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Abstract

The hardness of highly-structured computational problems gives rise to a variety of public-key
primitives. On one hand, the structure exhibited by such problems underlies the basic function-
ality of public-key primitives, but on the other hand it may endanger public-key cryptography
in its entirety via potential algorithmic advances. This subtle interplay initiated a fundamen-
tal line of research on whether structure is inherently necessary for cryptography, starting with
Rudich's early work (PhD Thesis '88) and recently leading to that of Bitansky, Degwekar and
Vaikuntanathan (CRYPTO '17).

Identifying the structure of computational problems with their corresponding complexity
classes, Bitansky et al. proved that a variety of public-key primitives (e.g., public-key encryption,
oblivious transfer and even functional encryption) cannot be used in a black-box manner to
construct either any hard language that has NP-veri�ers both for the language itself and for
its complement, or any hard language (and even promise problem) that has a statistical zero-
knowledge proof system � corresponding to hardness in the structured classes NP∩coNP or SZK,
respectively, from a black-box perspective.

In this work we prove that the same variety of public-key primitives do not inherently re-
quire even very little structure in a black-box manner: We prove that they do not imply any
hard language that has multi-prover interactive proof systems both for the language and for its
complement � corresponding to hardness in the class MIP∩ coMIP from a black-box perspective.
Conceptually, given that MIP = NEXP, our result rules out languages with very little structure.

Already the cases of languages that have IP or AM proof systems both for the language itself
and for its complement, which we rule out as immediate corollaries, lead to intriguing insights.
For the case of IP, where our result can be circumvented using non-black-box techniques, we reveal
a gap between black-box and non-black-box techniques. For the case of AM, where circumventing
our result via non-black-box techniques would be a major development, we both strengthen and
unify the proofs of Bitansky et al. for languages that have NP-veri�ers both for the language itself
and for its complement and for languages that have a statistical zero-knowledge proof system.
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1 Introduction

Starting with the revolutionary invention of public-key cryptography [DH76, RSA78, GM84], the
hardness of highly-structured computational problems (e.g., factoring, discrete log, or various lattice-
based problems) has given rise to a variety of public-key primitives. On one hand, the structure
exhibited by such problems underlies the basic functionality of nearly all such primitives, but on the
other hand it may also danger their conjectured hardness. As noted by Barak [Bar13], this �makes

public-key cryptography somewhat of an endangered species that could wiped out by a surprising

algorithmic advance�.
This subtle interplay has led to the long-studied question of whether structure is inherently

necessary for certain cryptographic primitives, and most notably for public-key primitives. While
there may be di�erent approaches for measuring or quantifying �structure�, the main approach taken
by the cryptography community over the years relies on computational complexity: Understanding
which cryptographic primitives inherently require hardness in �structured� complexity classes such
as NP ∩ coNP, TFNP and SZK.

There are only a few known examples of cryptographic primitives that require hardness in such
classes. Most notably, one-way permutations imply hardness in NP ∩ coNP [Bra79], homomorphic
encryption and non-interactive computational private-information retrieval imply hardness in SZK
[BL13, LV16], and indistinguishability obfuscation implies hardness in PPAD ⊆ TFNP unless NP ⊆
ioBPP [BPR15, GPS16, KMN+14].

Within the classic framework of black-box constructions, capturing �natural� cryptographic con-
structions [IR89, RTV04], Rudich [Rud88] showed (based on [BI87, HH87]) that a one-way function
cannot be used in black-box manner to construct NP-veri�ers for any hard language both for the
language itself and for its complement � corresponding to hardness in NP ∩ coNP from a black-box
perspective (we note that the known examples stated above all follow in such a black-box manner).

For several decades no progress has been made in extending Rudich's result to public-key primi-
tives or to other complexity classes. This situation has recently changed dramatically with the work
of Bitansky, Degwekar and Vaikuntanathan [BDV17] (see also the re�nements in the more recent
work of Bitansky and Degwekar [BD19]): They showed that even indistinguishability obfuscation
cannot be used in a black-box manner to construct any hard language that has NP veri�ers both for
the language itself and for its complement, or any hard language (and even a promise problem) that
has a statistical zero-knowledge proof system � corresponding to hardness in NP ∩ coNP or SZK,
respectively, from a black-box perspective. Proving their result within the framework of Asharov
and Segev [AS15, AS16] capturing indistinguishability obfuscation for oracle-aided computations,
Bitansky et al. in fact proved their result for all primitives that can be based on indistinguishability
obfuscation for circuits that access an injective one-way function in a black-box manner. These
include, in particular, a variety of public-key primitives including public-key encryption, oblivious
transfer and even functional encryption.

Focusing on the classes NP ∩ coNP and SZK , Bitansky et al. showed that, from a black-box
perspective, public-key cryptography does not inherently require highly-structured hardness. How-
ever, going back to Barak's concern [Bar13], even less stringent forms of structure may still endanger
public-key cryptography in its entirety. This leads to the following fundamental question aiming at
substantially re�ning our understanding of the interplay between hardness and structure:

Does public-key cryptography inherently require hardness in complexity
classes that are �less structured� than NP ∩ coNP or SZK?
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1.1 Our Contributions

In this work we show that a wide variety of public-key primitives do not inherently require even very
little structure in a black-box manner. Speci�cally, we prove that such primitives do not naturally
imply hard languages that have multi-prover interactive proof systems (MIP) [BGK+88] both for the
language and for its complement.

Conceptually, given that MIP = NEXP [BFL91], our result considers languages with very little
structure. Already the cases of languages that have IP or AM proof systems both for the language
itself and for its complement, which we obtain as immediate corollaries, lead to intriguing insights.
For the case of IP, where our result can be circumvented using non-black-box techniques, we reveal
a gap between black-box and non-black-box techniques (as we discuss below). For the case of AM,
where circumventing our result via non-black-box techniques would be a major development, we
both strengthen and unify the proofs of Bitansky et al. for languages that have NP-veri�ers both for
the language itself and for its complement and for languages that have a statistical zero-knowledge
proof system (since NP ⊆ AM by de�nition, and since SZK ⊆ AM ∩ coAM in a black-box manner
[For89, AH91]).1

The following is an informal statement of our main result. We refer the reader to Section 1.2 for
an overview of our result, and to Sections 3 and 4 for a formal de�nition of the class of constructions
to which our result applies and for a formal theorem statement, respectively.

Theorem 1.1 (Informal). There is no fully black-box construction of a pair of multi-prover interac-

tive proof systems, Π and Π, corresponding to a worst-case hard language L and to its complement

L, respectively, from an injective one-way function f and an indistinguishability obfuscator for the

class of all oracle-aided circuits Cf .

Note that as our result rules out constructions of languages that are worst-case hard, then it rules
out in particular constructions of languages that are average-case hard.

Black-box vs. non-black-box constructions. Our result might seem too strong and somewhat
contradicting to the fact that any one-way function implies a hard (even on average) language in
NP ⊆ IP in a black-box manner. Given that IP is closed under complement [LFK+92, Sha90], then

NP ⊆ IP ∩ coIP ⊆ MIP ∩ coMIP.

In particular, any one-way function implies a hard language that has IP proof systems both for
the language itself and for its complement, which seemingly contradicts our result. However, this
sequence of containments cannot be established via relativizing reductions, and thus there is in fact
no contradiction (note that any black-box reduction relativizes [RTV04]), but rather a gap between
black-box and non-black-box techniques. Speci�cally, Chang et al. [CCG+94] showed that there
exists an oracle Γ relative to which NPΓ * coIPΓ, and in particular IP is not closed under complement
with respect to relativizing reductions. Still, as mentioned above, our impossibility result already
applies to AM ∩ coAM, for which circumventing our result via non-black-box techniques would be a
major development. We discuss this in much more detail in Section 1.2 in the context of black-box
representations of complexity classes.

1We note that the result of Bitansky et al. for SZK holds not only for languages but in fact also for promise problems.
This, however, cannot be covered by our result since already a hard promise problem that has NP veri�ers both for its
�YES� instances and for its �NO� instances can be constructed based on any one-way function in a black-box manner.
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Implications to public-key cryptography. Similarly to Bitansky et al. [BDV17] we prove our
result within the framework of Asharov and Segev [AS15, AS16], capturing indistinguishability obfus-
cation for oracle-aided circuits. Indistinguishability obfuscation for such circuits su�ces for realizing
a variety of public-key primitives (e.g., public-key encryption, oblivious transfer and even functional
encryption) in a fully black-box manner [SW14, Wat15, AS15], and therefore as a corollary we obtain
that there is no construction of the above form based on any of these primitives.

We strongly emphasize that our result is unconditional, and in particular does not depend on
whether or not indistinguishability obfuscation actually exists. Even if it does not exist in the actual
world, then within the framework of Asharov and Segev it does exist information theoretically, and
it implies the above variety of public-key primitives to which our result applies (once again, in an
unconditional manner).

1.2 Overview of Our Approach

In this section we provide a high-level overview of the framework in which we prove our impossibility
result, and then describe the main ideas and challenges underlying our proof.

Black-box constructions. Our goal is to prove a statement along the lines of �a cryptographic
primitive P does not naturally imply a hard language in a complexity class C�. However, it is not
clear how to prove such a statement in an unconditional manner, as it may be the case that the
class C (e.g., NP ∩ coNP as discussed by Bitansky et al. [BDV17]) does not contain hard languages.
One possible approach is to prove a result that is conditioned on a speci�c assumption, but then it
may be the case that the assumption itself already rules out the existence of hard languages in the
class C. Obtaining substantial insight using such an approach requires a deep understanding of the
interplay between the primitive P, the complexity class C and the additional assumption � which is
somewhat rare when considering cryptographic primitives and assumptions.

