
Permissionless Consensus in the Resource Model

Benjamin Terner

UC Irvine bterner@uci.edu

Abstract. Nakamoto’s Bitcoin protocol inspired interest in the permissionless regime of distributed
computing, in which participants may join and leave an internet-scale protocol execution at will. The
permissionless regime poses challenges to the classical techniques used for consensus protocols, in which
participants attempt to agree on a function of their inputs. Crucially, classical consensus techniques
require honest participants to remain online and active, and to know an upperbound on the number of
participants. Bitcoin addresses this issue by requiring Proof of Work, and other Bitcoin-inspired works
have developed Proof of X (PoX) variants to remediate the shortcomings of Proof of Work.
We propose an abstraction for PoX called resources, and argue that in practice, several variants appear
to implement resources. We then show that given few additional assumptions, resources are sufficient
to achieve consensus in the permissionless regime, even in the presence of a full-information adversary
that can choose which parties get resources and when they get them. In particular, it is not necessary
to know a bound on the network delay, participants do not need clocks, and participants can join and
leave the execution arbitrarily, even after sending only a single message. We require only a known
upperbound on the rate at which resources enter the system, relative to the maximum network delay
(without needing to know the network delay), and that over the long term, a majority of resources are
acquired by honest participants.
Along the way, we provide a generalization of blockchains called graph consensus. We present a graph
consensus protocol for the permissionless regime that works even when resources enter the system
at high rates, but the required honest majority increases with the rate. We show how to modify the
protocol slightly to achieve one-bit consensus. Finally, we show that for every graph consensus protocol
that outputs a majority of honest vertices there exists a one-bit consensus protocol.

Keywords: Consensus, Blockchain, Permissionless, Full Information

1 Introduction

1.1 Permissionless Consensus and PoX

The distributed system problem of consensus has been studied for decades since the seminal works
of [42, 32]. In the general form of a consensus protocol, participants in the protocol communicate
over a network in an attempt to agree on a single bit or an append-only log based on their inputs.
In the classical regime of consensus protocols, the participants are determined before a protocol
execution begins. Crucially, most classical techniques for practical consensus protocols involve the
use of quorum or threshold systems, for example [17, 10, 13, 31]. Famously, consensus on even a
single bit in the classical regime is impossible unless more than two thirds of participants are
honest [42, 32, 18, 10].

The advent of Bitcoin [38] ushered in renewed interest in consensus protocols by introducing the
permissionless regime, in which a protocol execution is open to all those who want to participate.
This models internet-scale protocols in which participation is dynamic, meaning participants can
join and leave an execution arbitrarily, the number of active participants may be in constant flux,
the identities of the participants at any point in time are unknowable, and the adversary may
control arbitrarily many parties. The permissionless regime therefore presents challenges to the
techniques employed by classical protocols.

The Physical Resource Model and PoX Despite the challenges, consensus protocols for the
permissionless regime have proliferated since Bitcoin [5, 24]. The area has become a promising new
direction in cryptography as we have come to understand that techniques introduced by Bitcoin
provide advantages over the classical regime. In Eurocrypt 2020, Garay et al [23] formalized a
randomized resource-restricted model and showed that by restricting the ability of parties to send
messages, it is possible to bypass known bounds for both Byzantine Agreement and MPC. Recent
work [39, 8, 15, 23] also shows consensus is possible when parties are able to maintain a simple
majority of the available physical resources, which circumvents the classical requirement that more
than two thirds of all participants are honest [42, 32, 18, 10].

The resource-restricted model changes the basis of security from the proportion of honest partic-
ipants in a system to the physical resources that they control. Bitcoin famously requires participants
to solve Proof of Work to participate [19, 2, 38]. In response to Proof of Work’s wasteful compu-
tation, many Proof of X (PoX) variants have been proposed (see [5] for an overview), the most
popular being Proof of Stake [9, 27, 3] (PoS).

Proof of X serve multiple roles in taming the permissionless regime for consensus. First, PoX
systems constrain the power of the adversary to influence a computation by inextricably tying the
ability to send messages to the amount of physical resources a party controls. Therefore, although
it is impossible to bound the proportion of honest parties (and Sybil attacks are free), sending
messages is not free, and the proportion of messages sent by the adversary can be constrained.
Second, the fact that participants can join and leave arbitrarily poses fatal issues for traditional
protocols which may wait for a participant that has gone offline to send the next message. PoX
systems require each participant to solve a puzzle in order to send a message, thus implementing a
self-selecting lottery to choose the next speaker from among those who are online.

Resources: A Unifying Abstraction It appears that PoX tame the challenges of the permission-
less regime for consensus. However, current permissionless consensus protocols depend on non-black
box properties of the underlying PoX used to enforce physical restrictions. To better understand
the permissionless regime and the power of PoX, we ask:

Is there a unifying abstraction for PoX?
If so, under what assumptions does such a primitive imply consensus in the permissionless regime?

In this work, we model a unifying abstraction of PoX which we simply call resources, an allusion
to the fact that PoX systems tie participation to physical resources. To date, all other works we know
about in the permissionless model also assume some synchronization assumption, either knowledge
of the network delay [8, 9, 20] or (weakly synchronized) clocks [27, 15, 3, 4], plus some assumption
about the number of active participants. But are these assumptions necessary given resources? Can
we find necessary and sufficient assumptions under which resources admit consensus?

As a second goal, we introduce a framework for blockchain protocols which uses resources as
a black box. If resources are implementable, then it should be possible to separate the proof of
the blockchain protocol which uses resources from the implementation of resources. This improves
modularity of proofs and allows new protocol designers to design new implementations of resources
under reasonable assumptions.

2

1.2 Modeling Resources

To answer our questions, we model the properties of resources and show how to constrain an
execution based on how participants acquire resources.

The Properties of Resources Resources are modeled in order to capture PoX in as general a
manner as possible. We observe that PoX implementations implement a common paradigm:

1. Parties continuously attempt to solve some cryptographic puzzle that is tied to physical re-
sources (this can be compute power, stake in the system, physical storage, etc.). Every puzzle
solution is accompanied by a proof that it is indeed a solution, and the proof can be checked
by other participants.

2. Every puzzle solution is associated with a single message. The message must be chosen at the
time that the puzzle is solved, and it receives special status in the protocol. (In some imple-
mentations, this message includes a public key that endows special status to future messages
signed with that key.)

In our model, rather than requiring participants to solve a PoX puzzle, we say that participants
are allocated resources from the environment. Our model then includes formal properties to mimic
the above process:

1. Unforgeability No participant can fake the fact that it has a resource. This models the facts
that Proof-of-X solutions are tied to physical resources; in practice, PoX schemes enforce this
requirement by requiring PoX solutions are verifiable by other participants.

2. Use-Once Each resource can be associated with one and only one string, which allows the
resource to carry semantics. The string must be chosen at the moment that the resource is
generated, modeling the fact that in PoX schemes, the input must be chosen at the same time
the PoX puzzle is solved.

Constraining the Supply of Resources As we have explained, PoX schemes implement virtual
lotteries based to select the next speaker among those that are active at the time of the lottery.
We model how the lottery mechanism constrains the number of speakers in an execution over time
using only two constraints on the supply of resources.

1. Long Term Honest Majority We let α denote the long-term proportion of honest resources.
We say the long-term proportion because we also allow the corrupt participants to have a
short-term advantage in resources. Specifically, in any period of time in which n resources are
allocated, we require that αn − ε are allocated to honest participants, and at most βn + ε
are allocated to corrupt participants, where ε represents a short-term corrupt advantage and
β = 1 − α is the long-term proportion of corrupt resources. When α > β, we say that honest
participants receive a long term majority of resources.
By introducing the parameter ε, we model the fact that an adversary may attempt to pool
its physical resources in order to achieve a short “burst” of resources. However, if the corrupt
participants perform a burst, then they deplete their capacity to receive more resources for some
time after.

2. Rate Limit We let ρ upperbound the rate at which resources may be generated. Specifically,
ρ is the maximum number of resources that may be generated per ∆ time, where ∆ is the
unknown maximum network delay.

3

On the Modeling Approach Early attempts to model the permissionless regime start with a
derivative of the standard UC framework [12], and assign to each physical party one “virtual”
party for each unit of computational power controlled by that party (for example [25, 39] in the
PoW model). The paradigm then must quantify over the probability that, given some proportion
of computational (or other constrained) resources, the honest parties obtain a certain proportion
of puzzle solutions (akin to our “resources”).

In contrast, our approach directly models the number of resources obtained by honest parties,
without regard to the process which they use to obtain the resources. We then analyze what the
parties can achieve when provided with their resources. Our approach is similar to a paradigm
famously employed by coding theory. Consider that many encoding schemes offer guarantees of
the style “as long as fewer than n bits of a codeword are mauled, the plaintext can be recovered.”
Our constraints to provide thresholds on adversarial behavior under which we prove security. To
implement resources, one would have to show that their chosen scheme (such as PoX, PoS, etc)
induces the appropriate proportion of resources being allocated to honest participants.

We will see that this approach allows us to gracefully model dynamic participation. Specifically,
we present protocols without regard for how many times any particular party must speak or how
long any party must remain active; indeed, we trivially model executions in which each participant
speaks at most once.

1.3 Main Results

One-Bit Consensus We find that resources do imply consensus assuming only knowledge of ρ, which
upperbounds the rate at which resources are allocated relative to the (unknown) maximum network
delay, and that honest parties receive a majority of resources in the long term. We also show that
these requirements are necessary. As explained below, we prove our theorems in a regime in which
participants can join and leave an execution arbitrarily, they do not have clocks, they do not know
the maximum network delay, and the number of participants which are online at any point of time
is unknown.

Theorem 1 (Informal). For all α > ρc(1 − α), where c is a derived constant on the order of
ρ+ ε, there exists a one-bit consensus protocol in the permissionless regime with resources.

Graph Consensus The technique that we use to build one-bit consensus from resources is reminiscent
of so-called blockchains. We define a problem called graph consensus in which honest participants
maintain local graphs and propose vertices to be included in each other’s graphs. Participants con-
tinuously output subgraphs of their local graphs. The security goals of a graph consensus protocol
are generalizations of those proposed by [25, 39, 7]. Specifically, a graph consensus protocol should
achieve two properties. First, consistency requires that for any two graphs output by honest par-
ticipants, one participant’s output must be a subgraph of the other. Second, liveness requires that
honest participants may not trivially output empty graphs, but that their outputs must grow with
the size of their local graphs.

Theorem 2 (Informal). For all α > ρc(1 − α), there exists a graph consensus protocol in the
permissionless regime with resources.

Notably, we show that it is possible to achieve graph consensus when ρ > 1, i.e. more than 1
resource may allocated per ∆ time. However, interestingly, our protocol requires that α grow with
O(ρ2(1− α)) in order to maintain security (recall that c is on the order of ρ+ ε).

4

For completeness, we additionally show the necessity of our assumptions.

Theorem 3 (Informal). There is no consensus protocol in the permissionless model that does not
require both a long-term majority of resources and a constraint on the network delay.

The necessity of these assumptions follows from standard techniques, and the discussion is
deferred to Appendix A.

1.4 Technical Overview

The Permissionless Regime To show the power of resources, we model a regime that is incredibly
advantageous to the adversary. The maximum network delay ∆ is unknown and participants do
not have clocks. The number of participants is unknown to the participants and may be unbounded.
Moreover, the adversary is computationally unbounded; it has full information about the states of
all honest parties; it can corrupt parties adaptively; and it controls resource allocations, subject to
constraints on honest majority and the allocation rate. Participation is not only dynamic, but also
completely controlled by the adversary. We remark that this means any protocol in our model must
be player-replaceable, and any protocol must achieve consensus even when every honest participant
sends at most one message before it leaves the execution, and even when every honest participant
is only active for a (very) short period of time from the moment it joins to the moment it leaves. (In
the extreme, this is just long enough to receive the state of the system and send a single message.)

One might think that achieving consensus in our regime is intractable; indeed, all classical
techniques for consensus are inapplicable in our regime because we cannot synchronize rounds or
threshold the proportion of online honest participants. Moreover, Pass and Shi [8, 41] prove that
for protocols which require mining, if the maximum network delay is unknown then the number of
participants must be known within a factor of 2, even when participants are synchronous and have
clocks. Intuitively, this is because an adversary can always split the execution into two groups, and
deliver messages within each group quickly but between groups slowly. If the maximum network
delay is longer than it takes each group to produce output independently, then no protocol can
achieve consensus.

One might think to use resources in order to perform committee election, and then employ a
classical consensus protocol among committee members (as in [27, 40, 29]). However, even agreeing
on a committee is highly nontrivial without knowing ∆, and possibly implies consensus on its own
if participants can output a function of the committee members’ identities. Additionally, commit-
tee election requires that the committee members stay online long enough to participate in the
secondary protocol, which is not guaranteed in our regime. We therefore require new techniques.

Building Consensus from Resources Despite the above difficulties, consensus is possible in
our regime. Our protocols and their guarantees are independent of the number of honest partici-
pants and how long they stay online. We require only that honest participants collectively receive
sufficiently more resources over the long term than the corrupt participants, as constrained by the
parameters α and ε, and that the parties know a bound ρ on the rate at which resources are al-
located, without needing to know the communication delay ∆. The rate limit ρ acts as very weak
connection between computing power and network synchronization. We remark on the strength of
this connection below; although weaker than knowing ∆, this assumption suffices to subvert the
impossibility of Pass and Shi.

5

Given a long-term majority of resources and a bound on the rate, honest participants can use
the properties of resources to build a virtual, global directed acyclic graph (DAG) which captures
the global (partial) ordering in which they receive their resources. Importantly, every vertex in
the global DAG is associated with a resource (much like every vertex in a blockchain is associated
with a Proof of X). The unforgeability and use-once properties of resources enforce that corrupt
participants cannot manipulate the graph structure or create fake vertices. The honest participants
embed structure into the graph that can be used to infer when corrupt parties attempt to cheat by
“withholding” their resources, i.e. not immediately multicasting a vertex they have added to the
graph.

The technique requires that honest participants receive more resources over the long term than
corrupt participants. In our graph protocol, we use the long term advantage similarly to many
longest-chain blockchains. However, rather than measure the length of a chain in the DAG, we
define the depth of a DAG to be the length of the longest path from the root to a leaf vertex (where
the DAG grows from a root with no indegree to the leaves with no outdegree). We then require
that the honest participants can build deeper branches on the DAG than the corrupt participants.

The structure that honest participants build into the global DAG is reachability. Every honest
vertex which is added to the global DAG is guaranteed to gain an honest successor, and to always
be a predecessor of one of the deepest vertices in the global DAG. However, corrupt vertices are
not guaranteed to become a predecessor of any honest vertices. If honest participants can build
longer paths in the global DAG over time than corrupt participants, then if corrupt participants
withhold their vertices for too long, their withheld branches will eventually fall behind the depth of
the global DAG. Honest participants extract their outputs by selecting vertices in their local views
of the global DAG which are predecessors of the deepest vertices in their views, excising all corrupt
vertices on branches which have fallen short.

One-bit consensus follows from any graph consensus protocol which guarantees that for any
sufficiently large output graph, a majority of the vertices must be associated with resources allocated
to honest participants.

Why Chain Protocols Fail: Pathological Chain Structures In our model, we cannot use
longest-chain or heaviest-chain protocols at non-trivial resource rates (ρ > 1). Consider an execution
of a chain protocol in which a fork develops at the root and is never resolved. Our definition of
graph consistency (Definition 14) requires that if any two participants output graphs G1 and G2,
respectively, at any points in time, then G1 ⊆ G2 or G2 ⊆ G1. In such an execution, no processor
could ever output either branch of the fork. Our definition of liveness (Definition 15) lowerbounds
the size of a graph output by an honest party by a function of the number of vertices in its
local graph. In this execution, despite the fact that the honest parties’ local graphs grow, liveness
fails because they can never output any vertices. Note that this may happen even if the corrupt
participants receive no resources. In a random model, forks are likely to be resolved eventually,
which allows participants to eventually output one branch of the fork. The perpetual fork attack
is also discussed in [28]. Although we do not discuss it here, pathological structure attacks can be
generalized to DAG-based protocols.

1.5 Considerations of Our Results

On Knowing the Rate Limit It is easy to show via partitioning attack (Section A) that some
constraint on the network is necessary in order to achieve consensus. However, knowing a bound on

6

the resource rate relative to the network delay is a weaker assumption than knowing the network
delay. Given knowledge of the network delay, participants can execute synchronous protocols that
proceed in rounds. This is possible because the adversary cannot manipulate honest participants’
timekeeping abilities. However, a bound on just the resource rate does not directly yield synchro-
nization, since the adversary may induce a large difference in two honest processors’ views at the
same moment in time by selectively delivering corrupt resources to one honest participant but not
to another.

