
Weight-Based Nakamoto-Style Blockchains

Simon Holmgaard Kamp1, Bernardo Magri1, Christian Matt2, Jesper Buus Nielsen1,
Søren Eller Thomsen1, and Daniel Tschudi2

1Concordium Blockchain Research Center, Aarhus University, Denmark
{kamp, magri, jbn, sethomsen}@cs.au.dk

2Concordium, Zurich, Switzerland
{cm, dt}@concordium.com

January 15, 2021

Abstract

We propose a framework for Nakamoto-style proof-of-work blockchains where blocks are
treated differently in the “longest chain rule”. The crucial parameter is a weight function
assigning different weights to blocks according to their hash value. Our framework enables
the analysis of different weight functions while proving all statements at the appropriate
level of abstraction. This allows us to quickly derive protocol guarantees for different weight
functions. We exemplify the usefulness of our framework by capturing the classical Bitcoin
protocol as well as exponentially growing functions as special cases. We show the typical
properties—chain growth, chain quality and common prefix—for both, and further show that
the latter provide an additional guarantee, called optimistic responsiveness. More precisely,
we prove for a certain class of exponentially growing weight functions that in periods without
corruption, the confirmation time only depends on the unknown actual network delay instead
of the known upper bound.

1 Introduction
In classical blockchains such as Nakamoto’s Bitcoin [8], the parties run a distributed “lottery”
to decide who is allowed to append the next block to the existing chain. When there is a winner
of the lottery, a block is produced and disseminated to the other parties, that will perform a
series of checks to guarantee that the block is valid and that the party that produced the block
actually won the lottery. If all the checks are correct, the parties append the new block to their
local view of the chain. Classical blockchains (also called Nakamoto-style, or NSB for short)
usually assume the majority of the resources (e.g., computational power or stake) to be trusted,
from which they can achieve totally ordered broadcast.

Bitcoin is a NSB based on proof-of-work (PoW) where a block is only considered valid and
allowed to be appended in the chain if its hash value is below some threshold value T . The
probability of this is proportional to 1/T . The value T is computed in real time by the network
such that a single valid block is created, on average, every 10 minutes. In a period where T
is fixed1 the “best-chain” rule for Bitcoin is determined by how many blocks are on the chain.
Previous analyses of the Bitcoin protocol [4, 5, 10, 13, 9] show that under certain network

1For simplicity, in this work we only consider the case of fixed participation. We leave the case of adaptive T
as future work.

1

mailto:kamp@cs.au.dk
mailto:magri@cs.au.dk
mailto:jbn@cs.au.dk
mailto:sethomsen@cs.au.dk
mailto:cm@concordium.com
mailto:dt@concordium.com

assumptions, Bitcoin satisfies the properties of chain growth, chain quality and common prefix
(introduced by [4]) for some choice of parameters.

The block time of a NSB is the average time between blocks. Existing analyses use at their
core the fact that the block time is longer than the average network delay. This allows for honest
block winners to typically having seen all previous honest blocks when they add a new block.
This allows the longest chain to grow by one block when there is an honest winner. If blocks
are produced faster than they propagate, then all “bets are off”. Therefore the block time of
existing NSB needs to be set conservatively to some worst case value. At a conceptual level, our
study is motivated by the simple observation that on existing NSBs, whenever the block time is
fixed to a constant, the protocols do not respond with higher throughput when the network is in
fact much faster than the worst case assumed. At a technical level, our study departs from the
observation that not all types of blocks are equal. In Bitcoin there are two types of blocks, those
above the threshold T , which do not count at all, and those below T , which count as one block.
However, blocks with hash below T/m for some integer m have average block time about m
times as long as blocks with hash below T . Therefore, one could for instance consider counting
blocks with hash below T/m with “weight” m or “weight” 2m. That is, we can consider different
weight functions assigning weights to blocks based on their hash values. This raises the following
question:

Can we get better guarantees for NSBs if we assign different weights to the blocks?

In that vein, we provide a general framework to analyze PoW protocols under different
weight functions. The main goal of the framework is to provide useful tools where one can easily
explore and analyze the impact of different weight functions applied to a Bitcoin-like protocol.
To demonstrate the usefulness of our framework, we instantiate the (standard) Bitcoin weight
function in our framework (Section 5.2.1) and show similar bounds as previous work.

As evidence of the usefulness of exploring different weight functions, we show that a large
class of weight functions achieves a weak form of “optimistic responsiveness” (c.f. [12]). In a
nutshell, we show that in periods without corruption, the time it takes for blocks to be in a
common prefix only depends on the actual network delay instead of a known upper bound. See
the discussion below for more details.

1.1 Overview of our results

Our contributions are twofold: (1) We provide a general framework for easy exploration and
design of protocols with different weight functions and (2) we show that there are weight
functions that are strictly better than the traditional longest chain rule of Bitcoin. We detail
our contributions next:

Generic framework. Our framework constitutes the backbone of a PoW blockchain where its
valid block predicate and best-chain rule rely on a weight function that establishes a numerical
value (i.e., weight) to each individual block in the chain. The best chain at any given time is
the chain with more accumulated weight over all its blocks. We provide general lemmas for
several bounds on the produced weight of a PoW protocol instantiated with any weight function.
Furthermore, we derive for any weight function the concrete bounds that are needed for the main
blockchain properties of growth, quality and common-prefix to be guaranteed, and calculate how
these bounds translate into guarantees for the protocol. The main goal of our generic framework
is that any weight function can be “plugged-in” to the framework and the parameters needed for
the desired levels of guarantees can be obtained almost directly. This enables an easy exploration
and design of protocols without needing to redo a series of complex and potentially error-prone
proofs.

2

Weight-based NSB protocol. We introduce in Section 5 the class of T -capped weight
functions, which are monotonically increasing weight functions that are constant if the input is
larger than a threshold T . We show that a PoW blockchain that employs a particular weight
function from such a class achieves chain growth, chain quality and common-prefix parameters
similar to the ones achieved by Bitcoin in previous works [4, 5]. We also note that instantiating
a PoW protocol with a particular T -capped weight function can make it weakly optimistically
responsive, i.e., under no corruption we show common-prefix guarantees for the protocol that are
based on the real network delay, and not on the known upper bound. The downside is that the
users can only take advantage of the responsiveness when they know that there is currently no
corruption in the system and when they know a better bound on the network delay. While this
may seem not particularly useful, the responsiveness can still greatly improve the throughput
of the chain when the protocol is combined with a finality layer such as Casper the Friendly
Finality Gadget [2], GRANDPA [15], or Afgjort [3], where blocks are declared as final as soon
as they are in the common-prefix of honest users. In that case, the time it takes for blocks to be
in the common prefix in periods without corruption only depends on the actual network delay,
and finalization ensures that all users know which blocks to trust.

Choice of weight functions. Intuitively, a weight function needs to satisfy two properties:
First, blocks produced at a good frequency with respect to the actual network delay should
get enough weight to cancel out the weight of blocks that are produced too fast. Secondly,
it should be difficult for the adversary to produce extremely heavy blocks as these can be
used to cause huge rollbacks and violate common prefix. To satisfy both conditions, we let
the weight functions grow exponentially until they reach a threshold, which is determined by
the known upper bound ∆̂Net on the network delay; above the threshold the weight remains
constant. The cap ensures that the adversary cannot cause rollbacks longer than this upper
bound with a single block. Growing exponentially below the threshold gives us responsiveness in
the all-honest setting: Assume the actual network delay ∆Net is much lower than the known
upper bound ∆̂Net. Blocks produced at the right frequency with respect to ∆Net are weighted
much heavier than more frequent blocks. Thus, the honest parties essentially build a chain
just with these blocks, and the lighter ones are negligible in comparison. It is not necessary
to wait for even heavier blocks up to the threshold to get the desired properties. Note that
this only provides responsiveness if there are no corrupted parties: A single dishonest party can
with non-negligible probability produce a block with maximal possible weight, and thus cause
a roll-back of honest blocks produced in ∆̂Net time. We leave it as interesting future work to
analyse the feasibility of responsiveness in the face of active corruption.

1.2 Related Work

The first formal analysis of NSB blockchains was given in the seminal paper [4] for a fixed
threshold T , which was later extended to a variable threshold in [5], and to a different setting
with more variable message delivery times, adaptive corruption, and spawning of new players
in [10]. Ren [13] gives a simpler analysis of the standard Bitcoin protocol under the assumption
that mining on Bitcoin can be modeled as a Poisson process.

Responsiveness was defined by Pass and Shi [11] as the property of a blockchain that
achieves a liveness parameter expressed in terms of the actual network delay, independent of
the conservative upper bound on the network delay used to instantiate the protocol. They
show that a protocol tolerating up to a 1

3 corruption can achieve responsiveness, and that this
bound is tight. They later show in [12] that assuming only honest majority (and a delay for the
corruption of parties) it is possible to obtain the weaker property optimistic responsiveness, i.e.,

3

responsiveness under some additional “goodness” condition, while still providing security in the
worst case. In particular, they show responsiveness in the case of more than 3

4 honest computing
power and an additional assumption of an honest accelerator. In [14] a lower bound is given for
the latency in the optimistic setting of [12] alongside a protocol achieving this within a constant
factor of the actual network delay.

Since [12] and [14] both require a committee and an accelerator, their results only hold
assuming considerably delayed corruption, allowing the accelerator to make progress. Our generic
weighted protocol, on the other hand, can tolerate immediate adaptive corruptions, as desired
in the permissionless setting. However, our result is weaker with respect to the “goodness”
condition since we only achieve responsiveness in the case of no corruption. Whether one can
get responsiveness with non-zero fully adaptive corruption in the permissionless setting remains
an open problem.

The concept of assigning different weights to blocks based on their hash value has already
been considered in the context of proofs of proof of work [6, 7]. The purpose, and consequently
the analysis, there was completely different, however: Heavy blocks there are used to link to
older blocks in addition to the direct parents to allow for faster verification of recent transactions
without verifying the whole chain.

2 Preliminaries
The set of natural numbers is denoted by N = {0, 1, 2, . . .}, the set of real numbers is denoted by
R and the set of non-negative real numbers is denoted R≥0. We denote the probability of an
event E by Pr[E] and the expected value of a random variable X by E[X].

We will use the following bounds in our proofs.

Lemma 1 (Chernoff bound). Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}
for all i, and let µ := E

[∑n
i=1Xi

]
. We then have for all δ ∈ [0, 1],

Pr
[
n∑
i=1

Xi ≤ (1− δ)µ
]
≤ e−

δ2µ
2 and Pr

[
n∑
i=1

Xi ≥ (1 + δ)µ
]
≤ e−

δ2µ
3 .

Lemma 2 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables with
Xi ∈ [a, b] for all i. We then have for all t ≥ 0,

Pr
[

1
n

n∑
i=1

(
Xi − E[Xi]

)
≥ t
]
≤ e−

2nt2
(b−a)2 and Pr

[
1
n

n∑
i=1

(
Xi − E[Xi]

)
≤ −t

]
≤ e−

2nt2
(b−a)2 .

3 Our Generic Framework for Weight-Based Analysis
In this section we formally describe our generic framework and we introduce the concept of
weight functions for PoW blockchains. The motivation behind our framework is that by just
tweaking the way blocks are taken into account by the best-chain rule can have a drastic impact
on the guarantees offered by the protocol. In Sections 3.3 and 3.4 we provide generic definitions
and tools that will be used to show the blockchain properties of chain growth, chain quality and
common prefix for PoW blockchains that leverages weight functions (in Section 4). Our analysis
builds upon the ideas of previous work [4, 13] and extends those to the more general setting
with weighted blocks. We start by describing the blockchain model that we consider for our
framework.