Faced with such di�culties, the cryptography community has relied over the years on the frame-
work of black-box constructions [IR89, RTV04] for proving impossibility results for �natural� con-
struction techniques. In our context, a fully black-box construction of a hard language L ∈ C based
on a cryptographic primitive P consists of two ingredients. The �rst ingredient is a �construction� of
a language LP that completely ignores the internal implementation of P and only requires black-box
access to any given implementation of P. Here, the notion of a �construction� depends on the speci�c
complexity class C. For example, in a natural black-box interpretation of NP∩coNP, Rudich [Rud88]
and Bitansky et al. [BDV17] considered as a construction a pair of oracle-aided NP-veri�ers, V and
V , for the language itself and for its complement, respectively, where the veri�ers have black-box
access to the primitive P. That is, for any oracle realizing P, the two veri�ers must be valid in the
sense that for any instance x ∈ {0, 1}∗ either there exists a �yes� witness for V P and there do not

exist any �no� witnesses for V
P
(i.e., x ∈ LP), or there exists a �no� witness for V

P
and there do

not exist any �yes� witnesses for V P (i.e., x /∈ LP) � but never both. The second ingredient, is a
black-box proof of hardness, showing that for any implementation of the primitive P, any algorithm
that decides the language LP can be e�ciently used in a black-box manner for breaking the security
of the given implementation of P.

At this point we would like to already emphasize that a �black-box representation� of a complexity
class is in fact not unique, and that di�erent representations are not always equivalent from a black-
box perspective. For example, a natural black-box representation for the class IP ∩ coIP relative
to a given primitive P is to consider all languages that have interactive proof systems both for
the language itself and for its complement, where the two proof systems access P in a black-box
manner. However, since IP is closed under complement [LFK+92, Sha90] then IP ∩ coIP = IP and
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therefore an additional representation is to consider all languages that have interactive proof systems
for the language itself (without considering its complement) where the proof system accesses P in a
black-box manner. As discussed in Section 1.1, these two representations are not equivalent from a
black-box perspective since IP is not closed under complement with respect to relativizing reductions.

The structure of our proof. Following Bitansky et al. [BDV17] we prove our result within the
framework of Asharov and Segev [AS15] for capturing black-box constructions based on indistin-
guishability obfuscation, utilizing the latter as a �central hub� for deriving impossibility results for a
variety of public-key primitives. As observed by Asharov and Segev, although constructions that are
based on indistinguishability obfuscation are almost always non-black-box, most of their non-black-
box techniques have essentially the same �avor: The obfuscator itself is used in a black-box manner
and applied to circuits that can be constructed in a fully black-box manner from a low-level primitive,
such as a one-way function. Thus, even though the obfuscator requires concrete implementations of
such circuits, by introducing the stronger primitive of an indistinguishability obfuscator for oracle-
aided circuits (see Section 2), Asharov and Segev showed that such non-black-box techniques in fact
directly translate into black-box ones. These include, in particular, non-black-box techniques such
as the punctured programming approach of Sahai and Waters [SW14] and Waters [Wat15] leading
to the construction of a variety of public-key primitive. Relying on the transitivity of black-box re-
ductions, this enables to rule out black-box constructions based on all of these primitives by focusing
only on indistinguishability obfuscation for oracle-aided circuits and one-way functions.

In order to prove our impossibility result within this framework, we present a distribution over
oracles Γ relative to which we prove the following two properties:

• Relative to a random instance of Γ there exist an injective one-way function f and an indis-
tinguishability obfuscator iO for the class of all oracle-aided circuits Cf .

• Relative to any instance of Γ, we can e�ciently decide in the worst case any language that

has multi-prover interactive proof systems, Πf,iO and Π
f,iO

, for the language itself and for its
complement, respectively.2

Our oracle Γ is a pair of the form (Ψ,DecideΨ), where Ψ is based on the oracle of Asharov
and Segev that realizes a one-way function and an indistinguishability obfuscator, and DecideΨ is a
generalization of the �decision oracle� introduced by Bitansky et al. for deciding languages that rely
on Ψ in a black-box manner (more speci�cally, whose black-box representation as discussed above
relies on Ψ). In the work of Bitansky et al. the decision oracle is de�ned in a manner that allows

to easily decide any language LΨ that has NP-veri�ers, V Ψ and V
Ψ
, for the language itself and for

its complement, and the main technical challenge underlying their work is proving that Ψ realizes a
one-way function and an indistinguishability obfuscator relative to the decision oracle.

Our decision oracle is a natural generalization that allows to easily decide any language LΨ that

has multi-prover proof systems, ΠΨ and Π
Ψ
, for the language itself and for its complement. This

decision oracle seems much more powerful than that of Bitansky et al. as it decides a signi�cantly
larger class of languages, and our technical e�ort is devoted to proving that the oracle Ψ still realizes
a one-way function and an indistinguishability obfuscator even relative to our generalized decision
oracle.

In what follows we describe the decision oracle of Bitansky et al. (to which we refer as the BDV
decision oracle) and discuss its key property that underlies their approach. Then, we describe our

2In fact, as discussed below we allow the honest provers to depend on the one-way function and the obfuscator in
an arbitrary non-black-box manner, and only require that the veri�ers are constructed in a black-box manner (this
makes our result stronger).
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generalized oracle, relative to which this key property no longer seems to hold, and then describe
our the main ideas underlying our proof.

The BDV decision oracle. For any oracle Ψ, taken from an appropriate family S of oracles,
the BDV decision oracle DecideΨ

S takes as input a triplet (V, V , x), where V and V are oracle-aided
circuits. The oracle �rst checks whether or not the pair (V, V ) indeed consists of valid NP-veri�ers
for a language and for its complement in the standard black-box sense discussed above. That is,
checks whether or not for any Ψ′ ∈ S and x′ ∈ {0, 1}n exactly one out of the following two cases
holds: (1) There exists a �yes� witness w′ such that V Ψ′(x′, w′) = 1 and there do not exist any �no�

witnesses w′ such that V
Ψ′

(x′, w′) = 1; (2) there exists a �no� witness w′ such that V
Ψ′

(x′, w′) = 1
and there do not exist any �yes� witnesses w′ such that V Ψ(x′, w′) = 1 (note that the witnesses are
allowed to depend on Ψ′). If (V, V ) is not valid in this sense, then the oracle outputs ⊥. If (V, V )
is valid, then the oracle outputs 1 if x ∈ LΨ and 0 otherwise, where LΨ is the language de�ned by

(V Ψ, V
Ψ

).
Then, any language that has oracle-aided NP-veri�ers both for the language itself and for its

complement with respect to any Ψ ∈ S, can be easily decided in the worst case by an algorithm that
issues a single query to the BDV decision oracle. The main challenge in the work of Bitansky et al.
was in showing that a random instance of Ψ that is sampled from the family S of oracles introduced
by Asharov and Segev (or from any other appropriate family) realizes a one-way function and an
indistinguishability obfuscator even relative to DecideΨ

S.

The existence of small critical sets. The key property underlying the proof of Bitansky et al.
is the following observation on the existence of �small critical sets�. Fix an oracle Ψ ∈ S and let
(V, V , x) be a query to their decision oracle such that the pair (V, V ) is valid in the above sense, and
V and V issue at most q oracle queries. Then, there exists a �critical set� of at most q queries, such
that for any oracle Ψ′ ∈ S that agrees with Ψ on the outputs of all queries from the critical set it
holds that DecideΨ

S(V, V , x) = DecideΨ′
S (V, V , x).

The existence of such a small critical set follows from the NP ∩ coNP structure of the pair
(V, V ). Speci�cally, assume without loss of generality that x ∈ LΨ, and let w be a witness such that
V Ψ(x,w) = 1. De�ne the set of critical queries as all Ψ-queries that are issued in the computation
V Ψ(x,w), and let Ψ′ by any oracle that agrees with Ψ on this set. Then clearly V Ψ′(x,w) =
V Ψ(x,w) = 1, and the validity of the pair (V, V ) guarantees that there is no witness w̃ such that

V
Ψ′

(x, w̃) = 1. Thus, DecideΨ
S(V, V , x) = DecideΨ′

S (V, V , x) = 1.
Relying on this key property, Bitansky et al. proved that Ψ realizes a one-way function and an

indistinguishability obfuscator relative to their decision oracle via an elegant sequence of hybrids in
each case. Speci�cally, in each sequence the �rst experiment is the actual security experiment of
the one-way function or the indistinguishability obfuscator, the last experiment is one in which no
algorithm can achieve any advantage, and the transition between each consecutive pair of experiment
is enabled by this key property (or via standard arguments).

Representing MIP ∩ coMIP in a black-box manner. In order to describe our approach, we
�rst need to describe our black-box representation of languages in the complexity class MIP∩coMIP.
Naturally generalizing the approach of Rudich and Bitansky et al. for NP∩coNP, we consider pairs of
polynomial-time oracle-aided MIP-veri�ers, V and V , for the language itself and for its complement,
respectively, subject to a similar validity requirement of their black-box �avor: For any oracle Ψ
taken from an appropriate family S of oracles, there should exist a language LΨ such that the
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following two conditions are satis�ed3:

• For every x ∈ LΨ there exist computationally-unbounded provers P1, . . . , PN such that4

Pr
r←{0,1}poly(|x|)

[〈
V Ψ(x; r), P1, . . . , PN

〉
= 1
]
≥ 2/3 ,

and for every computationally-unbounded provers P 1, . . . , PN it holds that

Pr
r←{0,1}poly(|x|)

[〈
V

Ψ
(x; r), P 1, . . . , PN

〉
= 1
]
≤ 1/3 .

• For every x /∈ LΓ there exist computationally-unbounded provers P 1, . . . , PN such that

Pr
r←{0,1}poly(|x|)

[〈
V

Ψ
(x; r), P 1, . . . , PN

〉
= 1
]
≥ 2/3 ,

and for every computationally-unbounded provers P1, . . . , PN it holds that

Pr
r←{0,1}poly(|x|)

[〈
V Ψ(x; r), P1, . . . , PN

〉
= 1
]
≤ 1/3 .

Note that instead of considering oracle-aided MIP proof systems we consider oracle-aided MIP ver-
i�ers, and allow the honest provers to depend on any given oracle in an arbitrary non-black-box
manner (thus our result rules out, in particular, oracle-aided proof systems). We refer the reader to
Section 3 where we formally describe the proof systems we consider and the class of constructions
to which our result applies.

