
4-bit Boolean functions in generation and cryptanalysis of secure 4-bit crypto

S-boxes.

Sankhanil Dey
1
, Amlan Chakrabarti

2
 and Ranjan Ghosh

3
,

Department of Radio Physics and Electronics
1,3

, University of Calcutta,

92 A P C Road, Kolkata-700009,

A K Choudhury School of Information Technology
2
, University of Calcutta,

Sector III, JD-2 block, Salt-lake City, Kolkata-700098,

sdrpe_rs@caluniv.ac.in
1
, achakra12@yahoo.com

2
, rghosh47@yahoo.co.in

3
.

Abstract. In modern ciphers of commercial computer cryptography 4-bit crypto substitution boxes or 4-bit crypto S-

boxes are of utmost importance since the late sixties. Since then the 4 bit Boolean functions (BFs) are proved to be

the best tool to generate the said 4-bit crypto S-boxes. In this paper the crypto related properties of the 4-bit BFs

such as the algebraic normal form (ANF) of the 4-bit BFs, the balancedness, the linearity, the nonlinearity, the

affinity and the non-affinity of the 4-bit BFs and the strict avalanche criterion (SAC) of 4-bit BFs are studied in

detail. An exhaustive study of 4-bit BFs with some new observations and algorithms on SAC of 4-bit BFs is also

reported in this paper. A bit later in the end of nineties the Galois field polynomials over Galois field GF(2
8
) are in

use to generate the 8-bit crypto S-box of the Advance Encryption Standard (AES). A detailed study on generation of

the 4-bit crypto S-boxes with such Galois field polynomials over the binary as well as non-binary extended Galois

fields is also given in this paper. The generated 4-bit crypto S-boxes are analyzed with four cryptanalysis techniques

and the well-defined SAC algorithms of 4-bit crypto S-boxes to search for the best possible 4-bit crypto S-boxes.

Some existing 4-bit crypto S-boxes like the 32 4-bit crypto S-boxes of the Data Encryption Standard (DES) and the

four 4-bit crypto S-boxes of the two variants of the Lucifer are analyzed to report the weakness of such S-boxes. A

comparative study of the ancient as well as the modern 4-bit crypto S-boxes with the generated 4-bit crypto S-boxes

proves the said generated 4-bit crypto S-boxes to be the best possible one.

1. Introduction and Scope. The four bit Boolean functions (4-bit BFs) contain 16 bits with bit values 0 or 1 [1]. The

16 bit long 4-bit BF can be considered as a 16 bit binary number with position 0 as MSB and position f as LSB and

the decimal equivalent of the binary number is considered as the decimal equivalent (DE) of the 4-bit BF [2]. The

positions of each bit within the 4-bit BFs vary from 0 to f in hex. The bits in each position from 1 to 4 of the 4-bit

binary equivalents of the 16 positions increases sequentially from 0 to f in hex constitute four 4-bit input bit vectors

(IPVs) with decimal equivalents of four 16 bit long IPVs are 255, 3855, 13107 and 21845 respectively [3]. The 4-bit

BFs with balanced number of bits with same bit values i.e. 8 bits with bit value 0 and 8 bits with bit value 1 are

termed as balanced 4-bit BFs [4]. This property is reviewed or described in section 2. The general equation to derive

each bit of a 4-bit BF can be termed as the Algebraic Normal Form (ANF) of the 4-bit BF. Coefficients of the 16

terms are termed as ANF coefficients of the 4-bit BFs. The terms of the ANF equation contain either a constant or

one variable or product of two, three or four variables. They are called as constant term, linear term and product or

nonlinear terms of the ANF equation respectively. The 4-bit BFs with ANF equations contain only constant term

with coefficient 0 and only linear terms are called as linear BFs. The 4-bit BFs with ANF equations contain constant

term with coefficient 0 and at least one product or nonlinear terms are called as non-linear 4-bit BFs. The 4-bit BFs

with constant term with coefficient 1 and only linear terms are called as Affine BFs. The 4-bit BFs with ANF

equations contain constant term with coefficient 1 and at least one product or nonlinear terms are called as Non-

Affine 4-bit BFs [5-6]. The ANF, Linearity, Nonlinearity, Affinity and Non-Affinity are reviewed in sec.2. If four

IPVs of the 4-bit BFs are complemented one at a time and the distance between the 4-bit BFs before and after

complement operation is a balanced 4-bit BF then the 4-bit BFs are said to satisfy the strict avalanche criterion

(SAC) of 4-bit BFs [7-8]. The property is illustrated in section 2 in this paper. The old algorithms of SAC of 4-bit

BFs with new observations and algorithms are described in section 3.

mailto:sdrpe_rs@caluniv.ac.in1
mailto:achakra12@yahoo.com2
mailto:rghosh47@yahoo.co.in2

The 4-bit crypto S-box contains 16 unique and distinct elements vary from 0 to f in hex. The positions of

each bit within the 4-bit BFs vary from 0 to f in hex. The bits in each position from 1 to 4 of the 4-bit binary

equivalents of the 16 positions of the S-box elements increases sequentially from 0 to f in hex constitute four 4-bit

input bit vectors (IPVs) with decimal equivalents of four 16 bit long IPVs are 255, 3855, 13107 and 21845

respectively [9]. The bits in each position from 1 to 4 of the 4-bit binary equivalents of the 16 elements of the S-box

constitute four 4-bit output bit vectors (OBVs) [9]. 4 IPVs and 4 OBVs of a crypto S-box are 8 distinct and unique

and balanced 4-bit BFs [9]. If four 4-bit BFs of a crypto S-box satisfy SAC of the 4-bit BFs together then the crypto

S-box is said to satisfy SAC of 4-bit crypto S-boxes [10]. The said criterion with new observations and algorithms is

described in section.3. The generation of a 4-bit crypto S-box with four 4-bit BFs is shown in section.4. If the

resultant
4
C2 (= 6) 4-bit BFs of the bitwise xor operation between all possible combination of the two 4-bit BFs of a

crypto S-box are balanced then the crypto S-box is said to satisfy the (output) bit independence criterion or BIC of

the 4-bit S-boxes. The BIC criterion for the 4-bit crypto S-boxes is described in section 4.

The generated 4-bit S-boxes are analyzed with cryptanalysis techniques of 4-bit crypto S-boxes such as

linear cryptanalysis of 4-bit crypto S-boxes [11], linear approximation analysis [12], differential cryptanalysis of 4-

bit crypto S-boxes [13] and differential cryptanalysis of 4-bit crypto S-boxes with 4-bit BFs [14] and SAC

algorithms of 4-bit S-boxes [15]. The results are then compared with the said analysis on the existing 32 and four 4-

bit crypto S-boxes of Data Encryption Standard (DES) and Lucifer respectively to show the weakness of the existing

crypto S-boxes and to prove the generated S-boxes are the best possible ones. The detail discussion is included in

section.5. The conclusion and the acknowledgement are given in section 6 and 7 respectively.

2. 4-bit BFs: Its Features and Properties.

The BFs are usually represented by input-output binary bits in a Truth Table. Its features are expressed with

following three formalisms which are explained in detail in Sec.2.1. The general equation to generate 16 linear, 16

affine, 32752 nonlinear and 32752 non-affine 4 bit equations is called as Algebraic Normal Form (ANF) of 4-bit

BFs. It is reviewed in Sec. 2.2. Of the 65536 4-bit BFs, 32 are linear and 65504 are nonlinear – the linear BFs and

the nonlinear BFs are well reviewed in Sec.2.3. Again of the 65536 4-bit BFs, 12870 (=
12

C8) are balanced and the

rest 52666 are unbalanced – this is detailed in Sec.2.4. A 4-bit BF is said to satisfy Strict Avalanche Criterion (SAC)

if, on flipping all bits of one of the four 16-bit input vectors, 50% of its output bits gets flipped and the changed 16-

bit output vector may be balanced or unbalanced. This property of BFs can also be named as the First Order (FO)-

SAC which is explained in detail in Sec.2.5. On successively flipping two of the four input bit vectors, if a particular

BF successively satisfies two respective FO-SACs then the BF is said to satisfy Two Successive First Order (SFO)

SACs. In the event three or four input bit vectors are successively flipped and it is observed that if a particular BF

successively satisfies three or four FO-SACs, the concerned BF is said to satisfy three or four SFO-SACs, The Strict

Avalanche Criterion (SAC) of 4-bit BFs is reviewed from SFO-SAC angles in Sec.2.6. Besides SFO-SACs, one can

also consider another type of SAC, namely Higher Order (HO) SAC. If two or more Input Vectors (IPVs) are

simultaneously flipped, the bits in the BF before and after flip is changed in 8 positions and in rest 8 positions

remains the same then the BF is said to satisfy Higher Order (HO) SACs – for two IPVs, it is said as Second Order

HO-SAC, for three, Third Order HO-SAC and for four, fourth Order HO-SAC. The Strict Avalanche Criterion

(SAC) of 4-bit BFs is also reviewed from Higher Order (HO) SAC angles in Sec.2.7.

2.1. Features: Bit level, Bit Vector level and Galois Field Level presentations.

The Truth Table of a 4-bit BF is presented in Table 3.1 in such a fashion that it is possible to view it from

three angles, (a) Bit Level, (b) Vector Level and (c) Galois Field Level. The first column with sub-columns 1 to 3 is

the Bit Level presentation of the Truth Table, while the Vector Level and the Galois Field Level presentations are

made together in the second column within sub-columns 4 to 9.

(a) Bit Level presentation

The 16 rows of 3 columns (1 to 3) of Table 2.1 represent the Bit Level Truth Table of a 4-bit BF [13][14].

The 16 rows of col.1 indicate sequentially and monotonically increasing 4 input bits whose left-most bit is the MSB

and right-most bit is the LSB. Considering the LSB-MSB issue, the Decimal Equivalent (DE) of the 16 set of 4 bits

input is given in the respective row of col.2. The 1-bit output corresponding to 4-bit input is also put in the

respective row of col.3. The functional relation of the bit level presentation of a 4-bit BF between a single output bit

(y) and four input bits (x1,x2,x3,x4) can be expressed as,

 y = BL-BF(x1,x2,x3,x4) … … (2.1.a)

(b) Vector Level Presentation

The 17 rows of 5 columns (4 – 7 & 9) of Table 2.1 represent the Vector Level Truth Table of a 4-bit BF.