It remains to answer why it suffices to constrain the rate at which resourced enter a system
relative to the maximum network delay, even if the parties do not actually know either bound.
In their seminal work, DLS [18] showed that consensus is possible in partially synchronous envi-
ronments in which there exists any relationship between processor synchronization, which roughly
translates to the rate at which processors compute, and the maximum network delay. Our work
considers the rate at which resources are allocated to measure aggregate processor activity. Even
when parties are constantly joining and leaving an execution, it is possible to aggregate the amount
of computational work they do over time. We show that the relationship between the aggregate
processor work and the maximum network delay is sufficient to permit consensus.

In practice, it has been reasonable to assume that a rate of resource allocations is known relative
to the network delay despite the fact that the true network delay is unknown. For example, a PoW
system is parameterized by estimating the amount of time it takes to propagate a block through
the network (as by [16]) and then tuning a hardness parameter to achieve a particular rate of puzzle
solutions per conservative network delay time. PoS systems also tune their parameters to achieve
a certain number of PoS solutions per protocol round.

Network with Multicast We imagine a network overlay that is sufficiently connected that be-
tween every two honest participants, there is at least one path through the network consisting
of only honest participants. This guarantees that every message multicast by an honest node is
eventually propagated to every other honest node. However, because the diameter of the network
and the delay between nodes is unknown, the maximum network delay ∆ for a multicast is un-
known. Corrupt participants can inject messages and selectively send messages to only some honest
participants by corrupting the appropriate edge nodes.

We note that some form of multicast or broadcast functionality is necessary for any protocol in
a permissionless regime. In [4], this is achieved through a network functionality that registers and
unregisters participants as they enter and leave an execution and delivers messages to registered
participants. Our approach resembles that of [39, 8], in which there exists known a network delay
∆, except that in our model, ∆ is unknown to the participants.

The Need for a Recovery Protocol We assume that when a participant comes online, it
immediately receives all messages which have been multicast or sent directly to it more than ∆
time in the past. This assumption models the expectation that when participants come online,
they execute some recovery protocol to receive the most recent state of the system (up to the
communication delay) before participating in the protocol. An analogous recovery protocol in any
blockchain requires a participant to download the blockchain up to the most recent blocks before
it begins mining; this is what permits blockchains to be player-replaceable.

The need for such a recovery protocol is highlighted by [4], who showed that in Bitcoin, if
participants can come online and generate blocks before they recover the state of the blockchain

7

(up to messages pending over the network), it is impossible to prove anything. Intuitively, honest
participants can be manipulated to generate blocks that are shallow relative to the length of the
longest chain, which constitutes a (unwitting) deviation from the honest protocol.

Without modeling the many ways in which a participant may be online but desynchronized,
we consider a participant to be honest at the moment it receives a resource if it is executing the
honest protocol and it has received the state of the execution up to the messages which were sent
within the last ∆ time, and corrupt otherwise.

Determinism and Nondeterminism Our work is the first we know that attempts to model
PoX in a deterministic model that gives the adversary the ability to determine which parties get
resources and when resources are allocated. This is significant for more than just the power of
the adversary. FLP [22] and Ben-Or [6] showed a separation between the feasibility of (classical)
consensus protocols in deterministic and randomizes fully asynchronous models. In comparison,
our work is the first to show deterministic consensus in the permissionless model, and although
our network is not completely asynchronous, it is trivial that some assumption on the network is
necessary for consensus in the permissionless model. We defer this discussion to Appendix A.

Moreover, although our protocols are deterministic, our model is still capable of capturing
nondeterministic lottery-style protocols. In most PoW and PoS protocols, the sources of nondeter-
minism in the execution are the lottery selection and message delivery over the network. In our
model, these responsibilities are handled by the environment, which serves as the adversary and is
responsible for both allocating resources and delivering messages, and may do so arbitrarily within
constraints we define. Therefore, the class of protocols that we capture in our model is large enough
to consider current designs.

1.6 Related Work

Comprehensive overviews of the blockchain literature can be found in the systemizations of knowl-
edge by [24] and [5]. Here we describe only works we know about that solve similar problems or
use similar techniques.

As far as we know, no other works present the common qualities of PoX via a single abstraction.
However, Miller et al [35] model Proof of Work as scratch-off-puzzles, showing a number of desirable
properties for Proof of Work objects. Garay et al [26] model the sufficient properties of PoW to
yield consensus. Garay et al [23] further abstract the properties of PoW to a randomized resource-
restricted model.

Other works have studied one-bit consensus using PoW and blockchains. Among them, Miller
and Laviola [36] show how to achieve anonymous consensus from moderately hard puzzles when
the network delay is known. GKL [25] show how to achieve byzantine agreement in synchronous
networks using the “Bitcoin backbone” protocol. EFL [20] construct broadcast and consensus from
Proof of Work but require clocks and knowledge of the network delay.

A number of other works model permissionless blockchains with proof of work or proof of stake,
most notably GKL [25], PSs [39] (followed by Pass and Shi [8]) and their respective successors.
BMTZ [4] model the Bitcoin protocol in the UC model with dynamic player sets. Ouroboros Praos
[15] models a Proof of Stake blockchain with semi-synchronous communication, and Ouroboros
Genesis [3] presents their version of dynamic availability. The Ouroboros protocols (weakly) syn-
chronize their participants via a global clock functionality. Among all the works studying PoX

8

consensus protocols, we are the only one that we know in a deterministic model in which the
adversary controls allocation.

There are many works that implement agreement on DAGs, specifically in attempts to scale the
throughput of blockchain protocols “on the chain.” The structure of the DAG built in our protocol
bears some resemblance to SPECTRE [45] and PHANTOM [46], but our definitions, assumptions,
and analyses are very different, due to the power of our adversary. The same is true for Meshcash
[7], who adopt the model of [39]. The Avalanche protocol [43] also employs agreement on a DAG
for high throughput of consensus instances for synchronous participants in a permissioned network.

1.7 Paper Organization

Section 2 overviews how several popular forms of PoX implement resources. In Section 3, we build
a formal execution model based on a syntactic framework for resources. In Sections 4 and 5, we
define one-bit and graph consensus in our model. In Section 6 we present our main protocol, our
main theorem, and an overview of the proof. Section A shows honest majority and some bound
on the network are necessary for consensus in the permissionless regime. Section B shows how to
reduce one bit consensus to graph consensus, and provides a protocol for one-bit consensus in our
model. In Section C we present the full proof of our graph consensus protocol. In Section D we
present the full proof of our one-bit consensus protocol.

2 How PoX Implement Resources

In this section, we illustrate how a few of the most popular forms of PoX implement resources.
Formally showing that any scheme implements resources requires careful analysis in each scheme’s
syntactic model. Protocol designers should design resource schemes under assumptions that they
believe reasonable and prove their security properties.

What Makes a PoX? In every PoX mechanism, resources are use-once objects that are hard to
obtain and give special status to the messages bound to them. Resources are made hard to obtain
by the fact that physical resources in the system are constrained, and scarcity is cryptographically
enforced by their verifiability. The use-once nature of resources is cryptographically enforced by
the fact that resources are semantically bound to a single string. Protocols then base their security
guarantees on the constraint that a majority of the special messages must be generated by honest
participants. For each PoX that we describe, we overview how the mechanism is implemented, how
they realize unforgeability and use-once properties, and how they constrain supply.

2.1 Proof of Work

In a Proof of Work (PoW) scheme, processors attempt to find solutions to a hash puzzle for a
cryptographic hash function H. A “solution” to a hash puzzle is a string x for which H(x) < D,
where D is a difficulty parameter. In most PoW schemes, the input x is composed of a nonce, a
payload, and a pointer to a previous puzzle solution. When a puzzle solution is found, we consider
the input x to be the string that is bound to the resource. Note that to strictly implement resources,
it is not necessary that an input to a hash puzzle include a pointer to a previous hash puzzle;
however, this property is used by many Proof-of-Work protocols to enforce a graph structure.

9

Unforgeability of a resource in a PoW scheme follows from the hardness and verifiability of
the hash function. Honest parties can easily verify that a string x is a valid solution to the hash
puzzle H(·) < D.

Use-Once of a resource follows from the collision resistance of the hash function. Given a
resource bound to string x, in order to claim the resource has been bound to another string, a
corrupt party must find an x′ such that H(x′) = H(x). (See [35] for a discussion.)

Honest majority of PoW schemes follows from the assumption that honest parties maintain
a majority of active computational power at all times.

Rate limiting of PoW schemes is enforced in practice by regularly retargeting the difficulty
parameter. The difficulty parameter is set based on the total hash power of the network (measured
as the number of hash function evaluations per second, this is an estimate of physical computing re-
sources) in order to target a particular rate of puzzle solutions. For Bitcoin, the difficulty parameter
is set such that a puzzle solution is found about every 10 minutes [38]; in Ethereum the difficulty
parameter is set such that a puzzle solution is found about every 13 seconds [21]. In order to show
that a proof-of-work scheme implements resources, one would have to identify realistic assumptions
from which to show that difficulty calibration of the hash puzzle effectively upperbounds the rate
at which hash puzzles are found.

2.2 Proof of Stake

Proof of Stake (PoS) schemes implement resources as binding lottery tickets. During each time
step, each participant evaluates some number of virtual lottery tickets to determine if it is the
leader in the blockchain protocol at that time step. The number of lottery tickets each processor
can evaluate at any time step is proportional to its stake in the system at that time. Specifically,
in every case of PoS, a lottery ticket evaluates some function F (x, pk), where pk is a public key
associated with some stake in the system, and x encodes a time slot and a nonce, where the nonce
encodes some state which should contain entropy. For a “winning ticket,” the message bound to the
corresponding resource is therefore (x, pk); this effectively ties the public key pk to the global state
of the system in which it becomes the next leader.

Rate-limiting is imposed by parameterizing each Proof of Stake protocol to upperbound the
number of winning lottery tickets that are evaluated per time step. (This is analogous to param-
eterizing the number of proof of work solutions per network delay, or upperbounding the number
of resources that are allocated per span of time.) We remark that each of the schemes that we
overview relies on either knowing the maximum communication delay of the network or on loosely
synchronized clocks in order to synchronize the rounds of the lottery.

Lottery by VRF In the PoS schemes of both Ouroboros [15] and Algorand [27], lottery tickets are
implemented using a verifiable random function (VRF) [33, 15]. A participant evaluates a lottery
ticket by computing vrf.provesk(x) → π, where sk is the secret key associated with a stake in the
system that the participant owns a particular time, x is the state of the system, and π is the output
of the vrf. (We elide details about Algorand’s cryptographic sortition.) A lottery ticket is considered
to be a “winner” if π < D, for some tunable parameter D. To verify the role of a claimed leader,
other participants must verify the VRF via vrf.vfypk(x, π), where pk is the public key associated
with sk.

10

Use-once follows from the unpredictability of the VRF. Given one solution, it should be hard
to find another input to the VRF that evaluates to the same proof. Unforgeability follows from
the verifiability of the VRF, because one cannot fake that a puzzle solution has been found.

Lottery by Hash Function The Proof of Stake mechanism by Snow White [9] differs from Ouroboros
and Algorand in that it does not use a VRF. Instead, it uses a cryptographic hash function that
is seeded by a stateful nonce that depends on the previous hash puzzle solutions. Specifically, the
a proof of stake is evaluated as H(r, pk, t) < D, where r is a stateful nonce, pk is a public key for a
digital signature scheme, and t is a timestamp. If the output of the hash function is less than the
difficulty parameter D, then the participant with public key pk becomes a leader. Use-once follows
from collision resistance of the hash function, and unforgeability follows from the verifiability of
the hash function.

Enforcing Honest Majority: Preventing Grinding In order to show that PoS implements resources
for which honest parties can maintain an honest majority, one must argue that no corrupt partici-
pant can increase its share of PoS solutions to be more than roughly its proportion of stake in the
system, and that parties cannot efficiently “predict” keys which will be leaders in any particular
time slot. Existing PoS constructions specifically depend on the fact that the state encoded in the
input x, which is bound to the resource, contains enough entropy that the adversary cannot launch
pre-computation attacks, and that “grinding” attacks are computationally infeasible. For a full
treatment, refer to the discussions located in each of the PoS implementations we have referenced.
Specifically, in Ouroboros refer to the discussion on VRF Unpredictability under Malicious Key
Generation ([15] Section 3.2). In Algorand refer to the discussions on choosing the VRF seed in
each round and setting secret keys well before each round ([27] Sections 5.1, 5.2). In Snow White,
refer to the discussion on security under adversarially biased hashes ([9] Sections 2 and G).

2.3 Non-Cryptographic PoX

There have been many additional cryptographic PoX variants proposed, for example Proof of
Spacetime [37] and Proof of Retrievability [34]. We do not analyze them all here. However, we
do remark that PoX need not necessarily be implemented using cryptography. For example, Proof
of Elapsed Time [44, 14] elects leaders in a consensus protocol via verifiable timer. Additionally,
resources could be implemented in low-power environments in which participants seldom have
enough energy to send a message. In this case, every message would be associated with a resource,
as the resource represents physical energy. Future research could study ways to move resource
allocation to the environment (e.g. by random lottery based on external factors), rather than by
solving hash puzzles.

3 Formal Model

We denote by N the natural numbers and by R≥0 the set of non-negative real numbers. Fix an
alphabet Σ. Let M = Σ∗ be the set of strings (we also call them messages) over the alphabet. We
let ID denote the set of identities, and let broadcast be a special symbol not in ID. We denote by
Ψ the set of resources.

We use || to denote concatenation. We denote by ε the empty string. For a set S, we use the
notation S∅ to denote S ∪ {∅}. We let P(S) denote the powerset of S. We let |S| denote the
cardinality of S.

11

3.1 Model of Computation

Automata In this work, we model computation via automata that can send and receive messages.
We begin by introducing an interactive automaton:

Definition 1 (Interactive Automaton). An interactive automaton is a tuple

(Z, ID,Σ,Zinit, δ, λ, ξ)

Let M = Σ∗ and Θ = ID∅ ×M. The elements of the above tuple are: Z is an infinite set of
states; ID is a set of identities; Σ is an alphabet; Zinit ⊆ Z is a set of initial states; δ : Z ×Θ 7→ Z
is a state transition function; λ : Z×Θ 7→ P((ID∪{broadcast})×M) is a communication function;
and ξ : Z 7→M is an output function

We intuitively understand the execution of interactive automata as follows. An automaton
begins its execution in some starting state zinit ∈ Zinit, and its state transitions and outputs are
determined by the inputs provided to its functions δ,λ, and ξ. For example, let z ∈ Z be the
current state in some transition. On input θ ∈ Θ, the automaton computes ν ← λ(z, θ) as the set
of messages to send to other automata, and it transitions to the next state z′ ← δ(z, θ). When the
automaton transitions, it also updates its output to ξ(z′).

By modeling interactive automata, we intend to model a group of automata that interact by
sending and receiving messages to each other. When an automaton A’s communication function λ
outputs (id,m), we can understand that A sends m to an automaton with identity id.

Protocol A protocol describes how a group of interactive automata interact with each other. Con-
cretely, a protocol Π is a triple (ID,Σ,Γ) where ID is a set of identities, Σ is an alphabet, and Γ
is a mapping from identities to interactive automata. For a given id ∈ ID, we let Aid denote the
automaton specified by Π’s mapping Γ, where Aid = (Zid, ID,Σ,Zinit,id, δid, λid, ξid).

All of the protocols we present are parameterized by an arbitrary, unbounded set ID, which for
convenience we think of as N. Note that this permits us to consider protocols in which the number
of participants is unbounded. In addition, for all of the protocols we consider, Σ ⊇ {0, 1} ∪ Ψ,
where Ψ is the set of resources. In the discussions of our protocols, we omit ID and Σ from the
notation and just give the mapping Γ. Because in our protocols, Γ gives the same automaton for
every identity, when we describe a protocol Π, we will just describe the automaton to which all
identities are mapped.

For convenience, we refer to an interactive automaton which sends or receives messages in an
execution of a protocol as a participant.

3.2 Execution of a Protocol with Resources

Resources We first introduce special black-box objects called resources. We will define resources as
unforgeable objects created by an external entity, which then allocates them to participants. Lucky
participants who receive resources gain extra power in protocols that exploit them.

Resources alone are not useful because they do not convey semantics, so to enable protocols to
use them in meaningful ways, we let resources be bound to messages. One can think of binding a
resource to a message as a way for a protocol to assign special elite status to the message. As we
will describe later, a resource can be bound only once. After being bound to a message, a resource

12

cannot be bound to another message. This models the property that PoX are use-once objects; in
practice, once a PoX is associated with a single string, finding another string that yields the same
proof of work is computationally hard.

Fix a set of resources Ψ, and let M = Σ∗ be the set of strings over an alphabet Σ. The set of
bound resources ΨM is Ψ×M. For some ψ ∈ Ψ and m ∈M, we denote by ψm the corresponding
element of ΨM. The bound resource ψm is encoded as ψ||m||ψ.

