
Some Low Round Zero Knowledge Protocols

Hongda Li1,2, Peifang Ni1,2, and Dongxue Pan1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, CAS

2 School of Cyber Security, University of Chinese Academy of Sciences
lihongda@iie.ac.cn

Abstract. The efficiency of zero-knowledge protocols is measured by
the round complexity. The construction of low round zero-knowledge
protocols for any NP language has been a classical and open question.
In this paper, we focus on zero-knowledge protocols for NP with low
round complexity under the augmented black-box simulation technique,
in which the simulator has access to the verifier’s secret information,
and obtain positive results on 3-round zero-knowledge proofs and 2-
round zero-knowledge arguments and proofs. More precisely, our con-
tributions are five-fold: (i) we propose the notion of generalized claw-free
function and the notion of trapdoor generalized claw-free function, and
then we show a construction of trapdoor generalized claw-free function
under the discrete logarithm assumption and the knowledge of expo-
nent assumption, (ii) we propose the notion of completely extractable
bit-commitment and give a construction of it from trapdoor generalized
claw-free functions, (iii) we present a 3-round zero-knowledge proof for
NP based on the completely extractable bit-commitment schemes and
Yao’s garbling circuit technique, (iv) we show a 2-round zero-knowledge
argument for NP based on indistinguishable obfuscator, (v) we trans-
form the basic 2-round honest verifier zero-knowledge proof protocol for
quadratic non-residue into a 2-round zero-knowledge proof protocol.

Keywords: zero-knowledge, claw-free functions, augmented black-box
simulation, parallel repetition, high efficiency

1 Introduction

Zero-knowledge (ZK) protocol, an interactive proof by the prover P and verifier
V , is introduced by Goldwasser, Micali and Rackoff [31]. An interactive proof is
considered zero-knowledge if P can convince V of the correctness of the state-
ment, while the verifier V learns nothing beyond the fact that the statement
is true. ZK protocol can be formalized in two ways, zero-knowledge proof (de-
noted by ZKP) and zero-knowledge argument (denoted by ZKA), depending on
whether the power of the prover is restricted. ZK protocol has been the subject of
intensive study since it was introduced. Goldreich, Micali and Wigderson proved
that each language in NP has a zero knowledge proof if there exist one-way func-
tions[30]. There have been a lot of positive results for constructing ZKP or ZKA
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satisfying some additional properties, such as constant-round ZK protocol[22,
25, 9, 43, 11] and concurrent or resettable ZK protocol[14, 15, 42, 21, 17, 16].

Zero-knowledge requires in essence whatever the verifier V can compute while
interacting with the prover P it can compute by itself without interacting with
P . It is formally defined in [31] by requiring that, for any (malicious) verifier
V ∗, there exists a simulator (PPT algorithm), which receives only the common
input of both the prover and the verifier, can output a random distribution
that is indistinguishable from the view of V ∗ (the real conversation). Initially,
all known zero-knowledge protocols used black-box simulator, an universal algo-
rithm which uses V ∗ as a black-box, to simulate V ∗’s view (so called black-box
zero-knowledge,BBZK). It is known that 4-round BBZK arguments for NP ex-
ist under one-way functions [22, 9], while constant-round BBZKP for NP are
presented in [25, 43]. The original definition of ZK in [31] is not closed under
sequential composition [27]. Glodreich and Oren presented an more robust def-
inition, called auxiliary-input zero-knowledge, which permits simulator obtain
the verifier’s auxiliary and is closed under sequential composition [29].

The round complexity of ZK protocols is the main measure of the efficiency.
From the practical and theoretical viewpoint, it is desirable to minimize the
round complexity of ZK protocols. Glodreich and Oren first proved that there
does not exist 2-round auxiliary-input ZK protocols system for a language out-
side of BPP [29]. The black-box simulator needs to use rewinding technique,
so the round complexity of ZK protocols need more rounds. It is known that
black-box ZK protocols with at least 4-round exist for NP [22, 9, 25, 43], while
Glodreich and Krawczyk [27] showed that 3-round BBZK protocols (proofs or
arguments) do not exist for the language outside of BPP. They also proved
that constant-round public-coin ZK protocol with negligible error probability
does not exist for nontrivial language. In addition, Canetti et al showed there
is no constant-round black-box concurrent zero-knowledge protocol for NP [15].
Katz proved that NP-complete languages do not have 4-round black-box zero-
knowledge proofs assuming the polynomial hierarchy does not collapse [35].

Although the definitions in [31, 29] have less restriction on PPT simulator,
it was not until 2001 that Barak presented a kind of non-black-box simulation
method, where the simulator utilizes V ∗’s strategy description, and then showed
a constant-round bounded concurrent zero-knowledge argument[1]. It has been
known from the result of [15] that such protocol cannot be zero-knowledge under
black-box simulation. Since then, a number of non-black-box zero knowledge
(NBBZK) protocols have been proposed [6, 41, 7, 32, 42, 21, 17, 18, 16]. non-black-
box simulation technique does not use rewinding technique to simulate the real
conversation, and so can reduce the round complexity of ZK protocols. Specially,
Bitansky and Paneth presented a 4-round ZK protocol for NP [13], and Barak,
Lindell and Vadhan even showed a 2-round ZKP system for a problem outside
of BPP under “Knowledge of Exponent Assumption” (KEA) [7]. However, there
are still some negative results. Barak et al. proved that there does not exist a
2-round ZKP with perfect completeness for any NP-complete language under a
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plausible assumption[7]. This leads to the question: do there exist 2-round ZK
protocols for NP under some standard assumptions?

Under certain assumptions on program obfuscation (including the existence
of (sub-)exponentially secure indistinguishability obfuscation), Kalai et al. proved
that there does not exist a public-coin constant round ZKP even under non-
black-box simulation [36] and Fleischhacker et al. gave negative result that 3-
round non-black-box ZKP does not exist for languages outside of BPP [24].

Another kind of non-black-box ZK protocol is based on special non-standard
knowledge assumptions. Bellare and Palacio showed a 3-round non-black-box
ZKP under “Knowledge of Exponent Assumption” (KEA) [11] and Lepinski
also showed one under “Proof of Knowledge Assumption” (POKA) [37]. Bitan-
sky et al. constructed a 3-round ZKA for NP based on extractable one-way
functions [4]. However, these knowledge assumptions are contradict to the exis-
tence of indistinguishable obfuscator [3]. Therefore, the existence of 3-message
ZK protocols under non-black-box simulation is still unsolved.

The ZK is formally defined by requiring there exists a simulator to output
an indistinguishable conversation. The stronger simulator means the weaker zero
knowledge property, so enhancing simulator or restricting either prover or verifier
help us to achieve more efficient protocols. Dwork and Naor et al. proposed the
notion of weak ZK [19] which relaxes ZK by allowing the simulator to depend
on the distinguisher to distinguish the simulated conversation from the real one,
and Bitansky and Paneth gave a construction of 3-round weak ZKA based on
point obfuscation and Yao’s garbled circuit technique [12]. Pass weakens ZK by
permitting simulator to run in super-polynomial time and obtains 3-round ZKA
[40]. While Bitansky et al. constructed a 3-round ZKA in the restricted adversary
models, where either the prover or the verifier is assumed to be uniform [3, 2].
Dwork and Stockmeyer even got 2-round zero-knowledge protocols in the model
where the prover has bounded resources [20].

The original meaning of zero knowledge is in essence that interacting with the
prover does not improve the verifier’s computational power. So, the requirements
for the simulator are 1) it can simulate the real conversation and 2) its computing
power cannot exceed that of V ∗ (it can only do what the verifier can do alone).
Thus, V ∗ together with the simulator, which only has the same computing power
as the verifier, can do anything that V ∗ can do while interacting with the prover
except a negligible probability, that is, interacting with the prover does not
improve the verifier’s power except a negligible probability.

Recently, Li et al. presented augmented black-box simulation technique (the
corresponding simulator is called ABB simulator) which allows the black-box
simulator to access verifier’s secret information [38, 39]. The augmented black-
box simulator interacts with verifier V and not only receives V ’s output but also
gets its secret information used by V to compute the output. The ABB simulator
is a mental experiment, but it can be run by verifier himself. This means that
ABB simulator can only do what the verifier does although the verifier’s secret
information are accessible. So, the real interaction can be simulated by an ABB
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simulator means interacting with prover does not improve verifier’s computa-
tional power, that is, using ABB simulator does not weaken ZK property.

One of the reasons that BB simulator can output an indistinguishable conver-
sation is it can rewind verifier’s algorithm to extract verifier’s secret information.
In order to make the BB simulator work effectively, protocols often need more
rounds. However, augmented black-box simulator is allowed to get the verifier’s
secret information directly and so is more effective than black-box simulator.

For the above motivations, we continue to work on the existence of low round
ZK protocols for any NP language under augmented black-box simulation.

1.1 Our Contributions

3-Round ZKP for NP. We provide a positive result of constructing 3-round
ZKP for NP. To this end, we propose the completely extractable bit-commitment.
A perfectly hiding bit commitment scheme is called completely extractable if
the receiver can reveal the received commitment as 0 or 1 after the commit-
ment stage. Motivated by the need to construct completely extractable bit-
commitment schemes, we propose the notion of generalized claw-free functions
(GCFF) and give an instance of construction. Based on GCFF, we succeed in
constructing a completely extractable perfectly hiding bit-commitment scheme.

In our 3-round ZKP for NP, the verifier uses a completely extractable bit-
commitment scheme to commit to its challenge and the prover is a receiver.
Another tool used in our construction is Yao’s garbling circuit technique.

Any L ∈ NP has an NP-relation RL. Proving x ∈ L is equivalent to proving
there exists a w such that RL(x,w) = 1. By means of Yao’s garbling circuit
scheme, we provide a basic public-coin interactive proof, which is 3-round and
takes form of “commit-challenge-reply”, for L ∈ NP . Specifically, assume Gb(·)
is Yao’s garbling algorithm and CL,x : {0, 1}` → {0, 1} is a circuit to compute

RL(x, ·). The prover first generates a garble circuit (ĈL,x, e, d)← Gb(CL,x, 1
n),

and use ĈL,x as its commitment and keeps the encoding key e secret. After re-

ceiving ĈL,x, the verifier select challenge σ ∈ {0, 1}. Finally, the prover opens the
encoding of witness w if σ = 0, and otherwise the prover opens the encoding key
e. Our basic protocol is honest-verifier ZK and has at most 1/2 error probability.

It is known that 3-round public-coin ZKP system, which is form of “commit-
challenge-reply”, is not closed under polynomial times parallel repetitions [27],
since the verifier’s challenge may depend on the prover’s commitment. To en-
sure zero-knowledge property under parallel composition, our 3-round proto-
col use a new model, simplified as “challenge-commit and reply”. In short, the
new model changes the order of “prover-commit” and “verifier-challenge”, such
that “verifier-challenge” is independent of “prover-commit”. This results in that
“prover-commit” and “prover-reply” are completed in the same round. To en-
sure the soundness of the protocol, the verifier’s challenge must be hiding. Con-
cretely, the first two round of the protocol is 2-round completely extractable bit-
commitment scheme, in which the verifier commits to its challenge. In the third
round, the prover sends the commitment to the proving instance (ĈL,x) and the
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reply to the verifier’s challenge. The soundness of the protocol is directly based
on the perfectly hiding property of the completely extractable bit-commitment
scheme, while the zero-knowledge under augmented black-box simulation comes
from the privacy of Yao’s garbling scheme and the computationally binding
property of the completely extractable bit-commitment scheme.

Finally, we obtain a 3-round ZKP for x ∈ L with a negligible error probability
by paralleling the basic 3-round protocol.

