no accepted fresh session with that trace exists.

For the first type of entry, we must ensure that the entry is removed from Ts whenever it might be
accepted as unfresh. This is ensured by the corruption oracle: it removes any such entries upon corrup-
tion and reprograms the global random oracle with the corresponding key material when corruption
occurs before any session with that trace is accepted.

Note further that the corrupt oracle also cleans up any entries in Ts corresponding to traces of
potentially fresh sessions that the attacker failed to conclude before corruption (e.g., by delivering
an inconsistent MAC). This means that, after corruption of pwus, the only entries that remain in Ts
corresponding to (U, S) interactions must correspond to at least one fresh accepted session.
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Now let us confirm that any inconsistencies detected by the adversary in its queries to the global
random oracle (because it has observed in the game the output of the independent random oracle or
some usage of it) are correctly signalled by activating the bad6 flag.

The attacker may observe the action of the independent random oracle via the following oracle
queries:

– Reveal or Test queries to accepted fresh sessions.
– MAC values computed using keys derived from entries in Ts rather than the global random oracle.

For all entries added and never removed from Ts, the bad6 flag is activated if a matching entry is ever
queried to H in the game. This covers the first class of observations. MAC checks and computations
for such sessions are handled similarly.

The possibility remains, however, that the attacker might observe a MAC value related to an
entry in Ts that is later moved to T . If the query to H that causes the inconsistency comes while the
offending entry is in Ts, then bad6 is activated as before. Otherwise, note that entries moved from Ts
to T retain the key material, so subsequent queries to H will actually be consistent.

Game G7. The intuition of this hop is identical to that for game G7 in the proofs of the previous
section: we change the way we generate messages in Send queries and set a bad flag if, due to some
unlikely event, one of the random exponents generated by the game to do this occurs as a password
in the game. This event can be bounded by a reduction to GDL, as shown in Lemma 6.5, so we have:

Advspake2A ( ) ≤ (qs + qe)
2

2q
+ AdvU-GCDH

B1
( ) + AdvGDL

B2
( ) + Pr[G7 ⇒ bad6 ]

Game G8. In this game we reject any tags submitted by the attacker to a Send oracle that would result
in a new fresh session being accepted, when it has no information on the corresponding authentication
key. More in detail:

– If a fresh session is about to be accepted on the initiator side, and there does not exist a matching
session on the responder side, then the attacker has never observed any computation based on the
corresponding Ts entry.

– If a fresh session is about to be accepted on the responder side, and there does not exist a matching
session on the initiator side, then the attacker may have observed a MAC computed with KS,U ,
but it has no information about KU,S .

Note that, by rejecting these sessions, the attacker can now only complete fresh sessions by behaving
passively.4 We add a bad flag bad8 to deal with cases where the tag would have been accepted in the
previous game and, when this flag is activated, the potentially fresh session is forgotten and removed
from the independent random oracle. This also means that, in this game, bad6 can now only occur
after corruption for sessions where the attacker behaved passively, which is why we can further restrict
the setting of the bad fact to non-corrupted passwords. To see that this is indeed the case, observe
that bad6 happens while entries are in Ts, but in this game we remove from Ts traces corresponding
to active behaviour before the corresponding password is corrupted (as otherwise these sessions would
not lead to fresh sessions anyway).

The probability of bad8 occurring can be bounded using the PRF property of KDF and the standard
(one-time) unforgeability of the MAC scheme. A formal proof is given in Lemma 7.4. Therefore we
have

Pr[G7 ⇒ bad6 ] ≤ Pr[G8 ⇒ bad6 ] + qs ·
(
Adv1PRFB7

( ) + Adv1UFB8
( )
)

Game G9. In this game we introduce changes similar to those we introduced in G8 of the proofs of
Theorems 6.1 and 6.2 in moving all password-related checks to the end of the game. However, unlike

4 Forging MACs that result the same trace being accepted as in passive behaviour is not considered an active
attack. This maps to the standard existential unforgeability notion.



Supplementary Material: Game-based Proofs for SPAKE2 15

in the previous section, we can now move all occurrences of bad6 to the end, since we handled the
problematic queries placed after corruption in the previous game hops. We move checks to the end
by introducing a Tbad list, and a final bad event bad9 for executions where the attacker is able to
construct two different consistent entries in this list for the same trace and different passwords.

Analysis of bad9 and bad6 in game G9 are identical to the analyses of bad6 and bad18 in game G8

of the proofs in the previous section: bad6 is the probability of passwords guessing, whereas bad10 can
be reduced to GCDH as proved in Lemma 6.6. We therefore have

Pr[G8 ⇒ bad6 ] ≤ Pr[G9 ⇒ bad6 ] + Pr[G9 ⇒ bad9 ] ≤ qe
|P| + AdvGCDH

B3
( )

This concludes the proof. ut

The above proof also establishes that SPAKE2 with key confirmation provides explicit authenti-
cation defined formally as:

– if a client U accepts a session with server S, then S has a pending unique session where it has
derived the same key and session identifier (U, S,X?, Y ?);

– if a server S accepts a session with client U , then U has already accepted a unique session with
the same key and session identifier (U, S,X?, Y ?).

We state this as the following corollary, which shows that impersonation can only be achieved with
negligible probability beyond guessing the password.

Corollary 7.2. SPAKE2 with key confirmation provides explicit authentication.

Proof. The proof follows the same sequence of hops as that of Theorem 7.1. We can observe that in
the final game a session is accepted only if the adversary behaved passively, which means that explicit
authentication is guaranteed with the same bound. More precisely, the attacker can break explicit
authentication with probability at most

qs
|P| + AdvU-GCDH

B6
( ) + AdvGDL

B2
( ) + AdvD

?-GCDH
B3

( ) + qs ·
(
Adv1PRFB7

( ) + Adv1UFB8
( )
)

+
(qs + qe)

2

2q

ut

Remark. We note that the proof strategy we use here for dealing with sessions where the attacker
behaves passively actually shows that SPAKE2 is secure in a stronger model where the adversary
does not have access to the Execute oracle and can instead adaptively decide how to orchestrate a
bounded number of qe passive attacks concurrently with a bounded number of qs active attacks. For
this, the use of the gap oracle is essential in the proof step that handles passive attacks. The strategy
we used in the previous section does not use this strategy for clarity, but the same observations apply.

