
Improved Primitives for MPC over Mixed
Arithmetic-Binary Circuits

Daniel Escudero1, Satrajit Ghosh1, Marcel Keller2,
Rahul Rachuri1, Peter Scholl1

1 Aarhus University, {escudero, satrajit, rachuri, peter.scholl}@cs.au.dk
2 CSIRO’s Data61, mks.keller@gmail.com

Abstract. This work introduces novel techniques to improve the trans-
lation between arithmetic and binary data types in multi-party compu-
tation. To this end, we introduce a new approach to performing these
conversions, using what we call extended doubly-authenticated bits (ed-
aBits), which correspond to shared integers in the arithmetic domain
whose bit decomposition is shared in the binary domain. These can be
used to considerably increase the efficiency of non-linear operations such
as truncation, secure comparison and bit-decomposition.
Our edaBits are similar to the daBits technique introduced by Rotaru
et al. (Indocrypt 2019). However, our main observations are that (1)
applications that benefit from daBits can also benefit from edaBits in
the same way, and (2) we can generate edaBits directly in a much more
efficient way than computing them from a set of daBits. Technically, the
second contribution is much more challenging, and involves a novel cut
and choose technique that may be of independent interest, and requires
taking advantage of natural tamper-resilient properties of binary circuits
that occur in our construction to obtain the best level of efficiency. Fi-
nally, we show how our edaBits can be applied to efficiently implement
various non-linear protocols of interest, and we thoroughly analyze their
correctness for both signed and unsigned integers.
The results of this work can be applied to any corruption threshold, al-
though they seem best suited to dishonest majority protocols such as
SPDZ. We implement and benchmark our constructions, and experi-
mentally verify that our technique yield a substantial increase in effi-
ciency. Our edaBits save in communication by a factor that lies between
2 and 170 for secure comparisons with respect to a purely arithmetic
approach, and between 2 and 60 with respect to using daBits. Improve-
ments in throughput per second are more subdued but still as high as a
factor of 47. We also apply our novel machinery to the tasks of biomet-
ric matching and convolutional neural networks, obtaining a noticeable
improvement as well.

1 Introduction

Secure multi-party computation, or MPC, allows a set of parties to compute
some function f on private data, in such a way that the parties do not learn

anything about the actual inputs to f , beyond what could be computed given
the result. MPC can be used in a wide range of applications, such as private
statistical analysis, machine learning, secure auctions and more.

MPC protocols can vary widely depending on the adversary model that is
considered. For example, protocols in the honest majority setting are only secure
as long as fewer than half of the parties are corrupt and colluding, whilst pro-
tocols secure against a dishonest majority allow all-but-one of the parties to be
corrupt. Another important distinction is whether the adversary is assumed to
be semi-honest, that is, they will always follow the instructions of the protocol,
or malicious, and can deviate arbitrarily.

The mathematical structure underpinning secure computation usually re-
quires to fix what we call a computation domain. The most common examples
of such domains are computation modulo a large number (prime or power of two)
or binary circuits (computation modulo two). In terms of cost, the former is more
favorable to integer computation such as addition and multiplication while the
latter is preferable for highly non-linear functions such as comparisons.

Applications often feature both linear and non-linear functionality. For exam-
ple, convolution layers in deep learning consist of dot products followed by a non-
linear activation function. It is therefore desirable to convert between an arith-
metic computation domain and binary circuits. This has led to a line of works
exploring this possibility, starting with the ABY framework [20] (Arithmetic-
Boolean-Yao) in the two-party setting with semi-honest security. Other works
have extended this to the setting of three parties with an honest majority [2, 29],
dishonest majority with malicious security [33], as well as creating compilers
that automatically decide which parts of a program should done in the binary
or arithmetic domain [9, 27].

A particular technique that is relevant for us is so-called daBits [33] (doubly-
authenticated bits), which are random secret bits that are generated simulta-
neously in both the arithmetic and binary domains. These can be used for bi-
nary/arithmetic conversions in MPC protocols with any corruption setting, but
seem most promising for the case of a dishonest majority with malicious security.
Later works also presented more efficient ways of generating daBits [1, 32], all
based on the SPDZ protocol [19] using homomorphic encryption.

Another recent work uses function secret sharing [6] for binary/arithmetic
conversions and other operations such as comparison [7]. This approach leads
to a fast online phase with just one round of interaction and optimal communi-
cation complexity. However, it requires either a trusted setup, or an expensive
preprocessing phase which has not been shown to be practical for malicious
adversaries.

Limitations of daBits. Using daBits, it is relatively straightforward to con-
vert between two computation domains. However, we found that in application-
oriented settings the benefit of daBits alone is relatively limited. More concretely,
if daBits are used to compute a comparison between two numbers that are secret-
shared in ZM , for large arithmetic modulus M , the improvement is a factor of
three at best. The reason for this is that the cost of the required daBits comes

2

quite close to computing the comparison entirely in ZM . This limitation seems to
be inherent with any approach based on daBits, since a daBit requires generating
a random shared bit in ZM . The only known way of doing this with malicious
security require first performing a multiplication (or squaring) in ZM on a secret
value [15, 16]. However, secret multiplication is an expensive operation in MPC,
and doing this for every daBit gets costly.

1.1 Our Contributions

In this paper, we present a new approach to converting between binary and
arithmetic representations in MPC. Our method is general, and can be applied
to a wide range of corruption settings, but seems particularly well-suited to the
case of dishonest majority with malicious security such as SPDZ [17, 19], over
the arithmetic domain Zp for large prime p, or Z2k [12]. Unlike previous works in
this setting, we do not generate daBits, but instead create what we call extended
daBits (edaBits), which avoid the limitations above. These allow conversions
between arithmetic and binary domains, but can also be used directly for certain
non-linear functions such as truncations and comparisons. We found that, for
two- and three-party computation, edaBits allow to reduce the communication
cost by up to two orders of magnitude and the wall clock time by up to a factor of
50 while both the inputs as well as the output are secret-shared in an arithmetic
domain.

Below we highlight some more details of our contribution.

Extended daBits. An edaBit consists of a set of m random bits (rm−1, . . . , r0),

secret-shared in the binary domain, together with the value r =
∑m−1
i=0 ri2

i

shared in the arithmetic domain. We denote these sharings by [rm−1]2, . . . , [r0]2
and [r]M , for arithmetic modulus M . Note that a daBit is simply an edaBit of
length m = 1, and m daBits can be easily converted into an edaBits with a linear
combination of the arithmetic shares. We show that this is wasteful, however,
and edaBits can in general be produced much more efficiently than m daBits,
for values of m used in practice.

Efficient malicious generation of edaBits. Let us first consider a simple
approach with semi-honest security. If there are n parties, we have each party
locally sample a private edaBit (rim−1, . . . , r

i
m−1), ri, and secret-share this in

both domains in MPC. Then, the parties combine these by computing
∑
i r
i in

the arithmetic domain, and executing n− 1 protocols for addition in the binary
domain, with a cost O(nm) AND gates. Compared with using daBits, which
costs O(m) secret multiplications in ZM , this is much cheaper if n is not too
large, by the simple fact that AND is a cheaper operation than multiplication
in MPC.

To extend this naive approach to the malicious setting, we need a way to
somehow verify that a set of edaBits was generated correctly. Firstly, we extend
the underlying secret-sharing scheme to one that enforces correct computations

3

on the underlying shares. This can be done, for instance, using authenticated
secret-sharing with MACs as in SPDZ [19]. Secondly, we introduce a novel cut-
and-choose procedure to check that a large batch of edaBits are correct. This
method is inspired by previous techniques for checking multiplication triples in
MPC [8, 21, 22]. However, the case of edaBits is much more challenging to do
efficiently, due to the highly non-linear relation between sharings in different
domains, compared with the simple multiplicative property of triples (shares of
(a, b, c) where c = ab).

Cut-and-choose approach. Our cut-and-choose procedure begins as in the semi-
honest case, with each party Pi sampling and inputting a large batch of private
edaBits of the form (rim−1, . . . , r

i
0), ri. We then run a verification step on Pi’s

private edaBits, which begins by randomly picking a small subset of the edaBits to
be opened and checked for correctness. Then, the remaining edaBits are shuffled
and put into buckets of fixed size B. The first edaBit in each bucket is paired
off with every other edaBit in the bucket, and we run a checking procedure on
each of these pairs. To check a pair of edaBits r, s, the parties can compute r+ s
in both the arithmetic and binary domains, and check these open to the same
value. If all checks pass, then the parties take the first private edaBit from every
bucket, and add this to all the other parties’ private edaBits, created in the same
way, to obtain secret-shared edaBits. To pass the check, the adversary must have
corrupted both r and s so that they cancel each other out; by carefully choosing
parameters, we can ensure that it is very unlikely the adversary manages to do
this for every pair with a bad edaBit. For example, with 40-bit statistical security,
from the analysis of [22], we can use bucket size B = 3 when generating more
than a million sets of edaBits.

While the above method works, it incurs considerable overhead compared
with similar cut-and-choose techniques used for multiplication triples. This is
because in every pairwise check within a bucket, the parties have to perform an
addition of binary-shared values, which requires a circuit with O(m) AND gates.
Each of these AND gates consumes an authenticated multiplication triple over
Z2, and generating these triples themselves requires additional layers of cut-
and-choose and verification machinery, using protocols based on the TinyOT
family [21, 31, 34].

To reduce this cost, one possible optimization is as follows. Recall that the
check procedure within each bucket is done on a pair of private values known to
one party, and not secret-shares. This means that when evaluating the addition
circuit, it suffices to use private multiplication triples, which are authenticated
triples where the secret values are known to party Pi. These are much cheaper
to generate than fully-fledged secret-shared triples, although still require a veri-
fication procedure based on cut-and-choose.

To further reduce costs, we propose a second, more radical optimization.

Cut-and-choose with faulty check circuits. Instead of using private multiplica-
tion triples that have been checked separately, we propose to use faulty private
triples, that is, authenticated triples that are not guaranteed to be correct. This

4

immediately raises the question, how can the checking procedure be useful, if
the verification mechanism itself is faulty? Intuitively, if we randomly shuffle the
set of triples, it may still be hard for an adversary who corrupts them to ensure
that any incorrect edaBits are canceled out in the right way by the faulty check
circuit, whilst any correct edaBits still pass unscathed. Proving this, however, is
challenging. In fact, it seems to inherently rely on the structure of the binary
circuit that computes the check function. For instance, if a faulty circuit can
cause a check between a good and a bad edaBit to pass, and the same circuit
also causes a check between two good edaBits to pass, for some carefully chosen
inputs, then this type of cheating can help the adversary.

To rule this out, we consider circuits with a property we call weak additive
tamper-resilience, meaning that for any tampering that flips some subset of AND
gate outputs, the tampered circuit is either incorrect for every possible input,
or it is correct for all inputs. This notion essentially rules out input-dependent
failures from faulty multiplication triples, which avoids the above attack and
allows us to simplify the analysis.

Weak additive tamper-resilience is implied by previous notions of circuits
secure against additive attacks [23], however, these constructions are not prac-
tical over F2. Fortunately, we show that the standard ripple-carry adder circuit
satisfies our notion, and suffices for creating edaBits in Z2k . However, the circuit
for binary addition modulo a prime, which requires an extra conditional sub-
traction, does not satisfy this. Instead, we adapt the circuit over the integers to
use in our protocol modulo p. This means we can only generate restricted-length
edaBits in Zp, that is for m < log p, which turns out to be sufficient for our
applications. It as an interesting open problem to construct a simple, weakly
additively tamper-resilient circuit for addition modulo p.

With this property, we can show that introducing faulty triples does not
help an adversary to pass the check, so we can choose the same cut-and-choose
parameters as previous works on triple generation, while saving significantly in
the cost of generating our triples used in verification.