Our generalized decision oracle. For any oracle Ψ ∈ S our generalized decision oracle DecideΨ
S

takes as input a triplet (V, V , x), where V and V are oracle-aided MIP-veri�ers and x ∈ {0, 1}n.
The oracle �rst checks whether or not the pair (V, V ) indeed consists of MIP-veri�ers for a language
and for its complement with respect to all oracles in S as discussed above. If (V, V ) is not valid in
this sense, then the oracle outputs ⊥. If (V, V ) is valid, then the oracle outputs 1 if x ∈ LΨ and 0

otherwise, where LΨ is the language de�ned by (V Ψ, V
Ψ

).
At this point, we would ideally like to follow the approach of Bitansky et al. in proving that Ψ

realizes a one-way function and an indistinguishability obfuscator relative to our generalized decision
oracle. Recall that their proof consists of a sequence of hybrid experiments, where the transition
between each consecutive pair of experiments is enabled by the existence of a small set of critical
queries. Speci�cally, in each transition they modify Ψ on some set of queries into an oracle Ψ′, and
argue that unless these queries fall into the small critical set then the decision oracle behaves exactly
the same.

3For an oracle Ψ, an instance x, a string r, a polynomial-time oracle-aided veri�er V , and provers P1, . . . , PN we
denote by

〈
V Ψ(x; r), P1, . . . , PN

〉
the output of V with oracle access to Ψ on input x and randomness r in the multi-

prover execution with P1, . . . , PN . Note that whenever the provers are computationally unbounded we can assume
that they are deterministic.

4It is usually assumed that the same provers are used for every x ∈ {0, 1}n, and that they obtain x as input.
However, since the provers are computationally unbounded, our de�nition is clearly equivalent and easier to work with
for our purposes.
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Are there small and useful critical query sets? Fix an oracle Ψ ∈ S, and �x a query (V, V , x)
to our generalized decision oracle, where V and V are valid MIP-veri�ers in the above sense. Unlike
the case of NP-veri�ers, when considering MIP-veri�ers then at a �rst glance there does not seem to
be a small set of queries that completely determines whether or not x ∈ LΨ. Speci�cally, assuming
for the current discussion that x ∈ LΨ, in the case of NP-veri�ers this is completely determined by
the polynomial number of queries to the oracle Ψ in the execution V Ψ(x,w) where w is any speci�c
witness (say, the lexicographically �rst such witness). However, in the case of MIP-veri�ers, we are
guaranteed that there exist provers P1, . . . , PN that lead the MIP-veri�er V Ψ(x; r) to accept with
probability at least 2/3 over the randomness r ← {0, 1}poly(|x|) of the veri�er � but this guarantee
involves potentially exponentially-many executions and thus exponentially-many queries to the oracle
Ψ. It may even be the case that any oracle Ψ′ that agrees with Ψ on all of these queries, is in fact
Ψ′ = Ψ, and this is not very useful for the purpose of transitioning between two hybrid experiments.

Nevertheless, let us consider an oracle Ψ′ that di�ers from Ψ on a single query z, and now suppose
that suddenly x /∈ LΨ′ although we started with x ∈ LΨ. Thus, no provers can now lead V Ψ′(x; r)
to accept with probability larger than 1/3 over the randomness r ← {0, 1}poly(|x|), and in particular
this holds for the above provers P1, . . . , PN that led V Ψ(x; r) to accept with probability at least 2/3.
The only way that V Ψ′(x; r) can di�er from V Ψ(x; r) in an execution with the same P1, . . . , PN is
by having V Ψ(x; r) query Ψ on z � and we can deduce that with probability at least 1/3 over the
choice of r ← {0, 1}poly(|x|) it holds that V Ψ(x; r) queries Ψ on z when interacting with P1, . . . , PN .

Therefore, it is quite tempting to �x a distance parameter d ≥ 1, and then for an oracle Ψ ∈ S
and a query (V, V , x) such that x ∈ LΨ to de�ne the following �d-in�uential set� of queries: Let
P1, . . . , PN be provers that lead V Ψ(x; r) to accept with probability at least 2/3, then the d-in�uential
set consists of all queries that V Ψ(x; r) issues to Ψ in at least a 1/(3d)-fraction of these executions.
Then, if V issues at most q queries in each execution, then this set consists of at most 3qd queries.
Moreover, for any oracle Ψ′ that di�ers from Ψ on at most d queries, and these queries are not in
the d-in�uential set, then it must hold that x ∈ LΨ′ (the probability that V (x; r) accepts cannot
drop from 2/3 to 1/3 when switching from Ψ to Ψ′ since they di�er on at most d queries and each
of these queries cannot a�ect more than a 1/(3d)-fraction of the executions).

From in�uential queries to in�uential labels. Unfortunately, this observation is still insu�-
cient for our purposes. In the proof of Bitansky et al. the number of di�erences between Ψ and Ψ′

is irrelevant as long as these di�erences are not in the critical set. However, in our case more than
d di�erences outside of the d-in�uential set may still cause the veri�er's acceptance probability to
drop from 2/3 to below 1/3.

Although our proof considers oracles Ψ and Ψ′ that may di�er on an exponential number of
queries, we tailor the speci�c structure of our obfuscator in a way that enables us to �group together�
related queries: We introduce labeling functions (depending on the speci�c structure of our oracles)
that assign a label to each query to the oracle Ψ, where di�erent queries may share the same label.
We show that it now su�ces to focus on the small number d ≤ 3 of labels that result from the
potentially-exponential number of di�erences between the oracles Ψ and Ψ′.

Speci�cally, we prove that for any Ψ and for any query (V, V , x) to our generalized decision
oracle there exists a small set I of �d-in�uential labels� such that any changes to Ψ involving at
most d labels outside of I do not change the answer to the query. That is, let Ψ′ ∈ S be any
oracle for which there exists a set D ⊆ X \ I of at most d labels such that if Ψ′(α) 6= Ψ(α) then
lab(α) ∈ D, where X is the set of all possible labels and lab is a labeling function. Then, it holds
that DecideΨ′

S (V, V , x) = DecideΨ
S(V, V , x). This is a simpli�ed description of the key property on

which we rely in order to prove that a random instance of Ψ realizes a one-way function and an

7



indistinguishability obfuscator relative to our generalized decision oracle, and we refer the reader to
Section 4 for the proof of our impossibility result.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce some standard notation
as well as the cryptographic primitives under consideration in this paper. In Section 3 we de�ne the
class of constructions to which our impossibility result applies, and in Section 4 we formally state
and prove Theorem 1.1.

2 Preliminaries

In this section we present the notation and basic de�nitions that are used in this work. For a
distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For every n ∈ N and
m ≥ n we denote by InjFuncmn the set of all injective functions f : {0, 1}n → {0, 1}m.

Oracle-aided languages and complexity classes. For a language L ⊆ {0, 1}∗, we let χL :
{0, 1}∗ → {0, 1} denote the characteristic function of L, that is, χL(x) = 1 if and only if x ∈ L. A
deterministic algorithm A decides a language L if for every x ∈ {0, 1}∗ it holds that A(x) = χL(x).

We consider the standard notions of languages and complexity classes when naturally generalized
to oracle-aided computations. In particular, an oracle-aided language L de�nes a set LΓ ⊆ {0, 1}∗ for
any possible oracle Γ : {0, 1}∗ → {0, 1}∗. Our de�nitions throughout the paper follow the standard
approach that was introduced in the classic complexity-theory literature for proving separations
between complexity classes by considering type-2 languages and complexity classes (see, for example,
[BCE+95, CIY97] and the references therein).

Indistinguishability obfuscation for oracle-aided circuits. We consider the standard notion
of indistinguishability obfuscation [BGI+12, GGH+13] when naturally generalized to oracle-aided
circuits (i.e., circuits that may contain oracle gates in addition to standard gates) [AS15, AS16].
We �rst de�ne the notion of functional equivalence relative to a speci�c function (provided as an
oracle), and then we de�ne the notion of an indistinguishability obfuscation for a class of oracle-aided
circuits. In what follows, when considering a class C = {Cn}n∈N of oracle-aided circuits, we assume
that each Cn consists of circuits of size at most n.

De�nition 2.1. Let C0 and C1 be two oracle-aided circuits, and let f be a function. We say that
C0 and C1 are functionally equivalent relative to f , denoted Cf0 ≡ Cf1 , if for any input x it holds

that Cf0 (x) = Cf1 (x).

De�nition 2.2. A probabilistic polynomial-time oracle-aided algorithm iO is an indistinguishability
obfuscator relative to an oracle Γ for a class C = {Cn}n∈N of oracle-aided circuits if the following
conditions are satis�ed:

• Functionality. For all n ∈ N and for all C ∈ Cn it holds that

Pr
[
CΓ ≡ ĈΓ : Ĉ ← iOΓ(1n, C)

]
= 1.

8



• Indistinguishability. For any probabilistic polynomial-time oracle-aided distinguisher A =
(A1,A2) there exists a negligible function ν(·) such that

AdviOΓ,iO,A,C(n)
def
=

∣∣∣∣Pr
[
ExpiOΓ,iO,A,C(n) = 1

]
− 1

2

∣∣∣∣ ≤ ν(n)

for all su�ciently large n ∈ N, where the random variable ExpiOΓ,iO,A,C(n) is de�ned via the
following experiment:

1. b← {0, 1}.
2. (C0, C1, state)← AΓ

1 (1n) where C0, C1 ∈ Cn and CΓ
0 ≡ CΓ

1 .

3. Ĉ ← iOΓ(1n, Cb).

4. b′ ← AΓ
2 (state, Ĉ).

5. If b′ = b then output 1, and otherwise output 0.

For simplicity, note that whenever the algorithm A1 is deterministic there is in fact no need
for A1 to transfer any state information state to A2 as the state can be reconstructed if needed by
invoking A1. Looking ahead, in this paper we consider computationally-unbounded algorithms (i.e.,
we limit their query complexity but we do not limit their internal computation), and such algorithms
can be assumed without loss of generality to be deterministic.

