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Abstract. Since Keccak was selected as the SHA-3 standard, both
its hash mode and keyed mode have attracted lots of third-party
cryptanalysis. Especially in recent years, there is progress in analyzing
the collision resistance and preimage resistance of round-reduced Keccak.
However, for the preimage attacks on round-reduced Keccak-384/512,
we found that the linear relations leaked by the hash value are not
well exploited when utilizing the current linear structures. To make
full use of the 320 + 64 × 2 = 448 and 320 linear relations leaked by
the hash value of Keccak-512 and Keccak-384, respectively, we propose
a dedicated algebraic attack by expressing the output as a quadratic
Boolean equation system in terms of the input. Such a quadratic Boolean
equation system can be efficiently solved with linearization techniques.
Consequently, we successfully improved the preimage attacks on 2/3/4
rounds of Keccak-384 and 2/3 rounds of Keccak-512. Since similar θ and
χ operations exist in the round function of Xoodoo, we make a study
of the permutation and construct a practical zero-sum distinguisher
for 12-round Xoodoo. Although 12-round Xoodoo is the underlying
permutation used in Xoodyak, which has been selected by NIST for the
second round in the Lightweight Cryptography Standardization process,
such a distinguisher will not lead to an attack on Xoodyak.
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1 Introduction

Due to the breakthrough in the cryptanalysis of MD5 [25] and SHA-1 [24], NIST
started a public competition to select the SHA-3 standard in 2007 and Keccak [4]
was selected as the winner in 2012. In recent years, there is progress in the
cryptanalysis of Keccak for both its hash mode and keyed mode. Specifically, by
increasing the one-round connector [8] to two rounds [19] and three rounds [23]
with state-of-the-art algebraic methods, practical collision attacks on 5 rounds



of SHA3-224 [23] and SHA3-256 [10] have been achieved. For preimage attacks,
there is a major progress in FSE 2013 where preimage attacks can reach
up to 4 rounds with the rotational cryptanalysis [18]. In ASIACRYPT 2016,
the so-called linear structures of Keccak were proposed and several practical
preimage attacks on reduced Keccak were identified [11]. Since then, several
improved preimage attacks based on linear structures on reduced Keccak have
been proposed [15,14,20]. For the keyed mode of Keccak, since the cube-attack-
like cryptanalysis [9] was proposed in EUROCRYPT 2015, several cube-based
attacks on Keccak-like primitives have been developed [12,16,17,22,21,5,26].

As can be seen from the preimage attacks based on linear structures on
reduced Keccak, the aim is to construct a linear equation system in order
to ensure that n bits of the hash value can be connected, thus obtaining an
advantage of 2n over brute force. Such a strategy works well when the length of
hash value is small and the rate part is large since there are sufficient degrees
of freedom to help achieve linearization. However, for Keccak-384/512 where
the length of hash value is large and the rate part is small, such a strategy
works inefficiently. This is because linear structures become inefficient due to
the decrease of degrees of freedom and only a few bits of the hash value can be
connected.

Moreover, it seems that the time to solve a large linear equation system
is neglected in all the preimage attacks based on linear structures. While it
causes no problems for already practical attacks, it may underestimate the time
complexity of the theoretical attacks. As will be shown, the improved preimage
attack on 4-round Keccak-384 in [20] is actually not faster than brute force if
taking into account the time to solve a linear equation system of size 192. Thus,
we insist that a careful re-evaluation of the complexity5 is necessary, especially
for a fair comparison with the preimage attacks based on rotational cryptanalysis
that only requires simple calls to the round-reduced Keccak permutation.

Since similar θ and χ operations exist in the round function of Xoodoo [6] and
12-round Xoodoo is the underlying permutation used in Xoodyak [7], which has
been selected by NIST for the second round in the Lightweight Cryptography
Standardization process [1], it would be interesting to make a study of 12-round
Xoodoo.

Our Contributions. To make full use of the linear relations leaked by the
hash value of Keccak-384 and Keccak-512, we carefully control and trace the
propagations of the variables in order to construct a quadratic Boolean equation
system that can be efficiently solved with linearization techniques. In this way,
the preimage attacks on 2 and 3 rounds of Keccak-384/512 are significantly
improved. Moreover, we shed some light on the relations between the preimage

5 Note that the Keccak round function works on 64-bit words. In our implementation
of Gauss elimination, we first encode the Boolean coefficient matrix by treating
every consecutive 64 bits as a 64-bit word in each row. Then, we perform the Gauss
elimination on the encoded coefficient matrix. Such a way will not add extra cost to
enumerate the solutions to the equation system after Gauss elimination.
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attacks based on linear structures [11] and the conditional cube attacks [12]. As
a result, we update the record for the preimage attack on 4-round Keccak-384
obtained in FSE 2013 [18] and improve it by a factor of 23. Since our attacks are
based on solving a large linear equation system, such a cost cannot be neglected.
For a fair comparison, we simulate the gap between the time to solve a linear
equation system and to perform the underlying round-reduced permutation of
Keccak, as displayed in Table 1.

For the underlying 12-round Xoodoo permutation used in the second round
candidate Xoodyak [7] in NIST’s Lightweight Cryptography Standardization
process, we use an MILP-based method to achieve the linearization for 1-round
Xoodoo in both forward and backward directions, thus allowing us to construct
a practical zero-sum distinguisher for 12-round Xoodoo with time complexity
233.

All the attacks have been implemented in C++. The source code and some
discussions of the experiments can be found in Appendix B.

Table 1: Summarizing the preimage attacks on reduced Keccak. The previous
preimage attacks based on linear structures treated the ”Guessing Times” as the
final time complexity. The corresponding size of the constructed linear equation
system is listed in the ”Size” column. The ratio of the time to solve the equation
system to the time to perform the underlying round-reduced permutation is
listed in the ”Solving Time” column. The ”Final Time” column represents the
time complexity when taking the solving time into account.

Rounds Variant Memory Guessing Size Solving Final Ref.
Times Time Time

2 384
- 2129 256 210 2139 [11]

287 289 0 1 289 [13]
- 2113 320 211 2124 [20]
- 293 384 211 2104 subsection 3.2

2 512
- 2384 128 28 2392 [11]
- 2321 192 29 2330 [20]
- 2258 448 212 2270 subsection 3.1

3 384
- 2322 255 210 2332 [11]
- 2321 256 210 2331 [20]
- 2271 461 212 2283 subsection 4.2

3 512
- 2482 128 28 2490 [11]
- 2475 128 28 2483 [20]
- 2440 502 212 2452 subsection 4.1

4 384
- 2378 0 1 2378 [18]
- 2375 192 29 2384 [20]
- 2366 175 29 2375 section 5
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2 Preliminaries

To help understand this paper, we introduce some notations as well as the
specifications of Keccak and Xoodoo in this section.

