
Another Look at CBC Casper Consensus Protocol

Yongge Wang
UNC Charlotte

March 30, 2020

Abstract

Ethereum Research team has proposed a family of Casper blockchain consensus protocols. It has been shown
in the literature that the Casper Friendly Finality Gadget (Casper FFG) cannot achieve liveness property in partially
synchronous networks such as the Internet environment. The “Correct-by-Construction” family of Casper blockchain
consensus protocols (CBC Casper) has been proposed as a finality gadget for the future Proof-of-Stake (PoS) based
Ethereum blockchain. Unfortunately, no satisfactory/constructive finality rules have been proposed for CBC Casper
and no satisfactory liveness property has been obtained for CBC Casper. Though it is commonly/widely believed in
the community that CBC Casper could not achieve liveness property in asynchronous networks, this paper provides
a surprising result by proposing the first CBC Casper protocol that achieves liveness property against t = bn

3
c

Byzantine participants in completely asynchronous networks. Our result is based on Bracha’s improved version of
the seminal Ben-Or Byzantine Fault Tolerance protocol.

1 Introduction
Consensus is hard to achieve in open networks such as partial synchronous networks. Several practical protocols
such as Paxos [10] and Raft [13] have been designed to tolerate bn−12 c non-Byzantine faults. For example, Google,
Microsoft, IBM, and Amazon have used Paxos in their storage or cluster management systems. Lamport, Shostak, and
Pease [11] and Pease, Shostak, and Lamport [14] initiated the study of reaching consensus in face of Byzantine failures
and designed the first synchronous solution for Byzantine agreement. For asynchronous networks, Fischer, Lynch, and
Paterson [8] showed that there is no deterministic protocol for the BFT problem in face of a single failure. Several
researchers have tried to design BFT consensus protocols to circumvent the impossibility. The first category of efforts
is to use a probabilistic approach to design BFT consensus protocols in completely asynchronous networks. This kind
of work was initiated by Ben-Or [2] and Rabin [15] and extended by others such as Cachin, Kursawe, and Shoup [5]. It
should be noted that though probabilistic approach was used to design BFT protocols in asynchronous networks, some
researchers used probabilistic approach to design BFT protocols for complete synchronous networks. For example, the
probabilistic approach based BFT protocols [7, 12] employed in ALGORAND blockchain [9] assumes a synchronous
and complete point-to-point network. The second category of efforts was to design BFT consensus protocols in partial
synchronous networks which was initiated by Dwork, Lynch, and Stockmeyer [6].

Ethereum foundation has tried to design a BFT finality gadget for their Proof of Stake (PoS) based Ethereum
blockchain. It has been shown in Wang [17] that their first design Casper Friendly Finality Gadget (Casper FFG)
[4] does not achieve liveness property in partially asynchronous networks. Recently, Ethereum foundation has been
advocating the “Correct-by-Construction” (CBC) family of Casper blockchain consensus protocols [18, 19]. The CBC
Casper the Friendly Ghost emphasizes the safety property. But it does not try to address the liveness requirement for
the consensus process. Indeed, it explicitly says that [18] “liveness considerations are considered largely out of scope,
and should be treated in future work”. Thus in order for CBC Casper to be deployable, a lot of work needs to be
done since the Byzantine Agreement Problem becomes challenging only when both safety and liveness properties are
required to be satisfied at the same time. It is simple to design BFT protocols that only satisfy one of the properties. The
Ethereum foundation community has made several efforts to design safety oracles for CBC Casper to help participants
to make a decision when an agreement is reached (see, e.g., [16]). However, this problem is generally at least as hard
as coNP-complete problems. So no satisfactory solution has been proposed yet.

CBC Casper has received several critiques from the community. For example, Ali et al [1] concluded that “the
definitions and proofs provided in [19] result in neither a theoretically sound nor practically useful treatment of

1

Byzantine fault-tolerance....Importantly, it remains unclear if the definition of the Casper protocol family provides any
meaningful safety guarantees for blockchains. Though CBC Casper is not a complete deployable solution yet and it
has several fundamental issues yet to be addressed, we think these critiques as in [1] may not be fair enough. Indeed,
CBC Casper provides an interesting framework for consensus protocol development. In particular, the algebraic
approach proposed by CBC Casper has certain advantages for describing Byzantine Fault Tolerance (BFT) protocols.
The analysis in this paper shows that efficiently constructive liveness concepts for CBC Casper could be obtained even
in a complete asynchronous network.