The columns 4 to 7 are the four 16-bit Input Vectors {x1, x2, x3, x4} of the same input shown in 16 rows of col.1 of

the Bit Level presentation and a 16-bit Output Vector {y} of the same output shown in 16 rows of col.3 is shown in

col.9. Of the 16 set of 4 input bits (x1,x2,x3,x4), input vector {x1} is formed by 16 (x1) bits, {x2} by 16 (x2) bits, {x3}

by 16 (x3) bits, {x4} by 16 (x4) bits and output vector {y} by using 16 (y) bits. The decimal equivalents of the four

input vectors, {x1, x2, x3, x4} and that of the output vector, {y} are given in respective column of the 17
th

 row. While

computing the decimal equivalents of the 16-bit four input vectors, the respective bit in row 1 of Table 3.1 is

considered as the MSB and the respective bit in row 16, the LSB. The input-output functional relation for vector

level presentation of Truth Table of a 4-bit BF is expressed between four input x-vectors {x1,x2,x3,x4} and output

{y}-vector as follows,

 {y} = VL-BF{x1, x2, x3, x4} … … (2.1.b1)

It can also be expressed between {y}DE and DEs of four IVs {x1,x2,x3,x4} as follows,

 {y}DE = VL-BF(255, 3855, 13107, 21845) … … (2.1.b2)

(c) Presentation using Galois Field Polynomials

 The 16 rows of columns 8 and 9 of Table 2.1 represent the Galois Field Level Truth Table of a 4-bit BF.

The col.8 is the 16-character Input Vector in Hex {h} of the same input shown in 16 rows of col.1 of the Bit Level

presentation and the col.9 is the 16-bit Output Bit Vector {y}. The decimal Equivalents (DEs) of Galois Field

Polynomial of {y} over Finite Field 2
15

 is designated as y, while the decimal Equivalents (DEs) of Galois Field

Polynomial of {h} over Finite Field 16
15

 is designated as h, as given below.

 {h}DE = 0z
15

+1z
14

+2z
13

+3z
12

+4z
11

+5z
10

+6z
9
+7z

8
+8z

7
+9z

6
+az

5
+bz

4
+cz

3
+dz

2
+ez+fz

0
, (z=16)

 {y}DE = 0z
15

+1z
14

+1z
13

+0z
12

+1z
11

+0z
10

+1z
9
+1z

8
+1z

7
+0z

6
+0z

5
+1z

4
+1z

3
+0z

2
+0z+0z

0
, (z=2)

It may be noted that the decimal equivalent of {h} turns out to be 81985529216486895.

The input-output functional relation between {y}DE and {h}DE can be expressed as,

 {y}DE = GFL-BF (81985529216486895) … … (2.1.c)

2.2 The Algebraic Normal Form (ANF) of a 4-bit BF

The 4-bit BF is a mapping from (0,1)
4

to (0,1)
1

which

means 4-bit binary input given to a digital system

provides 1-bit output. The 4 input bits to a 4-bit Boolean Function (F) are algebraically designated as (x1x2x3x4).

Following the Bit level presentation of its Truth Table shown in columns 1 to 3 of Table 3.1, the 16 set of inputs are

shown in col.1, the corresponding decimal values between 0 and 15 are respectively shown in col.2 and each set of

input providing 1-bit output is shown in col.3 expressed by y. Its functional relation, y=F(x)=F(x1x2x3x4) can be

expressed in Algebraic Normal Form (ANF) with 16 coefficients as given in eq. (2.2) below,

y = F(x1x2x3x4)

 = a0 + (a1.x1+a2.x2+a3.x3+a4.x4) + (a5.x1.x2+a6.x1.x3+a7.x1.x4+a8.x2.x3+a9.x2.x4+a10.x3.x4) +

 + (a11.x1.x2.x3+a12.x1.x2.x4+a13.x1.x3.x4+a14.x2.x3.x4) + a15.x1.x2.x3.x4 …. … (2.2)

where y assumes 1-bit output, x represents the decimal or hex value of 4 input bits represented by {x1x2x3x4}, The

two operators, ‘.’ and ‘+’ represent AND and XOR operations respectively. Here a0 is a constant coefficient, (a1 to

a4) are 4 linear coefficients, and (a5 to a15) are 11 nonlinear coefficients of which (a5 to a10) are 6 nonlinear

coefficients associated with 6 terms having AND-operated-2-input-bits, (a11 to a14) are 4 nonlinear coefficients

associated with 4 terms having AND-operated-3-input-bits and a15 is a non-linear coefficient associated with one

term having AND-operated-4-input-bits. The 16 binary ANF coefficients, from a0 to a15 are marked respectively as

anf.bit0 to anf.bit15 in ANF representation and are evaluated from the 16-bit output vector of a BF designated as

bf.bit0 to bf.bit15 using the following relations as given in eq.(3.3),

anf.bit0 = bf.bit0;

anf.bit1 = anf.bit0 + bf.bit8;

anf.bit2 = anf.bit0 + bf.bit4;

anf.bit3 = anf.bit0 + bf.bit2;

anf.bit4 = anf.bit0 + bf.bit1;

anf.bit5 = anf.bit0 + anf.bit1 + anf.bit2 + bf.bit12;

anf.bit6 = anf.bit0 + anf.bit1 + anf.bit3 + bf.bit10;

anf.bit7 = anf.bit0 + anf.bit1 + anf.bit4 + bf.bit9;

anf.bit8 = anf.bit0 + anf.bit2 + anf.bit3 + bf.bit6;

anf.bit9 = anf.bit0 + anf.bit2 + anf.bit4 + bf.bit5;

anf.bit10 = anf.bit0 + anf.bit3 + anf.bit4 + bf.bit3;

anf.bit11 = anf.bit0 + anf.bit1 + anf.bit2 + anf.bit3 + anf.bit5 + anf.bit6 + anf.bit8 + bf.bit14;

anf.bit12 = anf.bit0 + anf.bit1 + anf.bit2 + anf.bit4 + anf.bit5 + anf.bit7 + anf.bit9 + bf.bit13;

anf.bit13 = anf.bit0 + anf.bit1 + anf.bit3 + anf.bit4 + anf.bit6 + anf.bit7 + anf.bit10 + bf.bit11;

anf.bit14 = anf.bit0 + anf.bit2 + anf.bit3 + anf.bit4 + anf.bit8 + anf.bit9 + anf.bit10 + bf.bit7;

anf.bit15 = anf.bit0 + anf.bit1 + anf.bit2 + anf.bit3 + anf.bit4 + anf.bit5 + anf.bit6 + anf.bit7

+ anf.bit8 + anf.bit9 + anf.bit10 + anf.bit11 + anf.bit12 + anf.bit13 + anf.bit14 + bf.bit15 … (2.3)

The DE (Decimal Equivalent) of the output vector {y} of BFs varies from 0 through 65535 and each decimal value

is converted to a 16-bit binary output of the Boolean function from bf.bit0 through bf.bit15. Based on the binary

outputs of a BF, the ANF coefficients from anf.bit0 through anf.bit15 are calculated sequentially for all BFs using

eq. (3.3).

2.3 Linear-Nonlinear and Affine-Non-affine groups of 4-bit BFs

 All the 65536 16-bit Output Vectors of 4-bit BFs can be divided in two equal groups each having 32768

BFs, one is the linear-nonlinear group having binary bit ‘0’ as MSB and the other one is the affine-non-affine group

having binary bit ‘1’ as MSB. The decimal equivalent of output vectors of the linear-nonlinear group monotonically

increases from 0 to 32767. The 16 of it are linear, while the other 32752 ones are nonlinear. The affine-non-affine

group has also 32768 BFs, each of its decimal equivalents monotonically increases from 32768 to 65535 and

becomes decimal-wise complement of a concerned BF belonging to the linear-nonlinear group whose entire 16-bit

BF is binary complement to the affine-non-affine BF. The 16 of it are Affine which are bit-wise as well as decimal-

wise complementary to respective linear ones. The same is true for other 32752 are non-affine BFs in relation to

nonlinear ones also. The features and properties of linear-affine and nonlinear-non-affine BFs are discussed in detail

in Sec.2.3.1 and Sec.2.3.2 respectively.

2.3.1. Linear and Affine 4-bit BFs

The four 16-bit Input Vectors {x1x2x3x4} shown in Table 3.1 are fixed for all BFs and they are members of

the family of 65536 BFs. If one of the four input vectors becomes an output BF, the coefficient a0 of ANF of the BF

becomes zero for all the four cases and the concerned ANF of the BFs assumes forms as follows,

Case (i) : if output BF = {x1}, then {y} = {x1}, means a1 = 1 and all other coefficients are zero.

Case (ii) : if output BF = {x2}, then {y} = {x2}, means a2 = 1 and all other coefficients are zero.

Case (iii) : if output BF = {x3}, then {y} = {x3}, means a3 = 1 and all other coefficients are zero.

Case (iv) : if output BF = {x4}, then {y} = {x4}, means a4 = 1 and all other coefficients are zero.

For all the above four cases, the nonlinear coefficients a5 to a15 are zero indicating the four input vectors {x1}, {x2},

{x3} and {x4} are the four Basic Linear BFs. In Table 3.2 such four Basic Linear BFs and their corresponding ANFs

are mentioned in columns 2 and 7 respectively with C=0 along the “relation number” rows of 1, 2, 5 and 9

respectively. It may now be mentioned that ‘xor’ operation being a linear operation, its successive applications

involving two, three or four basic linear BFs are expected to provide linear BFs. It may be noted that xor operation

involving two of the four basic linear BFs gives rise to six linear BFs shown in 6 rows of relation number 4, 6, 7, 10,

11 and 13. Four more linear BFs shown in rows of relation number 8, 12, 14 and 15 get evolved following

successive two xor operations involving three of the four basic linear BFs. Successive three xor operations

involving all the four basic linear BFs provide one linear BF shown in row of relation number 16. All these can be

seen in Table 3.2. The number of linear BFs evolved out of the four basic linear BFs turns out to be 11. There are

one constant linear BFs having 16 ‘0’s as its output (vide row of relation number = 1. Altogether there are 16 linear

BFs. The ANF coefficients mentioned in column 7 of Table 2 indicate that all the 11 nonlinear coefficients of all

these linear BFs are zero. The 16 affine BFs shown in column 5 are obtained by bit-wise complementing all the 16

bits of the respective linear BFs. It may also be noted that considering decimal equivalents the linear and the

corresponding affine BFs shown in the same row of Table 2.2 are complementary to each other. The discussed

matter is elaborated as follows,

 Four 16-bit fixed input vectors of 4-bit BFs from its sixteen set of four input bits: The input pattern of 4-bit

BFs (x1x2x3x4) has 16 sequential values from ‘0’ to ‘f’ in hex corresponding to binary values from {0000} to

{1111}. These are always considered fixed at the inputs of all BFs. Each column vector of four {x1, x2, x3, x4}

vectors is a 16-bit Input Vector (IPV) shown in column 1 of Table 3.2 under its headings ‘x1’, ‘x2’, ‘x3’or ‘x4’

respectively and is designated as IV1, IV2, IV3 or IV4 respectively and is termed as four fixed 16-bit Input Vectors

(IPVs) of all 4-bit BFs.

 Constant Linear BF: There is one constant linear BF shown in column 2 of relation no. 1 of Table 3.2 with C=0.

Corresponding to each of 16 set of 4-bit inputs shown in column 1, the 16 output bits of the BF with C=0 are also

‘0’ as shown in column 3 of relation no.1. Its 16 ANF coefficients also turn out to be zero as shown in column 7 of

the same relation no.