Lemma 7.3. For every attacker A, there exists an attacker B6, such that

Pr[G4 ⇒ bad4 ] ≤ AdvU-GCDH
B6

( )

Proof. Let us consider the GCDH attacker B6 in Fig. 11. It gets a generalized challenge of the form
(X1, . . . , Xqe+qs , Y1, . . . , Yqe+qs) and finds CDH(Xi, Yj), for some 1 ≤ i, j ≤ qe. This problem is tightly
equivalent to U-GCDH by random self-reducibility. The attacker embeds Xkx and Yky in all game-
generated X? and Y ?, which means that it cannot compute the CDH for any session. However, it
can use the DDH oracle to check when H queries for a given group element Z match traces where
CDH(X,Y ) = Z. Additionally, the DDH oracle is used to check for the bad event, in which case a
solution to the GCDH problem was found. ut
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Lemma 7.4. For every attacker A, there exist attackers B7 and B8, such that

Pr[G8 ⇒ bad8 ] ≤ qs ·
(
Adv1PRFB7

( ) + Adv1UFB8
( )
)

Proof. Consider the modified version of game G8 we present in Figure 11 (game Gc8′) and let us
consider for now the behaviour of this game when c = F. In this case, the only difference between
the two games is that game GF

8′ only sets bad8 in one special `-th query to Send, while the original
version of G8 might set the flag in many Send queries. However, this special query is chosen uniformly
at random and is outside of the adversary’s view, so it must be the case that, conditioning on the
probability that the randomly chosen ` correctly guesses the query that causes the first occurrence of
bad8 in game G8, the probability of bad8 occurring in the two games is the same. This implies,

Pr[G8 ⇒ bad8 ] = Pr[GF
8′ ⇒ bad8 |` is correct] ≤ qs Pr[GF

8′ ⇒ bad8 ]

We can now focus on game G8′ . Observe that parameter c = T replaces the keys produced by the
KDF with random ones for the `-th query. This means that it is easy to construct an attacker B 7 such
that

Adv1PRFB7
( ) =

∣∣Pr[GF
8′ ⇒ bad8 ]− Pr[GT

8′ ⇒ bad8 ]
∣∣

We omit the details of this reduction. At this point, it suffices to bound the probability of bad8 in game
GT
8′ . We do this via a direct reduction to the one-time unforgeability property of the MAC scheme.

This is shown in Figure 11 as attacker B8. Again the reduction is simple: for the critical `-th query, the
attacker fixes the authentication key that causes bad8 implicitly as the external MAC key for which it
is trying to forge. When bad8 occurs, it returns the offending trace and authenticator as a forgery. ut

8 Implications

Nothing-up-your-sleeve global parameters. Our security proof applies without change to any
distribution of the global parameters (M,N) under which computing the CDH between the two with
the help of a DDH oracle is assumed to be hard. This means that simply sampling (M,N) uniformly
at random is a good choice when the GCDH assumption holds, and so is choosing M = H(K) and
N = H(K ′) when H is modeled as a random oracle. Here the choice of K 6= K ′ means one is relying
on the standard GCDH assumption, whereas K = K ′ leads to M = N , which means relying on the
squared GCDH problem.

Removing the global parameters. Our proof extends to a variant of SPAKE2 where (M,N)
are not generated in a global setup. Instead one can use (M,N) = H(U, S) and N = H(S,U), where
different values of these parameters are precomputed for each user-server pair. The online efficiency
of the protocol is not affected. Modeling H as a random oracle, this means that each (U, S) pair now
poses an independent GCDH challenge to the active attacker. Our proof can be easily modified to
cover this case with the same bound by observing that bad events that involve multiple sessions are
always defined between sessions established for the same user-server (U, S).

Reusing passwords. Our model assumes that user passwords are sampled independently for each
pair (U, S). The simple case of password reuse, where passwords are either repeats or they are sampled
independently can be easily addressed by extending the corrupt oracle to exclude additional trivial
attacks: it should declare as corrupt all (U ′, S′) pairs that use the same password. The same proof
applies and the bound is not affected in this case, as the entropy of non-repeat passwords is assumed
to be unaffected.

The treatment of more complex distributions follows in the same lines as described in [KOY09,
Section 2.2.1].
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A Games and adversaries for the proof of Theorems 6.1 and 6.2
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proc Initialize( ) G1, G2
b ←$ {0, 1}; C ← {}; T ← {}; bad2 ← F
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P; Tst = { }
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

bad2 = T; Return ⊥
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

πiS ← (y, (U, S,X?, Y ?), K, T)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

bad2 = T; Return ⊥
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

πiU ← (x, (U, S,X?, Y ?), K, T)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx ·Mpwus

y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

bad2 = T; Return ⊥
K ← H(U, S,X?, Y ?, pwus, X

y)

πiU ← (x, (U, S,X?, Y ?), K, T)

πiS ← (y, (U, S,X?, Y ?), K, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥

Return πiP .K

proc Test(P, i)

If Fresh(πiP ) = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
Return b = b′

proc Initialize( ) G3
b ←$ {0, 1}; C ← {}; T ← {}
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P; Tst = { }
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx ·Mpwus

y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ← H(U, S,X?, Y ?, pwus, X

y)

πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
Return b = b′

proc Initialize( ) G4
b ←$ {0, 1}; C ← {}; T ← {}; Tst = { }; Te ← {}
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P; bad4 ← F
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx ·Mpwus

y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S,X?, Y ?, pwus, Y

x) ∈ T do bad4 ← T
Te ← Te ∪ {(U, S,X?, Y ?, pwus, Y x)}
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If ∃(U, S,X?, Y ?, pwus, Z) ∈ Te do bad4 ← T
If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
Return b = b′

Fig. 3. Security proof for SPAKE2. Games 1 to 4.
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proc Initialize( ) G5
b ←$ {0, 1}; C ← {}; T ← {}
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P; Tst = { }
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C

X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C

Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K

T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)

Return b = b′

proc Initialize( ) G6
b ←$ {0, 1}; C ← {}; T ← {}; Tst = { }; Ts ← {}
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P; bad6 ← F
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

Else
If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
X ← X? /Mpw

If Z = Xy do bad6 ← T
K ←$K

Ts[U, S,X
?, Y ?] ← (S, y,K)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

Else If (U, S,X?, Y ?) ∈ Ts
(S, y,K) ← Ts[U, S,X

?, Y ?]
Else

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
Y ← Y ? /Npw

If Z = Y x do bad6 ← T
K ←$K

Ts[U, S,X
?, Y ?] ← (U, x,K)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts ∧ pw = pwus

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npw; Z′ ← Y x

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; Z′ ← Xy

If Z′ = Z do bad6 ← T
T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)

Return b = b′

proc Initialize( ) G7
b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P; bad6 ← F; bad7 ← F
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; ŷ ← ny − npwus
K ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
X ← X? /Mpw; ŷ ← ny − npw

If Z = Xŷ do bad6 ← T
K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
K ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else If (U, S,X?, Y ?) ∈ Ts

(S, y,K) ← Ts[U, S,X
?, Y ?]