2.1 Notation

1. ≪, ≫, ⊕, ∨, ∧ represent the logic operations rotate left, rotate right,
exclusive or, or, and, respectively.

2. Z[i] represents the i-th bit of the 64-bit word Z, where the least significant
bit is Z[0].

3. 164 represents 0xffffffffffffffff.

2.2 Description of Keccak

Keccak is a family of hash functions. Since our targets are Keccak-512 and
Keccak-384, we introduce the Keccak internal permutation fk which works on a
1600-bit state A and iterates an identical round function Rk for 24 times. The
state A can be viewed as a three-dimensional array of bits, namely A[5][5][64].
The expression A[x][y][z] represents the bit with (x, y, z) coordinate. At lane
level, A[x][y] represents the 64-bit word located at the xth column and the yth

row. For the description of Keccak in this paper, the coordinates are considered
within modulo 5 for x and y and within modulo 64 for z. The round function
Rk consists of five operations Rk = ι ◦ χ ◦ π ◦ ρ ◦ θ as follows. The influence of
the π ◦ ρ operation is illustrated in Figure 1 for a better understanding.

θ : A[x][y] = A[x][y]⊕ (

4∑
y′=0

A[x− 1][y′])⊕ (

4∑
y′=0

(A[x+ 1][y′] ≪ 1)).

ρ : A[x][y] = A[x][y] ≪ r[x, y].

π : A[y][2x+ 3y] = A[x][y].

χ : A[x][y] = A[x][y]⊕ (A[x+ 1][y] ∧A[x+ 2][y]).

ι : A[x][y] = A[x][y]⊕RC.

Fig. 1: The influence of π ◦ ρ operation
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For simplicity, we denote the output state of the (i + 1)-st round by Ai+1

(0 ≤ i ≤ 23) and the initial input by A0. Moreover, we define Aiθ, A
i
ρ, A

i
π and

Aiχ as follows:

Ai
θ−→ Aiθ

ρ−→ Aiρ
π−→ Aiπ

χ−→ Aiχ
ι−→ Ai+1.

2.3 Description of Xoodoo

The Xoodoo state can be viewed as a two-dimensional array S = (S[i][j]) (0 ≤
i ≤ 3, 0 ≤ j ≤ 2) as shown in Figure 2, where S[i][j] ∈ F 32

2 . The round function
Rd of Xoodoo is composed of five consecutive operations Rd = ρeast ◦ χd ◦ ιd ◦
ρwest ◦ θd, as specified below. The permutation Xoodoo consists of 12 rounds of
Rd.

θd : S[i][j] = S[i][j]⊕ (

2∑
k=0

S[(i− 1)mod 4][k]) ≪ 5⊕ (

2∑
k=0

S[(i− 1)mod 4][k]) ≪ 14.

ρwest : S[i][1] = S[(i− 1)mod 4][1], S[i][2] = S[i][2] ≪ 11.

ιd : S[i][0] = S[i][0]⊕RC
χd : S[i][j] = S[i][j]⊕ S[i][(j + 1)mod 3]S[i][(j + 2)mod 3]

ρeast : S[i][1] = S[i][1] ≪ 1, S[i][2] = S[(i− 2)mod 4][2] ≪ 8.

Fig. 2: Illustration of the Xoodoo state

For simplicity, the inverse of the round function is denoted by R−1d . Similarly,
we denote the output state of the (i+ 1)-st round by Si+1 (0 ≤ i ≤ 11) and the
initial input by S0. Moreover, we define Siθ, S

i
ι , S

i
ρ, S

i
χ as follows:

Si
θd−→ Siθ

ρwest−→ Siρ
ιd−→ Siι

χd−→ Siχ
ρeast−→ Si+1.

2.4 The Keccak Hash Functions Keccak-512 and Keccak-384

The Keccak hash functions follow the sponge construction [3]. For Keccak-l
(l = {224, 256, 384, 512}), the message is first padded to be a message of the
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form M10∗1, whose length is a multiple of (1600− 2l). Specifically, the original
message M is first padded with a single bit ”1” and then with a smallest non-
negative number of ”0” and finally with a single bit ”1”. Then, the message can
be divided into several (1600−2l)-bit message blocks. Starting with a predefined
1600-bit initial state, which is zero for Keccak-l, the first (1600− 2l) bits of the
initial state is XORed with the message block, followd by the permutation fk.
Such a step is repeated until all message blocks are processed. Then, the first
l bits of the state is exacted as the hash value. We refer the readers to [4] for
more details.

2.5 Leaked Linear Relations

For a better understanding, we re-introduce some properties of the χ operation
in [11]. Denote a 5-bit input by (a[0], a[1], a[2], a[3], a[4]) ∈ F 5

2 . After χ operation,
the 5-bit output is denoted by (b[0], b[1], b[2], b[3], b[4]) ∈ F 5

2 . Specifically, we have
the following relation:

b[i] = a[i]⊕ a[i+ 1] ∧ a[i+ 2],

where the index are considered within modulo 5.
Since χ is bijective, (a[0], a[1], a[2], a[3], a[4]) will be uniquely determined

when (b[0], b[1], b[2], b[3], b[4]) are fully known. To help understand the attacks in
this paper, we introduce some properties identified in [11].

Property 1 [11] When (b[i], b[i+1], b[i+2]) are known, 2 linearly independent
relations can be derived in terms of (a[0], a[1], a[2], a[3], a[4]).

For a better understanding, we give a slightly detailed explanation for Property 1.
Observe the expressions to compute (b[i], b[i+ 1], b[i+ 2]):

b[i] = a[i]⊕ a[i+ 1] ∧ a[i+ 2],

b[i+ 1] = a[i+ 1]⊕ a[i+ 2] ∧ a[i+ 3],

b[i+ 2] = a[i+ 2]⊕ a[i+ 3] ∧ a[i+ 4].

Therefore, we have

b[i+ 1] ∧ a[i+ 2] = a[i+ 1] ∧ a[i+ 2],

b[i] = a[i]⊕ a[i+ 1] ∧ a[i+ 2] = a[i]⊕ b[i+ 1] ∧ a[i+ 2]⊕ a[i+ 2],

b[i+ 2] ∧ a[i+ 3] = a[i+ 2] ∧ a[i+ 3],

b[i+ 1] = a[i+ 1]⊕ a[i+ 2] ∧ a[i+ 3] = a[i+ 1]⊕ b[i+ 2] ∧ a[i+ 3]⊕ a[i+ 3].

In other words, the following two linearly independent relations in terms of
(a[0], a[1], a[2], a[3], a[4]) are leaked:

b[i] = a[i]⊕ b[i+ 1] ∧ a[i+ 2]⊕ a[i+ 2],

b[i+ 1] = a[i+ 1]⊕ b[i+ 2] ∧ a[i+ 3]⊕ a[i+ 3].

Property 2 [11] a[i] = b[i] holds with probability 0.75 ≈ 2−0.42.