3 The Class of Constructions

The proof systems we consider in this paper can be formalized in a variety of seemingly equivalent
manners, and here we choose a speci�c de�nition that we �nd to simplify the proof of our impossibility
result:

De�nition 3.1. For functions V, P : {0, 1}∗ → {0, 1}∗, an integer k ≥ 0 and a string s ∈ {0, 1}∗, we
denote by 〈V (s), P 〉k the output of the following computation:

• Let m0 = P (V (s, 0)).

• For 1 ≤ i < k, let mi = P (V (s, i,m0, . . . ,mi−1)).

• Output V (s, k,m0, . . . ,mk−1) ∈ {0, 1}.

That is, we consider a sequential process that is executed by two parties, a veri�er V that is
given as input a string s, and a prover P that is not given any input. The process consists of k
rounds, where in each round the veri�er sends the prover a message that is computed as a function
of its input s, the index i of the current round, and the prover's previous responses m0, . . . ,mi−1.
In turn, the prover replies with a response mi, and following these k steps the veri�er outputs a bit
indicating acceptance or rejection.

A crucial property to notice is that the prover's response, mi, in each step is a function of
the veri�er's ith message only, and not of the entire transcript which includes all of the veri�er's
previous messages as well (i.e., the prover is �memoryless�). A veri�er may potentially include the
entire transcript in each message, and then the de�nition would collapse to the class IP of languages
that have an interactive proof system [GMR89].

In general, however, a veri�er need not send the entire transcript in each message, and this
enables us to capture the class MIP of languages that have a multi-prover interactive proof system
[BGK+88]. Speci�cally, any such proof system 〈V, P1, . . . , PN 〉 in which each prover sends at most v
messages can be transformed in a black-box manner into a proof system 〈V, P 〉k of the above form
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with k = v ·N . This can be done, for example, by de�ning P (i, ·) = Pi(·) for every i ∈ [T ] (with P
maintaining the local state of each prover if needed), and having the veri�er include in each message
the index of the prover to which this message is sent together with the entire transcript that this
speci�c prover has seen so far. Although we have not yet de�ned the completeness and soundness
properties for the above proof systems (these are de�ned as part of the following de�nition), we
already note that this transformation naturally preserves them.

As discussed in Section 1.2, instead of considering oracle-aided MIP proof systems we consider
oracle-aided MIP veri�ers, and allow the honest provers to depend on any given oracle in an arbitrary
(i.e., non-black-box) manner (thus our result rules out, in particular, oracle-aided proof systems).
This is captured via the following de�nition:

De�nition 3.2. A pair
(
V, V

)
of oracle-aided polynomial-time algorithms, together with polynomi-

als `r(·) and k(·), de�ne a (MIP, coMIP) protocol pair relative to an oracle Ψ : {0, 1}∗ → {0, 1}∗ if
there exists a language LΨ ⊆ {0, 1}∗ and such that:

• For every x ∈ LΨ there exists a function P : {0, 1}∗ → {0, 1} such that

Pr
r←{0,1}`r(|x|)

[〈
V Ψ(x, r), P

〉
k(|x|) = 1

]
≥ 2/3 ,

and for every function P : {0, 1}∗ → {0, 1} it holds that

Pr
r←{0,1}`r(|x|)

[〈
V

Ψ
(x, r), P

〉
k(|x|)

= 1

]
≤ 1/3 .

• For every x /∈ LΨ there exists a function P : {0, 1}∗ → {0, 1} such that

Pr
r←{0,1}`r(|x|)

[〈
V

Ψ
(x, r), P

〉
k(|x|)

= 1

]
≥ 2/3 ,

and for every function P : {0, 1}∗ → {0, 1} it holds that

Pr
r←{0,1}`r(|x|)

[〈
V Ψ(x, r), P

〉
k(|x|) = 1

]
≤ 1/3 .

Note that the above de�nition considers provers that output only a single bit in each step. This
is just for syntactical reasons, making sure that the veri�er runs in polynomial-time with respect to
the length of the input x. For example, if the prover was allowed to be a length-doubling function,
then after |x| rounds this would allow a polynomial-time veri�er to run in time that is exponential
in the length of |x|. There are naturally various ways in which this technical issue can be handled
(e.g., providing the veri�er with oracle access to the prover instead of direct communication), clearly
without having any e�ect on our result.

The following de�nition is based on those of [AS15, AS16, BDV17] (which, in turn, are motivated
by [Lub96, Gol00, RTV04]), and captures the class of construction that we consider in this paper.
We remind the reader that two oracle-aided circuits, C0 and C1, are functionally equivalent relative
to a function f , denoted Cf0 ≡ C

f
1 , if for any input x it holds that C

f
0 (x) = Cf1 (x) (see De�nition 2.1).

De�nition 3.3. A fully black-box construction of a worst-case hard (MIP, coMIP) protocol pair from
an injective one-way function f and an indistinguishability obfuscator for the class C of all oracle-
aided circuits Cf , consists of a pair of oracle-aided polynomial-time algorithms (V, V ), polynomials
`r(·) and k(·), an oracle-aided polynomial-time algorithm M , and �security loss� functions εM,1(·)
and εM,2(·), such that the following conditions hold:
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• Correctness: For every ensemble f = {fn : {0, 1}n → {0, 1}n+1}n∈N of injective functions,
and for any function iO such that iO(C; r)f ≡ Cf for any circuit C and r ∈ {0, 1}∗, the pair
(V, V ), together with the polynomials `r(·) and k(·), de�ne an (MIP, coMIP) protocol pair (with
a corresponding language Lf,iO) relative to the oracle (f, iO).

• Black-box proof of hardness: For every ensemble f = {fn : {0, 1}n → {0, 1}n+1}n∈N of
injective functions, for any function iO such that iO(C; r)f ≡ Cf for any circuit C and r ∈
{0, 1}∗, and for any oracle-aided algorithm A that runs in time TA(·), if Af,iO(x) = χLf,iO(x)
for every x ∈ {0, 1}∗ then either

Pr
[
Mf,iO,A (f(x)) = x

]
≥ εM,1 (TA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where the probability is taken over the choice of x← {0, 1}n
and over the internal randomness of M , or∣∣∣∣Pr

[
ExpiO(f,iO),iO,MA,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ εM,1 (TA(n)) · εM,2(n)

for in�nitely many values of n ∈ N.

Intuitively, a black-box proof of hardness for Lf,iO means that any algorithm that decides Lf,iO

can be used to construct an adversary that breaks either the one-wayness of f or the indistinguisha-
bility property of iO in a black-box way.

Note that restricting A to be deterministic and to decide the language in the worst case (i.e., on
all inputs) only makes our result stronger. Also note that, following Asharov and Segev [AS15, AS16],
we split the security loss in the above de�nition to an adversary-dependent security loss (the function
εM,1(·)) and an adversary-independent security loss (the function εM,2(·)), as this allows us to also
rule out constructions in which one of these losses is super-polynomial while the other is polynomial.

4 Our Impossibility Result

Equipped with a formal de�nition of the class of constructions that we consider in this paper (recall
De�nition 3.3), in this section we prove the following theorem:

Theorem 4.1. Let ((V, V ), `r, k,M, TM , εM,1, εM,2) be a fully black-box construction of a worst-case

hard (MIP, coMIP) protocol pair from an injective one-way function f and an indistinguishability

obfuscator for all oracle-aided circuits Cf . Then, it holds that

εM,1 (n) · εM,2(n) ≤ 2−Ω(n).

That is, at least one out of the adversary-dependent security loss εM,1(·) and the adversary-independent
security loss εM,2(·) is exponential.

Theorem 4.1 rules out, in particular, standard �polynomial-time polynomial-loss� reductions.
More generally, the theorem implies that if the adversary-dependent security loss εM,1(·) is polyno-
mial (as is typically the case in cryptographic reductions), then the adversary-independent security
loss εM,2(·) must be exponential. Thus, this also rules out constructions that are based on indistin-
guishability obfuscation with sub-exponential security (e.g., [BPR15, BPW16]).

In what follows we �rst introduce our generalized decision oracle, and capture its main property
on which we rely in our proof, as discussed in Section 1.2. Then, in Section 4.2 we introduce
the additional oracles on which we rely, and in Sections 4.3 and 4.4 we prove that relative to these
oracles and to our decision oracle there exist an injective one-way function and an indistinguishability
obfuscator, respectively. Finally, in Section 4.5 we derive the proof of Theorem 4.1.

11



4.1 Our Generalized Decision Oracle

For a family of oracles S and for any speci�c oracle Ψ ∈ S, we de�ne the oracle DecideΨ
S as the

following function: Given as input tuple (C0, C1, 1
`r , 1k), where C0 and C1 are oracle-aided circuits,

and `r and k are non-negative integers, for every Φ ∈ S the oracle checks if exactly one of the
following two cases holds:

• There exists a function P1 : {0, 1}∗ → {0, 1} such that

Pr
r←{0,1}`r

[〈
CΦ

1 (r), P1

〉
k

= 1
]
≥ 2/3 ,

and for every function P0 : {0, 1}∗ → {0, 1} it holds that

Pr
r←{0,1}`r

[〈
CΦ

0 (r), P0

〉
k

= 1
]
≤ 1/3 .

In this case, we say that (CΦ
0 , C

Φ
1 , 1

`r , 1k) is a yes-instance.

• There exists a function P0 : {0, 1}∗ → {0, 1} such that

Pr
r←{0,1}`r

[〈
CΦ

0 (r), P0

〉
k

= 1
]
≥ 2/3 ,

and for every function P1 : {0, 1}∗ → {0, 1} it holds that

Pr
r←{0,1}`r

[〈
CΦ

1 (r), P1

〉
k

= 1
]
≤ 1/3 .

In this case, we say that (CΦ
0 , C

Φ
1 , 1

`r , 1k) is a no-instance.

