
A Simpler and Modular Construction of Linkable Ring Signature
Wulu Li

Onething Technologies Co., Ltd.
Shenzhen, China

liwulu@onething.net

Yongcan Wang
Onething Technologies Co., Ltd.

Shenzhen, China
wangyongcan@onething.net

Lei Chen
Onething Technologies Co., Ltd.

Shenzhen, China

Xin Lai
Onething Technologies Co., Ltd.

Shenzhen, China

Xiao Zhang
Onething Technologies Co., Ltd.

Shenzhen, China

Jiajun Xin
Onething Technologies Co., Ltd.

Shenzhen, China

ABSTRACT
Linkable ring signature (LRS) plays a major role in the Monero-
type cryptocurrencies, as it provides the anonymity of initiator and
the prevention of double spending in transactions. In this paper,
we propose SLRS: a simpler and modular construction of linkable
ring signature scheme, which only use standard ring signature as
component, without any additional one-time signatures or zero-
knowledge proofs. SLRS is more efficient than existing schemes in
both generation and verification. Moreover, we use SLRS to con-
struct an efficient and compact position-preserving linkable multi-
ring signature.We also give the security proofs, implementation as
well as the performance comparisons between SLRS, Ring-CT and
Ring-CT 3.0 in size and efficiency.

KEYWORDS
linkable ring signature,modular construction, high performance,

privacy-preserving blockchains

1 INTRODUCTION
Blockchain technologywas first proposed byNakamoto[16] in 2008.
It is an application system that combines multiple underlying tech-
niques including P2P networks, distributed data storage, network
consensus protocols and cryptographic algorithms. In blockchain
theory, privacy-preserving techniques have been developed in this
decade to provide potential replacements of traditional blockchain-
based cryptocurrencies such as Bitcoin[16] and Ethereum[6]. For
the application requirements in various privacy-preserving sce-
narios such as salary, donation, bidding, taxation, a series of privacy-
preserving cryptocurrencies have been proposed during these years
such as Confidential Transaction[14], Dash[8], Monero[17, 23] and
Zerocash[20], etc. As a representative, Monero has realized anony-
mous and confidential transactions, which can protect the privacy
of identities for both initiators and recipients in transactions, as
well as the transaction amount. In Monero system, linkable ring
signatures[10, 17, 23] (LRS) are used to hide the identity of initia-
tor, range proofs (Borromean[17], Bulletproofs[5]) are used to hide
the transaction amount.

Aer the introduction ofMonero (also known as Ring-CT), some
follow-up works on new linkable ring signatures have been pro-
posed, including Ring-CT 2.0[21], Ring-CT 3.0[25], which havemore
compact size and beer efficiency than Ring-CT when the ring

Conference’17, July 2017, Washington, DC, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

size is large. Nevertheless, when the ring size is small (≤ 16), both
Ring-CT 2.0 and Ring-CT 3.0 are less competitive than Ring-CT (in
Monero system, current ring size is n = 11). So it is necessary to
construct a more efficient LRS to provide more compact signature
size and less computations than Monero in practical parameters
(n < 1000). Moreover, we also need to rethink the technique to
realize linkability in linkable ring signatures, and give a simpler
and more efficient method to realize linkability.

1.1 Our Contributions
1.1.1 Simpler and Modular Construction of LRS. In this paper, we
introduce SLRS: a simpler and modular construction of linkable
ring signature scheme, which only uses ring signature as com-
ponent, with a very simple embedding method of key-image to
achieve linkability. Here we give a brief introduction of SLRS:

e public parameters are (G, q, g, h), where g is the generator
of G and h ∈ G is a random element with its discrete logarithm
unknown to anyone. Every user generates his (PK, SK) by usage
of the public parameters. When signing, the user chooses a set of
public keys LPK, then publishes a key-image I and makes a ran-
domized combination between LPK and I to get a new LRPK for
ring signature. en he runs ring signature algorithm (with LRPK)
to finish the SLRS signature.e verifier computesLRPK and check-
s the validity of ring signature. e verifier also checks whether I
is already in the key-image set in the linkability check.

e main advantages of SLRS are summarized as follows:

1. Compared to Ring-CT and Ring-CT 3.0, the efficiency of SLRS
(generation and verification) is greatly improved for all ring
sizes, meanwhile, SLRS (with AOS or AOS’ [1]) is more com-
pact than Ring-CT 3.0 (linkable version) for ring size n ≤ 24,
which makes SLRS a potential replacement in Monero.

2. e construction of SLRS is modular, we can choose any suit-
ed elliptic-curve-based ring signature scheme as the compo-
nent, which means that we can choose the the best suited
(fastest or shortest) elliptic-curve-based ring signature to get
the linkable ring signature directly.

3. e security of SLRS relies on the hardness of discrete log-
arithm, DDH assumption and the security of corresponding
ring signature, without any additional assumptions.

1.1.2 Modularity. In the construction of SLRS, we use ring signa-
ture as component with the following conditions need to be met:

1. e ring signature needs to be based on sigma protocol (in the
random oracle model), in which the signature can be simulat-
ed by programming the random oracle;

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Wulu Li, Yongcan Wang, Lei Chen, Xin Lai, Xiao Zhang, and Jiajun Xin

2. e ring signature component needs to be based on elliptic
curve, with the form of public-private key pair being (gx, x);

3. e ring signature (also can be seen as an 1-out-of-n proo)
needs to have special soundness (introduced in Appendix A).

Moreover, the modularity mean that the procedures for key-
image embedding and signing are separate and independent, this is
the major difference between SLRS and existing schemes. In Ring-
CT (MLSAG, CLSAG) or Ring-CT 3.0, the key-image embedding
happens in the signing algorithm, whereas in SLRS, the key-image
embedding happens in the generation of ring. Actually, in SLRS,
the key-image I = hx; in MLSAG and CLSAG, I = Hp(g

x)x.

1.1.3 Position-preserving Multi-ring SLRS. In Monero-type trans-
actions, we usually need the position-preserving multi-ring LRS in
which the position of signing key in each ring remains the same.
We give two constructions of position-preserving multi-ring SLRS
(MSLRS, MSLRS’) by usage of AOS and AOS’ separately. Our con-
struction is compact, and is more efficient than existing schemes,
such as MLSAG [17], CLSAG[10]. Moreover, in the constructions
of MSLRS and MSLRS’, the basis element (generator) in each ring
is different, which is the major difference from existing schemes.

We takem-ring signature as example, whenLPKi = {g
xi,1

i , · · · ,
g
xi,n

i } for i = 1, · · · ,m, MSLRS’ can provide linkability in any
ring with a compact signature size (1,m + n), where (·, ·) refers
to number of elements in (G,Z∗

q). As comparisons, MLSAG has
the signature size of (1,mn+ 1) and CLSAG has (m,n+ 1). e
efficiency of MSLRS (MSLRS’) is also greatly improved due to the
new key-image embedding method and the modular construction.

1.1.4 High Performance. A brief description of efficiency perfor-
mances for generation and verification of SLRS (SLRS’) andMSLRS
(MSLRS’) are shown in Table1, note that n denotes the ring size (in
Monero n = 11),m denotes the number of rings and the size (·, ·)
refers to number of elements in (G,Z∗

q). e detailed comparisons
between our works and existing schemes are in section 5.

Table 1: Overall Performance of Our Schemes

Scheme n m Generation Verification Size

SLRS(AOS)
11 1 1.10ms 1.09ms

(1, n+ 1)
1024 1 98.04ms 97.19ms

SLRS’(AOS’)
11 1 0.65ms 0.66ms

(1, n+ 1)
1024 1 52.80ms 51.70ms

MSLRS(AOS)
11 2 1.68ms 1.71ms

(1,mn+ 1)
1024 2 154.79ms 153.50ms

MSLRS’(AOS’)
11 2 1.09ms 1.11ms

(1,m+ n)
1024 2 94.61ms 93.58ms

1.2 Related Works
1.2.1 Ring Signatures. Ring signature is a special type of signature
scheme, in which signer can sign on behalf of a group chosen by
himself, while maintaining anonymous within the group. In ring
signature, signer selects a list of public keys LPK={PK1, · · · , PKn}
as the ring elements, and uses his secret key SKπ to sign, whereπ ∈
{1, · · · , n}. Verifier cannot determine the signer’s identity. Ring
signature was first proposed by Rivest, Shamir and Tauman[19]

in 2001, they constructed ring signature schemes based on RSA
trapdoor permutation and Robin trapdoor function, in the ran-
dom oracle model. In 2002, Abe et al.[1] proposed AOS ring signa-
ture, which simultaneously supported discrete logarithm (via Sig-
ma protocol) and RSA trapdoor functions (via hash and sign), also
in the random oracle model. In 2006, Bender et al.[4] introduced
the first ring signature scheme in the standard model, by mak-
ing use of pairing technique. In 2015, Maxwell et al.[15] gave Bor-
romean signature scheme, which is a multi-ring signature based
on AOS with signature size reduced from mn + m to mn + 1,
where n denotes the ring size andm denotes the number of rings.
ere are also constructions with nonlinear signature size, includ-
ing: accumulator-based ring signature [7] with constant signature
size, standard model ring signature scheme withO(

√
n) signature

size, ring signature [11] with O(logn) signature size.

1.2.2 Linkable Ring Signatures. Linkable ring signature is a vari-
ant of ring signature, in which the identity of the signer in a ring
signature remains anonymous, but two ring signatures can be linked
if they are signed by the same signer. Linkable ring signatures are
suitable in many different practical applications such as privacy-
preserving cryptocurrency (Monero), e-Voting, cloud data storage
security, etc. In Monero, linkability is used to check whether dou-
ble spending happens. e first linkable ring signature scheme is
proposed by Liu et al.[13] in 2004, under discrete logarithm as-
sumption, in the random oracle model. Later, Tsang et al.[22] and
Au et al.[2] proposed accumulator-based linkable ring signatures
with constant signature size. In 2013, Yuen et al.[24] gave a stan-
dard model linkable ring signature scheme withO(

√
n) signature

size, from pairing technique. In 2014, Liu et al.[12] gave a link-
able ring signature with unconditional anonymity, he also gave
the formalized security model of linkable ring signature, which
we will follow in this paper. In 2015, Back et al.[3] proposed an
efficient linkable ring signature scheme LSAG, which shortens the
signature size of [13]. In 2016, based on work of Fujisaki et al.[9],
Noether et al.[17] gave a linkable multi-ring signature schemeML-
SAG, which supports transactions with multiple inputs, and was
used by Monero. In 2017, Sun et al.[21] proposed Ring-CT 2.0,
which is an accumulator-based linkable ring signature with as-
ymptotic smaller signature size than Ring-CT 1.0, but is less com-
petitive when n is small. In 2019, Yuen et al.[25] proposed Ring-CT
3.0, a modified Bulletproof-based 1-out-of-n proof protocol with
logarithmic size, which has functionality of (linkable) ring signa-
ture. In 2019, Goodell et al.[10] proposed CLSAG: a modified multi-
ring LRS with beer efficiency and compactness than MLSAG, we
give the detailed description of CLSAG in the appendix A.

1.3 Organization
In section 2 we give some preliminaries; in section 3 we give the
construction and security proofs of SLRS; in section 4 we give
the construction of MSLRS and MSLRS’ for multi-ring application;
in section 5 we introduce the implementations, performances and
comparisons; in section 6 we give the conclusion.

2 PRELIMINARIES
In this paper, we use multiplicative cyclic groupG to represent el-
liptic group with prime order |G| = q. g, h ∈ G are the generators

2

A Simpler and Modular Construction of Linkable Ring Signature Conference’17, July 2017, Washington, DC, USA

of G, group multiplication is g1 · g2 = g1g2 and exponentiation is
ga. Z∗

q = Zq \ {0} is the set of nonzero elements in Zq . We use
H(·) to represent hash function, use Hp(·) to represent Hash-to-
Point, and negl(·) to represent negligible functions. For verifiers,
1 is for accept and 0 is for reject. For adversaries, PPT means prob-
abilistic polynomial time. e DDH assumption means any PPT
adversary cannot distinguish (ga, ha) from (ga, hr), where r is
uniformly sampled from Z∗

q . e hardness of discrete logarithm
problem means that any PPT adversary cannot compute x from
gx. Oracle RO refers to the random oracle. e security parame-
ter of this paper is λ = ⌈log q⌉, where q = |G|.

2.1 Ring Signatures
Ring signature scheme usually consists of four algorithms: Setup,
KeyGen, Rsign, and Verify.

− Par ← Setup(λ) is a probabilistic polynomial time (PPT) al-
gorithm which, on input a security parameter λ, outputs the
set of security parameters Par which includes λ.

− (PKi, SKi)← KeyGen(Par) is a PPT algorithm which, on in-
put the security parameters Par, outputs a key pair (PKi, SKi).

− σ ← Rsign(SKπ, µ, LPK) is a ring signature algorithm which,
on input user’s secret key SKπ , a list of users’ public keys
LPK = {PK1, · · · , PKn}, where PKπ ∈ LPK, π ∈ {1, · · · , n},
and a message µ, outputs a ring signature σ.

− 1/0← Verify(µ, σ, LPK) is a verification algorithmwhich, on
input a message µ, a list of users’ public keys LPK and a ring
signature σ, outputs 1 or 0.

e security definition of ring signature contains unforgeability
and anonymity. Before giving their definitions, we consider the fol-
lowing oracles which together model the ability of the adversaries
in breaking the security of the schemes, in fact, the adversaries are
allowed to query the four oracles below:

− c ← RO(a). Random oracle, on input a, random oracle re-
turns a random value.

− PKi ← JO(⊥). Joining oracle, on request, adds a new user
to the system. It returns the public key PKi of the new user.

− SKi ← CO(PKi). Corruption oracle, on input a public key
PKi that is a query output of JO, returns the corresponding
private key SKi.

− σ ← SO(PKπ, µ, LPK). Signing oracle, on input a list of user-
s’ public keys LPK, the public key of the signer PKπ , and a
message µ, returns a valid ring signature σ.

D 1 (U). Unforgeability for ring signa-
ture schemes is defined in the following game between the simulator
S and the adversaryA, simulator S runs Setup to provide public pa-
rameters forA,A is given access to oraclesRO,JO, CO andSO.A
wins the game if he successfully forges a ring signature (σ∗, L∗

PK, µ
∗)

satisfying the following:
1. Verify(σ∗, L∗

PK, µ
∗) = 1.

2. Every PKi ∈ L∗
PK is returned by A to JO.

3. No PKi ∈ L∗
PK is queried by A to CO.

4. (µ∗, L∗
PK) is not queried by A to SO.

e advantage ofA in the forging aack isAdvforgeA = Pr[Awins].
A ring signature scheme is unforgeable if for any PPT adversary

A, AdvforgeA = negl(λ).

D 2 (A). Anonymity for ring signature schemes
is defined in the following game between the simulator S and the
adversary A, simulator S runs Setup to provide public parameter-
s for A, A is given access to oracles RO, JO and CO. A gives
a set of public keys LPK = {PK1, · · · , PKn}, S randomly picks
π ∈ {1, · · · , n}, computes σ = Rsign(SKπ, µ, LPK) and sends σ
to A, where SKπ is the corresponding private key of PKπ , then A
outputs a guess π∗ ∈ {1, · · · , n}.A wins the game if he successful-
ly guesses π∗ = π. e advantage of A in the anonymity aack is
Advanon

A = |Pr[π∗ = π]− 1/n|.
A ring signature scheme is anonymous if for any PPT adversary

A, Advanon
A = negl(λ).

2.2 AOS and AOS’
In the construction of SLRS, we can use any ring signature which
satisfies the conditions in section 1.1.2. We can choose AOS (AOS’)
scheme or other sigma-protocol-based ring signature as compo-
nent in SLRS. e choice is not restricted, we can choose the most
suited ones for different ring sizes in different applications.

AOS and AOS’ ring signatures are proposed by Abe et al.[1] in
2002, the size and running time of each scheme is linear with the
ring size. In this paper, we make use of AOS and AOS’ in the con-
struction of SLRS (SLRS’) and MSLRS (MSLRS’). e detailed de-
scriptions of AOS and AOS’ are in the appendix A.

2.3 Linkable Ring Signatures
Compared to ring signature, linkable ring signature has the func-
tion of linkability, that is, when two ring signatures are signed by
the same signer, they are linked by the algorithm Link:

− linked/unlinked ← Link((σ, µ, LPK), (σ
′, µ′, L′

PK)): verifi-
er checks the two ring signatures are linked or not.

e security definition of linkable ring signature contains un-
forgeability, anonymity, linkability and nonslanderability. e un-
forgeability is the same as Definition 1, and the anonymity is slight-
ly different from Definition 2 with additional requirements that all
public keys in LPK are returned byA to JO and all public keys in
LPK are not queried byA to CO (if the adversary corrupts some of
the public keys, then he can break the anonymity of the scheme by
computing the corresponding key-images in advance). In the rest
of this paper, we use this modified definition of anonymity in SLRS
and its security proof.