The Property 2 is also obvious since the probability that a[i+ 1] ∧ a[i + 2] = 0
is 0.75.
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Leaked linear relations of Keccak-384. The hash value of Keccak-384 is composed
of the following 6 state words

(Ar[0][0], Ar[1][0], Ar[2][0], Ar[3][0], Ar[4][0], Ar[0][1])

when fk consists of r rounds of Rk. Therefore, according to the hash value,
(Ar−1π [0][0], Ar−1π [1][0], Ar−1π [2][0], Ar−1π [3][0], Ar−1π [4][0]) can be uniquely deter-
mined. In addition, based on Property 2, Ar−1π [0][1][z] = Ar[0][1][z] holds with
probability 2−0.42 for 0 ≤ z ≤ 63.

In conclusion, 5 × 64 = 320 linearly independent relations in terms of Ar−1

are leaked by the hash value. In addition, there are also 64 probabilistic linear
relations in terms of Ar−1 leaked by the hash value, each of which holds with
probability 2−0.42.

Leaked linear relations of Keccak-512. The hash value of Keccak-512 is composed
of the following 8 state words

(Ar[0][0], Ar[1][0], Ar[2][0], Ar[3][0], Ar[4][0], Ar[0][1], Ar[1][1], Ar[2][1]).

Thus, according to the hash value, we can uniquely determine

(Ar−1π [0][0], Ar−1π [1][0], Ar−1π [2][0], Ar−1π [3][0], Ar−1π [4][0]).

In addition, based on Property 1, it also leaks 64×2 = 128 linearly independent
relations in terms of

(Ar−1π [0][1], Ar−1π [1][1], Ar−1π [2][1], Ar−1π [3][1], Ar−1π [4][1]).

In conclusion, there are 5× 64 + 128 = 448 linearly independent relations in
terms of Ar−1 leaked by the hash value.

2.6 Overview

We briefly introduce the basic idea of our attacks using an algebraic method.
For the preimage attack, assuming that the length of the hash value is l, if
the attacker can exhaust a space of size 2l in 2l0 time (l0 ≤ l), we say an
advantage of 2l−l0 over brute force is obtained on the whole. To achieve it with
the algebraic method, we can first choose l − l0 undetermined variables. Then,
we guess 2l−l0 different values for the variables which do not belong to the set
formed by the chosen undetermined variables. For each different guess, a linear
equation system can be constructed to uniquely determine the undetermined
l − l0 variables. If taking into account the time T to solve such an equation
system, the time complexity to exhaust a space of size 2l is then estimated
as T × 2l0 . In fact, our method can be viewed as an efficient exhaustive search
based on guess-and-determine techniques. The technical part is to identify which
bits should be guessed in order to gain more advantages over the brute force,
which is obviously non-trivial. To achieve this, we carefully trace and control the
propagations of the variables.
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3 Preimage Attacks on 2-Round Keccak-384/512

In this section, we present the preimage attacks on 2-round Keccak-384/512.
The basic idea is to make full use of the leaked linear relations from the hash
value and then to construct a quadratic Boolean equation system which can be
efficiently solved with linearization techniques.

3.1 Preimage Attack on 2-Round Keccak-512

The preimage attack on 2-round Keccak-512 is illustrated in Figure 3. Specifical-
ly, we introduce 64×4 = 256 variables v0 = {v10 , v20 , ···, v640 }, v1 = {v11 , v21 , ···, v641 },
v2 = {v12 , v22 , · · ·, v642 } and v3 = {v13 , v23 , · · ·, v643 }. Moreover, these variables are
placed in this way: A0[0][0] = v0, A

0[0][1] = v0 ⊕ C ′0, A0[1][0] = v1, A
0[1][1] =

v1 ⊕ C ′1, A0[2][0] = v2, A
0[2][1] = v2 ⊕ C ′2, A0[3][0] = v3 and A0[3][1] = v3 ⊕ C ′3,

where C ′i ∈ F 64
2 (0 ≤ i ≤ 3).

Fig. 3: Preimage attack on 2-round Keccak-512

By tracing the propagations of the variables through the linear layer in the
first round, as shown in Figure 3, we can know that there will be 64 × 3 =
192 possible quadratic terms formed by the 256 variables (v0, v1, v2, v3) after χ
operation in the first round. By introducing 192 new variables v4 = {v14 , v24 , · ·
·, v1924 } to replace all the quadratic terms, the first round Keccak permutation
can be viewed as linear in the 256 + 192 = 448 variables (v0, v1, v2, v3, v4). Since
the hash value of Keccak-512 can leak 320 + 64× 2 = 448 linearly independent
relations in terms of A1

π and A1
π is linear in (v0, v1, v2, v3, v4), a linear Boolean

equation system of size 448 in terms of the 448 variables can be constructed.
Such an equation system is expected to have one solution. Once the solution is
generated, the corresponding value of the message is known and we can compute
the corresponding hash value and compare it with the target one.

Complexity evaluation. To match the hash value, it is expected to generate 2256

different values of (C ′0, C
′
1, C

′
2, C

′
3, A

0[4][0]). For each value of (C ′0, C
′
1, C

′
2, C

′
3, A

0[4][0]),
we are required to exhaust all the 2256 values of the 256 variables. However,
by constructing an equation system, we can traverse the 2256 values in only 1
time for each value of (C ′0, C

′
1, C

′
2, C

′
3, A

0[4][0]). Taking the padding rule into
account, 2256+2 = 2258 different values of (C ′0, C

′
1, C

′
2, C

′
3, A

0[4][0]) should be
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tried. Therefore, the time complexity of the preimage attack on 2-round Keccak-
512 is 2258, which is equivalent to 2270 calls to the 2-round Keccak permutation
when taking the time to solve the equation system into account.

3.2 Preimage Attack on 2-Round Keccak-384

An illustration of the preimage attack on 2-round Keccak-384 is given in Figure 4.
First of all, we introduce 128 + 128 + 64 = 320 variables v0 = {v10 , v20 , · · ·, v640 },
v1 = {v11 , v21 , · · ·, v641 }, v2 = {v12 , v22 , · · ·, v642 }, v3 = {v13 , v23 , · · ·, v643 } and v4 =
{v14 , v24 , · · ·, v644 }. Then, let A0[0][0] = v0, A

0[0][1] = v1, A
0[0][2] = v0 ⊕ v1 ⊕ C ′4,

A0[2][0] = v2, A
0[2][1] = v3, A

0[2][2] = v2⊕ v3⊕C ′5, A0[3][0] = v4 and A0[3][1] =
v4 ⊕ C ′6, where C ′i ∈ F 64

2 (4 ≤ i ≤ 6).

