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Abstract: Search for monic irreducible polynomials (IPs) over extended Galois field GF(p
q
) for a large value of the 

prime moduli p and a large extension to the Galois Field q is a well needed solution in the field of cryptography. In 

this paper a new algorithm to obtain monic IPs over extended Galois field GF(p
q
) for the large values of p and q is 

introduced. Here in this paper the positional arithmetic is used to multiply all possible two monic elemental 

polynomials (EPs) with their Galois field number (GFN) to generate all the monic reducible polynomials (RPs). All 

the monic RPs are cancelled out from the list of monic basic polynomials (BPs) leaving behind all the monic IPs. 

Time complexity analysis of the said algorithm is also executed that ensures the algorithm to be less time 

consuming. 

1. Introduction and scope: The Basic Polynomials or BPs over the Galois field GF(p
q
) are polynomials with 

highest degree of terms d equal to the Galois field extension q (d = q) and so it must have (q+1) terms . Elemental 

Polynomials or EPs are polynomials with highest degree of terms d less than the Galois field extension q (d < q) and 

so it must have less than (q+1) terms and d varies from 1 through q. BPs with leading co-efficient unity are termed 

as monic BPs. Monic BPs that do not have two monic EPs rather than constant polynomials (CPs) are termed as 

monic IPs. The EPs with degree d = 0 are termed as constant polynomials (CPs) and they are p in numbers and not 

in consideration for this paper. Rests of the monic BPs are the monic reducible polynomials or RPs that must have 

two non-constant EPs as factors. Generator polynomials or GPs are polynomials with number of terms less than or 

equal to (q+1) and the code word or generated polynomials from BPs are divisible by GPs but that are also not in 

consideration for this paper.  

 

There are many algorithms in past that were introduced to find monic IPs over Galois Fields GF(p) and extended 

Galois fields GF(p
q
) for the small values of the prime moduli p as well as the small values of extension q. The hands 

on computation to find monic IPs over Galois field GF(p
q
) for p = 2, q = 2 through 11, p = 3, q = 2 through 7, p = 5, 

q = 2 through 5 and for p = 7, q = 2 through 4 was initiated by Church [1] in his contribution. The Galois field 

equivalents of each monic BP for p = 2 through 7 is also reported [1]. Each two monic EPs are multiplied to obtain 

the RPs. The search for monic IPs ended up with cancellation of all RPs leaving behind the IPs. In Rabin’s 

Algorithm [2] all monic BPs (F(x)) over Galois Field GF(p) of degree n is tested for divisibility with (x
n
-x) and the 

gcd of (F(x), x
nki

-x) where the ki are all prime divisors of n , to be unity. If any monic BP, F(x) satisfies both 

condition, the monic BP is termed as monic IP. Later according to Zaman and Ghosh two monic EPs over the Galois 

field GF(p
q
) are multiplied and then divided by all monic BPs over the Galois field GF(p

q
) by matrix method. If for 

any division the residue is 1 then the two monic EPs over the Galois field GF(p
q
) are multiplicative inverses (MIs) 

of each other [3]. In the contribution of Dey and Ghosh the procedure to multiply of GFNs of two polynomials over 

the Galois field GF(p
q
) is illustrated. The each digit of a GFN or the coefficients of each degree term of the 

polynomial over the Galois field GF(p
q
) are multiplied to all digits of other GFN consecutively. Then the obtained 

digits or coefficients with same degree terms are added and modulated with p to obtain the resultant GFN or the 

coefficients of the resultant polynomial over the Galois field GF(p
q
) [4].  At last according to Dey and Ghosh in this 

algorithm the decimal equivalents of each of two monic EPs over the Galois field GF(p
q
) at a time with highest 
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degree d and (q-d) where d € {0,..,(q-1)/2} , have been split into the GFNs of each term of two said monic EPs over 

the Galois field GF(p
q
). The coefficients of each term in each two Monic EPs or two GFNs are multiplied, added 

respectively with each other and modulated to obtain the GFN of the RPs over the Galois field GF(p
q
).  The DE of 

the resultant monic BP over the Galois field GF(p
q
) is termed as the DE of an RP over the Galois field GF(p

q
). The 

DE of BPs over the Galois field GF(p
q
) belonging to the list of RPs over the Galois field GF(p

q
) have been cancelled 

leaving behind the monic IPs over the Galois field GF(p
q
) [5]. 