Time We adopt an abstract notion of global time to describe a protocol’s execution. Time is
a totally ordered set of points, T = ({t1, t2, t3, . . .}, <). We will use addition and subtraction
operations defined over the set of points to discuss the elapse of time. Without loss of generality,
we let T = N and we let 0 be the starting time of any execution. We emphasize that automata in
our model do not have clocks and cannot measure the global time.

Environment Many nondeterminstic factors influence a real-world protocol execution. For example,
participants’ hardware do not all run at the same speed, and messages sent over a network are not
delivered immediately. We model the nondeterminism of an execution using an environment. An
environment E is an (non-interactive) infinite automaton that directs an execution of a protocol
by:

– scheduling when participants transition between states and send messages,
– scheduling message deliveries,
– and importantly, allocating resources to participants.

Buffers Participants in an execution communicate by sending messages to each other. Each par-
ticipant in an execution has a buffer, which is an unordered multiset containing elements of
Θ = ID∅ ×M, that stores messages sent by other participants. We denote by buff id the buffer
of pid. As we will explain in detail, when a participant sends a message, the environment immedi-
ately delivers the message to its recipient’s buffer. The environment then chooses when to deliver
messages from the buffer to the recipient.

Configuration and Events To fully describe how the environment directs an execution, we explain
how the state of a protocol execution evolves over time. We use two primitives: configurations and
events.

1. A configuration of a protocol execution is a snapshot of the set of states of all participants and
their buffers at a point in time.

2. An event is a single state transition by a single participant. We call the transitioning participant
the agent of the event, and we also say that the agent is active during an event.

During an event, the agent receives messages that have been sent to it. In addition, the envi-
ronment can optionally allocate a resource to the agent, which is the process by which participants
acquire new resources. The environment directs an execution by applying events to the execution’s
configuration, defined as follows: when E applies event e with agent p in state z to configuration C
at time t,

– State Transition:

• If p has not been the agent of an event at any t′ < t, E selects p’s initial state z.

13

• E removes a (possibly empty) subset of buffp, which we call µ, and delivers all of µ to p.
We say the elements of µ are received by p at t. E also optionally chooses a resource ψ to
allocate to p.

E chooses the order in which to deliver each element of µ to p. (Notice that this helps capture
that the order of message deliveries may be arbitrary.) It begins by removing some element
θ from µ, and invoking both δ and λ on (z, θ). For each successive θ′ ∈ µ, it invokes δ and λ
on (z′, θ′), where z′ is the output of the previous invocation of δ and θ′ is the next element of
µ selected by E . At the end, the environment collects all the outputs of λ into a single set ν.
If E selects an empty subset of buffp, it invokes p’s transition and communication functions
once on (∅, ε).
• If p is allocated a resource ψ, E invokes p’s transition function and communication function

on (∅, ψ). In any event in which p is allocated a resource, the environment invokes p’s state
transition function on the resource last. If p is allocated a resource ψ, p immediately pairs
ψ with some m ∈ M to obtain a bound resource ψm. (The choice of ψm is reflected in the
state to which p transitions.)

– Message Delivery:

• Let ν be the set of pairs output by the agent’s communication function. For each pair
(broadcast,m) ∈ ν the environment immediately delivers m to the buffer of every participant,
and for each pair (id,m) ∈ ν it delivers m to buffpid .

We model authenticated communication by saying that when E delivers m to its recipient,
it does so by encoding the pair (id′,m), where id′ is the identity of the sender, into the
recipient’s buffer. (We note that our protocols do not use authenticated communication.)

Simultaneous Events The environment directs the execution of a protocol by keeping track of the
execution’s configuration and, for every t ∈ T , choosing a (possibly empty) set of events to apply to
the configuration, subject to the constraint that all events at any time t must have distinct agents.
We call a step τ a set of events chosen by the environment to apply at a single t. Note that at any
time t, E may select no events to apply to the configuration.

When E chooses multiple events for some step τ , it applies the events within τ in parallel. First
it invokes the state transitions of the agents of all events, and then it delivers all messages specified
by the participants’ communication functions. In particular, this means that if p and q are both
agents of events at t, no message sent by p at t can be received by q at t, and vice versa.

Corruption The above describes an honest execution. However, the environment has the ability to
corrupt participants arbitrarily. To corrupt a participant, the environment replaces the participant’s
transition and communication functions with functions of its choice. Once corrupted, a participant
stays corrupted and may not be corrupted again. We model corruptions this way in order to
capture identities implemented using key pairs. In a real-world scenario, if a participant’s key pair
is compromised (or lost), it must assume a new identity.

3.3 Transcript

An execution of a protocol produces a transcript σ that records every event and corruption in the
execution. Events are written as tuples containing a timestamp t, the identity id of the agent, and
the inputs to the state transition function:

14

1. Event is (t, id, z, µ, ψ), where pid begins its state transitions in state z at t, µ is the finite,
possibly empty set of pairs in Θ delivered to pid, and ψ ∈ Ψ is allocated to pid (if no resource is
allocated, this element is ∅).

Corruptions appear the transcript as tuples containing the new transition function δ and com-
munication function λ that the agent begins to follow:

2. Corruption is (t, id, δ, λ), where δ and λ are the transition and communication function exe-
cuted by pid starting at time t.

The contents of a transcript are partially ordered by their timestamps. (Notice that for most
transcripts there exist many equivalent transcripts in which events are reordered; to avoid a lengthy
treatment, we defer to Lamport [30].)

We also define the view of a participant at some point in time. The view of a participant p at
some time t in an execution is the set of events for which p is the agent from the beginning of the
execution until t. In particular, we will say that a resource ψ is in a participant p’s view at time t if
it has appeared in an event for which p is the agent (either as part of a message or as an allocated
resource) before or at t.

Notice that a transcript is a complete record of a protocol execution. From it one can infer the
configuration at every time in the execution.

3.4 Constraints

We now define constraints on an environment that take the form of assumptions when designing a
protocol. We introduce a bit of notation to facilitate our definitions. In any transcript σ, let σ(t,t′)

be the subsequence of σ containing all of the events that happen between times t and t′, inclusive
of t and t′.

Synchronization In our setting, participants operate asynchronously and communication is partially
synchronous. We adapt the definition of asynchronous computation from [22] and [17], and we adapt
partially synchronous communication from [18].

Definition 2 (Φ-Synchronous Computation). For a constant Φ, participants in an execution
described by transcript σ are Φ-synchronous if for every time t and every t′ > t, if any participant
is the agent of Φ events in σ(t,t′), then every other participant is the agent of at least one event in
σ(t,t′).

Participants in an execution are asynchronous if there does not exist a Φ that constrains σ. We
model participants as asynchronous in order to capture the membership of permissionless internet-
scale protocols, which often exhibit heterogenous hardware joining, leaving, and returning to an
execution.

Definition 3 (∆-Synchronous Communication). For a constant ∆, communication in an ex-
ecution defined by transcript σ is ∆-synchronous if for any message m that is placed in any par-
ticipant p’s buffer at time t, if p does not receive m before t + ∆, then p receives m at its first
activation at or after t+ ∆.

15

When computation is asynchronous but communication is synchronous, participants can go
through long periods of no activation, then “wake up” and receive many messages. This property
has recently been framed in the “sleepy” model [8], but had been analyzed as early as [1] and [17].

A crucial difference between our model and previous works with asynchronous computation is
that in our model, participants do not “know” the communication delay, meaning it is not given
as input and not hard-coded into their states and transition functions. This notion was originally
introduced by [18], who called the assumption partially synchronous communication.

Resources We introduce constraints on an execution regarding resources.

Definition 4 (Unique Resource Encoding). An execution described by transcript σ satisfies
unique resource encoding if

1. every bound resource ψm is properly encoded as ψ||m||ψ, and
2. for any two bound resource encodings ψ||m||ψ and ψ′||m′||ψ′, if ψ = ψ′ then m = m′.

A resource can be bound only once. After being bound to a message, a resource cannot be
bound to another message. This constraint is inspired by the fact that PoX puzzle solutions are
associated with a single string (usually a hash input), and a solution cannot be associated with any
other strings.

Definition 5 (Respecting Resource Allocation). We say a transcript σ respects resource
allocation if no resource appears in σ before it is allocated.

This definition seeks to capture the property that resources cannot be “made up” by participants.
Just as no participant can solve the a PoX puzzle without evaluating some function, no participant
should be able to send a bound resource to another participant if the resource has not been allocated.

Admissible Execution We define an admissible execution as one that satisfies the previous two
constraints.

Definition 6 (Admissible Execution). An execution described by transcript σ is admissible if
it respects resource allocation and obeys unique resource encoding.

In this work, we consider exclusively admissible executions.

Resource Allocations and Corruption Resource allocations are constrained both by the rate of
allocation and by the proportion of honest allocations.

Definition 7 (ρ-Rate-Limiting). Let ρ ∈ N and let ∆ be the communication synchronization
constant, or the network delay. An execution described by transcript σ with network delay ∆ is
ρ-rate-limited if for all t, there are at most ρ resources allocations in σ(t,t+∆).

As discussed in Section 1.5, although we assume that ∆ is unknown to the participants, we assume
that ρ is known.

Every execution is affected by how many resources are allocated to honest participants and how
many resources are allocated to corrupt participants. We introduce the following notation to denote
how many resources are allocated to honest and corrupt participants over some span of time.

16

Definition 8 (Ψ
(t,t′)
σ ,Ψ

(t,t′)
hon,σ,Ψ

(t,t′)
cor,σ). Let σ be the transcript of an execution. We denote the sets of

resources allocated by the environment to all participants, honest participants, and corrupt partici-
pants between times t and t′ in σ as follows:

– Ψ
(t,t′)
σ is the set of all resources allocated in σ(t,t′).

– Ψ
(t,t′)
hon,σ is the set of resources allocated to honest participants in σ(t,t′).

– Ψ
(t,t′)
cor,σ is the set of resources allocated to corrupt participants in σ(t,t′).

Because the execution is always implied or clear from context when we use this notation, we
suppress the subscript σ from these variables.

The ratios of resources allocated to honest participants and corrupt participants are important
parameters in an execution. We denote them as follows:

Definition 9 (α, ε-honest resource allocation, β, ε-corrupt resource allocation). Let α ∈
[0, 1] and let ε ∈ N. An execution satisfies α, ε-honest resource allocation if for all times t, t′ >

t: |Ψ(t,t′)
hon |≥ α|Ψ(t,t′)|−ε. Equivalently, let β = 1 − α. An execution satisfies β, ε-corrupt resource

allocation if for all times t, t′ > t: |Ψ(t,t′)
cor |≤ β|Ψ(t,t′)|+ε.

Intuitively, α and β capture the long-term ratios of honest and corrupt resource allocations,
respectively, and ε represents a small amount of “slack” in the ratios. ε also captures the short
term advantage that corrupt participants may obtain in receiving resources.

4 One-Bit Consensus Problem

Our one-bit consensus problem is very similar to classical consensus [17, 18]. Every participant has a
bit b ∈ {0, 1} as input, and they all attempt to decide on the same output bit. A participant decides
by choosing an output bit which it may never change. At every moment that a participant is active,
it produces an output in {0, 1,⊥}, where ⊥ means “undecided.” For a participant p active at time

t, we let out
(t)
p ∈ {0, 1,⊥}, denote its output. If for participant p active at time t, out

(t)
p ∈ {0, 1},

then for all t′ > t at which p is active, out
(t′)
p = out

(t)
p .

Properties of an Execution As in the classical problem, the goal of a one-bit consensus protocol
is to satisfy agreement, nontriviality, and termination. We say a protocol Π satisfies property P if
every execution of Π satisfies P .

Definition 10 (Agreement). An execution satisfies agreement if for all times t, t′ and honest

participants p, q active at t and t′, respectively, out
(t)
p 6= out

(t′)
q =⇒ ⊥ ∈ {out

(t)
p , out

(t′)
q }.

Definition 11 (Nontriviality). A execution satisfies nontriviality if when all honest participants

have the same input b, then for every time t and honest participant p active at t, out
(t)
p 6= ⊥ =⇒

out
(t)
p = b.

Our definition of termination differs slightly from classical definitions. Recall that a resource
is in a participant’s view if it is allocated to the participant or if it appears in a message that
the participant receives. We require participants to terminate only if sufficiently many resources
have entered their views. In comparison, classical definitions require participants to terminate after
finitely many steps.

Definition 12 (Termination). An execution satisfies termination if there exists a positive integer

R∗ such that for every participant p active at time t with at least R∗ resources its view, out
(t)
p 6= ⊥.

17

0 1

1

2 3

Fig. 1. An example graph in which each vertex is labeled with its depth. The root vertex has depth 0 by definition,
and every other vertex’s depth is defined by the longest path from the root to the vertex.

5 Graph Consensus Problem

5.1 Preliminaries for Graphs

A graph G = (V,E) is a set of vertices and a set of edges between vertices. For a graph G, we
denote the set of its vertices as G.V and its edges as G.E. In this work we consider only directed
acyclic graphs (DAGs); we therefore use term graph to refer to a DAG. A root vertex in a graph is
a vertex with in-degree 0. In this work, every graph which we consider has exactly one root vertex,
which in cryptocurrencies is also called a genesis vertex.

We define depth of a vertex and depth of a graph in a non-standard way:

Definition 13 (Depth of a Vertex, Depth of a Graph). Let root be the root vertex of a graph
G. The depth of a vertex v in G is defined as the length of the longest path from root to v. The
depth of G is defined as the depth of its deepest vertex.

We use D(G) to denote the depth of a graph G, and use DG(v) to denote the depth of a vertex v
in G. When the graph is implied from context, we simply write D(v). The depth of a root vertex is
always 0. We use G|d to denote the subgraph of G including only vertices with depth ≤ d. Figure 1
illustrates the depths of vertices in a simple graph. We denote a path from vertices v to u as v → u.
A path v → u spans d depth if D(u)−D(v) = d. We say u ∈ G.V is reachable from v ∈ G.V if there
is a path v → u. For a vertex v ∈ G.V , the predecessor graph of v is the subgraph of G containing
v and every vertex and edge on every path from root to v. We use ∪ to denote graph union and ⊆
to denote a subgraph. We let indegree(v) denote the indegree of a vertex v and outdegree(v) denote
its outdegree.

5.2 Graph Consensus Protocol

In an execution of a graph consensus protocol, participants have no input. Each participant p main-
tains a local graph Gp based on the messages it has received so far and the protocol specification. A
graph consensus protocol specifies how participants generate new vertices, and how to propose that
other participants include the new vertices in their local graphs. It also specifies how a participant
determines whether a new vertex, which it receives in a proposal from another participant, should

be included in its local graph. For a participant p active at time t, we denote by G
(t)
p its local graph

after all vertices are added at t. Each participant p additionally maintains an output graph G∗p,
which it outputs whenever it is active. The protocol must specify a deterministic way for each p to

compute G∗p as a function of its local graph Gp. We denote by G
∗(t)
p the output of p at time t.

An execution of graph consensus may continue indefinitely. The goal of a protocol is for the
participants’ outputs to obey consistency and liveness properties across time. Graph consistency

requires that if participants p active at t and q active at t′, output G
∗(t)
p and G

∗(t′)
q , then one output

graph must be a subgraph of the other.

Definition 14 (Graph Consistency). An execution satisfies graph consistency if for all times t

and t′, and for all honest p and q active at t and t′, respectively: G
∗(t)
p 6⊆ G∗(t

′)
q =⇒ G

∗(t′)
q ⊆ G∗(t)p .

18

A protocol can trivially satisfy graph consistency if participants always output the empty graph.
We therefore define liveness to require that each participant p’s output G∗p grows as a function of
the size of its local graph Gp, as follows:

Definition 15 (f-Liveness). Let f :N× (0, 1]×R≥0×N 7→ N. An execution satisfies f -liveness if

for every time t and honest participant p active at t: |G∗(t)p .V |≥ f(|G(t)
p .V |, α, ε, ρ), where α, ε, and

ρ are parameters of the execution.

In some applications, it is desirable to show that some proportion of the vertices in an honest
participant’s output must be generated by honest participants. If a vertex is generated by an honest
participant, we call it an honest vertex; otherwise, we call it a corrupt vertex. We let hon(G.V)
denote the honest vertices in G. We define h-liveness to quantify the guaranteed proportion of
honest vertices in a participant’s output graph.

Definition 16 (h-Liveness). Let h:N× (0, 1]×R≥0×N 7→ N. An execution satisfies h-liveness if

for every time t and honest participant p active at t: |hon(G
∗(t)
p .V)|≥ h(|G(t)

p .V |, α, ε, ρ) where α, ε,
and ρ are parameters of the execution.

6 Main Protocol

6.1 Protocol Description

Protocol ΠG, presented in Figure 2, is a graph consensus protocol. It is parameterized by α and ε,
which describe the proportion of honest resources which are allocated (Def 9), and the maximum
rate of resource allocation ρ (Def 7).