Fig. 4: Preimage attack on 2-round Keccak-384

According to the propagations of the variables in the linear layer of the first
round in Figure 4, it can be observed that there will be at most 64 quadratic
terms formed by (v2, v4) in A1. Thus, we introduce extra 64 new variables v5 =
{v15 , v25 , ···, v635 } to replace all the quadratic terms. Note that we can extract from
the hash value 320 linearly independent relations and 64 probabilistic linearly
independent relations in terms of A1

π and A1
π is now linear in (v0, v1, v2, v3, v4, v5).

In other words, we can construct a linear Boolean equation system of size 320 +
64 = 384 in terms of 320 + 64 = 384 variables. Therefore, we can expect one
solution for such an equation system.

Complexity evaluation. Note that 64 probabilistic linear relations are utilized
in our equation system, each of which holds with probability 0.75 ≈ 2−0.42.
Therefore, apart from matching the 384-bit hash value, the probabilistic linear re-
lations have to be fulfilled. Consequently, it is expected to try 2384+0.42×64 = 2411

possible different messages. To achieve it, we can randomly choose 2411−320 =
291 values for (A0[1][0], A0[1][1], A0[1][2], A0[4][0], A0[4][1], C ′4, C

′
5, C

′
6). Then,

traverse the 2320 values of (v0, v1, v2, v3, v4) by solving an equation system. Such
an equation system is expected to have only 1 solution. Thus, we can exhaust
2411 messages with time complexity 291 and the time complexity of the preimage
attack on 2-round Keccak-384 becomes 293 by taking the padding rule into
consideration. Taking the time to solve the equation system into account, the
time complexity is equivalent to 2104 calls to the 2-round Keccak permutation.
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4 Preimage Attack on 3-Round Keccak-384/512

The improved preimage attacks on 2-round Keccak-384/512 have been described.
The basic ideas are simple since one can easily observe the number of quadratic
terms. However, as can be seen from our preimage attacks on 3-round Keccak-
384/512, it is not so intuitive and requires a dedicated (nontrivial) analysis of
the propagation of variables. Moreover, instead of replacing a quadratic term
formed by the variables, we will replace a whole quadratic expression with a
new variable.

4.1 Preimage Attack on 3-Round Keccak-512

The preimage attack on 3-round Keccak-512 is illustrated in Figure 5. Specifi-
cally, choose 128 variables v0 = {v10 , v20 , · · ·, v640 } and v2 = {v12 , v22 , · · ·, v642 }. Then,
let A0[0][0] = v0, A

0[0][1] = v0⊕C0, A0[2][0] = v2 and A0[2][1] = v2⊕C1, where
C0 ∈ F 64

2 and C1 ∈ F 64
2 .

Fig. 5: Preimage attack on 3-round Keccak-512

As can be seen from Figure 5, there are several conditions on A0
θ, as shown

below.

A0
θ[1][0] = 164, A0

θ[1][1] = 0, A0
θ[1][4] = 164,

A0
θ[3][1] = 0, A0

θ[3][2] = 0,

A0
θ[4][0] = 164, A0

θ[4][4] = 164.

The above conditions can be converted into those on A0, as specified below:

B0 = A0[0][2]⊕A0[0][3]⊕A0[0][4], (1)

B2 = A0[2][2]⊕A0[2][3]⊕A0[2][4], (2)

B3 = A0[3][2]⊕A0[3][3]⊕A0[3][4], (3)
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A0[1][0]⊕ (B0 ⊕ C0)⊕ (B2 ⊕ C1) ≪ 1 = 164, (4)

A0[1][1]⊕ (B0 ⊕ C0)⊕ (B2 ⊕ C1) ≪ 1 = 0, (5)

A0[1][4]⊕ (B0 ⊕ C0)⊕ (B2 ⊕ C1) ≪ 1 = 164, (6)

A0[3][1]⊕ (B2 ⊕ C1)⊕ (B4 ⊕A0[4][0]) ≪ 1 = 0, (7)

A0[3][2]⊕ (B2 ⊕ C1)⊕ (B4 ⊕A0[4][0]) ≪ 1 = 0, (8)

A0[4][0]⊕ (A0[3][0]⊕A0[3][1]⊕B3)⊕ (B0 ⊕ C0) ≪ 1 = 164, (9)

A0[4][4]⊕ (A0[3][0]⊕A0[3][1]⊕B3)⊕ (B0 ⊕ C0) ≪ 1 = 164. (10)

In our preimage attack on 3-round Keccak-512, two message blocks will be used.
For the first message block, it will be randomly chosen. For each random value of
the first message block, (B0, B2, B3, A

0[1][4], A0[4][4], A0[3][2]) will become fixed
in the above equation system. As for the remaining variables marked in red, they
can be computed step by step as follows:

A0[4][0] = A0[4][4],

A0[3][1] = A0[3][2],

C1 = A0[3][2]⊕ (B4 ⊕A0[4][0]) ≪ 1⊕B2.

A0[1][0] = A0[1][4],

A0[1][1] = A0[1][4]⊕ 164,

C0 = A0[1][4]⊕ (B2 ⊕ C1) ≪ 1⊕B0 ⊕ 164.

A0[3][0] = A0[4][4]⊕ (B0 ⊕ C0) ≪ 1⊕ (A0[3][1]⊕B3)⊕ 164.

In other words, whatever the value of the first message block is, the 7 conditions
on A0

θ can always be satisfied by carefully choosing the value of second message
block.

After the conditions on A0
θ are satisfied, at most five 64-bit words of A1

will contain variables, as shown in Figure 5. Note that except A1[0][3], each bit
of (A1[0][0], A1[0][4], A1[1][2], A1[1][3]) must contain variables. As for A1[0][3],
which bit of A1[0][3] contains variables is uncertain and it depends on the value
of A0

π[2][3].
To control the diffusion of the variables in the first column of A1, we choose a

random value c0 ∈ F t2 and set up the following t (1 ≤ t ≤ 64) Boolean equations

4∑
j=0

A1[0][j][z] = c0[z]

where 0 ≤ z ≤ t − 1. It can be easily observed that the t Boolean equations
are independent since each equation contains a different variable of v2. In other
words, by exhausting the 2t possible values of c0, we can traverse 2t different
values of (v0, v2).

Then, the propagation of (v0, v2) in the linear layer of the second round
can be traced as shown in Figure 5. According to the positions which contain
variables, we can know that (A1

χ[1][1], A1
χ[2][1], A1

χ[0][3], A1
χ[1][3]) must contain
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newly-generated quadratic terms and the total number of the quadratic terms
is 64× 4 = 256. Moreover, among the expressions of the following states:

A1
χ[0][0], A1

χ[3][0], A1
χ[4][0],

A1
χ[0][1],

A1
χ[2][2], A1

χ[3][2], A1
χ[4][2],

A1
χ[4][3],

A1
χ[1][4], A1

χ[2][4], A1
χ[3][4],

there will be additional 11 × (64 − t) newly-generated quadratic terms6. In a
word, there will be in total 256 + 11 × (64 − t) = 960 − 11t newly generated
quadratic terms.