 Four Basic Linear BFs: If one of {x1, x2, x3, x4} input vectors depicted under the column heading ‘[x1]’, ‘[x2] ’,

‘[x3] ’or ‘[x4]’ of Table 3.2 becomes the 16-bit output of a BF, the four BFs can be defined as F1(x) = C+x1, F2(x) =

C+x2, F3(x) = C+x3 or F4(x) = C+x4, all with C = 0, as shown in relation no., 3, 5 or 9 of column 2 and their

respective output is given in the corresponding relation no. of column 3. Following the ANF formalism of a BF

given in eq. (3.2) of Sec.3.2.2, one can conclude that for each of the four BFs defined above, only one of the 4 linear

ANF coefficients has a binary value 1 and all other coefficients are zero, indicating a1 = 1 for F1(x), a2 = 1 for F2(x),

a3 = 1 for F3(x) and a4 = 1 for F4(x) as shown in relation no. 2, 3, 5 and 9 of column 7 respectively. This indicates

that F1(x) = x1, F2(x) = x2, F3(x) = x3 and F4(x) = x4 are the four Basic Linear BFs (BLBFs). The same ANF

coefficients are also obtained if these are computed using respective BF outputs given in relation no. 2, 3, 5 or 9 of

column 3. All other Linear BFs are obtained using the four Basic Linear BFs. It may be noted that the 16 linear BFs

and 16 affine BFs including the constant ones are so organized in Table 3.2 that the Decimal Equivalent of Boolean

Function (DEBF) of all of them appear in an ascending order for linear BFs and that of the affine BFs, in a

descending order as a decimal-wise complement of 65535 of the respective linear BFs.

 Eleven Other Linear BFs derived from the four Basic Linear BFs: It may be noted that the XOR operation,

being a linear operator, would give rise to other eleven linear BFs if XOR operations of four Basic Linear BFs are

properly undertaken. The XOR operation of any two of the four Basic Linear BFs gives rise to six linear BFs which

are shown in relation no. 4, 6, 7, 10, 11 and 13; the XOR operation of any three of the four Basic Linear BFs gives

rise to four linear BFs as shown in relation no. 8, 12, 14 and 15 and the last one is the XOR operation of the four

Basic Linear BFs shown in relation no. 16. It may be noted that their non-zero linear ANF coefficients correspond

to those which are related to the Basic Linear BFs involved in the XOR operations. The non-linear coefficients are

obviously zero. The same observation would also be made if the ANF coefficients are computed using eq. (3.2) of

Sec. 3.2.2 based on respective BF outputs.

 Sixteen Affine BFs: The affine BFs are obtained by complementing all output bits of the linear BFs. The sixteen

affine BFs are their corresponding linear BFs depicted in column 2 of relation no. 1 through 16 with C=1. Each of

their 16-bit output is obtained by complementing the corresponding 16 linear BFs and is shown in column 5 of 16

relation nos. The 16 ANF coefficients of each of the affine BFs are identical to the corresponding linear BFs except

the one under the heading ‘0’ of column 7 of 16 relation no.s which assumes the binary value of C for affine BFs it

is always ‘1’.

2.3.2 Non Linear and Non Affine 4-bit BFs:

The 4-bit BFs with constant term C = ‘0’ and with at least one ‘1’ present in the subheadings 5 through f in the

column 7 of table 3.2 with or without 1s in the subheadings 1 through 4 of the table 3.2. So the nonlinearity is

judged on the basis of the presence of nonlinear ANF coefficients or ANF product terms in the concerned 16 bit

ANF coefficient vector or the concerned ANF equation derived from equation 3.2. Here in equation 3.2 a5 to a15 are

11 nonlinear coefficients of which (a5 to a10) are 6 nonlinear coefficients associated with 6 terms having AND-

operated-2-input-bits. If at most these nonlinear terms are present in the concerned nonlinear ANF equation then the

algebraic nonlinearity is counted to be 2
nd

 order algebraic nonlinearity. If at most a11 to a14 or 4 terms having AND-

operated-3-input-bits are present then the 3
rd

 order algebraic nonlinearity and if at most a15 or one term having AND-

operated-4-input-bits is present then the then the 4
th

 order algebraic nonlinearity is observed. The same is for non-

affine BFs with C = ‘1’. The only difference of 2
nd

 , 3
rd

 and 4
th

 order algebraic non-affinity [15] is the presence of

the constant term or C =’1’. The number of nonlinear and non-affine 4-bit BFs satisfied some of the categories of

algebraic nonlinearity are presented in table. 2.3.

The maximum nonlinearity or in colloquial term the nonlinearity (NL) of a 4-bit nonlinear or non-affine BF is the

number of 1s in the 16 bit hamming distance vector (HDV) with the minimum number of 1s among 32 HDVs

generated from the bitwise xor operation of the 4-bit nonlinear or non-affine BF to the 16 linear 4-bit BFs and 16

affine 4-bit BFs [16]. For 4-bit BFs the maximum value of maximum nonlinearity is 6 and the minimum value of

maximum nonlinearity is 1 [17]. The numbers of nonlinear and non-affine 4-bit BFs with NL equal to 1 through 6

are noted in table 2.3. The tables are discussed below,

2.4 Balanced and Unbalanced 4-bit BFs.

A 4-bit BF contains 16 bits. If there are balanced number of 0s and 1s i.e. there are 8 1s and 8 0s are present in the

binary equivalent of the 4-bit BF then it is called as Balanced 4-bit BF. Other 4-bit BFs are called as Unbalanced 4-

bit BFs. There are
16

C8 or 12870 balanced 4-bit BFs exist and rest of the 4-bit BFs out of 65536 is unbalanced. The

maximum nonlinearity of the balanced BFs are either four or 2 [18]. The balancedness for the same balanced and

unbalanced 4-bit BFs are noted in table.2.3.

2.5 First Order Strict Avalanche Criterion (FO-SAC) of the 4-bit BFs.

A 4-bit BF is said to satisfy Strict Avalanche Criterion (SAC) if, on flipping all bits of one of the four 16-bit input

vectors, 50% of its output bits gets flipped and the changed 16-bit output vector may be balanced or unbalanced.

This property of BFs can also be named as the First Order (FO)-SAC. The FO-SAC of some balanced and

unbalanced 4-bit BFs are noted in table.2.3[19].

2.6 Successive First Order Strict Avalanche Criterion (SFO-SAC) of the 4-bit BFs [20].

On successively flipping two of the four input bit vectors, if a particular BF successively satisfies two respective

FO-SACs then the BF is said to satisfy Two Successive First Order (SFO) SACs. In the event three or four input bit

vectors are successively flipped and it is observed that if a particular BF successively satisfies three or four FO-

SACs, the concerned BF is said to satisfy three or four SFO-SACs, The SFO-SAC for the same balanced and

unbalanced 4-bit BFs are noted in table.2.3.

2.7 Multiple Higher Order Strict Avalanche Criterion (MHO-SAC) of the 4-bit BFs.

Besides SFO-SACs, one can also consider another type of SAC, namely Higher Order (HO) SAC. If two or more

Input Vectors (IPVs) are simultaneously flipped, the bits in the BF before and after flip is changed in 8 positions and

in rest 8 positions remains the same then the BF is said to satisfy Higher Order (HO) SACs – for two IPVs, it is said

as Second Order HO-SAC, for three, Third Order HO-SAC and for four, fourth Order HO-SAC. The MHO-SAC for

the same balanced and unbalanced 4-bit BFs are noted in table.2.3.

3 Strict Avalanche Criterion for 4-bit BFs and 4-bit S-boxes: The Strict Avalanche Criterion is introduced by

Webster and Tavares [1] in late eighties of the previous century. If four IPVs of a 4-bit OPBF are complemented one

at a time and the hamming distance between the said OPBF and complemented OPBFs are 8 or the difference BFs

are balanced then the 4-bit OPBF is said to satisfy the FO-SAC of the 4-bit BFs. If four OPBFs of an S-box satisfy

the FO-SAC of the 4-bit BFs individually then the S-box is said to satisfy the FO-SAC of the 4-bit S-boxes. Now If

four IPVs of a 4-bit OPBF are complemented 2 or 3 together at a time and the hamming distance between the said

OPBF and complemented OPBFs are 8 or the difference BFs are balanced then the 4-bit OPBF is said to satisfy the

HO-SAC of the 4-bit BFs and if four IPVs of a 4-bit OPBF are complemented four together at a time and the

hamming distance between the said OPBF and complemented OPBFs are 8 or the difference BFs are balanced then

the 4-bit OPBF is said to satisfy the Extended HO-SAC of the 4-bit BFs [24]. FO-SAC, HO-SAC and Extended HO-

SAC of the 4-bit BFs together is called as MHO-SAC of the 4-bit BFs. If four OPBFs of an S-box satisfy the MHO-

SAC of the 4-bit BFs individually the S-box is said to satisfy the MHO-SAC of the 4-bit S-boxes. The procedure of

the DC is very similar to MHO-SAC of the 4-bit BFs. The S-box is properly defined in section 3.1. In this chapter

the concept of the SAC of the 4-bit BF is reviewed in section 3.2 with two new algorithms. The section 3.3 is

devoted to establish the analogy of the MHO-SAC of the 4-bit S-boxes with the DC.

3.1 S-box:

A 4-bit S-box can be written as follows in table 3.1.1, where the each element of the first row of table 3.1.1, entitled

as index, are the position of each element of the S-box within the given S-box and the elements of the 2
nd

 row,

entitled as S-box, are the elements of the given S-box. It can be concluded that the 1
st
 row is fixed for all possible S-

boxes. The values of each element of the 1
st
 row are distinct, unique and vary between 0 to F in hex. The values of

the each element of the 2
nd

 row of the S-box are also distinct and unique and also vary between 0 to F in hex. The

values of the elements of the fixed 1
st
 row are sequential and monotonically increase where for the 2

nd
 row they can

be sequential or partly sequential or non-sequential. Here the given substitution box is the 1
st
 S-box of the 1

st
 given

S-box out of 8 of the Data Encryption Standard [11].

Table 3.1.1: S-box.

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G

1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 S-Box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

3.2. Strict Avalanche Criterion (SAC) of the 4-bit BFs and 4-bit S-boxes [12][13]:

The SAC of the 4-bit BFs with pseudo code is reviewed in section 3.2.1 and a new technique entitled “Shift

Method” to find SAC of 4-bit BFs with pseudo code is noted in brief in section 3.2.2. Another new technique “Flip

Method” of the SAC of 4-bit BFs and the SAC of 4-bit S-boxes with pseudo code is also reviewed in section 3.2.3

3.2.1. A brief review on SAC of 4-bit BFs: A 4-bit BF is said to satisfy the SAC of the 4-bit BFs if the distant BFs

or bitwise hamming distances are balanced that are generated due to the bitwise xor operations of the OPBF with the

complemented OPBFs (COPBFs) that are also generated due to the complementation of the four IPVs individually.