Else
If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
Y ← Y ? /Npw; x̂ ← mx −mpw

If Z = Y x̂ do bad6 ← T
K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts ∧ pw = pwus

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; ŷ ← my − npw; Z′ ← Xŷ

If Z′ = Z do bad6 ← T
T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T

bad7 ← T
If bad7 = T do bad6 ← F

Return b = b′

Fig. 4. Security proof for SPAKE2. Games 5 to 7.
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proc Initialize( ) G8
b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
bad6 ← F; bad7 ← F; Tbad ← {}; bad18 ← F; bad28 ← F

m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr Return ⊥

fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; ŷ ← ny − npwus
K ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else

For all (U, S,X?, Y ?, pw, Z) ∈ T
X ← X? /Mpw; ŷ ← ny − npw

If Z = Xŷ do Tbad ← Tbad ∪ {U, S,X?, Y ?, pw, Z}
K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr Return ⊥

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
K ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else If (U, S,X?, Y ?) ∈ Ts

(S, y,K) ← Ts[U, S,X
?, Y ?]

Else
For all (U, S,X?, Y ?, pw, Z) ∈ T
Y ← Y ? /Npw; x̂ ← mx −mpw

If Z = Y x̂ do Tbad ← Tbad ∪ {U, S,X?, Y ?, pw, Z}
K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; ŷ ← my − npw; Z′ ← Xŷ

If Z′ = Z:

If (U, S) ∈ C ∧ pw = pwus do bad28 ← T

If (U, S) /∈ C do Tbad ← Tbad ∪ {U, S,X?, Y ?, pw, Z}
T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}; pwus ←$P
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T

bad7 ← T
If bad7 = F

If ∃pw 6= pw′,
(U, S,X?, Y ?, pw, Z) ∈ Tbad ∧
(U, S,X?, Y ?, pw′, Z′) ∈ Tbad do bad18 ← T

Else
If (U, S, ?, ?, pwus, ?) ∈ Tbad do bad6 ← T

Else bad28 ← F

Return b = b′

proc Initialize( ) G9
b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
bad7 ← F; bad28 ← F

m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?, alg)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; ŷ ← ny − npwus
K ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else

K ←$K
If ∃(U, S, ?, ?, y, ?) ∈ T do bad7 ← T
Ts[U, S,X

?, Y ?] ← (S, y,K, alg)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?, alg)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
K ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else If (U, S,X?, Y ?) ∈ Ts

(S, y,K, alg′) ← Ts[U, S,X
?, Y ?]

Else

K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K, alg)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts

If Ts[U, S,X
?, Y ?] = (U, x,K, alg)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K, alg)

X ← X? /Mpw; ŷ ← my − npw; Z′ ← Xŷ

If Z′ = Z:

If (U, S) ∈ C ∧ pw = pwus do bad28 ← T

T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}; pwus ←$P
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T

bad7 ← T

If bad7 = F do bad28 ← F

Return b = b′

proc Initialize( ) G10
b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

bad7 ← F; bad28 ← F; bad10 ← F; λ ← n/m

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?, alg)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; ŷ ← ny − npwus
K ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else
K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K, alg)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?, alg)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
K ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else If (U, S,X?, Y ?) ∈ Ts

(S, y,K, alg) ← Ts[U, S,X
?, Y ?]

Else
K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K, alg)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts

If Ts[U, S,X
?, Y ?] = (U, x,K, alg)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K, alg)

X ← X? /Mpw; ŷ ← my − npw; Z′ ← Xŷ

If Z′ = Z ∧ bad10 = F:

If (U, S) ∈ C ∧ pw = pwus do bad28 ← T

T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}; pwus ←$P
For all (U, S,X?, Y ?) ∈ Ts

If Ts[U, S,X
?, Y ?] = (U, x,K, alg)

Rewrite alg = [(g, a), (M, b), (N, c)]
If b − pwus + λc = 0 do bad10 ← T

If Ts[U, S,X
?, Y ?] = (S, y,K, alg)

Rewrite alg = [(g, ?), (M, b), (N, ?)]
If b + λ(c − pwus) = 0 do bad10 ← T

Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T

bad7 ← T

If bad7 = F do bad28 ← F

Return b = b′

Fig. 5. Security proof for SPAKE2. Games 8 to 10.
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Adversary B1

proc Initialize(X1, . . . , Xqe , Y1, . . . , Yqe )

b ←$ {0, 1}; C ← {}; T ← {}; Te ← {}
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P; Tst = { }
k ← 0
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
X ← X? /Mpwus

K ← H(U, S,X?, Y ?, pwus, X
y)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
Y ← Y ? /Npwus

K ← H(U, S,X?, Y ?, pwus, Y
x)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

k ← k + 1
X? ← Xk ·Mpwus

Y ? ← Yk · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S,X?, Y ?, pwus, Z) ∈ T

If DDH(Xk, Yk, Z) = T
call Finalize(Z); stop

Te ← Te ∪ {(U, S,X?, Y ?, pwus, k)}
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If ∃(U, S,X?, Y ?, pwus, k) ∈ Te
If DDH(Xk, Yk, Z) = T

call Finalize(Z); stop
If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
Stop.

Adversary B2

proc Initialize(A)

b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P; Tst = { }
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← A · g∆
πiU ← (∆, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← A · g∆

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else
K ←$K
Ts[U, S,X

?, Y ?] ← (S,∆,K)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (∆, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else If (U, S,X?, Y ?) ∈ Ts

(S,∆,K) ← Ts[U, S,X
?, Y ?]