Then, introduce 960− 11t new intermediate variables v4 = {v14 , · · ·, v960−11t4 }
to replace all the newly-generated quadratic terms. In this way, the two-round
Keccak permutation can be viewed as linear in the 128 + 960− 11t = 1088− 11t
variables (v0, v2, v4).

Since the output of Keccak-512 will leak 64 × 7 = 448 linearly independent
equations in terms of A2

π and A2
π is now linear in (v0, v2, v4), extra 448 linear

equations in terms of (v0, v2, v4) can be set up. Note that we have previously
set up t linear equations in terms of (v0, v2) in order to control the diffusion of
variables in the first column of A1. Therefore, in total 448 + t linear equations
in terms of the 1088 − 11t variables (v0, v2, v4) are set up. To ensure that the
equation system can be efficiently solved with Gauss elimination, we add the
following constraint:

1088− 11t ≤ 448 + t.

We choose the minimum value t = 54. In this way, a linear Boolean equation
system of size 502 in terms of 494 variables can be constructed. Thus, it is
expected that there is at most one solution for each guess of c0. In other words,
by exhausting 254 possible values of c0 and solving the final equation system,
we can equivalently traverse all 2128 possible values of (v0, v2) with 254 times of
solving a Boolean equation system of size 502.

Complexity evaluation. For a given value of the first message block, the second
message block can take at most 2128 possible values in order to construct a
preferred equation system. To satisfy the padding rule, we need to generate
2512−128+2 = 2386 random values of the first message block. For each value
of the first message block, the naive exhaustive search of the 2128 values of
the second message block will require 2128 time. However, by constructing an
equation system of size 502, the 2128 values can be traversed in only 254 time.
Therefore, the time complexity of the preimage attack on 3-round Keccak-512
is 2386+54 = 2440, which is equivalent to 2452 calls to the 3-round Keccak
permutation.

6 The quadratic expression (x0 ⊕ x1)x2 will be treated as one quadratic term rather
than two different quadratic terms (x0x2, x0x1)
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4.2 Preimage Attack on 3-Round Keccak-384

The preimage attack on 3-round Keccak-384 is illustrated in Figure 6. Specif-
ically, choose 256 variables v0 = {v10 , v20 , · · ·, v640 }, v1 = {v11 , v21 , · · ·, v641 },
v2 = {v12 , v22 , · · ·, v642 } and v3 = {v13 , v23 , · · ·, v643 }. Then, let A0[0][0] =
v0 ⊕ v1 ⊕ C2, A

0[0][1] = v0, A
0[0][2] = v1, A0[2][0] = v2, A

0[2][1] = v3 and
A0[2][2] = v2 ⊕ v3 ⊕ C3, where C2 ∈ F 64

2 and C3 ∈ F 64
2 .

Fig. 6: Preimage attack on 3-round Keccak-384

Similarly, some conditions on A0
θ are added to slow down the diffusion of the

variables, as specified below:

A0
θ[1][0] = 164, A0

θ[1][1] = 0, A0
θ[1][2] = 0, A0

θ[1][3] = 0, A0
θ[1][4] = 164,

A0
θ[3][1] = 0, A0

θ[3][2] = 0, A0
θ[3][3] = 0,

A0
θ[4][0] = 164, A0

θ[4][1] = 164, A0
θ[4][4] = 164.

Similar to the preimage attack on 3-round Keccak-512, these conditions can be
converted into those on A0 as follows:

B′0 = A0[0][3]⊕A0[0][4], (11)

B′2 = A0[2][3]⊕A0[2][4], (12)

B′4 = A0[4][2]⊕A0[4][3]⊕A0[4][4], (13)

X = A0[1][3], (14)

Y = A0[1][4], (15)

Z = A0[3][2], (16)

W = A0[3][3], (17)

A0[1][0]⊕ (B′0 ⊕ C2)⊕ (B′2 ⊕ C3) ≪ 1 = 164, (18)

A0[1][1]⊕ (B′0 ⊕ C2)⊕ (B′2 ⊕ C3) ≪ 1 = 0, (19)
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A0[1][2]⊕ (B′0 ⊕ C2)⊕ (B′2 ⊕ C3) ≪ 1 = 0, (20)

X ⊕ (B′0 ⊕ C2)⊕ (B′2 ⊕ C3) ≪ 1 = 0, (21)

Y ⊕ (B′0 ⊕ C2)⊕ (B′2 ⊕ C3) ≪ 1 = 164, (22)

A0[3][1]⊕ (B′2 ⊕ C3)⊕ (B′4 ⊕A0[4][0]⊕A0[4][1]) ≪ 1 = 0, (23)

Z ⊕ (B′2 ⊕ C3)⊕ (B′4 ⊕A0[4][0]⊕A0[4][1]) ≪ 1 = 0, (24)

W ⊕ (B′2 ⊕ C3)⊕ (B′4 ⊕A0[4][0]⊕A0[4][1]) ≪ 1 = 0, (25)

A0[4][0]⊕ (B′3 ⊕A0[3][0]⊕A0[3][1])⊕ (B′0 ⊕ C2) ≪ 1 = 164, (26)

A0[4][1]⊕ (B′3 ⊕A0[3][0]⊕A0[3][1])⊕ (B′0 ⊕ C2) ≪ 1 = 164, (27)

A0[4][4]⊕ (B′3 ⊕A0[3][0]⊕A0[3][1])⊕ (B′0 ⊕ C2) ≪ 1 = 164. (28)

In our preimage attack on 3-round Keccak-384, two message blocks will be u-
tilized. For a random value of the first message block, (B′0, B

′
2, B

′
4, X, Y, Z,W,A

0[4][4])
in the above equation system become fixed. To make the above equation system
solvable, the following conditions on (X,Y ) and (Z,W ) have to be fulfilled:

X ⊕ Y = 164,

Z ⊕W = 0.

Obviously, the two conditions hold with probability 2−128 for a random first
message block. Consequently, we can expect a preferred tuple (X,Y, Z,W ) after
trying 2128 random values of the first message block.

Now, let us assume that the 128 bit conditions on (X,Y ) and (Z,W ) have
been fulfilled. Then, the remaining variables marked in red in the above equation
system can be computed step by step as follows:

A0[4][0] = A0[4][4],

A0[4][1] = A0[4][4],

C3 = Z ⊕ (B′4 ⊕A0[4][0]⊕A0[4][1]) ≪ 1⊕B′2,
A0[3][1] = (B′2 ⊕ C3)⊕ (B′4 ⊕A0[4][0]⊕A0[4][1]) ≪ 1,

C2 = X ⊕B′0 ⊕ (B′2 ⊕ C3) ≪ 1,

A0[3][0] = A0[4][4]⊕ (B′3 ⊕A0[3][1])⊕ (B′0 ⊕ C2) ≪ 1⊕ 164,

A0[1][0] = Y,

A0[1][1] = X,

A0[1][2] = X.

