
Differential Privacy for Eye Tracking with Temporal Correlations
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Abstract

New generation head-mounted displays, such as VR and
AR glasses, are coming into the market with already inte-
grated eye tracking and are expected to enable novel ways of
human-computer interaction in many applications. However,
since eye movement properties contain biometric informa-
tion, privacy concerns have to be handled properly. Privacy-
preservation techniques such as differential privacy mecha-
nisms have recently been applied to the eye movement data
obtained from such displays. Standard differential privacy
mechanisms; however, are vulnerable to temporal correla-
tions in the eye movement features. In this work, we propose
a novel transform-coding based differential privacy mecha-
nism to further adapt it to the statistics of eye movement
feature data by comparing various low-complexity methods.
We extent Fourier Perturbation Algorithm, which is a differ-
ential privacy mechanism, and correct a scaling mistake in
its proof. Furthermore, we illustrate significant reductions in
sample correlations in addition to query sensitivities, which
provide the best utility-privacy trade-off in the eye tracking
literature. Our results show significantly high privacy without
loss in classification accuracies as well.

Introduction
Recent advances in the field of head-mounted displays
(HMDs) and eye tracking enable easy access to pervasive
eye trackers along with modern HMDs. Soon, the decrease
in the cost of such devices might cause a mass consump-
tion across different application domains such as gaming,
entertainment, or education. Consequently, we expect a sig-
nificant increase in the amount of eye movement data col-
lected from the users. A large part of this data is indeed
useful for personalized experience and user-adaptive inter-
action. In virtual and augmented reality (VR/AR) especially,
it is possible to derive plenty of sensitive information about
users from the eye movement data. For instance, it has been
shown that eye tracking signals can be employed for activ-
ity recognition even in challenging everyday tasks (Steil and
Bulling 2015; Braunagel et al. 2017; Ishimaru et al. 2014),
to detect cognitive load (Appel et al. 2018; Krejtz et al.
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2018), mental fatigue (Yamada and Kobayashi 2018), and
many other user states. Similarly, assessment of situational
attention (Bozkir, Geisler, and Kasneci 2019), expert-novice
analysis in areas such as medicine (Castner et al. 2018) and
sports (van Leeuwen et al. 2017), and personality traits and
human intent during robotic hand-eye coordination can also
be predicted based on eye movement features (Berkovsky
et al. 2019; Razin and Feigh 2017). Additionally, eye move-
ments are useful for early detection of anomias (Ungrady
et al. 2019) and diseases (Fernández et al. 2015). Most im-
portantly, eye movement data allow biometric authentica-
tion, which is considered to be a highly sensitive task (Günlü
2019). A task-independent authentication using eye move-
ment features and Gaussian mixtures is, for example, thor-
oughly discussed in (Kinnunen, Sedlak, and Bednarik 2010).
Additionally, biometric identification based on an oculomo-
tor plant model and eye movements are introduced in (Ko-
mogortsev and Holland 2013; Komogortsev et al. 2010). In
(Eberz et al. 2016) it is discussed that eye movement features
can be used reliably also for authentication both in consumer
level devices and various real world tasks, whereas (Zhang
et al. 2018) shows that continuous authentication using eye
movements is possible in VR headsets.

As biometric contents can be retrieved from eye move-
ments, it is important to protect them against adversarial
attacks. According to (Steil et al. 2019a), people agree to
share their eye tracking data if a governmental health agency
is involved in owning data or if the purpose is research.
Therefore, privacy-preserving techniques are needed espe-
cially on the data sharing side of eye tracking considering
that the usage of VR/AR devices with integrated eye track-
ers increases. As removing only the personal identifiers from
data is not enough for anonymization due to linkage attacks
(Narayanan and Shmatikov 2008), more sophisticated tech-
niques for achieving user level privacy are necessary. Dif-
ferential privacy (Dwork et al. 2006) is one effective so-
lution, especially in the area of database applications. It
protects user privacy by adding randomly generated noise
for a given sensitivity and desired privacy parameter. How-
ever, high dimensionality of the data and temporal correla-
tions can reduce utility and privacy, respectively. Since eye
movement features are high dimensional, temporally corre-
lated, and usually contain recordings with long durations, it
is important to tackle utility and privacy problems simulta-



neously. For eye movement data collected from HMDs or
smart glasses, both local and global differential privacy can
be applied. Local differential privacy adds user level noise
to the data but assumes that the user sends data to a cen-
tral data collector after adding local noise (Erlingsson, Pihur,
and Korolova 2014; Ding, Kulkarni, and Yekhanin 2017).
For this work, we consider global differential privacy, be-
cause there is a central user-level data collector and pub-
lisher in a VR/AR setting.

To apply differential privacy to the eye movement data,
we evaluate the standard Laplacian Perturbation Algorithm
(LPA) (Dwork et al. 2006) and Fourier Perturbation Algo-
rithm (FPA) (Rastogi and Nath 2010). The latter is suitable
for time series data such as the eye movement feature sig-
nals. We propose two different methods that apply the FPA
to chunks of data using original eye movement feature sig-
nals or consecutive difference signals. While preserving dif-
ferential privacy using parallel compositions, chunk-based
methods decrease query sensitivity and computational com-
plexity. The difference-based method further decreases the
temporal correlations between the eye movement features in
addition to the decorrelation provided by the FPA that uses
the discrete Fourier transform (DFT) as, e.g., in (Günlü and
Iscan 2014; Günlü et al. 2018). The difference-based method
provides a higher level of privacy since consecutive sam-
ple differences are observed to be less correlated than origi-
nal consecutive data. Furthermore, we evaluate our methods
using differentially private eye movement features in docu-
ment type and gender classification, and privacy sensitivity
classification tasks by using similar configurations to previ-
ous works in (Steil et al. 2019a,b). To generate differentially
private eye movement data, we use the complete data instead
of applying a subsampling step, used in (Steil et al. 2019a)
to reduce the sensitivity and to improve the classification
accuracies. In addition, the previous work in (Steil et al.
2019a) applies the exponential mechanism for differential
privacy on the eye movement feature data. The exponential
mechanism is useful for situations where the best enumer-
ated response needs to be chosen (Dwork and Roth 2014). In
eye movements, we are not interested in the “best” response
but in the feature vector. Therefore, we apply the Laplacian
mechanism. In summary, we are the first to propose differen-
tial privacy solutions for eye movements by taking the tem-
poral correlations into account, which can help provide user
privacy especially for HMD or smart glass usage.