2-Round ZKA for NP. We obtain a 2-round ZKA for NP under augmented
black-box simulation assuming indistinguishable obfuscator O exists.

2-round interactive proof protocols for x ∈ L require that the verifier first
generate questions which the prover can answer correctly if and only if x ∈ L.
The existence of non-interactive instance-dependent commitment scheme, which
is computationally binding when x ∈ L and (statistically) hiding when x /∈ L,
implies the existence of 2-round honest verifier ZK protocols.

Let RL be NP-relation of L ∈ NP . For any instance x, R1
L,x(u) = RL(x, u)

is a boolean function, and R1
L,x(u) ≡ 0 if and only if x /∈ L. In order to con-

struct an instance-dependent commitment scheme, assume R0
L,x(u) ≡ 0 and

|R0
L,x(u)| = |R1

L,x(u)|. Using indistinguishable obfuscator O, we can obtain an
instance-dependent commitment scheme as follows: To commit to b, the sender
sends C = O(RbL,x) to receiver. When x /∈ L, the computationally hiding prop-

erty holds since O(R0
L,x) and O(R0

L,x) are indistinguishable. When x ∈ L,

the scheme is perfectly binding since there exists u such that O(R0
L,x)(u) 6=

O(R0
L,x)(u). From it, 2-round honest verifier ZKA for x ∈ L is as follows:

– The verifier V selects σ ∈ {0, 1} randomly and sends C = O(RσL,x) to the
prover.

– The prover P computes σ′ = C(wx), where wx is a witness for x ∈ L, and
sends σ′ to V .

– The verifier accepts if and only if σ′ = σ.

When V follows the protocol, it only obtain what he already know, but this
does not holds for a malicious V ∗. So the protocol is only honest-verifier ZK. If
V doesn’t honestly generate C, σ′ = C(wx) computed by P may be not uniform
distribution on {0, 1} and cannot be simulated. In this case, the augmented
black-box simulator will fail since it may not get σ′ = C(wx) from C and V ∗’s
private information. That is, the protocol is not ZK even under AAB simulation.

we parallel the above protocol n (security parameter) times: V sends (C1, · · · , Cn)
and P computes σ′i = Ci(wx), i = 1, · · · , n. To prevent V from cheating, we first
require that (C1, · · · , Cn) must be verifiable by P when x ∈ L. Let G be a pseu-
dorandom generator. V is asked to select σ = σ1 · · ·σn, δ = δ1 · · · δn ∈ {0, 1}n,
and then computes Ci = O(Rσi

L,x; rδii ), where r1 · · · rn ← G(σ), ri = (r0
i , r

1
i ).

Thus, the prover P can verify whether all (C1, · · · , Cn) is correct after obtaining
σi = Ci(x,w) ∈ {0, 1}, i = 1, · · · , n.

Our main idea, to transform the paralleled protocol into ZKA without adding
the more interactions, is to have P , instead of opening (σ′1, · · · , σ′n), sends a
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“random string” which satisfies the following two conditions: 1) V who gen-
erates (C1, · · · , Cn) honestly can verifies it and 2) V ∗ who does not generate
(C1, · · · , Cn) honestly cannot distinguish it from a real random string. To this
end, we need pseucorandom functions (PRF) {Hs}s∈I . If (C1, · · · , Cn) passes
the verification (P must get σ and δ), P randomly selects r and sends (r,Hs(δ))
to V , where s is determined by r and σ. Obviously, (r,Hs(δ)) satisfies the above
two conditions.

2-Round ZKP for QNR. Glodreich and Oren proved that there does not
exist a 2-round auxiliary-input ZK protocol system for a language outside of BPP
[29]. Barak et al. proved that there does not exist a 2-round ZKP with perfect
completeness for any NP-complete language under a plausible assumption, but
also showed a 2-round ZKP system for a problem outside of BPP under KEA [7].
We present a 2-round ZKP system for QNR by Yao’s garbling circuit scheme.

Recall the classic protocol of proving x ∈ QNR: V sends w = r2xb to the
prover for randomly selected r ∈ ZN , b ∈ {0, 1}, and then P gets b from w and
returns b to V . It is known that the protocol is honest-verifier ZKP.

To make the protocol zero knowledge for arbitrary V , P must send b in
“encryption” way such that 1) V following the protocol can verifies whether
the message sent by P is correct and 2) V ∗ not following the protocol cannot
distinguish the message sent by P from a real random string. In that case, V
either accepts x ∈ QNR (when V is honest), or get nothing (when V is cheating)
since P ’s message is distinguishable from a random string.

To this end, we first modify the classic protocol as follows: V sends w = r2xb

and a point-function Iα for randomly selected α. After receiving w = r2xb and
Iα, P computes b, r from w and generate a garbled circuit C computing I(u) =
Iα(u⊕r), and finally sends C with the encoding of α (denoted by α̂) to V . Here,
we use Yao’s garbling circuit scheme but with some changes (see subsection
2.4,2.6 for details). The encoding of α ⊕ r can be derived from the encoding
of α and r, so V can verifies if I(α ⊕ r) = Iα(α) = 1. In other words, V can
verify whether C is correct only when V holds r. If V is honest, the augmented
black-box simulator can obtain r and b from V , and then can generate correct C.
However, when V is cheating, the augmented black-box simulator can randomly
select r and generates a indistinguishable garbled circuit C. That is, the ZK
property can be proved under augmented black-box simulation technique.

To guarantee the correctness of message sent by the verifier, in our protocol,
only the verifier who holds the knowledge of r ∈ Z∗n, where w = r2 ·xb (b ∈ {0, 1})
is the message that the prover receives from verifier, can complete the corre-
sponding verification. In other words, the response sent by the prover can only
be decrypted by the verifier who creates the corresponding challenge honestly.
As a result, the interactive process for the honesty of verifier is omitted in our
protocol and the ZKP for QNR is still 2-round. We stress that the ZK property
can be proved with the augmented black-box simulation technique.
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1.2 Related Works

While 4-message zero-knowledge arguments for NP are known based on one-
way functions [22, 9], the existence of 3-message zero-knowledge (with negligible
soundness error) has been a long standing open problem.

The initial constructions of ZKP require the polynomial number of rounds
and some works achieve the constant round ZK protocols for any NP lan-
guage [22, 23, 25, 9, 43, 18, 16, 34]. Previously, [23, 9] showed the 4-round ZKA
based on one way functions, Goldreich and Kahan presented 5-round ZKP for
NP based on 2-round statistically-hiding commitments, while 4-round black-box
zero-knowledge proofs for NP are believed to be impossible [35]. Recently, [10]
gives the 4-round ZKP based on keyless multi-collision-resistant hash functions.
A few works focus on the existence of 3-round ZK protocols under non stan-
dard assumptions. Lepinski showed a 3-round ZKP under “Proof of Knowledge
Assumption” [37], Bellare and Palacio fixed the “Knowledge of Exponent As-
sumption” of [33] and presented 3-round [11], while Bitansky et al. constructed
a 3-round ZKA for NP based on extractable one-way functions[4]. These knowl-
edge assumptions ask that there exists an efficient extractor algorithm, by which
simulator can have access to the secret coins of the verifier. Bitansky proved that
these knowledge assumptions are contradict to the existence of indistinguishable
obfuscator [3], and Fleischhacker et al. proved 3-round non-black-box ZKPs do
not exist for languages outside of BPP under certain assumptions on program
obfuscation (including the existence of sub-exponentially secure indistinguisha-
bility obfuscation) [24]. Li et al. extend the idea of knowledge assumptions to
propose the notion of augmented black-box simulation, where the simulator can
have access to the verifier’s current secret state [38] and presented a 3-round ZKP
for NP based on trapdoor claw-free permutations under augmented black-box
simulation.

Bitansky and Paneth proposed the notion of weak ZK and gave a construction
of 3-round ZKA based on point obfuscation and Yao’s garbled circuit technique.
Jawurek et al provided a constant-round ZKA using Yao’s garbled circuit scheme
[34]. Following [34], Ganesh et al. constructed a 3-round ZKP based on RE-OT
(receiver equivocal OT protocol) in CRS model[28]. In recent, Bitansky, Kalai,
and Paneth introduced a new notion of multi-collision resistance for keyless hash
functions and constructed a general 3-round ZKA based on it [10].

Glodreich and Oren proved that there does not exist 2-round auxiliary-input
ZK protocols system for a language outside of BPP [29]. Barak et al. proved
that there does not exist a 2-round ZKP with perfect completeness for NP-
complete language under a plausible assumption, but also showed a 2-round ZKP
system for a problem outside of BPP under KEA [7]. [38] presented a 2-round
ZKA for Exact Cover problem under the Decision Multilinear No-Exact-Cover
Assumption.

1.3 Organization of the Paper

The remainder of paper are organized as follows. In section 2, we give the prelim-
inaries used through the paper. The new proposed notion of generalized claw-free
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function is presented in section 3. In section 4, we present extractable perfectly-
binding bit-commitment and a construction based on generalized claw-free func-
tion. Our constructions of 3-round ZKP for any NP language is in section 5.
While 2-round ZKA for NP and 2-round ZKP for QNR are showed in section 6.
Conclusion is given in section 7.

2 Preliminaries

Notations. Throughout the paper, n is the security parameter. For any PPT
(probabilistic polynomial time) algorithm A(·), A(·) is the result of executing
A with input x and the uniformly chosen randomness. We use y = A(x) or
y ← A(x) to denote the output of A(x). For a set S, y ←R S denotes that y is
uniformly chosen from S. A function negl(·) is negligible if, for any large enough
input, its output is smaller than the inverse of any polynomial function poly(·).

2.1 Zero Knowledge

An interactive proof protocol for language L ∈ NP is an interactive protocol
between two parties, the prover P and the verifier V , where P convinces V that
the common input x belongs to language L, such that x ∈ L.

Definition 1. (Interactive Proof) A 2-party protocol between an unbounded prover
P and a polynomial-time verifier V (denoted as 〈P, V 〉 is an interactive proof
protocol for language L ∈ NP if the following two conditions hold:

– Completeness: For every x ∈ L, there exists a negligible function c(·) such
that Pr[〈P, V 〉 (x) = 1] > 1− c(|x|)

– Soundness: For any x /∈ L, there exists a negligible function s(·) such that
Pr[〈P, V 〉 (x) = 1] < s(|x|)

where c(·) is the completeness error and s(·) is the soundness error. If the sound-
ness is only required to hold relative to polynomial-time provers, it is called in-
teractive argument.

Let V iewPV(z)
(x) denote the view of V with auxiliary input z and common

input x in the real protocol execution with P . The zero knowledge requires that
for any PPT verifier V ∗, there is a simulator S with some advantage against
prover P , such that the output of S is indistinguishable from V iewPV ∗

(z)
(x).

Definition 2. (Zero Knowledge) An interactive protocol 〈P, V 〉 for language L
is said to be zero knowledge if for every PPT malicious verifier V ∗ there exists
a PPT algorithm (called simulator) S such that {V iewPV ∗

(z)
(x)}x∈L,z∈{0,1}∗ and

{S(z, x)}x∈L,z∈{0,1}∗ are computational indistinguishable.
If {V iewPV ∗

(z)
(x)}x∈L,z∈{0,1}∗ and {S(z, x)}x∈L,z∈{0,1}∗ are statistical indis-

tinguishable, then the interactive protocol is called statistical zero knowledge.
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Obviously, the ZK simulator S must be closely related to V ∗’s algorithm. If there
exists a uniform simulator S that uses V ∗’s strategy in a black-box manner, it
is known as the black-box simulator (BB simulator).