If there exists an oracle Φ ∈ S such that not exactly one of the above cases hold, then we say that
the input (C0, C1, 1

`r , 1k) is invalid and set DecideΨ
S to output ⊥. Otherwise, DecideΨ

S outputs 1 or
0 according to whether (CΨ

0 , C
Ψ
1 , 1

`r , 1k) is a yes-instance or a no-instance.5

The following simple lemma shows that the oracle DecideΨ
S can be easily used in order to decide

any language that is de�ned via a (MIP, coMIP) protocol pair:

Lemma 4.2. Let S be a family of oracles, and let (V, V ) be a pair of oracle-aided polynomial-time

algorithms that is an (MIP, coMIP) protocol pair, with respect to polynomials `r(·) and k(·), relative
to every oracle Ψ ∈ S. Then, there exists a polynomial-time single-query algorithm A such that for

every Ψ ∈ S, given oracle access to DecideΨ
S the algorithm A decides the language LΨ ⊆ {0, 1}∗

de�ned by (V, V , `r, k) relative to Ψ. That is, for every Ψ ∈ S and x ∈ {0, 1}∗ the algorithm

ADecideΨ
S(x) outputs 1 if and only if x ∈ LΨ.

Proof. Since V and V are polynomial time, there exists a polynomial p(n) such that on input of size
n their output is of size at most p(n). Given x ∈ {0, 1}∗ as input and oracle access to DecideΨ

S, the
algorithm A queries DecideΨ

S on (C0, C1, 1
`r(|x|), 1k(|x|)), where C0 and C1 are the hardwired oracle-

aided circuits V (x, ·) and V (x, ·) respectively, the input size of both circuits is dlog(k(|x|)+1)e+k(|x|)
(where dlog(k(|x|) + 1)e bits are for the index of the communication round and k(|x|) bits are for
the messages of the prover) and the output size is p(|x| + dlog(k(|x|) + 1)e + k(|x|)). Finally, the
algorithm A outputs 1 if and only if the oracle's response to the query is 1.

5Note that for an input (C0, C1, 1
`r , 1k), either it is invalid and then DecideΨ

S outputs ⊥ for every Ψ ∈ S, or it is
valid and then DecideΨ

S outputs 0 or 1 depending on Ψ.

12



The following lemma captures the key property of our oracle, as discussed in Section 1.2:

Lemma 4.3. Let S be a family of oracles, let Q be the set of all possible queries for every oracle in

the family, let lab : Q → X be a �labeling� of the possible queries, and let d ∈ N be a parameter.

For any Ψ ∈ S and for any DecideΨ
S-query (C0, C1, 1

`r , 1k) such that each of the circuits C0 and

C1 contains at most q oracle gates, there exists a set of labels I = I(S,Ψ, C0, C1, `r, k, lab, d) ⊆ X ,
which we call the in�uential labels, satisfying the following two properties:

1. The set is small: |I| ≤ 3 · q · k · d.

2. Any changes to Ψ involving at most d labels outside of I do not change the answer of the query:

Let Φ ∈ S be another oracle, such that there exists a set D ⊆ X \ I of labels with cardinality at

most d such that if Φ(q) 6= Ψ(q) then lab(q) ∈ D. Then, it holds that

DecideΦ
S(C0, C1, 1

`r , 1k) = DecideΨ
S(C0, C1, 1

`r , 1k) .

Proof. If DecideΨ
S(C0, C1, 1

`r , 1k) = ⊥ this means that the input (C0, C1, 1
`r , 1k) is invalid, and

then DecideΦ
S(C0, C1, 1

`r , 1k) = ⊥ holds for every Φ ∈ S and the claim follows for I = ∅. Otherwise,
suppose without loss of generality that DecideΨ

S(C0, C1, 1
`r , 1k) = 1 and let P1 : {0, 1}∗ → {0, 1} such

that
Pr

r←{0,1}`r

[〈
CΨ

1 (r), P1

〉
k

= 1
]
≥ 2/3 .

Roughly speaking, we de�ne I ⊆ X to be the set of all labels for which a query with that label
is performed during the execution of the protocol

〈
CΨ

1 (·), P1

〉
k
with high probability over the choice

of r. More formally, we de�ne

I =

{
label ∈ X

∣∣∣∣ Pr
r←{0,1}`r

[
A query q ∈ Q such that lab(q) = label is performed

during the execution of
〈
CΨ

1 (r), P1

〉
k

]
≥ 1

3 · d

}
.

First, for every r ∈ {0, 1}`r at most q·k queries are performed during the execution of
〈
CΨ

1 (r), P1

〉
k
.

Therefore, for any 0 < ε ≤ 1 there are at most q · k/ε labels such that

Pr
r←{0,1}`r

[
A query q ∈ Q such that lab(q) = label is performed

during the execution of
〈
CΨ

1 (r), P1

〉
k

]
≥ ε .

In our case, this means that I ≤ q · k · 3 · d as claimed.
Next, let Φ ∈ S such that there exists a set D ⊆ X \ I of labels with cardinality at most d such

that if Φ(q) 6= Ψ(q) then lab(q) ∈ D. By a union bound it holds that

Pr
r←{0,1}`r

[
A query q ∈ Q such that lab(q) ∈ D is performed

during the execution of
〈
CΨ

1 (r), P1

〉
k

]
<
|D|
3 · d

≤ 1

3
.

If the above event does not occur then
〈
CΦ

1 (r), P1

〉
k

=
〈
CΨ

1 (r), P1

〉
k
. Hence,

Pr
r←{0,1}`r

[〈
CΦ

1 (r), P1

〉
k

= 1
]

≥ Pr
r←{0,1}`r

[〈
CΨ

1 (r), P1

〉
k

= 1
]
− Pr
r←{0,1}`r

[〈
CΦ

1 (r), P1

〉
k
6=
〈
CΨ

1 (r), P1

〉
k

]
>

2

3
− 1

3
=

1

3
,

so (CΦ
0 , C

Φ
1 , 1

`r , 1k) is not a no-instance. Since DecideΨ
S(C0, C1, 1

`r , 1k) 6= ⊥, (CΦ
0 , C

Φ
1 , 1

`r , 1k) must
be a yes-instance and therefore DecideΦ

S(C0, C1, 1
`r , 1k) = 1 = DecideΨ

S(C0, C1, 1
`r , 1k) as claimed.
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4.2 Our Indistinguishability Obfuscation Oracle

In what follows we de�ne the family S of oracles that realize injective functions and strongly-
unambiguous obfuscations relative to our decision oracle, and de�ne a distribution D(S) over that
family. The family S consists of all triplets (f,O, E) = ({fn}n∈N, {On}n∈N, {En}n∈N), satisfying the
following three conditions for every n ∈ N:

1. The function fn : {0, 1}n → {0, 1}n+1 is injective. Looking ahead, f will serve as an injective
one-way function.

2. The function On : {0, 1}2n → {0, 1}10n is injective. Looking ahead, for an oracle-aided circuit
C ∈ {0, 1}n with f -gates and randomness r ∈ {0, 1}n, the output On(C, r) will serve as an
obfuscation of C, and the restriction that On is injective means that the obfuscation is strongly-
unambiguous in the sense that any obfuscation Ĉ ∈ Image(On) only comes from a single circuit
with a single randomness string.

3. The function En : {0, 1}11n → {0, 1}n satis�es the following condition: For every oracle-aided
circuit C ∈ {0, 1}n with f -gates, every randomness r ∈ {0, 1}n and every input α ∈ {0, 1}n,
it holds that En(On(C, r), α) = Cf (x). Namely, given an obfuscation Ĉ = On(C, r) and an
input α, the function En evaluates C on input α with respect to the oracle f .

We emphasize that for any Ĉ ∈ {0, 1}10n \ Image(On), there is no restriction on En(Ĉ, ·), so
there is no clear way to verify whether some Ĉ ∈ {0, 1}10n is a valid obfuscation. As noted
by Bitansky et al. [BDV17], it is necessary for the obfuscation to not be veri�able since an
unambiguous and veri�able indistinguishability obfuscator does imply hardness in NP∩ coNP.

Now, we de�ne a distribution D(S) over S, relative to which we prove that an oracle Ψ← D(S)
realizes an injective one-way function and an indistinguishability obfuscator. The distribution D(S)
is obtained by sampling a triplet (f,O,Evalf,O) from S as follows:

1. For every n ∈ N the function fn is uniformly chosen from the set InjFuncn+1
n of all injective

functions fn : {0, 1}n → {0, 1}n+1.

2. For every n ∈ N the function On : {0, 1}2n → {0, 1}10n is sampled as follows: A function h is
uniformly chosen from the set InjFunc5n

n , and for every r ∈ {0, 1}n a function gr is uniformly
chosen from the set InjFunc5n

n . Then, for every input (C, r) ∈ {0, 1}n × {0, 1}n we de�ne
On(C, r) = (h(r), gr(C)). Note that On is injective as required, and that this distribution of
the function O di�ers from that of Asharov and Segev [AS15] and Bitansky et al. [BDV17],
where On was a uniformly chosen injective function.

3. For every n ∈ N, the function Evalf,O on input (Ĉ, α) ∈ {0, 1}10n × {0, 1}n is de�ned as
follows: If there exists a pair (C, r) ∈ {0, 1}n×{0, 1}n such that Ĉ = On(C, r) then it outputs
Cf (α), and otherwise it outputs ⊥. Note that Evalf,O satis�es the above third condition for
membership in S.

4.3 The Existence of an Injective One-Way Function

In this section we prove that the injective function f is one way relative to
(
Ψ,DecideΨ

S

)
, where Ψ =

(f,O,Evalf,O) is sampled from the distribution D(S) over S (see Section 4.2 for the description of
this distribution). Our proof follows the structure of that of Bitansky, Degwekar and Vaikuntanathan
[BDV17], while strengthened to deal with our generalized decision oracle as explained in Section 1.2.
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In what follows we call an oracle-aided algorithm A a q-query algorithm, for a function q = q(n),
if when given any input x ∈ {0, 1}n it issues at most q(n) queries to the oracle Γ, each of its queries to
Eval and Decide consists of circuits with at most q(n) oracle gates, and the number of communication
rounds in the proof systems corresponding to each of its queries to Decide is at most q(n).