Each participant p maintains a local DAG Gp in which every vertex except the root is a resource.
The graph Gp is initialized to ({root}, ∅), and grows from the root toward high depths throughout
the execution as participants are allocated resources and receives messages. Whenever p is allo-
cated a resource, it adds the resource to its graph and then immediately multicasts its local graph
including the new vertex to all honest participants. When an honest participant receives a message
containing a graph, it updates its local graph to include new vertices and edges not previously in
its local graph. The keys are to show how a participant p chooses the predecessors of each vertex
that it adds to its graph, and how each participant p computes its output G∗p from its local graph
Gp.

We describe resources as vertices as follows. When any participant is allocated resource ψ, we
let vψ denote the vertex corresponding to ψ. When describing an arbitrary vertex, we denote it as
v or u, eliding its respective resource.

When any honest participant p adds a new vertex to its graph, it adds the vertex to its graph
as the new deepest vertex. Specifically, when p is allocated a resource ψ and adds vertex vψ to its
local graph Gp, p adds an inbound edge to vψ from every vertex u in Gp which (a) has no outbound
edges in Gp, and (b) is close in depth to Gp. When p is allocated ψ, it must also choose vψ’s edges
immediately, as p must bind the inbound edges of vψ to ψ. Because each vertex’s inbound edges
are bound to the vertex’s respective resource, it may not gain additional predecessors.

Over time, some vertices will gain successors and some vertices may be “orphaned” and stop
gaining successors. Each participant computes its output G∗p as a subgraph of its Gp consisting of
vertices which are both far from the end of its graph (measured in the difference in depth between
the vertex and the graph) are still gaining successors.

19

Encoding a Graph Using Resources Recall that we model a resource as a black box object
which is bound to a string that conveys its semantics. When a resource is allocated, the string
is bound to the resource immediately and cannot be changed afterwards (by unique encoding,
Definition 4). In ΠG, the string bound to each resources encodes the direct predecessors of its
respective vertex; when a participant is allocated a resource ψ, it binds to ψ the encoding of each
vertex which has an outbound edge to vψ. If no edges are bound to ψ, then vψ is defined to have an
edge from root. In this way, each vertex is uniquely committed to its predecessors at the moment
it is allocated. A participant multicasts its local graph by sending all of the bound resources which
encode the vertices and edges in its local graph.

Protocol 1 DAG Protocol for Graph Consensus ΠG(α, ε, ρ)

Parameters: α, ε, ρ
Derived Constants:

1. β = 1− α
2. γ = (1 + β)ρ+ ε+ ε

ρ
+ 1

3. c = γ + ρ+ ε
α

4. `1 = γ + ρ

5. `2 = c(ε+1)+ρ+ cβ
α
ρ
−cβ (c(ε+1)+(2+β)ρ+ ε

α
+2 ε

ρ
+2)

6. `∗ = `1 + `2

Internal Variables:

1. Gp = (Vp, Ep) is a participant’s local state. Initially, Gp = ({root}, ∅)
2. G∗p = (V ∗p , E

∗
p) is a participant’s output graph. Initially, G∗p = (∅, ∅)

Event Responses:

1. On Receiving a Graph (G′)
– Gp ← Gp ∪ validateGraph(G′)
– G∗p ← extract(Gp)|D(Gp)−`∗

2. On Being Allocated a Resource ψ
– Gp ← addVert(Gp, ψ)
– multicast Gp
– G∗p ← extract(Gp)|D(Gi)−`∗

Internal Functions:

1. addVert(G,ψ):
– V ′ ← {u ∈ G.V :D(G)− D(u) < c and outdegree(u) = 0}
– return new graph G′ such that
• G′.V ← G.V ∪ {vψ}
• G′.E ← G.E ∪ {(u, vψ):u ∈ V ′}

2. extract(G):
– S ← {v ∈ G.V :D(G)− D(v) ≤ c+ ρ} // “starting vertices”
– return S ∪ {v ∈ G.V : ∃u ∈ S such that u is reachable from v}

3. validateGraph(G′):
– if

(a) ∃(u, v) ∈ G′.E such that D(u)− D(v) > c, or
(b) ∃(u, v) ∈ G′.E such that u 6∈ G′.V
then return (∅, ∅)

– return G′

Fig. 2. Protocol ΠG for graph consensus

20

Event Responses We now detail how participants respond when they are allocated resources and
when they receive messages, and we explain how participants compute their outputs from their
local graphs.

On Resource Allocation When an honest participant p is allocated a resource ψ, we say that it
generates a vertex vψ that it adds to its local graph Gp. Participant p chooses the inbound edges
of vψ based on its current graph Gp by adding an edge to vψ from each vertex u in Gp for which
both outdegree(u) = 0 and D(Gp) − D(u) < c, where c is a constant computed from the protocol
parameters and is the maximum depth spanned by an honestly chosen edge. Immediately after
generating vψ, p multicasts its entire local graph containing vψ and its inbound edges.

On Receipt of a Message Every message sent between participants is an encoding of a graph. (Any
message that is not the encoding of a graph is ignored.) When a participant p receives a graph G′

in a message, it verifies that G′ is a valid graph. If G′ is valid, then p updates its local graph as
Gp ← Gp ∪G′. If G′ is not valid, then p ignores G′.

G′ may be invalid in two ways. First, G′ may contain an edge (v, u) which spans more than c
depth. Second, G′ may be “missing a vertex,” meaning there is a vertex v in G′.V for which not
all of v’s predecessors are in G′.V .

Computing Output An honest participant p computes its output G∗p from its local graph Gp by
first extracting a subgraph of Gp into an intermediate graph, and then outputting all but the
deepest vertices in the intermediate graph. More precisely, p extracts a subgraph of Gp using the
procedure extract(Gp), as follows. First, p selects a set of “starting vertices” as the set S = {v ∈
Gp: D(Gp)−D(v) < c+ ρ}. Next, p extracts every starting vertex and every vertex from which any
starting vertex is reachable. Finally, p outputs G∗p ← extract(Gp)|D(Gp)−`∗ , which contains all the

vertices in its extracted subgraph with depth less than D(Gp) − `∗, where `∗ is derived from the
protocol parameters.

Remark 1 (Sending a Whole Graph). Whenever a participant generates a new vertex, it multicasts
its entire graph. We admit it is unrealistic in practice to multicast an entire local graph. Our
protocol should be considered only theoretical. It remains future work to show that participants
need not multicast their entire graphs whenever they generate a new vertex.

6.2 Theorem Statement

We now state our main theorem, which is that protocol ΠG satisfies graph consensus for appropriate
parameters.

Theorem 4. For all ρ and all ε, and for all α > ρ(1−α)((3−α)ρ+ ε
α+ ε

ρ+ε+1) every (α, ε)-honest,

ρ-rate-limited, admissible execution of ΠG(α, ε, ρ) satisfies graph consistency and f, h-liveness for
f(N,α, ε, ρ) = h(N,α, ε, ρ) = αN − ε− ρ(`∗ + 1).

Recall that in ΠG, each participant computes its output by extracting a subgraph from its local
graph and then chopping off the deepest vertices in the extracted subgraph, where the chop-off
threshold is the derived constant `∗. Intuitively, liveness follows from the fact that as a participant’s
local graph increases in depth, the depth of the graph which it outputs also increases. The main
objective of the proof is to show that the protocol achieves graph consistency.

The main desideratum of the proof of graph consistency follows:

21

Proposition 1. If α > ρβc, then for all k, times t and t′, and honest participants p and q active at

t and t′, respectively, if D(G
(t)
p) > k+`∗ and D(G

(t′)
q) > k+`∗, then extract(G

(t)
p)|k = extract(G

(t′)
q)|k.

where c and `∗ are defined as in the protocol.

It is easy to see that graph consistency follows directly from assigningG∗p ← extract(Gp)|D(Gp)−`∗ ,
since when two honest participants output graphs, then the less deep output graph must always be
a subgraph of the deeper (if the output graphs have the same depth, then they must be the same
graph).

6.3 Proof Overview

We now overview the proof of Proposition 1. The full proofs of Proposition 1 and Theorem 4 are
in Appendix C.

Building a Virtual Global Graph We consider that the participants collectively build a virtual
global graph G throughout an execution. When the execution begins, G is initialized to a graph
with only a root vertex. Whenever any participant is allocated a resource, the vertex that it
generates is immediately added to G. In particular, even if a corrupt participant generates a vertex
and “withholds” the vertex by not sending it to any honest participant, the vertex is still added to
G at the moment that it is generated. We denote by G(t) the state of G after all vertices are added
at time t.

G represents the global state of the execution. Consider that G
(t)
p is p’s its local view of G(t),

and it is easy to see that G
(t)
p must be a subgraph of G(t). Moreover, for every vertex v ∈ G(t).V ,

if v is in G
(t)
p , then DG(t)(v) = D

G
(t)
p

(v). Henceforth, when we refer to the depth of a vertex, we

simply write D(v) because its depth is uniquely defined.

Outputting Predecessors and Omitting Orphans Recall that an honest participant p active at time

t outputs a vertex v from its local graph G
(t)
p if and only if v ∈ extract(G

(t)
p)|

D(G
(t)
p)−`∗ . By applying

extract() and chopping off the deepest vertices, the protocol enforces two requirements in order to

output a vertex. First v must be far from the end of a participant’s graph (D(G
(t)
p) > D(v) + `∗).

Second, v must be a predecessor of one of the starting vertices in G
(t)
p .

Intuitively, one can consider that every participant p decides whether each vertex v in its view
should be output or not. However, p “waits” before making a decision until v is sufficiently far from
the end of its graph. At that point, p does not output v only if v has been “orphaned.” A vertex is
“orphaned” if it is more than `∗ depth from the end of a graph but not a predecessor of one of the
graph’s starting vertices.

To achieve graph consistency, p must make the same decision on v as every other honest partic-
ipant. We show that by the time the depth of Gp exceeds `∗ more than the depth of v, v’s status as
an orphan or not an orphan has been determined in G and will not change; moreover, v’s orphan
status in Gp must mirror its status in G. If v is not a predecessor of one of the starting vertices in
Gp, then v will never be a predecessor of a starting vertex in any honest participant’s local graph
which is deep enough to decide on v. However, if v is a predecessor of one of the starting vertices
in Gp, then v will never be orphaned in any honest participant’s local graph.

22

Consistency of Honest Vertices We first show consistency of the honest vertices which honest
participants output. We do so by showing that all honest vertices are eventually output by honest
participants, and intuitively, that no honest vertex is ever orphaned. Our high-level lemma towards
this statement actually says something stronger. It says that every honest vertex in G which is
more than `1 < `∗ distance from the end of an honest participant’s graph must be extracted from
the graph when it computes its output from its local graph.

Lemma 1 (Honest Vertex Extraction). For every time t, honest participant p active at t, and

honest vertex v ∈ G(t): D(G
(t)
p)− D(v) > `1 =⇒ v ∈ extract(G

(t)
p).

To prove this lemma, we first show that by the time D(Gp) > D(v) + `1 for any honest partici-
pant’s graph Gp and honest vertex v, enough time must have passed since v was originally multicast
that v is in Gp. Second we show that every such honest vertex in an honest participant’s graph
must be a predecessor of a starting vertex in the graph.

Consistency of Honest Vertices in Honest Views For the first step, we show that if an honest
participant’s local graph Gp is deeper than an honest vertex v by more than a fixed distance `1,
then v ∈ Gp.

Lemma 2 (Depth-Based Indicator for Honest Vertices). For all t, honest p active at t,

and honest vertex v ∈ G(t): D(G
(t)
p)− D(v) > `1 =⇒ v ∈ G(t)

p .

Intuitively, `1 is derived as follows. Let tv be the time that some honest vertex v is generated by

honest participant q. Naively, one would like to claim that if D(G
(t)
p)−D(v) > ρ, then ρ vertices must

have been generated after v, and it follows from the rate limit on resource allocations (Definition
7) that t > tv +∆. However, the naive attempt makes the unfounded assumption that at tv, v must
be the deepest vertex in G(tv). Instead, we derive a constant γ that gives the maximum difference

between G(t) and an honest view G
(t)
p at any time t. We then derive `1 = γ + ρ and show that if

D(G
(t)
p)−D(v) > `1, then ∆ time must have elapsed since v was generated and multicast. It follows

that v ∈ G(t)
p .

Extracting Every Honest Vertex Recall that an honest participant extracts the starting vertices in
its graph and all their predecessors, and then outputs only the vertices which are far from the end
of its graph. We show that an honest participant always extracts every honest vertex in its graph.

Lemma 3 (Extracting All Honest Vertices in a Local Graph). For every time t, honest

participant p active at t, and honest vertex v ∈ G(t): v ∈ G(t)
p =⇒ v ∈ extract(G

(t)
p).

The lemma follows by showing that every honest vertex v eventually gains at least one honest
successor which is not too far from v, measured in terms of depth. Intuitively, after an honest vertex
v is generated, the first vertex generated by an honest participant with v in its view must be a
successor of v. We use this to show that for every honest vertex v which is not a starting vertex
in an honest participant’s graph, there must be a path from v to a starting vertex in the graph. It
also follows that no honest vertex is ever orphaned.

Lemma 1, consistency of honest vertices in participants’ outputs, follows trivially from compo-
sition of Lemmas 2 and 3.

23

Consistency of Corrupt Vertices If every vertex is honestly generated and immediately mul-
ticast, then no vertex is ever orphaned. Only if a corrupt participant withholds a vertex can the
vertex be orphaned. Moreover, because every honest vertex is guaranteed to indefinitely gain hon-
est successors, a corrupt vertex with an honest successor is guaranteed the same. Therefore, only
a corrupt vertex with no honest successor in G(t) can ever be orphaned. We complete the proof by
showing that any corrupt vertex output by an honest participant p must have an honest successor
in p’s graph. Consistency of corrupt vertices follows from consistency of their honest successors (or
lack thereof).

Withholding Vertices We show that after a corrupt vertex is generated, there is a limited time
during which it must gain an honest successor or it will be orphaned. Imagine that starting at some
time in an execution, corrupt participants use all of their resources to build a “withheld branch”
B of G which includes no honest vertices, while honest participants continue to build G as per
the protocol. Intuitively, if α ≈ β, then B can grow at the same pace as G or even grow to be
deeper than the rest of G. However, if α > βρ (as we require), then the corrupt participants cannot
keep pace with the honest participants, and eventually B will fall behind the depth of G. We can
compute for how long a withheld branch B can remain close in depth to G We derive a constant
`2 for which any vertex which is `2 depth from the end of an honest participant’s local graph and
is a predecessor of a starting vertex must have an honest successor.

Lemma 4 (Honest Reachability Requirement for Extraction). For all t, participant p

active at t, and vertex v ∈ extract(G
(t)
p): D(G

(t)
p)− D(v) > `2 implies there exists an honest vertex

u reachable from v such that D(u)− D(v) ≤ `2.

Consistency of Corrupt Vertices Via Honest Successors Recall that an honest participant decides
whether to output a vertex v only once v is `∗ = `1 + `2 depth from the end of its local graph. If v
is a predecessor of a starting vertex, then it must have an honest successor which is more than `1
depth from the end of the graph. This honest successor must be in every honest participant’s local
graph with depth sufficient to output v; therefore, because u must be extracted from every honest
view in which it exists, every honest participant with local graph deep enough to output v must do
so.

References

1. Chagit Attiya, Danny Dolev, and Joseph Gil. Asynchronous byzantine consensus. In PODC, pages 119–133.
ACM, 1984.

2. Adam Back et al. Hashcash-a denial of service counter-measure, 2002.

3. Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros gene-
sis: Composable proof-of-stake blockchains with dynamic availability. In ACM Conference on Computer and
Communications Security, pages 913–930. ACM, 2018.

4. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger: A
composable treatment. In CRYPTO (1), volume 10401 of Lecture Notes in Computer Science, pages 324–356.
Springer, 2017.

5. Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn, and
George Danezis. Consensus in the age of blockchains. CoRR, abs/1711.03936, 2017.

6. Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asynchronous agreement
protocols. In Proceedings of the second annual ACM symposium on Principles of distributed computing, pages
27–30. ACM, 1983.

24

7. Iddo Bentov, Pavel Hubácek, Tal Moran, and Asaf Nadler. Tortoise and hares consensus: the meshcash framework
for incentive-compatible, scalable cryptocurrencies. IACR Cryptology ePrint Archive, 2017:300, 2017.

8. Iddo Bentov, Rafael Pass, and Elaine Shi. The sleepy model of consensus. IACR Cryptology ePrint Archive,
2016:918, 2016.

9. Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. IACR Cryptology ePrint
Archive, 2016:919, 2016.

10. Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143, 1987.
11. Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal of the ACM (JACM),

32(4):824–840, 1985.
12. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. IACR Cryptology

ePrint Archive, 2000:67, 2000.
13. Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99, pages 173–186,

1999.
14. Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. On security analysis of proof-of-elapsed-

time. In International Symposium on Stabilization, Safety, and Security of Distributed Systems, pages 282–297.
Springer, 2017.

15. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake protocol. Technical report, Cryptology ePrint Archive, Report 2017/573, 2017.
http://eprint. iacr. org/2017/573, 2017.

16. Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In P2P, pages 1–10.
IEEE, 2013.

17. Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for distributed
consensus. Journal of the ACM (JACM), 34(1):77–97, 1987.

18. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. Journal
of the ACM (JACM), 35(2):288–323, 1988.

19. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In CRYPTO, volume 740 of
Lecture Notes in Computer Science, pages 139–147. Springer, 1992.

20. Lisa Eckey, Sebastian Faust, and Julian Loss. Efficient algorithms for broadcast and consensus based on proofs
of work. IACR Cryptology ePrint Archive, 2017:915, 2017.

21. etherchain.org. The ethereum blockchain explorer, 2020.
22. Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed consensus with one

faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.
23. Juan Garay, Aggelos Kiayias, Rafail Ostrovsky, Giorgos Panagiotakos, and Vassilis Zikas. Resource-restricted

cryptography: Revisiting mpc bounds in the proof-of-work era. Cryptology ePrint Archive, Report 2019/1264,
2019. https://eprint.iacr.org/2019/1264.

24. Juan A. Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the blockchain era. IACR Cryptology ePrint
Archive, 2018:754, 2018.

25. Juan A Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications.
In EUROCRYPT (2), pages 281–310, 2015.

26. Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos. Consensus from signatures of work. Cryptology
ePrint Archive, Report 2017/775, 2017. https://eprint.iacr.org/2017/775.

27. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scal-
ing byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454, 2017.
https://eprint.iacr.org/2017/454.

28. Lucianna Kiffer, Rajmohan Rajaraman, and abhi shelat. A better method to analyze blockchain consistency. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS ?18, page
729?744, New York, NY, USA, 2018. Association for Computing Machinery.

29. Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford.
Enhancing bitcoin security and performance with strong consistency via collective signing. In 25th USENIX
Security Symposium (USENIX Security 16), pages 279–296, Austin, TX, August 2016. USENIX Association.

30. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

31. Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
32. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Transactions on

Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.
33. Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable random functions. In Proceedings of the 40th Annual

Symposium on Foundations of Computer Science, FOCS ?99, page 120, USA, 1999. IEEE Computer Society.

25

34. Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. Permacoin: Repurposing bitcoin work for
data preservation. In Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP ?14, page 475?490,
USA, 2014. IEEE Computer Society.

35. Andrew Miller, Ahmed Kosba, Jonathan Katz, and Elaine Shi. Nonoutsourceable scratch-off puzzles to dis-
courage bitcoin mining coalitions. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 680–691. ACM, 2015.

36. Andrew Miller and Joseph J LaViola Jr. Anonymous byzantine consensus from moderately-hard puzzles: A model
for bitcoin. Available on line: http://nakamotoinstitute. org/research/anonymous-byzantine-consensus, 2014.

37. Tal Moran and Ilan Orlov. Simple proofs of space-time and rational proofs of storage. Cryptology ePrint Archive,
Report 2016/035, 2016. https://eprint.iacr.org/2016/035.

38. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
39. Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks. IACR

Cryptology ePrint Archive, 2016:454, 2016.
40. Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. In LIPIcs-Leibniz

International Proceedings in Informatics, volume 91. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
41. Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In Computer Security Foundations Symposium

(CSF), 2017 IEEE 30th, pages 115–129. IEEE, 2017.
42. Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults. Journal of

the ACM (JACM), 27(2):228–234, 1980.
43. Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün Sirer. Scalable and probabilistic

leaderless BFT consensus through metastability. CoRR, abs/1906.08936, 2019.
44. sawtooth.hyperledger.org. Hyperledger sawtooth poet 1.0 specification, 2020.
45. Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable cryptocurrency protocol.

IACR Cryptology ePrint Archive, 2016:1159, 2016.
46. Yonatan Sompolinsky and Aviv Zohar. PHANTOM: A scalable blockdag protocol. IACR Cryptology ePrint

Archive, 2018:104, 2018.

26

A Necessary Assumptions for Consensus in the Permissionless Model

In this section, we briefly show that both (a) a long term majority of honest resources, and (b)
some constraint on the network delay, are necessary for consensus. (Recall that in our case, we
bound relative to the resource rate, which we argue in Section 1.5 is weaker than directly bounding
the network delay.)

Theorem 5. There is no consensus protocol in the permissionless regime that does not require a
long-term honest majority of resources.

Proof. Assume there is a protocol Π that achieves consensus in the permissionless regime without
an honest majority of resources. We proceed by describing several similar executions, and bring
contradiction at the end.

In each execution, we divide the participants into two groups, A and B. In Execution 1, all
participants in A are honest and have input b ∈ {0, 1}. All participants in B are corrupt, and act
as if they were honest with input 1 − b. Group A collectively receives fewer resources than Group
B, but a sufficient proportion of resources for Π to guarantee consensus. By nontriviality, all honest
participants must output b.

In Execution 2, we divide the same participants in to the same groups, A and B. All participants
in A are corrupt and act as if they are honest with input b. All participants in B are honest and
have input 1 − b. The activation schedule, including the allocation of resources, in Execution 2 is
identical to Execution 1. Again by nontriviality, all honest participants must output 1− b.

Now consider a third execution, Execution 3. In Execution 3 we divide the same participants
into the same groups, A and B. However, all parties are honest. In Group A all parties have input
b, and in Group B all parties have input 1− b. The activation schedule, including the allocation of
resources, in Execution 3 is identical to Executions 1 and 2. Because the view of every participant
in A is the same as in Execution 1, each participant in A must output b. Similarly, each participant
in B must output 1− b. This violates agreement.

Theorem 6. There is no consensus protocol in the permissionless regime that does not require a
constraint on the network delay.

Proof. If there is no constraint on the network delay known to the honest parties, then the proof
follows from a standard partitioning attack, similar to that of Pass and Shi [41]. For completeness,
we present a full proof here.

Consider an execution in which all participants are honest, and an adversary that can partition
the honest parties into two groups, A and B, such that all honest parties in group A have input
b ∈ {0, 1} and all honest parties in group B have input 1 − b. By nontriviality and termination,
there must be some execution in which A output b if no messages sent by parties in B are received
by A, and similarly there must be some execution in which B output 1− b if no messages sent by
A are received by parties in B. If there is no constraint on the network delay, then an adversary
can delay messages sent by parties in A until after the parties in B have output 1− b, and similarly
the adversary can delay messages sent by parties in B until after the parties in A have output b.
This violates agreement.

Note that the proof holds if the network is asynchronous by our definition of asynchrony, or if
the network is partially synchronous but the parties do not know any constraint on ∆ (relative to
any known parameter). Specifically, the protocol cannot depend on ∆, and therefore there must be
values of ∆ for which groups A and B output their values before ∆ time has elapsed.

27

B From Graph Consensus To One-Bit Consensus

B.1 A Generic Transformation

We now show that one-bit consensus is implied by any graph consensus protocol which guarantees
a long-term majority of honest vertices are accepted by honest processors. Specifically, we show
that for any protocol that satisfies (a) graph consistency and (b) h-liveness such that there exists
some N∗ for which for all N ≥ N∗: h(N,α, ε, ρ) > N

2 , there must exist a one-bit consensus protocol
secure under the same parameters.

Theorem 7. For any graph consensus protocol Π that satisfies both graph consistency and h-
liveness for which there exists some N∗ for which for all N ≥ N∗: h(N,α, ε, ρ) > N

2 , there exists a
one-bit consensus protocol that satisfies agreement, termination, and nontriviality under the same
parameters.

Proof. The proof transforms Π into a one-bit consensus protocol. We let Πb represent the trans-
formed protocol. The transformation works as follows. Whenever a participant generates a vertex,
it binds an additional one-bit label, which is the participant’s input bit, to the vertex. The partic-
ipants run Πb without producing output until a majority of the vertices output by the underlying
Π must be honest vertices, and then they compute a majority of the bit labels of the graph output
by Π. Termination follows because any honest participant with enough vertices in its graph can
output a bit. Nontriviality follows because a majority of the parties’ extracted vertices must be
honest vertices. Agreement follows because honest participants compute the majority bit of vertex
labels in the same output graph.

Honest participants run Πb until they can output from their local graphs the smallest graph
containing at least N∗

2 vertices. By h-liveness, there must be some point at which honest participants

can output a graph with at least N∗

2 vertices. If not, then there would not be there exists an N∗

such that for any honest participant p’s local graph G
(t)
p at time t for which |G(t)

p .V |> N∗, that

|hon(G
∗(t)
p .V)|≥ |G

(t)
p .V |
2 ≥ N∗

2 .

We must argue that honest participants identify the same smallest graph containing at least N∗

2
vertices. We argue that in every execution, each honest participant’s output graph must be partially
ordered, and that any two participants’ graphs must obey the same partial ordering. Assume that in
some execution there is no such a partial ordering of vertices of honest participants’ output graphs.
Then it may be the case that for two honest participants p and q active at t and t′, it is possible

that that G
∗(t)
p 6⊆ G

∗(t′)
q and that G

∗(t′)
q 6⊆ G

∗(t)
p . But this is a contradiction with the fact that

Π satisfies graph consistency. However, it may be the case that some vertices in the participants’
output graphs cannot be ordered relative to each other, (i.e. there are vertices u,v such that u 6≺ v
and v 6≺ u) so there may not be an output graph containing exactly N∗

2 vertices. Therefore, honest

participants identify the smallest graph containing at least N∗

2 vertices by the partial ordering of
their outputs.

B.2 Our One-Bit Consensus Protocol

We now show how to achieve one-bit consensus by slightly modifying ΠG. Our protocol Πbit differs
slightly from the generic transformation provided in Section B.1 for simplicity of presentation and
proof.

28

We modify the graph consensus protocol as follows. Whenever a participant generates a vertex,
it binds an additional one-bit label, which is simply the participant’s input bit, to the vertex along
with the vertex’s edges. The participants run ΠG without producing output until their local graphs
reach depth k∗ + `∗, where `∗ is the same as in ΠG and k∗ is an additional constant derived from

the protocol parameters. For any participant p active at time t for which D(G
(t)
p) ≥ k∗ + `∗, the

participant outputs extract(G
(t)
p)|k∗ from the graph consensus subprotocol. As its one-bit consensus

output, p computes the one-bit label that is bound to a majority of extracted vertices. Even after
a participant produces its output bit, it must continue to participate in the underlying execution
of ΠG indefinitely; we explain why in a remark below.

Figure 3 describes Πbit, our protocol for one-bit consensus. Πbit is parameterized by α, ε, and ρ,
which describe the ratio of honest resources and the maximum rate of resource allocation.

Protocol 2 DAG Protocol for One-Bit Consensus Πbit(α, ε, ρ)

Parameters α, ε, ρ
Derived Constants

1. β = 1− α
2. γ = (1 + β)ρ+ ε+ ε

ρ
+ 1

3. c = γ + ρ+ ε
α

4. x = cε+ c+ ρ+ ε
ρ

+ 1

5. ω = βρ
α

(x+ γ + ε
ρ

+ 1) + ε

6. k∗ = ω+2ε
α−β

Input

1. Each participant has a 1-bit input b

Internal Variable

1. Gp = (Vp, Ep) is a participant’s local state. Initially, Gp = ({root}, ∅)

Protocol

1. Framework Run Protocol ΠG

2. Labeling Vertices Whenever a participant is allocated a resource, it additionally binds a one-bit label to the
vertex it generates, where the label is the participant’s input b

3. Output If D(Gp) > k∗+`∗, output the majority bit in the labels of all vertices in extract(Gp)|k∗ . Ties are broken
by outputting 1.

Fig. 3. Protocol for one-bit consensus using graph consensus

Remark 2 (Indefinite Execution). Note that although honest participants may produce their out-
puts when their local graphs reach a fixed depth, it is important that honest participants continue
to run the underlying graph consensus protocol indefinitely, until the execution ends. The reason
is straightforward: if ever honest participants stop running the underlying graph protocol, then
corrupt participants can, with enough time, run an execution on their own which builds a deeper
graph, with the property that the labels bound to vertices in the second graph would induce a de-
cision of the opposite bit. This could cause disagreement with any honest participant that “wakes
up” long after honest participants stop building the original DAG, and is presented with the two
competing graphs.

29

Theorem 8. For all ρ and all ε, and for all α > ρ(1 − α)((3 − α)ρ + ε
α + ε

ρ + ε + 1) every every

(α, ε)-honest, ρ-rate-limited admissible execution of Πbit(α, ε, ρ) satisfies termination, agreement,
and nontriviality.

The full proof of Theorem 8 is in Appendix D. We now present a proof overview.

Proof Overview The proof of Theorem 8 inherits heavily from the proof of Theorem 4. In fact,
termination and agreement follow directly from the liveness and graph consistency of ΠG.

– Agreement: By Proposition 1, all honest participants output exactly the same graph. Therefore,
to achieve one-bit agreement, the one-bit consensus output can be any fixed function of the labels
that the participants output from the underlying graph protocol.

– Termination: By Lemma 5, honest participants’ graphs grow as long as honest vertices are
perpetually added. Therefore, if enough resources are allocated to honest participants, then
honest participants’ graphs grow to sufficient depth for them to output a bit, and Πbit terminates.

To prove Theorem 8, only nontriviality remains. The intuition for the proof of nontriviality fol-
lows. We leverage the (assumed) property that honest participants have a long-term advantage in
generating vertices over the corrupt participants, and run the graph consensus protocol until the
graph is deep enough to guarantee that there must be substantially more honest vertices in G than
corrupt vertices. We also use the property that each participant extracts all of the honest vertices
in its view to guarantee that the long-term advantage in generating honest vertices translates to
the fact that a majority of vertices output from each honest participant’s local graph are honest.
Nontriviality follows from outputting the bit that comprises the majority of one-bit labels embed-
ded in the extracted vertices. If all honest participants have the same input b, then b is guaranteed
to be the label on a majority of the extracted vertices.

The only tricky part of the proof is due to the fact that honest participants stop adding vertices
below depth k∗ once their local graphs become deeper than k∗, but the corrupt participants may
continue to add vertices at depth k∗ even after the honest participants stop adding vertices at that
depth. This gives the corrupt participants extra time to add vertices with depth k∗.

We use the following technique to overcome this difficulty. Intuitively, at some time t∗, D(G(t∗))−
k∗ will be so large that no vertex added at any t > t∗ with depth k∗ will ever be extracted by any
honest participant. Therefore, the extra time corrupt participants for corrupt participants to add
extra vertices with depth k∗ that will be output by honest participants, is limited to the range of
time between tk∗ , defined as the moment when G reaches k∗ depth, and t∗. Therefore, in order to
ensure that the majority of vertices extracted by honest participants up to depth k∗ are honest,
it suffices to bound the number of corrupt vertices that can be generated in the window of time
between tk∗ and t∗.

The proof proceeds as follows. Fist, we show that there is a distance x such that if some

(corrupt) vertex v is generated at tv and D(G
(tv)
H) − D(v) > x then v can never be extracted

from any honest participant’s graph. Second, we upperbound how many corrupt vertices may be
generated in any execution between the time that G reaches an arbitrary depth k and GH reaches
depth k + x, and let this number be ω. Finally, we use the honest participants’ known long-term
advantage to set k∗ to guarantee that from the beginning of the execution until the moment when
D(G) = k∗, the difference between the number of honest vertices that have been generated and
the number of corrupt vertices that have been generated exceeds ω. This guarantees that when an

30

honest participant eventually computes its output, a majority of the vertices up to depth k∗ in its
extracted subgraph must be honest.

C Proof of Graph Consensus Protocol ΠG

We present the proof of Theorem 4, which proves graph consistency and liveness for our graph
consensus protocol ΠG.

Theorem 4. For all ρ and all ε, and for all α > ρ(1−α)((3−α)ρ+ ε
α+ ε

ρ+ε+1) every (α, ε)-honest,

ρ-rate-limited, admissible execution of ΠG(α, ε, ρ) satisfies graph consistency and f, h-liveness for
f(N,α, ε, ρ) = h(N,α, ε, ρ) = αN − ε− ρ(`∗ + 1).

Most of our effort towards proving Theorem 4 is focused on the proof of Proposition 1, which
we restate here.

Proposition 1. If α > ρβc, then for all k, times t and t′, and honest participants p and q active at

t and t′, respectively, if D(G
(t)
p) > k+`∗ and D(G

(t′)
q) > k+`∗, then extract(G

(t)
p)|k = extract(G

(t′)
q)|k.