Definition 3. (Black-Box Zero-Knowledge) Let 〈P, V 〉 be an interactive proto-
col for a language L. 〈P, V 〉 is black-box zero-knowledge (BBZK) if there ex-
ists a probabilistic polynomial-time algorithm S such that for every probabilistic
polynomial-time machine V ∗, {V iewPV ∗(x)}x∈L and {SV ∗(x)}x∈L are computa-
tionally indistinguishable.

2.2 Augmented Black-Box ZK

Let 〈P, V 〉 be an interactive protocol for language L ∈ NP . The interactive strat-
egy of V is defined by next message function. For convenience we use V (x, z, rV ; ·)
to denote the next message function of V with common input x, auxiliary input
z and random tape rV . In verifier-round where V is asked to send message, V
first computes α = V (x, z, rV ;β, state), where state is the secret state of V and β
is P ’s messages received in the previous round (prover-round, where P is asked
to send message), and then sends α to P (via the communication tape). Use
α = ⊥ (or β = ⊥) to denote the verifier V (or the prover P ) aborts. To prevent
against malicious prover, V needs to keep state secret. V (x, z, rV ; ·) is defined
by the protocol, however, for a malicious verifier V ∗, V ∗(x, z, rV ∗ ; ·) is unknown
and may be any computable function. The secret state state is determined by
V , in addition, it only contains the random coins (dented as r) of the current
round if V is honest.

To introduce augmented simulation, we first imagine that V is given an ex-
tra private output tape to record current secret state. So, the next message
function of V with an extra private output tape can be written as (α, state) =
V (x, z, rV ; ρ, state). In each verifier-round, V sends α to P (via the communi-
cation tape) and also writes state on the extra private output tape. In fact, V
with an extra private output tape is an augmented verifier. However, since P is
completely unaware of the existence of this extra private output tape, adding
an extra private output tape to V does not change the interaction between P
and V . So, without loss of generality, we always assume that V is an augmented
verifier and still use 〈P, V 〉 to denote the interaction between P and V .

BB simulators need to specify the random input rV and then run V ’s next
message function V (x, z, rV ;β, ·) in a black-box manner. Specifically, BB simu-
lators generate P ’s message β, invoke V (x, z, rV ; · · · ) with β and receive α from
the communication tape. The reasons that BB simulators can succeed are that
1) it can rewind V (as black-box algorithm) to extract the verifier’s secret in-
formation contained in state and 2) the protocol in questioned itself makes it
possible for BB simulators to extract the verifier’s secret information by rewind-
ing V (x, z, rV ;β, ·).

Consider the following 2-round interactive proof for x ∈ QNR.

– V randomly selects b ∈ {0, 1}, r ∈ Zn and sends w = r2xb to P .
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– P determines b′ from w and sends b′ to V .
– V accepts if and only if b′ = b.

It is known that the protocol is honest-verifier BBZK. For semi-honest verifier
V ′ who computes w = r2xb honestly but b is not uniformly distributed on {0, 1},
V ′ can only get b selected by himself from interacting with P , so the protocol
is also ZK. However, the BB simulator is unlikely to succeed since the protocol
does not provide a way to extract b by rewinding V ′, unless it is easy to get b
form w.

Augmented black-box simulator (ABB simulator) are the same as BB simu-
lators, except that it is allowed to access to the extra private output tape of V .
Specifically, ABB simulators first set the random tape rV , execute V (x, z, rV ;β, ·)
by generating P ’s message round by round, and finally outputs rv and this sim-
ulated conversation (not containing all state’s). Obviously, in the context of
public-coin interactive protocol, ABB simulation is in fact BB simulation with-
out rewinding V .

To be allowed to access to the extra private output tape, ABB simulators can
simulate the real interaction without rewinding V and so have better simulation
ability than BB simulators. In the context of the semi-honest verifier V ′, the
above interactive proof can be simulated by an ABB simulator S. In fact, S only
needs to select rV , get (w, (r, b)) = V ′(x, z, rV ; (r, b)) from their communication
tape and the private output tape of V ′, and then output (x, rV , w, b).

ABB simulation is a mental experiment. V provided with ABB simulator,
however, can complete this experiment by himself, since it is in fact the in-
teraction between ABB simulators and (augmented verifier) V . So, in any case
ABB simulator can only do what the verifier can do alone, although the verifier’s
private output tape is accessible. This means that if 〈P, V 〉 is computationally in-
distinguishable from the interaction between an ABB simulator and (augmented
verifier) V , interacting with P must not improve the V ’s computational power
except for a negligible probability, that is, 〈P, V 〉 is ZK.

Definition 4. (Augmented Black-Box ZK) An interactive proof system for lan-
guage L is called augmented black-box ZK if for PPT verifier V ∗, there exists an
ABB simulator S, such that for any auxiliary input z, x ∈ L, {V iewPV ∗(aux)(x)}x∈L
and {SV ∗(x, aux)}x∈L are computationally indistinguishable.

Intuitively, ABB simulation seems to give ZK simulators more capabilities.
But in fact, the capability of ABB simulators is still inferior to that of the verifier
V ∗. So, we stress that ABB simulation does not weaken ZK.

2.3 Garbled Circuits

Garbled circuit was first presented by Yao[45], and has been formalized by Bellare
et al. [8]. According to the formal language of [8], a garbling circuit scheme
Garble is defined by a tuple algorithms, Garble = (Gb,En,Ev,De, V e).

Definition 5. (Garbled Circuits) A garbling circuit scheme consists of a tuple
of polynomial algorithms Garble = (Gb,En,Ev,De, V e).



Some Low Round Zero Knowledge Protocols 11

– Gb(1n, C), taking the security parameter n and a circuit C : {0, 1}` → {0, 1}k
as input, outputs a garbled circuit Ĉ of C and a pair of keys (e, d), where e
is an encoding key and d is decoding list.

– En(e, x), taking x ∈ {0, 1}` and encoding key e as input, outputs the garbled
encoding x̂ of x ∈ {0, 1}`.

– Ev(Ĉ, x̂) evaluates garbled circuit Ĉ on garbled encoding x̂, and outputs a
garbled output ŷ.

– De(d, ŷ) outputs the decoding of ŷ.

– V e(C, Ĉ, e) output 1 if Ĉ is a valid garbling circuit of C, output 0 otherwise.

A garbling scheme is correct if for any x, it holds thatDe(d,Ev(Ĉ, En(e, x))) =
C(x). Except for correctness, a garbling scheme may satisfy privacy and authen-
ticity, and the detailed description is given in appendix A.

In this paper, we use Yao’s garbled circuits scheme [45]. Let C : {0, 1}` →
{0, 1}k be a acyclic circuit that has m+ k gates. So C has t = `+m+ k wires,
denoted as w1, · · · , wt, where w1, · · · , w` are the input wires and wt−k+1, · · · , wt
are the output wires of C. To garble C, Gb first selects a pair of key (K0

i ,K
1
i )

from key space K to represent the bit values of 0 or 1 on wire wi (i = 1, · · · , t),
and sets e = {K0

i ,K
1
i }`i=1, d = {(0,K0

t−k+1), (1,K1
t−k+1), · · · , (0,K0

t ), (1,K1
t )}.

Once all the keys for the wires in the circuit have been chosen, garble each
gate in C as follows: For any gate g with two input wires wi, wj and one output

wire wo, compute ca,b = EKa
i
(EKb

j
(K

g(a,b)
o )), a, b = 0, 1. The garbled gate of g

is represented by a “garbled computation table” ĝ = (c0, c1, c2, c3) which is the

random order of (c0,0, c0,1, c1,0, c1,1). The garbled circuit Ĉ of C consist of the

garbled gate for each gate, Ĉ = {{ĝ}g∈C}.
For any x = x1 · · ·x`, x̂ = En(e, x) = {Kx1

1 , · · · ,Kx`

` } is the encoding of x.

Ev(Ĉ, x̂) computes each gate according its “garbled computation table”, gate by

gate, and obtains the output of k output gates, ŷ = Ev(Ĉ, x̂). Finally, De(d, ŷ)

decodes ŷ, De(d, ŷ) = z1 · · · zk if and only if ŷ = (Kz1
t−k+1, · · · ,K

zk
t ). V e(C, Ĉ, e)

verifies every ĝ = (c0, c1, c2, c3), gate by gate, by decrypting c0, c1, c2, c3. V e(C, Ĉ, e) =

1 if all the verifications pass, V e(C, Ĉ, e) = 0 otherwise.
It is easy to see that Yao’s garbled circuits scheme is correct. In addition,

Yao’s garbled circuits scheme satisfies privacy and authenticity[8].

2.4 Indistinguishability Obfuscation

Barak et al. [5] first proposed the notion of virtual black-box (VBB) obfuscation
which requires that the obfuscation of one arbitrary function leaks nothing except
what can be learnt from a black-box oracle access to the function. Unfortunately,
[5] showed that there is a family of circuits that cannot be VBB obfuscated.
Therefore, [5] presented a weaker notion of obfuscation called indistinguishable
obfuscation (iO), but left the problem of whether or not indistinguishable obfus-
cation exists. The iO only requires that for any two equivalent circuits C0 and
C1 of similar poly-size, any probabilistic polynomial-time (PPT) adversarial al-
gorithm can distinguish between the obfuscations of C0 and C1 with negligible
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probability. This security of iO may seem rather weak than VBB obfuscation.
Garg et al. proposed the first candidate construction of general-purpose indis-
tinguishability obfuscator [26]. Recently, Sahai and Waters constructed a variety
of core cryptographic objects such as deniable encryption scheme [44].

Definition 6. (Indistinguishability Obfuscation (iO)) [26]. A PPT al-
gorithm iO is called an indistinguishability obfuscator for a circuit ensemble
{Cn}n∈N if the following conditions are satisfied:

– (functionality) For all security parameters n ∈ N , for all C ∈ Cλ, and for
all input x we have that Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1.

– (security) For any PPT distinguisher D, there exists a negligible function
negl(·) such that the following holds: For all security parameters n ∈ N , for
all pairs of same size circuits C0, C1 ∈ Cn, we have that if C0(x) = C1(x)
for all inputs x, then

∣∣Pr[D(1n, iO(1n, C0)) = 1] − Pr[D(1n, iO(1n, C1)) =

1]
∣∣ ≤ negl(n).

3 Generalized Claw-Free Functions

In this section we generalize claw-free functions to propose the notion of gener-
alized claw-free functions. Let f0

s : D0
s → Rs and f1

s : D1
s → Rs. A pair (x0, x1)

satisfying f0
s (x0) = f1

s (x1) is called a claw of (f0
s , f

1
s ). Roughly speaking, claw-

free functions are a collection of pairs of functions (f0
s , f

1
s ), satisfying that it is

infeasible to find a claw of (f0
s , f

1
s ).

Definition 7. (Claw-Free Function [46]) A collection of pairs of functions F =
{fσs : Dσ

s → Rs, σ = 0, 1}s∈S is called claw-free functions if the following condi-
tions hold:

• Easy to sample: There exist two PPT sampling algorithms S and D, such
that s← S(1n) is distributed over S̄ ∩{0, 1}n and x← D(s, σ) is distributed
over Dσ

s for any s← S(1n) and σ ∈ {0, 1}.
• Easy to compute: There exists a PPT algorithm F , such that F (s, σ, x) =
fσs (x), for any s← S(1n), x← D(s, σ) and σ ∈ {0, 1}.
• Identical range distribution: For every s ← S(1n), the random variables
F (s, 0,D(s, 0)) and F (s, 1,D(s, 1)) are identically distributed.