Silent OT-friendly. Another benefit of our approach is that we can take advan-
tage of recent advances in oblivious transfer (OT) extension techniques, which
allow to create a large number of random, or correlated, OTs, with very lit-
tle interaction [5]. In practice, the communication cost when using this “silent
OT” method can be more than 100x less than OT extension based on previous
techniques [26], with a modest increase in computation [4]. In settings where
bandwidth is expensive, this suits our protocol well, since we mainly use MPC
operations in F2 to create edaBits, and these are best done with OT-based tech-
niques. This reduces the communication of our edaBits protocol by an O(λ)
factor, in practice cutting communication by 50–100x, although we have not yet
implemented this optimization.

Note that it does not seem possible to exploit silent OT with previous daBit
generation methods such as by Aly et al. [1]. This is due to the limitation men-

5

tioned previously that these require a large number of random bits shared in Zp,
which we do not know how to create efficiently using OT.

Applications: improved conversions and primitives. edaBits can be used
in a natural way to convert between binary and arithmetic domains, where each
conversion of and m-bit value uses one edaBit of length m, and a single m-
bit addition circuit. (In the mod-p case, we also need one “classic” daBit per
conversion, to handle a carry computation.) However, for many primitives such
as secure comparison, equality test and truncation, a better approach is to exploit
the edaBits to perform the operation without doing an explicit conversion. In the
Z2k case, a similar approach was used previously when combining the SPDZ2k
protocol with daBit-style conversions [15]. We adapt these techniques to work
with edaBits, in both Z2k and Zp. As an additional contribution, more at the
engineering level, in all our constructions we take great care to ensure they
work for both signed and unsigned data types. This was not done by previous
truncation protocols in Z2k based on SPDZ [14, 15], which only perform a logical
shift, as opposed to the arithmetic shift that is needed to ensure correctness on
signed inputs.

Handling garbled circuits. Our conversion method can also be extended to con-
vert binary shares to garbled circuits, putting the ‘Y’ into ‘ABY’ and allowing
constant round binary computations. In this paper, we do not focus on this, since
the technique is exactly the same as described in [1]. When using binary shares
based on TinyOT MACs, conversions between binary and garbled circuit repre-
sentation comes for free, based on the observation from Hazay et al. [25] that
TinyOT sharings can be locally converted into shares of a multi-party garbled
circuit.

Performance evaluation. We have implemented our protocol in all relevant
security models and computation domains, and we found it reduces communi-
cation both in microbenchmarks and application benchmarks when comparing
to a purely arithmetic or a daBit-based implementation. More concretely, the
reduction in communication lies between a factor of 2 and 170 for comparisons
from purely arithmetic to edaBits and between 2 and 60 from daBits to edaBits.
Improvements in throughput per second are more subdued but still as high as
a factor of 47. Generally, the improvements are higher for dishonest-majority
computation and semi-honest security.

We have also compared our implementation with the most established soft-
ware for mixed circuits [9] and found that it still improves up to a factor of two
for a basic benchmark in semi-honest two-party computation. However, they
maintain an advantage if the parties are far apart (100 ms RTT) due to the
usage of garbled circuits.

Finally, a comparison with a purely arithmetic implementation of deep-
learning inference shows an improvement of up to a factor eight in terms of
both communication and wall clock time.

6

1.2 Paper Outline

We begin in Section 2 with some preliminaries. In Section 3, we introduce edaBits
and show how to instantiate them, given a source of private edaBits. We then
present our protocol for creating private edaBits in Section 4, based on the new
cut-and-choose procedure. In Section 4.1 we describe abstract games that model
the cut-and-choose, and carry out a formal analysis. Then in Section 5 we show
how to use edaBits for higher-level primitives like comparison and truncation.
Finally, in Section 6, we analyze the efficiency of our constructions and present
performance numbers from our implementation.

2 Preliminaries

In this work we consider three main algebraic structures: ZM for M = p where
p is a large prime, M = 2k where k is a large integer, and M = 2. Secret shared
values in these domains are denoted by [x]M .

2.1 Arithmetic Black-Box

We model MPC via the arithmetic black box model (ABB), which is an ideal
functionality in the universal composability framework [10]. This functionality
allows a set of n parties P1, . . . , Pn to input values, operate on them, and receive
outputs after the operations have been performed. Typically (see for example
Rotaru and Wood [33]), this functionality is parameterized by a positive integer
M , and the values that can be processed by the functionality are in ZM , with
the native operations being addition and multiplication modulo M .

In this work, since we are interested in the relation between binary and arith-
metic computation, we will consider an extended version of the arithmetic black
box model. First, in one single instance of the functionality the computation can
be both binary or arithmetic, where the latter can be either modulo p or modulo
2k. Furthermore, the functionality allows the parties to convert binary shares to
arithmetic shares.3 The details are presented in Fig. 1.

There are several ways to instantiate the basic arithmetic commands of
this functionality, depending on the adversarial setting. For passive security
basic secret-sharing techniques suffices. For active security in the honest ma-
jority setting one can use for example Shamir secret-sharing or replicated-secret
sharing [3, 18], and for active security in the dishonest majority scenario they
can be instantiated with secret-sharing-based techniques coupled with MACs
[12, 17, 28, 34]. Furthermore, the conversions between the arithmetic bits and
binary sharings can be implemented via daBits, as shown in [1, 32, 33]. We
present a short summary of this daBit generation in Section A in the appendix.

3 Converting m bits to arithmetic shares of the integer they represent requires calling
this command m times. Using our edaBits, we can optimize this substantially, as
we briefly discuss in Section 5. In our protocols we will only call this command to
convert one single bit from binary to arithmetic representation.

7

Functionality FABB

Input: On input (Input, Pi, type, id, x) from Pi and (Input, Pi, type, id) from all
other parties, with id a fresh identifier, type ∈ {binary, arithmetic} and x ∈
ZM , store (type, id, x).

Linear Combination: On input (LinComb, type, id, (idj)
m
j=1, type, c, (cj)

m
j=1),

where each idj is stored in memory and c, cj ∈ Z2 if type = binary or
c, cj ∈ ZM if type = arithmetic, retrieve ((type, id1, x1), . . . , (type, idm, xm)),
compute y = c +

∑
j xj · cj modulo 2 if type = binary and modulo M if

type = arithmetic, and store (type, id, y).
Multiply: On input (Mult, type, id, id1, id2) from all parties (where id1, id2 are

present in memory), retrieve (type, id1, x), (type, id2, y), compute z = x · y
modulo 2 if type = binary and modulo M if type = arithmetic, and store
(id, z).

From Binary to Arithmetic: On input (ConvertB2A, id, id′) from all par-
ties, retrieve (binary, id′, x) and store (arithmetic, id, x).

Output: On input (Output, type, id) from all honest parties (where id is present
in memory), retrieve (type, id, y) and output it to the adversary. Wait for
an input from the adversary; if this is Deliver then output y to all parties,
otherwise output Abort.

Fig. 1. Ideal functionality for the MPC arithmetic black box modulo 2 and modulo
M , where M is either 2k or p.

3 Extended daBits

The main primitive of our work is the concept of extended daBits, or edaBits.
Unlike a daBit, which is a random bit b shared as ([b]M , [b]2), an edaBit is a
collection of bits (rm−1, . . . , r0) such that (1) each bit is secret-shared as [ri]2
and (2) the integer r =

∑m
i=0 ri2

i is secret-shared as [r]M .

One edaBit of length m can be generated from m daBits, and in fact, this
is typically the first step when applying daBits to several non-linear primitives
like truncation. Instead of following this approach, we choose to generate the
edaBits—which is what is needed for most applications where daBits are used—
directly, which leads to a much more efficient method and ultimately leads to
more efficient primitives for MPC protocols.

At a high level, our protocol for generating edaBits proceeds as follows. Let us
think initially of the passively secure setting. Each party Pi samples m random
bits rii,0, . . . , r

i
i,m−1, and secret-shares these bits towards the parties over Z2, as

well as the integer ri =
∑m−1
j=0 ri,j2

j over ZM . Since each edaBit is known by one
party, these edaBits must be combined to get edaBits where no party knows the
underlying values. We refer to the former as private edaBits, and to the latter as
global edaBits. The parties combine the private edaBits by adding them together:
the arithmetic shares can be simply added locally as [r]M =

∑n
i=1[ri]M , and the

binary shares can be added via an n-input binary adder. Some complications

8

arise, coming from the fact that the ri values may overflow mod p. Dealing with
this is highly non-trivial, and we will discuss this in detail in the description of
our protocol in Section 3.2. However, before we dive into our construction, we
will first present the functionality we aim at instantiating. This functionality is
presented in Fig. 2.

Functionality FedaBits

This functionality samples m random bits r0, . . . , rm−1 ∈ Z2 and stores them
in the binary ABB. It also stores r =

∑m−1
i=0 ri2

i in the arithmetic ABB. Here
M ∈ {2k, p}. The functionality has the same features as FABB, together with
the following:

Create edaBits: On input (edabit, idM , id2) from all parties, sample
(r0, . . . , rm−1) ∈ Zm2 uniformly at random and store (binary, id2, rj) for
j = 0, . . . ,m− 1, together with (arithmetic, idM , r), where r =

∑m−1
j=0 rj2

j .

Fig. 2. Ideal functionality for extended daBits.

3.1 Functionality for Private Extended daBits

Recall the protocol for generating edaBits begins with each party proposing
a set of edaBits, which will be checked and combined afterwards. Functional-
ity FedaBitsPriv formalizes this notion. This functionality is defined similarly to
FedaBits, except that the bits r0, . . . , rm−1 are provided using the Input command
by one party.

The heaviest part of our contribution lies on the instantiation of this func-
tionality, which we postpone to Section 4.

3.2 From Private to Global Extended daBits

As we discussed already at the beginning of this section, one can instantiate the
FedaBits functionality assuming access to a FedaBitsPriv functionality and combining
the different private edaBits to ensure no individual party knows the underlying
values. The protocol is described in detail in the following subsections. Small
variations are required depending on whether M = 2k or M = p, for reasons
that will become clear in a moment.

Now, to provide an intuition on our protocol, assume that the ABB is storing
([ri]M , [ri,0]2, . . . , [ri,m−1]2) for i = 1, . . . , n, where party Pi knows (ri,0, . . . , ri,m−1)

and ri =
∑m−1
j=1 ri,j2

j . The parties can add their arithmetic shares to get shares

of r′ =
∑n
i=1 ri, and they can also add their binary shares using a binary n-input

adder, denoted BitADD, which results in shares of the bits of r′. Since we want to

9

output a random m-bit integer, the parties need to remove the bits of r′ beyond
the m-th bit, which can be done since the carry bits are part of the output of the
binary adder. This requires log(n) calls to ConvertB2A of FABB, each of which
uses a (regular) daBit, except for the case of M = 2k and m = k, where we can
omit the conversions.

One must be careful with potential overflows modulo M . If this addition
overflows and M = 2k, then the overflow bits beyond the k-th position must be
discarded. On the other hand, if M = p, an overflow modulo p would affect all
bits, and to avoid this we require that m < log(p). The details are in Fig. 3,
and the security of the protocol is stated in Theorem 1, whose proof follows in
a straightforward manner from the correctness of the additions in the protocol.
In the protocol, nBitADD denotes an n-input binary adder.

Protocol ΠedaBits

Pre:

– Access to FedaBitsPriv.
– If M = p, then 0 < m < log(p).

Post: The parties get ([r]M , [ri]2, . . . , [ri]2) where r =
∑m−1
j=1 ri2

j and the bits
are uniform to the adversary.

1. The parties call the functionality FedaBitsPriv to get
([ri]M , [ri,0]2, . . . , [ri,m−1]2) for i = 1, . . . , n, where party Pi knows
(ri,0, . . . , ri,m−1) and where ri =

∑m−1
j=1 ri,j2

j .

2. Parties invoke the ABB to compute [r′]M =
∑n
i=1[ri]M .

3. Parties invoke the ABB to compute nBitADD (([r1,j]2)j , . . . , ([rn,j]2)j).
This produces m+ logn bits ([b0]2, . . . , [bm+log(n)−1]2).