Consistency will follow directly, and liveness will follow easily from the techniques we use for
Proposition 1. We begin to prove Proposition 1 by showing consistency of the honest vertices that
honest participants output. Recall for the duration of the proof that we require α > ρβc, where β
and c are defined as in the protocol specification; particularly, β = 1−α is the long-term proportion
of corrupt resources and c is a derived constant.

Recall that in Section 6.3, we presented an overview of the proof of Proposition 1. We reproduce
these lemmas here and then present their proofs.

Lemma 1 proves that the honest vertices in honest participants’ extracted graphs are consistent.

Lemma 1 (Honest Vertex Extraction). For every time t, honest participant p active at t, and

honest vertex v ∈ G(t): D(G
(t)
p)− D(v) > `1 =⇒ v ∈ extract(G

(t)
p).

We prove it by decomposition into Lemmas 2 and 3

Lemma 2 (Depth-Based Indicator for Honest Vertices). For all t, honest p active at t, and

honest vertex v ∈ G(t): D(G
(t)
p)− D(v) > `1 =⇒ v ∈ G(t)

p .

Lemma 3 (Extracting All Honest Vertices in a Local Graph). For every time t, honest

participant p active at t, and honest vertex v ∈ G(t): v ∈ G(t)
p =⇒ v ∈ extract(G

(t)
p).

We then prove consistency of corrupt vertices by proving Lemma 4.

Lemma 4 (Honest Reachability Requirement for Extraction). For all t, participant p active

at t, and vertex v ∈ extract(G
(t)
p): D(G

(t)
p) − D(v) > `2 implies there exists an honest vertex u

reachable from v such that D(u)− D(v) ≤ `2.

In section C.2 we prove Lemma 2. In section C.3 we prove Lemma 3 and complete the proof
of Lemma 1. In Section C.4 we prove Lemma 4. Finally, in Section C.5 we conclude the proofs of
Proposition 1 and Theorem 4.

C.1 Properties of an Execution

Before presenting the proof, we first observe a number of useful properties of an execution.

31

Constrained Vertex Generation A participant can generate a vertex only when it is allocated
a resource. It immediately follows that the set of all vertices that have been generated in an
execution at some point in time is the set of resources that have been allocated in the execution
up to that point in time. Furthermore, constraints on the rate at which vertices are generated and
the proportion of honest vertices in an execution inherit directly from the respective constraints on
resource allocation. Specifically,

– the rate at which vertices are generated in an execution is also upperbounded by ρ vertices per
∆ time (Definition 7), and

– the proportion of vertices generated by honest participants is the proportion of honest resources
allocated in an α, ε-honest execution (Definition 9)

Consistency Properties of Local Graphs We say that a graph G is completely described if for every
vertex v in G, every one of v’s predecessors is also in G. The protocol specification enforces the
invariant that every honest participant’s local graph is always completely described. Recall that
each participant’s graph is initialized to a graph with only the root vertex, and that participants’
local graphs grow when they generate vertices and when they receive messages. No participant’s
local graph can become incompletely described when it generates a vertex, and any message that
might cause a graph to be incompletely described is discarded. Therefore, if v is in an honest
participant’s local graph, then all of v’s predecessors must be in the graph as well.

Recall that each vertex that is generated is uniquely committed to its predecessors. Because
of this and the fact that every honest participant’s local graph is always completely described, it

follows that if v is in both G
(t)
p and G

(t′)
q , then v’s predecessor graph is the same in both graphs.

Moreover, it is immediate that D
G

(t)
p

(v) = D
G

(t′)
q

(v).

Temporal Ordering Consider that because participants cannot “make up” resources (Definition 5),
at the moment when the inbound edges for a vertex v are chosen, v cannot have an inbound edge
from any vertex u which has not yet been generated. Because each vertex is uniquely committed to
its predecessors, it follows that the predecessor-successor relations among vertices in a participant’s
local graph obey the temporal order in which the vertices are generated. Specifically, for all vertices
v and u in any participant’s graph, if v is generated before u in the execution, then u cannot be a
predecessor of v.

C.2 Consistency of Views for Honest Participants

Towards proving Lemma 2, we begin our technical lemmas with a foundational statement that
lowerbounds the growth rate of the depth of G in an execution as a function of the number of
vertices that are generated.

Intuitively, the depth of G is driven up by honest participants which add vertices that increase
the depths of their local graphs. As a tool to understand what vertices must be in a participant’s

local graph at any point in time, we define a virtual graph G
(t)
H , which for time t answers “what is

the smallest graph of an honest participant at time t?” One may consider that G
(t)
H is guaranteed to

contain at least all of the honest vertices that are generated before t−∆, since each honest vertex
is immediately multicast when it is generated, and at most ∆ time may elapse before the multicast
message is guaranteed to be delivered.

32

The following lemma lowerbounds the growth of GH between any t and t′ > t as a function
of the number of resources allocated between t and t′. The growth of GH is lowerbounded by the
number of resources that are allocated to honest participants and by how many honest resources
can be allocated concurrently. GH must grow by at least 1 depth for every ρ honest vertices that are
generated. This is because at most ρ honest participants can concurrently generate vertices with
the same depth before one of their vertices is guaranteed to be delivered, and increases the depth
of all honest graphs that have not yet reached that depth.

Lemma 5 (Lowerbound Honest Growth). Define G
(t)
H as:

G
(t)
H =

⋂
t′≥t,p active at t′

G(t′)
p

For all t and t′ > t: D(G
(t′)
H) ≥ D(G

(t)
H) + α|Ψ(t,t′)|−ε−ρ

ρ .

Proof. Assume towards contradiction that for some t and t′ in an execution, D(G
(t′)
H)− D(G

(t)
H) <

α|Ψ(t,t′)|−ε−ρ
ρ . The lemma follows from the following three claims.

Claim 1 Between times t and t′ in any execution, at least α|Ψ(t,t′)|−ε−ρ honest vertices generated

between t and t′ are in G
(t′)
H .

Proof. Consider an execution between times t and t′. By α, ε-honest execution (Definition 9), at
least α|Ψ(t,t′)|−ε resources are allocated to honest participants between t and t′. Recall that by the
protocol specification, whenever an honest participant receives a resource, it immediately generates

and multicasts a new vertex. The only reason why an honest vertex may not be in G
(t′)
p for any

participant p active at t′ is if the vertex is delayed over the network; therefore, only vertices generated

after t′ − ∆ may not be in G
(t′)
H . By ρ-rate-limiting (Definition 7), at most ρ resources may be

allocated between t′ − ∆ and t′. Therefore, at least α|Ψ(t,t′)|−ε − ρ honest vertices generated

between t and t′ are in G
(t′)
H . ut

Claim 2 For any time t in an execution, every honest vertex generated after t has depth greater

than D(G
(t)
H).

Proof. Recall by the protocol specification, whenever an honest participant p generates a vertex v

at time s > t, v is the unique deepest vertex in G
(s)
p . Thus D(v) = D(G

(s)
p). Additionally, observe

that v cannot be in G
(t)
H since it cannot be delivered to all honest participants by t if it is generated

at s > t. Because G
(t)
H ⊆ G

(s)
p by definition, v is the unique deepest vertex in G

(s)
p , and v 6∈ G(t)

H , it

follows immediately that D(G
(s)
p) ≥ D(G

(t)
H) + 1, and therefore D(v) > D(G

(t)
H). ut

Claim 3 For any time t in an execution, there may be at most ρ honest vertices in G(t) with the
same depth.

Proof. Recall by the protocol specification, whenever an honest participant p generates a vertex,
the generated vertex is the unique deepest vertex in p’s graph. Therefore, if an honest participant
generates a vertex of depth d, then before it generated the vertex, its graph had depth d − 1. It
follows that if more than ρ honest vertices with depth d are generated, then there must be more

33

than ρ honest participants which, when allocated a resource, have graphs of depth d − 1. Let p1,
. . . , pρ+1, be the first participants, in order, which generate vertices when their local graphs have
depth d− 1. Let v1, . . . , vρ+1 be the vertices that they generate, and let the vertices be generated
at tv1 , . . . , tvρ+1 , respectively.

It must be that tvρ+1 > tv1 + ∆ because of ρ-rate limiting (Definition 7). But this implies that

v1 must be in G
(tvρ+1)
pρ+1 , and therefore D(G

(tvρ+1)
pρ+1) ≥ d. This is a contradiction. ut

We now conclude the proof of the lemma. By Claim 1, at least α|Ψ(t,t′)|−ε − ρ of the vertices

which are allocated between t and t′ are in G
(t′)
H . By Claim 2, all such vertices have depth greater

than D(G
(t)
H). By the contradiction hypothesis, D(G

(t′)
H)− D(G

(t)
H) < α|Ψ(t,t′)|−ε−ρ

ρ . Therefore, there

must be some depth d > D(G
(t)
H) such that more than ρ honest vertices in G(t′) have depth d. This

is a contradiction with Claim 3. ut

Next, we present a lemma that bounds the difference between the depth of G(t) and the depth

of G
(t)
p for any honest participant p active at any time t. Intuitively, this bounds how far behind G

that an honest participant’s view can lag at any point in time.

Lemma 6 (Bounding D(G
(t)
p) relative to D(G(t))). Let γ = (1 +β)ρ+ ε+ ε

ρ + 1. If α
ρ > β, then

for all t and honest participant p active at t, D(G(t))− D(G
(t)
p) ≤ γ.

Sketch. The proof technique is to select an honest vertex vc in reference to which the growth

of both G(t) and G
(t)
p can be measured. We then upperbound the difference D(G(t)) − D(G

(t)
p) by

upperbounding D(G(t))−D(vc) and lowerbounding D(G
(t)
p)−D(vc). The crux of the proof is to show

that there must exist a vertex vc with respect to which the growth of each graph can be measured.

Given the existence of vc, we can bound the differences D(G(t)) − D(vc) and D(G
(t)
p) − D(vc) in

terms of the number of vertices that have been generated between the time when vc is generated
and t. We then use these bounds to show the desired statement.

Proof. Assume for the sake of reaching a contradiction that in some execution at time t and for
some participant p active at t

D(G(t))− D(G(t)
p) > γ (1)

Let vd be the vertex in D(G(t)) with the greatest depth. (If there are multiple such vertices,
choose any one as vd.) Choose any longest path in G(t) from root to vd, which is defined to be a path
root→ vd such that the depth spanned by every edge is 1. Note that such a path must exist, since
the depth of each vertex is defined to be one more than its deepest predecessor, and it is therefore
always possible to walk backwards from vd to root via a path in which each edge spans depth 1.
Let vc be the honest vertex with the maximum depth on this path subject to the constraint that

vc is in G
(t)
H ; in the worst case (if no honest vertices on the path are in G

(t)
H), vc = root. We let tvc

denote the time at which vc is generated. (If vc = root, then let tvc = 0.)

We upperbound D(G(t)) − D(G
(t)
p), using vc as a reference point, by first decomposing it into

parts
D(G(t))− D(G(t)

p) = [D(G(t))− D(vc)]− [D(G(t)
p)− D(vc)] (2)

It will suffice to upperbound D(G(t)) − D(vc) and to lowerbound D(G
(t)
p) − D(vc). We begin with

an upperbound for D(G(t))− D(vc):

34

Claim 4

D(G(t))− D(vc) ≤ β|Ψ(tvc ,t)|+ε+ ρ (3)

Proof. Recall that because vd is the deepest vertex in G(t), D(vd) = D(G(t)) by definition. We
upperbound D(G(t)) − D(vc) by upperbounding D(vd) − D(vc). Recall also that there must be a
path vc → vd on which each edge of the path spans 1 depth. To upperbound D(vd) − D(vc),
it therefore suffices to upperbound the number of vertices on the path vc → vd. We divide the
analysis into two parts: first we upperbound the number of honest vertices on the path, and then
we upperbound the number of corrupt vertices on the path.

We claim that there may be at most ρ honest vertices on the path vc → vd. Recall that vc is

defined to be the deepest vertex on a longest path from root to vd which is also in G
(t)
H . All of the

honest vertices on the path (which are successors of vc) must not be in G
(t)
H . In order for an honest

vertex v to not be in G
(t)
H , there must be some honest participant q activated at some t′ ≥ t for

which v is not in G
(t′)
q . This is only possible if v is delayed over the network to q at t′; therefore,

any honest vertex which is on the path vc → vd but is not in G
(t)
H must have been generated after

t−∆ (by Definition 3). By the limit on the rate of resource allocations per ∆ time (Definition 7),
there may be at most ρ such honest vertices. Therefore, there may be at most ρ honest vertices on
the path vc → vd.

We now upperbound the number of corrupt vertices on the path vc → vd. Consider that all
corrupt vertices on the path vc → vd must be generated after tvc because each is a successor of vc.
By the definition of a β, ε-corrupt execution (Definition 9), at most β|Ψ(tvc ,t)|+ε corrupt resources
may be generated between tvc and t. It follows that there are at most β|Ψ(tvc ,t)|+ε corrupt vertices
on the path vc → vd.

Summing the upperbounds for honest and corrupt vertices on the path vc → vd, it follows that

D(G(t))− D(vc) ≤ β|Ψ(tvc ,t)|+ε+ ρ

as claimed. ut

We next lowerbound D(G
(t)
p)− D(vc):

Claim 5

D(G(t)
p)− D(vc) ≥

α|Ψ(tvc+∆,t)|−ε− ρ
ρ

(4)

Proof. Lowerbounding the difference D(G
(t)
p)−D(vc) is challenging because we do not have enough

information about vc to directly upperbound its depth. However, we do know that D(G
(tvc+∆)
H) ≥

D(v), since v must be in the view of every honest participant activated at or after tvc + ∆, and by

definition it must therefore be in G
(tvc+∆)
H .

Given the upperbound of D(vc) in terms of G
(tvc+∆)
H , we complete the desired lowerbound of

D(G
(t)
p) − D(vc) by lowerbounding G

(t)
p in terms of G

(t)
H and directly invoking Lemma 5. This is

trivial, since we know G
(t)
H ⊆ G

(t)
p by definition, and therefore D(G

(t)
p) ≥ D(G

(t)
H).

35

We conclude:

D(G(t)
p)− D(vc) ≥ D(G(t)

p)− D(G
(tvc+∆)
H)

≥ D(G
(t)
H)− D(G

(tvc+∆)
H)

≥ α|Ψ(tvc+∆,t)|−ε− ρ
ρ

ut

We now use the upperbound on D(G(t)) − D(vc) and the lowerbound on D(G
(t)
p) − D(vc) to

conclude the lemma. Recalling (in order) Inequality 1, Equation 2, Inequality 3 and Inequality 4,
we conclude:

γ < D(G(t))− D(G(t)
p)

= [D(G(t))− D(vc)]− [D(G(t)
p)− D(vc)]

≤ [β|Ψ(tvc ,t)|+ε+ ρ]− [
α|Ψ(tvc+∆,t)|−ε− ρ

ρ
]

= β|Ψ(tvc ,tvc+∆)|+β|Ψ(tvc+∆,t)|+ε+ ρ+
ε

ρ
+ 1− α|Ψ(tvc+∆,t)|

ρ

≤ (β − α

ρ
)|Ψ(tvc+∆,t)|+(1 + β)ρ+ ε+

ε

ρ
+ 1

where the last inequality follows because β|Ψ(tvc ,tvc+∆)|≤ βρ, since at most ρ resources may be
allocated between tvc and tvc + ∆ by the rate limit on resource allocations (Definition 7).

Therefore, it must be the case that

(β − α

ρ
)|Ψ(tvc+∆,t)|+(1 + β)ρ+ ε+

ε

ρ
+ 1 > γ (5)

but when α
ρ > β, this is true only when |Ψ(tvc+∆,t)| is negative. This is a contradiction because

there cannot be negative resource allocations. ut

We now complete the proof of Lemma 2, which we restate here. Intuitively, the lemma shows

that if for some honest participant p active at time t, and some honest vertex v, D(G
(t)
p)− D(v) >

`1 = ρ+ γ, then more than ∆ time has elapsed since v was generated and multicast. It will follow

that v ∈ G(t)
p .

Lemma 2 (Depth-Based Indicator for Honest Vertices). For all t, honest p active at t, and

honest vertex v ∈ G(t): D(G
(t)
p)− D(v) > `1 =⇒ v ∈ G(t)

p .

Proof. Assume that there is a vertex v generated by an honest participant q at time tv, and there

is another honest participant p active at time t > tv such that v 6∈ G(t)
p . We will show that it must

be the case that D(G
(t)
p)− D(v) ≤ `1.

Consider that because G
(t)
p ⊆ G(t), the difference D(G

(t)
p) − D(v) is trivially upperbounded

by D(G(t)) − D(v). The difference D(G(t)) − D(v) can be decomposed into the sum of two parts:
D(G(tv))−D(v), the difference in depth between v and G at the moment when v is generated, and
D(G(t))− D(G(tv)), or the amount that G has grown since v was generated.