In the SAC of the 4-bit BFs IPV4, IPV3, IPV2 and IPV1 respectively that are shown in column 1 through G of the

row 2, 3, 4 and 5 in table 3.2.1.1 are complemented individually one at a time. If due to the said operation on OPBF

the numbers of bits changed in COPBFs are 8 or half of the number of bits in a 4-bit BF then the OPBF is said to

satisfy SAC of 4-bit BFs.

IPV4, CIPV4, IPV3, CIPV3, IPV2, CIPV2, IPV1, CIPV1 are shown in column 2 thorough H of row 1, 3, 7, 9 , D, F,

J, L respectively of the table 3.2.1.2. The OPBFs and the COPBFs and CIPV4, CIPV3, CIPV2 and CIPV1 are noted

in column 2 thorough H of the row 2, 4, 8, A, E, G and K, M respectively. The difference BFs or DBFs more

specifically, DBF4, DBF3, DBF2, DBF1 are shown in column 2 thorough H of row 5, B, H, N respectively.

Now the changes in numbers of bits in COPBFs from OPBF are 12, 8, 4, 12 respectively. So the given OPBF does

not satisfy the SAC of the 4-bit BFs. To satisfy SAC of the 4-bit BFs changes in numbers of bits in four COPBFs

from OPBFs must be 8, 8, 8, 8.

Note: If four OPBFs of a particular S-box satisfy SAC of 4-bit BFs individually then the said S-box is said to satisfy

the SAC of the 4-bit S-boxes.

Pseudo Code:

Let BF[16].bit0 is a bit level array of 16 bits of a 4-bit BF and BF[16] is an

array of 16 bits of a 4-bit BF. CV[16].bit0 is a bit level array of 16 bits to

store either 00FF, 0F0F, 3333, 5555 in hex. CVC[16].bit0 is a bit level array of 16

bits to store either FF00, F0F0, CCCC, AAAA in hex. Here ^ represents bitwise Xor

operation. NL represents Numbers of bits changed in lower halves and NU represents

numbers of bits changed in upper halves.

Start.

Step 0A: For 1:16 BF[16].bit0 = BF[16].

Step 0B: For 1:16 CV[16].bit0 = 00FF, 0F0F, 3333, 5555.

Step 0C: For 1:16 CVC[16].bit0 = FF00, F0F0, CCCC, AAAA.

// Next five steps demonstrates the algorithm.

Step 01: wt{(BF[16].bit0 & 00FF)^(BF[16].bit0>>8&00FF)}+

WT{(BF[16].bit0&FF00)^(BF[16].bit0>>8&FF00)}= N= NL3 + NU3.

Step 02: wt{(BF[16].bit0 & 0F0F)^(BF[16].bit0>>4&0F0F)}+

WT{(BF[16].bit0&F0F0)^(BF[16].bit0>>4&F0F0)}= N = NL2 +NU2.

Step 03: wt{(BF[16].bit0 & 3333)^(BF[16].bit0>>2&3333)}+

WT{(BF[16].bit0&CCCC)^(BF[16].bit0>>2&CCCC)}=N= NL1 +NU1.

Step 04: wt{(BF[16].bit0 & 5555)^(BF[16].bit0>>1&5555)}+

WT{(BF[16].bit0&AAAA)^(BF[16].bit0>>1&AAAA)}=N= NL0 + NU0.

Step 05: If N=8 for Step 01, Step 02, Step 03, Step 04.

then BF[16].bit0 Satisfies SAC.

else BF[16].bit0 Does not Satisfies SAC.

Stop.

Note: Time complexity of the algorithm has been O(n).

Note: This algorithm is also called as FO-SAC algorithm. Now if 2, 3 or 4 IPVs are complemented together at a

time respectively then the said algorithm is called as MHO-SAC algorithm and the last case of four IPVs together is

called as Extended Higher Order SAC of the 4-bit BFs [24].

3.2.2. Shift method for the SAC of the 4-bit BFs: Here in COPBF complement of 4
th

 IPV means interchange of

the each distinct 8 bit halves of the 16 bit long 4
th

 IPV so the 2, 8 bit halves of the OPBF is interchanged due to

complement of the 4
th

 IPV or the CIPV4. Next to it in COPBF complement of 3
rd

 IPV means interchanges of the

each distinct 4 bit halves of the each distinct 8 bit halves of the IPV3 in CIPV3 so the each distinct 4 bit halves of

the each distinct 8 bit halves of the OPBF are interchanged due to the complement of the IPV3. Now in COPBF the

complement of the 2
nd

 IPV means interchange of the each distinct 2 bit halves of the each distinct 4 bit halves of the

each distinct 8 bit halves of the OPBF in COPBF and the complement of 1
st
 IPV means interchange of the each bit

of the each distinct 2 bit halves of the 16 bit long OPBF.

IPV4, CIPV4, IPV3, CIPV3, IPV2, CIPV2, IPV1, CIPV1 are shown in column 2 thorough H of row 1, 3, 7, 9 , D, F,

J, L respectively of table 3.2.1.2. The OPBFs and COPBFs are noted in column 2 thorough H of row 2, 4, 8, A, E, G

and K, M respectively. The difference BFs or DBFs more specifically, DBF4, DBF3, DBF2, DBF1 are shown in

column 2 thorough H of row 5, B, H, N respectively. Now changes in numbers of bits in COPBFs from OPBF are

12, 8, 4, 12 for this example. So the given OPBF does not satisfy the SAC of the 4-bit BFs. To satisfy the SAC of

the 4-bit BFs changes in numbers of bits in COPBFs from OPBFs must be 8, 8, 8, 8.

Note: If four OPBFs of a particular S-box satisfy SAC of 4-bit BFs individually then the said S-box is said to satisfy

the SAC of the 4-bit S-boxes.

Pseudo Code:

Start.

// bits of the 16 bit long OPBF are relocated to bit level array BF[16].bit0.

Step 00: For 1:16 BF[16].bit0 = BF[16].

// OPBF is circularly shifted by 8 bits and complemented BF or COPBF is located to

bit level array CBF[16].bit0.

Step 1A: CBF[16].bit0 = (BF[16].bit0>>8);

// Difference BF is obtained by xor of each bit of OPBF and COPBF.

Step 1B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0;

// Numbers of 1s in DBF are counted.

Step 1C: Count = IF(DBF[16].bit0==1);

// Each distinct 8 bit halves of OPBF is circularly shifted by 4 bits and

complemented BF or COPBF is located to bit level array CBF[16].bit0.

Step 2A: CBF[16].bit0 = (BF[8A].bit0>>4)&& (BF[8B].bit0>>4);

// Difference BF is obtained by xor of each bit of OPBF and COPBF.

Step 2B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0;

// Numbers of 1s in DBF are counted.

Step 2C: Count = IF(DBF[16].bit0==1);

// In next step Each distinct 4 bit halves of each distinct 8 bit halves of OPBF is

circularly shifted by 2 bits and complemented BF or COPBF is located to bit level

array CBF[16].bit0.

Step 3A: CBF[16].bit0 = (BF[4A].bit0>>2)&& (BF[4B].bit0>>2)&& (BF[4C].bit0>>2)&&

(BF[4D].bit0>>2);

// Difference BF is obtained by xor of each bit of OPBF and COPBF.

Step 3B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0;

// Numbers of 1s in DBF are counted.

Step 3C: Count = IF(DBF[16].bit0==1);

// In next step each bit of each distinct 2 bit halves are circularly shifted by 1

bits and complemented BF or COPBF is located to bit level array CBF[16].bit0.

Step 4A: CBF[16].bit0 = (BF[2A].bit0>>1)&&(BF[2B].bit0>>1)

&&(BF[2C].bit0>>1)&&(BF[2D].bit0>>1)&&(BF[2E].bit0>>1)

&&(BF[2F].bit0>>1)&&(BF[2G].bit0>>1)&&(BF[2H].bit0>>1);

// Difference BF is obtained by xor of each bit of OPBF and COPBF.

Step 4B: DBF[16].bit0 = CBF[16].bit0^ BF[16].bit0;

// Numbers of 1s in DBF are counted.

Step 4C: Count = IF(DBF[16].bit0==1);

// Test of SAC criterion.

Step 05 : IF Count = 8 for Step 1C, Step 2C, Step 3C, Step 4C. BF[16] Satisfies SAC

of 4-bit BFs.

ELSE BF[16] does not Satisfy SAC of 4-bit BFs.

Stop.

Time complexity of the given pseudo code: Time complexity of the algorithm is O(n) since the body contains no

nested loops.

Note: This algorithm is also called as FO-SAC algorithm. Now if 2, 3 or 4 IPVs are complemented together at a

time respectively then the said algorithm is called as MHO-SAC algorithm and the last case of four IPVs together is

called as Extended SAC of the 4-bit BFs.

3.2.3. Flip method of the SAC of the 4-bit BFs and 4-bit S-boxes [12][13]: row 2 through 5 and row 7 through A

of each column of column 1 through G in table 3.2.1.1 constitutes 16 4-bit input binary numbers and 16 4-bit output

binary numbers respectively. Here for each OPBF each input binary number is flipped in one fixed position and the

corresponding bit values of the OPBF before and after are xored to obtain the flipped BF (FB). If four flipped BF for

four fixed positions are balanced then the 4-bit OPBF is said to satisfy SAC of the 4-bit BF.

All the elements of the given S-box in hex, index of each element of the given S-box in hex (INH) and 4 bit binary

form (INB) are given in column 2 through H of row 3, 1, 2 of the table 3.2.3.1 respectively. OPBFs are shown in

column 2 through H of row 4, 5, 6, 7 of the table 4.2.3.1 respectively.

Now 16 INBs before flip and 16 INBs after flip in one bit particularly in fixed bit positions 1, 2, 3, 4 are shown in

row 2 through H of column 1, 2, 6, 7, B, C, G, H respectively of table 3.2.3.2. Each corresponding bits of the

concerned OPBF duly before and after flip are noted in row 2 through H of column 3, 4, 8, 9, D, E, I, J respectively

in the same table. 1 in any position of the flipped BF in row 2 through H of column 5, A, F, K illustrate dissimilarity

in bits in the corresponding positions of the concerned OPBF duly before and after flip in one bit in fixed bit

positions 1, 2, 3 and 4 respectively.

If out of 16 positions in each row from 2 through H column of column 5, A, F, K there are 8 1s and 8 0s then the

given BF is said to satisfy the SAC of the 4-bit BFs. If all the four OPBFs of an S-box satisfy the SAC of the 4-bit

BFs then the S-box is said to satisfy the SAC of the 4-bit S-boxes.

Here in table 3.2.3.2. row I shows the numbers of bits changed in OPBF1, OPBF2, OPBF3, OPBF4 before and after

flip in pos. 1, pos. 2, pos. 3 and pos. 4 respectively. Since the value is not equal to 8 all positions for the given OPBF

so the concerned OPBF and the given S-box does not satisfy the SAC of the 4-bit BFs and the SAC of the 4-bit S-

boxes respectively.