 

Now, Here a new multiplication algorithm is introduced to multiply two monic EPs over the Galois field GF(p
q
). 

The procedure is same as decimal multiplication but the each digit in product must be modulated with prime 

modulus p and the quotient is considered as carry to obtain the result. The multiplicand and multiplier are two GFNs 

of the two monic EPs over the Galois field GF(p
q
). The generation of the GFNs [6] is described in section 2.1 and 

the procedure and the algorithm is described in section 2.2. 

 

In this algorithm EPs with degree d and q-d where d < q for d = 1,2,…,(q-1)/2 are multiplied over Galois field 

GF(p
q
) through the said multiplication algorithm to ensure the reducibility of the product monic BPs or monic RPs. 

The left alone BPs or that do not have any factor except CPs and itself are termed as Monic IPs. In this paper for 

clarity understanding, the pseudo code of the proposed algorithm is presented in Section 3. Time Complexity of the 

said new algorithm, , Results, Applications of IPs and algorithms and Conclusions are given in sections 4, 5, 6 and 7 

respectively. A detailed analysis of the procedure of the algorithm is given in appendix. 

 

2. BCNs and Multiplication algorithm over the Galois field GF(p
q
): 

 

Scope: A review work on polynomials is given in section review work. The generation of the GFN is described in 

subsection 2.1. The procedure and algorithm for the multiplication over the Galois field GF(p
q
) of the two GFNs 

over the said Galois field is illustrated in section 2.2.  

 

Review work: 

Short reviews on relevant and related articles are made in this section.  

 

 Rudolf Church [1935][1]. Here two monic EPs over the Galois field GF(p
q
) are multiplied by paper pen to generate 

all monic RPs over the Galois field GF(p
q
). All monic RPs over the Galois field GF(p

q
) are cancelled out from the 

list of the monic BPs over the Galois field GF(p
q
) to extract all monic IPs over the Galois field GF(p

q
). Here the 

value of p varies from 2 [q=2 to q=11] to 7 [q=2 to q=4]. 

 

 Zaman et. al [2014][3].  Here two monic EPs over the Galois field GF(p
q
) are multiplied and then divided by all 

monic BPs over the Galois field GF(p
q
) by matrix method. If for any division the residue is 1 then the two monic 

EPs over the Galois field GF(p
q
) are multiplicative inverses (MIs) of each other. 

 

 Dey and Ghosh [2017-a][4].  Here the procedure to multiply of GFNs of two polynomials over the Galois field 

GF(p
q
) is illustrated. The each digit of a GFN or the coefficients of each degree term of the polynomial over the 

Galois field GF(p
q
) are multiplied to all digits of other GFN consecutively. Then the obtained digits or coefficients 

with same degree terms are added and modulated with p to obtain the resultant GFN or the coefficients of the 

resultant polynomial over the Galois field GF(p
q
).  

 

 Dey and Ghosh [2017-b][5]. In this algorithm the decimal equivalents of each of two monic EPs over the Galois 

field GF(p
q
) at a time with highest degree d and (q-d) where d € {0,..,(q-1)/2} , have been split into the p-nary 

coefficients of each term of two said monic EPs over the Galois field GF(p
q
). The coefficients of each term in each 

two Monic EPs or two GFNs are multiplied, added respectively with each other and modulated to obtain the p-nary 

coefficients of each term of the RPs over the Galois field GF(p
q
).  The DE of the resultant monic BP over the Galois 



field GF(p
q
) is termed as the DE of an RP over the Galois field GF(p

q
). The DE of BPs over the Galois field GF(p

q
) 

belonging to the list of RPs over the Galois field GF(p
q
) have been cancelled leaving behind the monic IPs over the 

Galois field GF(p
q
). 