4

3.1 Blockchain Model

Network and Time. We assume that time is divided into rounds which correspond to the
smallest unit of time of interest. We assume a network with bounded delay, which is parameterized
by an upper bound ∆Net on the network delivery time. It allows parties to multicast messages.
That is, any message sent by an honest party in round r is guaranteed to arrive at all honest
parties until round r+ ∆Net. As in, e.g., [10], we assume a gossip network, which ensures that all
messages (sent by a dishonest sender and) received by an honest party in round r are received
by all honest parties until round r + ∆Net. Note that the latter can be achieved by resending all
freshly received messages. The actual delay of messages (per message and party) can be set by
the adversary (within ∆Net). The delay ∆Net is not known to the honest parties. However, we
assume that honest parties know a rough upper bound ∆̂Net, potentially much larger than ∆Net,
on the network delay.

Random Oracle. Following [10], we assume every “party” can make at most one query to a
random oracle in each round. The idea is that one round corresponds to the time it takes to
evaluate the hash function on one CPU and is the smallest unit of time of interest. To model
real-world parties with different amounts of computing power, one can assume that they control
different amounts of these “one-query-per-round” parties. As in [4, 1, 10], we allow the corrupted
parties to make their queries sequentially, while honest parties have to make the queries in
parallel. We assume the range of the random oracle to be H := {1, . . . , 2k}.

In the remainder of the paper, we let q ∈ N denote the number of parties in the protocol.
As each party has one query this is also the maximal amount queries that can be made to the
oracle in each round.

Corruptions. We allow the adversary to adaptively corrupt up to a β < 1
2 fraction of all

parties before each round. Newly corrupted parties are then fully under the adversary’s control
from that round on. We denote by α := 1− β the minimal fraction of participating parties that
are honest at any time. Note that by our definition of the random oracle, there can be at most
qβ random-oracle queries by corrupted parties in each round, and there are at least qα queries
by honest parties in each round (since honest parties in our protocol query the random oracle in
each round, c.f. Section 3.2). We will thus for most of the paper only consider these upper and
lower bounds on the numbers of dishonest and honest queries, and not explicitly map these to
parties.

3.2 Blockchain Protocol

Our protocol is similar to Bitcoin [8] and the following description assumes at least some basic
prior knowledge of the Bitcoin protocol. We deviate from the original Bitcoin protocol in two
important aspects; we change the best chain rule and the valid block predicate. While the valid
block predicate is used to decide what blocks should be considered valid, the best chain rule
decides where parties need to append new blocks to. Our notation follows closely the one
from [4].

Mining. As in Bitcoin, miners in our protocol continuously take what they currently consider
the best chain and try to extend it with a new block. The proof of work aspect corresponds to
miners finding an input to a hash function with certain properties. In the Bitcoin protocol a
valid block must satisfy (among others things) that its hash is smaller than some threshold T .
The challenge of finding a nonce which makes the block hash small enough is what makes Bitcoin
a proof-of-work blockchain. The threshold T is adjusted such that the block-production rate is

5

approximately constant. The constant is chosen as a trade-off between performance and security.
The block validity predicate of Bitcoin thus consists of checking the block hash along with
some (for our purposes unimportant) syntactic well-formedness conditions on the block and its
contents. In our protocol blocks are considered valid independent of their hash value. Instead,
the hash of a block determines how much the block weighs when selecting the best-chain. To
avoid having many low-weight blocks swarm the network we can use a cutoff. Since it does not
impact the security of the protocol but merely a parameter that can be optimized for throughput,
we will ignore it in this paper.

We define the round in which a block was mined to be the round in which the corresponding
query to the random oracle was made.

Best chain. In Bitcoin (with fixed difficulty), the length of the chain is what decides how
“good” a chain is [8, 4]. Thus, in Bitcoin, chains with more blocks are considered better. In our
protocol we use a best-chain rule that is based on the accumulated weight of the blocks in a
chain, i.e., the heavier a chain is, the better, as in bitcoin with variable difficulty [5].

No insertions, copies, and predictions. To simplify our analysis and following [4], we
assume throughout the paper that it never happens that a new block is added between two
existing blocks (insertion), the same block occurs in two different positions (copy), or a block
extends a block that is mined in a later round (prediction). As shown in [4], insertions and
copies can only occur if there is a collision in the random oracle linking blocks together, which
has negligible probability, and the probability of guessing a block is negligible as well.

3.3 Basic Definitions

We define the chain of a block B written Chain(B) to be the list of blocks one gets by following
the pointers in the blocks up to the genesis block. We next define the concept of weight for
blocks and chains.

Definition 1 (Weight functions, weight of blocks and chains). We define a weight function to
be a function of type H → R≥0. Let w be a weight function. We then define the weight of a
block B to be Weightw(B) = w(Hash(B)), and the weight of a chain C to be Weightw(C) =∑
B∈C Weightw(B) .

Next, we define the weight range, that is analogous to the depth of a block in Bitcoin.

Definition 2 (Weight range). Given a weight function w, we define the start weight of a block B
to be

StartWeightw(B) := Weightw(Chain(B))−Weightw(B)

and the end weight to be

EndWeightw(B) := Weightw(Chain(B)).

We also define the weight range of a block B to be

WeightRangew(B) := (StartWeightw(B),EndWeightw(B)].

Consequently,
|WeightRangew(B)| = Weightw(B).

6

We introduce an arbitrary but fixed total order on all blocks produced in the protocol, only
relevant to the proof. We order them lexicographically first based on the production round
(i.e., the round the query that made the block was given to the random oracle) and secondly
on the party that made the query to the random oracle, where we consider an arbitrary, fixed
total order of the parties. Note that the production time of a block is well-defined, even for
adversarial blocks as they also need to make a query to the random oracle in some round.

It is important to note that this enumeration and induced order of block is completely
unrelated to the total order of blocks that the protocol achieves, but is solely a concept that is
introduced for the proof. To avoid confusion will we refer to the above as the proof-order.

Previous analyses [13, 4, 10, 9] are based on the fact that in a certain amount of rounds a
block is produced that has enough time to propagate to all honest parties before a new block is
mined. Ren [13] takes a slightly different approach and defines this in terms of blocks rather
than rounds. More concretely, he defines a “non-tailgater” to be an honest block mined at time t
such that no other honest block is mined between time t−∆Net and t. We believe that this is
closer to the intuition for the proof, namely that once in a while an honest party mines a block
that has enough time to propagate. In his analysis, mining is assumed to be a Poisson process
and therefore no mining events occur simultaneously with positive probability. In our model,
however, it can happen that several blocks are mined in the same round. If several blocks are
mined in a round after ∆Net empty rounds, we can count one of them as a “good” block. We
leverage the proof-order to choose the “first” of these blocks as “good”.2

We formalize this in the following definition. We further generalize the notion to our setting
with different weights, i.e., instead of requiring that no blocks are mined within a propagation
period, we only require that no blocks above a certain threshold are mined within this period.

Definition 3 (h-(left-)isolation). Let h ∈ H, and let B be a block mined in round r ∈ N. We say
B is h-left-isolated if B is honest, Hash(B) > h, and there is no block left of B in the proof-order
with hash above h mined in rounds [r −∆Net, r]. If B is honest, Hash(B) > h, and no other
blocks with hash above h are mined in rounds [r −∆Net, r + ∆Net], we say B is h-isolated.

Note that we define h-(left-)isolation with respect to the unknown upper bound ∆Net on the
network delay, not on the known bound ∆̂Net.
Remark 1. Similar notions have been defined in previous work [13, 9, 4, 10]. We deviate from
these definitions by defining (left-) isolation to require that no blocks are mined on either side
(to the left) of a block, whereas earlier work had the requirement that no other honest block
was mined within that period. We use the stricter definition because it simplifies some of the
arguments (especially with respect to adaptive corruptions). Only considering honest blocks
may potentially allow to prove tighter bounds, though. Note that we define the round in which
a block was mined to be the round in which the corresponding query to the random oracle was
made, so this is also well-defined for corrupted parties, who may send their block in a later
round.

Left-isolated blocks are called “non-tailgaters” and isolated blocks are called “loners” by
Ren [13]. Analogous notions to that of a round with a left-isolated block has in previous work
been called an “effective-round” [9] and “isolated successful round” [4]. The event of a isolated
block has in previous work been called “convergence opportunity” [10], “uniquely effective
round” [9] and an “uniquely isolated successful round” [4]. We chose the terms “left-isolated”
and “isolated” as we believe them to be more intuitive.

2The proof-order could be defined to take the block with maximal weight in each round instead of ordering
them by the parties. This would give a slightly tighter analysis as there then would be slightly more “good”
weight. For simplicity, have we chosen not to take this approach.

7

3.3.1 Bounds on Produced Weight

We now introduce some useful notation for weight functions describing different bounds on
weight that can be produced with a specific weight function. We say a weight function is(
Ŵg, p̂g

)
-upper-bounding for some parameter g ≤ q if the weight of all blocks mined in r rounds

(for all r ∈ N) with at most g queries (honest or dishonest) per round is at most Ŵg(r), except
with probability p̂g(r).
Definition 4. Let w be a weight function, and let for g ∈ N, Ŵg : N→ R, and let p̂g : N→ [0, 1]
be monotonically decreasing. Further let Wg,r for r ∈ N be the random variable corresponding
to the total weight of all blocks weighted with w mined in r consecutive rounds with at most g
queries in each round. We say w is

(
Ŵg, p̂g

)
-upper-bounding if for all r ∈ N,

Pr
[
Wg,r ≥ Ŵg(r)

]
≤ p̂g(r).

Similarly, we introduce
(
Ŵ≤h0
g , p̂≤h0

g

)
-below-threshold-upper-bounding to bound the weight

produced by blocks with hash value at most h0, and
(
Ŵ>h0
g , p̂>h0

g

)
-above-threshold-upper-

bounding to bound the weight produced by blocks with hash value more than h0.
Definition 5. Let w be a weight function, let for g ∈ N, h0 ∈ H, Ŵ≤h0

g , Ŵ>h0
g : N → R, and

let p̂≤h0
g , p̂>h0

g : N→ [0, 1] be monotonically decreasing. Further let W≤h0
g,r (W>h0

g,r) for r ∈ N be
the random variable corresponding to the total weight of all blocks with hash value at most h0
(more than h0) weighted with w mined in r consecutive rounds with at most g queries in each
round. We say w is

(
Ŵ≤h0
g , p̂≤h0

g

)
-below-threshold-upper-bounding if for all r ∈ N,

Pr
[
W≤h0
g,r ≥ Ŵ≤h0

g (r)
]
≤ p̂≤h0

g (r),

and w is
(
Ŵ>h0
g , p̂>h0

g

)
-above-threshold-upper-bounding if for all r ∈ N,

Pr
[
W>h0
g,r ≥ Ŵ>h0

g (r)
]
≤ p̂>h0

g (r).