In other words, if a preferred capacity part is generated, i.e. the conditions on
(X,Y, Z,W ) are satisfied, we can always properly choose the value of the second
message block to make the conditions on A0

θ hold.

To slow down the diffusion of the variables in the first and third column of
A1, guess the values of

∑4
j=0A

1[0][j] and
∑4
j=0A

1[2][j]. In other words, choose

a random value (c1, c2) where c1 ∈ F 64
2 and c2 ∈ F 64

2 and set up the following
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128 linear equations.

4∑
j=0

A1[0][j][z] = c1[z],

4∑
j=0

A1[2][j][z] = c2[z],

where 0 ≤ z ≤ 63. Moreover, choose a random value c3 ∈ F t2 (1 ≤ t ≤ 64) and
set up the following linear Boolean equations

4∑
j=0

A1[1][j][z] = c3[z],

where 0 ≤ z ≤ t− 1. In other words, we will also guess t bits of the sum of the
second column

∑4
j=0A

1[1][j] and treat the remaining (64− t) bits as variables.
In this way, the propagation of the variables through the linear layer in the

second round can be traced. As shown in Figure 6, the newly-generated quadratic
terms will appear at (A1

χ[1][1], A1
χ[2][1], A1

χ[0][3], A1
χ[1][3]), the number of which

is 4× (64− t) = 256− 4t.
Finally, introduce 256− 4t new variables v4 = {v14 , v24 , · · ·, v256−4t4 } to replace

all the possible quadratic terms. In this way, the first two rounds of Keccak
permutation can be viewed as linear in the 256 + 256− 4t = 512− 4t variables
(v0, v1, v2, v3, v4).

Since the hash value can leak 320 linear relations in terms of A2
π and A2

π

is now linear in (v0, v1, v2, v3, v4), extra 320 linear equations in terms of the
(v0, v1, v2, v3, v4) can be set up. Note that we have previously set up 128 + t
linear equations in terms of (v0, v1, v2, v3) to slow down the propagation of the
variables in the first/second/third column of A1. Therefore, 320+128+t = 448+t
linear equations have been set up. To ensure that the equation system can be
efficiently solved with Gauss elimination, we add a constraint on t as below:

512− 4t ≤ 448 + t.

We choose the minimum value t = 13. In this way, there will 461 linear equations
in terms of 460 variables. Therefore, we can expect at most one solution of
(v0, v1, v2, v3) for each guess of (c1, c2, c3). In other words, by exhausting all the
2128+13 = 2141 possible values of (c1, c2, c3), we can traverse all the 2256 possible
values of (v0, v1, v2, v3) by solving a Boolean equation system of size 461.

Complexity evaluation. For a given valid value of the first message block, the
second message block can take at most 2256 possible values in order to construct
a preferred equation system. In addition, we could only expect one valid value
of the first message block among 2128 random values since there are 128 bit
conditions on (X,Y ) and (Z,W ). To satisfy the padding rule, it is expected to
try 2384−256+128+2 = 2258 possible values of the first message block. Then, it
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is expected that there will be 2130 valid values of the first message block. For
each valid value, the exhaustive search will require 2256 time to traverse all the
2256 values of the second message block. However, by constructing an equation
system, the 2256 values can be traversed in only 2141 time. Therefore, the time
complexity of the preimage attack on 3-round Keccak-384 is 2130+141 + 2258 =
2271, which is equivalent to 2283 calls to the 3-round Keccak permutation.

Utilizing probabilistic linear relations. In our preimage attack on 2-round
Keccak-384, we introduced 64 probabilistic linear equations, each of which holds
with probability 0.75 ≈ 2−0.42. It is natural to ask whether such an idea can
be applied to the 3-round preimage attack. Suppose we choose n (0 ≤ n ≤ 64)
probabilistic linear relations. Then, the time complexity of the attack becomes

2258+0.42n + 2130+0.42n+128+t = 2258+0.42n + 2258+t+0.42n.

Moreover, the constraint on t is changed as follows:

512− 4t ≤ 448 + t+ n⇒ 5t+ n ≥ 64⇒ t+ 0.2n ≥ 12.8⇒ t+ 0.42n ≥ 0.22n+ 12.8.

To ensure 0.22n + 12.8 < 13, n < 1 must hold. Since n is an integer, it means
n = 0 and we should not utilize the probabilistic linear relations.

5 Preimage Attack on 4-round Keccak-384

It can be easily observed that the above preimage attacks are mainly based on the
careful manual analysis of the propagation of variables. For the preimage attack
on 4-round Keccak-384, we cannot find any similar structure which can bring
advantages over the best known result. Therefore, we turn to the conditional
cube tester [12], which shares a similar idea to slow down the propagation of
variables by adding conditions.

To establish the conditional cube tester for 7-round Keccak-384 [12], the
authors used an MILP-based method and have found 17 variables in A0 as
well as the corresponding conditions which can make A2 linear in these 17
variables. While the aim in [12] is to find only 17 such variables to construct
the 7-round distinguisher, our aim is to find as many such variables as possible.
Thus, we implemented the MILP model in [12] and set the objective function as
maximizing the number of variables. According to the results returned by the
Gurobi solver [2], there are 18 such variables v0 = {v10 , v20 , · · ·, v180 }, as shown in
Table 3 in Appendix.

Similar to the preimage attacks on 3-round Keccak-512 and 3-round Keccak-384,
two message blocks for the preimage attack on 4-round Keccak-384 will be
utilized. The main reason is that A0

θ[4][2][57] = 0 and A0
θ[4][4][57] = 1 (see

Table 3) cannot hold simultaneously if only one message block is utilized. This
is because A0[4][2] = A0[4][3] = A0[4][4] = 0 holds in the initial value of
the capacity part. Moreover, note that there are in total 71 independent bit
conditions after A0

θ[4][4][57] = A0
θ[4][2][57] ⊕ 1 can be fulfilled with the first
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message block. On the other hand, there are in total 64× 13 = 832 free bits in
the rate part of Keccak-384. Since 35 positions are set as variables, the number
of the remaining free bits is 832 − 35 = 797. Moreover, the padding rule can
always be satisfied by a proper choice of the value for the second block.

Since A2 is linear in the 18 variables in Table 3, there will be at most
153 quadratic terms formed by the 18 variables in the expressions of A3. By
introducing 153 new variables v1 = {v11 , v21 , · · ·, v1531 } to replace the 153 quadratic
terms, A3 will become linear in (v0, v1). Based on the hash value of Keccak-384,
(A3

π[0][0], A3
π[1][0], A3

π[2][0], A3
π[3][0], A3

π[4][0]) can be derived. Consequently, we
can set up 5 × 35 = 175 linear Boolean equations in terms of (v0, v1) by con-
sidering 175 leaked bits (A3

π[0][0][i], A3
π[1][0][i], A3

π[2][0][i], A3
π[3][0][i], A3

π[4][0][i])
(0 ≤ i ≤ 34). Since there are only 153 + 18 = 171 variables, it is expected that
there is at most one solution to such an equation system.