Note: This algorithm is also called as Flip FO-SAC algorithm. Now if 2, 3 or 4 bits of the IPVs are flipped together

at a time respectively then the said algorithm is called as MHO-SAC algorithm and the last case of the four bit flip

together is called as Extended SAC of the 4-bit BFs.

Table 3.2.1.1: IPVs and OPBFs of the 1
st
 S-box of the DES.

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G H.

Decimal

Equivalent
1 Index 0 1 2 3 4 5 6 7 8 9 A B C D E F

2 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00255

3 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 03855

4 IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 13107

5 IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21845

6 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

7 OPBF4 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 42836

8 OPBF3 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1 58425

9 OPBF2 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 36577

A OPBF1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 13965

Table 3.2.1.2: SAC Criterion for 4-bit BFs.

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H

1 IPV4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

2 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0

3 CIPV4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

4 COPBF 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 1

5 DBF 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1

6 Number of bits changed in COPBF 12

 R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H

7 IPV3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

8 OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0

9 CIPV3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

A COPBF 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 1

B DBF 1 1 0 1 1 1 0 1 0 0 0 1 0 0 0 1

C Number of bits changed in COPBF 8

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H

D IPV2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

E OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0

F CIPV2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

G COPBF 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1

H DBF 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1

I Number of bits changed in COPBF 4

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H

J IPV1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

K OPBF 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0

L CIPV1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

M COPBF 0 1 0 1 1 0 1 1 1 0 1 0 1 0 0 0

N DBF 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0

O Number of bits changed in COPBF 12

Table 3.2.3.1: S-box and OPBFs for SAC test of 4-bit BFs as well as the S-boxes.

R|C 1 2 3 4 5 6 7 8 9 A B C D E F G H

1 Hex Index

Pos INB

0

4321

1

4321

2

4321

3

4321

4

4321

5

4321

6

4321

7

4321

8

4321

9

4321

A

4321

B

4321

C

4321

D

4321

E

4321

F

4321

2 INB 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

3 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

4 OBF1 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0

5 OBF2 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1

6 OBF3 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1

7 OBF4 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1

Table 3.2.3.2: SAC Test with Flip method of 4-bit BFs and the S-boxes.

Col |

Row
Flip of 1 bit of Index at Pos. 1

Flip of 1 bit of Index at Pos.

2
Flip of 1 bit of Index at Pos. 3

Flip of 1 bit of Index at Pos.

4

1 2 3 4 5 6 7 8 9 A B C D E F G H I J K

1 Bef

Flip

AfterF

lip
1 1’

F

B

Bef

Flip

After

Flip
2 2’

F

B

Bef

Flip

AfterFl

ip
3 3’

F

B

Bef

Flip

AfterF

lip
4 4’

F

B

2 0000 0001 1 0 1 0000 0010 1 1 0 0000 0100 1 0 1 0000 1000 1 0 1

3 0001 0000 0 1 1 0001 0011 0 0 0 0001 0101 0 1 1 0001 1001 0 1 1

4 0010 0011 1 0 1 0010 0000 1 1 0 0010 0110 1 1 0 0010 1010 1 0 1

5 0011 0010 0 1 1 0011 0001 0 0 0 0011 0111 0 1 1 0011 1011 0 1 1

6 0100 0101 0 1 1 0100 0110 0 1 1 0100 0000 0 1 1 0100 1100 0 0 0

7 0101 0100 1 0 1 0101 0111 1 1 0 0101 0001 1 0 1 0101 1101 1 1 0

8 0110 0111 1 1 0 0110 0100 1 0 1 0110 0010 1 1 0 0110 1110 1 0 1

9 0111 0110 1 1 0 0111 0101 1 1 0 0111 0011 1 0 1 0111 1111 1 0 1

A 1000 1001 0 1 1 1000 1010 0 0 0 1000 1100 0 0 0 1000 0000 0 1 1

B 1001 1000 1 0 1 1001 1011 1 1 0 1001 1101 1 1 0 1001 0001 1 0 1

C 1010 1011 0 1 1 1010 1000 0 0 0 1010 1110 0 0 0 1010 0010 0 1 1

D 1011 1010 1 0 1 1011 1001 1 1 0 1011 1111 1 0 1 1011 0011 1 0 1

E 1100 1101 0 1 1 1100 1110 0 0 0 1100 1000 0 0 0 1100 0100 0 0 0

F 1101 1100 1 0 1 1101 1111 1 0 1 1101 1001 1 1 0 1101 0101 1 1 0

G 1110 1111 0 0 0 1110 1100 0 0 0 1110 1010 0 0 0 1110 0110 0 1 1

H 1111 1110 0 0 0 1111 1101 0 1 1 1111 1011 0 1 1 1111 0111 0 1 1

I No of Bits Changed due to

Flip 12
No of Bits Changed due to

Flip 4
No of Bits Changed due to

Flip 8
No of Bits Changed due to

Flip 12

Description of table 3.2.3.2: Here in the table 4.2.3.2 16 4-bit long input bit patterns before and after flip of 1 bit in

position 1, position 2, position 3 and position 4 respectively are shown in row 2 through H of the column 1, 2, 6, 7,

B, C and G, H respectively. The OPBF before and after flip of 1 bit in 1 bit in position 1, position 2, position 3 and

position 4 respectively are shown in row 2 through H of the column 3, 4, 8, 9, D, E and I, J respectively. The four

flipped BF after flip of 1 bit in position 1, position 2, position 3 and position 4 respectively are shown in row 2

through H of the column 5, A, F and K respectively.

Pseudo Code:

The flipping of bits on particular positions are made by proposing 1-bit in

four ev vectors as, e0 {0001}, e1 {0010}, e2 {0100} and e3 {1000}. The

Algorithm can be written as,

Start.

Step 0A: For I=0:16 For J=0:16 D[I][J] = 0; // Initializing two dimensional

array D[16][16].

Step 0B: ev[4] ={{0,0,0,1},{0,0,1,0},{0,1,0,0},{1,0,0,0}}; // Initializing ev

vector

Step 01: For S=0:4 For I=0:16 For J=0:16 t[S][I][J] = 16bt4x[S][I][J] ^ ev[S]

// Array of input index after flip.

Step 02: For S=0:4 For I=0:16 For J=0:16 r=16bt4bf[S][I][J] ^

16bt4bf[t[S][I][J]]; // obtain DBFs by xor operation.

Step 04: if (r==1) D[f][v]++; // Count of 1s in DBFs

// Evaluation of SAC criterion.

Step 05: IF D[f][v]==8, for All cases 4-bit BF Satisfies SAC of 4bit BFs.

 ELSE 4-bit BF does not Satisfy SAC.

Step 06: IF all four BFs Satisfy SAC of 4-bit BFs then the given S-Box

Satisfies SAC of 4-bit S-Box.

 ELSE the given S-Box does not Satisfy SAC of 4-bit S-Box.

Stop.

Time complexity of the given pseudo code: Time complexity of the algorithm has been O(n) since the body

contains no nested loops.

3.3 Analogy of DC to MHO-SAC of the S-boxes:

Since complement of a bit is a similar operation of the xor of bit value 1 with the said bit so complement of a 4-bit

BF is similar operation to xor operation of the bit value one with the each bit of the said 4-bit BF. In DC for ID 1, 2,

4 and 8 IPV1, IPV2, IPV3 and IPV4 are complemented since BIN ID of the said IDs contain 1 in position 1, 2, 3 and

4 respectively. So the distant S-box for a certain ID in DC contains four complemented OPBFs of the S-box for the

MHO-SAC-Bin ID. Now for other IDs the respective complementation of the 2, 3 or 4 IPVs together are shown in

table 3.3.1. So the distant S-box for them in DC contains four complemented OPBFs of the S-box for the MHO-

SAC-Bin ID. The difference S-box contains four difference 4-bit BFs. If they are balanced for a particular ID then

the S-box is said to satisfy MHO-SAC-Bin ID of the 4-bit S-boxes. So it is clear from the table that the procedure of

DC for ID 0 to F and MHO-SAC-0000 (Bin ID) to MHO-SAC-1111 (Bin ID) are same.

Table 3.3.1: Analogy of DC to MHO-SAC of S-boxes.

Column

→

Row ↓

1 2 3

ID in Hex
Bin ID

4321
Comp. IPVs

1 0 0000 No

2 1 0001 1

3 2 0010 2

4 3 0011 1,2

5 4 0100 3

6 5 0101 1,3

7 6 0110 2,3

8 7 0111 1,2,3

9 8 1000 4

A 9 1001 4,1

B A 1010 4,2

C B 1011 4,2,1

D C 1100 4,3

E D 1101 4,3,1

F E 1110 4,3,2

G F 1111 4,3,2,1

4. A Brief Review of (Output) Bit Independence Criterion (BIC) of 4, 8 bit S-boxes. A short description of a 4-

bit crypto S-box has been given in subsec.4.1 of sec 4. The four Input Vectors (IPVs) and four Output Boolean

Functions (OPBFs) and the derivation of four IPVs and four OPBFs from elements of Index of 4-bit crypto S-box

and elements of 4-bit crypto S-box respectively are illustrated in subsec.4.2.of sec.4. The (Output) Bit Independence

Criterion (BIC) of 4-bit S-box is described with example and pseudo code in subsec.4.3. of sec.4.

4.1 4-bit Crypto S-boxes. A 4-bit Crypto S-box can be written as follows in Table 4.1, where the each element of

the first row of Table 4.1, entitled as index, are the position of each element of the 4-bit crypto S-box within the

given 4-bit crypto S-box and the elements of the 2
nd

 row entitled as S-box are the elements of the given 4-bit crypto

S-box. It can be concluded that the 1
st
 row is fixed for all possible 4-bit crypto S-boxes. The values of each element

of the 1
st
 row are distinct, unique and vary between 0 to F in hex. The values of the each element of the 2

nd
 row of a

crypto S-box are also distinct and unique and also vary between 0 to F in hex. The values of the elements of the

fixed 1
st
 row are sequential and monotonically increasing where for the 2

nd
 row they can be sequential or partly

sequential or non-sequential. Here the given Substitution box is the 1
st
 4-bit S-box of the 1

st
 S-box out of 8 of Data

Encryption Standard [18][19][20].

4.2 Relation between 4-bit S-boxes and 4-bit Boolean Functions (4-bit BFs). Index of Each element of a 4-bit

crypto S-box and the element itself is a hexadecimal number and that can be converted into a 4-bit bit sequence that

are given in column 1 through G of row 1 and row 6 under row heading Index and S-box respectively. From row 2

through 5 and row 7 through A of each column from 1 through G of Table 4.2. shows the 4-bit bit sequences of the

corresponding hexadecimal numbers of the index of each element of the given crypto S-box and each element of the

crypto S-box itself. Each row from 2 through 5 and 7 through A from column 1 through G constitutes a 16 bit, bit

sequence that are 16 bit long input vectors (IPVs) and 4-bit output BFs (OPBFs) respectively. column 1 through G

of Row 2 is termed as 4
th

 IPV, Row 3 is termed as 3
rd

 IPV, Row 4 is termed as 2
nd

 IPV and Row 5 is termed as 1
st

IPV whereas column 1 through G of Row 7 is termed as 4
th

 OPBF, Row 8 is termed as 3
rd

 OPBF, Row 9 is termed

as 2
nd

 OPBF and Row A is termed as 1
st
 OPBF [21]. The decimal equivalent of the each IPV and the each OPBF is

noted at column H of the respective rows.