For (left-)isolated blocks, we are interested in a lower bound instead of an upper bound
on the produced weight. Also note that by our definition of (left-)isolated blocks, only honest
blocks can be left-isolated. We therefore do not use a parameter g here, but always consider q
queries in each round in total, with at least qα queries from honest parties. We first introduce
the notion of a

(
W̌Isoh , p̌Isoh

)
-isolated-lower-bounding weight function. It means that the total

weight of all h-isolated blocks mined in r consecutive rounds is at least W̌Isoh(r), except with
probability p̌Isoh(r).

Definition 6. Let w be a weight function, and let for h0 ∈ H, W̌Isoh0 : N → R, and let
p̌Isoh0 : N → [0, 1] be monotonically decreasing. Further let Wr,Isoh0 for r ∈ N be the random
variable corresponding to the total weight of all h-isolated blocks weighted with w mined in r
consecutive rounds. We say w is

(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding if for all r ∈ N,

Pr
[
Wr,Isoh0 ≤ W̌Isoh0 (r)

]
≤ p̌Isoh0 (r).

Left-isolated-lower-bounding weight functions are defined analogously.
Definition 7. Let w be a weight function, and let for h0 ∈ H, W̌LeftIsoh0 : N → R, and let
p̌LeftIsoh0 : N → [0, 1] be monotonically decreasing. Further let Wr,LeftIsoh0 for r ∈ N be the
random variable corresponding to the total weight of all h-left-isolated blocks weighted with w
mined in r consecutive rounds. We say w is

(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding if

for all r ∈ N,
Pr
[
Wr,LeftIsoh0 ≤ W̌LeftIsoh0 (r)

]
≤ p̌LeftIsoh0 (r).

8

3.4 Proving Bounds from Properties of the Weight Functions

In this section, we show how to derive some of the thresholds defined in Section 3. Additional
derivations, which may be useful for other weight functions than the ones considered in this
paper, are provided in Appendix A.

Notation. In the remainder of the paper we define p≤h0 := h0
2k to be the probability that

a single random oracle query returns a value at most h0, and wmax≤h0 := maxh∈{1,...,h0} w(h),
wmax>h0 := maxh∈{h0+1,...,2k} w(h), and wmin>h0 = minh∈{h0+1,...,2k} w(h) (for the weight function
that is clear from the context).

Lemma 3 (Weight above and below a threshold). Let w be a weight function, let g ∈ N, and
h0 ∈ H. Then, for all δ ∈ (0, 1), w is

(i)
(
Ŵ≤h0
g , p̂≤h0

g

)
-below-threshold-upper-bounding with

Ŵ≤h0
g = wmax≤h0 · (1 + δ) · g · r · p≤h0 , p̂≤h0

g = e−
δ2·g·r·p≤h0

3 ,

(ii) and
(
Ŵ>h0
g , p̂>h0

g

)
-above-threshold-upper-bounding with

Ŵ>h
g (r) = wmax>h0 · (1 + δ) · g · r · (1− p≤h0), p̂>hg (r) = e−

δ2·g·r·(1−p≤h0)
3 .

Proof. The probability to get a block below a threshold in just one query is p≤h0 and above a
threshold is 1− p≤h0 . The amount of blocks below/above a threshold can be upper bounded
with Chernoff (Lemma 1). Each block below contributes with weight at most wmax≤h0 , and
blocks above with weight at most wmax>h0 .

We next prove bounds on the number of (left-)isolated blocks and afterwards use this for a
simple bound on the amount of (left-)isolated weight. The proof follows some ideas from Ling
Ren [13]. At a very high level, we proceed by first applying the Chernoff bound to obtain a
bound on the number of blocks with hash above h0, and then using Chernoff again to bound
how many of these blocks are (left-)isolated. The main difficulty lies in proving independence of
the involved variables as needed for the Chernoff bound.

Lemma 4 (Amount of (left-)isolated blocks). Let r be a number of consecutive rounds, let
h0 ∈ H, let Nr,LeftIsoh0 denote the number of h0-left-isolated blocks produced, and let Nr,Isoh0

denote the number of h0-isolated blocks produced during these r rounds. We then have for any
δ ∈ (0, 1),

Pr
[
Nr,LeftIsoh0 ≤ (1− δ) · αqr · (1− p≤h0) · pq∆Net

≤h0

]
≤ 2e−

δ2·αqr·(1−p≤h0)·pq∆Net
≤h0

16 , (1)

Pr
[
Nr,Isoh0 ≤ (1− δ) · αqr · (1− p≤h0) · p2·q∆Net

≤h0

]
≤ 3e−

δ2·αqr·(1−p≤h0)·p2q∆Net
≤h0

108 . (2)

Proof. To prove the lemma, we start by lower-bounding the amount of left-isolated blocks within
any sequence of consecutive honest blocks. For any n we look at the first (according to the
proof-order) n honest blocks with a hash above h0 produced since the start of the r considered
rounds. The probability that block i is left-isolated is given by the probability that all of the
blocks in ∆Net time before and to the left (with respect to the proof-order) of the block in the

9

same round do not result in a winning event with hardness above h0. In the worst case, the
considered block is the last one in its round, i.e., there are q − 1 to the left of block i in that
round. Hence, there are at most q · (∆Net− 1) + (q− 1) queries to be considered. Note that if the
corrupted parties make less queries, this can only increase the probability of left-isolated blocks.
The probability that block i is left-isolated is thus at least the probability that all these queries
result in a hash value at most h0. We define Yi = 1 if the ith honest block is h0-left-isolated.
Then,

Pr[Yi = 1] ≥ pq·(∆Net−1)+(q−1)
≤h0

≥ pq∆Net
≤h0

.

We further define NLeftIsoh0 (n) :=
∑n
i=1 Yi, i.e., the number of left isolated blocks of the n honest

blocks above h0. The above implies

E
[
NLeftIsoh0 (n)

]
≥ n · pq∆Net

≤h0
.

Note that Yi = 1 if and only if the inter-arrival time between the (i− 1)th and the ith honest
block with hash above h0 is at least q · (∆Net − 1) + (q − 1).3 Since the inter-arrival times of
independent Bernoulli trials are independent, the Yi are also independent. We can therefore use
the Chernoff bound (Lemma 1) for δ1 ∈ (0, 1) to obtain

Pr
[
NLeftIsoh0 (n) ≤ (1− δ1) · n · pq∆Net

≤h0

]
≤ e−

δ21 ·n·p
q∆Net
≤h0
2 . (3)

We now bound the number of honest blocks with hash above h0 produced during the R
considered rounds. Let Xi = 1 if the i’th honest query results in a hash above h0. We note that
Pr[Xi = 1] = 1 − p≤h0 . Let Nαqr,>h0 :=

∑αqr
i=1Xi and note that E[Nαqr,>h0] ≥ αqr · (1 − p≤h0)

as αqr is a lower bound on the amount of honest queries. The Chernoff bound (Lemma 1) for
δ2 ∈ (0, 1) then implies

Pr
[
Nαqr,>h0 ≤ (1− δ2) · αqr · (1− p≤h0)

]
≤ e−

δ22αqr·(1−p≤h0)
2 . (4)

Note that Nr,LeftIsoh0 = NLeftIsoh0 (Nαqr,>h0). We set δ1 := δ2 := δ
2 . We then have δ1, δ2 ∈ (0, 1)

and (1− δ1)(1− δ2) ≥ (1− δ). Together with equations (3), (4), and using that Nαqr,>h0 ∈ N,
we can conclude that

Pr
[
Nr,LeftIsoh0 ≤ (1− δ) · αqr · (1− p≤h0) · pq∆Net

≤h0

]
≤ e−

δ2·αqr·(1−p≤h0)
8 + e−

δ2·(1−δ2)·αqr·(1−p≤h0)·pq∆Net
≤h0

8

≤ 2e−
δ2·αqr·(1−p≤h0)·pq∆Net

≤h0
16 ,

where we used 1− δ2 = 1− δ
2 ≥

1
2 in the last step. This concludes the proof of equation (1).

To prove equation (2), we again first bound how many isolated blocks we get within a
sequence of n blocks. As above, we use the proof order to enumerate the first n honest blocks
since the start of the R considered rounds with hash above h0. We define Zi = 1 if the ith block
is h0-isolated, and Zi = 0 otherwise. We note that Zi = Yi · Yi+1 as i+ 1 is the winning event
that happened the shortest time after i, and there are more than ∆Net rounds between these if
and only if the latter is left-isolated. Since Yi and Yi+1 are independent, we have

Pr[Zi = 1] = Pr[Yi = 1 ∧ Yi+1 = 1] = Pr[Yi = 1] · Pr[Yi+1 = 1] ≥ p2·q∆Net
≤h0

.

3We are slightly abusing notation since for i = 1, the (i− 1)th block is not part of the n considered blocks, but
last the honest block with hash above h0 before Y1. Note that if such (i− 1)th block does not exist in the chain,
Yi = 1 with probability 1, and therefore Yi and the other Yj are independent.

10

Note that Zi and Zi+1 are not independent since they both depend on Yi+1, but Zi and Zi+2
are independent. We therefore write NIsoh0 (n) =

∑
i∈{1,...,n}∧Odd(i) Zi +

∑
i∈{1,...,n}∧Even(i) Zi. Let

NOdd(n) be the number of odd i ∈ {1, . . . , n}, and let NEven(n) be the number of even i ∈
{1, . . . , n}. Since E

[∑
i∈{1,...,n}∧Odd(i) Zi

]
≥ NOdd · p2·q∆Net

≤h0
, we can apply the Chernoff bound

(Lemma 1) for δ3 ∈ (0, 1) to obtain

Pr

 ∑
i∈{1,...,n}∧Odd(i)

Zi ≤ (1− δ3)NOdd(n) · p2·q∆Net
≤h0

 ≤ e− δ23 ·NOdd(n)·p
2·q∆Net
≤h0

2 .

We can also apply the Chernoff bound for δ4 ∈ (0, 1) to the even case and together with the
above obtain

Pr
[
NIsoh0 (n) ≤ ((1− δ3)NOdd(n) + (1− δ4)NEven(n)) · p2·q∆Net

≤h0

]
≤ e−

δ23 ·NOdd(n)·p
2·q∆Net
≤h0

2 + e−
δ24 ·NEven(n)·p

2·q∆Net
≤h0

2 .

Let δ4 = δ3 and note that if n is even then NOdd(n) = NEven(n) = n
2 and we obtain

Pr
[
NIsoh0 (n) ≤ (1− δ3) · n · p2·q∆Net

≤h0

]
≤ 2e−

δ23 ·n·p
2·q∆Net
≤h0
4 . (5)

Note that Nr,Isoh0 = NIsoh0 (Nαqr,>h0), and by equation 4, we have Nαqr,>h0 > (1− δ2) · αqr ·
(1−p≤h0) except with small probability. There exists δ2 ∈

(
δ
3 ,

2δ
3
)
such that (1−δ2)·αqr·(1−p≤h0)

is even if (
1− δ

3

)
· αqr · (1− p≤h0)−

(
1− 2δ

3

)
· αqr · (1− p≤h0) > 2

⇐⇒ δ

3 · αqr · (1− p≤h0) > 2

⇐⇒ αqr >
6

δ · (1− p≤h0) . (6)

First assume that equation 6 is satisfied. We then pick δ2 ∈
(
δ
3 ,

2δ
3
)
accordingly and δ3 := δ − δ2.

We have
(1− δ2) · (1− δ3) = 1− δ + δ2δ − δ2

2 ≥ 1− δ.