Else
K ←$K
Ts[U, S,X

?, Y ?] ← (U,∆,K)

πiU ← (∆, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr; Return ⊥

K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If ∃(U, S,X?, Y ?, pw, (X, Y )) ∈ T s.t. DDH(X, Y, Z) = T

Return T [U, S,X?, Y ?, pw, Z]
T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}; pwus ←$P; Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
If ∃U S, Ts[U, S, ?, Y ?] = (S,∆, ?) ∧ Y ? = gnpwus

call Finalize(npwus −∆)
If ∃U S, Ts[U, S,X?, ?] = (U,∆, ?) ∧ X? = gmpwus

call Finalize(mpwus −∆)
If ∃ pw, (?, ?, ?, ?, pw, ?) ∈ T
∧Ts[?, ?, ?, Y ?] = (S,∆, ?) ∧ Y ? = gnpw

call Finalize(npw −∆)
If ∃ pw, (?, ?, ?, ?, pw, ?) ∈ T
∧Ts[?, ?,X?, ?] = (U,∆, ?) ∧ X? = gmpw

call Finalize(mpw −∆)
Stop.

Adversary B3

proc Initialize(M,N)

b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
Tbad ← {}; bad7 ← F
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr Return ⊥

fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else

For all (U, S,X?, Y ?, pw, Z) ∈ T
X ← X? /Mpw; Y ← Y ? /Npw

If DDH(X, Y, Z) = T
Tbad ← Tbad ∪ {U, S,X?, Y ?, pw, Z}

K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr Return ⊥

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else If (U, S,X?, Y ?) ∈ Ts

(S, y,K) ← Ts[U, S,X
?, Y ?]

Else
For all (U, S,X?, Y ?, pw, Z) ∈ T
X ← X? /Mpw; Y ← Y ? /Npw

If DDH(X, Y, Z) = T
Tbad ← Tbad ∪ {U, S,X?, Y ?, pw, Z}

K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr; Return ⊥

K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts
X ← X? /Mpw; Y ← Y ? /Npw

If DDH(X, Y, Z) = T
If (U, S) ∈ C ∧ pw = pwus then Skip
If (U, S) /∈ C do Tbad ← Tbad ∪ {U, S,X?, Y ?, pw, Z}

If ∃(U, S,X?, Y ?, pw, (X, Y ) ∈ T s.t. DDH(X, Y, Z) = T
Return T [U, S,X?, Y ?, pw, (X, Y )]

T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}; pwus ←$P; Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T do bad7 ← T
If bad7 = F

If ∃pw 6= pw′,
(U, S,X?, Y ?, pw, Z) ∈ Tbad ∧
(U, S,X?, Y ?, pw′, Z′) ∈ Tbad
u ← ((x − pw)(x − pw′)(pw′ − pw))−1

call Finalize((Zx−pw′ · Z′pw−x)u)
Stop.

Fig. 6. Security proof for SPAKE2. GCDH and GDL attackers.
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Adversary B4

proc Initialize(M)

b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
bad7 ← F; bad10 ← F

m ←$ Zq ; n ←$D?(m); λ ← n/m; N ← Mλ

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?, alg)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else
K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K, alg)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

Return (S, Y ?)

proc SendTerm(U, i, S, Y ?, alg)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else If (U, S,X?, Y ?) ∈ Ts

(S, y,K, alg′) ← Ts[U, S,X
?, Y ?]

Else
K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K, alg)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

Return T

proc Exec(U, S, i, j)

Unchanged

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts
X ← X? /Mpw; Y ← Y ? /Npw

If DDH(X, Y, Z) = T ∧ (U, S) ∈ C ∧ pw = pwus ∧ bad10 = F
Call Finalize(CDH(M,M))

If ∃(U, S,X?, Y ?, pw, (X, Y ) ∈ T s.t. DDH(X, Y, Z) = T
Return T [U, S,X?, Y ?, pw, (X, Y )]

T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}; pwus ←$P
For all (U, S,X?, Y ?) ∈ Ts

If Ts[U, S,X
?, Y ?] = (U, x,K, alg)

Rewrite alg = [(g, a), (M, b), (N, c)]
If b − pwus + λc = 0 do bad10 = T

If Ts[U, S,X
?, Y ?] = (S, y,K, alg)

Rewrite alg = [(g, a), (M, b), (N, c)]
If b + λ(c − pwus) = 0 do bad10 = T

Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T

bad7 ← T
Stop.

Adversary BF,i5

proc Initialize(B1, B2, A1)

b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
bad7 ← F
M ← B1; N ← B2; k ← 0; tr ←⊥
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← A1 · gx
πiU ← (x, (U, S,X?,⊥),⊥, F, F)
k ← k + 1; Return (U,X?)

proc SendResp(S, i, U,X?, alg)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else
K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K, alg)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

k ← k + 1; Return (S, Y ?)

proc SendTerm(U, i, S, Y ?, alg)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else If (U, S,X?, Y ?) ∈ Ts

(S, y,K, alg′) ← Ts[U, S,X
?, Y ?]

Else
If k = i

tr ← (U, S,X?, Y ?)
Output Y ? to get pwU,S

K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K, alg)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

k ← k + 1; Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts
X ← X? /Mpw; Y ← Y ? /Npw

If DDH(X, Y, Z) = T ∧ (U, S) ∈ C ∧ pw = pwus
If tr 6= (U, S,X?, Y ?) do Abort

Else Get x from Ts; Output Z/Mx−pwus

If ∃(U, S,X?, Y ?, pw, (X, Y ) ∈ T s.t. DDH(X, Y, Z) = T
Return T [U, S,X?, Y ?, pw, (X, Y )]

T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
If tr 6= (U, S, ?, ?) do pwus ←$P
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T

bad7 ← T
Stop.

Adversary BT,i5

proc Initialize(B1, B2, A1)

b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
bad7 ← F
M ← B2; N ← B1; k ← 0; tr ←⊥
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
k ← k + 1; Return (U,X?)

proc SendResp(S, i, U,X?, alg)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else

If k = i
Y ? ← A1; tr ← (U, S,X?, Y ?)
Output X? to get pwU,S

K ←$K
Ts[U, S,X

?, Y ?] ← (S, y,K, alg)

πiS ← (y, (U, S,X?, Y ?), K, T, fr)

k ← k + 1; Return (S, Y ?)

proc SendTerm(U, i, S, Y ?, alg)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ¬fr
X ← X? /Mpwus ; Y ← Y ? /Npwus

If ∃(U, S,X?, Y ?, pwus, Z) ∈ T s.t. DDH(X, Y, Z) = T
K ← T [U, S,X?, Y ?, pwus, Z]

Else K ←$K; T [U, S,X?, Y ?, pwus, (X, Y )] ← K
Else If (U, S,X?, Y ?) ∈ Ts

(S, y,K, alg′) ← Ts[U, S,X
?, Y ?]