Here we give the definition of linkability and nonslanderability:

D 3 (L). Linkability for linkable ring signa-
ture schemes is defined in the following game between the simulator
S and the adversary A, simulator S runs Setup to provide public
parameters for A, A is given access to oracles RO, JO, CO and
SO. A wins the game if he successfully forges k ring signatures
(σi, L

i
PK, µi), i = 1, · · · , k, satisfying the following:

1. All σis are not returned by A to SO.
2. All Li

PK are returned by A to JO.
3. Verify(σi, L

i
PK, µi) = 1, i = 1, · · · , k.

4. A queried CO less than k times.
5. Link((σi, L

i
PK, µi), (σj , L

j
PK, µj)) = unlinked for i ̸= j and

i, j ∈ {1, · · · , k}.
e advantage of A in the link aack is Advlink

A = Pr[A wins].
3

Conference’17, July 2017, Washington, DC, USA Wulu Li, Yongcan Wang, Lei Chen, Xin Lai, Xiao Zhang, and Jiajun Xin

A linkable ring signature scheme is linkable if for any PPT adver-
sary A, Advlink

A = negl(λ).

e nonslanderability of a linkable ring signature scheme is that
A cannot slander other honest users by generating a signature
linked with signatures from honest users:

D 4 (N). Nonslanderability for link-
able ring signature schemes is defined in the following game between
the simulator S and the adversaryA, simulator S runs Setup to pro-
vide public parameters forA,A is given access to oraclesRO, JO,
CO and SO. A gives a list of public keys LPK, a message µ and a
public key PKπ ∈ LPK to S , S returns the corresponding signature
σ ← Rsign(SKπ, LPK, µ) to A. A wins the game if he successfully
outputs a ring signature (σ∗, L∗

PK, µ
∗), satisfying the following:

1. Verify(σ∗, L∗
PK, µ

∗) = 1.
2. PKπ is not queried by A to CO.
3. PKπ is not queried by A as input to SO.
4. Link((σ, LPK, µ), (σ

∗, L∗
PK, µ

∗)) = linked.

e advantage ofA in slandering aack isAdvslander
A = Pr[Awins].

A linkable ring signature scheme is nonslanderable if for any PPT
adversary A, Advslander

A = negl(λ).

According to [12], linkability and nonslanderability imply un-
forgeability:

L 5 ([12]). If a linkable ring signature scheme is linkable
and nonslanderable, then it is unforgeable.

2.4 Linkable Multi-ring Signature in Monero
In Monero system, every UTXO (unspent transaction output[23])
has its public-private key pair (PK = gs, SK = s) and the val-
ue commitment c = gxha, where c is Pedersen commitment[18],
a is the hidden value and x is the blinding element. In a transac-
tion, the initiator Alice chooses n− 1 hiding UTXOs: {(PKi, ci =
gxihai)}i=1,··· ,n−1, alongwith her input UTXO (PKA = gs, cA =
gxAhaA), to generate a set of public keys LPK = {PKA, PK1, · · · ,
PKn−1} (randomized order), Alice also generates the output UTX-
O (PKB , cB = gxBhaB), where the input value equals the output
value aA = aB . en Alice computes another ring of commit-
ments (same order as in LPK)

Lv = {cAc−1
B , c1c

−1
B , · · · , cn−1c

−1
B }

= {gxA−xB , gx1−xBha1−aB , · · · , gxn−1−xBhan−1−aB}.

Alice uses linkable 2-ring signature to sign the transaction by LPK

and Lv , with the same position of signing key in each ring (to en-
sure that the public key and commitment are from the same UTX-
O), we call it the position-preserving linkable multi-ring signature.

3 SIMPLER LINKABLE RING SIGNATURE
In this section we give the construction and security proofs of
SLRS, in section 3.1we introduce themodular construction of SLRS;
in section 3.2 we give the proof of correctness and proofs of secu-
rity, including anonymity, unforgeability, linkability and nonslan-
derability in the random oracle model.

3.1 Construction
In our construction of SLRS, we use ring signature (AOS for SLRS,
AOS’ for SLRS’) as the ring signature component. Actually, we as-
sume the ring signature component satisfies the conditions in sec-
tion 1.1.2, which makes SLRS secure in the random oracle model.
We give the introduction of SLRS in the following:

Par← SLRS.Setup(λ):
1. System chooses an elliptic curve G with prime order q and a gen-

erator g ∈ G, system samples another generator h ∈ Gwhose dis-
crete logarithm is unknown to anyone, system outputs (G, q, g, h)
as the public parameters.

(PK, SK)← SLRS.KeyGen(Par):
1. According to the public parameters (G, q, g, h), user Alice samples

x ∈ Z∗
q as her secret key, then computes PK = gx;

2. Alice outputs PK = gx, and retains SK = x.

σ ← SLRS.Sign(SKπ, µ, LPK):
1. For a message µ, Alice chooses another n − 1 users, togeth-

er with her own public key, to generate a list of public keys
LPK = {PK1, · · · , PKn}, where Alice’s PK = PKπ ∈ LPK, π ∈
{1, · · · , n};

2. Alice outputs the key-image I = hxπ , then computes e =
H(LPK, I, µ);

3. Alice computes the public key set for ring signature
LRPK = {PK1 ·Ie, · · · , PKn ·Ie} = {gx1hexπ , · · · , gxnhexπ};

4. Alice runs the ring signature and gets τ ← Rsign(SK, µ, LRPK, I)
by usage of LRPK and SK = xπ , outputs τ (use generator ghe);

5. Alice outputs σ = (τ, µ, LPK, I) as the SLRS outputs.

1/0← SLRS.Verify(τ, µ, LPK, I):
1. Verifier computes e∗ = H(LPK, I, µ);
2. Verifier computes L∗

RPK = {PK1 · Ie
∗
, · · · , PKn · Ie

∗};
3. Verifier checks the validity of ring signature τ with ring L∗

RPK (use
generator ghe∗);

4. If all passed then outputs 1, otherwise outputs 0.

linked/unlinked← SLRS.Link(σ, σ′):
1. For two valid SLRS signatures σ = (τ, µ, LPK, I) and σ′ =

(τ ′, µ′, L′
PK, I

′), if I = I′ then verifier outputs linked, otherwise
outputs unlinked.

Algorithm 1: SLRS

3.2 Correctness and Security
3.2.1 Correctness.

T 6 (C SLRS). For an honest user Alice
in SLRS, she can complete the linkable ring signature successfully,
and the behavior of double signing (double spending) will be detected
while the identity of Alice maintaining anonymous.

P. In SLRS, for Alice’s public key PK = PKπ = gxπ ,
she can compute I = hxπ and e = H(LPK, I, µ), then she can
compute LRPK = {gx1hexπ , · · · , gxnhexπ}. Since gxπhexπ =
(ghe)xπ , then Alice can use her secret key SKπ = xπ to gener-
ate the ring signature τ using ghe as the generator.

When double signing occurs, we know from the linkability of
SLRS that Alice must have used the key-image I = hxπ for twice
(proved in eorem 10), then the verifier can detect that double
signing occurs and outputs linked, at the same time, anyone cannot

4

A Simpler and Modular Construction of Linkable Ring Signature Conference’17, July 2017, Washington, DC, USA

learn any information about the identity of signer by the anonymi-
ty of SLRS (proved in eorem 7). �

3.2.2 Proof of Anonymity.

T 7 (A). SLRS is anonymous for any PPT ad-
versaryA, assuming the ring signature component satisfies the con-
ditions in section 1.1.2.

P. AssumeA is playing the gamewith S in Definition 2,A
generates a message µ and a list of public keys LPK = {PK1, · · · ,
PKn}, where PKi = gxi for i = 1, · · · , n, and all PKis are re-
turned by JO, and S knows all SKi = xi.

We consider the following games between S and A:
− Game 0. S samples π ∈ {1, · · · , n} uniformly at random,

publishes I = hxπ , computes e = H(LPK, I, µ) and LRPK =
{gx1hexπ , · · · , gxnhexπ}, then generates the ring signature
τ = Rsign(SK, µ, LRPK, I), and outputs σ = (τ, µ, LPK, I) to
A. When A receives σ, he gives a guess π∗ ∈ {1, · · · , n}.

− Game 1. S samples π ∈ {1, · · · , n} and r ∈ Z∗
q uniformly

at random, publishes I = hr , computes e = H(LPK, I, µ)
and LRPK = {gx1her, · · · , gxnher}, then generates the ring
signature τ = Rsign(µ,LRPK, I) by programming the random
oracle, outputs σ = (τ, µ, LPK, I) to A. When A receives σ,
he gives a guess π∗ ∈ {1, · · · , n}.

In the two games above, Game 0 is the real game between S and
A in SLRS, and Game 1 is the simulated game in the random oracle
model. In Game 1, r is uniformly sampled by S , which is statistical
independent from the LPK, then PrA[π∗ = π] = 1/n.

enwe only need to prove that Game 0 andGame 1 are compu-
tational indistinguishable. If fact, the differences between the two
games are generations of I and LRPK. According to DDH assump-
tion, (g, h, gxπ , hxπ) and (g, h, gxπ , hr) are computational indis-
tinguishable, then A cannot distinguish hxπ (in Game 0) from hr

(in Game 1). en we know A cannot distinguish {gx1hexπ , · · · ,
gxnhexπ} from {gx1her, · · · , gxnher}, then we know Game 0
and Game 1 are computational indistinguishable, then we finish
the anonymity proof of SLRS. �

3.2.3 Proof of Linkability.

L 8. For any PPT adversary A, the probability of A to gen-
erate s, t ∈ Z∗

q satisfying gsht = 1 (get a nontrivial relationship
between g and h) is negligible, under the hardness assumption of
discrete logarithm.

L 9. For any sigma-protocol-based 1-out-of-n proof (ring
signature) with special soundness, if any PPT adversary A can gen-
erate a valid proof (ring signature) with LPK, then A can extract a
valid witness (one secret key from LPK) in the random oracle model
with nonnegligible advantage. is implies the unforgeability of the
corresponding ring signature.

P. It can be easily derived from the special soundness of
the sigma-protocol-based 1-out-of-n proof by the rewinding tech-
nique (also known as forking lemma). �

T 10 (L). SLRS is linkable for any PPT adver-
sary A, assuming the ring signature component satisfies the condi-
tions in section 1.1.2.

P. For any PPT adversary A, when A finished the link
game with S in Definition 3, we assume thatAwins the link game
with nonnegligible advantage δ, that is, A returned k valid SLRS
signatures σi = (τi, µi, L

i
PK, Ii), i = 1, · · · , k (τis are the ring

signatures), satisfying the following requirements:

1. All σi, i = 1, · · · , k are not returned by SO.
2. All public keys from Li

PK, i = 1, · · · , k are returned by JO.
3. SLRS.Verify(τi, Li

PK, µi, Ii) = 1 for i = 1, · · · , k.
4. A queried CO less than k times.
5. SLRS.Link((τi, Li

PK, µi, Ii), (τj , L
j
PK, µj , Ij)) = unlinked for

i ̸= j ∈ {1, · · · , k}.
We first prove a statement that, for a list of users’ public keys
LPK = {PK1, · · · , PKn} returned by JO with PKi = gxi , any
PPT adversary A generates a valid SLRS signature σ 8 SO if
and only if he queries the CO at least once, except for negligible
probability ϵ0 = negl(λ).

− ⇒. If A gets SK = xi from CO, and then A can run the
SLRS signature scheme to generate a valid signature σ =
(τ, µ, LPK, I).

− ⇐. Assume A did not query the CO and SO for LPK =
{PK1, · · · , PKn} and finished the SLRS signature over LPK

= {PK1, · · · , PKn} with nonnegligible probability δ1. We
first prove that A does not know any of the secret keys in
LPK. Actually, under the hardness of discrete logarithm, A
cannot compute xi from PKi = gxi , i = 1, · · · , n, then the
probability of A obtaining any of xi is ϵ1 = negl(λ).
Next, according to the assumption that A generates a valid
signature σ = (τ, µ, LPK, I), then he must have finished the
ring signature τ (with generator ghe), where e = H(LPK, I, µ).
Without loss of generality, we assume I = gsht output by
A, then we have LRPK = {gx1(gsht)e, · · · , gxn(gsht)e}. S-
ince A finished the ring signature τ with LRPK under gener-
ator ghe, from Lemma 9 we get A knows RSK = z for at
least one i ∈ {1, · · · , n} s.t. gxi(gsht)e = (ghe)z , excep-
t for negligible probability ϵ2 = negl(λ). We can also as-
sume that e = 0 happens with negligible probability ϵ3 =
negl(λ). en gxi(gsht)e = (ghe)z means A gets a solu-
tion for gxi−z+es = he(z−t) with nonnegligible probability
δ1 − ϵ1 − ϵ2 − ϵ3, if t ̸= z, then from Lemma 8 we know
this contradicts with the hardness of discrete logarithm, so
we have t = z. en we have xi − t+ se = 0, if s ̸= 0, then
e = (t−xi)s

−1, which means e can be pre-computed before
A runs the hash function (random oracle), which happens
with negligible probability. en we get s = 0, z = t = xi,
which contradicts to the assumptions above.en we get that
A generates a valid SLRS signature σ 8 SO if and only if he
queries the CO at least once, except for negligible probability.

According to the fourth requirement that the number of times for
A querying CO is ≤ k − 1, and A returned k valid SLRS sig-
natures σi = (τi, µi, L

i
PK, Ii) for i = 1, · · · , k, then we know

there are two SLRS signatures from the same query of CO, say-
ing SK = z from PK = gz , and A finished two unlinked valid
SLRS signatures, then there is at least one Ii = gsht ̸= hz from
the two SLRS signatures (otherwise they will be linked). We have
LRPK = {gx1(gsht)e, · · · , gxn(gsht)e}, since ∃j ∈ {1, · · · , n}
s.t. xj = z, and A signs with PKj , then we have gxj (gsht)e =

5

Conference’17, July 2017, Washington, DC, USA Wulu Li, Yongcan Wang, Lei Chen, Xin Lai, Xiao Zhang, and Jiajun Xin

(ghe)tgz−t+es with gsht ̸= hz , if z − t + es = 0, then we
have s = 0 and z = t, otherwise e will be pre-computed be-
foreA runs the hash function (random oracle) by e = (t− z)s−1,
which happens with negligible probability ϵ1 = negl(λ). en
we get z − t + es ̸= 0, and this means A can compute x s.t.
(ghe)x = (ghe)tgz−t+es, otherwise A will break the unforge-
ability of ring signature, which happenswith negligible probability
ϵ2 = negl(λ), however, we know that (ghe)x = (ghe)tgz−t+es

implies a non-trivial relationship between g and h, which happens
with nonnegligible probability δ − kϵ0 − ϵ1 − ϵ2, this contradicts
to the hardness assumption of discrete logarithm problem, then we
finish the linkability proof of SLRS. �

3.2.4 Proof of Nonslanderability.

T 11 (N). SLRS is nonslanderable for
any PPT adversaryA, assuming the ring signature component satis-
fies the conditions in section 1.1.2.

P. For any PPT adversary A, when A finished the slan-
dering game with S in Definition 4, A gave a list of public keys
LPK, a message µ and a public key PKπ ∈ LPK to S , S returns the
SLRS signature σ = (τ, µ, LPK, I) ← SLRS.Sign(SKπ, LPK, µ) to
A. We assume that A wins the slandering game with nonnegligi-
ble advantage δ, that is, A successfully outputs a SLRS signature
σ∗ = (τ∗, µ∗, L∗

PK, I
∗), satisfying the following:

1. SLRS.Verify(τ∗, L∗
PK, µ

∗, I∗) = 1.
2. PKπ is not queried by A to CO.
3. PKπ is not queried by A as input to SO.
4. SLRS.Link((τ, LPK, µ, I), (τ

∗, L∗
PK, µ

∗, I∗)) = linked.

From the definition of SLRS.Link, we know that I∗ = I = hxπ , s-
ince PKπ = gxπ was not queried byA to CO and SO, thenA does
not know SK = xπ except for negligible probability ϵ0 = negl(λ)
under the hardness of discrete logarithm problems. We know A
successfully produced a ring signature τ∗ with nonnegligible ad-
vantage δ − ϵ0. Again from Lemma 9, according to the unforge-
ability of ring signature, then we know that A knows at least one
signing key except for negligible probability ϵ1 = negl(λ), that is,
there exists j ∈ {1, · · · , n}, A knows x s.t. PK∗

j · Ie = (ghe)x

with nonnegligible advantage δ−ϵ0−ϵ1, where e = H(L∗
PK, I, µ).

Without loss of generality, we assume PK∗
j = gsht output by A,

then we have (gsht)hexπ = (ghe)x = (ghe)sht+e(xπ−s). Using
similar arguments in eorem 10 (and Lemma 8), if t + e(xπ −
s) = 0, then we have xπ = s and t = 0, otherwise e will be
pre-computed before A runs the hash function (random oracle),
which happens with negligible probability ϵ2 = negl(λ). en
t + e(xπ − s) ̸= 0 and A gets a non-trivial relationship between
g and h with nonnegligible advantage δ − ϵ0 − ϵ1 − ϵ2, which
contradicts to the hardness of discrete logarithm problem, then we
finish the nonslanderability proof of SLRS. �

According to lemma 5, we get the unforgeability of SLRS:

C 12 (U). SLRS is unforgeable for any
PPT adversary A.

4 MSLRS FOR MULTI-RING APPLICATION
In this section we give two constructions of position-preserving
linkable multi-ring signatures by usage of SLRS, named by MSLRS

(with AOS) and MSLRS’ (with AOS’). e construction is straight-
forward to realize the functionality of position preserving. Note
that MSLRS’ is compact, and is more efficient than CLSAG and M-
SLRS. Moreover, both of our schemes support different generator
in each ring, which is unsupportable in CLSAG. In the following
constructions, we take two-ring signatures as example, the linka-
bility is effective for the first ring.

4.1 MSLRS with AOS

Par← MSLRS.Setup(λ):
1. System chooses an elliptic curve G with prime order q and gener-

ators g1, g2 ∈ G, system samples another generator h ∈ Gwhose
discrete logarithm (to gi, i = 1, 2) is unknown to anyone, system
outputs (G, q, g1, g2, h) as the public parameters.

(PK, SK)← MSLRS.KeyGen(Par):
1. According to the public parameters (G, q, g1, g2, h), user Alice

samples x, y ∈ Z∗
q as her secret keys, then computes gx1 , g

y
2 ;

2. Alice outputs (PK, PK′) = (gx1 , g
y
2), and retains (SK, SK′) =

(x, y).

σ ← MSLRS.Sign(SKπ, SK′
π, µ, LPK, L

′
PK):

1. For a message µ, Alice chooses another n − 1 users, togeth-
er with her own public keys, to generate two list of public keys
LPK = {PK1, · · · , PKn} and L′

PK = {PK′
1, · · · , PK′

n}, where
Alice’s PK = PKπ ∈ LPK, PK′ = PK′

π ∈ L′
PK, π ∈ {1, · · · , n},

which means the position of Alice’s public key in each ring is same;
2. Alice outputs the key-image I = hxπ , then computes e =

H(LPK, L′
PK, I, µ);

3. Alice computes the signature public key set for the first ring

LRPK = {PK1 · Ie, · · · , PKn · Ie}
= {gx1

1 hexπ , · · · , gxn
1 hexπ} = {RPKi}i=1,··· ,n;

4. Alice samples rπ , tπ ∈ Z∗
q uniformly and computes eπ+1 =

H((g1he)rπ , gtπ2 , LRPK, L′
PK, I, µ);

5. For i = π + 1, · · · , n, 1, · · · , π − 1, Alice samples
zi, si ∈ Z∗

q uniformly at random, then computes ei+1 =

H((g1he)zi/(RPKi)
ei , g

si
2 /(PK′

i)
ei , LRPK, L′

PK, I, µ);
6. Alice computes zπ = rπ + xeπ , sπ = tπ + yeπ and outputs

τ = (e1; z1, · · · , zn; s1, · · · , sn);
7. Alice outputs σ = (τ, µ, LPK, L′

PK, I) as the MSLRS outputs.

1/0← MSLRS.Verify(τ, µ, LPK, L
′
PK, I):

1. Verifier computes e∗ = H(LPK, L′
PK, I, µ);

2. Verifier computes L∗
RPK = {PK1 · Ie

∗
, · · · , PKn · Ie

∗};
3. For i = 1, · · · , n, verifier computes e∗i+1 =

H((g1he∗)zi/(RPK∗
i)

e∗i , g
si
2 /(PK′

i)
e∗i , L∗

RPK, L
′
PK, I, µ),

where e1 = e∗1 ;

4. Verifier checks e1
?
= e∗n+1;

5. If all passed then outputs 1, otherwise outputs 0.

linked/unlinked← MSLRS.Link(σ, σ′):

1. For two valid MSLRS signatures σ1 = (τ1, µ1, L
(1)
PK , L

′(1)
PK , I1)

and σ2 = (τ2, µ2, L
(2)
PK , L

′(2)
PK , I2), if I1 = I2 then verifier out-

puts linked, otherwise outputs unlinked.

Algorithm 2: MSLRS
Note that the key-imageworks for the linkability of the first ring

LPK, we use a multi-ring generalization of AOS in the construction
tomake sure the same position of the corresponding signing key in
each ring. Meanwhile, the generator in each ring (g1he and g2) is

6

A Simpler and Modular Construction of Linkable Ring Signature Conference’17, July 2017, Washington, DC, USA

different. e signature size (with I) ofm-ring MSLRS is (1,mn+
1), where (·, ·) refers to number of elements in (G,Z∗

q).

4.2 MSLRS’ with AOS’

Par← MSLRS’.Setup(λ):
1. System chooses an elliptic curve G with prime order q and gener-

ators g1, g2 ∈ G, system samples another generator h ∈ Gwhose
discrete logarithm (to gi, i = 1, 2) is unknown to anyone, system
outputs (G, q, g1, g2, h) as the public parameters.

(PK, SK)← MSLRS’.KeyGen(Par):
1. According to the public parameters (G, q, g1, g2, h), user Alice

samples x, y ∈ Z∗
q as her secret keys, then computes gx1 , g

y
2 ;

2. Alice outputs (PK, PK′) = (gx1 , g
y
2).

σ ← MSLRS’.Sign(SKπ, SK′
π, µ, LPK, L

′
PK):

1. For a message µ, Alice chooses another n − 1 users, togeth-
er with her own public keys, to generate two list of public keys
LPK = {PK1, · · · , PKn} and L′

PK = {PK′
1, · · · , PK′

n}, where
Alice’s PK = PKπ ∈ LPK, PK′ = PK′

π ∈ L′
PK, π ∈ {1, · · · , n},

which means the position of Alice’s public key in each ring is same;
2. Alice outputs the key-image I = hxπ , then computes e =

H(LPK, L′
PK, I, µ);

3. Alice computes the signature public key set for the first ring

LRPK = {PK1 · Ie, · · · , PKn · Ie}
= {gx1

1 hexπ , · · · , gxn
1 hexπ} = {RPKi}i=1,··· ,n;

4. Alice samples c1, · · · , cπ−1, cπ+1, · · · , cn ∈ Z∗
q uniformly,

then Alice samples α, β ∈ Z∗
q uniformly, computes R1 =

(g1he)α
∏

i̸=π(RPKi)
ci and R2 = gβ2

∏
i̸=π(PK

′
i)

ci ;
5. Alice computes c = H(R1, R2, LRPK, L′

PK, I, µ);
6. Alice computes cπ = c−

∑
i ̸=π ci, then computes z1 = α− cπx

and z2 = β − cπy, outputs τ = (z1, z2; c1, · · · , cn);
7. Alice outputs σ = (τ, µ, LPK, L′

PK, I) as the MSLRS’ outputs.

1/0← MSLRS’.Verify(τ, µ, LPK, L
′
PK, I):

1. Verifier computes e∗ = H(LPK, L′
PK, I, µ);

2. Verifier computes L∗
RPK = {PK1 · Ie

∗
, · · · , PKn · Ie

∗};
3. Verifier computes R∗

1 = (g1he∗)z1
∏n

i=1(RPK
∗
i)

ci and R∗
2 =

gz22
∏n

i=1(PK
′
i)

ci ;

4. Verifier checks
∑n

i=1 ci
?
= H(R∗

1 , R
∗
2 , L

∗
RPK, L

′
PK, I, µ);

5. If all passed then outputs 1, otherwise outputs 0.

linked/unlinked← MSLRS’.Link(σ, σ′):

1. For two valid MSLRS’ signatures σ1 = (τ1, µ1, L
(1)
PK , L

′(1)
PK , I1)

and σ2 = (τ2, µ2, L
(2)
PK , L

′(2)
PK , I2), if I1 = I2 then verifier out-

puts linked, otherwise outputs unlinked.

Algorithm 3: MSLRS’
Similar to MSLRS, the key-image works for the linkability of the

first ring LPK, and the generator in each ring (g1he and g2) is dif-
ferent. e signature size (with I) ofm-ring MSLRS’ is (1,m+n),
which is a compact scheme as CLSAG (with size (m,n + 1)[10]),
where (·, ·) refers to number of elements in (G,Z∗

q).

5 IMPLEMENTATION AND PERFORMANCE
We implement ourworks, including SLRS (SLRS’),MSLRS (MSLRS’),
as well as the existing schemes, such as MLSAG, CLSAG and Ring-
CT 3.0 in Golang, use Ed25519 curve and Ristreo library. We use
SHA256 as the hash function. All experiments are conducted on a

desktop with 64-bit Win 10 system and 16GB RAM. e processor
is Intel(R) Core(TM) i7-8700 CPU @ 3.2 GHz with 6 cores.

We compare the size and efficiency (generation and verification)
of each scheme for single ring (in 5.1) and double rings (in 5.2)
respectively, the implementations follow the original algorithms
directly, without any multi-threading parallel acceleration. We se-
lect Ring-CT 3.0 with linkability in the comparison, which has the
same functionality as MLSAG and SLRS.

Note that the SLRS’ (with AOS’) and Ring-CT 3.0 are suited
for multi-threading parallel acceleration, as the exponentiations
can be done in parallel during generation and verification in each
scheme. We also give implementations of SLRS’ and Ring-CT 3.0
under multi-threading parallel acceleration with significant im-
provements in efficiency, we give the detailed comparison in 5.3.

It should be emphasized that in this sectionwe only give the per-
formances and comparisons of the linkable ring signature schemes
mentioned above, without any consideration of the adaptability in
the Monero system. In fact, as discussed in [23], the key-image
I = hx with fixed base h will not be deployed safely in Mon-
ero system due to the one-time public key generation algorithm
PKU = gH(PKr

v)PKs, where (PKv, PKs) is the public key of
user, and PKU is the one-time public key of the new UTXO. So
both SLRS (SLRS’) and MSLRS (MSLRS’) cannot be used directly
into the Monero system. We will modify both SLRS and MSLRS by
adding new key-image with randomized base, to realize the adapt-
ability in Monero system in the appendix C. e detailed imple-
mentation and performance of the modified schemes will appeared
in the full version of this paper.

5.1 Performance of Single Ring

Table 2: Performance of Single Ring

Scheme n Generation Verification Size

SLRS(AOS)

11 1.10ms 1.09ms

(1, n+ 1)
32 3.10ms 3.08ms
128 12.31ms 12.17ms
1024 98.04ms 97.19ms

SLRS’(AOS’)

11 0.65ms 0.66ms

(1, n+ 1)
32 1.73ms 1.71ms
128 6.67ms 6.54ms
1024 52.80ms 51.70ms

Ring-CT 3.0

11 6.18ms 3.17ms

(2 logn+ 9, 7)
32 13.85ms 6.22ms
128 55.01ms 22.65ms
1024 434.60ms 172.12ms

LSAG

11 1.64ms 1.66ms

(1, n+ 1)
32 4.85ms 4.86ms
128 19.53ms 19.39ms
1024 156.39ms 155.22ms

edetailed performance results are summarized in Table2, where
(·, ·) refers to number of elements in (G,Z∗

q). Note that LSAG is
the single ring version of MLSAG and Ring-CT 3.0 is the linkable
version with key-image. e comparison of generation time is in
Figure1 and the comparison of verification time is in Figure4 (in
Appendix B). All implementations use no parallel accelerations.

7

Conference’17, July 2017, Washington, DC, USA Wulu Li, Yongcan Wang, Lei Chen, Xin Lai, Xiao Zhang, and Jiajun Xin

Figure 1: Generation Time of Single Ring.

5.2 Performance of Double Rings

Table 3: Performance of Double Rings

Scheme n Generation Verification Size

MSLRS(AOS)

11 1.67ms 1.71ms

(1,mn+ 1)
32 4.83ms 4.84ms
128 19.46ms 19.20ms
1024 154.79ms 153.50ms

MSLRS’(AOS’)

11 1.09ms 1.11ms

(1,m+ n)
32 3.02ms 3.04ms
128 11.88ms 11.83ms
1024 94.61ms 93.58ms

MLSAG

11 3.26ms 3.31ms

(1,mn+ 1)
32 9.63ms 9.45ms
128 38.79ms 38.60ms
1024 310.80ms 308.35ms

CLSAG

11 2.72ms 2.80ms

(m,n+ 1)
32 7.99ms 8.05ms
128 33.76ms 33.61ms
1024 400.47ms 400.48ms

e detailed performance results of double rings (m = 2) are
summarized in Table3. We compare the generation time (in Fig-
ure2) and verification time (in Figure5). All implementations use
no parallel accelerations.

5.3 Performance under Parallel Acceleration
Both SLRS’ and Ring-CT 3.0 are suitable for multi-threading par-
allel acceleration to reduce the time of generation and verification
for 3-5 times. In this subsection we give the detailed performance
results and comparison between SLRS’ and Ring-CT 3.0 under par-
allel acceleration in Table4 and Figure3.

6 CONCLUSION
In this paper, we give a simpler and modular construction of link-
able ring signature scheme (SLRS) by modifying the key-image

Figure 2: Generation Time of Double Rings.

Table 4: Performance under Parallel Acceleration

Scheme n Generation Verification Size

SLRS’(AOS’)

11 0.32ms 0.26ms

(1, n+ 1)

16 0.39ms 0.36ms
32 0.61ms 0.56ms
64 1.09ms 1.02ms
128 2.00ms 1.88ms
256 3.79ms 3.58ms
512 7.38ms 6.92ms
1024 14.63ms 13.81ms

Ring-CT 3.0

11 2.98ms 1.30ms

(2 logn+ 9, 7)

16 3.24ms 1.40ms
32 5.26ms 2.00ms
64 8.17ms 3.09ms
128 11.90ms 4.76ms
256 19.75ms 8.78ms
512 36.60ms 16.76ms
1024 69.56ms 32.97ms

generation and embedding algorithm, and using ring signature as
component, without any additional one-time signatures or zero-
knowledge proofs, which reduces the signature size, shortens the
time for generation and verification. Our construction is modular,
one can choose any suited elliptic-curve-based ring signature (sat-
isfying the conditions in section 1.1.2) as component to realize link-
ability. Moreover, our construction can be generalized to position-
preserving linkable multi-ring signature (MSLRS, MSLRS’). At last,
both SLRS’ and MSLRS’ can be adapted to parallel acceleration to
further improve the performance.

REFERENCES
[1] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 2002. 1-out-of-n sig-

natures from a variety of keys. In International Conference on the eory and
Application of Cryptology and Information Security. Springer, 415–432.

[2] Man Ho Au, Sherman SM Chow, Willy Susilo, and Patrick P Tsang. 2006. Short
linkable ring signatures revisited. In European Public Key Infrastructure Work-
shop. Springer, 101–115.

[3] Adam Back. 2015. Ring signature efficiency. Bitcointalk (accessed 1 May 2015)
(2015). https://bitcointalk.org/index.php.

8

https://bitcointalk.org/index.php

A Simpler and Modular Construction of Linkable Ring Signature Conference’17, July 2017, Washington, DC, USA

Figure 3: Computation Time under Parallel Acceleration.

[4] Adam Bender, Jonathan Katz, and Ruggero Morselli. 2006. Ring signatures:
Stronger definitions, and constructions without random oracles. In eory of
Cryptography Conference. Springer, 60–79.

[5] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions
and more. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 315–334.

[6] Vitalik Buterin. 2014. A next-generation smart contract and decentralized ap-
plication platform. (2014). https://cryptorating.eu/whitepapers/Ethereum/
Ethereum_white_paper.pdf.

[7] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. 2004.
Anonymous identification in ad hoc groups. In International Conference on the
eory and Applications of Cryptographic Techniques. Springer, 609–626.

[8] Evan Duffield and Daniel Diaz. 2015. Dash: A privacycentric cryptocurrency.
GitHub (2015). https://github.com/dashpay/dash/wiki/Whitepaper.

[9] Eiichiro Fujisaki and Koutarou Suzuki. 2007. Traceable ring signature. In Inter-
national Workshop on Public Key Cryptography. Springer, 181–200.

[10] Brandon Goodell, Sarang Noether, and RandomRun. 2019. Compact linkable
ring signatures and applications. Cryptology ePrint Archive, Report 2019/654.
https://eprint.iacr.org/2019/654.

[11] Jens Groth and Markulf Kohlweiss. 2015. One-out-of-many proofs: Or how to
leak a secret and spend a coin. In Annual International Conference on the eory
and Applications of Cryptographic Techniques. Springer, 253–280.

[12] Joseph K Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. 2013. Linkable ring
signature with unconditional anonymity. IEEE Transactions on Knowledge and
Data Engineering 26, 1 (2013), 157–165.

[13] Joseph K Liu, Victor K Wei, and Duncan S Wong. 2004. Linkable spontaneous
anonymous group signature for ad hoc groups. In Australasian Conference on
Information Security and Privacy. Springer, 325–335.