For the network setting, we assume a complete asynchronous network of Fischer, Lynch, and Paterson [8]. That
is, we make no assumptions about the relative speeds of processes or about the delay time in delivering a message.
We also assume that processes do not have access to synchronized clocks, so algorithms based on time-outs cannot be
used. However, we assume that all messages are eventually delivered if the sender makes infinitely trials to send the
messages.

The structure of the paper is as follows. Section 2 provides a brief review of the CBC Casper framework. The
author of [18] mentioned in several talks that CBC Casper does not guarantee liveness in asynchronous networks.
Section 3 presents a protocol which shows that CBC Casper can INDEED provide liveness property in asynchronous
networks. The solution in Section 3 is based on Bracha’s improvement of Ben-Or protocol.

2 CBC Casper the Friendly Binary Consensus (FBC)
In this paper, we only consider Casper the Friendly Binary Consensus (FBC). Our discussion can be easily extended
to general cases. For the Casper FBC protocol, each participant repeatedly sends and receives messages to/from other
participants. Based on the received messages, a participant can infer whether a consensus has been achieved. Assume
that there are n participantsP1, · · · , Pn and let t < n be the Byzantine-fault-tolerance threshold. The protocol proceeds
from step to step (starting from step 0) until a consensus is reached. Specifically the step s proceeds as follows:

• LetMi,s be the collection of valid messages that Pi has received from all participants until step s. Pi determines
whether a consensus has been achieved. If a consensus has not been achieved yet, Pi sends the message

mi,s = 〈Pi, ei,s,Mi,s〉 (1)

to all participants where ei,s is Pi’s estimated consensus value based on the received message setMi,s.

In the following, we describe how a participant Pi determines whether a consensus has been achieved and how a
participant Pi calculates the value ei,s fromMi,s.

For a message m = 〈Pi, ei,s,Mi,s〉, let J(m) = Mi,s. For two messages m1,m2, we write m1 ≺ m2 if m2

depends on m1. That is, there is a sequence of messages m′1, · · · ,m′v such that

m1 ∈ J(m′1)
m′1 ∈ J(m′2)

· · ·
m′v ∈ J(m2)

For a message m and a message set M = {m1, · · · ,mv}, we say that m ≺ M if m ∈ M or m ≺ mj for some
j = 1, · · · , v. The latest message m = L(Pi,M) by a participant Pi in a message set M is a message m ≺ M
satisfying the following condition:

• There does not exist another message m′ ≺M sent by participant Pi with m ≺ m′.

It should be noted that the “latest message” concept is well defined for a participant Pi if Pi has not equivocated,
where a participant Pi equivocates if Pi has sent two messages m1 6= m2 with the properties that “m1 6≺ m2 and
m2 6≺ m1”.

For a binary value b ∈ {0, 1} and a message setM, the score of a binary estimate for b is defined as the number
of non-equivocating participants Pi whose latest message voted for b. That is,

score(b,M) =
∑

L(Pi,M)=(Pi,b,∗)

λ(Pi,M)

2

where

λ(Pi,M) =

{
0 if Pi equivocates inM,
1 otherwise.

To estimate consensus value: Now we are ready to define Pi’s estimated consensus value ei,s based on the received
message setMi,s as follows:

ei,s =

 0 if score(0,Mi,s) > score(1,Mi,s)
1 if score(1,Mi,s) > score(0,Mi,s)
b otherwise, where b is coin-flip output

(2)

To infer consensus achievement: For a protocol execution, it is required that for all i, s, the number of equivocating
participants inMi,s is at most t. A participant Pi determines that a consensus has been achieved at step s with the
received message setMi,s if there exists b ∈ {0, 1} such that

∀s′ > s : score(b,Mi,s′) > score(1− b,Mi,s′). (3)