Else
K ←$K
Ts[U, S,X

?, Y ?] ← (U, x,K, alg)

πiU ← (x, (U, S,X?, Y ?), K, T, fr)

k ← k + 1; Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
K ←←$K
πiU ← (x, (U, S,X?, Y ?), K, T, T)

πiS ← (y, (U, S,X?, Y ?), K, T, T)

Return (U,X?, S, Y ?)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts
X ← X? /Mpw; Y ← Y ? /Npw

If DDH(X, Y, Z) = T ∧ (U, S) ∈ C ∧ pw = pwus
If tr 6= (U, S,X?, Y ?) do Abort
Else Output Z

If ∃(U, S,X?, Y ?, pw, (X, Y ) ∈ T s.t. DDH(X, Y, Z) = T
Return T [U, S,X?, Y ?, pw, (X, Y )]

T [U, S,X?, Y ?, pw, Z] ←$K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
If tr 6= (U, S, ?, ?) do pwus ←$P
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T

bad7 ← T
Stop.

Fig. 7. Security proof for SPAKE2. Algebraic reduction to GCDH and alternative reduction to GPCCDH.
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proc Initialize( ) G1, G2
b ←$ {0, 1}; C ← {}; T ← {}; Tst = { }
For U ∈ U, S ∈ S do pwus ←$P; bad2 ← F
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

bad2 = T; Return ⊥
X ← X? /Mpwus

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X
y)

(KU,S,KS,U ) ← KDF(Ka, const)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F)

Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

bad2 = T; Return ⊥

Y ← Y ? /Npwus

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, Y
x)

(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
πiU ← (x, (U, S,X?, Y ?), Ke, T)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F) Return ⊥

(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
πiS ← (y, (U, S,X?, Y ?), Ke, T)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx ·Mpwus

y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

bad2 = T; Return ⊥

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X
y)

(KU,S,KS,U ) ← KDF(Ka, const)

tag1 ← MAC(KU,S, (U, S,X
?, Y ?))

tag2 ← MAC(KS,U , (U, S,X
?, Y ?))

πiU ← (x, (U, S,X?, Y ?), Ke, T)

πiS ← (y, (U, S,X?, Y ?), Ke, T)

Return (U,X?, S, Y ?, tag1, tag2)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥

Return πiP .K

proc Test(P, i)

If Fresh(πiP ) = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
Return b = b′

proc Initialize( ) G3
b ←$ {0, 1}; C ← {}; T ← {}; Tst = { }
For U ∈ U, S ∈ S do pwus ←$P
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
X ← X? /Mpwus

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X
y)

(KU,S,KS,U ) ← KDF(Ka, const)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
Y ← Y ? /Npwus

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, Y
x)

(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx ·Mpwus

y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X
y)

(KU,S,KS,U ) ← KDF(Ka, const)

tag1 ← MAC(KU,S, (U, S,X
?, Y ?))

tag2 ← MAC(KS,U , (U, S,X
?, Y ?))

πiU ← (x, (U, S,X?, Y ?), Ke, T, T)

πiS ← (y, (U, S,X?, Y ?), Ke, T, T)

Return (U,X?, S, Y ?, tag1, tag2)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
Return b = b′

proc Initialize( ) G4
b ←$ {0, 1}; C ← {}; T ← {}; Tst = { }
For U ∈ U, S ∈ S do pwus ←$P; bad4 ← F; Tp ← {}
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
X ← X? /Mpwus

If ∃j, πj
U

= (x, (U, S,X?,⊥),⊥, F, F)
If (U, S,X?, Y ?, pwus, Y

x) ∈ T do bad4 ← T
(Ka,Ke) ←$K × K
Tp[U, S,X

?, Y ?, pwus, Y
x] = (Ka,Ke)

Else (Ka,Ke) ← H(U, S,X?, Y ?, pwus, X
y)

(KU,S,KS,U ) ← KDF(Ka, const)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
Y ← Y ? /Npwus

If ∃j, πj
S

= (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

(Ka,Ke) ← Tp[U, S,X
?, Y ?, pwus, Y

x]

Else (Ka,Ke) ← H(U, S,X?, Y ?, pwus, X
y)

(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx ·Mpwus

y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S,X?, Y ?, pwus, Y

x) ∈ T do bad4 ← T
Tp ← Tp ∪ {(U, S,X?, Y ?, pwus, Y x)}
(Ka,Ke) ←$K × K
(KU,S,KS,U ) ← KDF(Ka, const)

tag1 ← MAC(KU,S, (U, S,X
?, Y ?))

tag2 ← MAC(KS,U , (U, S,X
?, Y ?))

πiU ← (x, (U, S,X?, Y ?), Ke, T, T)

πiS ← (y, (U, S,X?, Y ?), Ke, T, T)

Return (U,X?, S, Y ?, tag1, tag2)

proc H(U, S,X?, Y ?, pw, Z)

If ∃(U, S,X?, Y ?, pwus, Z) ∈ Tp do bad4 ← T
If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
Return b = b′

Fig. 8. Security proof for SPAKE2 with confirmation. Games 1 to 4.
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proc Initialize( ) G5
b ←$ {0, 1}; C ← {}; T ← {}; Tst = { }
For U ∈ U, S ∈ S do pwus ←$P
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr Return ⊥

If ∃j, πj
U

= (x, (U, S,X?,⊥),⊥, F, F)
(Ka,Ke) ←$K × K

Else
X ← X? /Mpwus

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X
y)

(KU,S,KS,U ) ← KDF(Ka, const)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr Return ⊥

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ∃j, πj

S
= (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

(Ka,Ke) ← π
j
S
.K

Else
Y ← Y ? /Npwus

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X
y)

(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

x ←$ Zq ; X? ← gx

y ←$ Zq ; Y ? ← gy

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
(Ka,Ke) ←$K × K
(KU,S,KS,U ) ← KDF(Ka, const)

tag1 ← MAC(KU,S, (U, S,X
?, Y ?))

tag2 ← MAC(KS,U , (U, S,X
?, Y ?))