Based on the above analysis, the attack procedure to find the preimage for
4-round Keccak-384 can be described as follows:

Step 1: Randomly choose a value for the first message block and check whether
A0
θ[4][4][57] = A0

θ[4][2][57]⊕ 1 holds. It is expected to try only 2 random
values.

Step 2: Properly choose a value for two bits of the second message block to make
the padding rule hold. Set up the equation system SY0 formed by the
71 independent conditions displayed in Table 3.

Step 3: Enumerate the solution of the equation system SY0. For each solution,
construct the equation system SY1 of size 175 in terms of (v0, v1) and
solve it, which is expected to have only one solution. After obtaining the
solution to SY1, the value of the second message block is fully known
and we can check whether it is the preimage by compressing it with the
4-round Keccak permutation. If the preimage is found, exit. Otherwise,
try another solution to SY0.

Complexity evaluation. In the above attack procedure, Step 1 is expected to be
carried out twice. Step 2 is carried out only once. At Step 3, it is expected to
enumerate 2366 solutions to SY0 since the hash is a 384-bit value and there are
in total 18 variables. For each solution, the linear Boolean equation system SY1
of size 175 will be solved. The time to solve SY1 is dominated by the Gauss
elimination. According to our estimation, solving SY1 is equivalent to 29 calls
to the 4-round Keccak permutation. Thus, the time complexity of the preimage
attack on 4-round Keccak is 2366+9 = 3375.

6 Practical Zero-Sum Distinguisher for 12-Round
Xoodoo

Different from the Keccak round function Rk, the algebraic degree of the inverse
of Rd (denoted by R−1d ) is 2 rather than 3, which has been mentioned in [6]. To
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have a better understanding, it is better to look into the nonlinear operation χd
in Rd. From the bit level, χd can be expressed as follows:

Siχ[x][0][z] = Siι [x][0][z]⊕ Siι [x][1][z]Siι [x][2][z],

Siχ[x][1][z] = Siι [x][1][z]⊕ Siι [x][2][z]Siι [x][0][z],

Siχ[x][2][z] = Siι [x][2][z]⊕ Siι [x][0][z]Siι [x][1][z].

Therefore, we also have

Siι [x][0][z] = Siχ[x][0][z]⊕ Siχ[x][1][z]Siχ[x][2][z],

Siι [x][1][z] = Siχ[x][1][z]⊕ Siχ[x][2][z]Siχ[x][0][z],

Siι [x][2][z] = Siχ[x][2][z]⊕ Siχ[x][0][z]Siχ[x][1][z].

In other words, the degree of χ−1d is also 2. Based on this fact, a trivial zero-
sum distinguisher for 12-round Xoodoo can be derived with time complexity 265.
Specifically, the attacker randomly chooses a subspace of size 265 for S6. Then,
compute in both forward and backward directions to collect (S0, S12) for each
value of S6. In this way, the following property must hold:∑

S0 = 0,
∑

S12 = 0. (29)

Fig. 7: Illustration of the zero-sum distinguisher for full Xoodoo

To reduce the time complexity of the zero-sum distinguisher for 12-round
Xoodoo, a possible way is to linearize the one-round permutation simultaneously
in both forward and backward directions. In other words, we can set such 33
variables v0 = {v10 , v20 , · · ·, v330 } in S6 that S5 and S7 are linear in these 33
variables when computing backward and forward, as shown in Figure 7. In this
way, Equation 29 still holds, thus improving the time complexity of the zero-sum
distinguisher from 265 to 233.

To achieve this goal, a similar MILP-based method as in [12,16] will be used.
As discussed in Appendix A, if the variables are only set at S6[i][0] (0 ≤ i ≤ 3),
S5 will be always linear in these variables. However, whether S7 is linear in these
variables in unknown. According to the result returned by the Gurobi solver, if
the variables can only be chosen from S[i][0] (0 ≤ i ≤ 3), no such 33 variables
exist. Thus, we turn to choose variables from

S6[0][0], S6[1][0], S6[2][0], S6[3][0], S6[0][1].
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In this way, such 33 variables v0 = {v10 , v20 , · · ·, v330 } can be found, as displayed in
Table 2. Thus, the zero-sum distinguisher for 12-round Xoodoo can be achieved
with time complexity 233.

7 Conclusion

To make full use of the linear relations leaked by the hash value of Keccak-384
and Keccak-512, we carefully control and trace the propagations of the variables
in order to construct a suitable quadratic Boolean equation system which can
be efficiently solved with linearization techniques. As a result, significantly
improved preimage attacks on 2/3-round Keccak-512 and 3-round Keccak-384
are achieved. In addition, combining the ideas used in the conditional cube
tester, the best preimage attack on 4-round Keccak-384 is improved by a
factor of 23 as well. For the 12-round Xoodoo permutation used in the second
round candidate Xoodyak in NIST’s Lightweight Cryptography Standardization
process, by linearizing the one-round permutation in both forward and backward
directions simultaneously, a zero-sum distinguisher for 12-round Xoodoo can
be constructed with practical time complexity 233. However, we also have to
emphasize that such a distinguisher will not threaten the security of Xoodyak.
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A A Property of R−1
d

We present a property of R−1d as follows.

Property 3 When

(Si+1[0][j0], Si+1[1][j0], Si+1[2][j0], Si+1[3][j0]),

(Si+1[0][j1], Si+1[1][j1], Si+1[2][j1], Si+1[3][j1])

are constants, Si will be linear in (Si+1[0][j2], Si+1[1][j2], Si+1[2][j2], Si+1[3][j2]),
where (j0, j1, j2) ∈ {(0, 1, 2), (0, 2, 1), (1, 2, 0)}.

Proof. Once

(Si+1[0][j0], Si+1[1][j0], Si+1[2][j0], Si+1[3][j0]),

(Si+1[0][j1], Si+1[1][j1], Si+1[2][j1], Si+1[3][j1])

are constants, after the inverse of ρeast,

(Siχ[0][j0], Siχ[1][j0], Siχ[2][j0], Siχ[3][j0]),

(Siχ[0][j1], Siχ[1][j1], Siχ[2][j1], Siχ[3][j1])

are still constants. Then, according to the expression of the inverse of χd, it can be
easily observed that Siι is linear in (Si+1[0][j2], Si+1[1][j2], Si+1[2][j2], Si+1[3][j2]),
thus resulting Si is linear in (Si+1[0][j2], Si+1[1][j2], Si+1[2][j2], Si+1[3][j2]).

B Experiments

We have implemented all the attacks in this paper. For the preimage attacks on
round-reduced Keccak, our target is to construct en equations in terms of vn
variables with en ≥ vn. If all the equations are independent, we can expect at
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most one solution for each such equation system. Experiments show that the rank
of the coefficient matrix varies for different assignments of the constant value and
hash value. However, this does not affect the time complexity evaluation. The
reason is explained below.