Theorem 4.4. For any oracle-aided 2n/12-query algorithm A it holds that

Pr
Ψ←D(S)
x←{0,1}n

[
AΨ,DecideΨ

S(f(x)) = x
]
≤ O(2−n/2)

for all su�ciently large n ∈ N.

In what follows, we let F denote the family of ensembles f = {fn}n∈N where fn ∈ InjFuncn+1
n for

all n ∈ N. As our �rst step, we prove that f ← F is one way relative to the oracle (f,DecidefF).

Lemma 4.5. For any oracle-aided 2n/6-query algorithm A it holds that

Pr
f←F

x←{0,1}n

[
Af,DecidefF(f(x)) = x

]
≤ O(2−n/2) .

Proof. We prove that the lemma holds when even �xing the oracles f−n = {fk}k 6=n and only sam-
pling fn. We introduce a sequence of three hybrid experiments such that the �rst hybrid experiment
H1 is the real one-wayness experiment and the last hybrid experiment H3 is an experiment in which
the probability of the adversary is of winning is 1/2n. Then, by upper bounding the di�erence in
the winning probability between each pair of consecutive hybrid experiments we deduce our claim.

The hybrid H1. This is the real experiment in which we sample x ← {0, 1}n, give fn(x) ∈
{0, 1}n+1 to A as input, and give A oracle access to Γ = (f,DecidefF).

The hybrid H2. In this experiment, we sample y ← {0, 1}n+1 \ Image(fn), give y to A as input,

and give A oracle access to Γ′ = (fx 7→y,Decide
fx 7→y

F ), where fx 7→y is de�ned as

fx 7→y(z) =

{
y if z = x

f(z) otherwise
.

That is, we �plant� y as the challenge and as the image of x.

The hybrid H3. This experiment is obtained from H2 by giving A oracle access to the original
oracle Γ instead of the oracle Γ′ with the planted y, while still giving A the planted y as input.

The following table summarizes our hybrid experiments:

Hybrid H1 H2 H3

Randomness

Challenger
x← {0, 1}n

Function

Injective
fn ← InjFuncn+1

n

Challenge fn(x) y ← {0, 1}n+1 \ Image(fn)

Oracle Γ = (f,DecidefF) Γ′ = (fx7→y,Decide
fx 7→y

F ) Γ = (f,DecidefF)

Condition

Winning A outputs x
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Claim 4.6. Pr[A wins in H1] = Pr[A wins in H2].

Proof. We couple the experiments H1 and H2 as follows.6 First, we sample the same x ← {0, 1}n
for both experiments. Then, we a uniformly sample a random injective function f̂ : {0, 1}n \ {x} →
{0, 1}n+1. Next, we sample two distinct y, y′ ← {0, 1} \ Image(f̂). Now, in H1 we let the injective
function be

fn(z) =

{
y if z = x

f̂(z) otherwise
,

whereas in H2 we let the injective function be

f ′n(z) =

{
y′ if z = x

f̂(z) otherwise
,

and let y be the planted challenge. It is easy to see that the marginal distribution in both experiments
is correct, and that both experiments are identical. That is, A gets the same challenge as input and
gets access to the same oracle, thus the claim follows.

Claim 4.7. |Pr[A wins in H2]− Pr[A wins in H3]| ≤ 3 · q3/2n.

Proof. We observe that the view of A in H3 is independent of the choice of x. Therefore, if a query
to fn is made, then the probability of it to be x is at most 1/2n. In any other case, the answer to
this query is the same in H2 and H3, and both executions proceed the same way.

Now, if a query (C0, C1, 1
`r , 1k) to DecidefF is made, then we apply Lemma 4.3. We take the label

function lab : Q → X to be the identity function. The set I = I(F, f, C0, C1, `r, k, lab, 1) ⊆ X of
in�uential labels is independent of the choice of x. Therefore, the probably that I contains x is at
most |I|/2n ≤ 3q2/2n. In any other case, the oracle fx 7→y of H2 is obtained from f of H3 by changes
involving one label outside of I, and therefore by Lemma 4.3 it holds that

Decide
fx 7→y

F (C0, C1, 1
`k , 1k) = DecidefF(C0, C1, 1

`k , 1k) ,

and both executions proceed the same way. Applying a union bound we deduce that

|Pr[A wins in H2]− Pr[A wins in H3]|

≤ Pr
[
A query was answered di�erently in AΓ(y) and AΓ′(y)

]
≤ 3q3

2n
,

and the claim follows.

Claim 4.8. Pr[A wins in H3] = 1/2n.

Proof. In this experiment the view of A is independent of x.

Now we turn back to proving Lemma 4.5. It holds that

Pr[A wins in H1] ≤ |Pr[A wins in H1]− Pr[A wins in H2]|
+ |Pr[A wins in H2]− Pr[A wins in H3]|+ Pr[A wins in H3]

≤ 0 +
3q3

2n
+

1

2n
= O

(
q3

2n

)
,

and by plugging q = 2n/6 we obtain Lemma 4.5.

6To couple two probability distributions means to de�ne a joint distribution whose marginals are exactly those two
distributions.

16



Now, as our second and �nal step, we show how to deduce Theorem 4.4 from Lemma 4.5.

Proof of Theorem 4.4. We prove that the theorem holds when even �xing the oracle O and only
sampling f . Similar to Bitansky, Degwekar and Vaikuntanathan [BDV17], we show how to convert
a q-query adversary A that inverts fn when given access to the oracle (Ψ,DecideΨ

S), where Ψ =
(f,O,Evalf,O), into a q2-query adversary B with the same winning probability but that only has

access to the oracle (f,DecidefF). The algorithm B simulates the algorithm A, and upon each query

to (Ψ,DecideΨ
S), B acts as follows:

• A query to f is answered by forwarding it to the oracle f (to which B has access)and providing
A with its response.

• A query to O is answered according to the �xed O without any queries.

• A query (C̃, α) ∈ {0, 1}10m × {0, 1}m to Evalf,O is answered as follows: If there exists an
oracle-aided circuit C ∈ {0, 1}m and r ∈ {0, 1}m for which O(C, r) = Ĉ according to the �xed
O, then B computes Cf (α) and return the answer to A. Otherwise, B answers with ⊥. This
step requires at most q queries to f per query.

• A query (C0, C1, 1
`r , 1k) to DecideΨ

S is answered as follows: If the input (C0, C1, 1
`r , 1k) is

invalid, then B returns the answer ⊥ to A. Otherwise, B constructs q2-query circuits C ′0 and
C ′1 with only f gates from C0 and C1 by hard-wiring the entire function O, replacing each
O-gate with a direct computation from the hardwired O, and replacing each Evalf,O-gate with
the same computation done above for queries to Evalf,O, which requires at most q additional
f -gates per Evalf,O-gate. Thus, the number of f -gates in each of the circuits C ′0 and C ′1 is at

most q2. Then, B queries DecidefF with (C ′0, C
′
1, 1

`r , 1k) and returns the answer to A.

Overall, B perfectly simulates A, requires at most q2 queries, and the circuits in each query to
DecideΨ

S consist of at most q2 queries. Thus, given a 2n/12-query algorithm A, the resulting B is a
2n/6-query algorithm, and we deduce Theorem 4.4 (or rather, the strengthened version with �xed
O) by applying Lemma 4.5

Pr
f←F

Ψ=(f,O,Evalf,O)
x←{0,1}n

[
AΨ,DecideΨ

S(f(x)) = x
]

= Pr
f←F

x←{0,1}n

[
Bf,DecidefF(f(x)) = x

]
≤ O(2−n/2) .

4.4 The Existence of an Indistinguishability Obfuscator

In this section we prove that relative to the oracle Γ = (Ψ,DecideΨ
S), where Ψ = (f,O,Evalf,O)

is sampled from the distribution D(S) de�ned in Section 4.2, there exists an indistinguishability
obfuscator iO for all circuits with f -gates.

Our obfuscator is based on those of Asharov and Segev [AS15] and Bitansky et al. [BDV17] but
has a somewhat di�erent structure. Similarly to their obfuscator, for every n ∈ N, given an oracle-
aided circuit C ∈ {0, 1}n, the obfuscator iO samples r ← {0, 1}n and outputs the obfuscated circuit
Ĉ = On(C, r) ∈ {0, 1}10n. In turn, the oracle Evalf,O can be used for evaluating such an obfuscated
circuit at any given point α: If there exists a pair (C, r) ∈ {0, 1}n × {0, 1}n such that Ĉ = On(C, r)
then Evalf,O outputs Cf (α) and otherwise it outputs ⊥.

However, unlike their obfuscator of Asharov and Segev [AS15] and Bitansky et al. [BDV17],
which was sampled uniformly at random among all injective functions (of the appropriate input
and output lengths), recall that according to our de�nition of the distribution D(S) it holds that
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On(C, r) = (h(r), gr(C)), where the function h is uniformly-chosen from the set InjFunc5n
n , and for

every r ∈ {0, 1}n a function gr is uniformly-chosen from the set InjFunc5n
n .

Recall that we call an oracle-aided algorithm A a q-query algorithm, for a function q = q(n), if
when given any input x ∈ {0, 1}n it issues at most q(n) queries to the oracle Γ, each of its queries to
Eval and Decide consists of circuits with at most q(n) oracle gates, and the number of communication
rounds in the proof systems corresponding to each of its queries to Decide is at most q(n). Letting
C denote the class of all oracle-aided circuit with f -gates, we prove the following theorem:

Theorem 4.9. For any oracle-aided 2n/6-query algorithm A it holds that

E
Γ

∣∣∣∣Pr
[
ExpiOΓ,iO,A,C(n) = 1

]
− 1

2

∣∣∣∣ ≤ O(2−n/4)

where the expectation is taken over the choice of Γ = (Ψ,DecideΨ
S) where Ψ← D(S), and the inner

probability is taken over the randomness of the experiment ExpiOΓ,iO,A,C(n).