πiU ← (x, (U, S,X?, Y ?), Ke, T, T)

πiS ← (y, (U, S,X?, Y ?), Ke, T, T)

Return (U,X?, S, Y ?, tag1, tag2)

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
Return pwus

proc Reveal(P, i)

If πiP .ac 6= T ∨ (P, i) ∈ Tst Return ⊥
∀(j, Q) s.t. π

j
Q
.tr = πiP .tr do π

j
Q
.fr = F

Return πiP .K

proc Test(P, i)

If πiP .fr = F Return ⊥
K0 ← Reveal(P, i); K1 ←$K
Tst ← Tst ∪ (P, i); Return Kb

proc Finalize(b′)
Return b = b′

proc Initialize( ) G6
b ←$ {0, 1}; C ← {}; T ← {}; Tst = { }; Ts ← {}
For U ∈ U, S ∈ S do pwus ←$P; bad6 ← F
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← gx ·Mpwus

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← gy · Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr Return ⊥

If ∃j, πj
U

= (x, (U, S,X?,⊥),⊥, F, F)
(Ka,Ke) ←$K × K

Else If (U, S) ∈ C
X ← X? /Mpwus

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X
y)

Else
If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
X ← X? /Mpw

If Z = Xy do bad6 ← T
(Ka,Ke) ←$K × K
Ts[U, S,X

?, Y ?] ← (S, y, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr Return ⊥

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ∃j, πj

S
= (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

(Ka,Ke) ← π
j
S
.K

Else If ¬fr
Y ← Y ? /Npwus

(Ka,Ke) ← H(U, S,X?, Y ?, pwus, Y
x)

Else (cannot be in Ts)
If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
Y ← Y ? /Npw

If Z = Y x do bad6 ← T
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (U, x, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

Return T

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts ∧ pw = pwus

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npw; Z′ ← Y x

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; Z′ ← Xy

If Z′ = Z do bad6 ← T
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
For all (U, S,X?, Y ?) ∈ Ts

If @ j P, πj
P
.tr = (U, S,X?, Y ?) ∧ π

j
P
.ac = T

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npwus ; Z ← Y x

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpwus ; Z ← Xy

T [U, S,X?, Y ?, pwus, Z] ← (Ka,Ke)
Ts[U, S,X

?, Y ?] ←⊥
Return pwus

proc Finalize(b′)

Return b = b′

procs Exec, Reveal, Test unchanged

proc Initialize( ) G7
b ←$ {0, 1}; C ← {}; T ← {}; Tst = { }; Ts ← {}
For U ∈ U, S ∈ S do pwus ←$P; bad6 ← F; bad7 ← F
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr Return ⊥

If ∃j, πj
U

= (x, (U, S,X?,⊥),⊥, F, F)
(Ka,Ke) ←$K × K

Else If (U, S) ∈ C
X ← X? /Mpwus ; ŷ ← ny − npwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
X ← X? /Mpw; ŷ ← ny − npw

If Z = Xŷ do bad6 ← T
(Ka,Ke) ←$K × K
Ts[U, S,X

?, Y ?] ← (S, y, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr Return ⊥

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ∃j, πj

S
= (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

(Ka,Ke) ← π
j
S
.K

Else If ¬fr
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else (cannot be in Ts)

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
Y ← Y ? /Npw; x̂ ← mx −mpw

If Z = Y x̂ do bad6 ← T
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (U, x, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

Return T

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts ∧ pw = pwus

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; ŷ ← ny − npw; Z′ ← Xŷ

If Z′ = Z do bad6 ← T
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Corrupt(U, S)

C ← C ∪ {(U, S)}
For all (U, S,X?, Y ?) ∈ Ts

If @ j P, πj
P
.tr = (U, S,X?, Y ?) ∧ π

j
P
.ac = T

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npwus ; x̂ ← mx −mpw; Z ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpwus ; ŷ ← ny − npw; Z ← Xŷ

T [U, S,X?, Y ?, pwus, Z] ← (Ka,Ke)
Ts[U, S,X

?, Y ?] ←⊥
Return pwus

proc Finalize(b′)
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T do bad7 ← T
If bad7 = T do bad6 ← F

Return b = b′

procs Exec, Reveal, Test unchanged

Fig. 9. Security proof for SPAKE2 with confirmation. Games 5 to 7.
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proc Initialize( ) G8
b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
For U ∈ U, S ∈ S do pwus ←$P; bad6 ← F; bad7 ← F
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn; bad8 ← F

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr Return ⊥

If ∃j, πj
U

= (x, (U, S,X?,⊥),⊥, F, F)
(Ka,Ke) ←$K × K

Else If (U, S) ∈ C
X ← X? /Mpwus ; ŷ ← ny − npwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
X ← X? /Mpw; ŷ ← ny − npw

If Z = Xŷ do bad6 ← T
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (S, y, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr Return ⊥

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ∃j, πj

S
= (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

(Ka,Ke) ← π
j
S
.K

Else If ¬fr
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else (cannot be in Ts)

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
Y ← Y ? /Npw; x̂ ← mx −mpw

If Z = Y x̂ do bad6 ← T
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (U, x, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
If fr ∧ @j, (U, S,X?, Y ?) = π

j
S
.tr (implies (U, S) /∈ C)

bad8 ← T; Ts[U, S,X
?, Y ?] ←⊥; πiU ← aborted; Return ⊥

πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
If fr ∧ @j, (U, S,X?, Y ?) = π

j
U
.tr (implies (U, S) /∈ C)

bad8 ← T; Ts[U, S,X
?, Y ?] ←⊥; πiS ← aborted; Return ⊥

πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

Return T

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts ∧ pw = pwus

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; ŷ ← ny − npw; Z′ ← Xŷ

If Z′ = Z ∧ (U, S) /∈ C do bad6 ← T
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Finalize(b′)
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T do bad7 ← T
If bad7 = T do bad6 ← F

Return b = b′

procs Exec, Reveal, Test, Corrupt unchanged

proc Initialize( ) G9
b ←$ {0, 1}; C ← {}; T ← {}; Ts ← {}; Tst = { }
bad6 ← F; bad7 ← F; bad9; Tbad ← {}
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr Return ⊥

If ∃j, πj
U

= (x, (U, S,X?,⊥),⊥, F, F)
(Ka,Ke) ←$K × K

Else If (U, S) ∈ C
X ← X? /Mpwus ; ŷ ← ny − npwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else