Our main contributions are as follows. (1) We propose
chunk-based and difference-based differential privacy meth-
ods for eye movement features to reduce query sensitivities,
computational complexity, and temporal correlations. Fur-
thermore, (2) we evaluate our methods on two publicly avail-
able eye movement datasets, i.e., MPIIDPEye (Steil et al.
2019a) and MPIIPrivacEye (Steil et al. 2019b), by compar-
ing them with standard techniques such as LPA and FPA us-
ing the multiplicative inverse of the normalized mean square
error (NMSE) as the utility metric. In addition, we evaluate
document type and gender classification, and privacy sen-
sitivity classification accuracies as classification metrics us-
ing differentially private eye movements in MPIIDPEye and
MPIIPrivacEye datasets, respectively. Our results show sig-

nificantly better performance as compared to previous works
and are capable of handling correlated data and decreasing
query sensitivities by dividing the data into smaller chunks.

Related Work
There are few works that focus on privacy-preserving eye
tracking. (Liebling and Preibusch 2014) provides motivation
as to why privacy considerations are needed for eye track-
ing data by focusing on gaze and pupillometry. Practical
solutions are; therefore, introduced to protect user identity
and sensitive stimuli based on a degraded iris authentica-
tion through optical defocus (John, Koppal, and Jain 2019)
and an automated disabling mechanism for the eye tracker’s
ego perspective camera with the help of a mechanical shut-
ter depending on the detection of privacy sensitive content
(Steil et al. 2019b). Furthermore, a function-specific pri-
vacy model for privacy-preserving gaze estimation task and
privacy-preserving eye videos by replacing the iris textures
are proposed in (Bozkir et al. 2020) and (Chaudhary and
Pelz 2020), respectively. For the user identity protection,
works that focus on differential privacy are more relevant
for us. Recently, standard differential privacy mechanisms
are applied to eye movements in VR (Steil et al. 2019a) and
heatmaps (Liu et al. 2019). These works do not address the
effects of temporal correlations in eye movements over time
in the privacy context. In the privacy literature, there are pri-
vacy definitions such as the Pufferfish mechanism (Kifer and
Machanavajjhala 2014) or the Olympus framework (Raval,
Machanavajjhala, and Pan 2019) for correlated data. These
works, however, have different assumptions. For example,
Pufferfish requires a domain expert to specify potential se-
crets and discriminative pairs, and Olympus models privacy
and utility requirements as adversarial networks. As our fo-
cus is to protect user identity in the eye movements, we opt
for differential privacy by discussing the effects of temporal
correlations in eye movements over time and propose meth-
ods to reduce them.

Theoretical Background
Differential privacy uses a metric to measure the privacy risk
for an individual participating in a database. Considering a
dataset with weights ofN people and a mean function, when
an adversary queries the mean function forN people, the av-
erage weight overN people is obtained. After the first query,
an additional query forN−1 people automatically leaks the
weight of the remaining person. Using differential privacy,
noise is added to the outcome of a function so that the out-
come does not significantly change based on whether or not
a randomly chosen individual participated in the dataset. The
amount of noise added should be calibrated carefully since
a high amount of noise might decrease the utility. We next
define differential privacy.

Definition 1 ε-Differential Privacy (ε-DP) (Dwork et al.
2006). A randomized mechanism M is ε-differentially pri-
vate if for all databases D and D′ that differ at most in one
element for every S ⊆ Range(M), we have

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S]. (1)



The variance of the added noise depends on the query sen-
sitivity, which is defined as follows.
Definition 2 Query sensitivity (Dwork et al. 2006). For a
random query Xn and w ∈ {1, 2}, the query sensitivity ∆w
of Xn is the smallest number for all databases D and D′
that differ at most in one element such that

||Xn(D)−Xn(D′)||w ≤ ∆w(X
n) (2)

where the Lw-distance is defined as

||Xn||w = w

√√√√ n∑
i=1

(
|Xi|

)w
. (3)

We list theorems that are used in the proposed methods.
Theorem 1 Sequential Composition Theorem (McSherry
2009). Consider n independent mechanisms Mi for
i = 1, 2, ..., n. If M1,M2, ...,Mn are ε1, ε2, ..., εn-
differentially private, respectively, then their joint mecha-

nism is

(
n∑
i=1

εi

)
-differentially private.

Theorem 2 Parallel Composition Theorem (McSherry
2009). Consider n mechanisms as Mi for i = 1, 2, ..., n
that are applied to disjoint subsets of a dataset. If
M1,M2, ...,Mn are ε1, ε2, ..., εn-differentially private,

respectively, then their joint mechanism is
(

max
i∈[1,n]

εi

)
-

differentially private.
We define the Laplacian Perturbation Algorithm (LPA)

(Dwork et al. 2006). To guarantee differential privacy, the
LPA generates the noise according to a Laplace distri-
bution. Lap(λ) denotes a random variable drawn from
a Laplace distribution with a probability density function
(PDF): Pr[Lap(λ) = h] = 1

2λe
−|h|/λ, where Lap(λ) has

zero mean and variance 2λ2. We denote the noisy and dif-
ferentially private values as X̃i = Xi(D) + Lap(λ) for
i = 1, 2, . . . , n. Since we have a series of eye move-
ment observations, the final noisy eye movement observa-
tions are generated as X̃n = Xn(D) + Lapn(λ), where
Lapn(λ) is a vector of n independent Lap(λ) random vari-
ables and Xn(D) is the eye movement observations with-
out noise. The LPA algorithm is ε-differentially private for
λ = ∆1(X

n)/ε (Dwork et al. 2006).
We define the error function that we use to measure the

differences between original Xn and noisy X̃n observa-
tions. For this purpose, we use the metric normalized mean
square error (NMSE) defined as

NMSE =
1

n

n∑
i=1

(Xi − X̃i)
2

XX̃
(4)

where

X =
1

n

n∑
i=1

Xi , X̃ =
1

n

n∑
i=1

X̃i. (5)

We define the utility metric as

Utility =
1

NMSE
. (6)

As differential privacy is achieved by adding random
noise to the data, there is a utility-privacy trade-off. Too
much noise will lead to high privacy; however, it might also
result in poor analyses on the further tasks on eye move-
ments. Therefore, it is important to find a good trade-off.