Toward proving Theorem 4.9, we �rst prove the following lemma.

Lemma 4.10. For any oracle-aided 4 · 2n/6-query algorithm A it holds that∣∣∣∣Pr
[
ExpiOΓ,iO,A,C(n) = 1

]
− 1

2

∣∣∣∣ ≤ O(2−n/2)

where the probability is taken both over the choice of Γ = (Ψ,DecideΨ
S) where Ψ ← D(S), and over

the randomness of the experiment ExpiOΓ,iO,A,C(n).

Proof. We prove that the lemma holds when even �xing the oracle f and O−n = {Ok}k 6=n, and
only sampling On. We introduce a sequence of 5 hybrid experiments such that the �rst hybrid
experiment H1 is the real indistinguishability-obfuscation experiment ExpiOΓ,iO,A,C(n) and the last
hybrid experiment H5 is an experiment in which the advantage of the adversary is 0. Then, by
upper bounding the di�erence in the advantage between each pair of consecutive hybrid experiments
we deduce our lemma.

In what follows we �rst describe the hybrid experiments (see also the table below for a summary
� where we omit the function f since it has been �xed), and then present a sequence of claims for
bounding the di�erences in the advantages.

The hybrid H1. This is the real experiment in which we sample On by sampling h← InjFunc5n
n ,

sampling gr ← InjFunc5n
n for every r ∈ {0, 1}n, and setting On(C, r) = (h(r), gr(C)).

The hybrid H2. In this experiment, instead of giving the pre-challenge adversary A0 access to
the oracle Γ = (Ψ,DecideΨ

S) where Ψ = (f,O,EvalO), we sample a string ĥ ← {0, 1}5n \ Image(h)
and a function ĝ ← InjFunc5n

n , then we give A0 access to the oracle Γ′ = (Ψ′,DecideΨ′
S ) where

Ψ′ = (f,O
(·,r∗)→(ĥ,ĝ(·)),Eval

O) and for every C, r ∈ {0, 1}n we de�ne

O
(·,r∗)→(ĥ,ĝ(·))(C, r) =

{
(ĥ, ĝ(C)) if r = r∗

O(C, r) otherwise
.

That is, for the challenge randomness r∗, instead of obfuscating using h(r∗) and gr∗(·) we use our
�planted obfuscation� ĥ and ĝ(·). The rest of the experiment proceeds as before.
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The hybrid H3. In this experiment, we return to giving the pre-challenge adversary A0 access
to the real oracle Γ. However, we now give the post-challenge adversary A1 a �planted challenge�
(ĥ, ĝ(Cb)), and we give A1 access to the oracle Γ′ = (Ψ′,DecideΨ′

S ) where Ψ′ = (f,O
(·,r∗)→(ĥ,ĝ(·)),

EvalO).

The hybrid H4. For an obfuscator function of the form O(C, r) = (h(r), gr(C)), ĥ ∈ {0, 1}5n \
Image(h) and ĝ ∈ InjFunc5n

n , we de�ne the planted evaluation function PEvalO
(ĥ,ĝ)

as

PEvalO
(ĥ,ĝ)

(C̃, α) =

{
Cf (α) if C̃ = (ĥ, ĝ(C)) for a circuit C ∈ {0, 1}n

EvalO(C̃, α) otherwise
.

Note that since ĥ /∈ Image(h), it holds that PEvalO
(ĥ,ĝ)

is a valid evaluation function and therefore

(f,O,PEvalO
(ĥ,ĝ)

) ∈ S. Now, the experiment H4 is obtained from H3 by replacing the post-challenge

oracle Γ′ with the oracle Γ′′ = (Ψ′′,DecideΨ′′
S ) where Ψ′′ = (f,O,PEvalO

(ĥ,ĝ)
). Note that in this

experiment, the randomness r∗ has no role.

The hybrid H5. This experiment is obtained from H4 by replacing the challenge obfuscation
(ĥ, ĝ(Cb)) with (ĥ, ĝ(C0)). Note that in this experiment, the bit b has no role except for the winning
condition, namely, A wins if A1 outputs b.

Hybrid H1 H2 H3 H4 H5

Randomness

Challenger
b← {0, 1}, r∗ ← {0, 1}n b← {0, 1}

Fuction

Obfuscator On(C, r) = (h(r), gr(C)), where h← InjFunc5n
n and gr ← InjFunc5n

n for every r ∈ {0, 1}n

Obfuscation

Planted
N/A ĥ← {0, 1}5n \ Image(h), ĝ ← InjFunc5n

n

Oracle

Pre-challenge Ψ = (O,EvalO)

DecideΨ
S

Ψ′ = (O′ = O(·,r∗)→(ĥ,ĝ(·)),

EvalO
′
),DecideΨ′

S

Ψ = (O,EvalO)

DecideΨ
S

Obfuscation

Challenge O(Cb, r
∗) = (h(r∗), gr∗(Cb)) (ĥ, ĝ(Cb)) (ĥ, ĝ(C0))

Oracle

Post-challenge Ψ = (O,EvalO)

DecideΨ
S

Ψ′ = (O′ = O(·,r∗)→(ĥ,ĝ(·)),

EvalO
′
),DecideΨ′

S

Ψ′′ = (O,PEvalO
(ĥ,ĝ)

)

DecideΨ′′
S

Condition

Winning A1 outputs b

Claim 4.11. |Pr[A wins in H1]− Pr[A wins in H2]| ≤ 27q3/2n.

Proof. We observe that if A0 has the same output both when given access to Γ or Γ′, then the rest
of the experiment proceeds the same way and A wins in H1 if and only if he wins in H2. Hence,

|Pr[A wins in H1]− Pr[A wins in H1]| ≤ Pr[AΓ
0 (1n) 6= AΓ′

0 (1n)] .

We de�ne a label function lab : Q → X , where the label of a query (C, r) ∈ {0, 1}n × {0, 1}n to
On is r, the label of a query ((h̃, g̃), α) ∈ ({0, 1}5n × {0, 1}5n)× {0, 1}n to En is h̃, and the label of
any other query is ⊥.

We observe that the view of A0 in H1 is independent of the choice of r∗. Also, the view of A0

does not provide any information about ĥ apart from being outside the image of h. Therefore, if a
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query to O is made, then the probability of its label to be r∗ is at most 1/2n. In any other case, the
answer to this query is the same in H1 and H2, and both executions proceed the same way. Also, if a
query to EvalO is made, then the probability of its label to be h(r∗) or ĥ is at most 1/2n+1/(5n−2n).
In any other case, the answer to this query is the same in H1 and H2, and both executions proceed
the same way. Finally, if a query (C0, C1, 1

`r , 1k) to DecideΨ
S is made, then we apply Lemma 4.3.

The set I = I(S,Ψ, C0, C0, `r, k, lab, 3) ⊆ X of in�uential labels is independent of r∗ and ĥ (subject
to ĥ being outside the image of h). Therefore, the probability of I containing r∗, h(r∗) or ĥ is at
most 3|I|/2n ≤ 27q2/2n. In any other case, the oracle Ψ′ is obtained from Ψ by changes involving 3
labels outside of I, and therefore by Lemma 4.3 it holds that

DecideΨ′
S (C0, C1, 1

`k , 1k) = DecideΨ
S(C0, C1, 1

`k , 1k) ,

and both executions proceed the same way. Applying a union bound we deduce that

Pr
[
AΓ

0 (1n) 6= AΓ′
0 (1n)

]
≤ Pr

[
A query was answered di�erently in AΓ

0 (1n) and AΓ′
0 (1n)

]
≤ 27q3

2n
,

and the claim follows.

Claim 4.12. Pr[A wins in H2] = Pr[A wins in H3].

Proof. We couple the experiments H2 and H3 as follows. First, we sample the same r∗ ← {0, 1}n
and b ← {0, 1} for both experiments. Then, we uniformly sample a random injective function
h : {0, 1}n \{r∗} → {0, 1}5n and sample gr ← InjFunc5n

n for every r ∈ {0, 1}n \{r∗}. Next, we sample
distinct ĥ, ĥ′ ← {0, 1} \ Image(h) and sample two injective functions ĝ, ĝ′ ← InjFunc5n

n . Now, in H2

we let the obfuscator function be

O(C, r) =

{
(ĥ, ĝ(C)) if r = r∗

(h(r), gr(C)) otherwise
,

and let ĥ′, ĝ′ be the planted obfuscation, whereas in H3 we let the obfuscator function be

O(C, r) =

{
(ĥ′, ĝ′(C)) if r = r∗

(h(r), gr(C)) otherwise
,

and let ĥ, ĝ be the planted obfuscation. It is easy to see that the marginal distribution in both
experiments is correct, and that both experiments are identical, thus the claim follows.

Claim 4.13. |Pr[A wins in H3]− Pr[A wins in H4]| ≤ 12q3/2n.

Proof. Here we use an argument similar to that of Claim 4.11. If the queries of A1 are answered
in the same way both in H3 and H4, then A1 outputs the same guess and wins with the same
probability. Therefore, it su�ces to bound the probability that some query was answered di�erently.

We de�ne the same label function lab : Q → X as in Claim 4.11. That is, the label of a query
(C, r) ∈ {0, 1}n × {0, 1}n to On is r, the label of a query ((h̃, g̃), α) ∈ ({0, 1}5n × {0, 1}5n)× {0, 1}n
to En is h̃, and the label of any other query is ⊥.