3 Liveness of CBC Casper FBC
From CBC Casper protocol description, it is clear that CBC Casper is guaranteed to be safe against equivocating par-
ticipants. However, the “inference rule for consensus achievement” requires a mathematical proof based on infinitely
many message setsMi,s′ for s′ > s. This requires each participant to verify that for each potential set of t Byzantine
participants, their malicious activities will not be able to overturn the inequality in (3). This problem is at least co-NP
hard. Thus even if the system reaches a consensus, the participants may not realize this fact. In order to address this
challenge, Ethereum community provides three “safety oracles” (see [16]) to help participants to determine whether
a consensus is obtained. The first “adversary oracle” simulates some protocol execution to see whether the current
estimate will change under some Byzantine attacks. As mentioned previously, this kind of problem is co-NP hard and
the simulation cannot be exhaustive generally. The second “clique oracle” searches for the biggest clique of participant
graph to see whether there exist more than 50% participants who agree on current estimate and all acknowledge the
agreement. That is, for each message, the oracle checks to see if, and for how long, participants have seen each other
agreeing on the value of that message. This kind of problem is equivalent to the complete bipartite graph problem
which is NP-complete. The third “Turan oracle” uses Turan’s Theorem to find the minimum size of a clique that
must exist in the participant edge graph. In a summary, currently there is no satisfactory approach for CBC Casper
participants to determine whether finality has achieved. Thus no liveness is guaranteed for CBC Casper.

CBC Casper does not have an in-protocol fault tolerance threshold and does not have any timing assumptions.
Thus the protocol works well in complete asynchronous settings. Furthermore, it does not specify when a participant
Pi should stop waiting for more messages (to be added toMi,s) and when he should broadcast his protocol message
to other participants? We believe that CBC Casper authors do not specify the time for a participant to send protocol
messages because they try to avoid any timing assumptions. In fact, there is a simple algebraic approach to specify
this without any timing assumptions. First, we revise the message setMi,s as the valid step s − 1 messages that Pi

receives from other participants. That is, the message setMi,s is a subset of Es where Es is defined recursively as
follows:

E0 = ∅
E1 = {〈Pj , b, ∅〉 : j = 1, · · · , n; b = 0, 1}
E2 = {〈Pj , b,Mj,1〉 : j = 1, · · · , n; b = 0, 1;Mj,1 ⊂ E1}
· · ·
Es = {〈Pj , b,Mj,s−1〉 : j = 1, · · · , n; b = 0, 1;Mj,s−1 ⊂ Es−1}
· · ·

After these modifications toMi,s, we need some further modification to the latest message definition L(Pj ,Mi,s) as
follows

L(Pj ,Mi,s) =

{
m if 〈Pj , b,m〉 ∈ Mi,s

∅ otherwise (4)

Then we can specify the time that a participant Pi to send his protocol messages as follows:

3

• A participant Pi should wait for at least n− t+E(Mi,s) valid messages mj,s−1 from other participants before
he can broadcast his step s message mi,s where E(Mi,s) is the number of equivocating participants within
Mi,s. That is, Pi should wait until |Mi,s|≥ n− t+ E(Mi,s) to broadcast his step s protocol message.

• In case that a participant Pi receives n − t + E(Mi,s) valid messages mj,s−1 from other participants (that is,
he is ready to send step s protocol message) before he could post his step s − 1 message, he should wait until
he finishes sending his step s− 1 message.

• After a participant Pi posts his step s protocol message, it should discard all messages from steps s− 1 or early
except these decision messages that we will describe later.

It is clear that these specifications does not have any restriction on the timings. Thus the protocol works in full
asynchronous networks.

In Ben-Or’s BFT protocol [2], the participants autonomously toss a coin until more than n+t
2 participant outcomes

coincide. For Ben-Or’s maximal Byzantine fault tolerance threshold t ≤ bn5 c, it takes exponential steps of coin-
flipping to converge. It is noted that, for t = O(

√
n), Ben-Or’s protocol takes constant rounds to converge. Bracha [3]

improved Ben-Or’s protocol to defeat t < n
3 Byzantine faults. In Bracha’s approach, Bracha first designed a broadcast

protocol with the following properties: If an honest participant broadcasts a message, then all honest participants will
receive the same message in the end. If a dishonest participant broadcasts a message, then all honest participant will
receive the same message or no honest participant will receive the message. Furthermore, Bracha defined a valida-
tion approach to valid each received message. Thus honest participant will refuse invalid messages from dishonest
participants. In the CBC Casper framework, the message history are included in each message. Thus one can easily
build an efficient safety oracle to enforce Bracha’s validation rules. Furthermore, it is not challenging to build a safety
oracle for CBC Casper framework to enforce Bracha’s broadcast primitive. Thus Bracha’s protocol could be easily
implemented in the CBC Casper framework as follows.

At the start of Ben-Or/Bracha’s protocol, each participant Pi holds an initial value in his variable xi ∈ {0, 1}. The
protocol proceeds from step to step. The step s consists of the following sub-steps.