Methods
Standard differential privacy mechanisms are vulnerable to
temporal correlations, since the independent noise realiza-
tions that are added to temporally correlated data could be
useful for adversaries. However, decorrelating the data be-
fore adding the noise might remove important eye move-
ment patterns and provide poor results in analyses. Many eye
movement features are extracted by using time windows, as
in (Steil et al. 2019a,b), which makes the features highly cor-
related. Another challenge is that the duration of eye track-
ing recordings could change depending on the skills or per-
sonalities of the users. The longer duration causes an in-
creased query sensitivity, which means that higher amounts
of noise should be added to achieve differential privacy. In
addition, when the data is correlated, as in (Zhao, Zhang, and
Poor 2017), ε′ is defined as the actual privacy metric that is
obtained considering the fact that correlations can be used
to obtain more information about the differentially private
data by filtering, instead of ε. In this work, we discuss and
propose generic low-complexity methods to keep ε′ small
for eye movement feature signals. To deal with correlated
eye movement feature data, we propose three different meth-
ods: FPA, chunk-based FPA (CFPA) for original signal, and
chunk-based FPA for difference based sequences (DCFPA).
The sensitivity of each eye movement feature signal is cal-
culated by using the Lw-distance such that

∆fw(X
n) = max

p, q

∣∣∣∣∣∣Xn,(p,f) −Xn,(q,f)
∣∣∣∣∣∣
w

= max
p, q

w

√√√√ n∑
t=1

(∣∣∣X(p,f)
t −X(q,f)

t

∣∣∣)w (7)

where Xn,(p,f) and Xn,(q,f) denote observation vectors for
a feature f from two participants p and q, n denotes the max-
imum length of the observation vectors, and w ∈ {1, 2}.

Fourier Perturbation Algorithm (FPA)
In the FPA, the signal is represented with a small num-
ber of transform coefficients such that the query sensitiv-
ity of the representative signal decreases. A smaller query
sensitivity decreases the noise power required to make the
noisy signal differentially private. In the FPA, the signal is
transformed into the frequency domain by applying Discrete
Fourier Transform (DFT), which is commonly applied as
a non-unitary transform. The frequency domain representa-
tion of a signal consists of less correlated transform coeffi-
cients as compared to the time domain signal due to the high
decorrelation efficiency of the DFT. Therefore, the correla-
tion between the eye movement feature signals is reduced by
applying the DFT. After the DFT, the noise sampled from
the LPA is added to the first k elements of DFT (Xn) that
correspond to k lowest frequency components, denoted as



F k = DFT k(Xn). Once the noise is added, the remaining
part (of size n − k) of the noisy signal F̃ k is zero padded
and denoted as PADn(F̃ k). Lastly, using the Inverse DFT
(IDFT), the padded signal is transformed back into the time
domain. We can show that ε-differential privacy is satisfied
by the FPA for λ =

√
n
√
k∆2(X

n)
ε unlike the value claimed in

(Rastogi and Nath 2010), as observed independently in (Kel-
laris and Papadopoulos 2013). The procedure is summarized
in Algorithm 1. Since not all coefficients are used, in addi-
tion to the perturbation error caused by the added noise, a
reconstruction error caused by the lossy compression is in-
troduced. It is important to determine the number of used
coefficients k to minimize the total error. We discuss how
we choose k values for FPA-based methods below.

Algorithm 1: Fourier Perturbation Algorithm (FPA).
Inputs: Xn, λ, k
Output: X̃n

1) F k = DFT k(Xn).
2) F̃ k = LPA(F k, λ).
3) X̃n = IDFT (PADn(F̃ k)).

Chunk-based FPA (CFPA)
One drawback of directly applying the FPA to the eye move-
ment feature signals is large query sensitivities for each
feature f due to long signal sizes. To solve this, (Steil
et al. 2019a) proposes to subsample the signal using non-
overlapping windows, which means removing many data
points. While subsampling decreases the query sensitivities,
it also decreases the amount of data. Instead, we propose to
split each signal into smaller chunks and apply the FPA to
each chunk so that complete data can be used. We choose
the chunk sizes of 32, 64, and 128 since there are divide-
and-conquer type tree-based implementation algorithms for
fast DFT calculations when the transform size is a power of
2. When the signals are split into chunks, chunk level query
sensitivities are calculated and used rather than the sensi-
tivity of the whole sequence. Differential privacy for the
complete signal is preserved by Theorem 2 since the chunks
are non-overlapping. As the chunk size decreases, the chunk
level sensitivity decreases as well as the computational com-
plexity. However, the parameter ε′ that accounts for the sam-
ple correlations might increase with smaller chunk sizes be-
cause correlations between neighboring samples are larger
in an eye movement dataset. Therefore, a good trade-off be-
tween computational complexity and correlations is needed
to determine the optimal chunk size.