36

First, we observe that D(G(tv)) − D(v) = D(G(tv)) − D(G
(tv)
q), since v is the deepest vertex in

G
(tv)
q . We directly apply Lemma 6 to bound D(G(tv))− D(G

(tv)
q) ≤ γ.

Second, we upperbound D(G(t)) − D(G(tv)) as follows. Recall that when an honest participant

generates a vertex, it immediately multicasts the vertex. If v is not in G
(t)
p , then it must be delayed

over the network; therefore, it must be that t < tv+∆. We use the rate limit on resource allocations
(Definition 7) to conclude that |Ψ(tv ,t)|≤ ρ. Because G can increase in depth between tv and t by
at most the number of vertices which are generated between tv and t, it follows that D(G(t)) −
D(G(tv)) ≤ |Ψ(tv ,t)|≤ ρ.

Therefore we conclude,

D(G(t)
p)− D(v) ≤ D(G(t))− D(v)

= D(G(t))− D(G(tv)) + D(G(tv))− D(G(tv)
q)

≤ |Ψ(tv ,t)|+γ
≤ ρ+ γ

= `1

ut

C.3 Outputting Consistent Honest Vertices

We now re-state and prove Lemma 3, which states that an honest participant always extracts every
honest vertex in its local graph.

Lemma 3 (Extracting All Honest Vertices in a Local Graph). For every time t, honest

participant p active at t, and honest vertex v ∈ G(t): v ∈ G(t)
p =⇒ v ∈ extract(G

(t)
p).

We show that every vertex in an honest participant’s local graph must be either a starting
vertex in the graph or a predecessor of a starting vertex in the graph. We prove this in two steps.
First we show that every vertex v that is generated by an honest participant is guaranteed to gain
an honest successor in G which is at most c deeper than v. Second, we show that if an honest vertex
v is more than c+ρ depth from the end of an honest participant’s graph, then its guaranteed honest
successor must also be in the graph. Recall that the starting vertices in a participant’s graph are
defined to be those with depth within c + ρ of the graph itself. It follows that from every honest
vertex which is not a starting vertex in a participant’s graph, there must be a path to an honest
starting vertex in the graph.

Before we proceed, we first introduce a useful property of an execution that bounds how many
consecutive corrupt vertices may be generated in a span of time in which no honest vertices are
generated.

Fact 1. For all t, t′ in an α, ε-honest execution: if |Ψ(t,t′)
hon |= 0 then |Ψ(t,t′)|≤ ε

α .

Proof. Direct from Definition 9. |Ψ(t,t′)
hon | is lower bounded by α|Ψ(t,t′)|−ε, which is greater than 0

for all t, t′ for which |Ψ(t,t′)|> ε
α . ut

Next we show that each honest vertex v is guaranteed to gain at least one honest vertex as
a successor in G before G grows too far away from v. Specifically, we show that maximum the
difference in depth between v and its guaranteed honest successor is c, and that at any time t after
v is generated, if D(G(t))− D(v) > c then v’s honest successor is guaranteed to already exist in G.

37

Lemma 7. Let c = γ + ρ + ε
α . For every time t and honest vertex v ∈ G(t), D(G(t)) − D(v) > c

implies there exists an honest vertex u in G(t) such that D(u)−D(v) ≤ c and u is reachable from v.

Sketch. Let tv be the time when v is generated. First, we show that if D(G(t)) − D(v) > c, then
there must be some honest vertex generated after tv+∆. Let v1 be the first honest vertex generated
after tv + ∆. Second, we show that D(v1)− D(v) ≤ c, and that v1 is reachable from v.

Proof. For a vertex u, use the notation that tu is the time at which u is generated. The proof follows
from the following two claims.

Claim 6 If D(G(t))− D(v) > c, then there must be an honest vertex generated after tv + ∆.

Proof. Assume that D(G(t))− D(v) > c but there is no honest vertex generated after tv + ∆.
Consider that

D(G(t))− D(v) = D(G(t))− D(G(tv)) + D(G(tv))− D(v)

Lemma 6 immediately bounds D(G(tv))−D(v) ≤ γ. If D(G(t))−D(v) > c and D(G(tv))−D(v) ≤ γ,
then it must be the case that D(G(t))−D(G(tv)) > ρ+ ε

α . This immediately implies that |Ψ(tv ,t)|>
ρ+ ε

α , because G cannot grow in depth between tv and t more than the number of vertices which
are generated in that time.

Let v1, . . . , vρ+ ε
α

+1, be in chronological order the first ρ + ε
α + 1 vertices generated between tv

and t. Consider that between tv and tv + ∆, as most ρ vertices may have been generated because
of the rate limit on vertex generation (Definition 7). It follows that vρ+1, . . . , vρ+ ε

α
+1 must all be

generated after tv + ∆. Moreover, by the contradiction hypothesis, they are all corrupt. But this
means that more than ε

α consecutive corrupt vertices are generated, which is a contradiction to
Fact 1. ut

Next, using many of the same techniques, we bound the difference in depth between v and this
honest vertex generated after tv + ∆, and show that it is reachable from v.

Claim 7 In any execution, consider any honest vertex v for which some honest vertex is generated
after tv + ∆, and let v1 be the first vertex generated after tv + ∆. Then D(v1)−D(v) ≤ c and v1 is
reachable from v.

Proof. First we show that D(v1)− D(v) ≤ c. Assume that it D(v1)− D(v) > c.
As in the previous claim, we observe that D(v1) − D(v) is upperbounded by the difference in

depth between v and G at the moment that v is generated, plus the amount that G grows between
tv and tv1 . Specifically,

D(v1)− D(v) = D(v1)− D(G(tv)) + D(G(tv))− D(v)

≤ D(G(tv1))− D(G(tv)) + D(G(tv))− D(v)

First, by an immediate application of Lemma 6, D(G(tv)) − D(v) ≤ γ. Second we bound how
much G can grow between tv and tv1 . Clearly, D(G(tv1))−D(G(t)) ≤ |Ψ(t,tv1)|, since G cannot grow
by more vertices than the number of resources allocated in this span of time.

As in the previous claim, it must be the case that |Ψ(t,tv1)|> ρ+ ε
α . By an analogous argument

to the previous claim, since only ρ vertices may be generated between t and t+ ∆, this implies that

38

|Ψ(tv+∆,tv1)|> ε
α . But because v1 is the first honest vertex generated after tv + ∆, this leads to the

conclusion that more than ε
α consecutive corrupt vertices are generated between tv + ∆ and tv1 ,

which is a contradiction with Fact 1. We therefore conclude that D(v1)− D(v) ≤ c.
Next we show that v1 is reachable from v. Let r be the participant that generates v1. We claim

that v must be in G
(tv1)
r . Recall that v is generated by an honest participant and immediately

multicast at tv. Therefore, v must be in the local graph of every honest participant activated after

tv + ∆. Because tv1 > tv + ∆, it is immediate that v is in G
(tv1)
r .

Consider that if v has outdegree 0 in r’s local graph before adding tv1 , then because D(v1) −
D(v) ≤ c, the protocol specification requires that r add an edge from v to v1. If outdegree(v) > 0 in
r’s local graph before adding tv1 , then there must be some vertex u in r’s local graph with an edge
from v. If outdegree(u) > 0 in r’s local graph, then recursively follow u’s successors until reaching a
vertex w that has outdegree 0 in r’s view when r generates v1. Notice that because w is a successor
of v, D(w) > D(v), and it follows that D(w)− D(v1) < c. Therefore, by the protocol specification,
r must add an edge from w to v1, and there is a path from v to v1. ut

The lemma follows immediately by composing the two claims. By Claim 6 D(G(t))− D(v) > c
implies that there is an honest vertex generated after tv + ∆. By Claim 7, the first honest vertex
v1 generated after tv + ∆ must be reachable from v and D(v1)− D(v) ≤ c. ut

The previous lemma showed that each honest vertex v is guaranteed to gain an honest successor
in G before G grows to be much deeper than v. However, although v’s honest successor is guaranteed
to exist in G(t) if D(G(t)) − D(v) > c, it is not necessarily true that the honest successor is in

G
(t)
p if D(G

(t)
p)− D(v) > c. In the following lemma we show that instead, we can guarantee that if

D(G
(t)
p)−D(v) > c+ρ, then v is guaranteed to have at least one honest successor in G

(t)
p . Intuitively,

the extra ρ required to show the statement for honest participants’ local graphs allows enough time
for v’s honest successor v1 to be delivered over the network to every honest participant.

Lemma 8. For every time t, honest participant p active at t, and honest vertex v ∈ G(t)
p : D(G

(t)
p)−

D(v) > c+ ρ implies there exists an honest vertex u ∈ G(t)
p which is reachable from which v.

Proof. Assume that D(G
(t)
p)−D(v) > c+ρ but there is no honest vertex u ∈ G(t)

p which is reachable
from v. Let tv be the time at which v is generated, and let it be generated by q.

By Lemma 7, there must be a vertex u in G(t) which is reachable from v such that D(u) ≤
D(G(t))− c. It must therefore be the case that u is not in G

(t)
p .

Consider that when u is generated by an honest participant at time tu, it is immediately

multicast. The only way that u is not in G
(t)
p is if it is delayed over the network. Therefore, it must

be the case that t ≤ tu + ∆.
This implies:

D(G(t)
p)− D(v) ≤ D(G(t))− D(v)

= D(G(t))− D(G(tv)
q)

= D(G(t))− D(G(tu)) + D(G(tu))− D(G(tv)) + D(G(tv))− D(G(tv)
q)

≤ |Ψ(tu,t)|+|Ψ(tv ,tu)|+γ

≤ 2ρ+
ε

α
+ γ

= c+ ρ

39

where D(G(tv)) − D(G
(tv)
q) ≤ γ by Lemma 6, |Ψ(tu,t)|≤ ρ because t ≤ tu + ∆ and by Definition 7,

and |Ψ(tv ,tu)|≤ ρ+ ε
α by an argument used in Lemma 7.

This is a contradiction with the premise of the lemma. ut

Armed with Lemma 8, Lemma 3 is straightforward. We re-state it and prove it.

Lemma 3 (Extracting All Honest Vertices in a Local Graph). For every time t, honest

participant p active at t, and honest vertex v ∈ G(t): v ∈ G(t)
p =⇒ v ∈ extract(G

(t)
p).

Proof. If D(G
(t)
p)−D(v) ≤ c+ρ, this is trivial because v is a starting vertex. If D(G

(t)
p)−D(v) > c+ρ

then it follows from Lemma 8 that v is reachable from a starting vertex as follows. Consider the

honest vertex u ∈ G(t)
p which is reachable from v by Lemma 8. If u is a starting vertex, then we are

done. If not, then recursively apply Lemma 8 to u until a starting vertex is reached. The depth of
the recursion is bounded by the fact that if u is reachable from v, then D(u) > D(v). ut

We now also restate and conclude the proof of Lemma 1, as it is immediate by composing
Lemmas 2 and 3.

Lemma 1 (Honest Vertex Extraction). For every time t, honest participant p active at t, and

honest vertex v ∈ G(t): D(G
(t)
p)− D(v) > `1 =⇒ v ∈ extract(G

(t)
p).

Proof. This is by Lemmas 2 and 3. By Lemma 2, if D(G
(t)
p)−D(v) > `1 then v ∈ G(t)

p . By Lemma

3, if v is in G
(t)
p then v ∈ extract(G

(t)
p). ut

C.4 Extracting Consistent Corrupt Vertices

Thus far we have shown that for any two honest participants p and q, active at t and t′ respectively,

for which D(G
(t)
p) > k + `1 and D(G

(t′)
q) > k + `1, p and q extract the same honest vertices from

their graphs up to depth k.
To complete the proof of Proposition 1, we now show an analogous consistency property of

the corrupt vertices extracted by honest participants. We show that every corrupt vertex that is
extracted from an honest participant’s graph and is sufficiently far from the deepest vertices in the
graph must be a predecessor of some honest vertex in the graph. We will show that consistency of
extracted corrupt vertices will follow from the consistency of their honest successors. We proceed
by re-stating and proving Lemma 4.

Lemma 4 (Honest Reachability Requirement for Extraction). For all t, participant p active

at t, and vertex v ∈ extract(G
(t)
p): D(G

(t)
p) − D(v) > `2 implies there exists an honest vertex u

reachable from v such that D(u)− D(v) ≤ `2.

Sketch. We show that if a vertex v is both extracted from G
(t)
p and is sufficiently far from the

deepest vertices in G
(t)
p , then v must have an honest successor u whose depth is at most `2 more

than D(v). Consider that if v is in extract(G
(t)
p), then there must be some starting vertex z in G

(t)
p

which is reachable from v. If there is no honest vertex u reachable from v whose depth is within
`2 of v, then z must be reachable from v via a long sequence of corrupt vertices which starts with
v and extends either all the way to z or to some honest vertex u between v and z. Let w be the
deepest corrupt vertex on this corrupt-only sequence. Intuitively, if w has an outbound edge to an

40

honest vertex, or if w is a starting vertex in the view of any honest participant after it is generated,
then the depth of w must be “close” to the depth of G(tw).

The proof shows that contrary to the above intuition, w is actually far from the depth of G(tw).
We show this as follows. Because w is quite far from v (by contradiction hypothesis), there are
many corrupt vertices on the path between v and w. However, if many corrupt vertices are on the
path between v and w, then between tv and tw, many more honest vertices than corrupt vertices
are generated. Those honest vertices must extend the depth of G so much that at tw, w is very far
(measured in depth) from the deepest vertices in G(tw). In fact, w is so far away from the deepest
vertices in G(tw) that it could never be a starting vertex in the view of an honest participant, and

it is not close enough to the deepest vertices in G
(tw)
H (which lowerbounds the depths of honest

participants at tw) to ever gain an outbound edge to an honest vertex.

Proof. Assume for the sake of contradiction that there is a vertex v in extract(G
(t)
p) such that

D(G
(t)
p)−D(v) > `2 but there is no honest vertex v′ reachable from v such that D(v′)−D(v) ≤ `2.

Because v is in extract(G
(t)
p) and D(G

(t)
p)−D(v)� c+ ρ, there must be a starting vertex z in G

(t)
p

which is reachable from v. Moreover, there must be a path v → z in G
(t)
p .

Let w be the deepest corrupt vertex on the path v → z which is reachable from v via a path
consisting of only corrupt vertices, and let tw be the time at which w is generated. We now show
that w must be quite far from v, measured in depth.

There are two cases. If there is no honest vertex on the path v → z, then w is a starting vertex

in G
(t)
p . Otherwise, there is an honest vertex u with an edge from w on the path v → z.

(A) In the case that w is a starting vertex, it must be the case that

D(G(t)
p)− D(w) ≤ c+ ρ (6)

And we know by the premise of the lemma that D(G
(t)
p)−D(v) > `2. We can therefore conclude

that D(w)− D(v) > `2 − (c+ ρ).

(B) In the case that there is an honest vertex u with an edge from w, there must be an honest
participant q that generates u at some time tu > tw such that

D(G(tu)
q)− D(w) ≤ c (7)

and in particular that D(u)− D(w) ≤ c.
Moreover, we know by the contradiction hypothesis that D(u) − D(v) > `2. We can therefore
conclude that D(w)− D(v) > `2 − c.

In either case, it must be true that

D(w)− D(v) > `2 − (c+ ρ) (8)

Henceforth we use this relationship between w and v.

We have shown that w is quite far from v. We next we lowerbound the total number of vertices
that have been generated between tv and tw. Then we show that during any span of time in which
this many corrupt vertices have been generated, so many more honest vertices must have been
generated that G must have grown to be much deeper than w.

41

Claim 8

|Ψ(tv ,tw)|>
`2−(c+ρ)

c − ε
β

(9)

Proof. We show the claim in two steps. We first use the distance between w and v to lowerbound
the number of corrupt resources that are allocated between tv and tw. Then we use the number
of corrupt vertices in order to lowerbound the total number of vertices which must have been
generated between tv and tw.

Recall that w is reachable from v via a path consisting of only corrupt vertices. D(w)−D(v) is
therefore upperbounded by c times the number of vertices on the path v → w, since by the protocol
specification, no edge on the path may span more than c depth. Therefore,

c(β|Ψ(tv ,tw)|+ε) ≥ D(w)− D(v) (10)

The lowerbound on |Ψ(tv ,tw)| follows from applying Inequality 8 and Inequality 10 to show

c(β|Ψ(tv ,tw)|+ε) ≥ D(w)− D(v) > `2 − (c+ ρ)

and with algebra we arrive at Inequality 9, completing our claim. ut

What remains is to show that between tv and tw, the depth of G has grown so much that for

any honest participant r active at any t′ ≥ tw, G
(t′)
r must be too deep for w to be a starting vertex

in G
(t′)
r and too deep for r to add a vertex with an edge to w.

Claim 9 For every time t′ ≥ tw and any honest participant r active at t′, D(G
(t′)
r)−D(w) > c+ ρ.