For all (U, S,X?, Y ?, pw, Z) ∈ T
X ← X? /Mpw; ŷ ← ny − npw

If Z = Xŷ do Tbad ← Tbad ∪ {(U, S,X?, Y ?, pw, Z)}
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (S, y, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr Return ⊥

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ∃j, πj

S
= (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

(Ka,Ke) ← π
j
S
.K

Else If ¬fr
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else (cannot be in Ts)

For all (U, S,X?, Y ?, pw, Z) ∈ T
Y ← Y ? /Npw; x̂ ← mx −mpw

If Z = Y x̂ do Tbad ← Tbad ∪ {(U, S,X?, Y ?, pw, Z)}
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (U, x, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
If fr ∧ @j, (U, S,X?, Y ?) = π

j
S
.tr (implies (U, S) /∈ C)

Ts[U, S,X
?, Y ?] ←⊥; πiU ← aborted; Return ⊥

πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
If fr ∧ @j, (U, S,X?, Y ?) = π

j
U
.tr (implies (U, S) /∈ C)

Ts[U, S,X
?, Y ?] ←⊥; πiS ← aborted; Return ⊥

πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

Return T

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; ŷ ← ny − npw; Z′ ← Xŷ

If Z′ = Z ∧ (U, S) /∈ C
Tbad ← Tbad ∪ {(U, S,X?, Y ?, pw, Z)}

T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Finalize(b′)
For (U, S) ∈ (U × S) \ C do pwus ←$P
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T do bad7 ← T
If bad7 = F

If ∃pw 6= pw′,
(U, S,X?, Y ?, pw, Z) ∈ Tbad ∧
(U, S,X?, Y ?, pw′, Z′) ∈ Tbad do bad9 ← T

Else
If (U, S, ?, ?, pwus, ?) ∈ Tbad do bad6 ← T

Return b = b′

procs Exec, Reveal, Test, Corrupt unchanged

Fig. 10. Security proof for SPAKE2 with confirmation. Games 8 to 9.
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Adversary B6

proc Initialize(X1, . . . , Xqe+qs
, Y1, . . . , Yqe+qs

)

b ←$ {0, 1}; C ← {}; T ← {}; Tp ← {}
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn

For U ∈ U, S ∈ S do pwus ←$P; Tst = { }
kx, ky ← 1
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
X? ← Xkx

·Mpwus

πiU ← (kx, (U, S,X
?,⊥),⊥, F, F); kx ← kx + 1

Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
Y ? ← Yky

· Npwus

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
X ← X? /Mpwus ; Y ← Y ?/Npwus

If ∃j, πj
U

= (kx, (U, S,X
?,⊥),⊥, F, F)

If (U, S,X?, Y ?, pwus, Z) ∈ T ∧ DDH(X, Y, Z) = T
Call Terminate(X, Y, Z)

(Ka,Ke) ←$K × K
Tp[U, S,X

?, Y ?, pwus, (X, Y )] = (Ka,Ke)

Else (Ka,Ke) ← H(U, S,X?, Y ?, pwus, (X, Y ))
(KU,S,KS,U ) ← KDF(Ka, const)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (ky, (U, S,X
?, Y ?), (Ka,Ke), F, F); ky ← ky + 1

Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (kx, (U, S,X
?,⊥),⊥, F, F) Return ⊥

If ∃P ∈ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
Y ← Y ?/Npwus ; X ← X? /Mpwus

If ∃j, πj
S

= (ky, (U, S,X
?, Y ?), (Ka,Ke), F, F)

(Ka,Ke) ← Tp[U, S,X
?, Y ?, pwus, (X, Y )]

Else (Ka,Ke) ← H(U, S,X?, Y ?, pwus, (X, Y ))
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

Return T

proc Exec(U, S, i, j)

If πiU 6=⊥ ∨π
j
S
6=⊥ Return ⊥

X? ← kx ·Mpwus ; kx ← kx + 1
Y ? ← ky · Npwus ; ky ← ky + 1

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr

Return ⊥
If (U, S,X?, Y ?, pwus, Z) ∈ T ∧ DDH(X, Y, Z) = T

Call Terminate(X, Y, Z)
Tp ← Tp ∪ {(U, S,X?, Y ?, pwus, (X, Y ))}
(Ka,Ke) ←$K × K
(KU,S,KS,U ) ← KDF(Ka, const)

tag1 ← MAC(KU,S, (U, S,X
?, Y ?))

tag2 ← MAC(KS,U , (U, S,X
?, Y ?))

πiU ← (x, (U, S,X?, Y ?), Ke, T, T)

πiS ← (y, (U, S,X?, Y ?), Ke, T, T)

Return (U,X?, S, Y ?, tag1, tag2)

proc H(U, S,X?, Y ?, pw, Z)

If ∃(U, S,X?, Y ?, pwus, (X, Y )) ∈ Tp ∧ DDH(X, Y, Z) = T
Call Terminate(X, Y, Z)

If (U, S,X?, Y ?, pwus, (X, Y )) ∈ T ∧ DDH(X, Y, Z) = T
Return T [U, S,X?, Y ?, pwus, (X, Y )]
If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Finalize(b′)
Return b = b′

procs Reveal, Test, Corrupt unchanged

proc Initialize( ) Gc
8′

b ←$ {0, 1}; C, T, Ts, Tst ← {}; ` ←$ {0..qs − 1}; k ← 0
For U ∈ U, S ∈ S do pwus ←$P; bad6 ← F; bad7 ← F; tr` ←⊥
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn; bad8 ← F

Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
k ← k + 1; Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr Return ⊥

If ∃j, πj
U

= (x, (U, S,X?,⊥),⊥, F, F)
(Ka,Ke) ←$K × K

Else If (U, S) ∈ C
X ← X? /Mpwus ; ŷ ← ny − npwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
X ← X? /Mpw; ŷ ← ny − npw

If Z = Xŷ do bad6 ← T
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (S, y, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

If k = ` do tr` ← (U, S,X?, Y ?)
If k = ` ∧ c = T do (KU,S,KS,U ) ←$K × K
tag ← MAC(KS,U , (U, S,X

?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

k ← k + 1; Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr Return ⊥

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ∃j, πj

S
= (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

(Ka,Ke) ← π
j
S
.K

Else If ¬fr
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else (cannot be in Ts)

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
Y ← Y ? /Npw; x̂ ← mx −mpw

If Z = Y x̂ do bad6 ← T
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (U, x, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

If k = ` ∧ c = T do (KU,S,KS,U ) ←$K × K
If tag 6= MAC(KS,U , (U, S,X

?, Y ?))