• Hard to form claws: for any PPT algorithm A, it holds that:

Pr[f0
s (x0) = f1

s (x1) : s← S(1n), (x0, x1)← A(1n, s)] < negl(n)

We first present the notion of generalized claw-free functions and then give a
detailed construction. Roughly speaking, generalized claw-free functions consist
of two pair of functions (f0

s , t
0
s) and (f1

s , t
1
s), where (f0

s , f
1
s ) is defined as in claw-

free functions, and tσs is defined over Dσ
s , and satisfy the condition: it is infeasible

to find (z0, z1) such that z0 = t0s(x0), z1 = t1s(x1), f0
s (x0) = f1

s (x1).
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Definition 8. (Generalized Claw-Free Function) Let S̄ be a infinite index set,
D0
s , D

1
s be two finite sets for any s ∈ S̄. Let fσs and tσs be two functions defined

over Dσ
s with value range Rs for any s ∈ S̄ and σ ∈ {0, 1}. The collection of

two pairs of functions FT = {(f0
s , t

0
s), (f

1
s , t

1
s)}s∈S̄ is called generalized claw-free

functions, if the following conditions hold:

– Easy to sample: There exist two PPT sampling algorithms S and D, such
that s← S(1n) is distributed over S̄ ∩{0, 1}n and x← D(s, σ) is distributed
over Dσ

s for any s ∈ S(1n), σ ∈ {0, 1}.
– Easy to compute: There exist PPT algorithms F, T , such that

F (s, σ, x) = fσs (x), T (s, σ, x) = tσs (x)

for any s← S(1n), σ ∈ {0, 1} and x← D(s, σ).

– Identical range distribution: For any s← S(1n), F (s, 0,D(s, 0)) and F (s, 1,D(s, 1))
are identically distributed. T (s, 0,D(s, 0)) and T (s, 1,D(s, 1)) are identically
distributed.

– Hard to form generalized claws: For any s ∈ S(1n), let

Ls = {(z, z0, z1) : ∃ x0, x1, z = f0
s (x0) = f1

s (x1); z0 = t0s(x0), z1 = t1s(x1)}

A triple (z, z0, z1) ∈ Ls is called a generalized claw for index s. For any PPT
algorithm A, it holds that

Pr [(z, z0, z1) ∈ Ls : s←R S(1n), (z, z0, z1)← A(s)] < negl(n)

Generalized claw-free functions are denoted by GCFF = (FT ,S,D, F, T ).

It is easy to see that if {f0
s , f

1
s }s∈S is a claw-free function and functions

t0s, t
1
s are 1-1 and easy to inverse, then {(f0

s , t
0
s), (f

1
s , t

1
s)}s∈S must be general-

ized claw-free function. On the other hand, under the condition that t0s, t
1
s are

easy to compute, {(f0
s , t

0
s), (f

1
s , t

1
s)}s∈S is a generalized claw-free function implies

that {(f0
s , t

0
s)}s∈S is a claw-free function. Especially, a claw-free functions is a

generalized claw-free function where t0s(x) ≡ x, t1s(x) ≡ x.

Definition 9. (Trapdoor Generalized Claw-Free Function) The trapdoor gen-
eralized claw-free functions is defined the same as GCFF = (FT ,S,D, F, T )
(Definition 8), except that:

– Easy to sample: There exist two PPT sampling algorithms S and D. s is
distributed over S̄ ∩ {0, 1}n and (s, tr)← S(1n), where tr is a trapdoor. For
any s ∈ S̄ ∩ {0, 1}n, σ ∈ {0, 1}, x← D(s, σ) is distributed over Dσ

s .

– Easy to form claws with trapdoor. There exists a PPT algorithm Ft, for any
(s, tr)← S(1n) and σ ∈ {0, 1}, Ft(s, tr, σ, F (s, σ, x)) = T (s, σ, x).

Trapdoor generalized claw-free functions is denoted by TGCFF = (FT ,S,D, F, T, F t).
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3.1 A Construction of Trapdoor Generalized Claw-Free Function

In this subsection, we present a trapdoor generalized claw-free function TGCFF =
(FT ,S,D, F, T, F t).

Let q, p = 2q + 1 be two prime, G be the order q subgroup of Z∗p, g be a

generator. Let S = {(q, g, h) : h = gr, r ∈ Zq}, for any s = (q, g, h), define

f0
s (u, v) = (u, guhv), t0s(u, v) = (u, gv)

f1
s (u, v) = (u, gvhu), t1s(u, v) = (u, hv)

Let FT = {(f0
s , t

0
s), (f

1
s , t

1
s)}s∈S̄ , D0

s = D1
s = Z2

q, Rs = Zq × G. Next, we only
need to define the algorithms S and Ft.

– (s, tr) ← S(1n): Randomly select an n-bit prime q such that p = 2q + 1 is
a prime. Let g be a generator of the order q subgroup G. Randomly select
r ∈ Zq. Let s = (q, g, h = gr), tr = r.

– (u, v)← D(s, σ): u, v ←R Zq.

– F (s, σ, (u, v)): s = (q, g, h), F (s, σ, (u, v)) =

{
(u, guhv), σ = 0
(u, (gvhu), σ = 1

– Ft(s, tr, σ, fσs (u, v)): Let s = (q, g, h), tr = r, fσs (u, v) = (u, z). Define

Ft(s, r, σ, fσs (u, v)) =

{
(u, (z/gu)

1
r , σ = 0

(u, (z/hu)r, σ = 1

Lemma 1. If the discrete logarithm assumption and KEA hold, then (F ,S,D, F, T t)
defined as above is a trapdoor generalized claw-free function.

Proof. Let F = {(f0
s , t

0
s), (f

1
s , t

1
s)}s∈S . Obviously, tσs (u, v) is easy to compute

from fσs (u, v) and r for any s = (q, g, h = gr), that is r is a trapdoor. We only
need to prove that finding a generalized-claw is hard.

If for some PPT algorithm A with input (g, h), can find a generalized-claw

z = (u, guhv0) = (u, gv1hu), z0 = (u, gv0), z1 = (u, hv1)

then A can compute z/gu = hv0 and z/hu = gv1 . Therefore, A is able to output
(gv0 , hv0) and (gv1 , hv1). By KEA, there is an extracting algorithm E to extract
v0 and v1. Using E , we can construct an algorithm B to output the discrete
logarithm of h from the equation guhv0 = gv1hu. This contradicts the discrete
logarithm assumption.

Knowledge of Exponent Assumption (KEA)[11] Let q, p = 2q + 1 be
prime, G = 〈g〉 be the order q subgroup of Z∗p. For any adversary A that takes
input q, g, ga and returns (C, Y ) satisfying Y = Ca, there exists an extraction
algorithm E , which given the same inputs as A returns c such that C = gc.
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4 Completely Extractable Bit-Commitment Scheme

4.1 Bit-Commitment Scheme

We focus on bit-commitment schemes which imply general commitment schemes.

An interactive bit-commitment scheme 〈S,R〉 consists of two phases: commit
stage 〈Sc, Rc〉 (where Sc commits to its input b ∈ {0, 1}) and open stage 〈So, Ro〉
(where So opens b and Ro checks the correctness of the commitment).

Definition 10. (Bit-Commitment Scheme) An interactive bit-commitment scheme
〈S,R〉 consists of two phases, commit stage and open stage:

– Commit Stage 〈Sc, Rc〉: 〈Sc, Rc〉 is an (non-)interactive commitment protocol
that Sc commits to b ∈ {0, 1} with random input r ∈ {0, 1}poly(n)), denoted
by 〈Sc(b; r), Rc〉. Except for interacting with the verifier, Sc(b; r) needs to
compute z from b and r, denoted by z = Z(b, r), for the open stage (in
general, z = r). If 〈Sc, Rc〉 is non-interactive, Sc(b) computes and sends
c = Com(b; r) to Rc, where Com is a PPT algorithm and r is the random
input.

– Open Stage 〈So, Ro〉: 〈So(b, z), Ro〉 is an (non-)interactive open protocol,
where S opens b and Ro checks the correctness of the commitment. When
〈So, Ro〉 is non-interactive So opens the commitment by sending (b, z) to Ro.

The correctness requirement is simple: the commitment to b will be accepted
by R when both of parties are honest. The security of commitment schemes
〈S,R〉 has two aspects: hiding property (protecting against cheating receivers)
and binding property (protecting against cheating senders).

〈S,R〉 is a bit commitment scheme and n is security parameter. Let ε(n)
denote the probability that S successfully open a completed commitment 〈Sc, Rc〉
as either a commitment to 0 or a commitment to 1.

Definition 11. 〈S,R〉 is statistically (computationally) binding if for any (PPT)
sender S∗, ε(n) is negligible. Furthermore, if ε(n) ≡ 0, 〈S,R〉 is perfectly binding.

Let view
Sc(b;r)
Rc

(n) be the view of Rc in commit stage and consists of Rc’s
random-input and the messages it receives from Sc when Sc commits to b using

random input r, view
Sc(b)
Rc

(1n) be the random distribution of view
Sc(b;r)
Rc

(1n).

Definition 12. 〈S,R〉 is statistically (computationally) hiding if for any R∗,

view
Sc(0)
R∗c

(n) is statistically (computationally) indistinguishable from view
Sc(1)
Rc

(n).

Especially, when view
Sc(0)
R∗c

(1n) and view
Sc(1)
R∗c

(1n) are identically distributed, 〈S,R〉
is perfectly hiding.

A bit-commitment scheme is statistically hiding (binding) means that it is
computationally binding (hiding).
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4.2 Completely Extractable Bit-Commitment Scheme

Let 〈S,R〉 be a bit commitment scheme. To commit to b, Sc(b; rb) interacts
with Rc and computes z = Z(b, rb) for the open phase 〈So, Ro〉, such that
〈So(b; z), Ro(·)〉 = accept. If 〈S,R〉 is perfectly hiding means that for b ∈ {0, 1}, rb ∈
{0, 1}poly(n), there exists r1−b ∈ {0, 1}poly(n) such that view

Sc(b;rb)
R∗c

(1n) = view
Sc(1−b;r1−b)
R∗c

(1n).

〈S,R〉 is completely extractable if, at the end of commit stage 〈Sc(b; rb), Rc〉, the
receiver R (may need some trapdoor) can extract the random inputs z0, z1 from
its view in the commitment stage, such that 〈S0(0; z0), Ro(·)〉 and 〈So(1; z1), Ro(·)〉
are accepted and zb = Z(b, rb) is computed by Sc.

Definition 13. Let 〈S,R〉 be a bit-commitment scheme. It is completely ex-
tractable if there exists a PPT algorithm Ext, after commit stage 〈Sc(b; r), Rc〉,
the receiver using Ext and a special trapdoor can extract z0, z1 from the messages
received in commit stage, such that 〈So(0; z0), Ro〉 = 〈So(1; z1), Ro〉 = accept and
zb = Z(b, r), where Z(b, r) is computed by Sc in commit stage.

The complete extractability of bit-commitment schemes does not contradict
the hiding property. Even if receiver extracts z0, z1, it still cannot get b that
sender has committed to. On the other hand, the binding property asks that
sender without the trapdoor cannot obtain z0, z1 to break the binding property.

Completely extractable bit-commitment schemes can be constructed from
trapdoor generalized claw-free functions. Let TGCFF = (FT ,S,D, F, T, F t) be
trapdoor generalized claw-free functions, where FT = {(f0

s , t
0
s), (f

1
s , t

1
s)}. The

bit-commitment scheme based on TGCFF is as follows:

Construction 4.1: Bit-commitment Scheme

– Commit Stage 〈Sc(b), Rc〉:
• The receiver runs (s, tr)← S(1n), and sends s to the sender.