Difference- and chunk-based FPA (DCFPA)
To tackle temporal correlations, we convert the eye move-
ment feature signals into difference signals where differ-
ences between consecutive eye movement features are cal-
culated as

X̂
(f)
t =

{
X

(f)
t −X(f)

t−1

}∣∣∣n
t=2

, X̂
(f)
1 = X

(f)
1 . (8)

Using the difference signals denoted by X̂n,(f), we aim
to further decrease the correlations before applying a differ-
ential privacy method. We conjecture that the ratio ε′/ε de-
creases in the difference-based method as compared to the
FPA method. To support this conjecture, we show that the
correlations in the difference signals decrease significantly
as compared to the original signals. This results in lower
ε′ and better privacy for the same ε. The difference based
method is applied together with the CFPA. Therefore, the
differences are calculated inside chunks. The first element
of each chunk is preserved. Then, the FPA mechanism is ap-
plied to the difference signals by using query sensitivities
calculated based on differences and chunks. For each chunk,
noisy difference signals are aggregated to obtain the final
noisy signals. This mechanism is differentially private by
Theorem 1. Since Theorem 1 can be applied to the DCFPA
when consecutive differences are assumed to be indepen-
dent, which is a valid assumption for eye movement feature
data as we illustrate below, there is also a trade-off between
the chunk sizes and utility for the DCFPA. If a large chunk
size is chosen, then the total ε value could be very large,
which reduces privacy. Therefore, we choose chunk sizes of
32, 64, and 128 for the DCFPA as well for evaluation. The
DCFPA is summarized in Algorithm 2.

Algorithm 2: DCFPA
Inputs: Xn, λ, k
Output: X̃n

1) X̂t =
{
Xt −Xt−1

}∣∣∣n
t=2

, X̂1 = X1.

2) ˜̂Xn

= FPA(X̂n, λ, k).

3) X̃t =
{˜̂
Xt +

˜̂
Xt−1

}∣∣∣n
t=2

, X̃1 =
˜̂
X1.

Choice of the Number of Transform Coefficients
The proposed methods require a selection of a value for k.
A small k value increases the reconstruction error, while a
large k value results in an increase in the perturbation error.
Therefore, it is important to find the best k value that mini-
mizes the sum of the two errors. In this work, we compare a
large set of possible k values to choose the best values.

We apply the aforementioned differential privacy mecha-
nisms by using 100 noisy evaluations to find optimal k val-
ues applied to features or chunks. Optimal k values have
the minimum NMSE for each chunk, eye movement fea-
ture, and document or recording type. In a distributed set-
ting, each user needs to know k values in advance. However,
in a centralized setting, it is crucial to choose the k values in
a differentially private manner. To evaluate the differential
privacy in the eye tracking area while taking the temporal
correlations into account, we focus on optimal k values for
this work. One shortcoming of this approach is that the opti-
mal k value compromises some information about the data,
which leaks privacy (Rastogi and Nath 2010). Our observa-
tion is that the information leaked by optimizing the param-
eter k is negligible as compared to the privacy reduction due



(a) Correlation coefficients of original signals in MPIIDPEye. (b) Correlation coefficients of difference signals in MPIIDPEye.

Figure 1: Correlation coefficients of the feature ratio large saccade in MPIIDPEye dataset for three document types over a time
difference of ∆t (Each time step corresponds to 0.5s) w.r.t. the samples at the fifth time instance.

to correlated data. Thus, we illustrate the results with opti-
mal k values.

Evaluations
This section discusses datasets, and evaluations using utility
and classification metrics. The results are averaged over 100
noisy evaluations with the optimal k values in MATLAB.

Datasets
MPIIDPEye (Steil et al. 2019a): A publicly available eye
movement dataset consisting of 60 recordings dedicated to
privacy-preserving eye tracking that is collected in VR for
a reading task of three document types (comic, newspaper,
and textbook) from 20 (10 female, 10 male) participants.
Each recording consists of 52 eye movement feature se-
quences computed with a sliding window size of 30 seconds
and a step size of 0.5 seconds.

MPIIPrivacEye (Steil et al. 2019b): A publicly available
eye movement dataset consisting of 51 recordings from 17
participants with 3 different sessions after each other with
an head-mounted eye tracker and a field camera, which is
similar to an AR setup. Each recording consists of 52 eye
movement feature sequences computed with a sliding win-
dow size of 30 seconds and a step size of 1 second and each
observation is annotated with binary privacy sensitivity lev-
els of the scene that is being viewed. The dataset also con-
sists of scene features extracted with CNNs. We do not eval-
uate the last part of the recording 1 of the participant 10, as
the eye movement features are not available for this region.
To detect the privacy level of the scene that is being viewed,
we acknowledge that information about scene is very impor-
tant (Orekondy, Schiele, and Fritz 2017); however, an indi-
vidual’s eye movements can improve the detection rate.

We first show the data correlation using correlation co-
efficients obtained from the eye movement features. Since
there are 52 eye movement features in both datasets, it is
not feasible to show them all. Thus, in the following we il-
lustrate the correlation problem based on the feature called
ratio large saccade in the MPIIDPEye dataset. The correla-
tion coefficients of ratio large saccade for three document
types over a time difference ∆t w.r.t the signal samples at,
e.g., the fifth time instance for original eye movement fea-
ture signals and difference signals for all participants are de-
picted in Figures 1 (a) and (b), respectively. As correlations
between the difference signals are significantly smaller than

correlations between the original eye movement feature sig-
nals, the DCFPA is less vulnerable to privacy reduction due
to temporal correlations, thus affecting the value of ε′. Addi-
tionally, as all minimum values of wordbook features from
1 to 4 are zeros in both datasets, we exclude them from the
utility and total ε calculations.

Utility Results
We evaluate the utility given in Equation (6) by applying
our methods separately to different document and record-
ing types; therefore, we report the utility results separately.
As we apply the proposed methods separately to each eye
movement feature, we first calculate the mean utility of each
feature and then calculate the average utility over all fea-
tures. The utility results for various ε values for aforemen-
tioned methods on MPIIDPEye and MPIIPrivacEye datasets
are given in Figures 2 and 3, respectively.

While a high NMSE, i.e., low utility, does not necessar-
ily mean that the model is completely useless, higher util-
ity means that the model would perform more effectively
than low utility in various tasks. The utility results of both
evaluated datasets are similar. As the query sensitivities are
lower in CFPA, utilities of CFPA are always higher than the
utilities of the FPA as theoretically expected. DCFPA par-
ticularly outperforms other methods in the most private set-
tings, namely in the lowest ε regions. When different chunk
sizes are compared within the CFPA and DCFPA, different
chunk sizes perform similarly for the CFPA method. For the
DCFPA, there is a significant trend for better utilities when
the chunk sizes are decreased. Since a higher chunk size re-
duces the temporal correlations better, it is ideal to use a
higher chunk size if the utilities are comparable. While the
LPA, namely the standard Laplacian mechanism of the dif-
ferential privacy, is vulnerable to temporal correlations, our
methods also outperform it in terms of utilities. In addition
to high utilities, the calculation complexities are decreased
with the CFPA and DCFPA which is another advantage of
chunk-based methods.