4. Parties use ConvertB2A to convert [bj]2 7→ [bj]M for j = m, . . . ,m+log(n)−
1. If M = 2k, values bj for j > k do not need to be converted, and for the
sake of notation, we denote [bj]2k := 0 for j > k.

5. Parties use the ABB to compute [r]M = [r′]M − 2m
∑log(n)−1
j=0 [bj+m]M2j .

6. Parties output ([r]M , [b0]2, . . . , [bm−1]2).

Fig. 3. Protocol for generating global edaBits from private edaBits.

Theorem 1. Protocol ΠedaBits UC-realizes functionality FedaBits in the (FedaBitsPriv,FB2A)-
hybrid model.

4 Instantiating Private Extended daBits

Our protocol for producing private edaBits is fairly intuitive. The protocol begins
with each party inputting a set of edaBits to the ABB functionality. However,

10

since a corrupt party may input inconsistent edaBits (that is, the binary part
may not correspond to the bit representation of the arithmetic part), some extra
checks must be set in place to ensure correctness. To this end, the parties engage
in a cut-and-choose-based check in which a random subset of certain size of
edaBits is opened, its correctness is checked, and then the remaining edaBits are
randomly placed into buckets. Within each bucket, all edaBits but the first one
are checked against the first edaBit by adding the two and opening the result.
With high probability, the first edaBit will be correct if all the checks pass.

In the method above, when adding two edaBits together, the parties must
make some calls to the binary multiplication feature of the ABB, and these
multiplications must be correct for the basic analysis to work. In practice these
multiplications are instantiated via TinyOT triples, and thus the correctness
requirement can be translated into these triples being correct. To generate these
triples, first potentially incorrect triples are produced, and then correctness of
these triples is checked via “sacrificing” techniques.

The sacrifice step required to produce correct triples is not cheap. In this
work we take a different approach that leads to much higher efficiency in practice.
First, we allow some of the triples used to perform the check within each bucket
to be incorrect, which saves in resources as the sacrifice step can be omitted.
Furthermore, we observe that these multiplication triples are intended to be
used on inputs that are known to the party proposing the edaBits, and thus it
is acceptable if this party knows the bits of the underlying triples as well. As
a result, we can simplify the triple generation by letting this party propose the
triples together with the edaBits, which is much cheaper than letting the parties
jointly sample (even incorrect) triples.

Now, an issue we face when describing the protocol sketched above is that our
arithmetic black box model does not consider the case of a “faulty multiplica-
tion” in which the product can be flipped (which is the effect of an incorrect bit
multiplication triple). Furthermore, even if we added this feature to the function-
ality, this would not suffice for our purposes since we cannot allow the adversary
to choose the exact multiplication gates in which he can cause the additive at-
tack. Instead, we consider the following macros, which can be instantiated given
the existing features of the functionality:

Input Triple. On input (Triple, id, a, b, c) from Pi, where id is a fresh binary
identifier and a, b, c ∈ {0, 1}, store (Triple, i, id, a, b, c).

Faulty Multiplication. On input (FaultyMult, id, id1, id2, idT , i) from all par-
ties (where id1, id2 are present in memory), retrieve (binary, id1, x), (binary, id2, y),
(Triple, i, idT , a, b, c), compute z = x · y ⊕ (c⊕ a · b),4 and store (id, z).

Now we are ready to present our protocol to preprocess private edaBits. Our
protocol is described in Fig. 4. It makes use of a subroutine CutNChoose to check
that the edaBits provided by party Pi are consistent, which is defined in Fig. 5.

4 It can be seen that in Beaver-based binary multiplication, the error in the product
is exactly equal to the error in the triple.

11

In the protocol, BitADDCarry denotes the same circuit with carry. As we will see
later in this section it can be computed with m AND gates.5

Protocol ΠedaBitsPriv

Pre: FABB

Post: Batch of N shared edaBits {([rj]M , [rj,0]2, . . . , [rj,m−1]2)}Lj=1, where
party Pi knows the underlying bits.

1. Party Pi samples rj,0, . . . , rj,m−1 for j = 1, . . . , L, and inputs these to FABB,
where L = NB + C.

2. Party Pi computes rj =
∑m−1
i=0 rj,i2

i and inputs rj to FABB

3. Party Pi samples L′ bit triples and inputs these to FABB, where L′ =
N(B − 1)(m).

4. The parties engage in the CutNChoose procedure to check the consistency
of these edaBits. If the check passes, then the parties accept the edaBits.
Otherwise they abort.

Fig. 4. Protocol for producing private extended daBits.

The remaining subsections are devoted to proving that the cut-and-choose
method used in our protocol is sound, as stated in the following (informal)
theorem.

Theorem 2. (Informal.) If the CutNChoose check in protocol ΠedaBitsPriv passes,
then, with overwhelming probability, the first edaBit of each bucket is correct.

Let us assume for now the theorem above. In this case, we can easily prove
that our protocol instantiates the desired functionality, as stated in the following
theorem. Its proof follows trivially from the previous theorem and we therefore
omit it.

Theorem 3. Protocol ΠedaBitsPriv securely instantiates the functionality FedaBitsPriv

in the FABB-hybrid model.

4.1 Cut-and-choose Analysis

The cut and choose analysis on the edaBits proposed by one party Pi is modeled
by a game played between an adversary and a challenger, where party Pi is

5 This circuit is rather naive, and in fact there exist circuits that have logarithmic
depth at a small extra cost in the number of AND gates. However, as we will see
later in the section, it is important for our security proof to use specifically these
naive circuits as they have certain resilient properties that we exploit explicitly.
Furthermore, they are only used in the preprocessing phase, and thus the overhead
is not noticeable in practice.

12

Procedure CutNChoose

Pre: A batch of (NB+C) shared edaBits {([r]M , [r0]2, . . . , [rm−1]2)}NB+C
j=1 and

a batch of (N ·(B−1)·m) TinyOT triples, where party Pi knows the underlying
bits of the edaBits and the triples.
Post: N verified shared edaBits
The parties do the following:

1. Open randomly selected C edaBits in both worlds and C′ triples. Abort if
any of the edaBits or the triples are inconsistent.

2. Shuffle the remaining edaBits and triples using 2 public permutations π1, π2

respectively and put the edaBits into buckets of size B and the triples into
buckets of size B ·m.

3. Perform the following check on every bucket. If the check passes in all the
buckets, Accept the edaBits, else Abort:
(a) Select the top edaBit, [r]M , [r0]2, . . . , [rm−1]2 from the bucket and call
FABB to compute [r + s]M for every other edaBit s in the bucket.

(b) Compute BitADDCarry([r0]2, . . . , [rm−1]2, [s0]2, . . . , [sm−1]2) using the
FaultyMult command with every other edaBit s in the bucket. Then
extract the carry bit cm+1 at position (m+ 1).

(c) Convert [cm+1]2 7→ [cm+1]M .
(d) Let c′ = [r + s]M − 2m+1 · [cm+1]M . Open c′ and the values from the

binary world.
(e) If all the checks pass, Accept, else Abort.

Fig. 5. Cut-and-choose procedure to check correctness of input edaBits.

the adversary. We start by presenting the RealGame for the cut and choose
procedure, and an abstract version of the game, which makes it easier to prove
certain desired properties. Motivation for simplifying the game is argued by
presenting the complexities with analyzing the RealGame, due to which we move
into the SimpleGame. Following that, it is shown that if the adversary can win in
the SimpleGame, it can be win in the RealGame. Finally, the concrete probability
of winning in the SimpleGame is analyzed and shown to be not more than 2−s,
where s is the statistical security parameter.

4.2 The RealGame

The RealGame is played between an adversary A and a challenger. The goal of
the adversary is to pass the cut and choose game such that the game outputs
some corrupted edaBits. It involves the adversary proposing a set of edaBits
and a set of TinyOT triples [8, 31], which are used in the game to verify the
correctness of the proposed edaBits. The challenger takes all the edaBits and
the triples proposed, and randomly chooses C edaBits and C ′ group of triples
to be opened. If all of them are consistent, it randomly permutes the edaBits
and the triples and places them into buckets. Then, similar to what is done by

13

Furukawa et al. [22], the top edaBit from each bucket is checked with every other
edaBit in the bucket using the triples. Every individual check in the CutNChoose
procedure takes two edaBits of m bits each, and consumes m triples, as shown
in the checking mechanism. The formal description of CutNChoose procedure is
given in Figure 5.

The Checking Mechanism: For every pair of edaBits we select, we add the shares
of them over ZM and Z2 and open them. Adding the shares over ZM is local
whereas adding them over Z2 requires evaluation of a binary adder circuit. We
use a Ripple Carry Adder circuit which computes the carry at every bit position
with the following equation:

ci+1 = ci ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)),∀i ∈ {0,m− 1} (1)

where ci, ci+1 are the carries at positions i, i+ 1 respectively, and xi, yi are the
values at position i in the binary world.

To do CutNChoose naively, the TinyOT triples used in Equation (1) would
have to be authenticated and verified. The most efficient way to do this is to
perform a cut-and-choose procedure on the TinyOT triples proposed by A. In-
stead of going through this process, we propose using TinyOT triples with MACs
which may potentially be corrupted. We let A propose the required batch of the
triples (with MACs) along with the set of edaBits. We will show in the analysis
later that giving the adversary this advantage will not affect the outcome of the
game except with negligible probability.

Before going into details about whether the check will pass, we describe a
property of the circuits that is required. Then, using the abstract game defined
in ΠAbstractGame, we argue that the RealGame satisfies the property.

Definition 1. A circuit C : F2
M → FM is weakly additively tamper resilient, if

given a tampered circuit C∗, obtained by additively tampering C, either of the
following properties holds:

1. C(x, y) = C∗(x, y) ∀(x, y) ∈ F2
M .

2. C(x, y) 6= C∗(x, y) ∀(x, y) ∈ F2
M .

To prove that the binary adder circuit used in the CutNChoose procedure
satisfies this property, we must first model tampering of the circuit. In the adder
circuit, the adversary can only change the output of the circuit by using bad
triples instead of good ones. Since a set of triples is used to compute the AND
between two bits, a bad set of triples can only flip the output, which is equivalent
to saying that the adversary introduced an additive error in the circuit. An
abstraction of the RealGame using C, C∗ is presented in Figure 6.

Lemma 1. Protocol ΠAbstractGame is an abstraction of the RealGame

Proof. In the abstract game, both the checks, over Z2m and Zp are modeled by
the equation:

[x+ y]M = C∗([x1]2, . . . , [xm−1]2, [y1]2, . . . , [ym−1]2) (2)

14

Protocol ΠAbstractGame

Pre: A batch of NB + C shared edaBits {([rj]M , [rj,0]2, . . . , [rj,m−1]2)}NB+C
j=1 ,

and batch of N(B − 1) + C′ potentially tampered circuits {C∗i}N(B−1)
i=1

Post: Batch of N shared edaBits, where party Pi knows the underlying bits.

1. Open C edaBits in both worlds and C′ circuits randomly. Abort if any of
the edaBits or the circuits are tampered with.

2. Shuffle the remaining edaBits and the AND gates across all circuits using
2 permutations and put the edaBits and the circuits into buckets.

3. Within each bucket, for every pair of edaBits, r, s, check that [r + s]M =
C∗([r1]2, . . . , [rm−1]2, [s1]2, . . . , [sm−1]2).

The adversary wins if all the checks pass and at least one corrupted edaBit is
in the output.

Fig. 6. Protocol for the Abstract Game.

The triples are abstracted away and represented by the tampered circuit C∗.
However, when computing the carry in both domains, 2m+1 · cm+1 is subtracted
from [x+ y]M , where cm+1 is the carry at position (m+ 1).