4.3. (Output) Bit Independence Criterion (BIC) of 4, 8-bit S-boxes. If all possible or total six xored 4-bit BFs or

DBFs (Derived BFs) are balanced for a particular 4-bit crypto S-box or 30 xored 8-bit DBFs are balanced for a

particular 8-bit crypto-S-box then the said 4-bit or 8-bit S-box is said to satisfy output BIC of S-boxes [22]. The

example of BIC of 4-bit S-boxes has been given in Table 4.3. below and Pseudo code with time complexity analysis

are given in this section,

In Table 4.3. each column from column 1 through G of row 1 represents each element of 1
st
 4-bit S-box of

Data Encryption Standard or DES. Column 1 through G of each row 2 through 5 is each of four OPBFs, OPBF4,

OPBF3, OPBF2, OPBF1 respectively. Column 1 through G of each row 6 through B is each of six DBFs, DBF(4,3),

DBF(4,2), DBF(4,1), DBF(3,2), DBF(3,1) and DBF(2,1) respectively. The analysis shows that 6 DBFs are balanced

i.e. consists of 8 0s and 8 1s, so at most uncertainty to determine the occurrence of 0 and 1 value in all four OPBFs.

So the given 4-bit S-box is said to satisfy (Output) Bit Independence Criterion of the 4-bit crypto S-boxes.

Pseudo Code of BIC with time complexity Analysis.

Start.

Step 0:

int BF[4][16], DBF[16]; // The two dimensional array BF[4][16] stores each

OPBF of a 4-bit crypto S-box in each row and array DBF[16]

stores Difference BFs.

int i,j; // Loop Variables.

int count = 0; // Variable to count number of balanced DBFs.

// In step 1. 6 possible two OPBFs have been xored to obtain DBFs.

Step 1:

for i=0:3; // 1st OPBF selection // for Loop 1

 for j = 3: (i+1) // 2nd OPBF selection // for Loop 2

 DBF[16] = BF[i][16]^ BF[j][16]; // Derivation of DBFs

from two OPBFs

 If (DBF == Balanced). count++; // count number of balanced DBFs.

 End for.// End of for loop 1

 End for. // End of for loop 2

Step 2. If (count ==6) then the crypto 4-bit S-box Satisfies BIC of 4-bit S-

boxes;

 else. does not satisfy BIC of 4-bit S-boxes;

Stop.

Time complexity of the given pseudo code.

Time complexity of the algorithm has been O(n
2
) since the body contains two nested loops.

5. Generation and analysis of existing and generated 4-bit crypto S-boxes.

The procedure to analyze 4-bit crypto S-boxes with the given analyzing procedures are described in subsection 5.1.

The analysis of the existing 4-bit crypto S-boxes of the Data Encryption Standard and two variants of Lucifer are

given in subsection 5.2. The generated 16 4-bit crypto S-boxes from 64 distinct nonlinear BFs are also analyzed and

proven to be the best possible ones. The analysis is given in section 5.3.

5.1 Cryptanalysis procedure.

‘No.elr’ shows number of existing linear relations out of 64 possible linear relations in a 4-bit crypto S-box. ‘No.8’

shows number of 8s in linear approximation table or LAT. ‘N0.dif’ shows number of 0s in difference distribution

table or DDT and ‘N8.dat’ shows number of 8s in differential approximation table or DAT [21]. The procedures are

discussed as follows,

In difference distribution table there are 256 cells, i.e. 16 rows and 16 columns. Each row is for each input

difference varies from 0 to f in hex. Each column in each row represents each output difference varies from 0 to f in

hex for each input difference. 0 in any cell indicates absence of that output difference for subsequent input

difference. Such as 0 in a cell of DDT means for input difference 0 the corresponding output difference is absent. If

numbers of 0s are too low or too high it supplies more information regarding concerned output difference. So an S-

box is said to be immune to this cryptanalytic attack if number of 0s in DDT is close to 128 or half of total cells or

256. In the said example of 1
st
 DES 4-bit S-box total numbers of 0s in DDT are 168. That is close to 128. So the S-

box is said to be almost secure from this attack. [21]

As total number of balanced 4-bit BFs increases in Difference Analysis Table or DAT the security of S-box

increases since balanced 4-bit BFs supplies at most uncertainty. Since Number of 0s and 1s in balanced 4-bit BFs

are equal i.e. they are same in number means determination of each bit has been at most uncertainty. In the said

example of 1
st
 DES 4-bit S-box total numbers of 8s in DAT are 36. That is close to 32 half of total 64 cells. So the

S-box has been said to be almost less secure from this attack.[21]

In linear approximation table or LAT there are 256 cells for 256 possible 4-bit linear relations. The count of 16 4-bit

binary conditions to satisfy for any given linear relation is put into the concerned cell. 8 in a cell indicate that the

particular linear relation is satisfied for 8, 4-bit binary conditions and remain unsatisfied for 8, 4-bit binary

conditions. That is at most uncertainty. In the said example of 1
st
 DES 4-bit S-box total numbers of 8s in LAT is

143. That is close to 128. So the S-box is said to be less secure from this attack.

The value of
n
Cr is maximum when the value of r is ½ of the value of n (when n is even). Here the maximum number

of linear approximations is 64. So if the total satisfaction of linear equation is 32 out of 64 then the number of

possible sets of 32 linear equations is the largest. That means if the total satisfaction is 32 out of 64 then the number

of possible sets of 32 possible linear equations is
64

C32. That is maximum number of possible sets of linear equations.

If the value of total number of linear relations is closed to 32 then it is more cryptanalysis immune. Since the

number of possible sets of linear equations are too large to calculate. As the value goes close to 0 or 64 it reduces the

sets of possible linear equations to search, that reduces the effort to search for the linear equations present in a

particular 4-bit crypto S-box. In this example total satisfaction is 21 out of 64. Which means the given 4-bit S-Box is

not a good 4 bit crypto S-box or not a good crypt analytically immune 4-bit crypto S-box.

If the value of total number of existing linear relations for a 4-bit crypto S-box is 24 to 32, then the lowest numbers

of sets of linear equations are 250649105469666120. This is a very large number to investigate. So the 4-bit crypto

S-box is declared as a good 4-bit crypto S-box or 4-bit crypto S-box with good security. If it is between 16 through

23 then the lowest numbers of sets of linear equations are 488526937079580. This not a small number to investigate

in today’s computing scenario so the S-boxes are declared as medium 4-bit crypto S-box or 4-bit crypto S-box with

medium security. The 4-bit crypto S-boxes having existing linear equations less than 16 are declared as poor 4-bit

crypto S-Box or vulnerable to cryptanalytic attack [21].

‘No.sac’, ‘N2sac’, ‘N3sac’ and ‘Nalsac’ gives total number times four 4-bit BFs of the concerned S-box satisfies 4

simple first order SAC, 6, 2
nd

 order HO-SAC, 4, 3
rd

 order HO-SAC and 16, 1
st
, 2

nd
, 3

rd
, and 4

th
 order HO-SAC

respectively.

5.2 Discussion on cryptanalysis of 32 4-bit crypto S-boxes of Data Encryption Standard or DES and 4 S-boxes

of two variants of Lucifer.

Data Encryption Standard or DES algorithm contains 8 S-boxes with four rows in each S-box. Each row in DES S-

box is a 4-bit crypto S-box of DES algorithm. The results of cryptanalysis of 32 DES 4-bit crypto S-box is given in

table.5.1 and results are discussed in discussion below,

DES S-boxes No.elr No.8 N0.ddt N8.dat No.sac N2sac N3sac Nalsac

e4d12fb83a6c5907 21 143 168 36 7 15 11 36

0f74e2d1a6cb9538 29 143 168 36 7 17 9 36

41e8d62bfc973a50 23 138 168 36 8 15 11 36

fc8249175b3ea06d 25 154 166 42 10 20 12 42

f18e6b34972dc05a 24 132 162 30 6 12 9 30

3d47f28ec01a69b5 21 143 166 30 8 12 7 30

0e7ba4d158c6932f 31 143 166 21 4 10 6 21

d8a13f42b67c05e9 20 126 168 36 8 12 12 36

a09e63f51dc7b428 17 133 162 30 7 12 8 30

d709346a285ecbf1 22 133 168 30 7 13 8 30

d6498f30b12c5ae7 23 151 166 21 6 9 4 21

1ad069874fe3b52c 28 158 174 30 6 11 10 30

7de3069a1285bc4f 22 136 168 36 8 16 10 36

d8b56f03472c1ae9 22 136 168 36 8 16 10 36

a690cb7df13e5284 20 136 168 36 8 16 10 36

3f06a1d8945bc72e 22 136 168 36 8 16 10 36

2c417ab6853fd0e9 25 137 162 30 6 14 8 30

eb2c47d150fa3986 20 143 166 36 8 16 9 36

421bad78f9c5630e 30 130 160 27 6 11 7 27

b8c71e2d6f09a453 21 134 166 18 3 7 6 18

c1af92680d34e75b 30 141 159 36 8 16 10 36

af427c9561de0b38 29 127 164 36 7 15 11 36

9ef528c3704a1db6 24 127 168 18 5 7 5 18

432c95fabe17608d 24 130 162 30 6 12 9 30

4b2ef08d3c975a61 26 134 168 30 7 13 8 30

d0b7491ae35c2f86 27 145 166 30 7 14 7 30

14bdc37eaf680592 28 137 168 36 8 16 10 36

6bd814a7950fe23c 25 135 173 0 0 0 0 0

d2846fb1a93e50c7 23 144 161 30 8 14 7 30

1fd8a374c56b0e92 20 147 174 27 9 12 4 27

7b419ce206adf358 27 132 166 18 5 7 5 18

21e74a8dfc90356b 28 138 168 39 8 16 12 39

Table.5.1. Cryptographic analysis of 32 DES 4-bit crypto S-boxes.

Discussion.