• To commit to b ∈ {0, 1}, the sender computes (c, zb) = Com(s, b) as
follows:

* Run xb ← D(s, b).
* Compute c = F (s, b, xb) = f bs (xb), zb = T (s, b, xb) = tbs(xb).

Finally, the sender sends c to the receiver.

– Open Stage 〈So(b, zb), Ro(c, tr)〉:
• The sender reveals b, zb to the receiver.

• After receiving (b, zb) from the sender, the receiver verifies zb = Ft(s, tr, b, c).

The corresponding extraction algorithm Ext: (z0, z1) = Ext(tr, c), where
z0 = Ft(s, tr, 0, c), z1 = Ft(s, tr, 1, c).

Lemma 2. If TGCFF = (FT ,S,D, F, T, F t) is trapdoor generalized claw-free
functions, the above commitment scheme is a completely extractable perfectly
hiding (computationally binding) bit commitment scheme.
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Proof. Computationally-binding. Let (s, tr)← S(1n). For any given commit-
ment (s, c), to open it as a commitment to b, the sender must find zb = T (s, b, xb).
So, if the scheme is not computationally-binding, the sender can find a gener-
alized claw (c, z0, z1) ∈ Ls for index s. By the assumption that TGCFF is a
generalized claw-free function, this is infeasible.

Perfectly-hiding. It is implied by the fact that F (s, 0,D(s, 0)) and F (s, 1,D(s, 1))
are identically distributed.

Completely extractable. The receiver holding trapdoor tr can compute
zb = Ft(s, tr, b, c) for b = 0, 1.

Using the construction of trapdoor generalized claw-free function in section
3.1, the scheme is showed as follow.

– Commit Stage 〈Sc(b), Rc〉:
• The receiver randomly select an n-bit prime q such that p = 2q + 1 is a

prime. Let g be a generator of the order q subgroup G of Z∗p . Randomly
select r ∈ Zq and computes h = gr. Then, sends s = (q, g, h) to the
sender.

• To commit to b ∈ {0, 1}, the sender computes (c, zb) = Com(s, b) as
follows:

* The sender selects u, v ∈R Zq.
* If b = 0, the sender computes c = f0

s (u, v) = (u, guhv), z0 = (u, gv).
If b = 1, the sender computes c = f1

s (u, v) = (u, gvhu), z1 = (u, hv)

Then the sender sends c to the receiver.

– Open Stage 〈So(b, zb), Ro(c, r)〉:
• The sender reveals (0, z0 = (u, gv)) when b = 0, or (1, z1 = (u, hv)) when
b = 1.

• Let c = (u, ϕ). After receiving (b, zb), the receiver holding r verifies

zb =


(
u,
(
ϕ
gu

)1/r
)
, b = 0(

u,
(
ϕ
hu

)r)
, b = 1

The corresponding extraction algorithm Ext(tr, c) is obvious.

5 3-Round ZKP for NP Using Completely Extractable
Commitment

In this section, we present a 3-round zero knowledge proof for any L ∈ NP .
Furthermore, with augmented black-box simulation technique, we show that the
zero knowledge property of our construction is closed under parallel composition.
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5.1 3-Round Protocol for NP

Let L ∈ NP and RL be the corresponding NP-relation. For any x ∈ L∩{0, 1}n,
there exists y ∈ {0, 1}` such that RL(x, y) = 1, where ` = poly(n). Let CL,x :
{0, 1}` → {0, 1} be a circuit to compute RL(x, ·). CL,x has t gates and the output
gate of CL,x is denoted by gt.

Let Garble = (Gb,En,Ev,De, V e) be Yao’s garbled circuit scheme. Using
the traditional model of 3-round interactive proof, “commit-challenge-reply”, we
consider the following interactive proof protocol for L ∈ NP .

Construction 5.1: ZKP for L ∈ NP

Common input: x ∈ L.
P ’s auxiliary input: witness y for x ∈ L.

• Commit: The prover P garbles CL,x(·), that is, (ĈL,x, e, d)← Gb(CL,x, 1
n),

where
e = {K0

i ,K
1
i }`i=1, d = {(0,K0), (1,K1)}

P sends (ĈL,x, d) to the verifier V .
• Challenge: V randomly picks σ ∈ {0, 1} and sends it to P .
• Reply: Let A0 = ŷ = En(e, y) = {Kyi

i }`i=1 and A1 = e, where y = y1 · · · y`
is a witness. P replies to V with Aσ.

• Verify: V verifies Aσ as follows:
- If σ = 0, compute ẑ = Ev(ĈL,x, A0) and verify De(d, ẑ) = 1.

- If σ = 1, verify V e(CL,x, ĈL,x, A1, d) = 1.

the fact that there exists y satisfying
The prover commits to CL,x(y) = 1 by (ĈL,x, d). The verifier verifies the

commitment is correct (σ = 1) or there exists y satisfying CL,x(y) = 1 (σ = 0).
The property of Yao’s garbling scheme guarantees that the above protocol is
complete and sound with error probability 1

2 , and thus a interactive proof for
L. Moreover, the protocol is a (black-box) zero knowledge proof with soundness
error probability 1

2 .
For any V ∗, define a black-box simulator Sim that processes as follows:

• Randomly select rV used as the random input of V ∗.
• Select δ ∈ {0, 1} randomly.

- If δ = 1, C ′L,x = CL,x, Sim garbles C ′L,x as an honest prover, i.e.

(Ĉ ′L,x, e, d)← Gb(C ′L,x, 1
n), where

e = {(K0
i ,K

1
i )}`i=1, d = {(0,K0), (1,K1)}

And then set A1 = e.
- If δ = 0, let C ′L,x be the same as CL,x except that its output gate g′t is set

as g′t(a, b) ≡ 1, Sim garbles C ′L,x honestly: (Ĉ ′L,x, e, d) ← Gb(C ′L,x, 1
n),

where
e = {K0

i ,K
1
i }`i=1, d = {(0,K0), (1,K1)}

Then, randomly select u = u1 · · ·u` ∈ {0, 1}`, and set A0 = {Kui
i }ki=1.
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• Invoke V ∗ with (Ĉ ′L,x, d) and receive σ form V ∗.

• If σ = δ, output (r, (Ĉ ′L,x, d), Aσ). Else, output ⊥ and abort.

Obviously, Pr[Sim(x) = ⊥] = Pr[δ 6= σ] = 1
2 . When δ = σ = 1, OV ∗ does

not fail and Sim(x) is the same as V iewPV ∗(x) since C ′L,x = CL,x.
When δ = σ = 0, C ′L,x and CL,x are exactly the same except that the

output gates g′t and gt are different, so the only difference between Ĉ ′L,x and

ĈL,x is that ĝ′t (the “ garbled truth table” of the output gate g′t) is differ-

ent form ĝt. Specifically, ĝ′t = (c0, c1, c2, c3) is the random order of ca,b =
EKa

i
(EKb

j
(K1

t )), a, b = 0, 1, but ĝt = (c0, c1, c2, c3) is the random order of ca,b =

EKa
i
(EKb

j
(K

gt(a,b)
t )), a, b = 0, 1. Therefore, if the private key encryption scheme

(G,E,D) is IND-CPA, Ĉ ′L,x and ĈL,x are computationally indistinguishable.

Moreover, notice that {Kui
i }ki=1) and {Kyi

i }ki=1) are randomly selected form K
and have the same distribution. So, SimOV ∗ (x) and V iewPV ∗(x) are computa-
tionally indistinguishable under the condition that sim does not fail.

Due to the fact that P needs to send (ĈL,x, d) before V ∗ publishing the

random challenge σ, BB simulator Simmust guess σ and then generates (ĈL,x, d)
that is consistent with σ. So, the above protocol cannot be proved to be zero
knowledge under parallel composition.

To construct a parallel zero knowledge proof for L, we consider a new inter-
active proof model, simplified as “challenge-commit and reply”, where V first
selects and commits to its random challenge σ, and then P computes its com-
mitment to RL,x and responds to V ’s challenge (without learning σ). Finally, V
verifies the received response.

In this new interactive proof model, V ’s challenge must be committed by a
completely extractable perfectly-hiding commitment scheme. On the one hand,
to ensure that the protocol is sound, V ’s commitment must be statistically-
hiding. On the other hand, since P must respond to V ’s challenge σ without
knowing σ, P has to give two answers (one for σ = 0 and the other for σ = 1)
in “ciphertext”. In order to make sure honest V can obtain a correct answer
corresponding σ and no verifier can get the two answers at the same time, we
need that V ’s commitment is completely extractable. The structure of interactive
proof is as follows.

– V and P execute a (completely extractable) statistically-hiding (computa-
tionally binding) bit commitment scheme. V commits to a random bit σ and
obtains z = z1 · · · zq to be used in the open stage.

– P first extracts (0, z0) and (1, z1) from the commitment and runs (ĈL,x, e, d)←
Gb(1n, CL,x). Then, P , without knowing σ, responds V ’s challenge in a spe-
cial way, such that honest verifier can get what it wants (completeness) and
no verifier can get ŷ = En(e, y) (response to σ = 0) and e (response to
σ = 1) at the same time (zero knowledge).
To this end, P hides ŷ = En(e, y) and e by z0 and z1 respectively. By the
binding property of the bit-commitment scheme, V knows at most one of
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z0 and z1, and so can only get one of e and ŷ at most. Specifically, Yao’s
garbling scheme is used to achieve the goal that P hides ŷ = En(e, y) and e
respectively with z0 and z1.

Our aim is to construct 3-round protocol, so 2-round completely extractable
perfectly-hiding commitment scheme is needed. Recall the bit-commitment scheme
〈S,R〉 with extraction algorithm Ext based on trapdoor generalized claw-free
functions TGCFF (Construction 4.2). In commit stage,

– The receiver runs (s, tr)← S(1n), and sends s to the sender.
– The sender computes (c, zb) = Com(s, b), where c = F (s, b, xb) = f bs (xb), zb =
T (s, b, xb) = tbs(xb), and sends c to the receiver.

In open stage, the sender reveals b, zb to the receiver. Assume |zb| = q(n), where
q(n) = poly(n) is.

Construction 5.2: 3-Round ZKP for L

Common input: x ∈ L.
P ’s auxiliary input: witness y = y1 · · · y` for x ∈ L.

– P (as the receiver R) randomly runs (s, tr)← S(1n) and sends s to V .
– V commits to random challenge, proceeds as follows:
• Randomly pick σ ∈ {0, 1}, r ∈ {0, 1}poly(n), and computes (c, z) =
Com(s, σ; r), where z = z1 · · · zq ∈ {0, 1}q. Assume q ≥ `.

• Send c to P .
– After receiving c, P first verifies c. If the verification passes, P proceeds as

follows:
• Extract z0, z1 ∈ {0, 1}q with tr from c: (z0, z1) = Ext(tr, c).

• Garble CL,x: Run (ĈL,x, e, d) ← Gb(CL,x, 1
n), where zb = zb1 · · · zbq, b =

0, 1, and e = ((K0
1 ,K

1
1 ), · · · , (K0

` ,K
1
` )), d = {(0,K0), (1,K1)}.

• Randomly construct function ψ:

ψ(z) = ((Ran0
1, Ran

1
1), · · · , (Ran0

` , Ran
1
`)), z ∈ {0, 1}q, Ranbi ←R {0, 1}k

such that ψ(z0) and ψ(z1) satisfy the following conditions respectively:
1) When z = z0, Ranbi = Kb

i , b = 0, 1, i = 1, · · · , `.
2) When z = z1, Ran

z0i
i = Kyi

i , Ran
1−z0i
i ←R {0, 1}k, i = 1, · · · , `.