Let C∗([x1]2, . . . , [xm−1]2, [y1]2, . . . , [ym−1]2) = (sumB , cm+1), where sumB

is the sum of the first m bits. By definition, we can write this as:

sumB = C∗([x1]2, . . . , [xm−1]2, [y1]2, . . . , [ym−1]2)− 2m+1 · cm+1. (3)

In the arithmetic world, the output can be written as:

sumA = [r + s]M − 2m+1 · cm+1 (4)

In the CutNChoose procedure, the equality of both outputs sumA, sumB is
checked. From Equations (3) and (4), it is clear that this is equivalent to check-
ing if [r + s]M = C∗([x1]2, . . . , [xm−1]2, [y1]2, . . . , [ym−1]2). Since this is equiv-
alent to checking the locally added shares over ZM and the output of the bi-
nary circuit, we conclude that Protocol ΠAbstractGame is a valid abstraction of the
RealGame.

We need this property because it restricts the adversary from being able to
use a tampered circuit with bad edaBits as well as with good edaBits. It ensures
that if the circuit has been tampered in any position, the check at that position
would only pass with either a good edaBit, or a bad edaBit. There exists a public
function g, which takes two edaBits as input, and outputs the circuit (C or C∗),
for which the two edaBits will pass the check.

Lemma 2. The ripple carry adder circuit used in Protocol 5 satisfies Definition
1.

15

Proof. (Sketch)
For inputs (x, y) such that x = {x0, . . . , xm−1} and y = {y0, . . . , ym−1}, we

compute the carry with the following equation:

ci+1 = ci ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)),∀i ∈ {0,m− 1} (5)

Considering the case of the carry computation at position i, if the circuit is
tampered, then there is a bad triple at this position. If we can show that with
this kind of tampering, the circuit has one of the properties from Definition 1,
then the circuit is weakly additively tamper resilient.

Since a bad triple produces an additive error regardless of the inputs used
in the carry computation, the output of the circuit C and C∗ are always go-
ing to be different. More specifically, with equation 5, the following property
holds: C(x, y) = C∗(x, y)⊕ 1. Therefore, the ripple carry adder circuit is weakly
additively tamper resilient.

As a side note, the naive binary circuit which requires 2 AND gates per carry
computation also has the property of being weakly additively tamper resilient.
Because it has 2 AND gates, it can either be the case that C(x, y) = C∗(x, y)
or C(x, y) = C∗(x, y) ⊕ 1, depending on whether the carry computation was
tampered with 1 triple or 2 triples.

In the case of generating edaBits over Zp, we have the restriction that log(p) >
m when using the adder circuit mentioned above, as explained in detail in Section
3.2. To be able to remove this restriction, we need to use Algebraic Manipulation
Detection (AMD) [23, 24] circuits, which also satisfy much stronger requirements
than being weakly additively tamper resilient.

We discuss the difficulties with analyzing the RealGame directly and describe
the simplified game. This is followed by arguing that the SimpleGame is only
easier for the adversary to win, which means if it can win in the SimpleGame, it
can win in the RealGame.

Complexities of the RealGame: In the real game, the adversary can pass the check
with a bad edaBit in two different ways. The first is to corrupt edaBit in multiples
of the bucket size B, and assume that they all end up in the same bucket so that
the error cancels out. The second way is to corrupt a set of edaBits and guess
the permutation in which they are most likely to end up. Once a permutation
is guessed, the adversary will know how many triples it can corrupt in order to
pass the checks in all the buckets.

To compute the exact probability of all these events, we will also have to
consider the number of ways in which the bad edaBits can be corrupted. For
edaBits which are k-bit, there are up to 2k different ways in which they may be
corrupted. On top of that, we have to consider the number of different ways in
which these bad edaBits may be paired in the check. In order to avoid enumer-
ating the cases and the complex calculation involved, we simplify the game in
a few ways while giving the adversary a better chance of winning. However, we
show that analyzing the SimpleGame is sufficient for our purpose.

16

4.3 The SimpleGame

In this section we analyze a simplified game and show that the advantage of the
adversary A to win that game is negligible in s. Before we start explaining the
simple game we go out of the complicated world of edaBits and triples. We define
a TRIP to be a set of triples that is used to check two edaBits. In our simple
world edaBits transform into balls, GOOD edaBits into white balls () and BAD
edaBits into gray balls (). A edaBits is BAD when at least one of the edaBit
inside that edaBits is not correct. TRIPs transform themselves into triangles,
GOOD TRIPs into white triangles () and BAD TRIPs into gray triangles ().
We define a TRIP to be BAD when it helps the adversary to win the game,
in other words if it can alter the result of addition of two edaBits. Figure 7
illustrates the simple game.

SimpleGame

1. A prepares NB +C balls, corrupts b of them and sends them to the chal-
lenger.

2. The challenger opens C of them randomly and checks whether all of them
are good. If any one of them is not good, Abort.

3. The challenger permutes and throws NB balls into N buckets each of size
B uniformly at random. Then sends the order of arrangement to A.

4. A prepares N(B− 1) +C′ triangles, corrupts t of them and sends them to
the challenger.

5. The challenger opens C′ of them randomly and checks whether all of them
are good. If any one of them is not good, Abort.

6. The challenger permutes and throws N(B − 1) triangles into N buckets
uniformly at random and runs the Simple BucketCheck subroutine.

7. If Simple BucketCheck returns 1, the challenger outputs first ball from
each bucket. Else, Abort.

A wins if there is no Abort and at least one bad ball is in the output.

Fig. 7. Simplified CutNChoose game

In the SimpleGame A wins if there is no Abort (means A passes all the checks)
and there is at least one bad ball in the final output. The simple BucketCheck
checks all the buckets. Precisely, in each bucket two balls are being checked using
one triangle. For example, let us consider the size of the buckets B = 3. Now
one bucket contains three balls [B1, B2, B3] and two triangles [T1, T2]. Then
BucketCheck checks if the configurations [B1, B2|T1] and [B1, B3|T2] matches
any one of these configurations {[, |], [, |], [, |]}. If that is the case then
BucketCheck Aborts. When there are two bad balls and one triangle the abort
condition depends on the type of bad balls. That means we are considering all
bad balls to be distinct, say with different color shades. As a result, in some cases

17

Simple BucketCheck

Input: N buckets and a function f . Each bucket contains B balls {x1, . . . , xB}
and (B − 1) triangles {y1, . . . , yB−1}.
Output: 0 or 1.
Runs this check in each bucket:

1. Check the configuration of [x1, xi|yi−1] ∀i ∈ [2, B].
– If [x1, xi|yi−1] ∈ {[, |], [, |], [, |]} return Reject.
– If [x1, xi|yi−1] ∈ [, |] and f(, ,) = 0 return Reject.
– If [x1, xi|yi−1] ∈ [, |] and f(, ,) = 0 return Reject.

2. Otherwise return Accept.

If check returns Accept for all the buckets, then output 1; Otherwise output 0.

Fig. 8. A simple bucket check procedure

challenger aborts if the checking configuration matches [, |] and in other cases
it aborts due to [, |] configuration.

In the simple world everyone has access to a public function f , which takes
two bad balls and a triangle as input and outputs 0 or 1. If the output is zero, that
means it is a bad configuration, otherwise it is good. This function is isomorphic
to g (described in Section 4.2) from the real world and the mapping is public.
The BucketCheck procedure uses f to check all the buckets. Figure 8 illustrates
the check in details. A passes BucketCheck if all the check configurations are
favorable to the adversary. Table 1 shows favorable check configurations for the
adversary. After throwing triangles, in each bucket, if the check configuration of

Balls Triangles

/
Table 1. Favorable combination of balls and triangles for the adversary.

balls and triangles are from the first three entries of Table 1, then BucketCheck
will not Abort. For the last entry BucketCheck will not Abort if the output of f is
1. Notice that if BucketCheck passes only due to the first configuration of Table 1
in all buckets, then the output from each bucket is going to be a good ball and A
loses. So ideally we should take that into account while computing the winning
probability of the adversary. However, for most of the cases it is sufficient to
show that for large enough N the Pr[A passes BucketCheck] is negligible in the

18

statistical security parameter s, as that will bound the winning probability of A
in the simple game.

Before analyzing the SimpleGame, we show that security of RealGame follows
directly from security of SimpleGame. Intuitively, that is indeed the case, as in the
SimpleGame an adversary chooses number of bad triangles adaptively; Whereas
in the RealGame it has to guess favorable number of required bad triangles. Thus,
if an adversary cannot win the SimpleGame then it must be more difficult for it
to succeed in the RealGame.

Lemma 3. Security against all adversaries in SimpleGame implies security against
all adversaries in RealGame.

The proof is presented in Section B in the appendix.

We would like to mention that our analysis is not very tight and there is room
for improvement. However we will see later that the parameters we obtain from
the analysis are sufficient for our purpose. Now in order to win the SimpleGame
the adversary has to pass all the three checks, so let us try to bound the success
probability of A for each of them.

Opening C balls: In the first check the challenger opens C balls and check
whether they are good. So,

Pr[C balls are good] =

(
NB+C−b

C

)(
NB+C
C

) ≈ (1− b/(NB + C))C .

Now for b = (NB + C)α, where 1/(NB + C) ≤ α ≤ 1, the probability can be
written as (1− α)C . In order to bound the success probability of the adversary

with the statistical security parameter s, let us consider the case when α ≥ 2s/3−1
2s/3

and C = 3.6 Thus,

Pr[C balls are good] ≈ (1− α)C = (2−s/3)3 = 2−s.

So if the challenger opens 3 balls to check then in order to pass the first check

A must corrupt less than α fraction of the balls, where α = 2s/3−1
2s/3

. Lemma 4
follows from the above analysis.

Lemma 4. The probability of A passing the first check in SimpleGame is less

than 2−s, if the adversary corrupts more than α fraction of balls for α = 2s/3−1
2s/3

and the challenger opens C = 3 balls.

Opening C′ triangles: In this case we’ll consider the probability of A passing
the second check. This is similar to the previous check, the only difference is

6 Note that here we implicitly assume (NB + C) · α < (NB + C).

19

that here the challenger opens C ′ triangles and checks whether they are good.
Consequently,

Pr[C ′ triangles are good] =

(
N(B−1)+C′−t

C′

)(
N(B−1)+C′

C′

) ≈ (1− t/(N(B − 1) + C ′))C
′
.

As in the previous case, if t is more than β fraction of the total number of

triangles for β = 2s/3−1
2s/3

, we can upper bound the success probability of A by

(2−s/3)C
′
. Thus for C ′ = 3 the success probability of A in the second check can

be bounded by 2−s. Lemma 5 follows from the above analysis.

Lemma 5. The probability of A passing the second check in SimpleGame is less

than 2−s, if the adversary corrupts more than β fraction of balls for β = 2s/3−1
2s/3

and the challenger opens C ′ = 3 balls.

If we consider both the checks together then the probability that A passes
first two checks is bounded by:

Pr[C balls are good] · Pr[C ′ triangles are good] ≤ (2−s/3)C · (2−s/3)C
′
.

If we set the sum of C and C ′ to be equal to 3, then the probability is less
than (2−s/3)3 = 2−s. However, later in the analysis we show that the adversary
might make the number of corrupted balls to be very small, while increasing the
number of corrupted triangles (or vice versa) to make the total probability of
passing in the first two checks to be greater than 2−s. Though in that case it
might be possible to catch the adversary if we consider the BucketCheck along
with first two checks. Still in our analysis we set C and C ′ to be equal to 3 to
make it simple for all boundary cases.