πiU ← aborted; Return ⊥
If k = ` ∧ fr ∧ @j, (U, S,X?, Y ?) = π

j
S
.tr

bad8 ← T; Ts[U, S,X
?, Y ?] ←⊥; πiU ← aborted; Return ⊥

πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

k ← k + 1; Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
If triS = tr` ∧ fr ∧ @j, (U, S,X?, Y ?) = π

j
U
.tr

bad8 ← T; Ts[U, S,X
?, Y ?] ←⊥; πiS ← aborted; Return ⊥

πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

k ← k + 1; Return T

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts ∧ pw = pwus

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; ŷ ← ny − npw; Z′ ← Xŷ

If Z′ = Z ∧ (U, S) /∈ C do bad6 ← T
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Finalize(b′)
If ∃U S, (?, pwus, ?) ∈ Ts do bad7 ← T
If ∃ pw, (?, pw, ?) ∈ Ts ∧ (?, ?, ?, ?, pw, ?) ∈ T do bad7 ← T
If bad7 = T do bad6 ← F

Return b = b′

procs Exec, Reveal, Test, Corrupt unchanged

Adversary B8

proc Initialize( )

b ←$ {0, 1}; C ← {}; T, Ts, Tst = { }; ` ←$ {0..qs − 1}
For U ∈ U, S ∈ S do pwus ←$P; bad6 ← F; bad7 ← F
m ←$ Z?q ; n ←$D?(m); M ← gm; N ← gn; k ← 0; tr` =⊥
Return (M,N)

proc SendInit(U, i, S)

If πiU 6=⊥ Return ⊥
x ←$ Zq ; X? ← Mx

πiU ← (x, (U, S,X?,⊥),⊥, F, F)
k ← k + 1; Return (U,X?)

proc SendResp(S, i, U,X?)

If πiS 6=⊥ Return ⊥
y ←$ Zq ; Y ? ← Ny

If ∃P ∈ S ∪ U, (U, S,X?, Y ?) = π
j
P
.tr Return ⊥

If ∃j, πj
U

= (x, (U, S,X?,⊥),⊥, F, F)
(Ka,Ke) ←$K × K

If (U, S) ∈ C
X ← X? /Mpwus ; ŷ ← ny − npwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, X

ŷ)
Else

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
X ← X? /Mpw; ŷ ← ny − npw

If Z = Xŷ do bad6 ← T
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (S, y, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

If k = ` do tr` ← (U, S,X?, Y ?)
If k = ` do KS,U ←$K (KU,S is the external MAC key)

tag ← MAC(KS,U , (U, S,X
?, Y ?))

πiS ← (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

k ← k + 1; Return (S, Y ?, tag)

proc SendTermInit(U, i, S, Y ?, tag)

If πiU 6= (x, (U, S,X?,⊥),⊥, F, F) Return ⊥
If ∃P ∈ U, (U, S,X?, Y ?) = π

j
P
.tr Return ⊥

fr ← ∃j, (U, S,X?, Y ?) = π
j
S
.tr ∧ πj

S
.fr = T

fr ← fr ∨ (U, S) /∈ C
If ∃j, πj

S
= (y, (U, S,X?, Y ?), (Ka,Ke), F, F)

(Ka,Ke) ← π
j
S
.K

Else If ¬fr
Y ← Y ? /Npwus ; x̂ ← mx −mpwus
(Ka,Ke) ← H(U, S,X?, Y ?, pwus, Y

x̂)
Else (cannot be in Ts)

If ∃(U, S,X?, Y ?, pw, Z) ∈ T ∧ pw = pwus
Y ← Y ? /Npw; x̂ ← mx −mpw

If Z = Y x̂ do bad6 ← T
Ka ×Ke ←$K × K
Ts[U, S,X

?, Y ?] ← (U, x, (Ka,Ke))
(KU,S,KS,U ) ← KDF(Ka, const)

If k = ` do KU,S ←$K (KS,U is the external MAC key)

If k 6= ` ∧ tag 6= MAC(KS,U , (U, S,X
?, Y ?))

πiU ← aborted; Return ⊥
If k = ` ∧ fr ∧ @j, (U, S,X?, Y ?) = π

j
S
.tr

Call Terminate(tag, (U, S,X?, Y ?))

πiU ← (x, (U, S,X?, Y ?), Ke, T, fr)

tag ← MAC(KU,S, (U, S,X
?, Y ?))

k ← k + 1; Return tag

proc SendTermResp(S, i, U, tag)

If πiS 6= (y, (U, S,X?, Y ?), (Ka,Ke), F, F) Return ⊥
fr ← ∃j, (U, S,X?, Y ?) = π

j
U
.tr ∧ πj

U
.fr = T

fr ← fr ∨ (U, S) /∈ C
(KU,S,KS,U ) ← KDF(Ka, const)

If triS 6= tr` ∧ tag 6= MAC(KU,S, (U, S,X
?, Y ?))

πiS ← aborted; Return ⊥
If triS = tr` ∧ fr ∧ @j, (U, S,X?, Y ?) = π

j
U
.tr

Call Terminate(tag, (U, S,X?, Y ?))

πiS ← (y, (U, S,X?, Y ?), Ke, T, fr)

k ← k + 1; Return T

proc H(U, S,X?, Y ?, pw, Z)

If T [U, S,X?, Y ?, pw, Z] = K 6=⊥ Return K
If (U, S,X?, Y ?) ∈ Ts ∧ pw = pwus

If Ts[U, S,X
?, Y ?] = (U, x,K)

Y ← Y ? /Npw; x̂ ← mx −mpw; Z′ ← Y x̂

If Ts[U, S,X
?, Y ?] = (S, y,K)

X ← X? /Mpw; ŷ ← ny − npw; Z′ ← Xŷ

If Z′ = Z ∧ (U, S) /∈ C do bad6 ← T
T [U, S,X?, Y ?, pw, Z] ←$K × K
Return T [U, S,X?, Y ?, pw, Z]

proc Finalize(b′)
Stop.

procs Exec, Reveal, Test, Corrupt unchanged

Fig. 11. Security proof for SPAKE2 with confirmation. Query guess game and adversaries.
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