In table.5.1. out of 32 DES S-boxes 1 have 17, 3 have 21, 4 have 22, 1 have 23, 3 have 24, 3 have 25, 1 have 26, 2

have 27, 3 have 28, 2 have 29, 2 have 30 and 1 have 31 existing linear relations i.e. 24 S-boxes out of 32 are less

secure from this attack and 8 out of 32 are immune to this attack. Again out of 32 DES S-boxes 1 have 126, 2 have

127, 2 have 130, 1 have 132, 2 have 133, 2 have 134, 1 have 135, 4 have 136, 2 have 137, 2 have 138, 1 have 141, 5

have 143, 1 have 144, 1 have 145, 1 have 147, 1 have 151, 1 have 154 and 1 have 158 8s in LAT. That is All S-

boxes are less immune to this attack. Again out of 32 DES S-boxes 1 have 159, 1 have 160, 1 have 161, 4 have 162,

1 have 164, 8 have 166, 13 have 168, 1 have 173 and 2 have 174 0s in DDT. That is all S-boxes are secured from

this attack. At last out of 32 DES S-boxes 1 have 0, 3 have 18, 2 have 21, 2 have 27, 10 have 30, 12 have 36, 1 have

39 and 1 have 42 8s in DAT i.e. they have been less secure to this attack. The comparative analysis has proved that

linear approximation analysis is the most time efficient cryptanalytic algorithm for 4-bit S-boxes. In ‘nosac’ the

lowest value is 0 and maximum value is 10 where in ‘n2sac’, ‘n3sac’ and ‘nalsac’ lowest values are 0, 0, 0 and

maximum values are 16, 12 and 39 respectively. But numbers of optimum as well as better result i.e. 16 for ‘nosac’

is absent, close to 24 for ‘n2sac’, close to 16 for ‘n3sac’ and close to 64 for ‘nalsac’ has been very less in numbers.

So the 32 DES 4-bit S-boxes are observed to be less secure.

Discussion on cryptanalysis of 4, 4-bit crypto S-boxes of 2 variants of Lucifer.

2 variants of Lucifer one by feistel [22], and one by Sorkin [23] contain total 4 crypto S-boxes. The cryptanalysis of

the concerned 4, crypto S-boxes is shown in table.8. and the result is also discussed below.

Lucifer S-boxes No.elr No.8 N0.ddt N8.dat No.sac N2sac N3sac Nalsac

F-3085124fd9ce6ba7 25 132 163 36 8 16 9 36

F-8d16c4fb325e907a 31 115 154 36 10 12 11 36

S-cf7aedb026319458 25 132 163 36 8 16 9 36

S-72e93b04cd1a5f85 28 58 151 18 6 5 7 18

Table.5.2. Cryptographic analysis of 4, 4 bit crypto S-boxes of 2 variants of Lucifer.

Discussion.

In table.5.2. out of 4, 4-bit Crypto S-boxes 2 have 25, 1 have 28 and 1 have 31 existing linear relations i.e all 4

crypto 4-bit S-boxes are almost secure from this attack. Again out of 4, 4-bit crypto S-boxes, 2 have 132, 1 have 115

and 1 have 58 8s in LAT i.e. 3 4-bit crypto S-boxes out of four are secure from this attack and one is a poor 4-bit

crypto S-box from the angle of this attack. Again out of 4, 4-bit crypto S-boxes 2 have 163, one have 154 and one

have 151 0s in DDT so all of four S-boxes are seen to secure from the attack. From the angle of this attack 3 have 36

and one have 18 8s in DAT so all of four 4-bit crypto S-boxes are less secure to this attack.

Now first S-box in table.5.2. has 8 out of total 16 SFO SAC satisfaction, 16 out of total 24 2
nd

 order MHO SAC

satisfaction, 9 out of total 16 3
rd

 order MHO SAC satisfaction, 36 out of total 64 all MHO SAC satisfaction so from

this angle it is a poor 4-bit crypto S-box from this angle.

Now second S-box in table.5.2. has 10 out of total 16 SFO SAC satisfaction, 12 out of total 24 2
nd

 order MHO SAC

satisfaction, 11 out of total 16 3
rd

 order MHO SAC satisfaction, 36 out of total 64 all MHO SAC satisfaction so from

this angle it is a almost good 4-bit crypto S-box from this angle.

Now third S-box in table.8. has 8 out of total 8 SFO SAC satisfaction, 16 out of total 24 2
nd

 order MHO SAC

satisfaction, 9 out of total 16 3
rd

 order MHO SAC satisfaction, 36 out of total 64 all MHO SAC satisfaction so from

this angle it is a poor 4-bit crypto S-box from this angle.

Now fourth S-box in table.5.2. has 8 out of total 6 SFO SAC satisfaction, 5 out of total 24 2
nd

 order MHO SAC

satisfaction, 7 out of total 16 3
rd

 order MHO SAC satisfaction, 36 out of total 64 all MHO SAC satisfaction so from

this angle it is a very poor 4-bit crypto S-box from this angle.

5.3 Analysis of generated 16 4-bit crypto S-boxes from 64 distinct 4-bit BFs.

In this subsection a detailed discussion on cryptanalysis of 16, 4-bit crypto S-boxes generated from 64 balanced

nonlinear BFs with nonlinearity 4 and 2 is given . The result of application of cryptanalysis algorithms of 4-bit

crypto S-boxes on 16 generated 4-bit crypto S-boxes are shown in table.5.3. below and results are discussed in the

following discussion section in brief.

Ad.el. S-boxes un IP 19 No.elr No.8 N0.ddt N8.dat No.sac N2sac N3sac Nalsac

0 019edb76f2c5a438 23 117 150 36 08 14 11 36

1 12afec8703d6b549 31 121 155 36 7 14 11 36

2 23b0fd9814e7c65a 22 135 157 36 9 16 9 36

3 34c10ea925f8d76b 39 128 157 27 5 11 9 27

4 45d21fba3609e87c 27 115 150 36 10 12 12 36

5 56e320cb471af98d 37 125 155 36 8 14 11 36

6 67f431dc582b0a9e 29 132 157 36 10 15 8 36

7 780542ed693c1baf 34 125 157 27 5 10 9 27

8 891653fe7a4d2cb0 23 117 150 36 8 14 11 36

9 9a27640f8b5e3dc1 31 121 155 36 7 14 11 36

A ab3875109c6f4ed2 22 135 157 36 9 16 9 36

B bc498621ad705fe3 39 128 157 27 5 11 9 27

C cd5a9732be8160f4 27 115 150 36 10 12 12 36

D de6ba843cf927105 37 125 155 36 8 14 11 36

E ef7cb954d0a38216 29 132 157 36 10 15 8 36

F f08dca65e1b49327 34 125 157 27 5 10 9 27

Table.5.3. Cryptographic analysis of 16, 4 bit crypto S-boxes under IP (x
4
+x+1) with DE 19 over Galois field

GF(2
4
).

Discussion.

Out of total 16 4-bit crypto S-boxes 2 have 22, 2 have 23, 2 have 27, 2 have 29, 2 have 31, 2 have 34, 2 have 37 and

2 have 39 existing linear relations i.e. all of 16 4-bit crypto S-boxes are secure from this cryptanalytic attack. Again

out of total 16 4-bit crypto S-boxes 2 have 115, 2 have 117, 2 have 121, 4 have 125, 2 have 128, 2 have 132 and 2

have 135 8s in LAT i.e. they are secure from linear cryptanalysis of 4-bit S-boxes. Now out of total 16 4-bit crypto

S-boxes 4 have 150, 4 have 155 and 8 have 157 0s in DDT i.e. from this attack they are quite secure too. Again out

of total 16 4-bit crypto S-boxes 4 have 27 and 12 have 36 8s in DAT i.e. they are in secure region of this attack.

S-boxes with additive element 0 to F in hex has a range 5 to 10 out of total 16 SFO SAC satisfactions, 10 to 16 out

of total 24 2
nd

 order MHO SAC satisfaction, 8 to 12 out of total 16 3
rd

 order MHO SAC satisfaction, 27 to 36 out of

total 64 all MHO SAC satisfaction so they are poor 4-bit crypto S-boxes from only SFO SAC angle but good secure

4-bit crypto S-boxes from MHO SAC angle.

6. Conclusion.

Here in this paper cryptography related properties of 4-bit BFs is reviewed in details. The FO-SAC, SFO-SAC and

MHO-SAC is also described with their new methods and algorithms and at last a comparative study is done with

generated 16 4-bit crypto S-boxes to 16 DES and 4 Lucifer S-boxes. The analysis proves that the generated 4-bit S-

boxes can be termed as the best possible ones. About the new SAC methods and algorithms it can be concluded that

they are less complex in implementation and less time consuming. So the new generated algorithms of FO-SAC,

SFO-SAC and MHO-SAC and the generated 4-bit crypto S-boxes are prove to be the best possible ones.

7. Acknowledgements.

I would like to acknowledge Prof. (Dr.) Gopa Sen, Head Dept. Radio Physics and Electronics of the University of

Calcutta and Prof. Amlan Chakrabarti, Director of the A K Choudhury School of Information Technology of the

University of Calcutta for providing me the uninterrupted infrastructure to carry out the research. I would also like to

thank TEQIP-Phase-II for providing me the financial support up to 30
th

 November 2016.

References.

 1. Adams, Carlisle, Tavares, Stafford, “The structured design of cryptographically good S-boxes”, J. Cryptology

(1990) 344 vol. 3, pp : 27-41.

 2. Chan Yeob Yeun Design, Analysis and applications of cryptographic techniques, Department of Mathematics,

Royal Holloway University of London, Year 2000.

 3. H.M.Heys and S.E. Tavares. Substitution-permutation networks resistant to differential and linear cryptanalysis,

Journal of Cryptology,9,1-19, year 1996.

 4. Webster, A.F. and Travares, S.E."On Design of S-boxes", Advances in Cryptology : Proc. of Crypto 85,

Springer-Verlag pp. 523-534, 1986,

 5. Sarkar, Palash, gupta, kishan chand, “Computing Walsh Transform from the Algebraic Normal Form of a

Boolean function”, Link: http://ac.els-cdn.com/S1571065304005426/1-s2.0-S1571065304005426-main.pdf.

 6. Carlet, Claude, “Vectorial Boolean Functions for Cryptography”, University of Paris 8, France, Link:

www.math.univ-paris13.fr/~carlet/chap-vectorial-fcts-corr.pdf.

 7. Chakrabarty, K, Hayes, J.P, “Balanced Boolean functions”, IEE Proc.-Comput. Digit. Tech., Vol. 145, No. I ,

January 1998, Link: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=675544.

 8. Ali, Ayden Selcuk, “On Probability of Success in Linear and Differential Cryptanalysis”, Link:

https://www.cs.bilkent.edu.tr/~selcuk/teaching/cs519/LC_DC.pdf.

http://ac.els-cdn.com/S1571065304005426/1-s2.0-S1571065304005426-main.pdf
http://www.math.univ-paris13.fr/~carlet/chap-vectorial-fcts-corr.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=675544

 9. “BOOLEAN FUNCTIONS”, T-79.5501, Cryptology, Background material, February 20, 2007, pp: 1-9, Link:

www.tcs.hut.fi/Studies/T-79.5501/2007SPR/lectures/boolean.pdf.

10. Sala, Massimiliano, Simonetti, Ilaria, “An algebraic description of Boolean functions”, 15/I/2007, BCRI–CGC–

preprint, pp: 1-8, Link: http://www.bcri.ucc.ie.