BucketCheck procedure: In this case we consider that the adversary passes
first two checks and reaches the last level of the game. However, in order to
win the game the adversary has to pass the BucketCheck. Note that now we are
dealing with NB balls and the challenger already fixes the arrangement of NB
balls in N buckets. Once the ball permutation is fixed that imposes a restriction
on the number of favorable (for A) triangle permutations. For example, let us
consider that the challenger throws 12 balls into 4 buckets of size 3 and fixes
this permutation:

{[, ,][, ,][, ,][, ,]}

Then there are only two possible favorable permutations of triangles:

{[,][,][,][,]}
{[,][,][,][,]}

Two favorable permutations come from the fact that the third bucket contains
two bad balls. From Table 1 we can see that whenever there are two bad balls

20

in a bucket the adversary can pass the check in that bucket either with a good
triangle or with a bad triangle. That means both configurations [, |] and
[, |] might be favorable to the adversary. Now A can use the public function
f to determine the value of f(, ,) and f(, ,). In this example, let us
consider the value of f(, ,) to be 1; Then the first permutation of triangles is
favorable to the adversary. As a result the probability of passing the BucketCheck
essentially depends on the probability of hitting that specific permutation of
triangles among all possible arrangements of triangles. Then the probability of
the adversary passing the last check given a specific arrangement of balls Li is
given by:

Pr[A passes BucketCheck|Li] = 1/

(
N(B − 1)

t

)
where t = N(B − 1)β. Thus,

Pr[A passes BucketCheck|Li] =
(N(B − 1)β)!(N(B − 1)(1− β))!

N(B − 1)!

In order to upper bound Pr[A passes BucketCheck] we’ll upper bound the prob-
ability for different ranges of α and β. Note that the total probability is given
by:

Pr[A passes BucketCheck] =
∑
i

Pr[A passes BucketCheck|Li] · Pr[Li]

If we can argue that for all possible (2s/3− 1)/2s/3 ≥ α ≥ 1/NB, the maximum
probability for Pr[A passes BucketCheck|Li], for some configuration Li, can be
bounded by 2−s, then:

Pr[A passes BucketCheck] ≤
∑
i

2−s · Pr[Li]

Note that the maximum possible value of α is 1, however as the challenger
opens C balls and C ′ triangles, the adversary cannot set α to be 1. To pass the
first check A must set α to be less than (2s/3 − 1)/2s/3 if the challenger opens
3 balls and 3 triangles.

Now let us try to bound Pr[A passes BucketCheck|Li]. The value of
(
N(B−1)

t

)
maximizes at t ≈ N(B − 1)/2. Starting from the case when there is no bad
triangle, the probability monotonically decreases from 1 to its minimum at β ≈
1/2, and then it monotonically increases to 1 when all triangles are bad. We
analyze the success probability of A in three cases. These will be discussed in
Section B.1 in the appendix.

Lemma 6. The probability of A passing the BucketCheck in SimpleGame is less
than 2−s, if N(B−1) ≥ 2s/2+1 and the challenger opens C = 3 balls and C ′ = 3
triangles during first two checks of SimpleGame.

Proof. The lemma follows from the case-by-case analysis in Appendix B.1, Lemma 4
and Lemma 5.

21

Theorem 4. The probability of success of A in SimpleGame is less than 2−s, if
N(B − 1) ≥ 2s/2+1 and the challenger opens C = 3 balls and C ′ = 3 triangles
during first two checks of SimpleGame.

Proof. The proof follows directly from Lemma 4, Lemma 5 and Lemma 6.

Remark 1. As we already mentioned the bound we obtain is not sharp. However,
for s = 40 and N ≥ 220, which is sufficient for the applications we are considering
in this work, it is enough to set the bucket size to be 3. We leave it as an
open problem to improve the bound in the general case. However, we would
like to point out that we do not require N to be large for efficient amortization
purposes, but instead it is only to comply with our conservative security analysis.
Producing N edaBits for a much smaller N , which may be needed for some
applications, can still be done efficiently using our methods, but it requires a
tighter security analysis.

Finally, we notice that Theorem 2 follows from Theorem 4 and Lemma 3,
which concludes our security analysis.

5 Primitives

This section describes the high-level protocols we build using our edaBits, both
over Z2k and Zp. We focus on secure truncation (Section 5.1) and secure integer
comparison (Section 5.2), although our techniques apply to a much wider set of
non-linear primitives that require binary circuits for intermediate computations.
For example, our techniques also allow us to compute binary-to-arithmetic and
arithmetic-to-binary conversions of shared integers, by plugging in our edaBits
into the conversion protocols from [11] and [15] for the field and ring cases,
respectively.

Throughout this section our datatypes are signed integers in the interval
[−2`−1, 2`−1). On the other hand, our MPC protocols operate over a modulus
M ≥ 2` which is either 2k or a prime p. Given an integer α ∈ [−2`−1, 2`−1), we
can associate to it the corresponding ring element in ZM by computing α mod
M ∈ ZM (modular reduction returns integers in [0,M)). We denote this map
by RepM (α), and we may drop the sub-index M when it is clear from context.
Finally, in the protocols below LT denotes a binary less-than circuit.

5.1 Truncation

Recall that our datatypes are signed integers in the interval [−2`−1, 2`−1), rep-
resented by integers in ZM where M ≥ 2` via RepM (α) = α mod M . The goal
of a truncation protocol is to obtain [y] from [a], where y = Rep

(⌊
α
2m

⌋)
and

a = Rep(α). This is a crucial operation when dealing with fixed-point arith-
metic, and therefore an efficient solution for it has a substantial impact in the
efficiency of MPC protocols for a wide range of applications. An important ob-

servation is that, as integers,
⌊
α
2m

⌋
= α−(α mod 2m)

2m . If q is an odd prime p,

22

this corresponds in Zp to y = (Rep(α)− Rep(α mod 2m)) · Rep(2m)−1. Fur-
thermore, Rep(α mod 2m) = α mod 2m = a mod 2m and Rep(2m) = 2m, so

y = a−(a mod 2m)
(2m)−1 .

We focus below in truncation over Z2k as it is the less studied case. For the
case of truncation over Fp we refer the reader to Section C in the appendix.

Truncation over Z2k . Truncation protocols over fields typically exploit the fact
that one can divide by powers of 2 modulo p. This is not possible when working
modulo 2k. Instead, we take a different approach. Let [a]2k be the initial shares,
where a = Rep(α) with α ∈ [−2`−1, 2`−1) (notice that it may be the case that
` < k). First, we provide a method, LogShift, for computing the logical right
shift of a by m positions, assuming that a ∈ [0, 2`). That is, if a is

(0, . . . , 0︸ ︷︷ ︸
k−`

, a`−1, . . . , a0︸ ︷︷ ︸
`

),

this procedure will yield shares of

(0, . . . , 0︸ ︷︷ ︸
k−`+m

, a`−1, . . . , am︸ ︷︷ ︸
`−m

).

Then, to compute the arithmetic shift, we use the fact that7⌊ α
2m

⌋
≡ LogShiftm(a+ 2`−1)− 2`−m−1 mod 2k.

Now, to compute the logical shift, our protocol begins just like in the field case
by computing shares of a mod 2m and subtracting them from a, which produces
shares of (ak−1, . . . , am, 0, . . . , 0). The parties then open a masked version of
a − (a mod 2m) which does not reveal the upper k − ` bits, and then shift to
the right by m positions in the clear, and undo the truncated mask. One has to
account for the overflow that may occur during this masking, but this can be
calculated using a binary LT circuit.

The details of our logical shift protocol are provided in Fig. 9, and we analyze
its correctness next. First, it is easy to see that c = 2k−m((a + r) mod 2m), so
c/2k−m = (a mod 2m) + r− 2mv, where v is set if and only if c/2k−m < r. From
this we can see that the first part of the protocol [a mod 2m]2k is correctly com-
puted. Privacy of this first part follows from the fact that r mod 2m completely
masks a mod 2m when c is opened.

For the second part, let us write b = 2ma′, then d = 2k−`+m((a′ + r′) mod
2`−m), so d/2k−`+m = a′+r′−2`−mu, where u is set if and only if d/2k−`+m < r′,
as calculated by the protocol. We get then that a′ = d/2k−`+m − r′ + 2`−mu,
and since a′ is precisely LogShiftm(a), we conclude the correctness analysis.

7 Notice that we can use the LogShift method on a + 2`−1 since, α + 2`−1 ∈ [0, 2`),
which implies that (a+ 2`−1) mod 2k = α+ 2`−1 and therefore (a+ 2`−1) mod 2k is
`-bits long, as required.

23

Logical right shift over Z2k

Pre:
– FABB

– Input [a]2k where a ∈ [0, 2`).
– Number of bits to shift m
– edaBit ([r]2k , [r]2) of length m
– edaBit ([r′]2k , [r

′]2) of length `−m
Post: [y]2k , where y = LogShiftm(a).

1. The parties compute shares of a mod 2m as follows:
(a) Call c = open

(
2k−m · ([a]2k + [r]2k)

)
(b) Compute [v]2 = LT((ci)

k
i=k−m+1, ([ri]2)m−1

i=0)
(c) Convert [v]2 7→ [v]2k
(d) Let [a mod 2m]2k = 2m [v]2k − [r]2k + c/2k−m.

2. The parties compute the truncation:
(a) Compute [b]2k = [a]2k − ([a]2k mod 2m).
(b) Call d = open(2k−` · ([b]2k + 2m [r′]2k)).
(c) Compute [u]2 = LT((di)

k−1
i=k−`+m, ([r

′
i]2)`−m−1

i=0)
(d) Convert [u]2 7→ [u]2k .a

(e) Output [y]2k = 2`−m [u]2k + d/2k−`+m − [r′]2k

a One can optimize this by noticing that we only need shares of u modulo
2k−`+m.

Fig. 9. Protocol for performing logical right-shift

Probabilistic Truncation. Recall that in the field case one can obtain probabilis-
tic truncation avoiding a binary circuit, which results in a constant number of
rounds. Over rings this is a much more challenging task. For example, proba-
bilistic truncation with a constant number of rounds is achieved in ABY3 [29],
but requires, like in the field case, a 2s gap between the secret values and the
actual modulus, which in turn implies that only small non-negative values can
be truncated.

Here we take a different approach. Intuitively, we follow the same approach
as in ABY3, which consists of masking the value to be truncated with a shared
random value for which its corresponding truncation is also known, opening
this value, truncating it and removing the truncated mask. In ABY3 a large
gap is required to ensure that the overflow that may happen by the masking
process does not occur with high probability. Instead, we allow this overflow bit
to be non-zero and remove it from the final expression. Doing this naively would
require us to compute a LT circuit, but we avoid doing this by using the fact that,
because the input is positive, the overflow bit can be obtained from the opened
value by making the mask value also positive. This leaks the overflow bit, which
is not secure, and to avoid this we mask this single bit with another random
bit. This protocol can be seen as an extension of the probabilistic truncation

24

protocol by Dalskov et al. [14]. Below, we provide an analysis for our extension
that also applies to said protocol.

Probabilistic truncation over Z2k

Pre:
– FABB

– Input [a]2k where a ∈ [0, 2`).
– ` < k
– Number of bits to truncate m
– edaBit ([r]2k , [r]2) of length (`−m)
– edaBit ([r′]2k , [r

′]2) of length m
– Random bit [b]2k

Post: [y]2k where y = ba/2mc+u with u = 1 with probability (a mod 2m)/2m.

1. Call c = open(2k−`−1 · ([a]2k + 2` [b]2k + 2m [r]2k + [r′]2k)). Write c =
2k−`−1c′.

2. Compute [v]2k = [b⊕ c′`]2k = [b]2k + c′` − 2c′` [b]2k
3. Output [y]2k = (c′ mod 2`)/2m − [r]2k + 2`−m [v]2k

Fig. 10. Probabilistic truncation in domain modulo power of two using edaBits

Now we analyze the protocol. First we notice that c = 2k−`−1c′ where c′ =
(2mr+r′)+a+2`b−2`+1vb, where v is set if and only if (2mr+r′)+a overflows
modulo 2`. It is easy to see that this implies that c′` = v ⊕ b, so we see that
v = c′` ⊕ b, as calculated in the protocol.

On the other hand, we have that (c′ mod 2`) = (2mr + r′) + a − 2`v, so
a mod 2m = (c′ mod 2m) − r′ + 2mu, where u is set if (c′ mod 2m) < r′. From
this it can be obtained that

⌊
(c′ mod 2`)/2m

⌋
− r + 2`−m = ba/2mc+ u.