We observe that the view of A1 in H4 is independent of the choice of r
∗. In fact, r∗ does not have

any role in that experiment. Therefore, if a query to O is made, then the probability of its label to
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be r∗ is at most 1/2n. In any other case, the answer to this query is the same in H3 and H4, and
both executions proceed the same way. Also, if a query to PEvalO

(ĥ,ĝ)
is made (which corresponds

to a query to EvalO in H3), then the probability of its label to be h(r∗) is at most 1/2n. In any
other case, the answer to this query is the same in H3 and H4, and both executions proceed the
same way. Finally, if a query (C0, C1, 1

`r , 1k) to DecideΨ′′
S is made, then we apply Lemma 4.3. The

set I = I(S,Ψ′′, C0, C1, `r, k, lab, 2) ⊆ X of in�uential labels is independent of r∗. Therefore, the
probability that I contains r∗ or h(r∗) is at most 2|I|/2n ≤ 12q2/2n. In any other case, the oracle
Ψ′ is obtained from Ψ′′ by changes involving two labels outside of I, and therefore by Lemma 4.3 it
holds that

DecideΨ′
S (C0, C1, 1

`k , 1k) = DecideΨ′′
S (C0, C1, 1

`k , 1k) ,

and both executions proceed the same way. Applying a union bound we deduce that

Pr
[
A query was answered di�erently in AΓ′′

1 (ĥ, ĝ(Cb)) and AΓ′
1 (ĥ, ĝ(Cb))

]
≤ 12q3

2n
,

and the claim follows.

Claim 4.14. Pr[A wins in H4] = Pr[A wins in H5].

Proof. Let ĝ ← InjFunc5n
n , b← {0, 1}, and let

ĝ′(C) =

{
ĝ(C1−σ) b = 1 and C = Cσ for some σ ∈ {0, 1}
ĝ(C) otherwise

.

Then, ĝ′ is also uniformly-distributed in InjFunc5n
n . Also, since Cf0 ≡ C

f
1 it holds that

PEvalO
(ĥ,ĝ)
≡ PEvalO

(ĥ,ĝ′)
,

and thus if we replace ĝ with ĝ′ the entire oracle Ψ′′ stays the same. So if we couple the experiments
H4 and H5 by using the same randomness expect for replacing ĝ in H5 with ĝ′, then we obtain the
same challenge in both experiments (ĥ, ĝ(Cb)) = (ĥ, ĝ′(C0)) and the same oracle Ψ′′. As a result,
both experiments proceed the same way, thus the claim follows.

Claim 4.15. Pr[A wins in H5] = 1/2.

Proof. In this experiment the view of A is independent of b.

Now we turn back to proving Lemma 4.10. It holds that∣∣Pr[A wins in H1]− 1
2

∣∣ = |Pr[A wins in H1]− Pr[A wins in H5]|

≤
4∑
i=1

|Pr[A wins in Hi]− Pr[A wins in Hi+1]| ≤ 40q3

2n
,

and by plugging q = 4 · 2n/6 we obtain Lemma 4.10.

Lastly, we show how to deduce Theorem 4.9 from Lemma 4.10. In what follows, for an event E
we denote by PrΓ [E ] its probability over the choice of Γ ← D(S), and by PrExp [E ] its probability
over the randomness of the indistinguishability-obfuscation experiment. Thus, if we write PrExp [. . .]
then Γ is already �xed in the experiment, and if we write PrΓ,Exp [. . .] then Γ is sampled for the
experiment.
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Proof of Theorem 4.9. Let A = (A0,A1) be a q(n)-query algorithm, where q(n) ≤ 2n/6. Our
goal is to prove that

E
Γ

∣∣∣∣Pr
Exp

[
ExpiOΓ,iO,A,C(n) = 1

]
− 1

2

∣∣∣∣ ≤ O(2−n/4)

where the expectation is taken over the choice of Γ = (Ψ,DecideΨ
S) where Ψ← D(S), and the inner

probability is taken over the randomness of the experiment ExpiOΓ,iO,A,C(n). Our proof transforms A
into a 4q(n)-query algorithm B = (B0,B1), where for every oracle Γ it holds that PrExp[ExpiOΓ,iO,B,C(n)
= 1] ≥ 1/2 (and the advantage itself is polynomially related to that of A). We note that ideas and
transformations along these lines are quite common, and we refer the reader to the work of Brakerski
and Goldreich for similar results in a more general context [BG11].

First, since A is computationally unbounded, we may assume without loss of generality that it is
deterministic (e.g., by �xing the randomness that maximizes its expected advantage). As discussed
in Section 2, we can further assume that A is stateless (e.g., by letting A1 recompute AΓ

0 (1n) at the
cost of at most q additional queries).

Now, we let B0 = A0, and given an obfuscation Ĉ as input and oracle access to Γ, the algorithm
B1 is de�ned as follows:

1. Compute σ = AΓ
1 (Ĉ) ∈ {0, 1}.

2. Sample b̃← {0, 1} and r̃∗ ← {0, 1}n, and then compute σ̃ = AΓ
1 (O(C

b̃
, r̃∗)) ∈ {0, 1}.

3. Output σ ⊕ b̃⊕ σ̃.
Let PrExp[ExpiOΓ,iO,A,C(n) = 1] = 1/2 + ε, where ε ∈ [−1/2, 1/2]. Then,

Pr
Exp

[ExpiOΓ,iO,B,C(n) = 1] = Pr
Exp

[σ ⊕ b̃⊕ σ̃ = b]

= Pr
Exp

[σ = b ∧ σ̃ = b̃] + Pr
Exp

[σ 6= b ∧ σ̃ 6= b̃]

=

(
1

2
+ ε

)2

+

(
1

2
− ε
)2

=
1

2
+ ε2 .

So we conclude that for any oracle Γ it holds that PrExp[ExpiOΓ,iO,B,C(n) = 1] ≥ 1/2 and that∣∣∣∣Pr
Exp

[ExpiOΓ,iO,A,C(n) = 1]− 1

2

∣∣∣∣ =

(
Pr
Exp

[ExpiOΓ,iO,B,C(n) = 1]− 1

2

)1/2

.

Noting that B is a 4q(n)-query algorithm where q(n) = 2n/6, by applying Lemma 4.10 to B we obtain

Pr
Γ,Exp

[
ExpiOΓ,iO,B,C(n) = 1

]
− 1

2
=

∣∣∣∣ Pr
Γ,Exp

[
ExpiOΓ,iO,B,C(n) = 1

]
− 1

2

∣∣∣∣ ≤ O(2n/2) .

Finally, Jensen's inequality settles the proof of Theorem 4.9 as follows

E
Γ

∣∣∣∣Pr
Exp

[
ExpiOΓ,iO,A,C(n) = 1

]
− 1

2

∣∣∣∣
= E

Γ

(
Pr
Exp

[
ExpiOΓ,iO,B,C(n) = 1

]
− 1

2

)1/2

≤
(
E
Γ

(
Pr
Exp

[
ExpiOΓ,iO,B,C(n) = 1

]
− 1

2

))1/2

=

(
Pr

Γ,Exp

[
ExpiOΓ,iO,B,C(n) = 1

]
− 1

2

)1/2

≤ O(2n/4) .
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4.5 Putting it All Together

Given Theorems 4.4 and 4.9 we can now derive Theorem 4.1.

Proof of Thm. 4.1. Let ((V, V ), `r, k,M, TM , εM,1, εM,2) be a fully black-box construction of a
worst-case hard (MIP, coMIP) protocol pair from an injective one-way function f and an indis-
tinguishability obfuscator for all oracle-aided circuits Cf . Lemma 4.2 guarantees the existence of a
polynomial-time single-query algorithm A such that for every Ψ = (f,O,Evalf,O) in the support of
the distribution D(S), the algorithm A with oracle access to Γ = (Ψ,DecideΨ

S) decides the language
LΨ ⊆ {0, 1}∗ de�ned by (V, V , `r, k) relative to Ψ. That is, for every x ∈ {0, 1}∗ it holds that
AΓ(x) = χLΨ(x). For every n ∈ N, denote by TA(n) the polynomial running time of A on inputs of
length n.

De�nition 3.3 then states that there are two possible cases to consider: A can be used either
for inverting the injective one-way function f , or for breaking the security of the indistinguishability
obfuscator iO. Speci�cally, in the �rst case we obtain from De�nition 3.3 that for every Ψ =
(f,O,Evalf,O) in the support of the distribution D(S) it holds that

Pr
[
MΓ,A (f(x)) = x

]
≥ εM,1 (TA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where Γ = (Ψ,DecideΨ
S) and the probability is taken over the

choice of x ← {0, 1}n and over the internal randomness of M . The algorithm M may invoke A on
various input lengths (i.e., in general M is not restricted to invoking A only on input length n), and
we denote by `(n) the maximal input length on which M invokes A (when M itself is invoked on
input f(x) for x ∈ {0, 1}n). Thus, viewing MA as a single oracle-aided algorithm that has access to
Γ, its running time TMA(n) satis�es TMA(n) ≤ TM (n) · TA(`(n)) (this follows since M may invoke
A at most TM (n) times, and the running time of A on each such invocation is at most TA(`(n))).
In particular, viewing M ′ = MA as a single oracle-aided algorithm that has oracle access to Γ,
implies that M ′ is a q-query algorithm where q(n) = TMA(n). This holds for any Ψ in the support
of the distribution D(S), and given that q(n) is polynomial in n then Theorem 4.4 guarantees that
εM,1 (TA(n)) · εM,2(n) ≤ O(2−n/2).

In the second case we obtain from De�nition 3.3 that for every Ψ = (f,O,Evalf,O) in the support
of the distribution D(S) it holds that∣∣∣∣Pr

[
ExpiOΓ,iO,MA,C(n) = 1

]
− 1

2

∣∣∣∣ ≥ εM,1 (TA(n)) · εM,2(n)

for in�nitely many values of n ∈ N, where the probability is taken over the randomness of the
experiment ExpiOΓ,iO,MA,C(n). The same reasoning applied to the �rst case, together with Theorem

4.9 guarantee that εM,1 (TA(n)) · εM,2(n) ≤ O(2−n/4).
We conclude the proof noting that the algorithm A provided by Lemma 4.2 runs in fact in linear

time. That is, TA(n) = O(n), and thus from the above two cases we obtain εM,1 (n)·εM,2(n) ≤ 2−Ω(n).
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