Note that we further have δ3 ∈
(
δ
3 ,

2δ
3
)
. Together with equations (4) and (5) and using that

1− δ2 ≥ 1
3 and δ2

2 , δ
2
3 ≥ δ2

9 , we can conclude that

Pr
[
Nr,Isoh0 ≤ (1− δ) · αqr · (1− p≤h0) · p2·q∆Net

≤h0

]
≤ e−

δ22αqr·(1−p≤h0)
2 + 2e−

δ23 ·(1−δ2)·αqr·(1−p≤h0)·p2·q∆Net
≤h0

4

≤ 3e−
δ2·αqr·(1−p≤h0)·p2·q∆Net

≤h0
108 .

We finally consider the case where condition (6) is not satisfied. Then αqr ≤ 6
δ·(1−p≤h0) ,

which implies that

3e−
δ2·αqr·(1−p≤h0)·p2·q∆Net

≤h0
108 ≥ 3

e
≥ 1.

In this case, equation (2) is therefore trivially satisfied.

11

Lemma 5. Let w be a weight function and h0 ∈ H. Then, for all δ ∈ (0, 1),

(i) w is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding with

W̌LeftIsoh(r) = wmin>h0 · (1− δ) · αqr · (1− p≤h0) · (p≤h0)q∆Net ,

p̌LeftIsoh(r) = 2e−
δ2·αqr·(1−p≤h0)·(p≤h0)q∆Net

16 ,

(ii) and w is
(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding with

W̌Isoh(r) = wmin>h0 · (1− δ) · αqr · (1− p≤h0) · (p≤h0)2q∆Net ,

p̌Isoh(r) = 3 · e−
δ2·αqr·(1−p≤h0)·(p≤h0)2q∆Net

108 .

Proof. Each (left-)isolated block contributes at least wmin>h0 weight. Hence, the bounds on the
amount of (left-)isolated blocks from Lemma 4 directly imply the lower bounds on (left-)isolated
weight.

4 Proving Chain Properties
In this section we prove the standard properties of chain growth, chain quality, and common
prefix for our generic framework by only assuming bounds on the produced weight, as introduced
in Section 3. We consider a fixed weight function w for the entire section so we leave it out of
the notations.

We warm-up with some fundamental lemmas that will be used as a building block when
proving the more complex theorems on the chain properties.

The following lemma is a generalization of Lemma 5 (i) in [13]. It intuitively says that if we
only consider blocks above a certain hash, and enough time has passed since an honest block
was mined, then a new honest block will have a different position in the chain than the previous
block.

Lemma 6. Let h ∈ H and let B 6= B′ be h-left-isolated blocks. Then, B and B′ have disjoint
weight ranges.

Proof. We assume without loss of generality that B is mined first. The party P ′ who mines B′
receives B within ∆Net rounds, which is by definition of h-left-isolation before B′ is mined. After
receiving B, P ′ only extends chains with weight at least EndWeight(B). Hence, EndWeight(B) ≤
StartWeight(B′), and thus, WeightRange(B) ∩WeightRange(B′) = ∅.

The next lemma is a generalization of Lemma 5 (ii) in [13]. The lemma says that if we
only consider honest blocks above a certain hash, then if such a block has had enough time to
propagate before the next block is produced and no other block was mined in a period before,
then this block will not share a position in the chain with any other block.

Lemma 7. Let h ∈ H and let B be a h-isolated block. Further let B′ 6= B be an honest block
with Hash(B′) > h. Then, B and B′ have disjoint weight ranges.

Proof. Let B0 ∈ {B,B′} be the block which is mined first. By definition of h-isolation, the other
block is mined more than ∆Net rounds later. As in the proof of Lemma 6, we can thus conclude
that the party mining the second block knows B0 beforehand and thus extends a chain with
weight at least EndWeight(B0). Hence, WeightRange(B) ∩WeightRange(B′) = ∅.

12

4.1 Chain Growth

The chain growth property intuitively says that a chain will increase its weight by at least a fixed
bound at every round. We give a formal definition of our weight-based chain growth property
next.

Definition 8 (Chain Growth). Let w be a weight function. The chain growth property with
parameters ρ ∈ N and τ ∈ R, states that for any honest party P that has a chain C1, it holds that
after any ρ consecutive rounds P adopts a chain C2 such that Weight(C2) ≥Weight(C1) + (ρ · τ)
for τ > 0.

Next, we show that the accumulated weight of the chain grows at least by the accumulated
weight of the left-isolated blocks at each round, and therefore satisfies the property of Definition 8.
We show a slightly more general version of chain growth as this is useful for proving chain quality
later.

Theorem 1 (Chain Growth). Let C1 be the best chain of P1 in round r1 and let C2 be the
best chain of P2 in round r2, where r1 ≤ r2 − 2∆Net + 1. For any h0 ∈ H such that the weight
function is

(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding, we have

Pr
[
Weight(C2) < Weight(C1) + W̌LeftIsoh0 (r2 − r1 − 2∆Net + 1)

]
≤ p̌LeftIsoh0 (r2 − r1 − 2∆Net + 1).

Proof. Let Bh0
li be the set of all h0-left-isolated blocks mined in [r1 + ∆Net, r2 − ∆Net]. Any

block seen by P1 in round r1, will be seen by any honest party until round r1 + ∆Net. This is
specifically true for all blocks in C1 and thus, StartWeight(B) ≥ EndWeight(C1) for all B ∈ Bh0

li .
Moreover, all blocks in Bh0

li have disjoint weight ranges by Lemma 6. As all these blocks
had enough time to propagate to P2 in round r2, P2 will have at least one chain C ′2 with
Weight(C ′2) ≥ Weight(C1) +

∑
B∈Bh0

li
Weight(B). Note that Weight(C2) ≥ Weight(C ′2) as C2 is

P2’s best chain in round r2 and
∑
B∈Bh0

li
Weight(B) ≥ W̌LeftIsoh0 (r2− r1− 2∆Net + 1) except with

probability p̌LeftIsoh0 (r2 − r1 − 2∆Net + 1).

When this theorem is instantiated with P1 = P2, we obtain chain growth for ρ > 2∆Net and
τ = W̌LeftIsoh0 (ρ−2∆Net)

ρ except with probability p̌LeftIsoh0 (ρ− 2∆Net).

4.2 Chain Quality

The chain quality property intuitively says that within any consecutive chunk of blocks of an
honest party’s chain, at least a ratio of the blocks was produced by honest parties. We give a
formal definition next.

Definition 9 (Chain Quality). The chain quality property with parameters Λ ∈ R and µ ∈ R,
states that for any honest party P that has a chain C as his best chain, it holds that for any
sequence of consecutive blocks with a weight range of size at least Λ in C, it holds that the ratio
of honest weight is at least µ.

We believe that it is more intuitive to reason about the chain quality property in terms of
elapsed time instead of weight. Hence, we first give a proof for a “timed” version of the chain
quality property,4 which intuitively ensures that a fraction of honest weight is contained in a
sequence of blocks that are mined within some time-period.

4We omit the formal definition here as it can be easily derived from Definition 9.

13

Lemma 8 (Timed chain quality). Let P be an honest party with best chain C = B1B2 . . . Bn
and let R = Bi . . . Bj be any consecutive list of blocks in C with 1 ≤ i < j ≤ n where block Bi was
mined in round ri, Bj in round rj, and rj − ri ≥ 2∆Net. Further let h0 ∈ H and X ∈ R such that
the weight function is

(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding and

(
Ŵqβ, p̂qβ

)
-upper-

bounding such that for any ρ ≥ rj − ri, we have W̌LeftIsoh0 (ρ− 2∆Net + 1) ≥ Ŵqβ(ρ) +X. Finally
let pbad be the probability that the fraction of honest weight in R is less than X

Weight(R) . Then,

pbad ≤ p̌LeftIsoh0 (rj − ri − 2∆Net + 1) + p̂qβ(rj − ri).

Proof. Let î be the largest value such that î ≤ i and Bî was mined by an honest party5. This is
well defined as the genesis block B1 is honest by definition. Let ĵ be the smallest value such
that ĵ ≥ j and there exists a round such that an honest player had that B1 . . . Bĵ was his best
chain. Now let rî be the round that Bî was created and let rĵ be the first round that an honest
player had B1 . . . Bĵ as his best chain. This is well defined as Bn is actually the head of the best
chain of an honest party.

Note that in round rî was B1 . . . Bî actually the best chain of the honest party who baked
this block. By Lemma 1 do we thus know that

Pr
[
Weightw(Bî . . . Bĵ) < W̌LeftIsoh0 (rĵ − rî − 2∆Net + 1)

]
≤ p̌LeftIsoh0 (rĵ − ri − 2∆Net + 1),

as B1 . . . Bĵ could otherwise not be the best chain of any honest party in round rĵ . On the
other hand is the probability that the adversary him self have been able to generate more than
Ŵqβ(rĵ − rî) weight less than p̂qβ(rĵ − rî). As î < i and ĵ < j implies that Bî+1 . . . Bi and
Bj . . . Bî are all dishonest blocks, does this imply that at least X honest weight will be in R unless
with probability p̌LeftIsoh0 (rĵ − rî− 2∆Net + 1) + p̂qβ(rĵ − rî). The statement now follows from the
fact that the probability functions are monotonically decreasing and that rĵ − rî ≥ rj − ri.

Next, we state the weighted chain quality theorem. We use Lemma 8 together with the fact
that the amount of weight produced during a time period is bounded; moreover, we use the
collective mining rate to do this mapping, which is by no means a tight bound.

Corollary 1 (Weighted chain quality). Let P be an honest party, let R be any consecutive
list of blocks from the best chain of this party, and let ρ ∈ N, ρ ≥ 2∆Net be the largest value
such that Ŵq(ρ) ≤Weight(R). Further, let h0 ∈ H and X ∈ R such that the weight function is(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding and

(
Ŵqβ, p̂qβ

)
-upper-bounding such that for

any ρ′ ≥ ρ, we have W̌LeftIsoh0 (ρ′ − 2∆Net + 1) ≥ Ŵqβ(ρ′) +X. Let pbad be the probability that
the fraction of honest weight in R is less than X

Weight(R) . Then,

pbad ≤ p̌LeftIsoh0 (ρ− 2∆Net + 1) + p̂qβ(ρ) + p̂q(ρ).

Proof. By our assumption on the weight function, it took at least ρ rounds to produce R, except
with probability p̂q(ρ). We can thus apply Lemma 8 to conclude the proof of the theorem.

4.3 Common Prefix

The common prefix property is arguably the most important property of blockchains. It
informally says that the chains of honest parties are always a common prefix of each other after
removing some blocks on the chain.

5Note that instead of defining î such that Bî is an honest block it could also have been defined as the largest
index less than i such that there existed an honest party that had Bî as the head of his best chain. Even though
that this does gives an î “closer” to i, this does not increase our bounds.

14

Next, we define our two variants of the common prefix property. The first variant is with
respect to the absolute number of rounds, where it states that for any pair of honest parties
that adopted chains at different rounds, the oldest chain is a prefix of the most recent chain.
The second variant is analogous, but with respect to the accumulated weight.

Definition 10 (Pruning). Let C be a chain, w ∈ R be a weight, and let r ∈ N be a round. We
define CWdw to be the longest prefix of C such that Weight

(
C

Wdw) ≤Weight(C)−w, i.e., blocks
with total weight at least w are removed from the end of C. We further define CR>dr to be the
chain containing all blocks from C that were mined until round r, i.e., all blocks mined after
round r are removed from C.