Let Cψ be a circuit to compute ψ.

• Garble Cψ: Run (Ĉψ, eψ, dψ)← Gb(Cψ, 1
n), where eψ and dψ is encoding

key and decoding list respectively, specifically, eψ =
(
(Ψ0

1 , Ψ
1
1 ), · · · , (Ψ0

q , Ψ
1
q )
)
.

• Let τ = z0 ⊕ z1. Set eψ =
(
(Ψτ11 , Ψ1−τ1

1 ), · · · , (Ψτqq , Ψ1−τq
q )

)
.

• Finally, send (ĈL,x, d) and (Ĉψ, eψ, dψ) to V .

– Receiving (ĈL,x, d) and (Ĉψ, eψ, dψ), V proceeds as follows:

• Assume eψ =
(
(Ψ

0

1, Ψ
1

1), · · · , (Ψ0

q, Ψ
1

q)
)
. Compute K̂ = Ĉψ

(
Ψ
z1
1 , · · · , Ψ

zq
q

)
,

K = De(dψ, K̂).
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• AssumeK =
(
(Γ 0

1 , Γ
1
1 ), · · · , (Γ 0

` , Γ
1
` )
)
. When σ = 0, verify Ĉ

(
Γ z11 , · · · , Γ z``

)
=

K1; When σ = 1, verify V e
(
CL,x, Ĉ,K, d

)
= 1. V accepts if and only if

the verification passes.

Theorem 1. 〈S,R〉 is a two-round completely extractable perfectly-hiding com-
mitment scheme, and Garble = (Gb,En,Ev,De, V e) is Yao’s garbled circuit
scheme, then Construction 5.2 is the (augmented black-box) zero knowledge proof
system for L ∈ NP .

Proof. Completeness: Assume x ∈ L, then CL,x(y) = 1. If V honestly compute
(c, z) = Com(s, σ, r), then z = zσ. So,

(
Ψ
z1
1 , · · · , Ψ

zq
q

)
= En

(
eψ, z

)
=


(
Ψ
z01
1 , · · · , Ψz

0
q
q

)
= En(eψ, z

0), σ = 1(
Ψ
z11
1 , · · · , Ψz

1
q
q

)
= En(eψ, z

1), σ = 0

V computes K̂ = Ĉψ
(
Ψ
z1
1 , · · · , Ψ

zq
q

)
=

{
Ĉψ
(
En(eψ, z

0)
)
, σ = 1

Ĉψ
(
En(eψ, z

1)
)
, σ = 0

By correctness of Yao’s garbling scheme, we have

K = Dec
(
dψ, K̂

)
=
(
(Γ 0

1 , Γ
1
1 ), · · · , (Γ 0

` , Γ
1
` )
)

=

{
ψ(z1), σ = 0
ψ(z0), σ = 1

By definition of ψ, Γ
z0i
i = Kyi

i when σ = 0, and Γ bi = Kb
i when σ = 1, for

i = 1, · · · , ` and b = 0, 1. So, we have

Ĉ
(
Γ
z01
1 , · · · , Γ z

0
`

`

)
= Ĉ

(
Ky1

1 , · · · ,Ky`
` ) = K1

t , σ = 0

V e
(
CL,x, ĈL,x, Z, d

)
= V e

(
CL,x, ĈL,x, e, d

)
= 1, σ = 1

Therefore, V always accepts.
Soundness: IF x 6∈ L, there does not exist y such that RL,x(y) = 1. Since

V commits to σ by 〈S,R〉 that is perfectly hiding, P cannot get V ’s challenge

σ. So, it holds that either Ĉ(Γ z11 , · · · , Γ zq` ) 6= K1
t , or V e(CL,x, Ĉ,K, d) 6= 1. In

other words, the probability that V accepts the proof is no more than 1/2.
Zero Knowledge: Intuitively, the assumption that 〈S,R〉 is computationally-

biding ensures that V knows at most one of z0 and z1 except negligible proba-
bility. This means the protocol is zero knowledge. To formally explain it, define
an (ABB) simulator Sim for any V ∗ with auxiliary input aux as follows: (Here,
imagine V ∗ as an augmented verifier)

Sim(x,CL,x) proceeds as follows:
• Randomly select rV used as the random input of V ∗.
• Run (s, tr)← S(1n). Invoke V ∗ with s and receive c. If V ∗ aborts or c is not

correct, output rV and aborts.
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• Else, receive state from the private output tape and compute (z0, z1) =
Ext(c, tr). Search (σ, z) in state (and auxiliary input aux) satisfying z ∈
{z0, z1} (z = zσ). If no such (σ, z) is fond, randomly select σ ∈ {0, 1}.
(Imagine V ∗ write (σ, z) on the private output tape).

• Let C ′L,x be the same as CL,x except that its output gate g′t is set as g′t(a, b) ≡
1 for a, b ∈ {0, 1}.

• Garble CL,x or C ′L,x: Run
(
Ĉ, e, d

)
← Gb(C, 1n), where C = C ′L,x if σ = 0,

or C = CL,x otherwise. Specifically, assume

e = {(K0
i ,K

1
i )}`i=1, d = {(0,K0), (1,K1)}

• Randomly construct function ψ′:

ψ′(z) = ((Ran0
1, Ran

1
1), · · · , (Ran0

` , Ran
1
`)), z ∈ {0, 1}q, Ranbi ←R {0, 1}k

such that the following conditions hold:
1) If σ = 0, ψ′(z0) = ((K0

1 ,K
1
1 ), · · · , (K0

` ,K
1
` )).

2) If σ = 1, ψ′(z1) = ((Ran0
1, Ran

1
1), · · · , (Ran0

` , Ran
1
`)) satisfiesRan

z0i
i =

Kui
i , ui ←R {0, 1}, i = 1, · · · , `. Let u = u1 · · ·u`.

Let Cψ′ be a circuit to compute ψ′.

• Garble Cψ′ : Run
(
Ĉψ′ , eψ′ , dψ′

)
← Gb(Cψ′ , 1

n), where eψ′ and dψ is encoding
key and decoding list respectively, specifically, eψ′ = ((Ψ0

1 , Ψ
1
1 ), · · · , (Ψ0

` , Ψ
1
` )).

• Let τ = z0 ⊕ z1. Set eψ′ =
(
(Ψτ11 , Ψ1−τ1

1 ), · · · , (Ψτqq , Ψ1−τq
q )

)
.

• Output
(
x,CL,x, rV , c, (Ĉ, d), (Ĉψ′ , dψ′)

)
.

First, notice Pr[Sim aborts] = Pr[P aborts], so assume Sim never abort.
To show that the distributions Sim(x,CL,x) is indistinguishable from V iewPV ∗(x),

we introduce hybrid prover P ′. P ′ interacts with V ∗ and can obtain σ in the
same way as Sim (reading V ’s private output tape or randomly selecting). In
〈P ′, V ∗〉, P ′ is the same as P except that it generates ψ′ as sim does but replace

Ran
z0i
i = Kui

i with Ran
z0i
i = Kyi

i , i = 1, · · · , `. The only difference between Sim

and P ′ is that Sim replace computing
(
Ĉ, e, d

)
← Gb(C ′L,x, 1

n) with comput-

ing
(
ĈL,x, e, d

)
← Gb(CL,x, 1

n) when σ = 0. Notice that CL,x and C ′L,x have
the same structure and satisfy CL,x(y) = C ′(u) = 1, by the privacy of Yao’s

garbling scheme, we have
(
Ĉ, d, En(e, u)

)
and

(
ĈL,x, d, En(e, y)

)
are indistin-

guishable. This implies that
(
Ĉ, d, (Ĉψ′ , dψ′)

)
and

(
ĈL,x, d, (Ĉψ′ , dψ′)

)
are indis-

tinguishable when σ = 0, since ψ′(z) is independent of
(
ĈL,x, d

)
when z 6= z0.

In case of σ = 1, Sim is same as P ′. Therefore, we have that Sim(x,CL,x) is

indistinguishable from V iewP
′

V ∗(x).
The only difference between P ′ and P is that ψ′(z(1−σ)) is different from

ψ(z(1−σ)). Specifically, ψ(z(1−σ)) is related to e and ψ′(z(1−σ)) is independent of
e. By the binding property of the commitment scheme and the authenticity of the
garbling scheme, the probability that v∗ knows z(1−σ) is negligible. Notice that
ψ′(z(1−σ)) and ψ(z(1−σ)) are randomly selected. So,V iewP

′

V ∗(x) and V iewPV ∗(x)
are computationally indistinguishable.
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The above in all, Sim(x,CL,x) is computationally indistinguishable from
V iewPV ∗(x).

Since ABB simulator Sim does not rewind V ∗, so it can run in parallel to
simulate the paralleled protocol. This means that the presented 3-round ZKP
is ZK under parallel composition. Therefore, we can obtain 3-round ZKP with
negligible error probability by paralleling the presented protocol.

It is easy to see that Construction 5.2 has no BB simulator. BB simulator can
correctly guess V ∗’s challenge σ with a high probability, but it cannot simulate
V iewPV ∗(x) since it does not know wether the guess is right. However, if we add
one round at the end of Construction 5.2 for the verifier to open the commitment
c honestly, i.e. the verifier must reveal c honestly after receiving (ĈL,x, d) and

(Ĉψ, eψ, dψ), there exists a balck-box simulator BBSim for any V ∗. Adding one
round at the end of protocol for the verifier to open the commitment c does not
damage the zero knowledge property. This means that Construction 5.2 is, in
essence, black-box ZK.

6 2-Round ZK protocol

In this section we focus on the existence of 2-round ZK protocols for NP, and
present a 2-round ZKP for QNR and a 2-round ZKA for NP respectively.

6.1 ZKA for NP

In this subsection, we present a 2-round ZKA for NP. Our tool is indistin-
guishable obfuscator. Let O be an indistinguishable obfuscator, G : {0, 1}n →
{0, 1}2n·p(n) be a pseudorandon generator, where n is security parameter, p(n)
is the length of random input of O. Let {Hs}s∈I be a family of pseudorandom
functions with sampling algorithm s← Sample(1n, r).

Let L ∈ NP , the corresponding binary relation is denoted by RL(·, ·). Let
R0(·, ·) ≡ 0 and |R0| = |RL|. For any instance x, define a function RbL,x(u) as
follows:

RbL,x(u) =

{
RL(x, u), b = 1
R0(x, u), b = 0

Notice that R1
L,x(u) = R0

L,x(u) ≡ 0 when x /∈ L, and there exists w such that

R1
L,x(w) = 1 when x ∈ L. This property implies instance-dependent commit-

ment. For a given instance x, one computes C = O(RbL,x; r) and use it as the
commitment to b, where r is randomly selected. When x ∈ L, the commitment
is perfect binding and b is revealed by the witness of x. When x /∈ L, the com-
mitment is computationally hiding.

The structure of our construction is as follows: To prove x ∈ L, the verifier
first selects σ randomly and commit to it using the above commitment scheme,
and then asks the prover to guess σ. The verifier accepts if and only if the prover’s
guess is correct.
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In order to force the verifier to honestly commit to σ selected randomly by
himself, run the above protocol in parallel: V computes Ci = O(Rσi

L,x; ri), i =
1, · · · , n and sends (C1, · · · , Cn) to P , while P computes σ′i = Ci(wx; ri), i =
1, · · · , n and then replies to V . To prevent V from cheating, we require that σ =
σ1 · · ·σn is related to r1, · · · , rn. Specifically, V needs to select σ = σ1 · · ·σn, δ =
δ1 · · · δn ∈ {0, 1}n, and then computes Ci = O(Rσi

L,x; rδii ), where r1 · · · rn ←
G(σ), ri = (r0

i , r
1
i ).