[14] Greg Maxwell. 2015. Confidential transactions. (2015). https://people.xiph.org/
~greg/confidential_values.txt.

[15] Gregory Maxwell and Andrew Poelstra. 2015. Borromean ring signa-
tures. https://raw.githubusercontent.com/Blockstream/borromean_paper/
master/borromean_draft_0.01_34241bb.pdf.

[16] Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash system.
(2008). https://git.dhimmel.com/bitcoin-whitepaper/.

[17] Shen Noether, Adam Mackenzie, et al. 2016. Ring confidential transactions.
Ledger 1 (2016), 1–18.

[18] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Annual International Cryptology Conference.
Springer, 129–140.

[19] Ronald L Rivest, Adi Shamir, and Yael Tauman. 2001. How to leak a secret. In
International Conference on the eory and Application of Cryptology and Infor-
mation Security. Springer, 552–565.

[20] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,MahewGreen, IanMier-
s, Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE,
459–474.

[21] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. 2017. RingCT 2.0:
A compact accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency Monero. In European Symposium on Research in Computer Secu-
rity. Springer, 456–474.

[22] Patrick P Tsang and Victor K Wei. 2005. Short linkable ring signatures for e-
voting, e-cash and aestation. In International Conference on Information Secu-
rity Practice and Experience. Springer, 48–60.

[23] Nicolas Van Saberhagen. 2013. CryptoNote v 2.0. (2013). https://cryptonote.
org/whitepaper.pdf.

[24] Tsz Hon Yuen, Joseph K Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. 2013.
Efficient linkable and/or threshold ring signature without random oracles. Com-
put. J. 56, 4 (2013), 407–421.

[25] Tsz Hon Yuen, Shi-feng Sun, Joseph K Liu, Man Ho Au, Muhammed F Esgin,
Qingzhao Zhang, and Dawu Gu. 2019. RingCT 3.0 for Blockchain Confidential
Transaction: Shorter Size and Stronger Security. (2019).

A REMAINING PRELIMINARIES
A.1 Special Soundness

D 13 (kS S). In sigma protocols with
Fiat-Shamir transformation in the random oracle model, for any non-
uniform polynomial time adversary A who can generate k valid
proofs (x, c, e1, s1), · · · , (x, c, ek, sk), then there exists an extrac-
tion algorithm Ext which can extract a witness (x,w) ∈ R, where c
represents the commitment, eis are challenges and sis are responses.

A.2 AOS Ring Signature
We give the introduction of AOS ring signature[1] in the follow-
ing: here we introduce the generalized AOS ring signature for the
generator in each position is different (gi is the generator in the
i-th position for i = 1, · · · , n).
− Par ← Setup(λ): system chooses an elliptic curve G and a

generator g1, · · · , gn as the public parameters.
− (PKπ, SKπ)← KeyGen(Par): according to the public param-

eters, user Pπ samples x ∈ Z∗
q uniformly at random, com-

putes gxπ and sets (PKπ, SKπ) = (gxπ, x).
− σ ← Rsign(SKπ, µ, LPK): when user Pπ generates a ring sig-

nature for message µ, he chooses another n − 1 users’ pub-
lic keys, together with his own PKπ to obtain a set of pub-
lic keys LPK = {PK1, · · · , PKn} = {gx1

1 , · · · , gxn
n }, where

PKπ ∈ LPK and π ∈ {1, · · · , n}, then he does as follows:
1. Pπ samples rπ ∈ Z∗

q uniformly at random, then computes
cπ+1 = H(grππ , LPK, µ);

2. For i = π + 1, · · · , n, 1, · · · , π − 1, Pπ samples zi ∈ Z∗
q

uniformly and computes ci+1 = H(gzii /(PKi)
ci , LPK, µ);

3. Pπ computes zπ = rπ + xcπ ;
4. Output the ring signature σ = (c1; z1, · · · , zn).

− 1/0← Verify(µ, σ, LPK): for a ring signature (µ,LPK, σ), for
i = 1, · · · , n the verifier computes

c∗i+1 = H(gzii /(PKi)
c∗i , LPK, µ)

where c1 = c∗1 , then checks c1
?
= c∗n+1, if all passed then

outputs 1, otherwise outputs 0.

A.3 AOS’ Ring Signature
AOS’ is introduced in the Appendix of [1] with beer efficiency
than AOS.

− Par ← Setup’(λ): system chooses an elliptic curve G and a
generator g as the public parameters.

− (PKπ, SKπ)← KeyGen’(Par): according to the public param-
eters, user Pπ samples x ∈ Z∗

q uniformly at random, com-
putes gx and sets (PKπ, SKπ) = (gx, x).

9

https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://github.com/dashpay/dash/wiki/Whitepaper
https://eprint.iacr.org/2019/654
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
https://raw.githubusercontent.com/Blockstream/borromean_paper/master/borromean_draft_0.01_34241bb.pdf
https://git.dhimmel.com/bitcoin-whitepaper/
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

Conference’17, July 2017, Washington, DC, USA Wulu Li, Yongcan Wang, Lei Chen, Xin Lai, Xiao Zhang, and Jiajun Xin

− σ ← Rsign’(SKπ, µ, LPK): when user Pπ generates a ring sig-
nature for message µ, he chooses another n − 1 users’ pub-
lic keys, together with his own PKπ to obtain a set of pub-
lic keys LPK = {PK1, · · · , PKn}, where PKπ ∈ LPK and
π ∈ {1, · · · , n}, then he does as follows:
1. For i = 1, · · · , π−1, π+1, · · · , n, Pπ samples α, ci ∈ Z∗

q

uniformly at random, then computes R = gα
∏

i̸=π PKci
i

and c = H(R,LPK, µ);
2. Pπ computes cπ = c−

∑
i̸=π ci;

3. Pπ computes z = α− xcπ ;
4. Output the ring signature σ = (z; c1, · · · , cn).

− 1/0← Verify’(µ, σ, LPK): for a ring signature (µ,LPK, σ), the
verifier computes R∗ = gz

∏n
i=1 PK

ci
i , then checks∑n

i=1 ci
?
= H(R∗, LPK, µ), if all passed then outputs 1, oth-

erwise outputs 0.

e AOS (AOS’) ring signature schemes are unforgeable and
anonymous in the random oracle model.

A.4 CLSAG Ring Signature
CLSAG is introduced in [10] to provide a more compact and ef-
ficient linkable multi-ring signature than MLSAG in Monero. We
give the introduction of 2-ring signature as example:

− Par← Setup(λ): system chooses an elliptic curveG and gen-
erators g ∈ G, outputs (G, q, g) as the public parameters.

− (PK, SK)← KeyGen(Par):
1. According to the public parameters (G, q, g), for d = 2

(two rings), user Alice samples x, y ∈ Z∗
q as her secret keys,

computes PKA = gx, PK′
A = gy .

− σ ← Rsign(SKAlice, µ, LPK):
1. For amessageµ, Alice chooses anothern−1 users, together

with her own public keys, to generate two lists of public
keys:
LPK = {PK1, · · · , PKn}, L′

PK = {PK′
1, · · · , PK′

n}. Where
Alice’s PKAlice = (PKA, PK′

A) = (PKi, PK′
i) ∈ LPK;

2. Alice computes I = Hp(PKA)
x, D = Hp(PKA)

y , and
e1 = H(I,D,LPK, 1), e2 = H(I,D,LPK, 2);

3. Alice samples α ∈ Z∗
q uniformly at random, computes

Li = gα, Ri = Hp(PKA)
α,

then computes ci+1 = H(Li, Ri, µ, LPK, I,D). en for
j = i+1, · · · , i− 1, Alice samples sj ∈ Z∗

q and computes

Lj = gsj (PKe1
j (PK′

j)
e2)cj ,

Rj = Hp(PKj)
sj (Ie1De2)cj .

en computes cj+1 = H(Lj , Rj , µ, LPK, I,D);
4. Alice computes si = α− ci(e1x+ e2y);
5. Alice outputs σ = (c1, s1, · · · , sn, I,D, LPK).

− 1/0← Verify(c1, s1, · · · , sn, I,D, LPK):
1. Verifier computes e∗1 = H(I,D, LPK, 1), e∗2 = H(I,D,

LPK, 2);
2. For j = 1, · · · , n, verifier computes

L∗
j = gsj (PKe∗1

j (PK′
j)

e∗2)c
∗
j ,

R∗
j = Hp(PKj)

sj (Ie
∗
1De∗2)c

∗
j .