Classification Accuracy Results
We evaluate document type and gender classification results
for the MPIIDPEye and privacy sensitivity classification re-
sults for the MPIIPrivacEye by using differentially private
data generated by the methods which handle temporal cor-
relations in the privacy context. Instead of evaluating only
Support Vector Machines (SVM) as in previous works (Steil



(a) Utility of the LPA and FPA for MPIIDPEye.

(b) Utility of the CFPA for MPIIDPEye.

(c) Utility of the DCFPA for MPIIDPEye.

Figure 2: Utility results for MPIIDPEye dataset.

et al. 2019a,b), we evaluate a set of classifiers including
SVMs, decision trees (DT), random forests (RF), and k-
Nearest Neighbors (k-NN). We employ a similar setup as in
(Steil et al. 2019a) with radial basis function (RBF) kernel,
bias parameter of C = 1, and automatic kernel scale for the
SVMs. For RFs and k-NNs, we use 10 trees and k = 11 with
a random tie breaker among tied groups, respectively. We
normalize the training data to zero mean and unit variance,
and apply the same parameters to the test data. Although
we do not apply subsampling while generating the differen-
tially private data, which is applied in (Steil et al. 2019a),
we use subsampled data for training and testing with win-
dow sizes of 10 and 20 for MPIIDPEye and MPIIPrivacEye,
respectively, to have a fair comparison and similar amount of
data. All the classifiers are trained and tested in a leave-one-
person-out cross-validation setup, which is considered as a
more challenging but generic setup. For the MPIIDPEye, we
evaluate results both with majority voting by summarizing
classifications from different time instances for each partic-
ipant and without majority voting. For the MPIIPrivacEye,
it is not reasonable to use majority voting as each recording
can include both privacy sensitive and non-sensitive stimuli.

While classification results cannot be treated directly as
the utility, they provide insights into the usability of the

(a) Utility of the LPA and FPA for MPIIPrivacEye.

(b) Utility of the CFPA for MPIIPrivacEye.

(c) Utility of the DCFPA for MPIIPrivacEye.

Figure 3: Utility results for MPIIPrivacEye dataset.

differentially private data. We first evaluate document type
classification task in the majority voting setting in Table 1
as it is possible to compare our results with the previous
work (Steil et al. 2019a). As previous results quickly drop
to the 0.33 guessing probability in high privacy regions, we
significantly outperform them particularly with DCFPA and
FPA with the accuracies over 0.60 and 0.85, respectively. In
the less private regions towards ε = 48, this trend still ex-
ists with the CFPA and FPA with accuracy results over 0.7
and 0.85. Chunk-based methods perform slightly worse than
the FPA in the document type classifications even though
the utility of the FPA is lower. We observe that the read-
ing patterns are hidden easier with chunk-based methods;
therefore, document type classification task becomes more
challenging. This is especially validated with DCFPA meth-
ods using different chunk sizes, as DCFPA-128 outperforms
smaller chunk-sized DCFPAs even though the sensitivities
are higher. Therefore, we conclude that the differential pri-
vacy method should be selected for eye movements depend-
ing on the further task which will be applied.

Next, we analyze the gender classification results for
MPIIDPEye. All methods are able to hide the gender infor-
mation in the high privacy regions as it is already challeng-
ing to identify it with clean data as accuracies are ≈ 0.7 in



Document Type Classification Accuracies (k-NN|SVM|DT|RF)
Method ε = 0.48 ε = 2.4 ε = 4.8 ε = 24 ε = 48

FPA 0.53|0.64|0.82|0.88 0.51|0.62|0.82|0.87 0.52|0.64|0.82|0.87 0.52|0.63|0.81|0.87 0.52|0.64|0.82|0.88
CFPA-32 0.39|0.37|0.45|0.43 0.40|0.39|0.45|0.44 0.40|0.44|0.46|0.44 0.59|0.58|0.55|0.60 0.71|0.69|0.66|0.66
CFPA-64 0.39|0.37|0.45|0.44 0.39|0.37|0.44|0.44 0.41|0.41|0.45|0.44 0.56|0.58|0.55|0.60 0.70|0.69|0.65|0.66
CFPA-128 0.37|0.33|0.45|0.45 0.37|0.32|0.44|0.45 0.38|0.36|0.44|0.45 0.52|0.55|0.51|0.56 0.68|0.68|0.63|0.65
DCFPA-32 0.50|0.37|0.47|0.43 0.51|0.35|0.47|0.42 0.49|0.34|0.47|0.43 0.49|0.37|0.45|0.44 0.49|0.36|0.47|0.44
DCFPA-64 0.60|0.44|0.43|0.41 0.56|0.35|0.42|0.40 0.58|0.41|0.43|0.41 0.60|0.43|0.44|0.42 0.60|0.41|0.44|0.43

DCFPA-128 0.64|0.47|0.46|0.48 0.62|0.43|0.45|0.45 0.68|0.50|0.45|0.46 0.57|0.45|0.45|0.47 0.60|0.41|0.45|0.45

Table 1: Document type classification accuracies in MPIIDPEye using differentially private eye movement features with ma-
jority voting.