Construction 6.1: ZKA for NP

The Common input: x ∈ L. The prover’s auxiliary input: witness w for x ∈ L.

– The verifier proceeds as follows:
1. Pick σ = σ1 · · ·σn ∈R {0, 1}n and δ = δ1 · · · δn ∈R {0, 1}n, compute
r1 · · · rn = G(σ), where ri = (r0

i , r
1
i ) ∈ {0, 1}2p(n), i = 1, · · · , n.

2. Compute Ci = O(Rσi

L,x; rδii ) and sends {Ci}ni=1 to the prover.
– After receiving {Ci}ni=1, the prover proceeds as follows:

1. Verify {Ci}ni=1 satisfying the following conditions:
• σi = Ci(x,w) ∈ {0, 1}, i = 1, · · · , n. Set σ = σ1 · · ·σn.
• For any i, ∃δi, Ci = O(Rσi

L,x; rδii ), where r1 · · · rn ← G(σ), ri =

(r0
i , r

1
i ). Set δ = δ1 · · · δn.

2. If the verification fails, randomly select σ, δ ∈R {0, 1}n.
3. Randomly select r ∈ {0, 1}n, and compute s← Sample(1n; r ⊕ σ).
4. Send r, a = Hs(δ) to the verifier.

– Receiving (r, a), the verifier computes s ← Sample(1n; r ⊕ σ) and verifies
a = Hs(δ). The verifier accepts iff a = Hs(δ).

Theorem 2. Let O be an indistinguishable obfuscator, G be a pseudorandom
generator and {Hs} be PRF. Construction 6.1 is a zero knowledge argument
system for NP .

Proof. Completeness: This is obvious.
Soundness: When x /∈ L, it holds that R1

L,x(u) = R0
L,x(u) ≡ 0 for any

u. By the assumption that O is an indistinguishable obfuscator, O(R0
L,x; ri)

and O(R1
L,x; ri) are indistinguishable. This means that the prover cannot get

σ = σ1 · · ·σn and δ = δ1 · · · δn from {Ci}ni=1 except for a negligible probability.
So, the probability that the prover find r such that a = Hs(δ) (where s ←
Sample(1n; r ⊕ σ)) must be negligible, that is Pr[〈P, V 〉(x) = 1] = negl(n).

Zero knowledge: Intuitively, if V ∗ does not follow the protocol to generate
{Ci}ni=1, that is, V ∗ has no idea about σ and δ, then (r, a) that V ∗ received from
P is random (when P ’s verification does fail) or indistinguishable from random
one (when V ∗ gets correct {Ci}ni=1 from its auxiliary input z). For any V ∗ with
the auxiliary input z, the augmented black-box simulator S is as follows:

S(x, z) proceeds as follows:
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– Select uniformly random input rV for the verifier V ∗.
– Invoke V ∗ and obtain its return {Ci}ni=1.
– Find σ′ = σ′1 · · ·σ′n in V ∗’s private output tape and auxiliary input z,

compute r1 · · · rn = G(σ′), where ri = (r0
i , r

1
i ). Get δ′i satisfying Ci =

O(R
σ′i
L,x; rδ

′

i ). σ′ = σ′1 · · ·σ′n, δ′ = δ′1 · · · δ′n. If there are no such σ′ or δ′,
randomly select σ′, δ′ ∈ {0, 1}n.

– Randomly pick ρ′ and compute s′ ← Sample(1n, ρ′ ⊕ σ′), a′ = Hs′(δ
′).

– Outputs (rV , {Ci}ni=1, ρ
′, a′).

Note that S(x, z) is different from P only when V ∗ has sent correct {Ci}ni=1

but has no idea about the corresponding σ and δ. In such case, P can find the
corresponding σ and δ, while S(x, z) randomly selects σ′ and δ′. Anyhow s′ and s
are always indistinguishable. Therefore, by the assumption that {Hs} is a PRF,
(ran, {Ci}ni=1, ρ

′, a′) is indistinguishable from the V ∗ view (ran, {Ci}ni=1, ρ, a).

6.2 ZKP for QNR

We show how to transform the basic 2-round proof protocol for quadratic non-
residue (QNR) [31], which is only an honest verifier ZKP, into a ZKP protocol
without adding the round complexity.

QR (quadratic residue) and QNR are as follows:

QR = {(n, x) : n ∈ N, x ∈ Z∗n,∃u ∈ Z∗n, u
2 = x (mod n)}

QNR = {(n, x) : n ∈ N, x ∈ Z∗n,∀u ∈ Z∗n, u
2 6= x (mod n)}

It is well known that QR ∈ NP ∩ CoNP,QNR ∈ NP ∩ CoNP . When n is a
composite (of unknown factorization), it is believed that to determine (n, x) ∈
QR or (n, x) ∈ QNR for a given integer x is infeasible. Let ` = |n| be security
parameter. The basic interactive proof for (n, x) ∈ QNR is as follows[31]:

– V randomly selects b ∈ {0, 1}, r ∈ Z∗n and sends w = r2xb to P
– P checks w. Sets b

′
= 1 if w ∈ QNR and b

′
= 0 otherwise. Finally, sends b

′

to V

The above construction can be transformed into a zero knowledge proof via
adding an interactive process, by which verifier proves itself honestly executing
the protocol [31]. Consequently, the known ZKP for QNR is at least 4-round.

The verifier is honest if and only if it holds r that satisfies w = r2xb. When
x ∈ QNR, r is determined by w = r2xb and the prover can extract it after
receiving w. To prove x ∈ QNR, the prover can show r (extracted from w)
instead of b in the second round. Obviously, this protocol is only honest verifier
zero knowledge. If the prover can show that he knows r (implied by w) in a
special manner such that only the honest verifier holding r can verifies it, that
is, a cheating verifier without holding r cannot gets any information about r,
then the protocol will be zero knowledge. Based on this idea, we construct a
2-round ZKP for QNR.
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The main tools in our construction are Yao’s garbled circuits scheme and
point-functions. For any α ∈ {0, 1}`, let Iα : {0, 1}` → {0, 1} be a point-function
defined as

Iα(u) =

{
1, u = α
0, u 6= α

and C : {0, 1}` → {0, 1} be a acyclic boolean circuit computing Iα. Assume that
C has m gates (the output gate is denoted as gm) and t = `+m wires, denoted
as w1, · · · , wt, where w1, · · · , w` are the input wires and wt is the output wire
of C.

Our protocol uses Yao’s garbled circuits scheme, formally denoted byGarble =
(Gb,En,Ev,De, V e),with the following changes:

1) Let (G,E,D) be the private key encryption scheme used in Yao’s garbled
circuits scheme. We require (G,E,D) to satisfy the condition that the ci-
phertext under one key is also a ciphertext under another key. But Yao’s
garbled circuits scheme requires an encryption under one key will not fall in
the range of an encryption under another key except a negligible probability.

2) Let wi, wj and wo be two input wires and one output wire of gate g respec-
tively, and the corresponding keys are (K0

i ,K
1
i ), (K0

j ,K
1
j ) and (K0

o ,K
1
o ). The

garbled gate ĝ is (c0,0, c0,1, c1,0, c1,1) (“garbled computation table”), where

ca,b = EKa
i

(
EKb

j

(
K
g(a,b)
o

))
(a, b = 0, 1). In Yao’s garbled circuits scheme,

the garbled gate of g is the random ordering of (c0,0, c0,1, c1,0, c1,1).
3) Because of 1), evaluating garbled circuit need not only the coding of input

x but also x. In addition, the truth table of each gate in the circuit must
be known. Let (Ĉ, e, d) ← Gb(C). On inputting x = x1 · · ·x` and x̂ =

(Kx1
1 , · · · ,Kx`

` ) = En(e, x), Ev(Ĉ, x, x̂) computes each gate according to its

“garbled computation table”, gate by gate, and obtains the output of Ĉ,
ŷ = Ev(Ĉ, x, x̂).
For any gate g, let wi, wj and wo be two input wires and one output wire
of g respectively. According to 2), the “garbled computation table” of ĝ

is (c0,0, c0,1, c1,0, c1,1), where ca,b = EKa
i

(
EKb

j

(
K
g(a,b)
o

))
(a, b = 0, 1). To

evaluate the garbled gate ĝ with (a,Ka
i ) (the input of wi and the corre-

sponding key) and (b,Kb
j ) (the input of wi and the corresponding key), we

first decrypt ca,b with (Ka
i ,K

b
j ) to get K

g(a,b)
o and then obtain g(a, b) from

the truth table of g. Finally, (g(a, b),K
g(a,b)
o ) is used as the output of ĝ. If

g = gm is the output gate, K
g(a,b)
o is the output of Ĉ.

4) For (Ĉ, e, d)← Gb(C) and any x, x′ ∈ {0, 1}`, Ev(Ĉ, x′, x̂) can be computed
according to the above method whether there is x′ = x or not. However,
except for a negligible probability the output of Ev(Ĉ, x′, x̂), denoted by
(b, ŷ), is wrong (i.e. ŷ /∈ d) when x′ 6= x. For this reason, we modify the
decoding algorithm De by setting De(d, ŷ) = 0 when y /∈ d, where d =

{K0
m,K

1
m}

∆
= (K0,K1).

In addition to, we introduce an algorithm ReOrder which takes (Ĉ, e, d) ←
Gb(C) and r = r1 · · · r` ∈ {0, 1}` as inputs and output a new garbled circuit C,
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where (Ĉ, e, d) ← Gb(C). Concretely, ReOrder re-orders the garbled computa-
tion table of each gate ĝ = (c0,0, c0,1, c1,0, c1,1) if necessary, when g has at least
one input wire in {w1, · · · , w`}.

ReOrder(Ĉ, r):

– For each garbled gate ĝ ∈ Ĉ, reorder ĝ = (c0,0, c0,1, c1,0, c1,1) as follows: Let
wi, wj be two input wires of g, set

c′0,0 := cri,rj , c
′
0,1 := cri,1⊕rj , c

′
1,0 := c1⊕ri,rj , c

′
1,1 := c1⊕ri,1⊕rj

where r`+1 = · · · = rt−1 = 0. Set g = (c′0,0, c
′
0,1, c

′
1,0, c

′
1,1). Notice that g = ĝ

when ri = rj = 0. Finally, set C = {g}ĝ∈Ĉ .

– Output C.

Assume that C computes Iα and
(
Ĉ, e, d

)
← Gb(C), where e = {(K0

i ,K
1
i )}`i=1.

If we set K
0

i = Kri
i ,K

1

i = K1⊕ri
i , i = 1, · · · , `, and e = {(K0

i ,K
1

i )}`i=1. then

(C, e, d) = ReOrder(Ĉ, r) is in fact a garbled circuit that computes the point-
function I(u) = Iα(u⊕ r) for any r ∈ {0, 1}`. Moreover, it holds that

C(u⊕ r, En(e, u⊕ r)) = Ĉ(u,En(e, u))

for any u since En(e, u⊕ r) = En(e, u).

Let Gen : {0, 1}k → {0, 1}2`k be a pseudorandom generator, where k is the
length of the keys of (G,E,D).

Construction 6.2: 2-round ZKP for QNR

Common inputs x ∈ QNR and security parameter `.

– The verifier V proceeds as follows:
• Randomly selects r ∈ Z∗n, b ∈ {0, 1} and computes w = r2xb. Let r =
r1 · · · r`.