Note that each solution to the equation system has to be further verified
by making a call to the round-reduced Keccak permutation. Once there is no
solution to the equation system, the time to make such one more call is saved.
Since the coefficient matrix is not a non-singular matrix and the equation system
is over-defined (en ≥ vn), there is a high probability that the equation system
is inconsistent, thus saving the time of re-checking. Once the equation system
is consistent, all the solutions have to be checked by making extra calls to the
round-reduced Keccak permutation. Thus, on average, it is equivalent to that
there is one solution to the equation system.

The source code can be found at https://github.com/LFKOKAMI/
KeccakXoodoo.git.

C Some Tables

Table 2: Parameters for the zero-sum distinguisher for full Xoodoo

Variables

S6[0][0][1] = S6[0][1][1] = v10 , S6[0][0][4] = S6[0][1][4] = v20 ,
S6[0][0][8] = S6[0][1][8] = v30 , S6[0][0][10] = S6[0][1][10] = v40 ,
S6[0][0][13] = S6[0][1][13] = v50 , S6[0][0][15] = S6[0][1][15] = v60 ,
S6[0][0][17] = S6[0][1][17] = v70 , S6[0][0][19] = S6[0][1][19] = v80 ,
S6[0][0][22] = S6[0][1][22] = v90 , S6[0][0][24] = S6[0][1][24] = v100 ,
S6[0][0][27] = S6[0][1][27] = v110 , S6[0][0][31] = S6[0][1][31] = v120 ,
S6[0][0][34] = S6[0][1][34] = v130 , S6[0][0][35] = S6[0][1][35] = v140 ,
S6[0][0][38] = S6[0][1][38] = v150 , S6[0][0][39] = S6[0][1][39] = v160 ,
S6[0][0][43] = S6[0][1][43] = v170 , S6[0][0][44] = S6[0][1][44] = v180 ,
S6[0][0][48] = S6[0][1][48] = v190 , S6[0][0][52] = S6[0][1][52] = v200 ,
S6[0][0][53] = S6[0][1][53] = v210 , S6[0][0][57] = S6[0][1][57] = v220 ,
S6[0][0][61] = S6[0][1][61] = v230 , S6[0][0][62] = S6[0][1][62] = v240 ,
S6[1][0][32] = v250 , S6[1][0][36] = v260 , S6[1][0][37] = v270 ,
S6[1][0][41] = v280 , S6[1][0][42] = v290 , S6[1][0][45] = v300 ,
S6[1][0][46] = v310 , S6[1][0][50] = v320 , S6[1][0][51] = v330
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Table 3: Parameters for the preimage attack on 4-round Keccak-384

Variables

A0[0][0][7] = A0[0][2][7] = v10 ,
A0[0][0][32] = v20 , A0[0][1][32] = v30 , A0[0][2][32] = v20 ⊕ v30 ,
A0[0][0][58] = A0[0][2][58] = v40 , A0[0][0][60] = A0[0][1][60] = v50 ,
A0[0][1][35] = A0[0][2][35] = v60 , A0[0][1][45] = A0[0][2][45] = v70 ,
A0[1][0][0] = A0[1][2][0] = v80 , A0[1][0][10] = A0[1][2][10] = v90 ,
A0[1][0][38] = A0[1][2][38] = v100 , A0[1][0][57] = A0[1][2][57] = v110 ,
A0[2][0][26] = A0[2][1][26] = v120 , A0[2][0][31] = A0[2][2][31] = v130 ,
A0[2][0][41] = A0[2][2][41] = v140 , A0[3][0][41] = A0[3][1][41] = v150 ,
A0[4][0][12] = A0[4][1][12] = v160 , A0[4][0][48] = A0[4][1][48] = v170 ,
A0[4][0][61] = A0[4][1][61] = v180 .

Conditions

A0
θ[0][1][3] = 0, A0

θ[0][1][12] = 1, A0
θ[0][1][31] = 1, A0

θ[0][1][38] = 1,
A0

θ[0][1][39] = 0, A0
θ[0][1][48] = 1, A0

θ[0][1][52] = 0, A0
θ[0][2][1] = 0,

A0
θ[0][2][14] = 0, A0

θ[0][2][29] = 0,
A0

θ[0][4][21] = 1, A0
θ[0][4][40] = 1, A0

θ[0][4][47] = 1, A0
θ[0][4][57] = 1,

A0
θ[1][0][31] = 1, A0

θ[1][1][14] = 0, A0
θ[1][1][16] = 0, A0

θ[1][1][27] = 0,
A0

θ[1][1][30] = 1, A0
θ[1][1][40] = 1, A0

θ[1][1][52] = 0, A0
θ[1][2][7] = 0,

A0
θ[1][2][22] = 0, A0

θ[1][2][58] = 0, A0
θ[1][2][61] = 0,

A0
θ[1][3][3] = 0, A0

θ[1][3][16] = 0, A0
θ[1][3][29] = 0, A0

θ[1][3][54] = 0,
A0

θ[1][3][57] = 0, A0
θ[1][4][22] = 1, A0

θ[1][4][27] = 1, A0
θ[1][4][37] = 1,

A0
θ[1][4][40] = 1,

A0
θ[2][0][34] = 1, A0

θ[2][1][5] = 0, A0
θ[2][1][33] = 0, A0

θ[2][1][52] = 0,
A0

θ[2][1][59] = 0,
A0

θ[2][3][5] = 0, A0
θ[2][3][33] = 0, A0

θ[2][3][52] = 0, A0
θ[2][3][59] = 0,

A0
θ[2][4][8] = 1,

A0
θ[3][0][4] = 1, A0

θ[3][0][40] = 1, A0
θ[3][0][53] = 1, A0

θ[3][1][33] = 0,
A0

θ[3][1][38] = 0, A0
θ[3][1][48] = 0, A0

θ[3][1][51] = 0,
A0

θ[3][2][7] = 0, A0
θ[3][3][53] = 0, A0

θ[3][3][63] = 0, A0
θ[3][4][19] = 1,

A0
θ[3][4][32] = 1, A0

θ[3][4][47] = 1,
A0

θ[4][0][5] = 1, A0
θ[4][0][41] = 1, A0

θ[4][0][44] = 1, A0
θ[4][0][54] = 1,

A0
θ[4][1][15] = 1, A0

θ[4][1][18] = 1, A0
θ[4][1][28] = 1, A0

θ[4][1][41] = 1,
A0

θ[4][1][49] = 0, A0
θ[4][1][54] = 1,

A0
θ[4][2][57] = 0, A0

θ[4][4][18] = 1, A0
θ[4][4][44] = 1, A0

θ[4][4][46] = 1,
A0

θ[4][4][57] = 1.
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