Gender Classification Accuracies (k-NN|SVM|DT|RF)
Method ε = 0.48 ε = 2.4 ε = 4.8 ε = 24 ε = 48

FPA 0.42|0.28|0.42|0.37 0.43|0.29|0.42|0.39 0.42|0.27|0.44|0.38 0.44|0.28|0.40|0.40 0.43|0.30|0.43|0.39
CFPA-32 0.05|0.01|0.26|0.25 0.04|0.01|0.27|0.25 0.04|0.02|0.26|0.25 0.36|0.30|0.51|0.45 0.63|0.49|0.69|0.54
CFPA-64 0.08|0.05|0.27|0.26 0.08|0.04|0.27|0.26 0.09|0.06|0.30|0.27 0.36|0.32|0.52|0.45 0.62|0.51|0.68|0.54
CFPA-128 0.17|0.14|0.32|0.31 0.16|0.10|0.30|0.30 0.16|0.11|0.32|0.32 0.37|0.28|0.50|0.46 0.60|0.46|0.67|0.53
DCFPA-32 0.03| ≈ 0|0.22|0.33 0.04| ≈ 0|0.23|0.32 0.04| ≈ 0|0.24|0.31 0.04| ≈ 0|0.22|0.31 0.04| ≈ 0|0.24|0.32
DCFPA-64 0.03| ≈ 0|0.28|0.33 0.04| ≈ 0|0.29|0.34 0.04| ≈ 0|0.28|0.34 0.03| ≈ 0|0.29|0.33 0.04| ≈ 0|0.29|0.33

DCFPA-128 0.08|0.01|0.32|0.34 0.08| ≈ 0|0.32|0.33 0.07| ≈ 0|0.33|0.35 0.08| ≈ 0|0.34|0.34 0.08| ≈ 0|0.32|0.33

Table 2: Gender classification accuracies in MPIIDPEye using differentially private eye movement features with majority
voting.

Privacy Sensitivity Classification Accuracies (k-NN|SVM|DT|RF)
Method ε = 0.48 ε = 2.4 ε = 4.8 ε = 24 ε = 48

FPA 0.49|0.58|0.51|0.55 0.49|0.58|0.51|0.55 0.49|0.58|0.51|0.55 0.50|0.58|0.51|0.55 0.50|0.59|0.51|0.55
CFPA-32 0.55|0.59|0.52|0.56 0.55|0.58|0.52|0.56 0.55|0.58|0.52|0.56 0.56|0.58|0.53|0.57 0.58|0.60|0.54|0.58
CFPA-64 0.55|0.58|0.52|0.56 0.55|0.58|0.52|0.56 0.55|0.58|0.52|0.56 0.56|0.58|0.53|0.57 0.58|0.59|0.54|0.58

CFPA-128 0.55|0.57|0.52|0.56 0.55|0.57|0.52|0.56 0.55|0.57|0.52|0.56 0.56|0.58|0.53|0.57 0.58|0.59|0.54|0.59
DCFPA-32 0.54|0.59|0.52|0.56 0.55|0.59|0.52|0.56 0.55|0.59|0.52|0.56 0.54|0.59|0.52|0.56 0.55|0.59|0.52|0.56
DCFPA-64 0.54|0.58|0.52|0.56 0.54|0.58|0.52|0.56 0.54|0.58|0.52|0.56 0.54|0.58|0.52|0.56 0.54|0.58|0.52|0.56

DCFPA-128 0.54|0.57|0.52|0.56 0.54|0.57|0.52|0.56 0.54|0.57|0.52|0.56 0.54|0.57|0.52|0.56 0.54|0.57|0.52|0.56

Table 3: Privacy sensitivity classification accuracies in MPIIPrivacEye using differentially private eye movement features.

previous work (Steil et al. 2019a). While we obtain similar
results compared to previous work for the gender classifica-
tion task, the CFPA method is able to predict gender infor-
mation correctly in the less private regions, namely ε = 48,
as it also has the highest utility values in these regions. The
FPA applied to the complete signal and the DCFPA are not
able to classify genders accurately. We observe that higher
amount of noise that is needed by the FPA and removing the
fine-grained “difference” information between eye move-
ment observations with DCFPA are the reasons for hiding
the gender information successfully in all privacy regions.
Overall, the CFPA provides an optimal equilibrium between
gender and document type classification success in the less
private regions if gender information is not considered as
a feature that should be protected from adversaries. Other-
wise, all proposed methods are able to hide gender informa-
tion from the data in the higher privacy regions as expected.
Gender classification results are depicted in Table 2. Espe-
cially in some methods with k-NNs and SVMs, gender clas-
sification accuracies are close to zero because of the major-
ity voting and it is validated by the results without majority

voting in the Appendix.

For MPIIPrivacEye, we report privacy sensitivity classifi-
cation accuracies using differentially private eye movements
in the Table 3. The FPA performs worse than our methods.
The DCFPA, particularly with the chunk size of 32, outper-
forms all other methods slightly in the higher privacy regions
as it is also the case for the utility results. In the lower pri-
vacy regions, the CFPA performs the best with ≈ 0.60 ac-
curacy. While having≈ 0.60 accuracy in a binary classifica-
tion problem does not form the best performance, according
to the previous work (Steil et al. 2019b), privacy sensitivity
classification using only eye movements with clean data in a
person-independent setup only performs marginally higher
than 0.60. Therefore, we show that even though we use dif-
ferentially private data in the most private settings, we obtain
similar results to the classification results using clean data.
This means that differentially private eye movements can be
used along with scene features for detecting privacy sensi-
tive scenes in AR setups.



Conclusion
We proposed different methods to achieve differential
privacy by correcting, extending, and adapting the FPA
method. Since eye movement features are correlated over
time and are high dimensional, standard differential privacy
methods provide low utility and are vulnerable to inference
attacks. With this motivation, we proposed privacy solutions
for temporally correlated eye movement data. Our methods
can easily be applied to any other human-computer interac-
tion data as well since they are independent of the used data.
Our methods outperform state-of-the-art methods in terms
of both utility and classification accuracies while taking care
of the correlations robustly. In future work, we will analyze
the actual privacy metric ε′ with k values chosen in a private
manner for the centralized differential privacy setting.

Ethics Statement
As head-mounted displays with integrated eye-tracking
technology have found their way into many applications in
daily life, it is possible to record a high amount of eye move-
ment data. Apart from user assistive and comfort provid-
ing tasks, machines can identify biometric information using
eye movement features. Differential privacy provides user
privacy by adding randomly generated noise to the data. Es-
pecially with regard to data protection regulations, such as
General Data Protection Regulation (GDPR) (EUd 2018),
we foresee that manufacturers and users of not only head-
mounted displays, but also any device that is integrated with
eye trackers or sensors that collect temporally correlated per-
sonal data should benefit from this research. One disadvan-
tage is that as a certain amount of noise is added to data for
protection, for purposes such as gaze guidance or context
sensitive aid, one may need more sophisticated approaches
to deal with differentially private data. However, we also
think that this would initiate new research directions in the
field of human-computer interaction.
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Günlü, O. 2019. Key Agreement with Physical Unclonable
Functions and Biometric Identifiers. Ph.D. thesis, TU Mu-
nich, Germany. Published by Dr. Hut Verlag.
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Günlü, O.; Kernetzky, T.; İşcan, O.; Sidorenko, V.; Kramer,
G.; and Schaefer, R. F. 2018. Secure and Reliable Key
Agreement with Physical Unclonable Functions. Entropy
20(5). doi:10.3390/e20050340.

Ishimaru, S.; Kunze, K.; Kise, K.; Weppner, J.; Dengel,
A.; Lukowicz, P.; and Bulling, A. 2014. In the Blink
of an Eye: Combining Head Motion and Eye Blink Fre-
quency for Activity Recognition with Google Glass. In
ACM Augmented Human International Conference, 15:1–
15:4. New York, NY, USA. ISBN 978-1-4503-2761-9. doi:
10.1145/2582051.2582066.

John, B.; Koppal, S.; and Jain, E. 2019. EyeVEIL: Degrad-
ing Iris Authentication in Eye Tracking Headsets. In ACM
Symposium on Eye Tracking Research & Applications, 37:1–
37:5. New York, NY, USA. doi:10.1145/3314111.3319816.

Kellaris, G.; and Papadopoulos, S. 2013. Practical Differ-
ential Privacy via Grouping and Smoothing. Proc. VLDB
Endow. 6(5): 301–312. ISSN 2150-8097. doi:10.14778/
2535573.2488337.

Kifer, D.; and Machanavajjhala, A. 2014. Pufferfish: A
Framework for Mathematical Privacy Definitions. ACM
Trans. Database Syst. 39(1). ISSN 0362-5915. doi:10.1145/
2514689.

Kinnunen, T.; Sedlak, F.; and Bednarik, R. 2010. To-
wards Task-independent Person Authentication Using Eye
Movement Signals. In ACM Symposium on Eye-Tracking
Research & Applications, 187–190. New York, NY, USA.
ISBN 978-1-60558-994-7. doi:10.1145/1743666.1743712.

Komogortsev, O. V.; and Holland, C. D. 2013. Biometric
authentication via complex oculomotor behavior. In 2013
IEEE Sixth International Conference on Biometrics: Theory,
Applications and Systems (BTAS), 1–8. doi:10.1109/BTAS.
2013.6712725.

Komogortsev, O. V.; Jayarathna, S.; Aragon, C. R.; and
Mahmoud, M. 2010. Biometric Identification via an Ocu-
lomotor Plant Mathematical Model. In ACM Symposium on
Eye-Tracking Research & Applications, 57–60. New York,
NY, USA. ISBN 978-1-60558-994-7. doi:10.1145/1743666.
1743679.

Krejtz, K.; Duchowski, A. T.; Niedzielska, A.; Biele, C.; and
Krejtz, I. 2018. Eye tracking cognitive load using pupil
diameter and microsaccades with fixed gaze. PLOS ONE
13(9): 1–23. doi:10.1371/journal.pone.0203629.

Liebling, D. J.; and Preibusch, S. 2014. Privacy Considera-
tions for a Pervasive Eye Tracking World. In ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Com-
puting: Adjunct Publication, 1169–1177. New York, NY,
USA. doi:10.1145/2638728.2641688.

Liu, A.; Xia, L.; Duchowski, A.; Bailey, R.; Holmqvist, K.;
and Jain, E. 2019. Differential Privacy for Eye-tracking
Data. In ACM Symposium on Eye Tracking Research &
Applications, ETRA ’19, 28:1–28:10. New York, NY, USA.
ISBN 978-1-4503-6709-7. doi:10.1145/3314111.3319823.

McSherry, F. D. 2009. Privacy Integrated Queries: An Ex-
tensible Platform for Privacy-preserving Data Analysis. In
ACM SIGMOD International Conference on Management of
Data, 19–30. New York, NY, USA. doi:10.1145/1559845.
1559850.

Narayanan, A.; and Shmatikov, V. 2008. Robust De-
anonymization of Large Sparse Datasets. In IEEE Sympo-
sium on Security and Privacy, 111–125. doi:10.1109/SP.
2008.33.

Orekondy, T.; Schiele, B.; and Fritz, M. 2017. Towards a Vi-
sual Privacy Advisor: Understanding and Predicting Privacy
Risks in Images. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Rastogi, V.; and Nath, S. 2010. Differentially Private Aggre-
gation of Distributed Time-series with Transformation and
Encryption. In ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, 735–746. New York,
NY, USA. ISBN 978-1-4503-0032-2. doi:10.1145/1807167.
1807247.

Raval, N.; Machanavajjhala, A.; and Pan, J. 2019. Olympus:
Sensor Privacy through Utility Aware Obfuscation. Proceed-
ings on Privacy Enhancing Technologies 2019: 5–25. doi:
10.2478/popets-2019-0002.

Razin, Y.; and Feigh, K. 2017. Learning to Predict In-
tent from Gaze During Robotic Hand-Eye Coordination. In
AAAI Conference on Artificial Intelligence, 4596–4602.

Steil, J.; and Bulling, A. 2015. Discovery of Everyday
Human Activities from Long-term Visual Behaviour Using
Topic Models. In ACM International Joint Conference on
Pervasive and Ubiquitous Computing, 75–85. New York,
NY, USA. doi:10.1145/2750858.2807520.