• Randomly selects α = α1 · · ·α` ∈ {0, 1}` and constructs a circuit Cα to
compute point-function Iα(·)

• Sends w, (α,Cα) to the prover P .
– After receiving (w, (α,Cα)), P proceeds as follows:
• Finds r′, b such that w = (r′)2xb, where r′ = r′1 · · · r′`.
• Randomly selectsK0,K1 ∈ {0, 1}`, and generates ` pairs of keys {(K0

i ,K
1
i )}`i=1

using Gen, i.e. Gen(K1) =
{

(K0
i ,K

1
i )
}`
i=1

.

• Garble Cα:
(
Ĉα, e, d

)
← Gb(Cα), such that e =

{
(K0

i ,K
1
i )
}`
i=1

, d =

(K0,K1).

• (C, e) = ReOrder(Ĉα, e, r
′)

• Sends C and Kα = (Kα1
1 , · · · ,Kα`

` ) to V .
– Receiving (C,Kα = (Kα,1, · · · ,Kα,n)), V verifies P ’s response.
• Computes K = C(α⊕ r,Kα).
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• Computes {(K0

i ,K
1

i )}`i=1 = Gen(K).

• (Ĉ, e) = ReOrder(C, r).

• Accepts iff 1) K
αi

i = Kα,i and 2) V e(Cα, Ĉ, {(K
0

i ,K
1

i )}`i=1, d) = 1.

We first informally argue that V , even if it cheats, learns nothing else form
P . The only message sent by P is (C,Kα), where C is in fact a garbled circuit
of point-function Iα⊕r and Kα (a set of randomly selected keys) is the random
code of α⊕ r. V computes K = C(α⊕ r,Kα) and then verifies it. If V is honest,
(C,Kα) (garbled circuit of point-function Iα⊕r) reveals nothing since V knows
α ⊕ r. When V does not compute w by means of selecting r (or obtaining w
from its auxiliary input), it can only execute C(β,Kα) with any incorrect input
β 6= α⊕ r, and so only gets a random key except for a negligible probability.

Theorem 3. Let Garble = (Gb,En,Ev,De, V e) be Yao’s garbled circuits scheme.
Construction 6.2 is a zero knowledge proof system for QNR.

Proof. Completeness: When the protocol is executed correctly, K = C(α ⊕
r,Kα) = Ĉ(α,Kα) = K1 since r′ = r, so the verifier always accepts.

Soundness: When x ∈ QR, there exist r0 6= r1 such that w = r2
0 = r2

1x, P
cannot determine which one is chosen by V . So, for any C and Kα, at least one of
K = C(α⊕ r0,Kα) and K = C(α⊕ r1,Kα) cannot pass V ’s verification, except
for a negligible probability. Therefore, the probability that V accepts x ∈ QNR
is no more than 1

3 .
Zero Knowledge: For any V ∗, we define an augmented black-box simulator

S. On inputting x ∈ QNR, S(x) proceeds as follows:

– Selects random input rV for V ∗.
– Receives w and Cα, α from V ∗, where Cα computes Iα.
– Checks V ∗’s private state (including V ∗’s auxiliary input), and finds r and
b such that w = r2xb. If no such r exists, S randomly picks r ∈ {0, 1}`.

– Randomly selectsK0,K1 ∈ {0, 1}`, and generates ` pairs of keys {(K0
i ,K

1
i )}`i=1

using Gen, i.e. Gen(K1) =
{

(K0
i ,K

1
i )
}`
i=1

.

– Garble C,
(
Ĉ, e, d

)
← Gb(Cα), such that e =

{
(K0

i ,K
1
i )
}`
i=1

, d = (K0,K1).

– C = ReOrder(Ĉ, r)
– Output

(
RV , C,Kα = (Kα1

1 , · · · ,Kα`

` )
)
.

It has been already known that (C, e, d) is in fact a garbled circuit of Cα⊕r that

computes the point-function I(u) = Iα(u ⊕ r), where
(
Ĉ, e, d

)
← Gb(Cα) and

C = ReOrder(Ĉ, r). So, by the privacy of Garble = (Gb,En,Ev,De, V e), S(x)
and V iewPV ∗(x) are computationally indistinguishable.

7 Conclusion

In this work, we rethink and present the construction of efficient zero-knowledge
protocols successfully. The augmented black-box simulation improves the power
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of simulator via permitting it to access to verifier’s secret coins and still meets
the essential requirements of ZK. Furthermore, the positive results presented
in this work show that augmented black-box simulation indeed can reduce the
round complexity, and lead to the natural question of application of augmented
black-box simulation in the concurrent setting.

References

1. Barak, B. How to go beyond the black-box simulation barrier. In FOCS, pages
106-115,2001.

2. Bitansky, N., Brakerski, Z., Kalai, Y.T., Paneth, O., Vaikuntanathan, V.: 3-
message zero knowledge against human ignorance pp. 57-83 (2016)

3. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions pp. 505-514 (2014)

4. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The hunting of the SNARK. IACR Cryptology
ePrint Archive, 2014:580, 2014.

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1-18. Springer, Heidelberg (2001)

6. Barak,B., Lindell, Y., Strict polynomial-time in simulation and extractor. In 34th
ACM Symposium on the Theory of Computing, 2002:484-493.

7. Barak, B., Lindell, Y., Vadhan, V.: Lower bounds for non-black-box zero knowl-
edge. Journal of Computer and System Science, 72(2): 321-391, 2006

8. Bellare M, Hoang V T, Rogaway P. Foundations of garbled cir-
cuits[C]//Proceedings of the 2012 ACM conference on Computer and com-
munications security. 2012: 784-796.

9. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function pp. 280-305 (1997)

10. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions pp. 671-684 (2018)

11. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. Proc of Crypto 3152, 273-289 (2004) 32 No Author Given

12. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero knowledge. In TCC
2012. LNCS, Volume 7194, pages 189-207, 2012.

13. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and
application to resettable cryptography. In STOC 2013, pages 241-250.

14. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S., Resettable zero-knowledge.
In STOC, 235-244,2000.

15. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Balck-box concurrent zero-
knowledge requires (almost) logarithmically many rounds. SIAM Journal on Com-
puting, 2002, 32(1):1-47.

16. Chung K M , Lin H , Pass R . Constant-Round Concurrent Zero-Knowledge from
Indistinguishability Obfuscation. ePrint Archive, Report 2014/991 (In CRYPTO
2015)

17. Chung, K. M., Ostrovsky, R., Pass, R., Visconti, I. Simultaneous Resettability
from One-Way Functions. In Foundations of Computer Science (FOCS), pp 251-
260,2013.



30 Hongda Li, Peifang Ni, and Dongxue Pan

18. Chung K M , Ostrovsky R , Pass R , et al. 4-Round Resettably-Sound Zero Knowl-
edge. In TCC 2014.

19. Dwork,C., Naor,M., Reingold,O., Stockmeyer, Larry J. Magic functions, In FOCS,
1999, pp. 523-534. 1999.

20. Dwork C, Stockmeyer L J. 2-round zero knowledge and proof auditors[C]. sympo-
sium on the theory of computing, 2002: 322-331.

21. Deng Y , Goyal V , Sahai A . Resolving the Simultaneous Resettability Conjecture
and a New Non-Black-Box Simulation Strategy. In FOCS 2009, October 25-27,
2009, Atlanta, Georgia, USA. IEEE, 2009.

22. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. pp.
526-544 (1989)

23. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. pp.
416-426 (1990)

24. Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-
knowledge proofs pp. 3-33 (2018)

25. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for np. Journal of Cryptology 9(3), 167-189 (1996)

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate in-
distinguishability obfuscation and functional encryption for all circuits. In: FOCS,
pp. 40-49 (2013)

27. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM Journal on Computing 25(1), 169-192 (1996)

28. Ganesh, C., Kondi, Y., Patra, A., Sarkar, P.: Efficient adaptively secure zero-
knowledge from garbled circuits. In: Abdalla, M., Dahab, R. (eds.): PKC 2018,
LNCS 10770, pp. 499-529, 2018.

29. Goldreich,O., Oren,Y.: Definitions and properties of zero knowledge proof systems.
J. Cruptology, 7(1),1-32(1994).

30. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. Journal of the ACM
38(3), 690-728 (1991)

31. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Comput ing 18(1), 186-208 (1989)

32. Vipul Goyal, Amit Sahai. Resolving the simultaneous resettability conjecture and
a new non-black-box simulation strategy. eprint.iacr.org/2008/545.

33. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. pp.
408-423 (1998).

34. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: CCS 2013, pp. 955-966 (2013)

35. Katz J. Which languages have 4-round zero-knowledge proofs?[C]//Theory of
Cryptography Conference. Springer, Berlin, Heidelberg, 2008: 73-88.

36. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-shamir for proofs pp. 224-251 (2017)

37. Lepinski, M.: On the existence of 3-round zero-knowledge proofs. Tech. rep. (2002)
38. Li, Hongda, Dongxue Pan, and Peifang Ni. ”Augmented Black-Box Simulation and

Zero Knowledge Argument for NP..” IACR Cryptology ePrint Archive (2017).
39. Li, Hongda, Dongxue Pan, and Peifang Ni. ”Efficient Zero-Knowledge for NP from

Secure Two-Party Computation..” IACR Cryptology ePrint Archive (2019).
40. Pass R . Simulation in Quasi-Polynomial Time, and Its Application to Protocol

Composition. In Advances in Cryptology - EUROCRYPT 2003, pp 160-176, 2003.
41. Pass, R., Rosen, A., New and improved constructions of non-malleable crypto-

graphic protocols. In Proc. 37th STOC, ACM, 2005, pages 533-542.



Some Low Round Zero Knowledge Protocols 31

42. Pass R, Venkitasubramaniam M. On constant-round concurrent zero-
knowledge[C]//Theory of Cryptography Conference. Springer, Berlin, Heidelberg,
2008: 553-570.

43. Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In TCC 2004,
pp 191-202, 2004.

44. Sahai, A., Waters, B. How to use indistinguishability obfuscation: Deniable encryp-
tion, and more. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing (STOC2014), pp 475-484, 2014.

45. Yao A C. Protocols for secure computations[C]//23rd annual symposium on foun-
dations of computer science (sfcs 1982). IEEE, 1982: 160-164.

46. O. Goldreich. Foundations of cryptography: Basic tools, Cambridge University
Press, 2001.

A Garbled Circuits

Privacy is to protect the privacy of encoding inputs. Bellare et al. presented
the formal definition for privacy based on indistinguishability game[8]. Assume
C0 and C1 two circuits with the same side-information and (x0, x1) satisfies
C0(x0) = C1(x1). The definition require that, for any adversary A, it holds that

Pr
[
b = b′|b←R {0, 1}, (Ĉ, e, d)← Gb(1n, Cb), x̂← En(e, xb), b

′ ← A(Ĉ, x̂, d)
]

=
1

2
+negl(n)

Authenticity is that adversary given with Ĉ and x̂ = En(e, x) can only learn

Ev(Ĉ, x̂). Specifically, authenticity asks, for any adversary A, it holds that

Pr
[
De(d, ŷ) 6= ⊥, ŷ 6= Ev(Ĉ, x̂)|(Ĉ, e, d)← Gb(1n, C), x̂← En(e, x), ŷ ← A(Ĉ, x̂, d)

]
= negl(n)

for given C and x.
In this paper, we use Yao’s garbled circuits scheme [45], which uses private key

encryption scheme Π = (G,E,D) with the following properties: 1) an encryption
under one key will not fall in the range of an encryption under another key except
for a negligible probability; 2) Given the key K, it is easy to decide whether a
given ciphertext falls into the range of encryptions under K.