Remark 2. The protocol we discussed above only works if a ∈ [0, 2`), that is, if
the value α represented α ∈ [0, 2`−1). We can extend it to α ∈ [−2`−1, 2`−1) by
using the same trick as in the deterministic truncation: The truncation is called
with a+ 2`−1 as input, and 2`−m−1 is subtracted from the output.

5.2 Integer Comparison

Another important primitive that appears in many applications is integer com-
parison. In this case, two secret integers [a]M and [b]M are provided as input,

and the goal is to compute shares of α
?
< β, where a = Rep(α) and b = Rep(β).

As noticed by previous works (e.g. [11, 15]), this computation reduces to
extracting the MSB from a shared integer as follows: If α, β ∈ [−2k−2, 2k−2),
then α − β = [−2k−1, 2k−1), so a − b = Rep(α − β) corresponds to the sign of
α− β, which is minus (i.e. the bit is 1) if and only if α is smaller than β.

25

To extract the MSB, we simply notice that MSB(α) = −
⌊

α
2k−1

⌋
mod 2k, so

this can be extracted with the protocols we have seen in the previous sections.

6 Applications and Benchmarks

We have implemented 63-bit8 comparison using edaBits, only daBits, and nei-
ther, and we have run one million comparisons in parallel on AWS c5.9xlarge

with the minimal number of parties required by the security model (two for dis-
honest majority and three for honest majority). Table 2 shows the throughput
for various security models and computation domains, and Table 3 does so for
communication. For computation modulo a prime with dishonest majority, we
present figures for arithmetic computation both using oblivious transfer (OT)
and LWE-based semi-homomorphic encryption (HE). Note that the binary com-
putation is always based on oblivious transfer for dishonest majority and that all
our results include all consumable preprocessing such as multiplication triples
but not one-off costs such as key generation. The source code of our implemen-
tation will be added to MP-SPDZ [13].

Domain Arithm. daBits edaBits

Dishonest maj.

Malicious
2k (OT) 0.5 1.2 4.4
p (OT) 0.3 0.3 1.6
p (HE) 0.6 0.7 2.0

Semi-hon.
2k (OT) 5.2 14.2 241.5
p (OT) 1.6 3.3 75.4
p (HE) 5.9 12.3 141.5

Honest maj.
Malicious

2k 76.4 109.6 107.1
p 66.9 71.3 46.2

Semi-hon.
2k 500.6 1007.7 1607.6
p 157.8 277.1 457.6

Table 2. Number of comparisons (in 1000s) per second in various settings

Our results highlight the advantage of our approach over using only daBits.
The biggest improvement comes in the dishonest majority with semi-honest se-
curity model. For the dishonest majority aspect, this is most likely because there
is a great gap in the cost between multiplications and inputs (the latter is used
extensively to generate edaBits). For the semi-honest security aspect, note that
our approach for malicious security involves a cascade of sacrificing because the
edaBit sacrifice involves binary computation, which in turn involves further sac-
rifice of AND triples. Finally, the improvement in communication is generally

8 Comparison in secure computation is generally implemented by extracting the most
significant bit of difference. This means that 63-bit is the highest accuracy achievable
in computation modulo 264, which the natural modulus on current 64-bit platforms.

26

Domain Arithm. daBits edaBits

Dishonest maj.

Malicious
2k (OT) 21737.7 9058.6 1310.5
p (OT) 40108.5 34019.1 4783.3
p (HE) 3020.5 3210.9 1584.8

Semi-hon.
2k (OT) 2283.0 813.9 13.5
p (OT) 7353.1 3487.2 103.7
p (HE) 411.6 202.8 7.5

Honest maj.
Malicious

2k 63.4 27.8 5.4
p 94.3 85.0 19.9

Semi-hon.
2k 14.5 7.1 0.4
p 37.4 23.1 1.4

Table 3. Communication per comparison (in kbit) in various settings

larger than the improvement in wall clock time. We estimate that this is due
to the fact that switching to binary computation clearly reduces communication
but increases the computational complexity.

6.1 Comparison to Previous Works

Dishonest majority. The authors of HyCC [9] report figures for biometric match-
ing with semi-honest two-party computation in ABY [20] and HyCC. The al-
gorithm essentially computes the minimum over a list of small-dimensional Eu-
clidean distances. The aforementioned authors report figures in LAN (1Gbps)
and artificial WAN settings of two machines with four-core i7 processors. For a
fair comparison, we have run our implementation using one thread limiting the
bandwidth and latency accordingly. Table 4 shows that our results improves on
the time in the LAN setting and on communication generally as well as on the
in the WAN setting for larger instances compared to their A+B setting (without
garbled circuits). The WAN setting is less favorable to our solution because it
is purely based on secret sharing and we have not particularly optimized the
number of rounds.

Honest majority. Our approach is not directly comparable to the one by Mo-
hassel and Rindal [29] because they use the specifics of replicated secret sharing
for the conversion. We do note however that their approach of restricting binary
circuits to the binary domain is comparable to our solution, and that they use
the same secret sharing schemes as us in the 2k domain. Section D.2 shows a
comparison of their results with our approach applied to logistic regression.

daBits. Aly et al. [1] report figures for daBit generation with dishonest majority
and malicious security in eight threads over a 10 Gbps network. For two-party
computation using homomorphic-encryption, they achieve 2150 daBits per sec-
ond at a communication cost of 94 kbit per daBit. In a comparable setting, we

27

LAN (s) WAN (s) Comm. (MB)

n = 1000
ABY/HyCC (A+Y) 0.22 2.5 9.5
ABY/HyCC (A+B) 0.22 6.1 10.6
Ours 0.12 8.3 5.2

n = 4096
ABY/HyCC (A+Y) 0.63 6.6 40.4
ABY/HyCC (A+B) 0.72 13.6 43.6
Ours 0.48 12.6 21.1

n = 13684
ABY/HyCC (A+Y) 3.66 17.5 138.0
ABY/HyCC (A+B) 5.4 26.2 190.8
Ours 2.00 22.9 84.4

Table 4. Overall time and communication for biometric matching

found that our protocol produces 12292 daBits per second requiring a communi-
cation cost of 32 kbit. Note however that Aly et al. use somewhat homomorphic
encryption while our implementation is based on cheaper semi-homomorphic
encryption.

Convolutional Neural Networks. We also apply our techniques to the convolu-
tional neural networks considered be Dalskov et al. [14]. See Section D.1 for
details.

Bibliography

[1] A. Aly, E. Orsini, D. Rotaru, N. P. Smart, and T. Wood. Zaphod: Efficiently com-
bining LSSS and garbled circuits in SCALE. In WAHC ’19: Proceedings of the 7th
ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography.
ACM, 2019. https://eprint.iacr.org/2019/974.

[2] T. Araki, A. Barak, J. Furukawa, M. Keller, Y. Lindell, K. Ohara, and H. Tsuchida.
Generalizing the SPDZ compiler for other protocols. In D. Lie, M. Mannan,
M. Backes, and X. Wang, editors, ACM CCS 2018, pages 880–895. ACM Press,
Oct. 2018.

[3] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In S. Jajodia and J. López, editors, ESORICS 2008,
volume 5283 of LNCS, pages 192–206. Springer, Heidelberg, Oct. 2008.

[4] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl.
Efficient two-round OT extension and silent non-interactive secure computation.
In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM CCS 2019, pages
291–308. ACM Press, Nov. 2019.

[5] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseu-
dorandom correlation generators: Silent OT extension and more. In A. Boldyreva
and D. Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 489–518. Springer, Heidelberg, Aug. 2019.

[6] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In E. Oswald and
M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
337–367. Springer, Heidelberg, Apr. 2015.

28

https://eprint.iacr.org/2019/974

[7] E. Boyle, N. Gilboa, and Y. Ishai. Secure computation with preprocessing via
function secret sharing. In D. Hofheinz and A. Rosen, editors, TCC 2019, Part I,
volume 11891 of LNCS, pages 341–371. Springer, Heidelberg, Dec. 2019.

[8] S. S. Burra, E. Larraia, J. B. Nielsen, P. S. Nordholt, C. Orlandi, E. Orsini,
P. Scholl, and N. P. Smart. High performance multi-party computation for binary
circuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472,
2015. http://eprint.iacr.org/2015/472.

[9] N. Büscher, D. Demmler, S. Katzenbeisser, D. Kretzmer, and T. Schneider. HyCC:
Compilation of hybrid protocols for practical secure computation. In D. Lie,
M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018, pages 847–861.
ACM Press, Oct. 2018.

[10] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, Oct.
2001.

[11] O. Catrina and S. de Hoogh. Improved primitives for secure multiparty integer
computation. In J. A. Garay and R. D. Prisco, editors, SCN 10, volume 6280 of
LNCS, pages 182–199. Springer, Heidelberg, Sept. 2010.

[12] R. Cramer, I. Damg̊ard, D. Escudero, P. Scholl, and C. Xing. SPD Z2k : Efficient
MPC mod 2k for dishonest majority. In H. Shacham and A. Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 769–798. Springer, Heidel-
berg, Aug. 2018.

[13] CSIRO’s Data61. MP-SPDZ. https://github.com/data61/MP-SPDZ, 2020.
[14] A. Dalskov, D. Escudero, and M. Keller. Secure evaluation of quantized neural

networks. Cryptology ePrint Archive, Report 2019/131, 2019. https://eprint.

iacr.org/2019/131.
[15] I. Damg̊ard, D. Escudero, T. K. Frederiksen, M. Keller, P. Scholl, and N. Vol-

gushev. New primitives for actively-secure MPC over rings with applications to
private machine learning. In 2019 IEEE Symposium on Security and Privacy,
pages 1102–1120. IEEE Computer Society Press, May 2019.

[16] I. Damg̊ard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In S. Halevi and T. Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 285–304. Springer, Heidelberg, Mar. 2006.

[17] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In
J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS 2013, volume 8134 of
LNCS, pages 1–18. Springer, Heidelberg, Sept. 2013.

[18] I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty
computation. In A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages
572–590. Springer, Heidelberg, Aug. 2007.

[19] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In R. Safavi-Naini and R. Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, Aug.
2012.

[20] D. Demmler, T. Schneider, and M. Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In NDSS 2015. The Internet Society, Feb.
2015.

[21] T. K. Frederiksen, M. Keller, E. Orsini, and P. Scholl. A unified approach to
MPC with preprocessing using OT. In T. Iwata and J. H. Cheon, editors, ASI-
ACRYPT 2015, Part I, volume 9452 of LNCS, pages 711–735. Springer, Heidel-
berg, Nov. / Dec. 2015.

29

http://eprint.iacr.org/2015/472
https://github.com/data61/MP-SPDZ
https://eprint.iacr.org/2019/131
https://eprint.iacr.org/2019/131

[22] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-throughput secure three-
party computation for malicious adversaries and an honest majority. In J. Coron
and J. B. Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS,
pages 225–255. Springer, Heidelberg, Apr. / May 2017.

[23] D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai, and E. Tromer. Circuits resilient
to additive attacks with applications to secure computation. In D. B. Shmoys,
editor, 46th ACM STOC, pages 495–504. ACM Press, May / June 2014.

[24] D. Genkin, Y. Ishai, and M. Weiss. Binary AMD circuits from secure multiparty
computation. In M. Hirt and A. D. Smith, editors, TCC 2016-B, Part I, volume
9985 of LNCS, pages 336–366. Springer, Heidelberg, Oct. / Nov. 2016.

[25] C. Hazay, P. Scholl, and E. Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. In T. Takagi and T. Peyrin, editors, ASI-
ACRYPT 2017, Part I, volume 10624 of LNCS, pages 598–628. Springer, Heidel-
berg, Dec. 2017.

[26] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
145–161. Springer, Heidelberg, Aug. 2003.

[27] M. Ishaq, A. L. Milanova, and V. Zikas. Efficient MPC via program analysis: A
framework for efficient optimal mixing. In L. Cavallaro, J. Kinder, X. Wang, and
J. Katz, editors, ACM CCS 2019, pages 1539–1556. ACM Press, Nov. 2019.