1. Each participant Pi broadcasts 〈Pi, xi,Mi,s,0〉 to all participants whereMi,s,0 is the message set that Pi has
received during step s− 1. Then Pi waits until receives n− t valid messagesMi,s,1 and computes the estimate
ei,s using the value estimation function (2).

2. Each Pi broadcasts 〈Pi, ei,s,Mi,s,1〉 to all participants and waits until receives n− t valid messagesMi,s,2. If
there is a bi such that score(b,Mi,s,2) >

n
2 , then let e′i,s = 〈d, b〉.

3. Each Pi broadcasts 〈Pi, e
′
i,s,Mi,s,2〉 to all participants and waits until receives n− t valid messagesMi,s,3. Pi

distinguishes the following three cases:

• If score(〈d, b〉,Mi,s,2) > 2t + 1 for some b ∈ {0, 1}, then Pi decides on b and broadcasts his decision
together with justification to all participants.

• If score(〈d, b〉,Mi,s,2) > t+ 1 for some b ∈ {0, 1}, then Pi lets xi = b and moves to step s+ 1.

• Otherwise, Pi flips a coin and let xi to be coin-flip outcome. Pi moves to step s+ 1.

The safety of the above protocol could be proved in the same way as in [3] and the details are omitted here. Rabin
[15] initiated the use of common coin in BFT protocol design. One may also use a common coin in the above
Ben-Or/Bracha CBC Casper protocol to improve the performance to constant steps. The details are omitted here.
If common coins could be implemented, one may also implement Cachin-Kursawe-Shoup protocol [5] within CBC
Casper framework. The details are omitted here also.

References
[1] M. Ali, J. Nelson, and A. Blankstein. Peer review: CBC Casper. available at: https://medium.com/

@muneeb/peer-review-cbc-casper-30840a98c89a, December 6, 2018.

4

https://medium.com/@muneeb/peer-review-cbc-casper-30840a98c89a
https://medium.com/@muneeb/peer-review-cbc-casper-30840a98c89a

[2] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended ab-
stract). In Proc. 2nd ACM PODC, pages 27–30, 1983.

[3] G. Bracha. An asynchronous [(n−1)/3]-resilient consensus protocol. In Proc. 3rd ACM PODC, pages 154–162.
ACM, 1984.

[4] V. Buterin and V. Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437v4, 2019.

[5] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople: Practical asynchronous byzantine
agreement using cryptography. Journal of Cryptology, 18(3):219–246, 2005.

[6] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. JACM, 35(2):288–323,
1988.

[7] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzantine agreement. SIAM Journal
on Computing, 26(4):873–933, 1997.

[8] M.J. Fischer, N. A Lynch, and M.S. Paterson. Impossibility of distributed consensus with one faulty process.
JACM, 32(2):374–382, 1985.

[9] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine agreements for
cryptocurrencies. In Proc. the 26th Symposium on Operating Systems Principles, pages 51–68. ACM, 2017.

[10] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133–169, 1998.

[11] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[12] Silvio Micali. Byzantine agreement, made trivial, 2016.

[13] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In 2014 USENIX Annual
Technical Conference, pages 305–319, 2014.

[14] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. JACM, 27(2):228–234,
1980.

[15] M.O. Rabin. Randomized byzantine generals. In 24th IEEE FOCS, pages 403–409. IEEE, 1983.

[16] Ethereum Research. CBC Casper FAQ. available at: https://github.com/ethereum/cbc-casper/
wiki/FAQ, November 27, 2018.

[17] Yongge Wang. Byzantine fault tolerance in partially connected asynchronous networks. http://eprint.
iacr.org/2019/1460, 2019.

[18] V. Zamfir. Casper the friendly ghost: A correct by construction blockchain consensus protocol. Whitepaper:
https://github.com/ethereum/research/tree/master/papers, 2017.

[19] V. Zamfir, N. Rush, A. Asgaonkar, and G. Piliouras. Introducing the minimal cbc casper family of consensus
protocols. DRAFT v1.0: https://github.com/cbc-casper/, 2018.

5

https://github.com/ethereum/cbc-casper/wiki/FAQ
https://github.com/ethereum/cbc-casper/wiki/FAQ
http://eprint.iacr.org/2019/1460
http://eprint.iacr.org/2019/1460
https://github.com/ethereum/research/tree/master/papers
https://github.com/cbc-casper/

	Introduction
	CBC Casper the Friendly Binary Consensus (FBC)
	Liveness of CBC Casper FBC