Steil, J.; Hagestedt, I.; Huang, M. X.; and Bulling, A. 2019a.
Privacy-aware Eye Tracking Using Differential Privacy. In
ACM Symposium on Eye Tracking Research & Applications,
ETRA ’19, 27:1–27:9. New York, NY, USA. ISBN 978-1-
4503-6709-7. doi:10.1145/3314111.3319915.

Steil, J.; Koelle, M.; Heuten, W.; Boll, S.; and Bulling, A.
2019b. PrivacEye: Privacy-preserving Head-mounted Eye
Tracking Using Egocentric Scene Image and Eye Movement
Features. In ACM Symposium on Eye Tracking Research &
Applications, ETRA ’19, 26:1–26:10. New York, NY, USA.
ISBN 978-1-4503-6709-7. doi:10.1145/3314111.3319913.

Ungrady, M. B.; Flurie, M.; Zuckerman, B. M.; Mirman,
D.; and Reilly, J. 2019. Naming and Knowing Revisited:
Eyetracking Correlates of Anomia in Progressive Aphasia.



Frontiers in Human Neuroscience 13: 354. ISSN 1662-5161.
doi:10.3389/fnhum.2019.00354.
van Leeuwen, P. M.; de Groot, S.; Happee, R.; and de Win-
ter, J. C. F. 2017. Differences between racing and non-racing
drivers: A simulator study using eye-tracking. PLOS ONE
12(11): 1–19. doi:10.1371/journal.pone.0186871.
Yamada, Y.; and Kobayashi, M. 2018. Detecting mental fa-
tigue from eye-tracking data gathered while watching video:
Evaluation in younger and older adults. Artificial Intelli-
gence in Medicine 91: 39 – 48. ISSN 0933-3657. doi:
https://doi.org/10.1016/j.artmed.2018.06.005.
Zhang, Y.; Hu, W.; Xu, W.; Chou, C. T.; and Hu, J. 2018.
Continuous Authentication Using Eye Movement Response
of Implicit Visual Stimuli. ACM Interact. Mob. Wearable
Ubiquitous Technology 1(4): 177:1–177:22. ISSN 2474-
9567. doi:10.1145/3161410.
Zhao, J.; Zhang, J.; and Poor, H. V. 2017. Dependent Differ-
ential Privacy for Correlated Data. In 2017 IEEE Globecom
Workshops (GC Wkshps), 1–7. doi:10.1109/GLOCOMW.
2017.8269219.



Supplementary Material
We report document type and gender classification results in
MPIIDPEye dataset without majority voting in Tables 4 and
5, respectively.

Document Type Classification Accuracies (k-NN|SVM|DT|RF)
Method ε = 0.48 ε = 2.4 ε = 4.8 ε = 24 ε = 48

FPA 0.47|0.53|0.68|0.74 0.46|0.51|0.68|0.73 0.47|0.52|0.68|0.73 0.46|0.52|0.68|0.73 0.46|0.52|0.68|0.74
CFPA-32 0.34|0.35|0.36|0.38 0.34|0.35|0.36|0.38 0.34|0.36|0.36|0.38 0.39|0.45|0.38|0.42 0.47|0.53|0.44|0.49
CFPA-64 0.34|0.35|0.35|0.38 0.34|0.35|0.36|0.38 0.35|0.36|0.36|0.38 0.39|0.44|0.38|0.42 0.47|0.53|0.44|0.49

CFPA-128 0.34|0.34|0.36|0.39 0.34|0.34|0.36|0.39 0.34|0.34|0.36|0.39 0.38|0.42|0.37|0.42 0.46|0.51|0.43|0.49
DCFPA-32 0.36|0.35|0.36|0.37 0.36|0.34|0.36|0.37 0.35|0.34|0.36|0.37 0.36|0.35|0.36|0.37 0.35|0.34|0.36|0.38
DCFPA-64 0.38|0.37|0.35|0.37 0.37|0.35|0.35|0.37 0.37|0.36|0.35|0.37 0.37|0.36|0.35|0.37 0.37|0.36|0.35|0.37
DCFPA-128 0.40|0.38|0.36|0.38 0.39|0.37|0.35|0.38 0.41|0.39|0.36|0.38 0.38|0.37|0.35|0.38 0.39|0.37|0.35|0.37

Table 4: Document type classification accuracies in MPIIDPEye using differentially private eye movement features without
majority voting.

Gender Classification Accuracies (k-NN|SVM|DT|RF)
Method ε = 0.48 ε = 2.4 ε = 4.8 ε = 24 ε = 48

FPA 0.47|0.41|0.48|0.44 0.47|0.42|0.47|0.45 0.47|0.41|0.48|0.45 0.47|0.41|0.47|0.45 0.48|0.42|0.48|0.45
CFPA-32 0.44|0.31|0.45|0.41 0.44|0.31|0.45|0.41 0.43|0.32|0.45|0.41 0.46|0.42|0.49|0.48 0.51|0.47|0.53|0.53
CFPA-64 0.44|0.35|0.45|0.41 0.44|0.35|0.45|0.41 0.44|0.35|0.46|0.42 0.46|0.43|0.49|0.43 0.51|0.48|0.54|0.53

CFPA-128 0.45|0.39|0.46|0.42 0.45|0.38|0.46|0.42 0.45|0.38|0.46|0.42 0.46|0.43|0.49|0.47 0.51|0.47|0.53|0.53
DCFPA-32 0.44|0.27|0.45|0.42 0.44|0.27|0.45|0.42 0.44|0.27|0.45|0.42 0.44|0.27|0.45|0.42 0.44|0.27|0.46|0.42
DCFPA-64 0.43|0.29|0.46|0.43 0.43|0.29|0.46|0.43 0.44|0.30|0.46|0.43 0.43|0.30|0.46|0.43 0.44|0.29|0.46|0.43
DCFPA-128 0.44|0.32|0.46|0.43 0.44|0.32|0.46|0.43 0.44|0.32|0.46|0.43 0.44|0.32|0.46|0.43 0.44|0.32|0.47|0.43

Table 5: Gender classification accuracies in MPIIDPEye using differentially private eye movement features without majority
voting.