 

2.1 Generation of the GFNs from the Galois field polynomials over the Galois field GF(p
q
). 

 

Coefficient of each degree term of a polynomial are arranged sequentially from highest to lowest degree in a 

decreasing sequence of degree terms (Coefficient of highest degree term is in MSB and coefficient of lowest degree 

term is in LSB) to obtain Galois Field Numbers (GFNs) for polynomials over the Galois fields GF(p
q
) where p is the 

prime modulus and q is the extension of the said Galois field. There are two special types of GFNs. Binary Coded 

Numbers or BCN for polynomials over the Galois field GF(2
q
) and Finite Field Numbers (FFNs) for polynomials 

over finite field GF(p
q
) where p is non-prime. Examples of some GFNs, BCNs and FFNs are given in table.1, table.2 

and table.3 respectively below and the description of the said tables are also given below. 

 

Row DEs Polynomials BCNs 

Col→ 1 2 3 

1 14406 6x
4
 60000 

2 14407 6x
4
+1 60001 

3 2443 x
4
+6x 10060 

4 2414 x
4
+x+6 10016 

 

Table.1. GFNs of four Galois field polynomials over the Galois field GF(7
4
). 

 

Row DEs Polynomials BCNs 

Col→ 1 2 3 

1 16 x
4
 10000 

2 17 x
4
+1 10001 

3 18 x
4
+x 10010 

4 19 x
4
+x+1 10011 

5 20 x
4
+x

2
 10100 

6 21 x
4
+x

2
+1 10101 

7 22 x
4
+x

2
+x 10110 

8 23 x
4
+x

2
+x+1 10111 

9 24 x
4
+x

3
 11000 

A 25 x
4
+x

3
+1 11001 

B 26 x
4
+x

3
+x 11010 

C 27 x
4
+x

3
+x+1 11011 

D 28 x
4
+x

3
+x

2
 11100 

E 29 x
4
+x

3
+x

2
+1 11101 

F 30 x
4
+x

3
+x

2
+x 11110 

G 31 x
4
+x

3
+x

2
+x+1 11111 

 

Table.2. BCNs of 16 Galois field polynomials over the Galois field GF(2
4
). 

 

Row DEs Polynomials BCNs 

Col→ 1 2 3 

1 768 3x
4
 30000 



2 770 3x
4
+2 30002 

3 264 x
4
+2x 10020 

4 267 x
4
+2x+3 10023  

 

Table.3. FFNs of four Galois field polynomials over the Galois field GF(4
4
). 

 

Description of Table.1, Table.2, and Table.3: 

 

Table.1: Examples of four GFNs over the Galois field GF(7
4
) are given in row 1 through 4 of Table.1. DEs 

of the polynomials, the polynomials itself and the respective GFNs are given in column 1, 2 and 3 of the 

respective rows.  

Table.2: Examples of four BCNs over the Galois field GF(2
4
) are given in row 1 through 16 of Table.2. 

DEs of the polynomials, the polynomials itself and the respective BCNs are given in column 1, 2 and 3 of 

the respective rows. 

Table.3: Examples of four FFNs over the Galois field GF(4
4
) are given in row 1 through 4 of Table.3. DEs 

of the polynomials, the polynomials itself and the respective FFNs are given in column 1, 2 and 3 of the 

respective rows. 

 

2.2 Procedure and the algorithm for multiplication of the two BCNs over the Galois field GF(p
q
). 

Here a new multiplication algorithm is introduced to multiply two monic EPs over the Galois field GF(p
q
). The 

procedure is same as decimal multiplication but the each digit in product must be modulated with prime modulus p 

to obtain the result. The multiplicand and multiplier are two GFNs of the two monic EPs over the Galois field 

GF(p
q
). The procedure is introduced in subsection 2.2.1 and subsection 2.2 is dedicated to algorithm of the said 

procedure.  

2.2.1 Procedure. Let us consider two EPs over Galois field GF(2
4
), multiplication of those two EPs over Galois 

field GF(2
4
) must construct a BP. Two EPs over Galois field GF(2

4
) are, 

EPs BCNs or GFNs 

X 0010 

x
3
+1 1001 

Polynomial multiplication of concerned two EPs over Galois field GF(2
4
): x.(x

3
+1) = x

4
+x (BCN = 10010). 

Now, by BCNs 

A. 1
st
 number.   0010 

B. 2
nd

 number.  1001 

     0010 

           0000 

         0000 

                 0010 

Product.   0-0-1-0-0-1-0   
         %-%-%-%-%  

                       2-2-2-2-2  

          -------------- 

                       1-0-0-1-0   

Product BP =  BCN or GFN = 10010 = polynomial =   x
4
+x = Decimal Equivalent = 18. 

2.2.2 Algorithm. 

The algorithm of multiplication of two polynomials over the Galois field GF(2
4
) is given as follows, 

Start. 

Step 0. Let us take DE of two polynomials A and B over Galois field GF(2
4
). 

Step 1. Convert two numbers into two BCNs, BCN(A) and BCN(B). 



Step 2. Multiply BCN(A) and BCN(B) with decimal multiplication to obtain product P(A×B). 

Step 4. Modulate each digit of product with 2 two obtain product BCN of P(A×B). 

Stop.  

3. Pseudo code for the algorithm to generate all monic IPs over the Galois field GF(p
q
): 

Scope: the structural description of the algorithm is given in section 3.1. The original pseudocode is given in section 

3.2 of this section. 

3.1 Structural Description of the Algorithm. 

 

In this algorithm the decimal equivalents of the each of the two monic EPs over the Galois field GF(p
q
) at a time 

with highest degree d and (q-d) where d € {0,..,(q-1)/2} , are split into the GFNs of those two monic EPs over the 

Galois field GF(p
q
). The each digit of GFNs of each two monic EPs over the Galois field GF(p

q
) is multiplied, added 

respectively with each other and modulated to obtain the GFN of the obtained monic BP over the Galois field 

GF(p
q
).  The DE of the resultant monic BP over the Galois field GF(p

q
) is termed as the DE of a reducible monic BP 

over the Galois field GF(p
q
). The DEs of reducible monic BPs over the Galois field GF(p

q
) belonging to the list of 

reducible polynomials are cancelled leaving behind the monic IPs over the Galois field GF(p
q
). For the Galois field 

GF(p
q
), where p is the prime modulus and q is the extension of the field, the algorithm is given as follows,  

 

Start. 

Step 1: Generate DEs of all the monic EPs, Dec(ep(x)) over the Galois field GF(p
q
). 

Step 2:  Convert Dec(ep(x1)), Dec(ep(x2)) with highest degree d and (q-d) respectively where d € {0,..,(q-1)/2}, to 

GFNs of those two monic EPs ep(x1) and ep(x2) respectively. 

Step 3:  Multiply and add terms with degree d € {d,d-1,.., 0} and (q-d) € {q-d,q-d-1,.., 0} to obtain the decimal 

coefficients of the each degree terms of the monic BP or each digit of the GFN of the monic BP, BP(x). 

Step 4:  convert decimal coefficient of each term of monic BP, BP(x) into GFNs. 

Step 5:  Obtain the DE of the monic BP, BP(x) or Dec(BP(x)) as the DE of a Reducible Polynomial or RP over the 

Galois field GF(p
q
). 

Step 6:  The DEs of monic BPs belonging to the list of monic RPs are cancelled leaving behind the monic IPs.  

Stop. 

 

3.2 Pseudo Code: 

 

// Here bp_indx is the DEs of the monic BPs. 

// Here ep_indx is the DEs of the monic EPs. 

// two monic EPs are multiplied to produce monic RPs or reducible monic BPs. 

// All monic RPs are cancelled out produce all monic IPs. 

// extn is the extension of the Galois field. 

// Multiplication Algorithm is as follows, 

 

for(bp_indx = 0;bp_indx< extn;bp_indx++){ 

  coeff_bp[bp_indx] = 0;       

  for(ep_indx = 0;ep_indx <=indx;ep_indx++){  

   if((bp_indx-ep_indx >= 0) && (bp_indx-ep_indx <= extn-indx)) 

coeff_bp[bp_indx]=(coeff_bp[bp_indx] 

+(coef1_ep[ep_indx]*coef2_ep[bp_indx-ep_indx]))% prime; 

  }    

} 

 

 



 

4. Time Complexity of the New Algorithm.  

 

The pseudo code of the algorithm contains two nested loops. The main loop is to test for the concerned BPs and the 

nested loop is to test for the EPs. So this algorithm have a time complexity of O(n
2
). Means it is much faster as 

Rabin’s algorithm [2] for larger value of prime modulus and its modification [2].  

 

Since the time complexity of the both Rabin’s algorithm and its modification depends upon the value of prime 

modulus so it becomes a slow algorithm for large value of the prime modulus. But the new algorithm is much 

effective and works better as the value of prime modulus and the extension of prime modulus grows larger since 

time complexity depends only on the value of the extension of the Galois field. So this algorithm is suitable to find 

monic Irreducible polynomials of higher value of prime modulus and the extension of prime modulus .Comparison 

of time complexity of the new algorithm with other Algorithms is given below, 

 

Algorithms New Algorithm Rabin’s Algorithm Rabin’s Algorithm(mod) 

Time Complexity O(n
2
) O(n

4
(log P)

3
) 0(n

4
(log p)

2
 + n

3
(log P)

3
) 

  

5. Results. 

 

The algebraic method or the above pseudo code has been tested on GF(3
3
),GF(7

3
),GF(11

3
), GF(101

3
), GF(3

5
), 

GF(7
5
), GF(3

7
), GF(7

7
),. Number of Monic IPs given by this algorithm are same as in hands on calculation by the 

theorem to count Monic IPs over Galois Field GF(p
q
) [8]. The list of numbers of monic IPs for a particular Galois 

field is given below for all of the eight extended Galois fields. The list of all irreducible monic BPs of GF(101
3
) 

GF(7
7
) are given as supplementary material.  

Ex.GF. GF(3
3
) GF(7

3
) GF(11

3
) GF(101

3
) 

Number of IPs. 8 112 440 343400 

Ex.GF. GF(3
5
) GF(7

5
) GF(3

7
) GF(7

7
) 

Number of IPs. 48 3360 312 117648 

 
6. Applications of the algorithms. 

 

Irreducible polynomials found a permanent seat in generation of crypto 8-bit S-boxes in early days of this century. 

The first IP over the binary Galois field GF(2
8
) is used to generate the elements of the substitution box in Advanced 

Encryption Standard [7]. IPs over the binary Galois field GF(2
4
) are also used to generate crypto 4-bit S-boxes later 

[6]. The irreducible polynomials with large values of prime p and extension q can also be used to generate crypto 4-

bit, 8-bit, 32 bit as well as 64 bit S-boxes in the same manner. The generation of IPs with large value of p and q will 

break the ice of generation of secure and reliable crypto 4-bit, 8-bit, 32 bit as well as 64 bit S-boxes in computer 

cryptography. So it is very lucrative to modern cryptographers.  

  

7. Conclusion. 

 

To the best knowledge of the present authors, there is no mention of a paper in which the composite polynomial 

method is translated into an algorithm and turn into a computer program.  The new algorithm is a much simpler to 

find monic IPs over Galois field GF(p
q
). It is able to determine decimal equivalents of the monic IPs over Galois 

field with a large value of prime modulus, also with large extensions of the prime modulii. So this method can 

reduce the time complexity to find monic Irreducible Polynomials over Galois field with large value of prime 

moduli and also with large extensions of the prime moduli. So this would help the crypto community to build S-

Boxes or ciphers using irreducible polynomials over Galois Fields with a large value of prime moduli, also with the 

large extensions of the prime moduli. 
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Appendix: 

 

1. A Brief description on evaluation of the monic Basic polynomials (BPs), monic Elemental 

Polynomials (EPs) and a hands on calculation of the monic reducible polynomials (RPs) and 

Irreducible polynomials (IPs) over Galois field GF(2
4
). 

 

1.1 Basic polynomials (BPs) over Galois field GF(2
4
). Polynomials over Galois field GF(2

4
) with degree of highest 

degree term 4 is termed as basic polynomials or BPs over Galois field GF(2
4
). Total number of terms in BPs are 

(4+1 = highest degree +1= extension of Galois field +1 =) 5. For Galois field GF(2
4
) the table of BPs with their 

decimal equivalents (DEs), polynomial presentation and binary coded number (BCN) [Number obtained from 

coefficients considering highest degree term as MSB and lowest degree term as LSB and also coefficients of terms 

absent are 0] presentation are given in table.1. The range of DEs of BPs over Galois field GF(2
4
) is (2

4
≤DE≤2

5
-1) 

16≤DE≤31, and total number of BPs are (2
4
=) 16. 

Table.1. List of BPs over Galois field GF(2
4
) 

Row DEs Polynomials BCNs 

1 16 x
4
 10000 

2 17 x
4
+1 10001 

3 18 x
4
+x 10010 

4 19 x
4
+x+1 10011 

5 20 x
4
+x

2
 10100 

6 21 x
4
+x

2
+1 10101 

7 22 x
4
+x

2
+x 10110 

8 23 x
4
+x

2
+x+1 10111 

9 24 x
4
+x

3
 11000 

A 25 x
4
+x

3
+1 11001 

B 26 x
4
+x

3
+x 11010 

C 27 x
4
+x

3
+x+1 11011 

D 28 x
4
+x

3
+x

2
 11100 

E 29 x
4
+x

3
+x

2
+1 11101 

F 30 x
4
+x

3
+x

2
+x 11110 

G 31 x
4
+x

3
+x

2
+x+1 11111 

https://doi.org/10.22632/ccs-2017-252-68
https://doi.org/10.4236/ojdm.2018.81003


 

1.2 Elemental polynomials (EPs) over Galois field GF(2
4
). Polynomials over Galois field GF(2

4
) with degree of 

highest degree term less than 4 is termed as elemental polynomials or EPs over Galois field GF(2
4
). Maximum 

number of terms in EPs are (4 = highest degree= extension of Galois field) 4 and minimum 1. For Galois field 

GF(2
4
) the table of EPs with their decimal equivalents (DEs), polynomial presentation and binary coded number 

(BCN) [Number obtained from coefficients considering highest degree term as MSB and lowest degree term as LSB 

and also coefficients of terms absent are 0] presentation are given in table.1. The range of DEs of EPs over Galois 

field GF(2
4
) is (0≤DE≤2

4
) 0≤DE≤15, and total number of BPs are (2

4
=) 16. The polynomials 0 [00000] and 

1[00001] are termed as constant polynomials or CPs over Galois field GF(2
4
) since they carries only constant terms 

in it. They are not in our interest in this study. 

Table.2. List of EPs over Galois field GF(2
4
) 

Row DEs Polynomials BCNs 

1 0 0 00000 

2 1 1 00001 

3 2 X 00010 

4 3 x+1 00011 

5 4 x
2
 00100 

6 5 x
2
+1 00101 

7 6 x
2
+x 00110 

8 7 x
2
+x+1 00111 

9 8 x
3
 01000 

A 9 x
3
+1 01001 

B 10 x
3
+x 01010 

C 11 x
3
+x+1 01011 

D 12 x
3
+x

2
 01100 

E 13 x
3
+x

2
+1 01101 

F 14 x
3
+x

2
+x 01110 

G 15 x
3
+x

2
+x+1 01111 

 

1.3  Reducible polynomials (RPs) and Irreducible Polynomials (IPs) over Galois field GF(2
4
). Reducible 

polynomials have two non-constant EPs as its factor. Polynomial multiplication of two EPs must be an RP. Rests of 

polynomials that have it self and constant polynomials as factor are termed as irreducible polynomials or IPs. In 

table.3. below all reducible polynomials are listed in column RPs and DEs of RPs are listed in column DEs (RPs) 

with their BCNs in column BCNs (RPs). The corresponding two non-constant EP factors are given in column 

Factors. BPs that are not present in the table follows are IPs and here DE of IPs are 19, 25, 31 i.e. they are 3 in 

number.   

 

Row Factors RPs DEs (RPs) BCNs (RPs) 

1 x. x
3
 x

4
 16 10000 

2 x. (x
3
+1) x

4
+x 18 10010 

3 x. (x
3
+x) x

4
+x

2
 20 10100 

4 x. (x
3
+x+1) x

4
+x

2
+x 22 10110 

5 x. (x
3
+x

2
) x

4
+x

3
 24 11000 

6 x. (x
3
+x

2
+1) x

4
+x

3
+x 26 11010 

7 x. (x
3
+x

2
+x) x

4
+x

3
+x

2
 28 11100 

8 x. (x
3
+x

2
+x+1) x

4
+x

3
+x

2
+x 30 11110 

9 (x+1). x
3
 x

4
+x

3
 24 11000 

10 (x+1). (x
3
+1) x

4
+x

3
+x+1 27 11101 

11 (x+1). (x
3
+x) x

4
+x

3
+x

2
+x 30 11110 

12 (x+1). (x
3
+x+1) x

4
+x

3
+x

2
+1 29 11101 

13 (x+1). (x
3
+x

2
) x

4
+x

2
 20 10100 



14 (x+1). (x
3
+x

2
+1) x

4
+x

2
+x+1 23 10111 

15 (x+1). (x
3
+x

2
+x) x

4
+x 18 10010 

16 (x+1). (x
3
+x

2
+x+1) x

4
+1 17 10001 

17 x
2.
x

2
 x

4
 16 10000 

18 x
2
 . (x

2
+1) x

4
+x

2
 20 10100 

19 x
2
 . (x

2
+x) x

4
+x

3
 24 11000 

20 x
2
 . (x

2
+x+1) x

4
+x

3
+x

2
 28 11100 

21 (x
2
+1) . (x

2
+1) x

4
+1 17 10001 

22 (x
2
+1) . (x

2
+x) x

4
+x

3
+x

2
+x 30 11110 

23 (x
2
+1) . (x

2
+x+1) x

4
+x

3
+x+1 27 11011 

24 (x
2
+x) . (x

2
+x) x

4
+x

2
 20 10100 

25 (x
2
+x) . (x

2
+x+1) x

4
+x 18 10010 

26 (x
2
+x+1) . (x

2
+x+1) x

4
+x

2
+1 21 10101 

Table.3. List of RPs over Galois field GF(2
4
). 

List of IPs over Galois field GF(2
4
) is given in table 4. Below, 

 

Row Irreducible Polynomials (IPs) DE of IPs BCN(IPs) 

1 x
4
+x+1 19 10011 

2 x
4
+x

3
+1 25 11001 

3 x
4
+x

3
+x

2
+x+1 31 11111 

Table.4. List of IPs over Galois field GF(2
4
). 