[28] M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster malicious arithmetic se-
cure computation with oblivious transfer. In E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages 830–842.
ACM Press, Oct. 2016.

[29] P. Mohassel and P. Rindal. ABY3: A mixed protocol framework for machine
learning. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, ACM CCS
2018, pages 35–52. ACM Press, Oct. 2018.

[30] P. Mohassel and P. Rindal. ABY3, 2019. https://github.com/ladnir/aby3/.
[31] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to

practical active-secure two-party computation. In R. Safavi-Naini and R. Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, Heidel-
berg, Aug. 2012.

[32] D. Rotaru, N. P. Smart, T. Tanguy, F. Vercauteren, and T. Wood. Actively secure
setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300, 2019. https:

//eprint.iacr.org/2019/1300.
[33] D. Rotaru and T. Wood. MArBled circuits: Mixing arithmetic and Boolean cir-

cuits with active security. In F. Hao, S. Ruj, and S. Sen Gupta, editors, IN-
DOCRYPT 2019, volume 11898 of LNCS, pages 227–249. Springer, Heidelberg,
Dec. 2019.

[34] X. Wang, S. Ranellucci, and J. Katz. Global-scale secure multiparty computation.
In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS
2017, pages 39–56. ACM Press, Oct. / Nov. 2017.

30

https://github.com/ladnir/aby3/
https://eprint.iacr.org/2019/1300
https://eprint.iacr.org/2019/1300

A Classic daBits

Recall that a (classic) daBit is defined as a pair ([b]M , [b]2), where b ∈ {0, 1}
is a random bit. We make use of these daBits to convert one single bit from
the binary world to the arithmetic world. Classic daBits can be preprocessed as
described in [1, 15, 32, 33], for example. First, we review at a very high level how
these methods work. Then, in Section A.1, we present the explicit protocols we
use in our implementation for generating daBits, and their relation to the works
we mentioned above.

Marbled Circuits [33]. Each party proposes a set of daBits, whose consistency
is checked via cut-and-choose techniques. Then these bits are XORed together
to output the final daBits. This method works for both M = p and M = 2k with
minor modifications.

Zaphod [1]. First arithmetic shares of random bits are produced. Then these
are converted to binary shares by observing that the overflow bits in the arith-
metic world are rather predictable if the shares are only between two parties.
The resulting binary-shared bits may not be correct, so a consistency check is
put in place. This works by taking a linear random combination of the bits in
both worlds and checking its consistency (in the arithmetic world the LSB must
be extracted, which requires an extra sub-protocol). This method is suited for
M = p.

Actively Secure Setup for SPDZ [32]. This works considers a much more
general concept of daBits in which bits can be shared modulo many different
primes. The layout of the protocol is similar to the one from Zaphod: Random
bits are generated modulo a large-enough prime, and these are converted locally
to shares over the integers. Then these are converted to shares modulo each
desired prime, and their correctness is checked via linear combinations. Since
in [32] the odd primes may be small, the authors have to consider a variant
of the subset sum problem to argue security. When instantiating their method
with 2 and our large prime p, we notice that their methods essentially lead to
an optimized version of Zaphod (in fact, when the odd primes are large enough
one can avoid the subset-sum assumption entirely by masking the upper bits as
done in Zaphod).

SPDZ2k [15]. The tools presented in this work are enough to produces daBits,
although the authors do not consider this concept explicitly. In a nutshell, this
approach would follow the exact same template as in Zaphod, making use of
the fact that in SPDZ2k, the parties can obtain binary additive shares of an
arithmetically-shared bit b by simply considering the LSB of their shares. Com-
pare this to the field case, where the overflow bit mod p must be predicted and
corrected. Furthermore, one can also observe than in SPDZ2k opening the LSB

31

of an arithmetically shared value is also efficient and does not require any over-
head with respect to opening the full value (in fact, it is more efficient), unlike
the field case.

A.1 Our daBit Implementation

Our daBit generation over is similar to the one considered in Zaphod [1]. How-
ever, we modify the first step in which arithmetic shares of a random bit are
produced. Instead of using the random-bit generation from SPDZ, we let each
party share an arithmetic bit and then these will be added to produce the desired
bit. This is presented in Fig. 11. The result is trivially correct if all parties are
honest. Furthermore, as the number of participating is larger than the number
of corrupted parties, the results is a random bit from the view of the adversary
in that case. The protocol costs t multiplications in FABB.

Generation of faulty daBits

Pre:

– FABB

– Threshold t (maximal number of corrupted parties)

Post: supposed daBit ([b]M , [b]2)

1. t+ 1 parties (w.l.o.g P1, . . . , Pt+1) each input a bit bi into FABB both mod
M and mod 2, resulting in ([bi]M , [bi]2) for i = 1, . . . , t+ 1.

2. All parties compute ([b]M , [b]2) = ([
⊕t+1

i=1 bi]M , [
⊕t+1

i=1 bi]2). The first half
can be computed using the fact that a⊕b = a+b−2ab for a, b ∈ {0, 1} ⊂ Z
while the second is straight-forward given that a⊕ b = a+ b for a, b ∈ Z2.

Fig. 11. Protocol to generate supposed daBits in any domain

We also notice that if the arithmetic modulus is a power of two, it is easy
to construct a daBit from a random bit by having the parties input the least
significant bit of their share to the binary computation and then computing the
XOR without communication. In other words, parties can locally convert an
additive secret sharing modulo 2k locally. Let bi denote an additive share of b
modulo 2k held by Pi. Then, bi mod 2 is a valid share of b modulo 2:∑

(bi mod 2) mod 2 =
(∑

bi mod 2k
)

mod 2 = b mod 2.

This is precisely how Zaphod converts from modulo p to modulo 2, but they
do not consider the modulo 2k case. We present this optimization in Fig. 12.
Furthermore, as a bonus, we observe that in the honest majority setting where

32

no MAC are required this procedure can be made much simpler, and we present
this in Fig. 13

Note that our protocol for SPDZ2k is more general than the one proposed
by Damg̊ard et al. [15] because theirs only works if the binary part of FABB is
implemented by SPDZ2k for k = 1, which has the disadvantage that computing
an AND has cost quadratic in the security parameter s whereas the protocol by
Frederiksen et al. [21] for example has linear cost in that regard while achieving
the same security properties.

SPDZ2k daBit generation

Pre:
1. FABB with the arithmetic part based on SPDZ2k
2. Total number of parties n

Post: supposed daBit ([b]2k , [b]2) where [b]2k is guaranteed to be in {0, 1}

1. The parties generate a random bit [b]2k as described by Damg̊ard et al.
[15].

2. Let bi denote the additive share of b held by Pi, that is b =
∑n
i=1 bi

mod 2k. Pi inputs bi mod 2 to the binary part of FABB.
3. The parties compute [b]2 =

⊕n
i=1[bi mod 2]2.

Fig. 12. Protocol to generate supposed daBits with SPDZ2k

daBit generation modulo in Z2k without MAC

Pre: FABB where the arithmetic part is based on purely on additive or repli-
cated secret sharing and the binary part uses the same secret sharing
scheme

Post: supposed daBit ([b]2k , [b]2) where [b]2k is guaranteed to be in {0, 1}

1. The parties generate a random bit [b]2k in the arithmetic part of FABB.
2. Let {b1i , . . . , bmi } denote the shares of b held by Pi. Pi computes {b1i mod

2, . . . , bmi mod 2} and uses them as shares for the binary part of FABB.

Fig. 13. Protocol to generate supposed daBits in protocols module 2k without MAC

In our construction two things must be checked to prevent cheating from
an active adversary. First, as in Zaphod, parties may cause the final daBit to
be inconsistent, in the sense that the arithmetic and binary parts may contain

33

different bits. Second, unlike the construction from Zaphod, it is not guaranteed
that the value each party inputs is indeed a bit.

To fix the first issue we simply resort to the same technique as in Zaphod
of computing s random linear combinations modulo two in both domains, after
which s daBits have to be discarded for privacy. This method has asymptoti-
cally no overhead in terms of daBits being produced because the batch can be
arbitrarily large. On the other hand, to fix the second issue, we check that the
arithmetic part of each of the final daBits contains indeed a bit, which can be
done by checking x(1− x) = 0 with x being the arithmetic share. This adds one
multiplication per daBit. Furthermore, we notice that we are checking that the
final daBit contains a bit, rather than checking that each of the original daBits
input by each party contain a bit. This is more efficient and it is also secure,
as there is at least one honest party who inputs a bit, and therefore the XOR
operation becomes an oblivious selection between x or 1−x, where x is the XOR
of the arithmetic shares of the adversary. If the result is a bit, then x was a bit
to begin with.

daBit check

Pre: m supposed bits ([bi]M , [bi]2) in FABB where m > s for statistical security
parameter s

Post: m− s verified daBits

1. The parties do the following s times:
(a) Generate m fresh public random bits ri
(b) Compute [

⊕m
i=1 ri · bi]2 and open it.

(c) Compute [r] := [
∑m
i=1 ri · bi]M .

– If M = 2k, call r′ = open([r · 2k−1]2k) and compute r′/2k−1 =
(r · 2k−1 mod 2k)/(2k−1) = r mod 2.

– If M = p, call r′ = open([r]p + 2 ·
∑s+1
i=0 [ci]p · 2i) with random bits

[ci]p and compute r mod 2 = r′ mod 2.
Abort if r mod 2 does not match the bit from the previous step.

2. Discard ([bi]M , [bi]2) for i ∈ [m− s+ 1,m].
3. For i ∈ [1,m− s], compute and open [bi · (1− bi)]M . Abort if any value is

not zero.a

a This check may be omitted if M = 2k and the bit generation via SPDZ2k
from Fig. 12 is used.

Fig. 14. Protocol to check classic daBits

Fig. 14 shows our adapted checking protocol. Aly et al. argue that any in-
correct daBit would lead to a 1/2 probability of failure in step 1c, hence s
independent repetitions would fail at least once with overwhelming probability.

34

They also argue that discarding s daBits after the checks protects the secrecy
of the remaining ones.

B Missing Proofs from Cut and Choose Analysis

Lemma 7. (Lemma 3, restated) Security against all adversaries in SimpleGame
implies security against all adversaries in RealGame.

Proof. (Sketch.) We prove that by showing if there exist an efficient adversary B
that wins RealGame with non-negligible probability, then there exist an efficient
adversary A against the SimpleGame challenger that wins the game with non-
negligible probability. A simulates the challenger of the RealGame and uses B
to win the SimpleGame. B sends a batch of edaBits and set of triples to A. A
transforms the edaBits into circles. It randomly permutes the set of triples, batch
them to form many TRIPs and transform them into triangles. Clearly, a ball (or
triangle) is good or bad depends on whether that come from a good or bad
edaBit (or TRIP).

A sends the set of balls to the SimpleGame challenger. The challenger throws
them randomly in buckets, sends the arrangement to A. Then A sends the set
of triangles to the challenger. The challenger throws them randomly in buck-
ets, and sends the arrangement to A. In the RealGame A throws edaBits and
TRIPs according to the arrangement of balls and triangles in the SimpleGame.
Clearly, the simulation is indistinguishable from a RealGame challenger. This is
due to the fact that A randomly permutes the set of triples before grouping them
into TRIPs. Thus from the final distribution of triangles B cannot distinguish
whether it is in the RealGame or in the simulation. Also in the simple game the
BucketCheck uses the public function f , which is isomorphic to the function g
from the real world. Consequently, if B wins with non-negligible probability then
A wins the SimpleGame with a non-negligible probability.

B.1 Case-by-Case Analysis of BucketCheck

Case I (2 ≤ t ≤ N(B − 1) − 2): Here we are considering the cases when A
chooses number of bad triangles t from the range [2, N(B − 1)− 2] to maximize
its success probability. As discussed earlier the probability reaches its minimum
at β ≈ 1/2, in that case:

Pr[A passes BucketCheck|Li] =
N(B − 1)/2! ·N(B − 1)/2!

N(B − 1)!

≈ 2−N(B−1).