Definition 11 (Timed Common Prefix). For parameter ρ ∈ N, let C1 be the best chain of
honest party P1 in round r1, and let C2 be the best chain of honest party P2 in round r2 for
r1 ≤ r2. Then, C1

R>dr1−ρ � C2.

Definition 12 (Weighted Common Prefix). For parameter ω ∈ R, let C1 be the best chain of
honest party P1 in round r1, and let C2 be the best chain of honest party P2 in round r2 for
r1 ≤ r2. Then, C1

Wdω � C2.

Similarly to [4] we prove our common prefix property in two steps. First, in Lemma 9, we
show a weaker version of the property that says that the best chain of any pair of honest players
at the same round must be a prefix of each other. Then, in Theorem 2 we prove Definition 11 by
extending the proof to capture the case where the honest parties might be at different rounds.

Lemma 9 (Common-prefix lemma). Let r be some round and let P1 be some honest party with
best chain C1 in round r. Let pbad be the probability that there is some chain C2 such that all
blocks on C2 have been mined until round r, Weight(C2) ≥Weight(C1), and the deepest honest
common block B̂0 in C1 and C2 is mined in some round r0 ≤ r − 2∆Net + 1. We then have the
following two properties.

(i) For all h0 ∈ H such that the weight function is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-

bounding and
(
Ŵq, p̂q

)
-upper-bounding with

2 · W̌LeftIsoh0 (r − r0 − 2∆Net + 1) ≥ Ŵq(r − r0),

we have
pbad ≤ p̌LeftIsoh0 (r − r0 − 2∆Net + 1) + p̂q(r − r0).

(ii) For all h0 ∈ H such that the weight function is
(
Ŵ≤h0
q , p̂≤h0

q

)
-below-threshold-upper-

bounding,
(
Ŵ>h0
qβ , p̂>h0

qβ

)
-upper-bounding, and

(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding with

W̌Isoh0 (r − r0 − 2∆Net + 1) ≥ Ŵ≤h0
q (r − r0) + Ŵ>h0

qβ (r − r0),

we have
pbad ≤ p̌Isoh0 (r − r0 − 2∆Net + 1) + p̂≤h0

q (r − r0) + p̂>h0
qβ (r − r0).

Proof. Assume a chain C2 as described exists and let B0 be the deepest common block in C1
and C2

6. Let Bh0
li and Bh0

iso be the set of all h0-left-isolated blocks and the set of all h0-isolated
6Note that if B0 is honest, we have B̂0 = B0. The reason for considering B̂0 in addition to B0 is that only

honest parties are guaranteed to broadcast blocks they mine immediately. Hence, for an honest B̂0, we know that
other honest parties will know that block at most ∆Net rounds after it was mined.

15

blocks mined in some round in [r0 + ∆Net, r −∆Net], respectively. Further let Bh0
nli, B

≤h0
hon , and

Bdis be the sets of all non-(∆Net, h0)-left-isolated blocks, all honest blocks with hash value at
most h0, and all dishonest blocks mined in some round in (r0, r], respectively. We define W h0

li :=⋃
B∈Bh0

li
WeightRange(B), W h0

iso :=
⋃
B∈Bh0

iso
WeightRange(B), W h0

nli :=
⋃
B∈Bh0

nli
WeightRange(B),

W≤h0
hon :=

⋃
B∈B≤h0

hon
WeightRange(B), and Wdis :=

⋃
B∈Bdis

WeightRange(B) to be the sets of all
weight depths in the weight ranges of the corresponding blocks. We claim that

W h0
li ⊆W

h0
nli , (7)

W h0
iso ⊆W

≤h0
hon ∪Wdis. (8)

To prove these claims, we first show that

W h0
li ,W

h0
iso ⊆

(
EndWeight(B̂0),EndWeight(C1)

]
.

All honest parties mining blocks in round r0 + ∆Net or later know about B̂0 and will therefore
only extend chains with weight at least EndWeight(B̂0). Likewise, if some honest block with
weight depth more than EndWeight(C1) was mined until round r −∆Net, no honest party would
consider C1 the best chain in round r.

We next show that descendants of B̂0 on C1 or C2 are mined in some round in (r0, r]. Since
B̂0 is honest, it is not known to any party before r0. All descendants of B̂0 are thus mined after
round r0.7 Furthermore, honest parties only adopt chains containing blocks they know, which
means all blocks on C1 are mined until round r. The same holds for C2 by assumption. We
finally prove equations (7) and (8). To this end, let w ∈ W h0

li or w ∈ W h0
iso . We consider the

following cases:

w ∈
(
EndWeight(B̂0),EndWeight(B0)

]
: There is a block on the chain from B̂0 to B0 (excluding

B̂0) whose weight range includes w. Since all these blocks are dishonest, they are in
particular non-h0-left-isolated. Furthermore, they are descendants of B̂0 and are on C1
and are thus mined in some round in (r0, r]. Hence, w ∈Wdis ⊆W h0

nli .

w ∈
(
EndWeight(B0),EndWeight(C1)

]
: There are blocks both on C1 and on C2 (and potentially

more) that cover w. If w ∈ W h0
li , Lemma 6 implies that there is a non-h0-left-isolated

block B′ covering w on at least one of these chains. If w ∈ W h0
iso , Lemma 7 implies that

there is a block B′ on one of these chains that is not both honest and has a hash value
above h0. Since B′ in both cases is a descendant of B̂0 and on C1 or C2, it was mined
in some round in (r0, r]. We can therefore conclude that w ∈ W h0

nli in the first case, and
w ∈W≤h0

hon ∪Wdis in the latter case.

All cases together imply equations (7) and (8).
We now prove claim (i) of the lemma. Since left-isolated blocks have disjoint weight ranges

by Lemma 6, equation (7) implies

wli :=
∑

B∈Bh0
li

Weight(B) ≤
∑

B∈Bh0
nli

Weight(B) =: wnli.

Let w be the total weight of all blocks mined in some round in (r0, r]. Recall that Bh0
li are

all h0-left-isolated blocks mined in some round in [r0 + ∆Net, r −∆Net], and Bh0
nli are all non-

(∆Net, h0)-left-isolated blocks mined in some round in (r0, r]. Since [r0 + ∆Net, r−∆Net] ⊆ (r0, r],
we have wnli ≤ w − wli. Hence,

2wli ≤ w.
7Assuming there are no collisions in the random oracle, in which case a dishonest party could extend B̂0 before

it is mined by an honest party.

16

By assumption on the weight function, wli > W̌LeftIsoh0 (r − r0 − 2∆Net + 1) and w < Ŵq(r − r0),
except with probability p̌LeftIso∆Neth0(r − r0 − 2∆Net + 1) + p̂q(r − r0). We can thus conclude by
our assumptions on these quantities that the inequality 2wli ≤ w can only hold with at most
this probability, which concludes the proof of (i).

We finally prove claim (ii). By Lemma 7, isolated blocks have disjoint weight ranges. Hence,
equation (8) implies

wiso ≤ w≤h0
hon + wdis,

for wiso :=
∑
B∈Bh0

iso
Weight(B), w≤h0

hon :=
∑
B∈B≤h0

hon
Weight(B), and wdis :=

∑
B∈Bdis

Weight(B).
The dishonest blocks can be split up into the dishonest blocks with a hash below h0 which we
denote B≤h0

dis and the blocks above which we denote B>h0
dis . We let w≤h0

dis :=
∑
B∈B≤h0

dis
Weight(B)

and w>h0
dis :=

∑
B∈B>h0

dis
Weight(B), which gives us that wdis = w≤h0

dis + w>h0
dis . We note that

w≤h0
hon + w≤h0

dis is upper-bounded by Ŵ≤h0
q except with probability p̂≤h0

q . Together with the
assumptions on W̌Isoh0 , and Ŵ>h0

qβ , claim (ii) follows.

Theorem 2 (Timed common prefix). Let ρ ≥ 2∆Net− 1, let P1, P2 be (not necessarily different)
honest parties, let r1 ≤ r2 be rounds, and let C1 be the best chain of P1 in round r1. Further let
pbad be the probability that P2 has a best chain C2 in round r2 with C1

R>dr1−ρ 6� C2. We have

(i) For all h0 ∈ H such that the weight function is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-

bounding and
(
Ŵq, p̂q

)
-upper-bounding, and for all ρ′ ≥ ρ

2 · W̌LeftIsoh0 (ρ′ − 2∆Net + 1) ≥ Ŵq(ρ′),

we have
pbad ≤ 2p̌LeftIsoh0 (ρ− 2∆Net + 1) + 2p̂q(ρ).

(ii) For all h0 ∈ H such that the weight function is
(
Ŵ≤h0
q , p̂≤h0

q

)
-below-threshold-upper-

bounding,
(
Ŵ>h0
qβ , p̂>h0

qβ

)
-upper-bounding, and

(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding, and

for all ρ′ ≥ ρ
W̌Isoh0 (ρ′ − 2∆Net + 1) ≥ Ŵ≤h0

q (ρ′) + Ŵ>h0
qβ (ρ′),

we have
pbad ≤ 2p̌Isoh0 (ρ− 2∆Net + 1) + 2p̂≤h0

q (ρ) + 2p̂>h0
qβ (ρ).

Proof. Assume the best chain C2 of P2 in round r2 is such that C1
R>dr1−ρ 6� C2, and let r ≤ r2

be the first round with r ≥ r1 in which some honest party P ′2 (not necessarily P1 or P2) adopted
a chain C ′2 with C1

R>dr1−ρ 6� C ′2. We distinguish two cases:

Case 1: r = r1. In this case, all blocks on C ′2 have been mined until round r1. Let r0 be the
round in which the deepest honest common block in C1 and C ′2 has been mined. Since
C1

R>dr1−ρ 6� C ′2, we have r0 ≤ r1 − ρ ≤ r1 − 2∆Net + 1. Now let C?1 ∈ {C1, C
′
2} be the

chain with the smaller or equal EndWeight, and let C?2 be the other one. Note that C?1 is
the best chain of some honest party in round r, and all blocks on C?2 have been mined
until round r. We can thus apply Lemma 9 to obtain that the probability of this case for
claim (i) is at most

p̌LeftIsoh0 (r − r0 − 2∆Net + 1) + p̂q(r − r0) ≤ p̌LeftIsoh0 (ρ− 2∆Net + 1) + p̂q(ρ),

17

and for claim (ii)

p̌Isoh0 (r − r0 − 2∆Net + 1) + p̂≤h0
q (r − r0) + p̂>h0

qβ (r − r0)

≤ p̌Isoh0 (ρ− 2∆Net + 1) + p̂≤h0
q (ρ) + p̂>h0

qβ (ρ),

where we used r − r0 ≥ ρ and the monotonicity of the probabilities.

Case 2: r > r1. Let C ′1 be the best chain of P ′2 in round r− 1 ≥ r1. We then have C1
R>dr1−ρ �

C ′1. This implies that C ′2 cannot result from extending C ′1, and therefore, C ′2 must have
been sent to P ′2 from another party. Hence, all blocks in C ′2 have been mined until
round r − 1. Since P ′2 adopts C ′2, we further have Weight(C ′2) > Weight(C ′1). We claim
that C ′1

R>dr1−ρ 6� C ′2. If this was not the case, C ′1 and C ′2 would agree on all blocks mined
until round r1 − ρ. Since C1

R>dr1−ρ � C ′1, C ′1 also agrees with C1 on all such blocks.
That would imply C1

R>dr1−ρ � C ′2, contradicting the definition of C ′2. We therefore have
C ′1

R>dr1−ρ 6� C ′2. Let r0 be the round in which the deepest honest common block in C ′1
and C ′2 was mined. We have r0 ≤ r1 − ρ ≤ (r − 1)− 2∆Net + 1. We can therefore apply
Lemma 9 with chains C ′1 and C ′2 in round r − 1. For claim (i), we obtain that the given
situation can only occur with probability at most

p̌LeftIsoh0 (r − 1− r0 − 2∆Net + 1) + p̂q(r − 1− r0).

Using (r − 1)− r0 ≥ r1 − r0 ≥ r1 − (r1 − ρ) = ρ and the monotonicity of the probabilities,
this probability can be upper bounded by p̌LeftIsoh0 (ρ− 2∆Net + 1) + p̂q(ρ).
For claim (ii), we obtain that the given situation can only occur with probability at most

p̌Isoh0 (r − 1− r0 − 2∆Net + 1) + p̂≤h0
q (r − 1− r0) + p̂>h0

qβ (r − 1− r0)

≤ p̌Isoh0 (ρ− 2∆Net + 1) + p̂≤h0
q (ρ) + p̂>h0

qβ (ρ).

We can conclude that the probability that case 1 or case 2 occurs is at most the sum of the
two probabilities derived in these cases.

Since the produced weight per round is bounded, this directly implies a common-prefix
property for pruning blocks with a certain amount of weight. We formalize this fact in the
following corollary that proves the weighted common prefix property (Definition 12).

Corollary 2 (Weighted common prefix). Let ω ∈ R, and let ρ ∈ N be the largest value
such that Ŵq(ρ) ≤ ω and ρ ≥ 2∆Net − 1. Further let h0 ∈ H such that the weight function
is
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding and

(
Ŵq, p̂q

)
-upper-bounding, and for all

ρ′ ≥ ρ, we have 2 · W̌LeftIsoh0 (ρ′ − 2∆Net + 1) ≥ Ŵq(ρ′). Let P1, P2 be (not necessarily different)
honest parties, let r1 ≤ r2 be rounds, and let C1 be the best chain of P1 in round r1. Then, the
probability that P2 has a best chain C2 in round r2 with C1

Wdω 6� C2 is at most

2p̌LeftIsoh0 (ρ− 2∆Net + 1) + 2p̂q(ρ).

Proof. By our assumption on the weight function, there is at most Ŵq(ρ) < ω weight produced
in ρ rounds, except with probability p̂q(ρ). In this case, all blocks on C1

Wdω are mined before
round r1 − ρ, i.e., C1

Wdω � C1
R>dr1−ρ. Therefore, we have C1

R>dr1−ρ 6� C2. We can thus apply
Lemma 2 to conclude the proof of the theorem.

18

5 Applying the Framework to Capped Weight Functions
Our framework allows the exploration of infinitely many different weight functions. Intuitively,
good weight functions should ensure that a majority of weight is produced by honest parties that
have a nearly complete view of all other honest blocks, i.e., the winning events that produce
most of the weight should on average occur so rarely that they have enough time to propagate
before the next time such a rare event occurs. On the other hand the weight difference between
such winning events should not be too large as this increases the variance and thus gives worse
bounds on the probabilities.

These considerations led us to focus on a special class of functions which we call capped
weight functions that we use our framework to analyze in this section. We first prove a general
conditions that ensures common prefix for this class of functions using only very approximate
bounds. Using this we show how previous analysis of Bitcoin are subsumed by our framework,
and finally we present a weight function that is strictly better than the Bitcoin function with
respect to the properties presented in this work.

5.1 Definitions and General Results

To derive concrete equations for the bounds the weight functions should satisfy, we instantiate
Theorem 2 with the loose bounds from Section 3.4. The specific conditions we achieve for any
weight function are captured by the lemma below.

Lemma 10. Let w be a weight-function. Further let h0 ∈ H. We assume that wmin>h0 > 0. Let
δ ∈ (0, 1) and ρ > 2∆Net − 1 such that

α · (1− δ) · (1− p≤h0) · (p≤h0)2q∆Net

≥ ρ

ρ− 2∆Net + 1

(wmax≤h0

wmin>h0

· p≤h0 + wmax>h0

wmin>h0

· β · (1− p≤h0)
)
.

Let P1, P2 be (not necessarily different) honest parties, let r1 ≤ r2 be rounds, and let C1 be
the best chain of P1 in round r1. Finally let pbad be the probability that P2 has a best chain C2
in round r2 with C1

R>dr1−ρ 6� C2. We then have

(i) for any β

pbad ≤ 10e−
δ2·qβ·(ρ−2∆Net+1)·(1−p≤h0)·(p≤h0)2q∆Net

432 ,

(ii) and for β = 0

pbad ≤ 8e−
δ2·q·(ρ−2∆Net+1)·(1−p≤h0)·(p≤h0)2q∆Net

432 .

Proof. We want to use Theorem 2 (ii), and to this end, we show that the weight function satisfies

W̌Isoh0 (ρ− 2∆Net + 1) ≥ Ŵ≤h0
q (ρ) + Ŵ>h0

qβ (ρ). (9)

Let δ′ := δ
2 . Lemma 5 (ii) implies that w is

(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding with

W̌Isoh0 (ρ− 2∆Net + 1)
= wmin>h0 · (1− δ′) · qα · (ρ− 2∆Net + 1) · (1− p≤h0) · (p≤h)2q∆Net ,

p̌Isoh0 (ρ− 2∆Net + 1) = 3 · e−
(δ′)2·qα·(ρ−2∆Net+1)·(1−p≤h0)·(p≤h0)2q∆Net

108 .

19

Lemma 3 (i) yields using α+ β = 1 and α > β, that w is
(
Ŵ≤h0
q , p̂≤h0

q

)
-below-threshold-upper-

bounding with

Ŵ≤h0
q = wmax≤h0 · (1 + δ′) · q · ρ · p≤h0

p̂≤h0
q (ρ) = e−

(δ′)2·q·ρ·p≤h0
3 ≤ e−

(δ′)2·βq·ρ·p≤h0
3

Finally, Lemma 3 (ii) implies that w is
(
Ŵ>h0
qβ , p̂>h0

qβ

)
-above-threshold-upper-bounding with

Ŵ>h0
qβ (ρ) = wmax>h0 · (1 + δ′) · qβ · ρ · (1− p≤h0),

p̂>h0
qβ (ρ) = e−

(δ′)2·qβ·ρ·(1−p≤h0)
3 .

We can conclude that condition (9) is satisfied if

wmin>h0 · (1− δ′) · qα · (ρ− 2∆Net + 1) · (1− p≤h0) · (p≤h)2q∆Net

≥ wmax≤h0 · (1 + δ′) · q · ρ · p≤h0 + wmax>h0 · (1 + δ′) · qβ · ρ · (1− p≤h0).

This is equivalent to

1− δ′

1 + δ′
· α · (1− p≤h0) · (p≤h0)2q∆Net

≥ ρ

ρ− 2∆Net + 1

(wmax≤h0

wmin>h0

· p≤h0 + wmax>h0

wmin>h0

· β · (1− p≤h0)
)
.

Note that 1−δ′
1+δ′ ≥ 1− δ because δ′ = δ

2 . Hence this condition is satisfied by the assumption in
the lemma statement. Further note that ρ

ρ−2∆Net+1 is monotonically decreasing in ρ, and thus
the condition is also satisfied for all ρ′ ≥ ρ. We can therefore apply Theorem 2 (ii) to obtain

pbad ≤ 6e−
(δ′)2·qα·(ρ−2∆Net+1)·(1−p≤h0)·(p≤h0)2q∆Net

108 + 2e−
(δ′)2·qβ·ρ·p≤h0

3

+ 2e−
(δ′)2·qβ·ρ·(1−p≤h0)

3

= 6e−
δ2·qα·(ρ−2∆Net+1)·(1−p≤h0)·(p≤h0)2q∆Net

432 + 2e−
δ2·qβ·ρ·p≤h0

12 + 2e−
δ2·qβ·ρ·(1−p≤h0)

12

≤ 10e−
δ2·qβ·(ρ−2∆Net+1)·(1−p≤h0)·(p≤h0)2q∆Net

432 .

This concludes the proof of part (i).
For part (ii), note that if β = 0 and α = 1, then Ŵ>h0

qβ (ρ) = 0, and thus p̂>h0
qβ (ρ) does not

contribute to the probabilities. Hence, we obtain in this case

pbad ≤ 6e−
δ2·q·(ρ−2∆Net+1)·(1−p≤h0)·(p≤h0)2q∆Net

432 + 2e−
δ2·q·ρ·p≤h0

12

≤ 8e−
δ2·q·(ρ−2∆Net+1)·(1−p≤h0)·(p≤h0)2q∆Net

432 .

We now introduce the notion of a capped-weight-function to encapsulate the intuition for the
properties a useful weight function should have.

Definition 13 (Capped weight functions). Let w be a weight function, and T ∈ H. We say
that w is T -capped if for all h, h′ ∈ H, with h, h′ > T , we have w(h) = w(h′).

20

Using this definition we consider two special cases of the general common-prefix property:
What should be satisfied to ensure common prefix under the worst case conditions and how fast
do we achieve common prefix in the best case where the adversary only controls the network
delay?

We next show one way to pick T such that the common-prefix property holds for the special
case where w is T -capped weight function. To this end, we use Lemma 10 with h0 = T . The
specific conditions we achieve are captured by the lemma below.

Lemma 11. Let P1, P2 be (not necessarily different) honest parties, let r1 ≤ r2 be rounds, let
εc := α− β > 0, let δ ∈ (0, 1), and let C1 be the best chain of P1 in round r1. Finally let pbad be
the probability that P2 has a best chain C2 in round r2 with C1

R>dr1−ρ 6� C2.. If ρ > 2∆̂Net − 1
and w is a T -capped-weight-function that satisfies

T ≥
(

β · ρ(
β + εc

2
)

(1− δ)(ρ− 2∆̂Net + 1)

) 1
2q∆̂Net

· 2k, (10)

and
1

2∆̂Net
· (1− δ) · εc2 · (1− p≤T) · (p≤T)2q∆̂Net−1 ≥ wmax≤T

wmin>T
, (11)

then

pbad ≤ 10e
−
δ2·qβ2·ρ·(1−p≤T)

432(β+ εc
2)(1−δ) . (12)

Furthermore, if ρ > 2∆Net − 1, α = 1, β = 0, and for all h0 ≤ T

1
2∆̂Net

· (1− δ)
e · 2q∆̂Net

≥ wmax≤h0

wmin>h0

, (13)

then
pbad ≤ 8e−

δ2·q·(ρ−2∆Net+1)
432·e·(2q∆Net+1) . (14)

Proof. We note that the condition in Lemma 10 is implied by the following two conditions:

(1− δ) · εc2 · (1− p≤T) · (p≤T)2q∆Net ≥ ρ

ρ− 2∆Net + 1 ·
wmax≤T
wmin>T

· p≤T

⇐⇒ ρ− 2∆Net + 1
ρ

· (1− δ) · εc2 · (1− p≤T) · (p≤T)2q∆Net−1 ≥ wmax≤T
wmin>T

(15)

and

(1− δ) · (β + εc
2) · (1− p≤T) · (p≤T)2q∆Net ≥ ρ

ρ− 2∆Net + 1 ·
wmax>T
wmin>T

· β · (1− p≤T)

⇐⇒ (1− δ) · (β + εc
2) · (p≤T)2q∆Net ≥ ρ

ρ− 2∆Net + 1 ·
wmax>T
wmin>T

· β. (16)

It is enough to show equation (15) for the upper bound on the network delay ∆̂Net, and
ρ = 2∆̂Net as ρ−2∆̂Net+1

ρ is monotonously increasing in ρ.
For any T -capped weight function w, we have

min
h∈{T+1,...,2k}

w(h) = max
h∈{T+1,...,2k}

w(h).

Combining this with equation (16) and inserting the upper bound on the network delay
derives the following two conditions:

1
2∆̂Net

· (1− δ) · εc2 · (1− p≤T) · (p≤T)2q∆̂Net−1 ≥ wmax≤T
wmin>T

, (17)

21

and
ρ− 2∆̂Net + 1

ρ
· (1− δ) · (p≤T)2q∆̂Net ≥ β

β + εc
2
. (18)

Fulfilling these two equations will give us common prefix except with the probability stated in
Lemma 10. One way to satisfy equation (18) is to derive a condition for picking T . Recall that
p≤T = T

2k . Hence, the condition is satisfied for

T ≥
(

β · ρ(
β + εc

2
)

(1− δ)(ρ− 2∆̂Net + 1)

) 1
2q∆̂Net

· 2k. (19)

If a T -capped-weight-function satisfies these two conditions it provides common prefix except
with the probability given by Lemma 10 (i). Using equation (18), this can be simplified to

pbad ≤ 10e
−
δ2·qβ2·ρ·(1−p≤T)

432(β+ εc
2)(1−δ) , (20)

for any sufficiently large ρ.
We now consider the case when all parties are honest and analyze what conditions need to

be satisfied for getting common prefix. Let w be a weight-function. The condition in Lemma 10,
when instantiated with α = 1 and β = 0, becomes

(1− δ) · (1− p≤h0) · (p≤h0)2q∆Net−1 ≥ ρ

ρ− 2∆Net + 1 ·
wmax≤h0

wmin>h0

⇐⇒
ρ− 2∆Net + 1

ρ
· (1− δ) · (1− p≤h0) · (p≤h0)2q∆Net−1 ≥ wmax≤h0

wmin>h0

. (21)

Let ξ := 2q∆Net. We pick h0 such that (1− p≤h0) · (p≤h0)ξ is maximized (as this occurs in the
probability pbad of Lemma 10 (ii)), which is the case for

p≤h0 = ξ

ξ + 1 = 2q∆Net
2q∆Net + 1 ⇐⇒ h0 = 2k

(2q∆Net
2q∆Net + 1

)
.8

For this particular choice of h0 we note that

(1− p≤h0) · (p≤h0)2q∆Net =

(
ξ
ξ+1

)ξ
ξ + 1 =

1(
1+ 1

ξ

)ξ
ξ + 1 ≥

1
(ξ + 1) · e. (22)

Hence, condition (21) is satisfied if

ρ− 2∆Net + 1
ρ

· (1− δ)
(ξ + 1)e · p≤h0

= ρ− 2∆Net + 1
ρ

· (1− δ)
e · ξ

≥ wmax≤h0

wmin>h0

.

Note that ρ−2∆Net+1
ρ and 1

e·ξ are monotonously decreasing in ∆Net ≤ ∆̂Net, and ρ−2∆Net+1
ρ is

monotonously increasing in ρ ≥ 2∆Net. This implies that it is sufficient to satisfy this equation
for ∆Net = ∆̂Net and ρ = 2∆̂Net:

1
2∆̂Net

· (1− δ)
e · 2q∆̂Net

≥ wmax≤h0

wmin>h0

. (23)

8As h0 needs to be in H, it can most likely not be set to exactly this value. Instead one can choose it as
h0 =

⌈
2k ξ

ξ+1

⌉
, which ensures that ξ

ξ+1 ≤ p≤h0 ≤
ξ
ξ+1 + 1

2k . This does not influence the conclusion and we ignore
this for ease of presentation.

22

This condition can be satisfied by again making the weight function grow fast enough such that
wmax≤h0
wmin>h0

is sufficiently small for all h0 ≤ T . If (23) is satisfied then we obtain by Lemma 10 (ii)
and using (22) that the probability of a common-prefix violation is at most

pbad ≤ 8e−
δ2·q·(ρ−2∆Net+1)·(1−p≤h0)·(p≤h0)2q∆Net

432 ≤ 8e−
δ2·q·(ρ−2∆Net+1)
432·e·(2q∆Net+1) .

In order to instantiate a T -capped weight function we suggest the following approach. Pick
T such that it satisfies equation (10) for a sufficiently large ρ. Next pick the function such that
it additionally ensures the condition from equation (11). For monotone functions this can simply
be done by increasing the growth of the function such that wmax≤T

wmin>T
is sufficiently small. When

a T -capped weight function is instantiated like this, it provides common prefix except with
the probability given by Lemma 11 (12). To further satisfy equation (13) one can additionally
increase the growth of the function until it is true for all h0 ≤ T .

Waiting time for common prefix. To ensure that parties are on a common prefix except
with negligible probability, one has to wait until pbad is negligible. If κ is the security parameter,
this means that one has to wait ρ rounds such that ρ · q(1− p≤T) = Ω(κ). Note that q(1− p≤T)
is the expected number of blocks with hash above the threshold T produced in each round. This
means one needs to wait for Ω(κ) blocks above the threshold. This matches the bounds derived
for the plain Bitcoin backbone, e.g., in [4].

In the case without corruption, one has to wait ρ rounds such that ρ · 1
∆Net

= Ω(κ). Note
that this only depends on ∆Net, not on ∆̂Net. Hence, the protocol is responsive in this case!

Chain growth and chain quality. Note that this approach automatically ensures some
chain growth and chain quality as the preconditions for Theorem 1 and Lemma 8 are weaker
than the precondition for Theorem 2. One can also obtain tighter bounds by optimizing for this,
but we leave that for future work.

Finality layers. A practical issue of the responsiveness that is provided by Lemma 11 is that
it is hard to know whether there are actively corrupted nodes or not. This means that even in
the good case without corruption, where all parties quickly agree on blocks, parties typically do
not know for sure that there is no corruption, and thus cannot confirm transactions quickly. As
a solution to this issue, we propose to use a finality layer, such as Casper the Friendly Finality
Gadget [2], GRANDPA [15], or Afgjort [3]. These act as an additional layer on top of a NSB,
where a committee votes on blocks to become final, and finalized blocks are never rolled back by
adjusting the chain-selection rule to prefer chains with more finalized blocks. In such finality
layers, a block can be declared final as soon as enough committee members vote for that block. In
the optimistic case, this happens as fast as the actual network conditions allow in our responsive
blockchain, as all honest parties will in fact have the same common-prefix and thus vote for the
same. And given the decision from the finalization committee, one can immediately trust these
finalized blocks, yielding a high overall efficiency.

Remark on growth of weight function. In our analysis, we need to set wmax≤h0
wmin>h0

sufficiently
small to satisfy both conditions (11) and (13). Note that no condition places a lower bound on
this fraction. This means the weight function can be chosen to grow arbitrarily fast.

The trade-off that is hidden in our analysis is that faster growing functions lead to less
responsiveness if there is some corruption. That is because it becomes easier to produce very

23

0 200 400 600 800 1,0000

0.2

0.4

0.6

0.8

1

h

w(h)
w(2k)

w = wEXP
c=0.005,T

w = wEXP
c=0.01,T

w = wEXP
c=0.02,T

w = wEXP
c=0.04,T

w = wBC
T

Figure 1: Plots of wBC
T and wEXP

c,T normalized with the maximal weight for k = 10, T = 3
4 · 2

k, and
different values of c. The values are chosen very small for illustrative purposes. Note that the
larger c is, the closer the form of wEXP

c,T is to wBC
T . This plot depicts the intuition that c can be

picked so large that there is no security degradation by choosing wEXP
c,T over wBC

T , even though an
adversary can potentially control the honest weight produced below T through network delays.

heavy blocks that can roll back a huge number of lighter blocks. The growth of the function
should thus not be set higher than necessary. We leave exploring this trade-off for future work.

5.2 Examples of Capped Weight Functions

In this section, we provide two concrete instantiations of weight functions using our framework.
For means of comparison, we first instantiate the standard Bitcoin weight function and afterwards
a capped-exponential weight function, which we compare to the Bitcoin protocol. See Figure 1
for plots of the considered weight functions.

5.2.1 Bitcoin Weight

The Bitcoin protocol originally considers the best chain to be the one that is the longest. Each
block added to a chain can therefore be considered as incrementing the weight of the chain
with 1. If a block is invalid it does not change the weight of a chain and it can thus be thought
of as having weight 0. With this interpretation, the Bitcoin weight function with threshold T
can be defined as9

wBC
T (h) :=

{
0, if h ≤ T,
1, else.

This is clearly an instance of a T -capped-weight-function. Thus, the approach from Section 5.1
can be applied for picking T , i.e., simply set T such that (10) is an equality.

For w = wBC
T , we have wmin>T = 1 and wmax≤T = 0. Hence, equation (11) is trivially satisfied

and (12) thus provides the probability bound for the common-prefix violations. As explained in
Section 5.1, this matches known bounds.

9To adapt to our framework we negate the condition on the valid block predicate. Note that this is without
loss of generality.

24

There only exists a single h0 such that condition (13) is satisfied, namely h0 = T . This
matches well with the intuition: Bitcoin is clearly not reactive as T needs to be set based on the
worst case network delay to ensure security.

5.2.2 Capped Exponential Weight

We now provide an example weight function that can be instantiated such that we obtain an
optimistically responsive protocol. For some parameter c ∈ R and a threshold T ∈ H, we define

wEXP
c,T (h) :=

{
ehc, if h ≤ T,
e(T+1)c, else.

Let h ∈ H, h ≤ T . We then have for w = wEXP
c,T ,

wmax≤h
wmin>h

=
wEXP
c,T (h)

wEXP
c,T (h+ 1)

= ehc

e(h+1)c = e−c.

Again we pick T such that (19) is an equality. We now pick c such that both equation (17) and
equation (23) are satisfied for all h0. In other words, we pick c such that both

e−c = wmax≤T
wmin>T

≤ 1
2∆̂Net

· (1− δ) · εc2 · (1− p≤T) · (p≤T)2q∆̂Net−1,

and
e−c = wmax≤h0

wmin>h0

≤ 1
2∆̂Net

· (1− δ)
e · 2q∆̂Net

,

are satisfied. Such a c exists as both right hand sides are constant and e−c drops exponentially
in c. Instantiating w in this way provides a protocol that under worst case conditions performs
as the Bitcoin protocol but in good conditions is perfectly responsive to the actual network
delay.

6 Conclusions and Directions for Future Work
We have provided a framework for analyzing blockchain protocols with different weight functions.
Using this framework, we have shown how to obtain a protocol that is responsive during periods
without corruption. After this first step introducing the relevant concepts, several interesting
questions remain open: Are there other weight functions with even better guarantees? Is it
possible to achieve graceful degradation with respect to responsiveness under some corruption?
How can our analysis be extended to variable thresholds to handle changing participation? We
believe that our framework provides the right tools for investigating these and further questions.

References
[1] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a

transaction ledger: A composable treatment. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356. Springer, Heidelberg, August
2017.

[2] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR,
abs/1710.09437, 2017.

25

[3] Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel
Tschudi. Afgjort: A partially synchronous finality layer for blockchains. In Clemente Galdi
and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 24–44. Springer,
Heidelberg, September 2020.

[4] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, April 2015.

[5] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with
chains of variable difficulty. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 291–323. Springer, Heidelberg, August 2017.

[6] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of proofs of
work with sublinear complexity. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan,
Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors, FC 2016 Workshops, volume
9604 of LNCS, pages 61–78. Springer, Heidelberg, February 2016.

[7] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-
of-work. Cryptology ePrint Archive, Report 2017/963, 2017. http://eprint.iacr.org/
2017/963.

[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. manuscript, 2009.
http://www.bitcoin.org/bitcoin.pdf.

[9] Jianyu Niu, Chen Feng, Hoang Dau, Yu-Chih Huang, and Jingge Zhu. Analysis of Nakamoto
consensus, revisited. Cryptology ePrint Archive, Report 2019/1225, 2019. https://eprint.
iacr.org/2019/1225.

[10] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asyn-
chronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part II, volume 10211 of LNCS, pages 643–673. Springer, Heidelberg,
April / May 2017.

[11] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. In 31st International Symposium on Distributed Computing, DISC 2017, October
16-20, 2017, Vienna, Austria, pages 39:1–39:16, 2017.

[12] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 3–33. Springer, Heidelberg, April / May 2018.

[13] Ling Ren. Analysis of Nakamoto consensus. Cryptology ePrint Archive, Report 2019/943,
2019. https://eprint.iacr.org/2019/943.

[14] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. On the optimality of
optimistic responsiveness. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, ACM CCS 20, pages 839–857. ACM Press, November 2020.

[15] Alistair Stewart and Eleftherios Kokoris-Kogia. Grandpa: a byzantine finality gadget, 2020.

26

http://eprint.iacr.org/2017/963
http://eprint.iacr.org/2017/963
http://www.bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2019/1225
https://eprint.iacr.org/2019/1225
https://eprint.iacr.org/2019/943

A Additional Bounds for Produced Weight
We here provide some additional bounds that may be useful for analyzing other weight functions
than the ones considered in this work.

Lemma 12. Let w be a weight function and let a < b and S ∈ R such that a ≤ w(h) ≤ b for all
h ∈ H and

∑
h∈H w(h) ≤ S. Then, for all δ ≥ 0, w is

(
Ŵq, p̂q

)
-upper-bounding with

Ŵq(r) = (1 + δ)qr · 2−kS and p̂q(r) = e
− 2qrS2δ2

22k(b−a)2 .

Proof. Let r ∈ N and let Wq,r be the random variable corresponding to the total weight of all
blocks weighted with w mined in r consecutive rounds with q queries in each round. Note that
Wq,r is the sum of W (1), . . . ,W (qr), where W (i) corresponds to the weight of the ith produced
block. We have

E
[
W (i)] =

∑
h∈H

2−k · w(h) ≤ 2−k · S.

Hence, we can apply Hoeffding’s inequality (cf. Lemma 2), which implies for any t ≥ 0,

Pr
[
Wq,r ≥ qr · 2−kS + qrt

]
≤ Pr

[
Wq,r ≥ qrE

[
W (1)]+ qrt

]
= Pr

[
1
qr

qr∑
i=1

(
W (i) − E

[
W (i)]) ≥ t]

≤ e−
2qrt2

(b−a)2 .

Now set t := δ · 2−kS. Then, we can conclude that

Pr
[
Wq,r ≥ (1 + δ)qr · 2−kS

]
= Pr

[
Wq,r ≥ qr · 2−kS + qrt

]
≤ e−

2qrS2δ2

22k(b−a)2 .

Lemma 13. Let w be a weight function, and let q ∈ N, and h0 ∈ H. Let b, S ∈ R such that
w(h) ≤ b for all h ∈ H with h ≤ h0, and

∑h0
h=1 w(h) ≤ S. Then, for all δ ∈ (0, 1), w is(

Ŵ≤h0
q , p̂≤h0

q

)
-below-threshold-upper-bounding with

Ŵ≤h0
q (r) = (1 + δ)qr · 2−kS and p̂≤h0

q (r) = e
− 2qrS2δ2

22kb2 .

Proof. We let

w′(h) :=
{

w(h), if h ≤ h0,

0, else,

and note that w is
(
Ŵ≤qh0

, p̂≤qh0

)
-below-threshold-upper-bounding if (and only if) w′ is

(
Ŵ≤qh0

, p̂≤qh0

)
-

below-threshold-upper-bounding as w and w′ are equal for h ∈ {1, . . . , h0}.
Let r ∈ N, let Wq,r be the random variable corresponding to the total weight of all blocks

weighted with w′ mined in r consecutive rounds with q queries in each round, and let Wq,r≤h0

be the random variable corresponding to the weight from hashes below h0 in the same period of
time. As there is zero weight contribution above h0, Wq,r = Wq,r≤h0 . Note that

∑
h∈H

w′(h) =

 h0∑
h=1

w′(h) +
2k∑

h=h0+1
w′(h)

 ≤ S,
and as w′(h) ∈ [0, b] for all h ∈ H, Lemma 12 implies

Pr
[
Wq,r ≥ (1 + δ)qr · 2−kS

]
≤ e−

2qrS2δ2

22kb2 .

27

Lemma 14. Let w be a weight function and h0 ∈ H. Let a < b and S ∈ R such that a ≤ w(h) ≤ b
for all h ∈ {h0 + 1, . . . 2k} and

∑2k
h=h0+1 w(h) ≥ S. Then, for all δ ∈ (0, 1), w is

(i)
(
W̌LeftIsoh0 , p̌LeftIsoh0

)
-left-isolated-lower-bounding with

W̌LeftIsoh(r) = (1− δ) · αqr · 2−kS · (p≤h0)q∆Net ,

p̌LeftIsoh(r) = 2e−
δ2·αqr·(1−p≤h0)·(p≤h0)q∆Net

64 + e
−
δ2S2·αqr·(p≤h0)q∆Net

4·2k(2k−h0)(b−a)2

(ii) and
(
W̌Isoh0 , p̌Isoh0

)
-isolated-lower-bounding with

W̌Isoh(r) = (1− δ) · αqr · 2−kS · (p≤h0)2q∆Net ,

p̌Isoh(r) = 3e−
δ2·αqr·(1−p≤h0)·(p≤h0)2q∆Net

432 + e
−
δ2S2·αqr·(p≤h0)2q∆Net

4·2k(2k−h0)(b−a)2 .

Proof. Let r ∈ N, let Nαqr,LeftIsoh0 denote the number of h0-left-isolated blocks mined in r
consecutive rounds with q queries in each round, and let Wr,LeftIsoh0 be the random variable
corresponding to the total weight of these blocks weighted with w. Further let δ′ := δ

2 , and let
N := d(1− δ′) · αqr · (1− p≤h0) · (p≤h0)q∆Nete. We then have by Lemma 4 that

Nαqr,LeftIsoh0 ≥ (1− δ′) · αqr · (1− p≤h0) · (p≤h0)q∆Net

except with probability

2e−
δ′2·αqr·(1−p≤h0)·(p≤h0)q∆Net

16 = 2e−
δ2·αqr·(1−p≤h0)·(p≤h0)q∆Net

64 . (24)

Since Nr,LeftIsoh0 ∈ N, we actually also have Nr,LeftIsoh0 ≥ N with the same probability.
Now consider the random experiment in whichH(1), . . . ,H(N) are independent and distributed

uniformly over {h0 + 1, . . . , 2k} and let W (i) := w
(
H(i)). Define W :=

∑N
i=1W

(i). Note that
W ≤Wq,r,LeftIsoh0 , except with the probability given in equation (24). We have

E
[
W (i)] =

2k∑
h=h0+1

w(h) Pr
[
H(i) = h

]
= 1

2k − h0
·

2k∑
h=h0+1

w(h)

≥ S

2k − h0
.

Note that 1− p≤h0 = 1− h0
2k = 2k−h0

2k . This implies

E[W] = N · E
[
W (i)]

≥ N · S
2k − h0

≥ (1− δ′) · αqr · (1− p≤h0) · (p≤h0)q∆Net · S
2k − h0

= (1− δ′) · αqr · (p≤h0)q∆Net · 2−kS.

Furthermore, (1− δ′)2 =
(
1− δ

2
)2 ≥ 1− δ. Hence, we obtain

(1− δ′) · E[W] ≥ (1− δ′)2 · αqr · (p≤h0)q∆Net · 2−kS
≥ (1− δ) · αqr · (p≤h0)q∆Net · 2−kS.

28

We can thus apply Hoeffding’s inequality (Lemma 2) to obtain for t := δ′ · E[W]
N ,

Pr
[
W ≤ (1− δ) · αqr · (p≤h0)q∆Net · 2−kS

]
≤ Pr

[
W ≤ (1− δ′)E[W]

]
= Pr

[
W ≤ E[W]−Nt

]
≤ e−

2Nt2
(b−a)2 .

Again using 1− p≤h0 = 2k−h0
2k , we have

Nt2 = Nδ′2 · E[W]2

N2 = δ′2 · E[W]2

N
= δ′2 ·N · E

[
W (i)]2

≥ δ′2 ·N · S2

(2k − h0)2 ≥
δ′2S2 · (1− δ′) · αqr · (p≤h0)q∆Net

2k(2k − h0) .

Therefore,

e
− 2Nt2

(b−a)2 ≤ e−
2δ′2S2·(1−δ′)·αqr·(p≤h0)q∆Net

2k(2k−h0)(b−a)2 = e
−
δ2S2·(2−δ)·αqr·(p≤h0)q∆Net

4·2k(2k−h0)(b−a)2

≤ e−
δ2S2·αqr·(p≤h0)q∆Net

4·2k(2k−h0)(b−a)2 .

Together with the probability from equation (24), we conclude that Wr,LeftIsoh0 > (1− δ) · αqr ·
2−kS · (p≤h0)q∆Net , except with probability

2e−
δ2·αqr·(1−p≤h0)·(p≤h0)q∆Net

64 + e
−
δ2S2·αqr·(p≤h0)q∆Net

4·2k(2k−h0)(b−a)2 .

This concludes the proof of part (i) of the lemma.
The proof of part (ii) is almost identical. The only difference is that we have to use the

bounds for isolated blocks from Lemma 4. In that case, the probability in equation (24) becomes

3e−
δ′2·αqr·(1−p≤h0)·(p≤h0)2q∆Net

108 = 3e−
δ2·αqr·(1−p≤h0)·(p≤h0)2q∆Net

432 .

The claim of part (ii) then follows analogously to the steps for part (i).

29

	Introduction
	Overview of our results
	Related Work

	Preliminaries
	Our Generic Framework for Weight-Based Analysis
	Blockchain Model
	Blockchain Protocol
	Basic Definitions
	Bounds on Produced Weight

	Proving Bounds from Properties of the Weight Functions

	Proving Chain Properties
	Chain Growth
	Chain Quality
	Common Prefix

	Applying the Framework to Capped Weight Functions
	Definitions and General Results
	Examples of Capped Weight Functions
	Bitcoin Weight
	Capped Exponential Weight

	Conclusions and Directions for Future Work
	Additional Bounds for Produced Weight