Where c1 = c∗1 . en computes

c∗j+1 = H(L∗
j , R

∗
j , µ, LPK, I,D);

3. Verifier checks whether c∗n+1
?
= c1;

4. If all passed then outputs 1, otherwise outputs 0.
− linked/unlinked← Link(σ, σ′): For two CLSAG signatures

σ = (c1, s1, · · · , sn, I,D, LPK) andσ′ = (c′1, s
′
1, · · · , s′n, I ′,

D′, L′
PK), if I = I ′ then verifier outputs linked, otherwise out-

puts unlinked.
Where Hp(·) refers to Hash-to-Point, similar to MLSAG. Note

that CLSAG only support the same generators in all rings.

B REMAINING PERFORMANCE
COMPARISONS

e verification time comparisons for single ring and double rings
are given in this subsection. Verification time of single ring is shown
in Figure4, and verification time of double rings is shown in Fig-
ure5. From the comparisons we can conclude that our schemes
((M)SLRS, (M)SLRS’) are more efficient than existing schemes.

Figure 4: Verification Time of Single Ring.

Figure 5: Verification Time of Double Rings.

10

A Simpler and Modular Construction of Linkable Ring Signature Conference’17, July 2017, Washington, DC, USA

C MONERO ADAPTABILITY
In Monero system, the public key of every user contains a view key
PKv = gxv and a spending key PKs = gxs , and the one-time pub-
lic key generation algorithm of each UTXO is PKU = gH(PKrv)PKs

with the corresponding secret key SKU = H(PKr
v) + xs. en if

PKU = gH(PKrv)PKs and PK′
U = gH(PKr

′
v)PKs for two UTXOs sent

between one initiator and one recipient, then I = hH(PKrv)+xs and

I ′ = hH(PKr
′

v)+xs with I/I ′ = hH(PKrv)−H(PKr
′

v) known by the
initiator, which means that the system is not secure.

So the key-image with fixed base needs to be repaired to achieve
adaptability inMonero system. In this sectionwe introduce SLRSM
and MSLRSM to fill this gap.

C.1 SLRS For Monero
In the construction of SLRSM, we use similar construction as in
SLRS, except for the key-image generation method.

Par← SLRSM.Setup(λ):
1. System chooses an elliptic curve G with prime order q and a gen-

erator g ∈ G, system outputs (G, q, g) as the public parameters.

(PK, SK)← SLRSM.KeyGen(Par):
1. According to the public parameters (G, q, g), user Alice samples

x ∈ Z∗
q as her secret key, then computes PK = gx;

2. Alice outputs PK = gx, and retains SK = x.

σ ← SLRSM.Sign(SKπ, µ, LPK):
1. For a message µ, Alice chooses another n − 1 users, togeth-

er with her own public key, to generate a list of public keys
LPK = {PK1, · · · , PKn}, where Alice’s PK = PKπ ∈ LPK, π ∈
{1, · · · , n};

2. Alice computes hi = Hp(PKi) for i = 1, · · · , n, then computes
the key-image I = hxπ

π , and computes e = H(LPK, I, µ);
3. Alice computes the public key set for ring signature

LRPK = {PK1 ·Ie, · · · , PKn ·Ie} = {gx1hexπ
π , · · · , gxnhexπ

π };
4. Alice runs AOS ring signature and gets τ ← Rsign(SK, µ, LRPK, I)

by usage of LRPK and SK = xπ , outputs τ (use generator ghe
i in

the i-th position);
5. Alice outputs σ = (τ, µ, LPK, I) as the SLRSM outputs.

1/0← SLRSM.Verify(τ, µ, LPK, I):
1. Verifier computes e∗ = H(LPK, I, µ) and computes hi =

Hp(PKi) for i = 1, · · · , n;
2. Verifier computes L∗

RPK = {PK1 · Ie
∗
, · · · , PKn · Ie

∗};
3. Verifier checks the validity of AOS ring signature τ with ringL∗

RPK
(use generator ghe∗

i in the i-th position);
4. If all passed then outputs 1, otherwise outputs 0.

linked/unlinked← SLRSM.Link(σ, σ′):
1. For two valid SLRSM signatures σ = (τ, µ, LPK, I) and σ′ =

(τ ′, µ′, L′
PK, I

′), if I = I′ then verifier outputs linked, otherwise
outputs unlinked.

Algorithm 4: SLRSM

C.2 MSLRS For Monero
We can use similar method as in MSLRS (multi-ring extension) to
construct position-preserving linkable multi-ring signature form
SLRSM. Moreover, we can further modify MSLRS to achieve simi-
lar functionality and compactness as CLSAG. In the following we
give a 2-ring example of MSLRSM:

Par← MSLRSM.Setup(λ):
1. System chooses an elliptic curve G with prime order q and gener-

ators g ∈ G, system outputs (G, q, g) as the public parameters.

(PK, SK)← MSLRSM.KeyGen(Par):
1. According to the public parameters (G, q, g), user Alice samples

x, y ∈ Z∗
q as her secret keys, then computes gx, gy ;

2. Alice outputs (PK, PK′) = (gx, gy), and retains (SK, SK′) =
(x, y).

σ ← MSLRSM.Sign(SKπ, SK′
π, µ, LPK, L

′
PK):

1. For a message µ, Alice chooses another n − 1 users, togeth-
er with her own public keys, to generate two list of public keys
LPK = {PK1, · · · , PKn} and L′

PK = {PK′
1, · · · , PK′

n}, where
Alice’s PK = PKπ ∈ LPK, PK′ = PK′

π ∈ L′
PK, π ∈ {1, · · · , n},

which means the position of Alice’s public key in each ring is same;
2. Alice computes hi = Hp(PKi) for i = 1, · · · , n, then com-

putes the key-image I = hxπ
π , I′ = hyπ

π , then computes ek =

H(LPK, L′
PK, I, I

′, µ, k) for k = 1, 2;
3. Alice computes the public key set for AOS ring signature

LRPK = {PK1I
e1 (PK′

1)
e2 (I′)e1e2 , · · · , PKnI

e1 (PK′
n)

e2 (I′)e1e2}
= {gx1+e2yπhe1xπ+e1e2yπ

π , · · · , gxn+e2yπhenxπ+e1e2yπ
π }

= {RPKi}i=1,··· ,n;

4. Alice runs the AOS ring signature scheme, and gets τ ←
Rsign(RSKπ , µ, LRPK, I, I′) by usage ofLRPK and RSKπ = SKπ+
e2SK′

π = xπ + e2yπ , outputs τ (use generator ghe1
i in the i-th

position);
5. Alice outputs σ = (τ, µ, LPK, L′

PK, I, I
′) as the MSLRSM outputs.

1/0← MSLRSM.Verify(τ, µ, LPK, L
′
PK, I, I

′):
1. Verifier computes h∗

i = Hp(PKi) for i = 1, · · · , n, then com-
putes e∗k = H(LPK, L′

PK, I, I
′, µ, k) for k = 1, 2;

2. Verifier computes

LRPK = {PK1I
e∗1 (PK′

1)
e∗2 (I′)e

∗
1e

∗
2 , · · · , PKnI

e∗1 (PK′
n)

e∗2 (I′)e
∗
1e

∗
2}

3. Verifier checks the validity of AOS ring signature τ with ringL∗
RPK

(use generator g(h∗
i)

e∗1 in the i-th position);
4. If all passed then outputs 1, otherwise outputs 0.

linked/unlinked← MSLRSM.Link(σ, σ′):
1. For two valid MSLRSM signatures σ1 =

(τ1, µ1, L
(1)
PK , L

′(1)
PK , I1, I′1) and σ2 =

(τ2, µ2, L
(2)
PK , L

′(2)
PK , I2, I′2), if I1 = I2 then verifier outputs

linked, otherwise outputs unlinked.

Algorithm 5: MSLRSM

11

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works
	1.3 Organization

	2 Preliminaries
	2.1 Ring Signatures
	2.2 AOS and AOS'
	2.3 Linkable Ring Signatures
	2.4 Linkable Multi-ring Signature in Monero

	3 Simpler Linkable Ring Signature
	3.1 Construction
	3.2 Correctness and Security

	4 MSLRS for Multi-ring Application
	4.1 MSLRS with AOS
	4.2 MSLRS' with AOS'

	5 Implementation and Performance
	5.1 Performance of Single Ring
	5.2 Performance of Double Rings
	5.3 Performance under Parallel Acceleration

	6 Conclusion
	References
	A Remaining Preliminaries
	A.1 Special Soundness
	A.2 AOS Ring Signature
	A.3 AOS' Ring Signature
	A.4 CLSAG Ring Signature

	B Remaining Performance Comparisons
	C Monero Adaptability
	C.1 SLRS For Monero
	C.2 MSLRS For Monero