11. H.M.Heys. A tutorial on linear and differential cryptanlysis.cryptologia,26,189-221,2002.

12. Dey, S and Ghosh, R, “A smart review and two new techniques using 4-bit Boolean functions for cryptanalysis

of 4-bit crypto S-boxes.”, Vol.40, issue.3, pp.1-19, International Journal of Computers and Applications, Taylor and

Francis publishers, SCimago and country rank and Peerus indexed and UGC approved, year. 2018. ISSN. 1206-

212X. DOI. https://doi.org/10.1080/1206212X.2018.1504459.

13. Mouha N., Wang Q., Gu D., Preneel B. Differential and Linear Cryptanalysis Using Mixed-Integer Linear

Programming. In: Wu CK., Yung M., Lin D. (eds) Information Security and Cryptology. Inscrypt 2011. Lecture

Notes in Computer Science, vol 7537. Springer, Berlin, Heidelberg, year 2012.

14. Dey, S. and Ghosh, R. (2018) A Review of Existing 4-Bit Crypto S-Box Cryptanalysis Techniques and Two

New Techniques with 4-Bit Boolean Functions for Cryptanalysis of 4-Bit Crypto S-Boxes*. Advances in Pure

Mathematics, 8, 272-306. ISSN Online: 2160-0384 ISSN Print: 2160-0368 DOI: 10.4236/apm.2018.83015.

15. Dey Sankhanil and Ghosh, Ranjan, “Extended SAC: A Review on DC and SAC of 4-bit BFs and S-Boxes and a

New Algorithm on DC of S-Boxes based on Various Types of SAC including the Extended Higher Order SAC”

,Vol-2, Number 3, pp-(1-10), April-2017, Journal-Circulation in Computer Science, CSL Press, NY, USA, ISSN.

2456-3692, https://doi.org/10.22632/ccs-2017-251-56.

16. Cusick T.W. Boolean functions satisfying a higher order strict avalanche criterion. In: Helleseth T. (eds)

Advances in Cryptology — EUROCRYPT ’93. EUROCRYPT 1993. Lecture Notes in Computer Science, vol 765.

Springer, Berlin, Heidelberg, Year 1994.

17. Henning Schulzrinne ,Network Security: Secret Key Cryptography, Columbia University, New York, Year

2000.

18. Data Encryption Standard, Federal Information Processing Standards Publication (FIPS PUB) 46, National

Bureau of Standards, Washington, DC (1977).

19. Data Encryption Standard (DES), Federal Information Processing Standards Publication (FIPS PUB) 46-3,

National Institute of Standards and Technology, Gaithersburg, MD (1999).

20. Dey Sankhanil and Ghosh Ranjan, “A Review of Cryptographic Properties of S-Boxes with Generation and

Analysis of Crypto Secure S-Boxes”, International Journal of Electronics and Information Engineering, vol.8, no.1,

pp.49-73, DOI: 10.6636/ IJEIE.201803.8(1).06. Mar 2018.

21. Sankhanil Dey, Amlan Chakrabarti , Ranjan Ghosh . (2019) 4-bit crypto S-boxes: Generation with irreducible

polynomials over Galois field GF(2^4) and cryptanalysis., International Journal of Tomography and Simulation,

ISSN: 2319-3336, Vol. 32, Issue No. 3, CESER publication.

22. Horst Feistel. Block Cipher Cryptographic System, US Patent 3,798,359. Filed June 30, 1971. (IBM).

23. A. Sorkin, (1984). LUCIFER: a cryptographic algorithm. Cryptologia, 8(1), 22–35, 1984.

http://www.tcs.hut.fi/Studies/T-79.5501/2007SPR/lectures/boolean.pdf
http://www.bcri.ucc.ie/
https://doi.org/10.4236/apm.2018.83015
https://doi.org/10.22632/ccs-2017-251-56

Row Column 1 2 3 4 5 6 7 8 9 A B C D E F G

1 S-box E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

2 OPBF4 1 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0

3 OPBF3 1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 1

4 OPBF2 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1

5 OPBF1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1

6 DBF4,1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1

7 DBF4,2 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1

8 DBF4,3 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1

9 DBF3,2 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 0

A DBF3,1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0

B DBF2,1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0

Table.4.3. BIC Analysis of 1
st
 4-bit S-box out of 4 of 1

st
 S-box of DES.

Row

Col.

4-bit Input 1-bit

o/p DE HE 4 Bits

1 2 3 4

1 0 0 0000 0

2 1 1 0001 1

3 2 2 0010 0

4 3 3 0011 1

5 4 4 0100 0

6 5 5 0101 1

7 6 6 0110 0

8 7 7 0111 1

9 8 8 1000 0

10 9 9 1001 1

11 10 A 1010 0

12 11 B 1011 1

13 12 C 1100 0

14 13 D 1101 1

15 14 E 1110 0

16 15 F 1111 1

Table 2.1.a Truth Table of a 4-bit BF

Row

Col.

DE HE IV1 IV2 IV3 IV4 OV

1 2
3 4 5 6 7

MSB

1 0 0 0 0 0 0 1

2 1 1 0 0 0 1 0

3 2 2 0 0 1 0 1

4 3 3 0 0 1 1 0

5 4 4 0 1 0 0 1

6 5 5 0 1 0 1 0

7 6 6 0 1 1 0 1

8 7 7 0 1 1 1 0

9 8 8 1 0 0 0 1

10 9 9 1 0 0 1 0

11 10 A 1 0 1 0 1

12 11 B 1 0 1 1 0

13 12 C 1 1 0 0 1

14 13 D 1 1 0 1 0

15 14 E 1 1 1 0 1

16 15 F 1 1 1 1 0

DE. of IVs
255 3855 13107 21845 43690

LSB

Table 2.1.b 16-Bit Input Vectors (IVs).

Row

Col.

4-bit Input 4-bit Output

DE HE 4 Bit IVs DE HE 4 Bit OVs

1 2 3 4 5 6

1 0 0 0000 0 0 0000

2 1 1 0001 1 1 0001

3 2 2 0010 2 2 0010

4 3 3 0011 3 3 0011

5 4 4 0100 4 4 0100

6 5 5 0101 5 5 0101

7 6 6 0110 6 6 0110

8 7 7 0111 7 7 0111

9 8 8 1000 8 8 1000

10 9 9 1001 9 9 1001

11 10 A 1010 10 A 1010

12 11 B 1011 11 B 1011

13 12 C 1100 12 C 1100

14 13 D 1101 13 D 1101

15 14 E 1110 14 E 1110

16 15 F 1111 15 F 1111

Table 2.1.C.Truth Table of a 4-bit S-box

Table.2.2 16 Linear and 16 Affine BFs of which 11 each are obtained by XOR operations of 4 Basic Linear

BFs

DEIB Stands for ‘Decimal Equivalent of Input Bits’ and DEBF stands for ‘Decimal Equivalent of Boolean Function’

DEIB IBVs Linear Relations Linear BFs(C=0) Affine BFs (C=1) ANF Coefficients

x1x2x3x4 0123456789abcdef DEBF 0123456789abcdef DEBF 0-1234-56789a-bcde-f

RowNo 1 2 3 4 5 6 7

0 0 0 0 0 F0(x)= C 0000000000000000 00000 1111111111111111 65535 C-0000-000000-0000-0

1 0 0 0 1 F1(x)= C+x1 0000000011111111 00255 1111111100000000 65280 C-1000-000000-0000-0

2 0 0 1 0 F2(x)= C+x2 0000111100001111 03855 1111000011110000 61680 C-0100-000000-0000-0

3 0 0 1 1 F3(x)= C+x1+x2 0000111111110000 04080 1111000000001111 61455 C-1100-000000-0000-0

4 0 1 0 0 F4(x)= C+x3 0011001100110011 13107 1100110011001100 52428 C-0010-000000-0000-0

5 0 1 0 1 F5(x)= C+x1+x3 0011001111001100 13260 1100110000110011 52275 C-1010-000000-0000-0

6 0 1 1 0 F6(x)= C+x2+x3 0011110000111100 15420 1100001111000011 50115 C-0110-000000-0000-0

7 0 1 1 1 F14(x)= F7(x)= C+x1+x2+x3 0011110011000011 15555 1100001100111100 49980 C-1110-000000-0000-0

8 1 0 0 0 F1(x)= F F8(x)= C+x4 0101010101010101 21845 1010101010101010 43690 C-0001-000000-0000-0

9 1 0 0 1 F9(x)= C+x1+x4 0101010110101010 21930 1010101001010101 43605 C-1001-000000-0000-0

10 1 0 1 0 Fa(x)= C+x2+x4 0101101001011010 23130 1010010110100101 42405 C-0101-000000-0000-0

11 1 0 1 1 Fb(x)= C+x1+x2+x4 0101101010100101 23205 1010010101011010 42330 C-1101-000000-0000-0

12 1 1 0 0 Fc(x)= C+x3+x4 0110011001100110 26214 1001100110011001 39321 C-0011-000000-0000-0

13 1 1 0 1 Fd(x)= C+x1+x3+x4 0110011010011001 26265 1001100101100110 39270 C-1011-000000-0000-0

14 1 1 1 0 Fe(x)= C+x2+x3+x4 0110100101101001 26985 1001011010010110 38550 C-0111-000000-0000-0

15 1 1 1 1 F15(Ff(x)= C+x1+x2+x3+x4 0110100110010110 27030 1001011001101001 38505 C-1111-000000-0000-0

Table.2.3 Properties of 4-bit BFs.

 BF BF CBF CBF FO-SAC SFO-SAC SFO MHO-SAC MHO

(Dec) (BInary) 10 L (Dec) (BInary) 10 L ANF Coefficients Mm 8421-----3569AC-7BDE-F---SUM-----3569AC-7BDE-F---SUM

----- ----- ---------------- -- - ----- ---------------------- -- - ---------------- ---- ------ ----------- ------- - ------ -------------------- -------

00001 0000000000000001 1f 2 65534 1111111111111110 f1 4 C-0000-000000-0000-1 F1 0000------000000--0000--0----000-------000000--0000--0----000

00129 0000000010000001 2e 2 65406 1111111101111110 e2 4 C-0001-001011-0111-0 E2 0000------000000--0000--0----000-------000000--0000--0----000

00022 0000000000010110 3d 2 65513 1111111111101001 d3 4 C-0000-000000-0111-1 D3 0000------000000--0000--0----000-------000000--0000--0----000

00831 0000001100111111 88 2 64704 1111110011000000 88 4 C-0000-000111-0000-0 C4 1110-----001011--0001--0----004--------111111-1110---0---009

00313 0000000100111001 5b 2 65222 1111111011000110 b5 4 C-0000-000011-1010-1 B5 0000-----000000--0000--0----000-------000000--0000--0----000

01427 0000010110010011 6a 2 64108 1111101001101100 a6 4 C-0001-011011-0000-0 A6 1111-----111111--1111--1----011-------111111--1011--1----010