Proof. First, we lowerbound the difference D(G
(t′)
r) − D(w) in terms of |Ψ(tv ,tw)|. We then invoke

the lowerbound on |Ψ(tv ,tw)| from Claim 8 to give a concrete bound.

We start by lowerbounding D(G
(t′)
r) in terms of |Ψ(tv ,tw)| and of D(v).

D(G(t′)
r) ≥ D(G

(t′)
H)

≥ D(G
(tw)
H)

= D(G
(tw)
H)− D(G

(tv)
H) + D(G

(tv)
H)

≥ α|Ψ(tv ,tw)|−ε− ρ
ρ

+ D(G(tv))− γ

≥ α|Ψ(tv ,tw)|−ε− ρ
ρ

+ D(v)− γ

where D(G
(tv)
H) ≥ D(G(tv)) − γ by a direct application of Lemma 6, and D(G(tv)) ≥ D(v) trivially

because v ∈ G(tv).
Recall that by Inequality 10, D(w) ≤ c(β|Ψ(tv ,tw)|+ε) + D(v). We can therefore lowerbound

D(G
(t′)
r)− D(w) as a function of |Ψ(tv ,tw)|

D(G(t′)
r)− D(w) ≥ α|Ψ(tv ,tw)|−ε− ρ

ρ
+ D(v)− γ − (c(β|Ψ(tv ,tw)|+ε) + D(v))

= (
α

ρ
− cβ)|Ψ(tv ,tw)|−γ − cε− ε− ε

ρ
− 1

42

When plugging in our lowerbound for |Ψ(tv ,tw)| from Inequality 9, we find that D(G
(t′)
r)−D(w) > c+ρ

as claimed. ut

This claim presents a contradiction with both cases above. In case (A), in which w is a starting

vertex in G
(t)
p , this is a contradiction to Inequality 6. In case (B), in which w has an edge from

some honest vertex u, this is a contradiction to Inequality 7. ut

C.5 Consistency and Liveness of ΠG

We can now complete the proofs of Proposition 1 and Theorem 4.

Proposition 1. If α > ρβc, then for all k, times t and t′, and honest participants p and q active at

t and t′, respectively, if D(G
(t)
p) > k+`∗ and D(G

(t′)
q) > k+`∗, then extract(G

(t)
p)|k = extract(G

(t′)
q)|k.

Proof. Assume without loss of generality that there is a vertex v that is in extract(G
(t)
p)|k but not

in extract(G
(t′)
q)|k. It is trivial that D(v) ≤ k if v ∈ extract(G

(t)
p)|k.

Assume that v is an honest vertex. By the protocol specification, v must be output by q at t′

if v is extracted from G
(t′)
q because D(G

(t′)
q) ≥ D(v) + `∗. Therefore, v must not be extracted from

G
(t′)
q . But this is a contradiction with Lemma 1, which says that v must be extracted from G

(t′)
q

since D(G
(t′)
q)− D(v) > `1.

Therefore, v must be a corrupt vertex. By Lemma 4, if v is in extract(G
(t)
p)|k, then there must

be an honest vertex u such that D(u) ≤ D(v) + `2 such that u is reachable from v. By Lemma 1, u

must be in extract(G
(t′)
q) because D(G

(t′)
q)− D(u) ≥ k + `∗ − (k + `2) > `1.

Because u is reachable from v, v must be in extract(G
(t′)
q) by the protocol specification. And

because D(v) < k by assumption, v must be in extract(G
(t′)
q)|k. This is a contradiction. ut

Corollary 1 (Graph Consistency). Protocol ΠG achieves graph consistency.

Proof. In any execution, consider any two times t, t′ and p, q active at t and t′, respectively.

Without loss of generality, assume that D(G
(t)
p) ≥ D(G

(t′)
q). By Proposition 1, it must be that

extract(G
(t)
p)|

D(G
(t′)
q)−`∗

= extract(G
(t′)
q)|

D(G
(t′)
q)−`∗

, and therefore extract(G
(t′)
q)|

D(G
(t′)
q)−`∗

⊆ extract(G
(t)
g)|

D(G
(t)
g)−`∗ .

ut

Liveness follows from the fact that an honest participant outputs every honest vertex in its local
graph with depth more than `∗ from the end of its graph.

Lemma 9 (h-Liveness). Protocol ΠG achieves h-liveness, for h(N,α, ε, ρ) = αN − ε− ρ(`∗ + 1).

Proof. Recall that in order to compute its output, an honest participant extracts vertices from its
view using the extract() function and then outputs the extracted vertices which are more than `∗

depth from the end of its graph. Recall that Lemma 3 show an honest participant always extracts
every honest vertex in its local graph. We lowerbound the number of honest vertices that an honest
participant outputs at any point in time by lowerbounding how many of the vertices in its view
must be honest, and then upperbounding how many honest extracted vertices may have depth too
high to be output.

43

First we lowerbound the number of vertices in an honest participant’s graph which must be
honest. By Claim 1, we know that at least α|Ψ(0,t)|−ε−ρ honest vertices which have been generated

from the beginning of the execution until t must be in G
(t)
p . Consider also that the total number of

vertices that have been generated up to any point in time upperbounds the number of vertices in

a participant’s view, or |Ψ(0,t)|≥ |G(t)
p .V |. It follows that

|hon(G(t)
p .V)|≥ α|Ψ(0,t)|−ε− ρ ≥ α|G(t)

p .V |−ε− ρ

What remains is to upperbound the number of honest vertices in a participant’s graph at any
point in time which are not output. Recall that an honest participant outputs all of the vertices
which it extracts from its local graph up to `∗ depth from the end of its graph. By Claim 3, there
may be at most ρ honest vertices in G(t) with the same depth, which implies that at each depth in

G
(t)
p , there may be at most ρ honest vertices. Therefore, there may be at most ρ`∗ honest vertices

in Gp with depth more than D(Gp)− `∗, which are therefore not output.

We conclude that |extract(G
(t)
p)|

D(G
(t)
p)−`∗ |≥ α|G

(t)
p .V |−ε− ρ− ρ`∗. The lemma follows. ut

Corollary 2 (f-Liveness). Protocol ΠG achieves f -liveness, for f(N,α, ε, ρ) = αN−ε−ρ(`∗+1).

Proof. Immediate from Lemma 9. f -liveness is lowerbounded by h-liveness. The lowerbound is tight
because an honest participant could extract no corrupt vertices from its local graph. ut

D One-Bit Consensus from Graph Consensus

We now present the proof of our one-bit consensus protocol. We restate Theorem 8.

Theorem 8. For all ρ and all ε, and for all α > ρ(1 − α)((3 − α)ρ + ε
α + ε

ρ + ε + 1) every every

(α, ε)-honest, ρ-rate-limited admissible execution of Πbit(α, ε, ρ) satisfies termination, agreement,
and nontriviality.

The proof of Theorem 8 follows the outline in Section B.2. Agreement and termination are
trivial, and we provide three lemmas to show nontriviality. First, we show that for every depth
k in an execution, there is a time after which no (corrupt) vertex of depth k can be added to G
which will ever be extracted by any honest participant. Second, we show the maximum number of
corrupt vertices ω that can be generated from the time that G reaches depth k to the time when no
(corrupt) vertex of depth k can ever be added and subsequently extracted by an honest participant.
Finally, we show that by the time an honest participant’s graph reaches depth k∗, there are more
than ω honest vertices in its graph up to k∗ than corrupt vertices.

Lemma 10. Let x = cε+ c+ ρ+ ε
ρ + 1. For every vertex v generated at tv: if D(G

(tv)
H) > D(v) +x,

then there is no time t ≥ tv and honest participant p active at t for which v ∈ extract(G
(t)
p).

Sketch. Recall that in order for v to be extracted from G
(t)
p , it must be either a starting vertex in

G
(t)
p or a predecessor of a starting vertex in G

(t)
p . We show that D(G

(tv)
H) is already so much deeper

than v that no honest participant which is activated in the future would ever have v as a starting
vertex, and no honest participant which generates a vertex in the future would ever generate a
vertex with an inbound edge from v or from any (corrupt) vertex which is reachable from v. To

44

show this, we lowerbound the difference in depth between GH and the deepest vertex reachable from
v at any point in time t > tv, as a function of the number of vertices that are generated between
t and tv. We show that the difference is always greater than c + ρ. Because GH lowerbounds the
view of an honest participant, we can therefore conclude that v will never be a starting vertex in
any honest participant’s graph and no honest participant could ever add a vertex with an inbound
edge from a (corrupt) successor of v.

Proof. Assume that at the time tv when v is generated, D(G
(tv)
H) ≥ D(v) + x and that there exists

a time t > tv and honest participant p for which v ∈ extract(G
(t)
p).

First, we claim that v cannot be a starting vertex for any honest participant’s extract() function
at any time t′ ≥ tv. For every time t′ ≥ tv and every honest participant q active at t′,

D(G(t′)
q) ≥ D(G

(t′)
H) ≥ D(G

(tv)
H) > D(v) + x > D(v) + ρ+ c

Therefore, because v ∈ extract(G
(t)
p) and v is not a starting vertex in G

(t)
p , there must be a starting

vertex z ∈ G(t)
p reachable from v. Specifically, if z is a starting vertex, then by definition

D(G(t)
p)− D(z) < ρ+ c (11)

We now separately consider the following two cases regarding the path v → z. First, we consider
the case that there are no honest vertices on the path v → z. Second we consider the case that
there is at least one honest vertex on the path v → z.

Consider the case that there are no honest vertices on the path v → z. Towards contradiction
with Inequality 11, we lowerbound the difference D(z)−D(v) by upperbounding D(z) with respect

to D(v) and |Ψ(tv ,t)|, and lowerbounding D(G
(t)
p) with respect to D(v) and |Ψ(tv ,t)|.

First, we upperbound D(z). We claim that

D(z) ≤ D(v) + c(β|Ψ(tv ,t)|+ε) (12)

By assumption, there are only corrupt vertices on the path v → z. Recall from the definition of
a β, ε-corrupt execution (Definition 9) that at most β|Ψ(tv ,t)|+ε corrupt vertices may be generated
between tv and t. By the protocol specification, if v → z is in an honest participant’s local graph,
then each edge on the path may span no more than c depth. It follows that D(z) is no more than
D(v) plus c depth for every corrupt vertex generated between tv and t.

Second, we lowerbound D(G
(t)
p) using the premise of this lemma and a direct application of

Lemma 5:

D(G(t)
p) ≥ D(G

(t)
H)

= D(G
(t)
H)− D(G

(tv)
H) + D(G

(tv)
H)

≥ α|Ψ(tv ,t)|−ε− ρ
ρ

+ D(v) + x

We can immediately lowerbound the difference D(G
(t)
p)−D(z) using the upperbound and lower-

bound just computed

D(G(t)
p)− D(z) ≥ (

α

ρ
− cβ)|Ψ(tv ,t)|+x− cε− ε

ρ
− 1 (13)

45

but when α
ρ > cβ this is a contradiction with Inequality 11 because |Ψ(tv ,t)| must be non-

negative.

Therefore, there must be an honest vertex on the path v → z. Let w be the deepest corrupt
vertex on the path v → z such that there are no honest vertices on the subpath v → w. Then there
must be an honest vertex u with an inbound edge from w. Let q be the participant that generates
u, and let tu be the time at which q generates u.

Now, because there are no honest vertices on the path v → w, we can invoke the same argument
that we used for the above case in which there are no honest vertices on the path v → z, replacing
z with w, and replacing t with the time tu at which q generates u.

The only difference in the proof is that the difference G
(tu)
q − D(w) is less than the difference

G
(t)
p − D(z) above. Specifically, it must be the case that

D(G(tu)
q)− D(w) ≤ c (14)

The rest of the proof follows analogously. ut

Lemma 11. Let ω = βρ
α (x + γ + ε

ρ + 1) + ε, and let the notation tk denote the earliest time for

which D(G(tk)) = k. For every time t, honest participant p active at t, and depth k: at most ω

corrupt vertices in extract(G
(t)
p)|k were generated after tk.

Sketch We show that if more than ω corrupt vertices in extract(G
(t)
p)|k were generated after tk, then

there must be some corrupt vertex u in extract(G
(t)
p)|k which was generated when GH was already

more than x depth deeper than u. This is a contradiction to Lemma 10.

Proof. Assume that there are more than ω corrupt vertices generated between tk and t that are in

extract(G
(t)
p)|k. Let u be the last such corrupt vertex that is generated, and let tu be the time at

which it is generated. Trivially, it must be the case that t > tu (otherwise u could not be in G
(t)
p).

We lowerbound |Ψ(tk,tu)| as follows. By the contradiction hypothesis, more than ω corrupt ver-
tices have been generated between tk and tu. We can therefore lowerbound |Ψ(tk,tu)| using Definition
9 and the number of corrupt vertices which have been generated between tk and t. Specifically, re-
call that the number of corrupt vertices that are generated between tk and tu is upperbounded by
β|Ψ(tk,tu)|+ε. By assumption, we have that β|Ψ(tk,tu)|+ε > ω, which implies that |Ψ(tk,tu)|> ω−ε

β .

Towards contradiction, we now lowerbound D(G
(tu)
H). We do so by invoking Lemma 5 to lower-

bound how much GH must grow as honest participants add vertices to G between tk and tu.
Specifically,

D(G
(tu)
H) = D(G

(tu)
H)− D(G

(tk)
H) + D(G

(tk)
H)

≥ α|Ψ(tk,tu)|−ε− ρ
ρ

+ D(G(tk))− γ

>
αω−εβ − ε− ρ

ρ
+ D(G(tk))− γ

≥ α

βρ
(ω − ε)− γ − ε

ρ
− 1 + k

≥ k + x

46

where it follows our definition of tk that D(G(tk)) = k. Additionally, it follows from Lemma 6 and

the definition of G
(tk)
H =

⋂
t′≥tk,q active at t′ G

(t′)
q that D(G

(tk)
H) ≥ D(G(tk))− γ.

This is a contradiction with Lemma 10. Recall that D(u) ≤ k by assumption, and therefore

D(G
(tu)
H) > D(u)+x. Lemma 10 says that if at the time tu when u is generated, D(G

(tu)
H) > D(u)+x,

then u may never be in extract(G
(t)
p) for any p active at t > tu. ut

Claim 10 For every time t and all k: D(G(t)) ≥ k =⇒ |Ψ(0,t)
hon |−|Ψ

(0,t)
cor |≥ (α− β)k − 2ε

Proof. As a direct consequence of Definition 9, between any t and t′ > t, |Ψ(t,t′)
hon |−|Ψ

(t,t′)
cor |≥ (α −

β)|Ψ(t,t′)|−2ε.
Using this fact and the fact that |Ψ(0,t)|≥ D(G(t)) (because G(t) can be no deeper than the

number of vertices in G(t)):

|Ψ(0,t)
hon |−|Ψ

(0,t)
cor | ≥ (α− β)|Ψ(0,t)|−2ε

≥ (α− β)D(G(t))− 2ε

≥ (α− β)k − 2ε

ut

Lemma 12. Let k∗ = ω+2ε
α−β . For every time t and honest participant p active at t, if D(G

(t)
p) ≥

k∗ + `1, then the majority of vertices in extract(G
(t)
p)|k∗ are honest.

Proof. Let t∗ be the earliest time at which D(G(t∗)) = k∗. We show that there are more honest
vertices with depth less than k∗ generated between the beginning of the execution and t∗ than
the sum of (a) the number of corrupt vertices generated between the beginning of the execution
and t∗ and (b) the total number of corrupt vertices with depth less than or equal to k∗ which can
be generated after t∗ and still extracted from any honest participant’s graph after t∗. Because all
honest vertices that have been generated with depth up to k∗ are guaranteed to be extracted from
an honest graph with depth k∗ + `1, it follows that there must be more extracted honest vertices
up to depth k∗ than extracted corrupt vertices up to depth k∗.

The formal argument follows. By Claim 10, there are at least ω more honest vertices in G(t∗)

than corrupt vertices. By Lemma 2, if D(G
(t)
p) > k∗ + `1, then all of the honest vertices generated

before t∗ are in G
(t)
p . By Lemma 11, there are at most ω corrupt vertices in extract(G

(t)
p)|k∗ which

were generated after t∗. Therefore, if D(G
(t)
p) > k∗ + `1, a majority of vertices in extract(G

(t)
p)|k∗

are honest. ut

Lemma 13 (Nontriviality of Πbit). If all honest participants have input b ∈ {0, 1}, then all
honest participants that do not fail output b.

Proof. Lemma 12 shows that for all t and participants p active at t, D(G
(t)
p) > k∗ + `1 implies

a majority of the vertices in extract(G
(t)
p)|k∗ are honest. Therefore, if all honest participants have

input b, then for all t and p active at t such that D(G
(t)
p) > k∗ + `∗, a majority of the vertices in

extract(G
(t)
p)|k∗ have label b. It is immediate that every honest participant outputs b. ut

47