If we consider N(B−1)� s, then this probability is much less than 2−s. Now if
we can show that the probability at t = 2 and t = N(B− 1)− 2 can be bounded
by 2−s then we can say that for all t within this range the probability is upper

35

bounded by 2−s. In both the cases:

Pr[A passes BucketCheck|Li] =
2! · (N(B − 1)− 2)!

N(B − 1)!

=
2

(N(B − 1))(N(B − 1)− 1)
.

If we consider N(B − 1) ≥ 2s/2+1, then the probability can be upper bounded
by 2−s. Thus for a given b if the adversary chooses number of bad triangles
t ∈ [2, N(B − 1)− 2], then:

Pr[A passes BucketCheck] ≤
∑
i

2−s · Pr[Li].

Given b bad balls and (NB−b) good balls one can arrange them in NB!/(NB−
b)! ways. So the probability of hitting a specific arrangement Li is (NB−b)!/NB!.
Thus:

Pr[A passes BucketCheck] ≤ NB!

(NB − b)!
· 2−s · (NB − b)!

NB!
= 2−s.

Case II (t > (N(B − 1) − 2)): If t is greater than (N(B − 1) − 2) then
the adversary will not be able to pass the first two checks as the challenger
opens C = 3 balls and C ′ = 3 triangles, assuming N and b is large enough.
Thus irrespective of the result of the BucketCheck, the winning probability of A
is bounded by 2−s. The adversary can try to decrease b to increase its success
probability for the first check. Still in the second check:

Pr[C ′ triangles are good] =

(
N(B−1)+C′−t

C′

)(
N(B−1)+C′

C′

) ≤ 4(
N(B−1)+3

3

) ≤ 2−s.

Case III (t < 2): Let us first consider the case when t = 0. Clearly, if A
corrupt all the NB + C balls in a way such that f(, ,) always returns 1,
then the adversary trivially wins the game. However in that case A fails with
probability 1 due to the first check. If A corrupts α fraction of NB balls, where

α ≥ 2s/3−1
2s/3

; Then the success probability of the A can be bounded by 2−s,

if the challenger opens C = 3 balls in the first check, given NB ≥ 2s/2. To
pass the first check A can corrupt less than α fraction of NB balls. However,
in that case the total number of good balls are more than one. Notice that
if there is even one good ball out of the NB balls, then in the BucketCheck
[, |] or [, |] check configuration occurs for most of Lis, and A fails. More
precisely, whenever the number of bad balls are not multiple of B, then there
exist a bucket with a good ball and a bad ball, thus probability of A passing
BucketCheck becomes zero. When number of bad balls are multiple of B then
there exist very few configurations for which the probability of A passing the

36

BucketCheck is one; For all other possible combinations it become zero. As an
example, for (B = 3, N = 3, b = 6, t = 0) only these three configurations are
favorable for the adversary:

{[, ,][, ,][, ,]}
{[, ,][, ,][, ,]}
{[, ,][, ,][, ,]}

Note that in this case we can consider the bad balls not to be distinct, as here
for all the bad balls f(, ,) returns 1. Let us consider b = KB, where 1 ≤
K ≤ (N − 1), then:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB

)
At K ≈ N/2 this probability reaches its minimum value 2−(NB−1) � 2−s. At
K = 1 and K = (N −1) the probability reaches its maximum value which is less
than (B − 1)!/(NB − (B − 1))B−1 ≤ 2−s for B ≥ 3 as NB > 2s/2. Given that
the best strategy of the adversary would be to corrupt 1 bucket, so that it can
pass the first check and hope to hit a favorable configuration in the BucketCheck.
However, still in that case the probability is negligible in s. Note that this case
is same as the

For t = 1 the analysis is very much similar to the previous case. Only dif-
ference is that now the adversary has to compensate for that one bad triangle.
In this case the adversary can win only when the number of bad balls b are
KB, KB − 1 or KB + 1 for 1 ≤ K ≤ (N − 1). We are considering the case
when K is N , as in that A passing the first check is negl(s). For example for
(B = 3, N = 4, t = 1), these are three possible type of favorable configurations
for the adversary:

{[, ,][, ,][, ,][, ,]}
{[, ,][, ,][, ,][, ,]}
{[, ,][, ,][, ,][, ,]}

In the first case there must exist exactly one bad ball pair in one corrupted
bucket such that f(, ,) returns 1, thus for that pair the adversary can use
the bad triangle. In the second case the adversary uses the bad triangle to check
one {bad ball, good ball} pair in the second bucket. In a similar way in the third
case A uses the bad triangle to check one {good ball, bad ball} pair in the third
bucket. Note that in the second case the good ball in the second bucket can
be placed in four possible positions to generate other favorable permutations.
Similarly in the third case the bad ball in the third bucket can be placed in
four possible positions to generate other favorable permutations. For all other
arrangement the adversary fails BucketCheck, as it has to deal with more than
one {bad ball, good ball} pair.

37

Now the probability of A passing the BucketCheck for the case when b = KB
and t = 1 is given by:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB

) · (B − 1) ·K · 1

N(B − 1)
.

The probability of A passing the BucketCheck when b = KB − 1 and t = 1
is given by:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB−1

) · (B − 1) ·K · 1

N(B − 1)
.

In the last case for b = KB + 1 and t = 1 the probability is given by:

Pr[A passes BucketCheck] ≤
(
N
K

)(
NB
KB+1

) · (B − 1) · (N −K) · 1

N(B − 1)
.

Clearly, in the second case the probability of success is more than that of the
first case. In the second case the probability reaches its maximum value when
K = 1; Which is same as that of the maximum success probability of A in the
third case forK = (N−1). Consequently the best strategy of the adversary would
be to corrupt minimum number of balls, thus making the failure probability of
the first check minimum, and try to achieve the maximum success probability
from the BucketCheck. That means A is in the second case with K = 1. Thus,

Pr[A passes BucketCheck] ≤ (B − 1)!

(NB − (B − 2))B−1
≤ 2−s, for B ≥ 3.

C Truncation over Fields

We begin with a protocol, presented originally by Catrina and de Hoogh [11], and
optimize it with our edaBits. For this protocol we require a larger gap between
the shares and the secret to be truncated, more precisely, it must hold that p >
2`+s+1, where s is the statistical security parameter. The protocol is presented
in Fig. 15.

To see the correctness of the protocol, begin by observing that because p >
2`+s+1, and since b ∈ [0, 2`) the addition of b and 2mr + r′ does not overflow
modulo p and therefore c is actually equal to b + 2mr + r′, as integers. This
preserves the privacy of b as b ∈ [0, 2`) and 2mr + r′ is uniformly random in
[0, 2`+s+1). Given this, it holds then that (c mod 2m) = (b mod 2m) + (2mr +
r′ mod 2m) − v · 2m, where v ∈ {0, 1} is set if and only if (b mod 2m) + (r mod
2m) /∈ [0, 2m). Now, observe that this condition triggers if and only if c mod 2m =∑m−1
i=0 ci2

i is smaller than r mod 2m =
∑m−1
i=0 ri2

i, so the bit v can be obtained
by executing a (unsigned) binary less-than circuit as done by the protocol. We
remark that for this step we use our optimized binary-shared bits, which provides
an important optimization with respect to the protocol from Catrina et al.

38

Deterministic Truncation over Fp

Pre:

– Shares [a] = [Rep(α)], integer 0 < m < `.
– edaBit ([r]M , [r]2) of length `−m+ s.
– edaBit ([r′]M , [r

′]2) of length m.

Post: Shares [y] where y = Rep
(⌊

α
2m

⌋)
.

1. First the parties compute shares of a mod 2m as follows:
(a) Let [b] = 2`−1 + [a];
(b) Call c = open([b] + 2m[r] + [r′]);
(c) The parties compute [v]2 = LT

(
(ci)

m−1
i=0 , ([r

′
i]2)m−1

i=0

)
;

(d) Convert [v]2 7→ [v].
(e) Let [a mod 2m] = [c mod 2m]− [r′] + [v]2m.

2. Compute the truncated value using the formula as follows. Let (2m)−1 be
the inverse of 2m modulo p. Output [y] = (2m)−1 · ([a]− [a mod 2m]).

Fig. 15. Deterministic truncation over fields with share gap

Taking into account that (2mr + r′) mod 2m = r′, and also that a ≡ b mod
2`−1, (c mod 2m)− r′ + v · 2m is the same as a mod 2m, we obtain that the first
part of the protocol in which shares of a mod 2m are computed is correct. Finally,
the ending step computes the formula for the truncation, which concludes the
correctness analysis.

Probabilistic Truncation. The protocol above is not constant round, as it requires
the computation of a less-than circuit on inputs of length m. It turns out that
if one is willing to allow for some small error, a much more efficient protocol
can be devised, as by Catrina and de Hoogh [11]. This protocol follows the
same blueprint as the deterministic one, except that the computation of the
overflow bit v is omitted. The description of the protocol can be found in Fig. 16.
Following the analysis from the previous protocol, this implies that the value d
computed in the protocol is d = (a mod 2m)− 2mv, so the final value computed
is (a− (a mod 2m))/2m + v, which is the desired truncation, off by at most one
bit. Furthermore, it is easy to see that the result is biased towards the nearest
truncation.

D More Experimental Results

D.1 Convolutional Neural Networks

Dalskov et al. [14] present an implementation for deep learning inference. We
have adapted their implementation to our setting and present a comparison for
the simplest network (MobileNet V1 0.25 128) in Table 5. It shows that edaBits

39

Probabilistic truncation over Fp

Pre:

– FABB with p > 2k+s+1.
– Shares [a] = [Rep(α)], integer 0 < m < k.
– edaBit ([r]M , [r]2) of length k −m+ s.
– edaBit ([r′]M , [r

′]2) of length m.

Post: Shares [y] where y ≈ Rep
(⌊

α
2m

⌋)
.

1. Let [b] = 2k−1 + [a];
2. Call c = open([b] + 2m[r] + [r′]);
3. Let [d] = [c mod 2m]− [r′].
4. Output [y] = (2m)−1 · ([a]− [d]).

Fig. 16. Probabilistic truncation over fields.

reduce the communication in all security models as well as the time with a
dishonest majority.

D.2 Logistic Regression

Mohassel and Rindal [29] present an implementation of logistic regression in the
setting of three parties with one semi-honest corruption. Their software imple-
mentation [30] runs all parties on the same host without communication encryp-
tion. For a fair comparison, we have run their software as well as ours in the
same setting on the same Desktop machine with an i7 processor. In our soft-
ware, we use the special truncation according to Dalskov et al. [14] and either
edaBits or bit decomposition as in the work above for comparison. The com-
parison in turn is used for a piece-wise approximation of the sigmoid function.
Table 6 shows that edaBit-based comparison generally comes close to ABY3’s
bit decomposition.

40

Domain Time (s) Comm. (GB)

Dish. maj.

Mal.
2k (OT)

[14] 1264.9 1748.4
Ours 614.6 576.5

p (HE)
[14] 1377.8 282.4
Ours 1033.8 270.4

S-h.
2k (OT)

[14] 139.5 199.2
Ours 24.3 31.0

p (OT)
[14] 465.1 655.3
Ours 59.3 75.5

Hon. maj.

Mal.
2k

[14] 9.5 5.3
Ours 18.6 2.2

p
[14] 9.2 8.7
Ours 35.7 4.2

S-h.
2k

[14] 0.9 0.8
Ours 1.0 0.1

p
[14] 3.7 3.4
Ours 3.4 0.3

Table 5. Time and communication for MobileNet inference

Dimension Batch size ABY3 [29] Ours (ABY3 comp.) Ours (edaBits)

10

128 1495 1801 1671
256 1402 1407 1230
512 1229 1014 827

1024 976 656 479

100

128 1303 1372 1269
256 1064 988 904
512 732 657 560

1024 349 387 316

1000

128 327 436 422
256 148 284 271
512 74 167 159

1024 35 90 84

Table 6. Iterations per second for logistic regression

41

	Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits

