
Multiparty Generation of an RSA Modulus

Megan Chen
contact.meganchen@gmail.com

Ran Cohen
rancohen@ccs.neu.edu

Jack Doerner
j@ckdoerner.net

Yashvanth Kondi
ykondi@ccs.neu.edu

Eysa Lee
eysa@ccs.neu.edu

Schuyler Rosefield
rosefield.s@northeastern.edu

abhi shelat
abhi@neu.edu

Northeastern University

April 26, 2020

Abstract
We present a new multiparty protocol for the distributed generation

of biprime RSA moduli, with security against any subset of maliciously
colluding parties assuming oblivious transfer and the hardness of factoring.

Our protocol is highly modular, and its uppermost layer can be viewed
as a template that generalizes the structure of prior works and leads to
a simpler security proof. We introduce a combined sampling-and-sieving
technique that eliminates both the inherent leakage in the approach of
Frederiksen et al. (Crypto’18), and the dependence upon additively ho-
momorphic encryption in the approach of Hazay et al. (JCrypt’19). We
combine this technique with an efficient, privacy-free check to detect ma-
licious behavior retroactively when a sampled candidate is not a biprime,
and thereby overcome covert rejection-sampling attacks and achieve both
asymptotic and concrete efficiency improvements over the previous state
of the art.

Contents
1 Introduction 1

1.1 Results and Contributions . 2
1.2 Overview of Techniques . 3
1.3 Additional Related Work . 6
1.4 Organization . 8

2 Preliminaries 8

3 Assumptions and Ideal Functionality 9
3.1 Factoring Assumptions . 9
3.2 The Distributed Biprime-Sampling Functionality 10

4 The Distributed Biprime-Sampling Protocol 13
4.1 High-Level Overview . 13
4.2 Ideal Functionalities Used in the Protocol 15
4.3 The Protocol Itself . 19
4.4 Security Sketches . 22

5 Distributed Biprimality Testing 24
5.1 The Semi-Honest Setting . 24
5.2 The Malicious Setting . 25

6 Efficiency Analysis 29
6.1 Per-Instance Success Probability 30
6.2 The Cost of Instantiating FBiprime and FAugMul 31
6.3 Putting It All Together . 36
6.4 Strictly-Constant and Expected-Constant Rounds 39
6.5 Comparison to Prior Work . 42

Bibliography 45

A The UC Model and Useful Functionalities 49
A.1 Universal Composability . 49
A.2 Useful Functionalities . 49

B Instantiating Multiplication 52
B.1 Delayed-Transmission Correlated Oblivious Transfer 52
B.2 Two-Party Reusable-Input Multiplier 53
B.3 Multiparty Reusable-Input Multiplier 59
B.4 Augmented Multiplication . 61

C Proof of Security for Our Biprime-Sampling Protocol 67

1 Introduction
A biprime is a number N of the form N = p · q where p and q are primes. Such
numbers are used as a component of the public key (i.e., the modulus) in the
RSA cryptosystem [RSA78], with the factorization being a component of the
secret key. A long line of research has studied methods for sampling biprimes
efficiently; in the early days, the task required specialized hardware and was not
considered generally practical [Riv80, Riv84]. In subsequent years, advances in
computational power brought RSA into the realm of practicality, and then ubiq-
uity. Given a security parameter κ, the de facto standard method for sampling
RSA biprimes involves choosing random κ-bit numbers and subjecting them
to the Miller-Rabin primality test [Mil76, Rab80] until two primes are found;
these primes are then multiplied to form a 2κ-bit modulus. This method suffices
when a single party wishes to generate a modulus, and is permitted to know the
associated factorization.

Boneh and Franklin [BF97, BF01] initiated the study of distributed RSA
modulus generation.1 This problem involves a set of parties who wish to jointly
sample a biprime in such a way that no corrupt and colluding subset (below
some defined threshold size) can learn the biprime’s factorization.

It is clear that applying generic multiparty computation (MPC) techniques
to the standard sampling algorithm yields an impractical solution: implementing
the Miller-Rabin primality test requires repeatedly computing ap−1 (mod p),
where p is (in this case) secret, and so such an approach would require the
generic protocol to evaluate a circuit containing many modular exponentiations
over κ bits each. Instead, Boneh and Franklin [BF97, BF01] constructed a new
biprimality test that generalizes Miller-Rabin and avoids computing modular
exponentiations with secret moduli. Their test carries out all exponentiations
modulo the public biprime N , and this allows the exponentiations to be per-
formed locally by the parties. Furthermore, they introduced a three-phase struc-
ture for the overall sampling protocol, which subsequent works have embraced:
1. Prime Candidate Sieving: candidate values for p and q are sampled jointly

in secret-shared form, and a weak-but-cheap form of trial division sieves them,
culling candidates with small factors.

2. Modulus Reconstruction: N ..= p · q is securely computed and revealed.

3. Biprimality Testing: using a distributed protocol, N is tested for bipri-
mality. If N is not a biprime, then the process is repeated.
The seminal work of Boneh and Franklin considered the semi-honest n-party

setting with an honest majority of participants. Many extensions and improve-
ments followed (as detailed in Section 1.3), the most notable of which (for our

1Prior works generally consider RSA key generation and include steps for generating shares
of e and d such that e ·d ≡ 1 (mod ϕ(N)). This work focuses only on the task of sampling the
RSA modulus N . Prior techniques can be applied to sample (e, d) after sampling N , and the
distributed generation of an RSA modulus has standalone applications, such as for generating
the trusted setup required by verifiable delay functions [Pie19, Wes19]; consequently, we omit
further discussion of e and d.

1

purposes) are two recent works that achieve malicious security against a dis-
honest majority. In the first, Hazay et al. [HMRT12, HMR+19] proposed an
n-party protocol in which both sieving and modulus reconstruction are achieved
via additively homomorphic encryption. Specifically, they rely upon both ElGa-
mal and Paillier encryption, and in order to achieve malicious security, they use
zero-knowledge proofs for a variety of relations over the ciphertexts. Thus, their
protocol represents a substantial advancement in terms of its security guaran-
tee, but this comes at the cost of additional complexity assumptions and an
intricate proof, and also at substantial concrete cost, due to the use of many
custom zero-knowledge proofs.

The subsequent protocol of Frederiksen et al. [FLOP18] (the second recent
work of note) relies mainly on oblivious transfer (OT), which they use to perform
both sieving and, via Gilboa’s classic multiplication protocol [Gil99], modulus
reconstruction. They achieved malicious security using the folklore technique in
which a “Proof of Honesty” is evaluated as the last step and demonstrated prac-
ticality by implementing their protocol; however, it is not clear how to extend
their approach to more than two parties in a straightforward way. Moreover,
their approach to sieving admits selective-failure attacks, for which they account
by including some leakage in the functionality. It also permits a malicious ad-
versary to selectively and covertly induce false negatives (i.e., force the rejection
of true biprimes after the sieving stage), a property that is again modeled in
their functionality. In conjunction, these attributes degrade security, because
the adversary can rejection-sample biprimes based on the additional leaked in-
formation, and efficiency, because ruling out malicious false-negatives involves
running sufficiently many instances to make the probability of statistical failure
in all instances negligible.

Thus, given the current state of the art, it remains unclear whether one
can sample an RSA modulus among two parties (one being malicious) with-
out leaking additional information or permitting covert rejection sampling, or
whether one can sample an RSA modulus among many parties (all but one being
malicious) without involving heavy cryptographic primitives such as additively
homomorphic encryption, and their associated performance penalties. In this
work, we present a protocol which efficiently achieves both tasks.

1.1 Results and Contributions
A Clean Functionality. We define FRSAGen, a simple, natural functionality
for sampling biprimes from the same well-known distribution used by prior
works [BF01, HMR+19, FLOP18], with no leakage or conflation of sampling
failures with adversarial behavior.

AModular Protocol, with Natural Assumptions. We present a protocol
πRSAGen in the (FAugMul,FBiprime)-hybrid model, where FAugMul is an augmented
multiplier functionality and FBiprime is a biprimality-testing functionality, and
prove that it UC-realizes FRSAGen in the malicious setting, assuming the hardness
of factoring. More specifically, we prove:

2

Theorem 1.1 (Main Security Theorem, Informal). In the presence of a PPT
malicious adversary corrupting any subset of parties, FRSAGen can be securely
computed with abort in the (FAugMul,FBiprime)-hybrid model, assuming the hard-
ness of factoring.

Additionally, because our security proof relies upon the hardness of factor-
ing only when the adversary cheats, we find to our surprise that our protocol
achieves perfect security against semi-honest adversaries.
Theorem 1.2 (Semi-Honest Security Theorem, Informal). In the presence of
a computationally unbounded semi-honest adversary corrupting any subset of
parties, FRSAGen can be computed with perfect security in the (FAugMul,FBiprime)-
hybrid model.

Supporting Functionalities and Protocols. We define FBiprime, a simple,
natural functionality for biprimality testing, and show that it is UC-realized in
the semi-honest setting by a well known protocol of Boneh and Franklin [BF01],
and in the malicious setting by a derivative of the protocol of Frederiksen et
al. [FLOP18]. We believe this dramatically simplifies the composition of these
two protocols, and as a consequence, leads to a simpler analysis. Either protocol
can be based exclusively upon oblivious transfer.

We also define FAugMul, a functionality for sampling and multiplying secret-
shared values in a special form derived from the Chinese Remainder Theorem. In
the context of πRSAGen, this functionality allows us to efficiently sample numbers
in a specific range, with no small factors, and then compute their product.
We prove that it can be UC-realized exclusively from oblivious transfer, using
derivatives of well-known multiplication protocols [DKLS18, DKLS19].

Asymptotic Efficiency. We perform an asymptotic analysis of our composed
protocols and find that our semi-honest protocol is a factor of κ/ log κ more
bandwidth-efficient than that of Frederiksen et al. [FLOP18]. Our malicious
protocol is a factor of κ/s more efficient than theirs in the optimistic case (when
parties follow the protocol), and a factor of κ more efficient when parties deviate
from the protocol. Recall that κ is the bit-length of the primes p and q, and
s is a statistical security parameter. Frederiksen et al. claim in turn that their
protocol is strictly superior to the protocol of Hazay et al. [HMR+19] with
respect to asymptotic bandwidth performance.

Concrete Efficiency. We perform a closed-form concrete analysis of our pro-
tocol (with some optimizations, including the use of random oracles), and find
that it outperforms the protocol of Frederiksen et al. (the most efficient prior
work) by a wide margin in terms of communication.

1.2 Overview of Techniques
Constructive Sampling and Efficient Modulus Reconstruction. Most
prior works use rejection sampling to generate a pair of candidate primes, and

3

then multiply those primes together in a separate step. Specifically, they sam-
ple a shared value p← [0, 2κ) uniformly, and then run a trial-division protocol
repeatedly, discarding both the value and the work that has gone into testing it
if trial division fails. This represents a substantial amount of wasted work in ex-
pectation. Furthermore, Frederiksen et al. [FLOP18] report that multiplication
of candidates after sieving accounts for two thirds of their concrete cost.

We propose a different approach that leverages the Chinese Remainder The-
orem (CRT) to constructively sample a pair of candidate primes and multiply
them together efficiently. A similar sieving approach (in spirit) was initially
formulated as an optimization in a different setting by Malkin et al. [MWB99].
The CRT implies an isomorphism between a set of values, each in a field modulo
a distinct prime, and a single value in a ring modulo the product of those primes
(i.e., Zm1 × . . . × Zm` ' Zm1·...·m`). We refer to the set of values as the CRT
form or CRT representation of the single value to which they are isomorphic.
We formulate a sampling mechanism based on this isomorphism as follows: for
each of the first O(κ/ log κ) odd primes, the parties jointly (and efficiently) sam-
ple shares of a value that is nonzero modulo that prime. These values are the
shared CRT form of a single κ-bit value that is guaranteed to be indivisible by
any prime in the set sampled against. For technical reasons, we sample two such
candidates simultaneously.

Rather than converting pairs of candidate primes from CRT form to standard
form, and then multiplying them, we instead multiply them component-wise in
CRT form, and then convert the product to standard form to complete the
protocol. This effectively replaces a single “full-width” multiplication of size κ
with O(κ/ log κ) individual multiplications, each of size O(log κ). We intend
to perform multiplication via an OT-based protocol, and the computation and
communication complexity of such protocols grows at least with the square of
their input length, even in the semi-honest case [Gil99]. Thus in the semi-honest
case, our approach yields an overall complexity of O(κ log κ), as compared to
O(κ2) for a single full-width multiplication. In the malicious case, combining the
best known multiplier construction [DKLS18, DKLS19] with the most efficient
known OT extension scheme [BCG+19] yields a complexity that also grows
with the product of the input length and a statistical parameter s, and so our
approach achieves an overall complexity of O(κ log κ + κ · s), as compared to
O(κ2 + κ · s) for a single full-width malicious multiplication. Via closed-form
analysis, we show that this asymptotic improvement is also reflected concretely.

Achieving Security with Abort Efficiently. The fact that we sample
primes in CRT form also plays a crucial role in our security analysis. Unlike the
work of Frederiksen et al. [FLOP18], our protocol achieves the standard, intu-
itive notion of security with abort: the adversary can instruct the functionality
to abort regardless of whether a biprime is successfully sampled, and the honest
parties are always made aware of such adversarial aborts. There is, in other
words, absolutely no conflation of sampling failures with adversarial behavior.
For the sake of efficiency, our protocol permits the adversary to cheat prior to

4

biprimality testing, and then rules out such cheats retroactively using one of two
strategies. In the case that a biprime is successfully sampled, adversarial behav-
ior is ruled out retroactively in a privacy-preserving fashion using well-known
but moderately expensive techniques, which is tolerable only because it need
not be done more than once. In the case that a sampled value is not a biprime,
however, the inputs to the sampling protocol are revealed to all parties, and the
retroactive check is carried out in the clear. Proving the latter approach secure
turns out to be surprisingly subtle.

The challenge arises from the fact that the simulator must simulate the
protocol transcript for the OT-multipliers on behalf of the honest parties without
knowing their inputs. Later, if the sampling-protocol inputs are revealed, the
simulator must “explain” how the simulated transcript is consistent with the true
inputs of the honest parties. Specifically, in maliciously secure OT-multipliers of
the sort we use [DKLS18, DKLS19], the OT receiver (Bob) uses a high-entropy
encoding of his input, and the sender (Alice) can, by cheating, learn a one-bit
predicate of this encoding. Before Bob’s true input is known to the simulator, it
must pick an encoding at random. When Bob’s input is revealed, the simulator
must find an encoding of his input which is consistent with the predicate on the
random encoding that Alice has learned. This task closely resembles solving a
random instance of subset sum.

We are able to overcome this difficulty because our multiplications are per-
formed component-wise over CRT-form representations of their operands. Be-
cause each component is of size O(log κ) bits, the simulator can simply guess
random encodings until it finds one that matches the required constraints. We
show that this strategy succeeds in strict polynomial time, and that it induces
a distribution statistically close to that of the real execution.

This form of “privacy-free” malicious security (wherein honest behavior is
verified at the cost of sacrificing privacy) leads to considerable efficiency gains
in our case: it is up to a multiplicative factor of s (the statistical parameter)
cheaper than the privacy-preserving check used in the case that a candidate
passes the biprimality test (and the one used in prior OT-multipliers [DKLS18,
DKLS19]). Since most candidates fail the biprimality test, using the privacy-free
check to verify that they were generated honestly results in substantial savings.

Biprimality Testing as a Black Box. We specify a functionality for bipri-
mality testing, and prove that it can be realized by a maliciously secure version
of the Boneh-Franklin biprimality test. Our functionality has a clean interface
and does not, for example, require its inputs to be authenticated to ensure that
they were actually generated by the sampling phase of the protocol. The key in-
sight that allows us to achieve this level of modularity is a reduction to factoring:
if an adversary is able to cheat by supplying incorrect inputs to the biprimality
test, relative to a candidate biprime N , and the biprimality test succeeds, then
we show that the adversary can be used to factor biprimes. We are careful to
rely on this reduction only in the case that N is actually a biprime, and to
prevent the adversary from influencing the distribution of candidates.

5

The Benefits of Modularity. We claim as a contribution the fact that mod-
ularity has yielded both a simpler protocol description and a reasonably simple
proof of security. We believe that this approach will lead to derivatives of our
work with stronger security properties or with security against stronger adver-
saries. As a first example, we prove that a semi-honest version of our protocol
(differing only in that it omits the retroactive consistency check in the protocol’s
final step) achieves perfect security. We furthermore observe that in the mali-
cious setting, instantiating FBiprime and FAugMul with security against adaptive
adversaries yields an RSA modulus sampling protocol that is adaptively secure.

Similarly, only minor adjustments to the main protocol are required to
achieve security with identifiable abort [IOZ14, CL17]. If we assume that the
underlying functionalities FAugMul and FBiprime are instantiated with identifiable
abort, then it remains only to ensure the use of consistent inputs across these
functionalities, and to detect which party has provided inconsistent inputs if an
abort occurs. This can be accomplished by augmenting FBiprime with an addi-
tional interface for revealing the input values provided by all the parties upon
global request (e.g., when the candidate N is not a biprime). Given identifi-
able abort, it is possible to guarantee output delivery in the presence of up to
n − 1 corruptions via standard techniques, although the functionality must be
weakened to allow the adversary to reject one biprime per corrupt party.2 A
proof of this extension is beyond the scope of this work; we focus instead on the
advancements our framework yields in the setting of security with abort.

1.3 Additional Related Work
Frankel, MacKenzie, and Yung [FMY98] adjusted the protocol of Boneh and
Franklin [BF97] to achieve security against malicious adversaries in the honest-
majority setting. Their main contribution was the introduction of a method for
robust distributed multiplication over the integers. Cocks [Coc97] proposed a
method for multiparty RSA key generation under heuristic assumptions, and
later attacks by Coppersmith (see [Coc98]) and Joye and Pinch [JP99] suggest
this method may be insecure. Poupard and Stern [PS98] presented a maliciously
secure two-party protocol based on oblivious transfer. Gilboa [Gil99] achieved
improved efficiency in the semi-honest two-party model, and introduced a novel
method for multiplication from oblivious transfer, from which our own multi-
pliers ultimately derive.

Malkin, Wu, and Boneh [MWB99] implemented the protocol of Boneh and
Franklin and introduced an optimized sieving method similar in spirit to ours.
In particular, their protocol generates sharings of random values in Z∗M (where
M is a primorial modulus) during the sieving phase, instead of naïve random
candidates for primes p and q. However, their method produces multiplicative
sharings of p and q, which are converted into additive sharings for biprimality
testing via an honest-majority, semi-honest protocol. This conversion requires

2The folklore technique involves invoking the protocol iteratively, each iteration eliminat-
ing one corrupt party until a success occurs. For a constant fraction of corruptions, the implied
linear round complexity overhead can be reduced to super-constant (e.g., log∗ n) [CHOR18].

6

Protocol Parties Corruptions Security Channels Assumptions

[BF97] n ≥ 3 t < n/2 Semi-honest Priv None
[FMY98] n ≥ 3 t < n/2 Malicious Priv, BC DL
[PS98] n = 2 t = 1 Malicious Auth OT
[Gil99] n = 2 t = 1 Semi-honest Auth OT
[ACS02] n ≥ 3 t < n/2 Semi-honest Priv None
[DM10] n = 3 t = 1 Malicious Priv, BC CRS, SRSA
[HMR+19] n ≥ 2 t < n Malicious Auth, BC DCR, DDH
[FLOP18] n = 2 t = 1 Malicious Auth OT
This Work n ≥ 2 t < n Malicious Auth, BC OT, Factoring

Table 1.3: Comparison of Prior Works. Priv, Auth, and BC stand for
private, authenticated, and broadcast channels, respectively. DL stands for
discrete log, OT for oblivious transfer, CRS for a common reference string,
SRSA for Strong RSA, DCR for decisional composite residuosity, and DDH for
decisional Diffie-Hellman.

rounds linear in the party count, and it is unclear how to adapt it to tolerate a
malicious majority of parties without a significant performance penalty.

Algesheimer, Camenish, and Shoup [ACS02] described a method to compute
a distributed version of the Miller-Rabin test: they used secret-sharing conver-
sion techniques reliant on approximations of 1/p to compute exponentiations
modulo a shared p. However, each invocation of their Miller-Rabin test still
has complexity in O(κ3) per party, and their overall protocol has communica-
tion complexity in O(κ5/ log2 κ), with Θ(κ) rounds of interaction. Concretely,
Damgård and Mikkelsen [DM10] estimate that 10000 rounds are required to
sample a 2000-bit biprime using this method. Damgård and Mikkelsen also
extended their work to improve both its communication and round complexity
by several orders of magnitude, and to achieve malicious security in the honest-
majority setting. Their protocol is at least a factor of O(κ) better than that
of Algesheimer, Camenish, and Shoup, but it still requires hundreds of rounds.
We were not able to compute an explicit complexity analysis of their approach.
We give a summary of prior works in Table 1.3, for ease of comparison.

In a follow-up work, Chen et al. [CHI+20] adapt our CRT-based sampling
mechanism to work with multipliers and zero-knowledge proofs based on addi-
tively homomorphic encryption. They focus on the setting wherein there is a
powerful, untrusted aggregator, and many weak clients. Via implementation,
they show that this approach is sufficiently efficient for real-world use, even with
thousands of participants spread around the world.

7

1.4 Organization
Basic notation and background information are given in Section 2. Our ideal
biprime-sampling functionality is defined in Section 3, and we give a protocol
that realizes it in Section 4. In Section 5, we present our biprimality-testing
protocol. In Section 6 we give an efficiency analysis. We defer full proofs of
security and the details of our multiplication protocol to the appendices.

2 Preliminaries
Notation. We use = for equality, ..= for assignment, ← for sampling from a
distribution, ≡ for congruence, ≈c for computational indistinguishability, and
≈s for statistical indistinguishability. In general, single-letter variables are set
in italic font, multi-letter variables and function names are set in sans-serif
font, and string literals are set in slab-serif font. We use mod to indicate
the modulus operator, while (mod m) at the end of a line indicates that all
equivalence relations on that line are to be taken over the integers modulo m.
By convention, we parameterize computational security by the bit-length of each
prime in an RSA biprime; we denote this length by κ throughout. We use s to
represent the statistical parameter. Where concrete efficiency is concerned, we
introduce a second computational security parameter, λ, which represents the
length of a symmetric key of equivalent strength to a biprime of length 2κ.3 κ
and λ must vary together, and a recommendation for the relationship between
them has been laid down by NIST [Bar16].

Vectors and arrays are given in bold and indexed by subscripts; thus xi is
the ith element of the vector x, which is distinct from the scalar variable x.
When we wish to select a row or column from a two-dimensional array, we place
a ∗ in the dimension along which we are not selecting. Thus y∗,j is the jth

column of matrix y, and yj,∗ is the jth row. We use Pi to denote the party
with index i, and when only two parties are present, we refer to them as Alice
and Bob. Variables may often be subscripted with an index to indicate that
they belong to a particular party. When arrays are owned by a party, the party
index always comes first. We use |x| to denote the bit-length of x, and |y| to
denote the number of elements in the vector y.

Universal Composability. We prove our protocols secure in the Universal
Composability (UC) framework, and use standard UC notation. In Appendix A,
we give a high-level overview and refer the reader to [Can01] for further details.
In functionality descriptions, we leave some standard bookkeeping elements im-
plicit. For example, we assume that the functionality aborts if a party tries to
reuse a session identifier inappropriately, send messages out of order, etc. For
convenience, we provide a function GenSID, which takes any number of argu-
ments and deterministically derives a unique Session ID from those arguments.

3In other words, a biprime of length 2κ provides λ bits of security.

8

Chinese Remainder Theorem. The Chinese Remainder Theorem (CRT)
defines an isomorphism between a set of residues modulo a set of respective
coprime values and a single value modulo the product of the same set of coprime
values. This forms the basis of our sampling procedure.

Theorem 2.1 (CRT). Let m be a vector of coprime positive integers and let x
be a vector of numbers such that |m| = |x| = ` and 0 ≤ xj < mj for all j ∈ [`],
and finally let M ..=

∏
j∈[`] mj. Under these conditions there exists a unique

value y such that 0 ≤ y < M and y ≡ xj (mod mj) for every j ∈ [`].

We refer to x as the CRT form of y with respect to m. For completeness,
we give the CRTRecon algorithm, which finds the unique y given m and x.
Algorithm 2.2. CRTRecon(m,x)

1. With ` ..= |m|, compute M =
∏
j∈[`] mj .

2. For j ∈ [`], compute aj ..= M/mj and find bj satisfying aj · bj ≡ 1
(mod mj) using the Extended Euclidean Algorithm (see [Knu69]).

3. Output y ..=
∑
j∈[`] aj · bj · xj mod M .

3 Assumptions and Ideal Functionality
We begin this section by discussing the distribution of biprimes from which we
sample, and thus the precise factoring assumption that we make, and then we
give an efficient sampling algorithm and an ideal functionality that computes it.

3.1 Factoring Assumptions
The standard factoring experiment (Experiment 3.1) as formalized by Katz
and Lindell [KL15] is parametrized by an adversary A and a biprime-sampling
algorithm GenModulus. On input 1κ, this algorithm returns (N, p, q), where
N = p · q, and p and q are κ-bit primes.4

Experiment 3.1. FactorA,GenModulus(κ)

1. Run (N, p, q)← GenModulus(1κ).

2. Send N to A, and receive p′, q′ > 1 in return.

3. Output 1 if and only if p′ · q′ = N .

In many cryptographic applications, GenModulus(1κ) is defined to sample p
and q uniformly from the set of primes in the range [2κ−1, 2κ) [Gol01], and the

4Technically, Katz and Lindell specify that sampling failures are permitted with negligible
probability, and require GenModulus to run in strict polynomial time. We elide this detail.

9

factoring assumption with respect to this common GenModulus function states
that for every PPT adversary A there exists a negligible function negl such that

Pr [FactorA,GenModulus(κ) = 1] ≤ negl(κ).

Because efficiently sampling according to this uniform biprime distribution is
difficult in a multiparty context, most prior works sample according to a different
distribution, and thus using the moduli they produce requires a slightly different
factoring assumption than the traditional one. In particular, several recent
works use a distribution originally proposed by Boneh and Franklin [BF01],
which is well-adapted to multiparty sampling. Our work follows this pattern.

Boneh and Franklin’s distribution is defined by the sampling algorithm
BFGM, which takes as an additional parameter the number of parties n. The
algorithm samples n integer shares, each in the range [0, 2κ−logn),5 and sums
these shares to arrive at a candidate prime. This does not induce a uniform
distribution on the set of κ-bit primes. Furthermore, BFGM only samples indi-
vidual primes p or q that have p ≡ q ≡ 3 (mod 4), in order to facilitate efficient
distributed primality testing, and it filters out the subset of otherwise-valid
moduli N = p · q that have p ≡ 1 (mod q) or q ≡ 1 (mod p).6

Algorithm 3.2. BFGM(κ, n)

1. For i ∈ [n], sample pi ←
[
0, 2κ−logn) and qi ←

[
0, 2κ−logn) subject to

p1 ≡ q1 ≡ 3 (mod 4) and pj ≡ qj ≡ 0 (mod 4) for j ∈ [2, n].

2. Compute

p ..=
∑
i∈[n]

pi and q ..=
∑
i∈[n]

qi and N ..= p · q

3. If gcd(N, p + q − 1) = 1, and both p and q are primes, then output
(N, {(pi, qi)}i∈[n]). Otherwise, repeat this procedure from Step 1.

Any protocol whose security depends upon the hardness of factoring mod-
uli output by our protocol (including our protocol itself) must rely upon the
assumption that for every PPT adversary A,

Pr [FactorA,BFGM(κ, n) = 1] ≤ negl(κ)

3.2 The Distributed Biprime-Sampling Functionality
Unfortunately, our ideal modulus-sampling functionality cannot merely call
BFGM; we wish our functionality to run in strict polynomial time, whereas

5Boneh and Franklin [BF01] are somewhat ambiguous as to whether the lower bound on
each share is 2κ−logn−1 or 0. We take the latter interpretation, as have prior works [HMR+19,
FLOP18]. We do not believe the difference to be important.

6Boneh and Franklin actually propose two variations, one of which has no false negatives;
we choose the other variation, as it leads to a more efficient sampling protocol.

10

the running time of BFGM is only expected polynomial. Thus, we define a new
sampling algorithm, CRTSample, which might fail, but conditioned on success
outputs samples statistically close to BFGM.7 Furthermore, we give CRTSample
a specific distribution of failures that is tied to the design of our protocol. As a
second concession to our protocol design (and following [HMR+19]), CRTSample
takes as input up to n − 1 integer shares of p and q, arbitrarily determined by
the adversary, while the remaining shares are sampled randomly. We begin with
a few useful notions.

Definition 3.3 (Primorial Number). The ith primorial number is defined to be
the product of the first i prime numbers.

Definition 3.4 ((κ, n)-Near-Primorial Vector). Let ` be the largest number such
that the `th primorial number is less than 2κ−logn−1, and let m be a vector of
length ` such that m1 = 4 and m2, . . . ,m` are the odd factors of the `th primorial
number, in ascending order. m is the unique (κ, n)-near-primorial vector.

Definition 3.5 (m-Coprimality). Let m be a vector of integers. An integer x
is m-coprime if and only if it is not divisible by any mi for i ∈ [|m|].

Algorithm 3.6. CRTSample(κ, n, {(pi, qi)}i∈P∗)

1. Let m be the (κ, n)-near-primorial vector, with length `, and let M be
the product of m.

2. For i ∈ [n] \P∗, sample pi ← [0,M) and qi ← [0,M) subject to

pi ≡ qi ≡

{
3 (mod 4) if i = 1
0 (mod 4) if i 6= 1

and subject to p and q being m-coprime, where

p ..=
∑
i∈[n]

pi and q ..=
∑
i∈[n]

qi

are computed over the integers.

3. If gcd(p·q, p+q−1) = 1, and if both p and q are primes, and if p ≡ q ≡ 3
(mod 4), then output (success, p, q); otherwise, output (failure, p, q).

Boneh and Franklin [BF01, Lemma 2.1] showed that knowledge of n − 1
integer shares of the factors p and q does not give the adversary any meaningful
advantage in factoring biprimes from the distribution produced by BFGM and,
by extension, CRTSample. Hazay et al. [HMR+19, Lemma 4.1] extended this
argument to the malicious setting, wherein the adversary is allowed to choose
its own shares.

7CRTSample never outputs biprimes with factors smaller than κ, whereas BFGM outputs
such biprimes with negligible probability. The discrepancy of share ranges can be remedied
by using non-integer values of κ with BFGM.

11

Lemma 3.7 ([BF01, HMR+19]). Let n < κ and let (A1,A2) be a pair of
PPT algorithms. For (state, {(pi, qi)}i∈[n−1])← A1(1κ, 1n), let N be a biprime
sampled by running CRTSample(κ, n, {(pi, qi)}i∈[n−1]). If A2(state, N) outputs
the factors of N with probability at least 1/κd, then there exists an expected-
polynomial-time algorithm B that succeeds with probability 1/24n3κd in the ex-
periment FactorB,BFGM(κ, n).

Multiparty functionality. Our ideal functionality FRSAGen is a natural
embedding of CRTSample in a multiparty functionality: it receives inputs
{(pi, qi)}i∈P∗ from the adversary and runs a single iteration of CRTSample
with these inputs when invoked. It either outputs the corresponding modu-
lus N ..= p · q if it is valid, or indicates that a sampling failure has occurred.
Running a single iteration of CRTSample per invocation of FRSAGen enables sig-
nificant freedom in the use of FRSAGen, because it can be composed in different
ways to tune the trade-off between resource usage and execution time. It also
simplifies the analysis of the protocol πRSAGen that realizes FRSAGen, because the
analysis is made independent of the success rate of the sampling procedure.

The functionality may not deliver N to the honest parties for one of two
reasons: either CRTSample failed to sample a biprime, or the adversary caused
the computation to abort. In either case, the honest parties are informed of the
cause of the failure, and consequently the adversary is unable to conflate the two
cases. This is essentially the standard notion of security with abort, applied to
the multiparty computation of the CRTSample algorithm. In both cases, the p
and q output by CRTSample are given to the adversary. This leakage simplifies
our proof considerably, and we consider it benign, since the honest parties never
receive (and therefore cannot possibly use) N .
Functionality 3.8. FRSAGen(κ, n). Distributed Biprime Sampling

This n-party functionality attempts to sample an RSA modulus with prime
length κ, and interacts directly with an ideal adversary S who corrupts the
parties indexed by P∗. Let M be the largest number such that M/2 is a
primorial number and M < 2κ−logn.

Sampling: On receiving (sample, sid) from each party Pi for i ∈ [n] \P∗
and (adv-sample, sid, i, pi, qi) from S for i ∈ P∗, if 0 ≤ pi < M and
0 ≤ qi < M for all i ∈ P∗, then run CRTSample(κ, n, {(pi, qi)}i∈P∗), and
receive as a result either (success, p, q) or (failure, p, q).

• If p 6≡ 3 (mod 4) or q 6≡ 3 (mod 4), then send (factors, sid, p, q) to S
and abort, informing all parties in an adversarially delayed fashion.

• If p ≡ q ≡ 3 (mod 4), and the result was failure, then store
(non-biprime, sid, p, q) in memory and send (factors, sid, p, q) to S.

• If p ≡ q ≡ 3 (mod 4), and the result was success, then com-
pute N ..= p · q, store (biprime, sid, N, p, q) in memory, and send
(biprime, sid, N) to S.

12

Output: On receiving either (proceed, sid) or (cheat, sid) from S, if
(biprime, sid, N, p, q) or (non-biprime, sid, p, q) exists in memory,

• If proceed was received, then send either (biprime, sid, N) or
(non-biprime, sid) to all parties as adversarially delayed output, as ap-
propriate. Terminate successfully.

• If cheat was received, then abort, notifying all parties in an adversarially
delayed fashion, and send (factors, sid, p, q) directly to S.

Regardless, ignore all further instructions with this sid.

4 The Distributed Biprime-Sampling Protocol
In this section, we present the distributed biprime-sampling protocol πRSAGen,
with which we realize FRSAGen. We begin with a high-level overview, and then in
Section 4.2, we formally define the two ideal functionalities on which our protocol
relies, after which in Section 4.3 we give the protocol itself. In Section 4.4, we
present proof sketches of semi-honest and malicious security.

4.1 High-Level Overview
As described in the Introduction, our protocol derives from that of Boneh and
Franklin [BF01], the main technical differences relative to other recent Boneh-
Franklin derivatives [HMR+19, FLOP18] being the modularity with which it is
described and proven, and the use of CRT-based sampling. Our protocol has
three main phases, which we now describe in sequence.

Candidate Sieving. In the first phase of our protocol, the parties jointly
sample two κ-bit candidate primes p and q without any small factors, and mul-
tiply them to learn their product N . Our protocol achieves these tasks in a
unified, integrated way, thanks to the Chinese Remainder Theorem.

Consider a prime m and a set of shares xi for i ∈ [n] over the field Zm. As in
the description of CRTRecon, let a and b be defined such that a ·b ≡ 1 (mod m),
and let M be an integer. Observe that if m divides M , then∑

i∈[n]

xi 6≡ 0 (mod m) =⇒
∑
i∈[n]

a · b · xi mod M 6≡ 0 (mod m) (1)

Now consider a vector of coprime integers m of length `, and let M be their
product. Let x be a vector, each element secret shared over the fields defined
by the corresponding element of m, and let a and b be defined as in CRTRecon
(i.e., aj ..= M/mj and aj ·bj ≡ 1 (mod mj)). We can see that for any k, j ∈ [`]
such that k 6= j,

aj ≡ 0 (mod mk) =⇒
∑
i∈[n]

aj · bj · xi,j mod M ≡ 0 (mod mk) (2)

13

and the conjunction of Equations 1 and 2 gives us∑
j∈[`]

∑
i∈[n]

aj · bj · xi,j mod M ≡
∑
i∈[n]

xi,k (mod mk)

for all k ∈ [`]. Observe that this holds regardless of which order we perform the
sums in, and regardless of whether the mod M operation is done at the end, or
between the two sums, or not at all.

It follows then that we can sample n shares for an additive secret sharing
over the integers of a κ-bit value x (distributed between 0 and n·M) by choosing
m to be the (κ, n)-near-primorial vector (per Definition 3.4), instructing each
party Pi for i ∈ [n] to pick xi,j locally for j ∈ [`] such that 0 ≤ xi,j < mj , and
then instructing each party to locally reconstruct xi ..= CRTRecon(m,xi,∗), its
share of x. It furthermore follows that if the parties can contrive to ensure that∑

i∈[n]

xi,j 6≡ 0 (mod mj) (3)

for j ∈ [`], then x will not be divisible by any prime in m.
Observe next that if the parties sample two shared vectors p and q as above

(corresponding to the candidate primes p and q) and compute a shared vector
N of identical dimension such that∑

i∈[n]

pi,j ·
∑
i∈[n]

qi,j ≡
∑
i∈[n]

Ni,j (mod mj) (4)

for all j ∈ [`], then it follows that∑
i∈[n]

CRTRecon(m,pi,∗) ·
∑
i∈[n]

CRTRecon(m,qi,∗) =
∑
i∈[n]

CRTRecon(m,Ni,∗)

and from this it follows that the parties can calculate integer shares of N = p · q
by multiplying p and q together element-wise using a modular-multiplication
protocol for linear secret shares, and then locally running CRTRecon on the
output to reconstruct N . In fact, our sampling protocol makes use of a special
functionality FAugMul, which samples p, q, and N simultaneously such that the
conditions in Equations 3 and 4 hold.

There remains one problem: our vector m was chosen for sampling integer-
shared values between 0 and n ·M (with each share no larger than M), but N
might be as large as n2 ·M2. In order to avoid wrapping during reconstruction
of N , we must reconstruct with respect to a larger vector of primes (while
continuing to sample with respect to a smaller one). Let m now be of length `′,
and let ` continue to denote the length of the prefix of m with respect to which
sampling is performed. After sampling the initial vectors p, q, and N, each
party Pi for i ∈ [n] must extend pi,∗ locally to `′ elements, by computing

pi,j ..= CRTRecon
(
{mj′}j′∈[`] ,

{
pj′
}
j′∈[`]

)
mod mj

14

for j ∈ [` + 1, `′], and then likewise for qi,∗. Finally, the parties must use a
modular-multiplication protocol to compute the appropriate extension of N;
from this extended N, they can reconstruct shares of N = p · q. They swap
these shares, and thus each party ends the Sieving phase of our protocol with a
candidate biprime N and an integer share of each of its factors, pi and qi.

Each party completes the first phase by performing a local trial division to
check if N is divisible by any prime smaller than some bound B (which is a
parameter of the protocol). The purpose of this step is to reduce the number of
calls to FBiprime and thus improve efficiency.

Biprimality Test. The parties jointly execute a biprimality test, where every
party inputs the candidate N and its shares pi and qi, and receives back a bipri-
mality indicator. This phase essentially comprises a single call to a functionality
FBiprime, which allows an adversary to force spurious negative results, but never
returns false positive results. Though this phase is simple, much of the subtlety
of our proof concentrates here: we show via a reduction to factoring that cheat-
ing parties have a negligible chance to pass the biprimality test if they provide
wrong inputs. This eliminates the need to authenticate the inputs in any way.

Consistency Check. To achieve malicious security, the parties must ensure
that none among them cheated during the previous stages in a way that might
influence the result of the computation. This is what we have previously termed
the retroactive consistency check. If the biprimality test indicated that N is not
a biprime, then the parties use a special interface of FAugMul to reveal the shares
they used during the protocol, and then they verify locally and independently
that p and q are not both primes. If the biprimality test indicated that N is
a biprime, then the parties run a secure test (again via a special interface of
FAugMul) to ensure that length extensions of p and q were performed honestly.
To achieve semi-honest security, this phase is unnecessary, and the protocol can
end with the biprimality test.

4.2 Ideal Functionalities Used in the Protocol
Augmented Multiparty Multiplier. The augmented multiplier function-
ality FAugMul (Functionality 4.1) is a reactive functionality that operates in mul-
tiple phases and stores an internal state across calls. It is meant to help in
manipulating CRT-form secret shares. It contains five basic interfaces.

• The sample interface allows the parties to sample shares of non-zero multipli-
cation triplets over small primes. That is, given a prime m, the functionality
receives a triplet (xi, yi, zi) from every corrupted party Pi, and then samples
a triplet (xj , yj , zj)← Z3

m for every honest Pj conditioned on∑
i∈[n]

zi ≡
∑
i∈[n]

xi ·
∑
i∈[n]

yi 6≡ 0 (mod m)

In the context of πRSAGen, this is used to sample CRT-shares of p and q.

15

• The input and multiply interfaces, taken together, allow the parties to load
shares (with respect to some small prime modulus m) into the functionality’s
memory, and later perform modular multiplication on two sets of shares that
are associated with the same modulus. That is, given a prime m, each party
Pi inputs xi and, independently, yi, and when the parties request a product,
with each corrupt party Pj also supplying its own an output share zj , the
functionality samples a share of z from Zm for each honest party subject to∑

i∈[n]

zi ≡
∑
i∈[n]

xi ·
∑
i∈[n]

yi (mod m)

In the context of πRSAGen, this interface is used to perform length-extension
on CRT-shares of p and q.

• The check interface allows the parties to securely compute a predicate over
the set of stored values. In the context of πRSAGen, this is used to check that
the CRT-share extension of p and q has been performed correctly, when N is
a biprime.

• The open interface allows the parties to retroactively reveal their inputs to
one another. In the context of πRSAGen, this is used to verify the sampling
procedure and biprimality test when N is not a biprime.

These five interfaces suffice for the malicious version of the protocol, and the
first three alone suffice for the semi-honest version. We make a final adjustment,
which leads to a substantial efficiency improvement in the protocol with which
we realize FAugMul (which we describe in Appendix B). Specifically, we give the
adversary an interface by which it can request that any stored value be leaked to
itself, and by which it can (arbitrarily) determine the output of any call to the
sample or multiply interfaces. However, if the adversary uses this interface,
the functionality remembers, and informs the honest parties by aborting when
the check or open interfaces is used.
Functionality 4.1. FAugMul(n). Augmented n-Party Multiplication

This functionality is parametrized by the party count n. In addition to
the parties it interacts with an ideal adversary S who corrupts the parties
indexed by P∗. The remaining honest parties are indexed by P* ..= [n]\P∗.

Cheater Activation: Upon receiving (cheat, sid) from S, store
(cheater, sid) in memory and send every record of the form
(value, sid, i, xi,m) to S. For the purposes of this functionality, we will
consider session IDs to be fresh even when a cheater record already exists
in memory.

16

Sampling: Upon receiving (sample, sid1, sid2,m) from each party Pi for
i ∈ P* and (adv-sample, sid1, sid2, xi, yi, zi,m) from S for i ∈ P∗,a if sid1
and sid2 are fresh, agreed-upon values and if m is an agreed-upon prime,
and if neither (cheater, sid1) nor (cheater, sid2) exists in memory, then
sample (xi, yi, zi)← Z3

m uniformly for each i ∈ P* subject to∑
i∈[n]

zi ≡
∑
i∈[n]

xi ·
∑
i∈[n]

yi 6≡ 0 (mod m)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) exists
in memory, then send (cheat-sample, sid1, sid2) to S and in response re-
ceive (cheat-samples, sid1, sid2, {(xi, yi, zi)}i∈P*) where 0 ≤ xi, yi, zi < m
for all i and where ∑

i∈[n]

zi 6≡ 0 (mod m)

(if these conditions are violated, then ignore the response from S). Re-
gardless, store (value, sid1, i, xi,m) and (value, sid2, i, yi,m) in memory
for i ∈ [n], and then send (sampled-product, sid1, sid2, xi, yi, zi) to each
party Pi as adversarially delayed private output.

Input: Upon receiving (input, sid, xi,m) from each party Pi, where i ∈
[n]: if sid is a fresh, agreed-upon value and if m is an agreed-upon prime,
and if 0 ≤ xi < m for all i ∈ [n], then store (value, sid, i, xi,m) in memory
for each i ∈ [n] and send (value-loaded, sid) to all parties. If (cheater, sid)
exists in memory, then send (value, sid, i, xi,m) to S for each i ∈ [n].

Multiplication: Upon receiving (multiply, sid1, sid2, sid3) from each
party Pi for i ∈ P* and (adv-multiply, sid1, sid2, sid3, i, zi) from S for
each i ∈ P∗,a if all three session IDs are agreed upon and sid3 is fresh, and
if no record of the form (cheater, sid1) or (cheater, sid2) exists in memory,
and if records of the form (value, sid1, i, xi,m1) and (value, sid2, i, yi,m2)
exist in memory for all i ∈ [n] such that m1 = m2, then sample zi ← Zm1

for i ∈ P* subject to∑
i∈[n]

zi ≡
∑
i∈[n]

xi ·
∑
i∈[n]

yi (mod m1)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) ex-
ists in memory, then send (cheat-multiply, sid1, sid2, sid3) to S and in
response receive (cheat-product, sid3, {zi}i∈P*) where 0 ≤ zi < m1 for all
i. Regardless, send (product, sid3, zi) to each party Pi for i ∈ [n] as ad-
versarially delayed private output. Note that this procedure only permits
multiplications of values associated with the same modulus.

17

Predicate Cheater Check: Upon receiving (check, sids, f) from all
parties, where f is the description of a predicate over the set of stored
values associated with the vector of session IDs sids, if f is not agreed upon,
or if any record (cheater, sid) exists in memory such that sid ∈ sids, then
abort, informing all parties in an adversarially delayed fashion. Otherwise,
let x be the vector of stored values associated with sids, or in other words,
let it be a vector such that for all j ∈ [|x|] and i ∈ [n], records of the form
(value, sidsj , i, yi,m) exist in memory such that

0 ≤ xj < m and xj ≡
∑
i∈[n]

yi (mod m)

Send (predicate-result, sids, f(x)) to all parties as adversarially delayed
private output, and refuse all future messages with any session ID in sids.

Input Revelation: Upon receiving (open, sid) from all parties, if a record
of the form (cheater, sid) exists in memory, then abort, informing all par-
ties in an adversarially delayed fashion. Otherwise, for each record of the
form (value, sid, i, xi) in memory, send (opening, sid, i, xi) to all parties as
adversarially delayed output. Refuse all future messages with this sid.

aIn the semi-honest setting, the adversary does not send these values to the func-
tionality; instead the functionality samples the shares for corrupt parties just as it does
for honest parties.

Biprimality Test. The biprimality-test functionality FBiprime (Function-
ality 4.2) abstracts the behavior of the biprimality test of Boneh and
Franklin [BF01]. The functionality receives from each party a candidate biprime
N , along with shares of its factors p and q. It checks whether p and q are primes
and whether N = p · q. The adversary is given an additional interface, by which
it can ask the functionality to leak the honest parties’ inputs, but when this
interface is used then the functionality reports to the honest parties that N is
not a biprime, even if it is one.
Functionality 4.2. FBiprime(M,n). Distributed Biprimality Test

This functionality is parametrized by the integer M and the party-count
n. In addition to the parties it interacts with an ideal adversary S.

Biprimality Test:

1. Wait to receive (check-biprimality, sid, N, pi, qi) from each party Pi
for i ∈ [n], where sid is a fresh, agreed-upon value.

2. Over the integers, compute

p ..=
∑
i∈[n]

pi and q ..=
∑
i∈[n]

qi and N ′ ..= p · q

18

3. If all parties agreed on the value of N in Step 1, and N = N ′,
and both p and q are primes, and p 6≡ 1 (mod q), and q 6≡ 1
(mod p), and 0 ≤ p < M and 0 ≤ q < M , then send a message
(biprime, sid) to S. If S responds with (proceed, sid), then output
(biprime, sid) to all parties as adversarially delayed output. If S re-
sponds with (cheat, sid)a, or if any of the previous predicates is false,
then output (leaked-shares, sid, {(pi, qi)}i∈[n]) directly to S, and out-
put (not-biprime, sid) to all parties as adversarially delayed output.
aSemi-honest adversaries are forbidden to send the cheat instruction.

Realizations In Appendix B, we discuss a protocol to realize FAugMul, and in
Section 5, we propose a protocol to realize FBiprime. Both make use of generic
MPC, but in such a way that no generic MPC is required unless N is a biprime.

4.3 The Protocol Itself
We refer the reader back to Section 4.1 for an overview of our protocol. We
have mentioned that it requires a vector of coprime values, which is prefixed by
the (κ, n)-near-primorial vector. We now give this vector a precise definition.
Note that the efficiency of our protocol relies upon this vector, because we use
its contents to sieve candidate primes. Since smaller numbers are more likely to
be factors for the candidate primes, we choose the largest allowable set of the
smallest sequential primes.

Definition 4.3 ((κ, n)-Compatible Parameter Set). Let `′ be the smallest num-
ber such that the `′th primorial number is greater than 22κ−1, and let m be a
vector of length `′ such that m1 = 4 and m2, . . . ,m`′ are the odd factors of the
`′

th primorial number, in ascending order. (m, `′, `,M) is the (κ, n)-compatible
parameter set if ` < `′ and the prefix of m of length ` is the (κ, n)-near-primorial
vector per Definition 3.4, and if M is the product of this prefix.

Protocol 4.4. πRSAGen(κ, n,B). Distributed Biprime Sampling
This protocol is parametrized by the RSA prime length κ, the number of
parties n, and the trial-division bound B. Let (m, `′, `,M) be the (κ, n)-
compatible parameter set, per Definition 4.3. In this protocol the parties
have access to the functionalities FAugMul and FBiprime.

19

Candidate Sieving:

1. Upon receiving input (sample, sid) from the environment, the parties
begin the protocol. Every party Pi for i ∈ [n] computes three vectors of
session IDs

psids ..= {GenSID(sid, j, p)}j∈[`′]

qsids ..= {GenSID(sid, j, q)}j∈[`′]

Nsids ..= {GenSID(sid, j, N)}j∈[`′]

and sends (sample, psidsj , qsidsj ,mj) to FAugMul(n) for every j ∈
[2, `], and receives (sampled-product, psidsj , qsidsj ,pi,j ,qi,j ,Ni,j) in
response. The parties also set p1,1

..= q1,1
..= 3 and pi′,1 ..= qi′,1 ..= 0

for i′ ∈ [2, n].

2. Each party Pi for i ∈ [n] computes

pi ..= CRTRecon
(
{mj}j∈[`] ,

{
pi,j
}
j∈[`]

)
qi ..= CRTRecon

(
{mj}j∈[`] ,

{
qi,j
}
j∈[`]

)
and then, for j ∈ [`+ 1, `′], Pi computes

pi,j ..= pi mod mj and qi,j ..= qi mod mj

Note that each party Pi is now in possession of a pair of vectors

pi,∗ ∈ Zm1 × . . .× Zm`′ and qi,∗ ∈ Zm1 × . . .× Zm`′

3. For j ∈ [`+ 1, `′], every party Pi for i ∈ [n] sends the following sequence
of messages to FAugMul(n), waiting for confirmation after each:

(a) (input, psidsj ,pi,j ,mj)
(b) (input, qsidsj ,qi,j ,mj)
(c) (multiply, psidsj , qsidsj ,Nsidsj)

and at the end of this sequence, each party Pi receives
(product,Nsidsj ,Ni,j) from FAugMul(n) in response. Note that each
party Pi is now in possession of a vector Ni,∗ ∈ Zm1 × . . .× Zm`′ .

4. For j ∈ [2, `′], each party Pi for i ∈ [n] broadcasts Ni,j . Once all parties
have received shares from all other parties, they compute

N ..= CRTRecon

m,

∑
i′∈[n]

Ni′,j mod mj

j∈[`′]

20

5. Each party Pi performs a local trial division on N by all primes less
than B. If N is divisible by some prime, then the parties skip directly
to Step 7, and take the privacy-free branch.

Biprimality Test:

6. Each party Pi for i ∈ [n] sends (check-biprimality, sid, N, pi, qi) to
FBiprime(M,n) and waits for either (biprime, sid) or (not-biprime, sid)
in response.

Consistency Check: a

7. Let f be the predicate that is defined to compute

pi′ ..= CRTRecon
(
m,pi′,∗

)
and qi′ ..= CRTRecon

(
m,qi′,∗

)
for all i′ ∈ [n] and to return 1 if and only if

N =
∑
i′∈[n]

pi′ ·
∑
i′∈[n]

qi′

∧ 0 ≤ pi′ < M ∧ 0 ≤ qi′ < M for all i′ ∈ [n]

where the sums and product are taken over the integers.b

• If biprime is received from FBiprime(M,n), then N is a biprime,
and a privacy-preserving check must be performed. Each party
sends (check, psids‖qsids, f) to FAugMul(n). If FAugMul returns
(predicate-result, psids‖qsids, 1) then the parties halt successfully
and output (biprime, sid, N) to the environment; otherwise, they
abort.
• If not-biprime is received from FBiprime(M,n), then either N is not a
biprime or some party has cheated; consequently, a privacy-free check
is performed.
(a) For j ∈ [2, `′], each party Pi for i ∈ [n] sends (open, psidsj) and

(open, qsidsj) to FAugMul(n). If Pi observes FAugMul(n) to abort in
response to any of these queries, then Pi itself aborts. Otherwise,
Pi receives (opening, psidsj ,pi′,j) and (opening, qsidsj ,qi′,j) for
each i′ ∈ [n] and j ∈ [2, `′].

(b) The parties individually check that the predicate f holds over
the vectors of shares which they now all possess. If this predi-
cate holds and p and q are not both prime, then all parties halt
successfully and output (non-biprime, sid) to the environment.
Otherwise, a party has cheated, and they abort.

21

aIf only security against semi-honest adversaries is required, the protocol can termi-
nate after the Biprimality-Test phase, and these checks are unnecessary.

bNote that computations over the (unbounded) integers are technically inexpressible
as circuits, as in practice this predicate must be expressed. Thus, in practice, the
predicate must instead use a modulus sufficiently large to make overflow impossible,
given the input-size constraints.

4.4 Security Sketches
We now informally argue that πRSAGen realizes FRSAGen in the semi-honest and
malicious models. We give a full proof for the malicious model in Appendix C.

Theorem 4.5. πRSAGen UC-realizes FRSAGen with perfect security in the
(FAugMul,FBiprime)-hybrid model against a static, semi-honest adversary that cor-
rupts up to n− 1 parties.

Proof Sketch. In lieu of arguing for the correctness of our protocol, we refer
the reader to the explanation in Section 4.1, and focus here on the strategy of a
simulator S against a semi-honest adversary A who corrupts the parties indexed
by P∗. S forwards all messages between A and the environment faithfully.

In Step 1 of πRSAGen, for each j ∈ [2, `], S receives the sample instruction
with modulus mj on behalf of FAugMul from all parties indexed by P∗. For each
j it then samples (pi,j ,qi,j ,Ni,j)← Z3

mj
uniformly for i ∈ P∗, and returns each

triple to the appropriate party.
Step 2 involves no interaction on the part of the parties, but it is at this

point that S computes pi and qi for i ∈ P∗, in the same way that the parties
themselves do. Note that since p∗,1 and q∗,1 are deterministically chosen, they
are known to S. The simulator then sends these shares to FRSAGen via the
functionality’s adv-input interface, and receives in return either a biprime N ,
or two factors p and q such that N ..= p · q is not a biprime. Regardless, it
instructs FRSAGen to proceed.

In Step 3 of πRSAGen, S receives two input instructions from each corrupted
party for each j ∈ [`+1, `′] on behalf of FAugMul, and confirms receipt as FAugMul
would. Subsequently, for each j ∈ [` + 1, `′], the corrupt parties all send a
multiply instruction, and then S samples Ni,j ← Zmj for i ∈ [n] subject to∑

i∈[n]

Ni,j ≡ N (mod mj)

and returns each share to the matching corrupt party.
In Step 4 of πRSAGen, for every j ∈ [`′], every corrupt party Pi′ for i′ ∈ P∗,

and every honest party Pi for i ∈ [n] \P∗, S sends Ni,j to Pi′ on behalf of Pi,
and receives Ni′,j (which it already knows) in reply.

To simulate the final steps of πRSAGen, S tries to divide N by all primes
smaller than B. If it succeeds, then the protocol is complete. Otherwise, it
receives check-biprimality from all of the corrupt parties on behalf of FBiprime,

22

and replies with biprime or not-biprime as appropriate. It can be verified by
inspection that the view of the environment is identically distributed in the ideal-
world experiment containing S and honest parties that interact with FRSAGen,
and the real-world experiment containing A and parties running πRSAGen.

Theorem 4.6. If factoring biprimes sampled by BFGM is hard, then πRSAGen
UC-realizes FRSAGen in the (FAugMul,FBiprime)-hybrid model against a static, ma-
licious PPT adversary that corrupts up to n− 1 parties.

Proof Sketch. We observe that if the adversary simply follows the specification
of the protocol and does not cheat in its inputs to FAugMul or FBiprime, then
the simulator can follow the same strategy as in the semi-honest case. At any
point if the adversary deviates from the protocol, the simulator requests FRSAGen
to reveal all honest parties’ shares, and thereafter the simulator uses them by
effectively running the code of the honest parties. This matches the adversary’s
view in the real protocol as far as the distribution of the honest parties’ shares
is concerned.

It remains to be argued that any deviation from the protocol specification
will also result in an abort in the real world with honest parties, and will addi-
tionally be recognized by the honest parties as an adversarially induced cheat
(as opposed to a statistical sampling failure). Note that the honest parties must
only detect cheating when N is truly a biprime and the adversary has sabotaged
a successful candidate; if N is not a biprime and would have been rejected any-
way, then cheat-detection is unimportant. We analyze all possible cases where
the adversary deviates from the protocol below. Let N be defined as the value
implied by parties’ sampled shares in Step 1 of πRSAGen.

Case 1: N is a non-biprime and reconstructed correctly. In this case,
FBiprime will always reject N as there exist no satisfying inputs (i.e., there are
no two prime factors p, q such that p · q = N).

Case 2: N is a non-biprime and reconstructed incorrectly as N ′. If
by fluke N ′ happens to be a biprime then the incorrect reconstruction will be
caught by the explicit secure predicate check during the consistency-check phase.
If N ′ is a non-biprime then the argument from the previous case applies.

Case 3: N is a biprime and reconstructed correctly. If consistent inputs
are used for the biprimality test and nobody cheats, the candidate N is suc-
cessfully accepted (this case essentially corresponds to the semi-honest case).
Otherwise, if inconsistent inputs are used for the biprimality test, one of the
following events will occur:

• FBiprime rejects this candidate. In this case, all parties reveal their shares of
p and q to one another (with guaranteed correctness via FAugMul) and locally
test their primality. This will reveal that N was a biprime, and that FBiprime
must have been supplied with inconsistent inputs, implying that some party
has cheated.

23

• FBiprime accepts this candidate. This case occurs with negligible probability
(assuming factoring is hard). Because N only has two factors, there is exactly
one pair of inputs that the adversary can supply to FBiprime to induce this
scenario, apart from the pair specified by the protocol. In our full proof (see
Appendix C) we show that finding this alternative pair of satisfying inputs
implies factoring N . We are careful to rely on the hardness of factoring only
in this case, where by premise N is a biprime with κ-bit factors (i.e., an
instance of the factoring problem).

Case 4: N is a biprime and reconstructed incorrectly as N ′. If N ′ is a
biprime then the incorrect reconstruction will be caught during the consistency-
check phase, just as when N is a biprime. If N ′ is a non-biprime then it will
by rejected by FBiprime, inducing all parties to reveal their shares and find that
their shares do not in fact reconstruct to N ′, with the implication that some
party has cheated.

Thus the adversary is always caught when trying to sabotage a true biprime,
and it can never sneak a non-biprime past the consistency check. Because the
real-world protocol always aborts in the case of cheating, it is indistinguishable
from the simulation described above, assuming that factoring is hard.

5 Distributed Biprimality Testing
In this section, we present protocols realizing FBiprime. In Section 5.1, we discuss
the semi-honest setting, and in Section 5.2, the malicious setting.

5.1 The Semi-Honest Setting
In the semi-honest setting, FBiprime can be realized by the biprimality-testing
protocol of Boneh and Franklin [BF01]. Loosely speaking, the Boneh-Franklin
protocol is a variant of the Miller-Rabin test: for a randomly chosen γ ∈ Z∗N
with Jacobi symbol 1, it checks whether γ(N−p−q+1)/4 ≡ ±1 (mod N) (recall
that ϕ(N) = N − p − q + 1). A biprime will always pass this test, but non-
biprimes may yield a false positive with probability 1/2. The test is repeated s
times (either sequentially or concurrently) in order to bound the probability of
proceeding with a false positive to 2−s (where s is a statistical parameter).

The above test filters out all non-biprimes except those with factors of the
form p = ab1

1 and q = ab2
2 , with q ≡ 1 (mod ab1−1

1). This final class of non-
biprimes is filtered by securely sampling r ← ZN , computing z ..= r · (p+ q− 1),
and then testing whether gcd(z,N) = 18. Boneh and Franklin suggest that the
secure sampling of r and the computation of z can be done via generic MPC; we
provide a functionality FComCompute (see Appendix A.2) that is adequate for the
task, but note that there are more efficient methods. Regardless, we note that

8This is accomplished by testing gcd(z mod N,N) = 1, which is equivalent as any factor
of z and N also divides z mod N .

24

this final test does induce some false negatives (modeled by BFGM), and refer
the reader to Boneh and Franklin [BF01, Section 4.1] for a more comprehensive
discussion. The following lemma follows immediately from their work.
Lemma 5.1. The biprimality-testing protocol described by Boneh and
Franklin [BF01] UC-realizes FBiprime with statistical security in the FComCompute-
hybrid model against a static, semi-honest adversary who corrupts up to n − 1
parties.

5.2 The Malicious Setting
Unlike a semi-honest adversary, we permit a malicious adversary to force a true
biprime to fail our biprimality test, and detect such behavior using independent
mechanisms in the πRSAGen protocol. However, we must ensure that a non-
biprime can never pass the test with more than negligible probability. To achieve
this, we use a derivative of the biprimality-testing protocol of Frederiksen et
al. [FLOP18]; relative to their protocol, ours is simpler, and we prove that it
UC-realizes FBiprime.

The protocol essentially comprises a randomized version of the semi-honest
Boneh-Franklin test described previously, followed by a Schnorr-like protocol to
verify that the test was performed correctly. The soundness error of the under-
lying biprimality test is compounded by the Schnorr-like protocol’s soundness
error to yield a combined error of 3/4; this necessitates an increase in the num-
ber of iterations by a factor of log4/3(2) < 2.5. While this is sufficient to ensure
the test itself is carried out honestly, it does not ensure the correct inputs are
used. Consequently, generic MPC is used to verify the relationship between the
messages involved in the Schnorr-like protocol and the true candidate given by
N and shares of its factors. As a side effect, this generic computation samples
r ← ZN and outputs z = r · (p + q − 1) mod N so that the GCD test can
afterward be run locally by each party.

Our protocol makes use of a number of subfunctionalities, all of which are
standard and described in Appendix A.2. Namely, we use a coin-tossing func-
tionality FCT to uniformly sample an element from some set, the one-to-many
commitment functionality FCom, the generic MPC functionality over commit-
ted inputs FComCompute, and the integer-sharing-of-zero functionality FZero. In
addition, the protocol uses the algorithm VerifyBiprime (Algorithm 5.3).
Protocol 5.2. πBiprime(M,n). Distributed Biprimality Testing

This protocol is parametrized by an integer M and the number of parties
n. In addition, there is a statistical parameter s. The parties have access
to the FCT, FCom, FComCompute, and FZero functionalities.

Input Commitment:

1. Upon receiving input (check-biprimality, sid, N, pi, qi) from the envi-
ronment, each party Pi for i ∈ [n] samples τ i,j ← ZM ·2s+1 for j ∈ [2.5s]
and commits to these values, along with its shares of p and q, by sending

25

(commit,GenSID(sid, i), (pi, qi, τ i,∗)) to FComCompute(n).

Boneh-Franklin Test:

2. Each party Pi for i ∈ [n] sends (sample, sid) to FZero(n, 22κ+s) and
receives (zero-share, sid, ri) in response.

3. For j ∈ [2.5s], the parties invoke FCT(n, JN), where JN is the subdomain
of Z∗N that contains only values with Jacobi symbol 1. The parties define
vector γ that contains the 2.5s sampled values.

4. For every j ∈ [2.5s], party P1 computesa

χ1,j
..= γ

r1−(p1+q1−6)/4
j mod N

and every other party Pi for i ∈ [2, n] computes

χi,j
..= γ

ri−(pi+qi)/4
j mod N

5. Every Pi for i ∈ [n] sends (commit,GenSID(sid, i),χi,∗, [n]) to FCom(n).

6. After being notified that all other parties are committed, each party Pi
for i ∈ [n] sends (decommit,GenSID(sid, i)) to FCom(n), and in response
receives χi′,∗ from FCom(n) for i′ ∈ [n] \ {i}.

7. The parties output (not-biprime, sid) to the environment and halt if
there exists j ∈ [2.5s] such that

γ
(N−5)/4
j ·

∏
i∈[n]

χi,j 6≡ ±1 (mod N)

Consistency Check and GCD Test:

8. For j ∈ [2.5s], each party Pi for i ∈ [n] computes αi,j ..= γ
τ i,j
j mod N .

The parties all broadcast the values they have computed to one another.

9. The parties all send (flip, sid) to FCT(n, {0, 1}2.5s) to obtain an agreed-
upon random bit vector c of length 2.5s.

10. For j ∈ [2.5s], party P1 computes ζ1,j
..= τ 1,j−cj ·(p1 +q1)/4, and every

other party Pi for i ∈ [2, n] computes ζi,j ..= τ i,j − cj · (pi + qi − 6)/4.
They all broadcast the values they have computed to one another.

11. The parties halt and output (not-biprime, sid) if there exists any j ∈
[2.5s] such that ∏

i∈[n]

γ
ζi,j
j 6≡

∏
i∈[n]

αi,j · χ
cj
i,j (mod N)

26

12. Let C be a circuit computing VerifyBiprime(N,M, c, {·, ·, ·, ζi,∗}i∈[n]);
that is, let it be a circuit representation of Algorithm 5.3 with
the public values N , M , c, and ζ hardcoded. The parties send
(compute, sid, {GenSID(sid, i)}i∈[n], C) to FComCompute(n), and in re-
sponse they all receive (result, sid, z). If z = ⊥, or if FComCompute(n)
aborts, then the parties halt and output (not-biprime, sid).

13. The parties halt and output (biprime, sid) to the environment if
gcd(z,N) = 1, or halt and output (not-biprime, sid) otherwise.
aRecall that p1 ≡ q1 ≡ 3 (mod 4), and so subtracting 6 from their sum ensures that

division by 4 can be performed without computing a modular multiplicative inverse in
Z∗
N . We compensate for this offset using another offset in Step 7.

Below we present the algorithm VerifyBiprime that is used for the GCD test.
The inputs are the candidate biprime N , an integer M (the bound on the
shares’ size), a bit-vector c of length 2.5s, and for each i ∈ [n] a tuple consisting
of the shares pi and qi with the Schnorr-like messages τ i,∗ and ζi,∗ generated
by Pi. The algorithm verifies that all input values are compatible, and returns
z = r · (p+ q − 1) mod N for a random r.
Algorithm 5.3. VerifyBiprime(N,M, c, {(pi, qi, τ i,∗, ζi,∗)}i∈[n])

1. Sample r ← ZN and compute

z ..= r ·
(
− 1 +

∑
i∈[n]

(pi + qi)
)

mod N

2. Return z if and only if it holds that

N =
∑
i∈[n]

pi ·
∑
i∈[n]

qi

∧ 0 ≤ pi < M ∧ 0 ≤ qi < M for all i ∈ [n]
∧ τ 1,j = ζ1,j + cj · (p1 + q1 − 6)/4 for all j ∈ [2.5s]
∧ τ i,j = ζi,j + cj · (pi + qi)/4 for all i ∈ [2, n] and j ∈ [2.5s]

If any part of the above predicate does not hold, output ⊥.

Theorem 5.4. πBiprime UC-realizes FBiprime in the (FCom,FComCompute,FCT,
FZero)-hybrid model with statistical security against a static, malicious adver-
sary that corrupts up to n− 1 parties.

Proof Sketch. Our simulator S for FBiprime receives N as common input. Let
P∗ and P* be vectors indexing the corrupt and honest parties, respectively.
To simulate Steps 1 through 3 of πBiprime, S simply behaves as FCT, FZero, and
FComCompute would in its interactions with the corrupt parties on their behalf,
remembering the values received and transmitted. Before continuing, S submits

27

the corrupted parties’ shares of p and q to FBiprime on their behalf. In response,
FBiprime either informs S that N is a biprime, or leaks the honest parties’ shares.
In Step 4, S again behaves exactly as FCom would. During the remainder of the
protocol, the simulator must follow one of two different strategies, conditioned
on whether or not N is a biprime. We will show that both strategies lead to a
simulation that is statistically indistinguishable from the real-world experiment.

• If FBiprime reported that N is a biprime, then we know by the specification
of FBiprime that the corrupt parties committed to correct shares of p and q
in Step 1 of πBiprime. Boneh and Franklin [BF01] showed that the value (i.e.,
sign) of the right-hand side of the equality in Step 7 is predictable and related
to the value of γj . We refer to them for a precise description and proof. If
without loss of generality we take that value to be 1, then S can simulate
iteration j of Steps 6 and 7 as follows. First, S computes χ̂i,j for i ∈ P∗ to be
the corrupt parties’ ideal values of χi,j as defined in Step 4 of πBiprime. Then,
S samples χi,j ← Z∗N uniformly for i ∈ P* subject to

∏
i∈P*

χi,j ≡
γ

(5−N)/4
j∏

i∈P∗
χ̂i,j

(mod N)

and simulates Step 6 by releasing χi,j for i ∈ P* to the corrupt parties on
behalf of FCom. These values are statistically close to their counterparts in
the real protocol. Finally, S simulates Step 7 by running the test for itself
and sending the cheat command to FBiprime on failure.
Given the information now known to S, Steps 8 through 11 of πBiprime can be
simulated in a manner similar to the simulation of a common Schnorr protocol:
S simply chooses ζi,∗ ← Z2.5s

M ·2s+1 uniformly for i ∈ P*, fixes c ← {0, 1}2.5s
ahead of time, and then works backwards via the equation in Step 11 to
compute the values of αi,∗ for i ∈ P* that it must send on behalf of the honest
parties in Step 8. These values are statistically close to their counterparts in
the real protocol.
S finally simulates the remaining steps of πBiprime by checking the VerifyBiprime
predicate itself (since the final GCD test is purely local, no action need be
taken by S). If at any point after Step 4 the corrupt parties have cheated
(i.e., sent an unexpected value or violated the VerifyBiprime predicate), then
S sends the cheat command to FBiprime. Otherwise, it sends the proceed
command to FBiprime, completing the simulation.

• If FBiprime reported that N is not a biprime (which may indicate that the
corrupt parties supplied incorrect shares of p or q), then it also leaked the
honest parties’ shares of p and q to S. Thus, S can simulate Steps 4 through 13
of πBiprime by running the honest parties’ code on their behalf. In all instances
of the ideal-world experiment, the honest parties report to the environment
that N is a non-biprime. Thus, we need only prove that there is no strategy

28

by which the corrupt parties can successfully convince the honest parties that
N is a biprime in the real world.
In order to get away with such a real-world cheat, the adversary must cheat
in every iteration j of Steps 4 through 6 for which

γ
(N−p−q)/4
j 6≡ ±1 (mod N)

Specifically, in every such iteration j, the corrupt parties must contrive to
send values χi,j for i ∈ P∗ such that

γ
(N−5)/4
j ·

∏
i∈[n]

χi,j ≡ γ
(N−p−q)/4+∆1,j
j ≡ ±1 (mod N)

for some nonzero offset value ∆1,j . We can define a similar offset ∆2,j for
the corrupt parties’ transmitted values of αi,j , relative to the values of τ i,j
committed in Step 1:

γ
∆2,j
j ·

∏
i∈[n]

αi,j ≡
∏
i∈[n]

γ
τ i,j
j (mod N)

Since we have presupposed that the protocol outputs biprime, we know that
the corrupt parties must transmit correctly calculated values of ζi,∗ in Step 10
of πBiprime, or else Step 12 would output non-biprime when these values are
checked by the VerifyBiprime predicate. It follows from this fact and from the
equation in Step 11 that ∆2,j ≡ cj ·∆1,j (mod ϕ(N)), where ϕ(·) is Euler’s
totient function. However, both ∆1,∗ and ∆2,∗ are fixed before c is revealed
to the corrupt parties, and so the adversary can succeed in this cheat with
probability at most 1/2 for any individual iteration j.
Per Boneh and Franklin [BF01, Lemma 4.1], a particular iteration j of Steps 4
through 6 of πBiprime produces a false positive result with probability at most
1/2 if the adversary behaves honestly. If we assume that the adversary cheats
always and only when a false positive would not have been produced by honest
behavior, then the total probability of an adversary producing a positive
outcome in the jth iteration of Steps 4 through 6 is upper-bounded by 3/4.
The probability that an adversary succeeds over all 2.5s iterations is therefore
at most (3/4)2.5s < 2−s. Thus, the adversary has a negligible chance to force
the acceptance of a non-biprime in the real world, and the distribution of
outcomes produced by S is statistically indistinguishable from the real-world
distribution.

6 Efficiency Analysis
In this section we give both an asymptotic and a closed-form concrete cost
analysis of our protocol, with both semi-honest and malicious security. We
begin by addressing the success probability of our ideal functionality FRSAGen,
as determined by analysis of the sampling function CRTSample that it uses. We

29

also discuss various strategies for composing invocations of FRSAGen to amplify
the probability that a biprime is successfully produced. After this, we analyze
the costs of the protocols realizing FAugMul and FBiprime in Section 6.2, and in
Section 6.3, we compose those costs to give an overall cost for each invocation
of πRSAGen. In Section 6.4, we discuss a compositional strategy that leads to
constant or expected-constant rounds overall, and calculate the precise number
of rounds required. Finally, in Section 6.5, we provide a performance comparison
to the protocol of Frederiksen et al. [FLOP18].

6.1 Per-Instance Success Probability
By construction, the success probability of FRSAGen is identical to that of
CRTSample. To bound the success probability of CRTSample, it suffices to
determine the probability that a randomly chosen value is prime, conditioned
on that value having m-coprimality (per Definition 3.5) relative to the (κ, n)-
near-primorial vector m of length `. We begin by bounding the probability of
finding a prime from below, relative to max(m), the largest value in m.

Lemma 6.1 ([BF01]). Given a (κ, n)-near-primorial vector m,

Pr [p is prime | p← Z2κ s.t. p is m-coprime] ≥ 2.57 · ln max(m)
κ

Observe that this is a concrete lower bound. Next, in the interest of asymp-
totic analysis, we bound the value of the maximum element in m. We first adapt
a lemma from Rosser and Schoenfeld [RS62] to bound max(m) with respect to
the product of the elements of m, and we then use this to construct a bound
with respect to κ.

Lemma 6.2 ([RS62], Theorem 4). Given a (κ, n)-near-primorial vector m and
its product M , it holds that max(m) ∈ Θ(logM).

Lemma 6.3. Given a (κ, n)-near-primorial vector m, it holds that max(m) ∈
Ω(κ).

Proof. Let M be the product of m. By Definition 3.4, M is the largest in-
teger such that M/2 is a primorial and M < 2κ−logn. From these facts, the
prime number theorem gives us M ∈ Ω(2κ−logn−logκ). Combining this with
Lemma 6.2 yields max(m) ∈ Ω(κ − logn − log κ) and finally, Lemma 3.7 con-
strains 2 ≤ n < κ, which yields max(m) ∈ Ω(κ).

Combining Lemmas 6.1 and 6.3 and considering that CRTSample must sam-
ple two primes simultaneously (but independently) yields an asymptotic figure
for the success probability of CRTSample. Since this governs the number of
times FRSAGen must be invoked in order to generate a biprime, we refer to it as
our sampling-efficiency theorem.

Theorem 6.4 (Sampling-Efficiency Theorem). For any strict subset P∗ ⊂ [n]
and any (pi, qi) ∈ Z2

2κ for i ∈ P∗, CRTSample(κ, n, {(pi, qi)}i∈P∗) samples a
biprime with probability Ω(log2 κ/κ2).

30

κ ` `′ max(m) Pr[Success]

Asymptotic O(κ/ log κ) O(κ/ log κ) Ω(κ) Ω(log2 κ/κ2)
1024 130 233 739 ≥ 1/3607
1536 182 327 1093 ≥ 1/7250
2048 231 418 1459 ≥ 1/11832

Table 6.6: CRT-form Sampling Parameters, along with per-iteration suc-
cess probabilities. Recall that biprimes produced are of size 2κ. m is the
(κ, n)-near-primorial vector, with ` = |m|. `′ is the length of the extended
vector required by our protocol, as described in Definition 4.3. Note that the
number of parties n has no concrete effect on these values.

In order to understand the concrete efficiency of our approach, we determined
the unique (κ, n)-near-primorial vectors corresponding to several common RSA
security parameter values, and then used Lemma 6.1 to derive concrete success
probabilities. These are reported in Table 6.6. For completeness, we also report
the asymptotic size of the (κ, n)-near-primorial vector; this can be derived by
combining Lemma 6.2 with the following lemma:

Lemma 6.5 ([RS62], Theorem 2). Given a (κ, n)-near-primorial vector m of
length `, it holds that ` ∈ Θ (max(m)/ log max(m)).

Compositional Strategies. As an immediate corollary to Theorem 6.4, the
expected number of invocations of FRSAGen required to produce a biprime is in
O(κ2/ log2 κ). Concretely, this corresponds to 3607 invocations when κ = 1024,
or 11832 invocations when κ = 2048. As an alternative to sequential invocation,
FRSAGen can be invoked concurrently in batches tuned for a desired probability
of success. O(ρ/(log κ− log(κ2− log2 κ))) concurrent invocations are required to
sample a biprime with probability at least 1−2−ρ. Concretely, with ρ = 40, this
corresponds to roughly 100000 invocations for κ = 1024, or 330000 invocations
for κ = 2048. Two sequential batches of concurrent invocations are required in
expectation if ρ = 1, with roughly 2500 invocations of FRSAGen per batch for
κ = 1024, or 8200 invocations per batch for κ = 2048.

6.2 The Cost of Instantiating FBiprime and FAugMul

Before we can discuss the concrete costs of our main sampling protocol, we must
determine the costs of instantiating the functionalities it uses. Since FBiprime was
specifically formulated to model the biprimality-testing protocol of Boneh and
Franklin [BF01], it is natural to assume we use that protocol (or our malicious-
secure extension) to instantiate it. On the other hand, in both the semi-honest
and malicious settings, many sensible approaches exist for instantiating FAugMul.

31

We choose to base our instantiation on oblivious transfer in both settings. Al-
though OT-based multiplication is not the most bandwidth-efficient option, it
compares favorably to alternatives in the real world [DKLS18, DKLS19], and
OT can be built assuming only the hardness of factoring, if desired [EGL85].
We also assume certain reasonable practical concessions are made. For exam-
ple, we assume that FCom and FCT are both implemented via a Random Oracle.
We note that under these instantiations, committing a value requires 2λ bits
to be broadcast,9 and FCT requires no communication at all. We also assume
FZero requires no communication: a trivial modification of the Pseudorandom
Zero-Sharing protocol of Cramer et al. [CDI05] yields a protocol that realizes
FZero against active adversaries with no interaction in the FCT-hybrid model.

Broadcast. The standard practice of practical implementations of MPC pro-
tocols (e.g., [HSS17, WRK17]) uses the simple echo broadcast of Goldwasser and
Lindell [GL05] for instantiating the broadcast channel. The resulting protocol
only guarantees non-unanimous abort (i.e., each honest party either obtains the
correct output or locally aborts, but there is no global agreement on abort), but
preserves all correctness and privacy guarantees. This approach doubles the
round count and adds (n− 1) · λ bits per party per original round to the com-
munication cost, because each party is required to send a hash of the broadcast
messages received in one round to all other parties before the next round.

In our setting, we can take an even simpler approach and run the protocol
optimistically over point-to-point channels. At the end, every party hashes the
entire transcript of broadcast-messages and sends the digest to all other parties.
If the digests do not agree, the party aborts; otherwise, the party terminates
with the output value of the protocol. Therefore, for the sake of calculating
concrete costs, we consider the cost of broadcasting a bit to be the same as the
cost of transmitting it to all parties (apart from the sender) individually.

Oblivious Transfer. We give concrete efficiency figures assuming that Cor-
related OT (i.e., OT in which the sender chooses a correlation between two mes-
sages, instead of two independent messages) is used in place of standard OT, and
assuming that it is instantiated via one of two specific OT-extension protocols.
The more efficient of the two is the recently introduced Silent OT-extension
protocol of Boyle et al. [BCG+19]. When used as a Correlated OT-extension on
a correlation from the field Zm, it incurs a cost of (|m|+ 1)/2 bits transmitted
per party (averaged over the sender and receiver), over two rounds. However,
it requires a variant of the Learning Parity with Noise (LPN) assumption, and
it has a large one-time setup cost.

As an alternative, the OT-extension protocol of Keller et al. [KOS15] (here-
after referred to as “KOS OT”) assumes only a base OT functionality, and has
a much cheaper one-time setup. When used as a Correlated OT-extension on
a correlation from the field Zm, this protocol incurs a cost of (|m| + λ)/2 bits
transmitted per party (averaged over the sender and receiver) over two rounds.

9Where λ is a computational security parameter as described in Section 2.

32

In addition to this cost the sender must pay an overhead cost for each batch of
OTs performed, where a batch may comprise polynomially many individual OTs
with an arbitrary mixture of correlation lengths. Since this overhead does not
depend on the total number of OTs or the correlation lengths, it can be amor-
tized into irrelevance if the OTs in our protocol can be arranged into a small
number of batches. Since this is indeed the case, we ignore the overhead cost for
the remainder of our cost analysis. For the sake of analyzing concrete efficiency,
we also ignore the one-time setup costs of both OT-extension protocols.

Both OT-extension protocols attain malicious security, but KOS OT has
little overhead relative to the best semi-honest protocols, and Silent OT is the
most efficient currently known OT protocol of any kind. Consequently, we use
them in the semi-honest setting as well.

FAugMul in the Semi-Honest Setting. In the semi-honest setting, parties can
be trusted to reuse inputs when instructed to do so, and the predicate check and
input-revelation interfaces of FAugMul need not be implemented, since πRSAGen
will never call them in the semi-honest setting. Consequently, an extremely sim-
ple protocol suffices to realize FAugMul against semi-honest adversaries. When
the parties wish to use the multiply interface with a modulus m, they sim-
ply engage in instances of Gilboa’s classic OT-multiplication protocol [Gil99],
arranged as per the GMW multiplication paradigm [GMW87] to form a mul-
tiparty multiplier. This implies 2|m| oblivious transfers per pair of parties, all
with |m|-bit messages. If Silent OT is used, the total cost is (n−1)·|m|·(|m|+1)
bits transmitted per party (averaged over all parties), over two rounds. If KOS
OT is used, the total cost is instead (n− 1) · |m| · (|m|+ λ) bits. Note that this
is substantially worse if |m| is small.

The sample interface of FAugMul can be realized using the same multiplication
protocol in a natural way: the parties simply choose random shares of two values
and multiply those values together. They multiply their output shares together
with another randomly sampled set of shares, and then broadcast their shares
of this second product. They repeat the whole process if the second product
is found to be zero, or otherwise take their shares of the first product as their
outputs. Each iteration of this sampling procedure succeeds with probability
(m − 1)3/m3. If iterations are run concurrently in batches of size c, then the
expected number of batches is b = m3/(m3 − 3c ·m2 + 3c ·m − c). Given this
value b, the expected total cost is (n− 1) · b · c · |m| · (2|m|+ 3) bits transmitted
per party (on average) if Silent OT is used, or (n− 1) · b · c · |m| · (2|m|+ 2λ+ 1)
bits if KOS OT is used. The number of rounds is 5b in expectation.

FBiprime in the Semi-Honest Setting. To realize FBiprime in the semi-honest
setting, we use the Boneh-Franklin biprimality test [BF01]. In this protocol,
the parties begin by participating in up to s iterations of a test in which they
each broadcast a value of size 2κ to all other parties. In the bandwidth-optimal
protocol variant, these iterations are sequential. Each has a soundness error
of 1/2, and so the expected number of iterations is two if N is not a biprime,

33

yielding a concrete bandwidth cost for this first step of 2(n − 1) · s · κ bits per
party if N is a biprime, or 4(n− 1) · κ bits per party in expectation otherwise.
In the round-optimal protocol variant, these iterations are concurrent, and the
cost is always 2(n− 1) · s · κ bits per party, over one round.

If all iterations of the previous test succeed, then the parties perform the
GCD Test: they securely multiply two shared values modulo N , and reveal
the output. Whereas Boneh and Franklin recommend the BGW generic MPC
protocol for this task, we will instead assume that Gilboa’s OT-multiplication
protocol is used, in a GMW-like arrangement as previously described, followed
by an exchanging of output shares. All shares in one of the two input sets are
guaranteed to be smaller than 2k+1; if we ensure that parties always play the OT-
receiver when using shares from this set as input, then the concrete bandwidth
cost for this second step is (n−1) ·(κ+1) ·(2κ+1)+2(n−1) ·κ bits transmitted
per party, assuming Silent OT is used, or (n− 1) · (κ+ 1) · (2κ+λ) + 2(n− 1) ·κ
bits if KOS OT is used. In either case, three additional rounds are required.

Instantiating FComCompute. In the malicious settings, the πBiprime and πRSAGen
protocols both require access to a generic MPC functionality with reusable in-
puts, which we give as FComCompute. For the sake of concrete-efficiency figures,
we will assume FComCompute is realized via the Authenticated Garbling protocol
of Wang et al. [WRK17]. We make no optimizations, and in particular, do not
replace the OT that they use, even though Silent OT might yield a substantial
improvement. Per the authors [Wan20], this protocol has a total cost including
preprocessing of

(n− 1) · (λ+ s) · (10|C|+ |I|+ λ+ 4s) + |I| · (λ+ 1)
+ (n− 1) · (7|C| · λ+ 13|C|+ 7λ) + 4|C| · s+ λ+ |O|

bits transmitted per party, on average, where C is the number of AND gates, I
is the number of input wires, and O is the number of output wires, and where
the bucket-size parameter is 3 (our circuits will be large enough to ensure this
holds). Since this equation is quite complicated and gives little insight, we report
costs associated with FComCompute simply in terms of gates and input/output
wires, and convert them into bit costs only when calculating the overall total
bandwidth cost for πRSAGen. We note that supplying an input (i.e., calling
the commit command of FComCompute) to the protocol of Wang et al. requires
two rounds, and reconstructing an output (i.e., calling the compute command)
requires one. We assume that all preprocessing can be run concurrently with
other tasks, and thus it does not contribute any additional rounds.

Using FComCompute involves converting functions into circuits. The functions
we use are easily reduced to a handful of arithmetic operations. We list all
nontrivial operations, with costs, in Table 6.7.

FAugMul in the Malicious Setting. The protocol πAugMul that realizes FAugMul
is complex and involves a number of sub-functionalities that we have not yet
introduced. Consequently, we defer our full cost analysis to Appendix B, in

34

Operator Cost Function Notes

modadd 4L + 2 symmetric; conditional subtraction

intmul1 2intmul(L/2) + 13L/2 + 6
+ intmul(L/2 + 1)

symmetric Karatsuba multiplication

intmul2 2L1 · L2 − L1 + (L2
2 − L2)/2 asymmetric multiplication

modred 2intmul(L) + 10L + 13 Barrett reduction; input length 2L

modmul1 intmul(L) + modred(L) symmetric modular multiplication
modmul2 5L1 · L2 + 2L2 asymmetric; conditional subtraction

Table 6.7: Operation Costs in AND Gates. For symmetric operations,
both inputs and (if relevant) the modulus are of length L. For asymmetric
operations, the first input and the modulus are of length L1, and the second
input is of length L2 such that L2 ≤ L1. We assume that moduli are public and
that inputs to modular operations are positive and less than the modulus, except
in the case of reduction. The intmul operation calls whichever multiplication
method is more (concretely) efficient.

which we also describe πAugMul itself. We note here that the cost of the FAugMul
multiply command with modulus m is in O(n ·(|m|2 + |m| ·s+2λ)) transmitted
bits per party if Silent OT is used, or O(n·(|m|2+|m|·s+(|m|+2)·λ)) if KOS OT
is used, and that the input command is free if it is not called until immediately
before the first associated multiplication. The cost of the open command is in
O(n · (|m|2 + |m| · s)) transmitted bits per party. The sample command has the
same expected bandwidth complexity as multiplication. Finally, the complexity
of the check command depends upon the inputs it is given, but broadly, for
each input with an associated modulus m, one must pay s/|m| times the cost
of multiplication, plus a bandwidth cost in O(n · s2/|m| + n · s · c), where c is
the number of times the input was used in a multiplication, plus the cost of
using FComCompute to evaluate a circuit of size O(n · s + s · modmul(|m|)/|m|)
with O(s + |m|) input wires. In addition to these per input costs, check uses
FComCompute to evaluate an arbitrary circuit (with no additional inputs), and so
costs must be paid proportionate to that circuit’s size.

FBiprime in the Malicious Setting. In Section 5.2, we described a protocol
πBiprime realizing FBiprime. We now analyze its costs. The Boneh-Franklin Test
phase is similar to the first phase of the semi-honest biprimality test, except that
messages are committed before they are revealed, they are always decommitted
concurrently, and 2.5s iterations are required, as opposed to s. Consequently
this step incurs a cost of 5(n− 1) · s · κ+ 2(n− 1) · λ bits transmitted per party,
over two rounds.

This leaves Input Commitment and Consistency Check/GCD Test phases.
The former phase involves only a single commitment by each party. The latter

35

phase is only evaluated if the above test passes, and therefore does not contribute
to the cost when N is not a biprime. To perform the GCD Test, the parties each
transmit 2.5s ·(n−1) ·(3κ− log2 n+s+1) bits over two rounds, and in addition,
they use FComCompute to compute a circuit, which is specified by Algorithm 5.3.
If for clarity and simplicity we represent the cost of multiplication using the
functions from Table 6.7, then the size of this circuit in AND gates is

modmul(2κ) + intmul(κ) + (10n · s+ 4n+ 2.5s) · (κ− log2 n)
+ 5n · s2 + 5n · s+ 4n+ 2κ− 2

and furthermore, it has n · (2.5s+ 2) · (κ− log2 n) +n ·2.5s · (s+ 1) + 2n ·κ input
wires10 and 2n · κ output wires.

6.3 Putting It All Together
In this section, we will break down the cost of our main protocol πRSAGen in terms
of calls to FAugMul and FBiprime, and also give the costs associated with the few
protocol components that are not interactions with these functionalities. This
breakdown (excepting the functionality calls in the Consistency Check phase) is
identical in the malicious and semi-honest settings. We subsequently plug in the
individual component costs that we derived in Section 6.2 and arrive at predicted
concrete cost figures for one instance of our complete protocol. We then use the
analysis in Section 6.1 to determine the concrete cost of sampling a biprime when
our sampling protocol is called sequentially. We discuss alternative composition
strategies for achieving constant or expected-constant round counts (and provide
an exact round count) in the next section. We begin with a cost breakdown.

1. Candidate Sieving. For each j ∈ [2, `], the parties invoke the sample
instruction of FAugMul using modulus mj . These invocations are concurrent.
Following this, for j ∈ [` + 1, `′], the parties invoke the input instruction
of FAugMul with modulus mj twice, and then the multiply instruction with
modulus mj . As discussed in Appendix B.3, the input instructions are free
under this pattern of invocations if we use πAugMul (Protocol B.6) to realize
FAugMul. We assume the multiplications are done concurrently as well. In
addition, every party broadcasts a value in Zmj for j ∈ [2, `′]. This incurs a
cost of

(n− 1) ·
∑

j∈[2,`′]

|mj |

transmitted bits per party, and one additional round.

2. Biprimality Test. The parties send check-biprimality to FBiprime at most
once. Since our protocol includes local trial division (see Step 5 of πRSAGen),
some protocol instances will skip the biprimality test entirely. However, for
the sake of calculating concrete costs, we will assume that this local trial
division is not executed. In other words, we assume that the biprimality test

10Including the wires required to input the randomness for the GCD test.

36

is run exactly once per protocol instance, and if local trial division would
have rejected a candidate, then the biprimality test certainly fails.

3. Consistency Check. This phase has no cost in the semi-honest setting.
In the malicious setting, its cost differs depending on whether the candidate
biprime has passed the biprimality test (and local trial division), or failed.
In the failure case, the parties send open to FAugMul twice with modulus mj

for each j ∈ [2, `′]. In the passing case, they instead send (check, sids, f),
where sids is the vector of session IDs associated with values sampled by
or loaded into FAugMul in the sieving phase, and f is a predicate specified
in our protocol. This circuit representation of f comprises 2n invocations
of CRTRecon over the extended vector m of small moduli, 2n comparisons
on inputs of size 2κ, two integer sums, each over n elements of κ − log2 n
bits, one integer multiplication with inputs of length κ, and one equality
check over values of length 2κ. We observe that the CRTRecon algorithm
can be implemented in the following way: all intermediate operations can
be performed over the integers, with a single modular reduction at the end.
Because each intermediate product has one multiplicand that is much shorter
than the other, we can use the asymmetric modular multiplication method
previously described in Section 6.2. This circuit requires no additional inputs,
relative to the ones supplied by πAugMul, and its overall gate count11 is

2n ·

(`′ − 1) · (2κ+ |max(m)|) + `′ − log2 `
′

+ 3κ− log2 n+
∑
j∈[`′]

intmul2(2κ, |mj |) + modred(2κ)

+ intmul(κ)− 2

Communication Complexity. In order to explore the asymptotic network
costs of our protocol in terms of κ, s, and n, we consider λ be in O(s) for the
purposes of this analysis. We also assume s ∈ O(κ) ∩ ω(log κ). We give all our
asymptotic figures in terms of data transmitted per party.

Combining the cost breakdown in this section with the asymptotic analysis
of CRT sampling parameters in Section 6.1, we find that O(κ/ log κ) invocations
of the sample and multiply interfaces of FAugMul are performed during the Can-
didate Sieving phase of πBiprime. Let (m, `′, `,M) be the (κ, n)-compatible pa-
rameter set of πBiprime, as specified by Definition 4.3. Each sample and multiply
operation involves a modulus from m. Per Lemma 6.2, max(m) ∈ O(logM),
and we have from Definition 3.4 that M ∈ O(2κ); thus max(m) ∈ O(κ). Via
Section 6.2, this implies that all multiply and sample operations have a com-
plexity of O(n · log2 κ) bits transmitted per party in the semi-honest setting, or
O(n · log2 κ+ n · s · log κ) in the malicious setting (assuming Silent OT in both
cases). The total per-party communication cost of the Sieving phase is therefore
O(n ·κ · log κ) in the semi-honest setting, or O(n ·κ · s) in the malicious setting.

11Assuming the intermediate products inside each invocation of CRTRecon are taken to be
of length 2κ + |max(m)|, and that each party’s shares of p and q are taken to be κ − log2 n
bits after their lengths are checked.

37

In both the semi-honest and the malicious settings, the communication com-
plexity of a successful biprimality test is dominated by the GCD Test. In the
semi-honest case, this check comprises a secure multiplication over κ bits, so
the cost is in O(n · κ2) bit transmitted per party. In the malicious case, per
Section 6.2, this check is performed via a circuit with O(n ·s ·κ+κlog2 3) gates,12

and per Wang et al. [WRK17], the dominant per-party asymptotic cost of their
protocol is in O(n · s ·C/ logC), where C is the gate count. Thus the per-party
complexity of a successful biprimality test is

O

(
n2 · s2 · κ+ n · s · κlog2 3

log(n · s · κ+ κlog2 3)

)
in the malicious case. In both the semi-honest and the malicious settings, failed
biprimality tests are unlikely to perform the GCD check,13 leaving only the
initial testing phase. If we choose the bandwidth-optimal protocol variant in
the semi-honest setting, then we can take the communication complexity of a
failed biprimality test to be in O(n·κ). In the malicious setting, it is in O(n·s·κ).

Finally, in the malicious setting only, the Consistency Check phase is per-
formed. For presumptive biprimes, the cost of this phase is dominated by its
generic MPC component, which has O(n·κ2) gates and, if we assume that Wang
et al.’s protocol is used, a total complexity of

O

(
n2 · s · κ2

logn+ log κ

)
per party. For presumptive non-biprimes, the parties invoke the open interface
of FAugMul a constant number of times for each element of m. Reusing our
analysis of the sieving phase, we find that the per-party network complexity of
this case is O(n · s · κ).

In the case that a biprime is sampled by iterating πRSAGen sequentially un-
til a successful sampling occurs, we know (via Section 6.1) that O(κ2/ log2 κ)
iterations are required in expectation. All but one of these iterations are fail-
ures, and in the one successful case in the malicious setting, the size of the
consistency check circuit dominates that of the biprimality test circuit. Thus,
the overall per-party communication complexity to sample a biprime using this
composition strategy is in

O

(
n · κ3

log κ

)
or O

(
n · s · κ3

log2 κ
+ n2 · s · κ2

logn+ log κ

)
in the semi-honest or malicious settings, respectively.

Concrete Network Cost. We now perform all the substitutions necessary
to collapse the cost figures we have reported into concrete values. We plug

12O(κlog2 3) is the cost of Karatsuba multiplication on κ-bit inputs.
13We do not know the precise probability, nor does any prior work, including that of Boneh

and Franklin [BF01] themselves, make a statement about it. It seems empirically that the
probability is very low indeed. For analysis purposes we take it to be zero.

38

κ 1024 1024 1536 1536 2048 2048
n 2 16 2 16 2 16

per-phase costs for one instance of πRSAGen

Sieving (S) 25 368 38 569 53 790
Sieving (K) 306 4582 453 6793 607 9097
BP Test (N) 4 61 6 92 8 123
BP Test (BS) 2266 33,992 4972 74,580 8727 130,898
BP Test (BK) 2396 35,944 5167 77,508 8987 134,801

expected costs to sample a biprime via sequential iteration of πRSAGen

E[Iterations] 3607 3607 7251 7251 11,832 11,832
E[Total] (S) 105,693 1,582,621 325,243 4,869,944 730,494 10,937,722
E[Total] (K) 1,118,849 16,779,417 3,333,869 49,998,228 7,282,703 109,220,287

Table 6.8: Communication Per Party in Kilobits: Semi-Honest. Recall
that biprimes produced are of size 2κ. Values are rounded to the nearest 1
Kilobit, and s = 80 and λ = 128 for all calculations. Rows marked with S
or K correspond to costs when Silent OT [BCG+19] or KOS OT [KOS15] is
used to instantiate oblivious transfer, respectively. Rows marked with B or N
correspond to costs when a Biprime or a Non-biprime is sampled, respectively.

the costs of individual sub-protocols from Section 6.2 into the main protocol
breakdown presented in this section, using bandwidth-optimal variants where
appropriate, and convert gate counts into bit counts assuming the protocol of
Wang et al. [WRK17]. We also derive the expected cost of sampling a single
biprime via sequential iteration of πRSAGen until a success occurs: this strategy
allows us to determine the number of iterations required by inverting the success
probabilities calculated in Section 6.1. Finally, we set λ = 128 and s = 80. We
report the results of this calculation for our semi-honest protocol variant in
Table 6.8, and for our malicious protocol variant in Table 6.9.

6.4 Strictly-Constant and Expected-Constant Rounds
In the foregoing sections we have given costs for sampling a biprime under the
assumption that πRSAGen is iterated sequentially. While this ensures that no
work or communication is wasted, since no additional instances of πRSAGen are
run after the first success, it also yields an expected round complexity that
grows with Ω(κ2/ log2 κ) at the least (the inverse of the success probability of
a single instance, per Section 6.1), and concretely yields tens or hundreds of
thousands of rounds in expectation for the values of κ used in practice. This is
not satisfying.

Unfortunately, we cannot achieve constant (or even expected constant)
rounds by running instances of πRSAGen concurrently, because the sample op-
eration of πAugMul (which samples pairs of secret-shared non-zero values) is also
probabilistic, with termination in expected-constant rounds. When multiple

39

κ 1024 1024 1536 1536 2048 2048
n 2 16 2 16 2 16

per-phase costs for one instance of πRSAGen

Sieving (S) 0.7 11.2 1.1 16.2 1.4 21.4
Sieving (K) 6.7 100.4 9.3 139.3 11.8 176.4
BP Test (N) 0.4 6.1 0.6 9.2 0.8 12.3
BP Test (B) 28,383.2 935,581.6 51,549.4 1,516,411.0 78,872.5 2,153,965.0
Check (N) 0.8 12.3 1.2 18.2 1.6 24.3
Check (B) 182,280.6 19,239,118.0 381,065.5 40,509,208.9 652,491.1 69,666,149.6

expected costs to sample a biprime via sequential iteration of πRSAGen

E[Iterations] 3607 3607 7251 7251 11,832 11,832
E[Total] (S) 217,776.3 20,281,383.8 453,687.4 42,341,697.6 777,047.8 72,505,357.3
E[Total] (K) 239,233.4 20,603,240.9 513,180.6 43,234,096.1 899,370.3 74,340,195.9

Table 6.9: Communication Per Party in Megabits: Malicious. Recall
that biprimes produced are of size 2κ. Values are rounded to the nearest 100
Kilobits, and s = 80 and λ = 128 for all calculations. Rows marked with S or
K correspond to costs when Silent OT [BCG+19] or KOS OT [KOS15] is used
to instantiate oblivious transfer, respectively. Rows marked with B or N corre-
spond to costs when a Biprime or a Non-biprime is sampled, respectively. Note
that the Biprimality Test phase has nearly the same concrete cost, regardless of
whether Silent OT or KOS OT is used.

expected-constant-round protocols are composed in parallel, the resulting pro-
tocol does not have constant rounds in expectation [BE03, CCGZ19, CCGZ17].
The naïve solution is to modify the sample operation of πAugMul to generate can-
didates concurrently instead of sequentially, and set the parameters such that
it succeeds with overwhelming probability. However, this leads to a factor of
Θ(s) overhead with respect to communication complexity, relative to sequential
composition, which is also not satisfying.

Instead, we propose a non-black-box composition strategy. In order to invoke
πRSAGen x times concurrently, we must sample x pairs of non-zero values with
respect to each modulus in m. To do this, we run a pooled sampling procedure
for each modulus, which concurrently samples enough candidates to ensure that
there are at least x successes among them with overwhelming probability. For
modulus mj , and candidate count y ≥ x, the probability of success is governed
by the binomial distribution on y and (mj − 1)3/m3

j . Specifically, to ensure
success with overwhelming probability, we must calculate y such that

1− 2−s =
y∑
i=x

(
y

x

)(
mj − 1

mj

)3i
·

(
1−

(
mj − 1

mj

)3
)y−i

(5)

holds. Although reasonable bounds and approximations exist, it is not easy to
solve this equation for y in closed form. Given concrete values for the other

40

parameters, we can compute a value for y.
As an example, consider the following concrete scenario: let x be the size of a

batch of concurrent invocations of πRSAGen, where x is tuned such that the batch
samples at least one biprime with probability 1/2. Let κ = 1024 and let s = 80,
and via Section 6.1, we have x = 2500. Now consider m2 = 3, the smallest
modulus with respect to which sampling will occur. Solving Equation 5, we
find that if we sample 9989 candidate values modulo m2, then at least 2500 of
them will be nonzero with probability 1− 2−s. Now, if we sample a biprime by
running batches of size x, one batch after the next, until a biprime is sampled,
then two batches are required in expectation, which implies that 19978 total
candidate pairs must be sampled with respect to m2, in expectation.

For comparison, consider the sequentially composed case with sequential
sampling, in which single instances of πRSAGen are invoked one-at-a-time until a
success occurs, and similarly πAugMul samples candidate pairs of non-zero values
until a success occurs. In this case, 3607 invocations of πRSAGen are required
in expectation, and during each invocation, (3/2)3 candidate pairs are sampled
in expectation by πAugMul with respect to the modulus m2 = 3. The total
number of candidate pairs with respect to m2 is thus 12174 in expectation over
all invocations of πRSAGen. Thus, in terms of candidates-with-respect-to-m2, the
overhead to achieve expected constant rounds using the above strategy is a factor
of roughly 1.65, and it is easy to confirm that for all other elements in m, this
factor is smaller. We conclude from this example that the bandwidth overhead
for sampling a biprime in expected-constant rounds is reasonable, relative to
the bandwidth-optimal (i.e., sequential) composition strategy. By adjusting
the batch-size parameter, it can be shown that there exists a biprime-sampling
strategy that takes strict-constant rounds and succeeds in sampling a biprime
with probability 1−2−40, and that the bandwidth overhead of this strategy is a
factor of less than 30 with respect to the bandwidth-optimal strategy (assuming,
as before, that κ = 1024 and s = 80).

An Exact Round Count. It remains only to determine the exact round
count of a batch, which is the same as the round count of a single instance of
πRSAGen, assuming the sampling performed by πAugMul in that instance is per-
formed concurrently, and that the round-optimal variants of the biprimality
test are used. In the semi-honest setting, if we modify the simple semi-honest
realization of FAugMul given in Section 6.2 to sample concurrently instead of se-
quentially then it requires exactly 5 rounds to sample. A similar modification
yields 10 rounds for sampling using πAugMul in the malicious setting. All other
components of our combined protocol have constant round counts, and combin-
ing the round counts already given in Section 6.2, Section 6.3, and Appendix B
yields a total of 12 rounds in the semi honest setting, or 33 rounds in the mali-
cious setting. It is likely that both values can be reduced noticeably via concrete
optimization. If the parties are interacting for the first time, they will need a
small number of additional rounds to initialize OT-extensions.

41

6.5 Comparison to Prior Work
The most relevant prior work is that of Frederiksen et al. [FLOP18], and in this
section we provide an in-depth comparison of the two. Unfortunately, Frederik-
sen et al. do not report concrete communication costs, and so we must re-derive
them as best as we can. Before we discuss concrete costs, however, we describe
the high-level differences between the two approaches, and our methodology for
comparison. As their protocol supports only two parties, we will assume for the
duration of this section that n = 2.

Both their protocol and ours are based upon oblivious transfer, but the sam-
pling mechanisms of the two protocols have substantial structural differences.
Our CRT-form sampling mechanism has a complexity in O(κ · log κ) or O(κ · s)
in the semi-honest or malicious settings, respectively. This complexity includes
the cost of computing the modulus N from shares of its factors. Their protocol
instead samples integer shares of p and q uniformly in standard form and uses
1-of-many OT [OOS17] to perform trial division efficiently. Subsequently, they
use an OT-multiplier of their own design to compute N ..= p · q. Because this
multiplication is not performed in CRT form, it has a communication complex-
ity of O(κ2) in both the semi-honest and the malicious settings. In addition,
their method induces some leakage, whereas ours leaks no more than Boneh
and Franklin [BF01]. When a biprime is sampled successfully, their biprimality
test uses another, similar multiplier, with inputs that are larger by a constant
factor. Since their protocol makes black-box use of the KOS OT-extension
protocol [KOS15], our comparison will assume their protocol is upgraded to
use the more-recent Silent OT-extension protocol [BCG+19]. Furthermore, we
will assume their scheme amortizes the costs of both 1-of-2 and 1-of-many OT-
extension in the best possible way (i.e., we will only count costs that can never
be amortized).

In the malicious setting, Frederiksen et al.’s protocol makes use of a proof
of honesty which consists mainly of a circuit evaluated by a generic MPC func-
tionality. It is quite similar to a combination of the circuits used by our πBiprime
protocol and the Consistency Check phase of our πRSAGen protocol.14 However,
they must run their circuit twice, and on the other hand, because their protocol
is two-party only and already admits leakage, they are able to use the very effi-
cient leaky dual-execution method of Mohassel and Franklin [MF06] to evaluate
their circuit, whereas we must use an n-party method with full malicious secu-
rity. Our goal is to illustrate performance differences between our approach and
theirs, not performance differences among underlying black-box components.
Because we do not think there is a fair way to reconcile the discrepancy in the
generic MPC techniques that the two works employ, we will report the num-
ber of AND gates required by both protocols,15 and also the number of bits

14As described in their work, their circuit contains additional gates for calculating parts
of the RSA key-pair other than the modulus. We omit these parts from our analysis, for the
sake of fairness.

15We calculate their circuit size using the building blocks we previously described in Ta-
ble 6.7 and use their estimate of 6000 gates for the cost of a single AES call.

42

Scheme [FLOP18] Ours [FLOP18] Ours [FLOP18] Ours
κ 1024 1024 1536 1536 2048 2048

expected costs for one instance/iteration

E[Kbits] (N) 2281 29 4991 44 8750 61
E[Kbits] (B) 5439 2291 12,087 5010 21,357 8779

expected costs to sample a biprime via sequential iteration

E[Iterations] 3607 3607 7251 7251 11,832 11,832
E[Total Kbits] 8,230,314 105,693 36,198,034 325,243 103,539,224 730,494

Table 6.10: Comparison against Frederiksen et al: Semi-Honest. Re-
call that biprimes produced are of size 2κ. We set s = 80 and λ = 128 for all
calculations, and all rows assume Silent OT [BCG+19] is used to instantiate
1-of-2 oblivious transfer. Rows marked with B or N correspond to costs when
a Biprime or a Non-biprime is sampled, respectively.

transmitted per party excluding those due to evaluation of these circuits.
Finally, as Frederiksen et al. observed and as we have previously discussed,

their functionality allows a malicious adversary to covertly prevent successful
sampling in a selective fashion. This is true regardless of the composition strat-
egy employed. As a consequence, in the malicious setting, we will report both
the best-case behavior, in which the adversary politely avoids covert cheating,
and the worst-case behavior, in which they must run sufficiently many iterations
to ensure a modulus should have been sampled with overwhelming probability
(and thus there must be a corrupt party present if no moduli are produced).

The protocol of Frederiksen et al. takes as a free parameter a trial-division
bound, which determines the amount of trial division to be done before the
candidate biprime N is reconstructed and biprimality testing occurs. Since
they do not report the trial-division bound used for their concrete experiments,
nor do they make a recommendation about the value other than that it be
tweaked to optimize the protocol cost concretely, we choose their trial-division
bound to be the same as the largest element in a (κ, 2)-near-primorial vector, per
Definition 3.4. This is a reasonable choice in terms of concrete efficiency, but it
also allows us to easily make a fair comparison, since with this parametrization
sampling a biprime will require the same number of invocations of πRSAGen (each
with one biprimality test and one consistency check) in our case as there are
executions of the biprimality test phase and proof-of-honesty in their case.16

The protocol of Frederiksen et al. also takes a second trial division bound,
which is used for local trial division on the reconstructed modulus. For the sake
of analysis, we assume this feature is not used (we have done likewise with the
analogous feature in our own protocol). We calculate concrete costs for their
protocol using s = 80 and λ = 128 and report the results alongside our own for
the semi-honest setting in Table 6.10, and for the malicious setting in Table 6.11.

16Assuming that in their case, the adversary never forces the rejection of valid candidates.

43

Scheme [FLOP18] Ours [FLOP18] Ours [FLOP18] Ours
κ 1024 1024 1536 1536 2048 2048

expected costs for one instance/iteration

E[Mbits] (N) 4.9 2.0 10.5 2.9 18.1 3.9
E[Mbits] (B) 16.0 72.2 34.1 97.3 59.1 119.7

expected costs to sample a biprime via sequential iteration

E[Iterations] (P) 3607 3607 7251 7251 11,832 11,832
E[Iterations] (W) 199,968 3607 402,003 7251 656,070 11,832
E[Total Mbits] (P) 17,602.2 7184.0 75,851.0 21,168.7 214,613.1 45,802.5
E[Total Mbits] (W) 975,245.0 7184.0 4,203,970.4 21,168.7 11,897,803.5 45,802.5
Millions of Gates 16.5 63.6 26.4 130.7 37.3 220.9

Table 6.11: Comparison against Frederiksen et al: Malicious. Recall
that biprimes produced are of size 2κ, and note that bit counts exclude bits due
to generic evaluation of circuits, which are counted separately. We set s = 80
and λ = 128 for all calculations, and all rows assume Silent OT [BCG+19] is used
to instantiate 1-of-2 oblivious transfer. Rows marked with B or N correspond to
costs when a Biprime or a Non-biprime is sampled, respectively. Rows marked
with W or P correspond to costs when a Worst-case or a Polite (i.e., best-case)
adversary is present, respectively.

In the semi-honest setting, the asymptotic and concrete advantages of our
approach are very clear: the overall expected cost advantage of our protocol is
a factor of at least 75, and increases with the size of the biprime to be sampled.
This advantage is a direct consequence of our CRT-form sampling strategy, since
the two semi-honest protocols are otherwise very similar.

In the malicious setting, the relationship between the two protocols is more
complex. It is still apparent that for non-successful instances, our protocol is
both asymptotically and concretely better. This comes at the price of a larger
circuit to be evaluated when an instance succeeds in sampling a biprime. We
believe this to be a beneficial trade: only one successful instance is required
to sample a biprime, whereas thousands of unsuccessful instances are to be ex-
pected in the best case. However, the most noticeable difference between the
two arises due to the ability of a malicious adversary to covertly force instances
of the Frederiksen et al. protocol to fail. This can cause the number of instances
they require to be inflated by a factor of around fifty, assuming sequential iter-
ation, giving our approach a clear advantage.

Acknowledgements
The authors thank Muthuramakrishnan Venkitasubramaniam for the useful
conversations and insights he provided, Tore Frederiksen for reviewing and
confirming our cost analysis of his protocol [FLOP18], and Xiao Wang and

44

Peter Scholl for providing detailed cost analyses of their respective proto-
cols [WRK17, HSS17].

This research was supported in part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Project Activity (IARPA)
under contract number 2019-19-020700009 (ACHILLES).

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of ODNI, IARPA, DoI/NBC, or the
U.S. Government. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any copyright an-
notation thereon.

Bibliography
[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation

modulo a shared secret with application to the generation of shared safe-
prime products. In Advances in Cryptology – CRYPTO 2002, pages 417–
432, 2002.

[Bar16] Elaine Barker. Nist special publication 800-57, part 1, revision 4. http:
//dx.doi.org/10.6028/NIST.SP.800-57pt1r4, 2016.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In Proceedings of the 26th ACM Confer-
ence on Computer and Communications Security, (CCS), pages 291–308,
2019.

[BE03] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consis-
tency in constant time. Distributed Computing, 16(4):249–262, 2003.

[BF97] Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA
keys. In Advances in Cryptology – CRYPTO ’97, pages 425–439, 1997.

[BF01] Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA
keys. Journal of the ACM, 48(4):702–722, 2001.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 136–145, 2001.

[CCGZ17] Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas. Round-
preserving parallel composition of probabilistic-termination cryptographic
protocols. In Proceedings of the 44th International Colloquium on Au-
tomata, Languages, and Programming (ICALP), pages 37:1–37:15, 2017.

[CCGZ19] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Proba-
bilistic termination and composability of cryptographic protocols. Journal
of Cryptology, 32(3):690–741, 2019.

45

http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseu-
dorandom secret-sharing and applications to secure computation. In Pro-
ceedings of the Second Theory of Cryptography Conference, TCC 2005,
pages 342–362, 2005.

[CHI+20] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele Mic-
ciancio, Tarik Riviere, abhi shelat, Muthuramakrishnan Venkitasubrama-
niam, and Ruihan Wang. Diogenes: Lightweight scalable RSA modulus
generation with a dishonest majority. http://eprint.iacr.org/2020/
374, 2020.

[CHOR18] Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. From fairness
to full security in multiparty computation. In Proceedings of the 11th
Conference on Security and Cryptography for Networks (SCN), pages 216–
234, 2018.

[CL17] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output deliv-
ery in secure multiparty computation. Journal of Cryptology, 30(4):1157–
1186, 2017.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC), pages 494–503, 2002.

[Coc97] Clifford Cocks. Split knowledge generation of RSA parameters. In Pro-
ceedings of the 6th International Conference on Cryptography and Coding,
pages 89–95, 1997.

[Coc98] Clifford Cocks. Split generation of RSA parameters with multiple partic-
ipants. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
177.2600, 1998.

[DKLS18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Secure two-
party threshold ECDSA from ECDSA assumptions. In Proceedings of the
39th IEEE Symposium on Security and Privacy, (S&P), pages 980–997,
2018.

[DKLS19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ECDSA from ECDSA assumptions: The multiparty case. In Proceedings
of the 40th IEEE Symposium on Security and Privacy, (S&P), 2019.

[DM10] Ivan Damgård and Gert Læssøe Mikkelsen. Efficient, robust and constant-
round distributed RSA key generation. In Proceedings of the 7th Theory
of Cryptography Conference, TCC 2010, pages 183–200, 2010.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized pro-
tocol for signing contracts. Communications of the ACM, 28(6):637–647,
1985.

[FLOP18] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny
Pinkas. Fast distributed RSA key generation for semi-honest and mali-
cious adversaries. In Advances in Cryptology – CRYPTO 2018, part II,
pages 331–361, 2018.

46

http://eprint.iacr.org/2020/374
http://eprint.iacr.org/2020/374
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.2600
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.2600

[FMY98] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient dis-
tributed RSA-key generation. In Proceedings of the 17th Annual ACM
Symposium on Principles of Distributed Computing (PODC), page 320,
1998.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptology –
CRYPTO ’86, pages 186–194, 1986.

[Gil99] Niv Gilboa. Two party RSA key generation. In Advances in Cryptology –
CRYPTO ’99, pages 116–129, 1999.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation
without agreement. Journal of Cryptology, 18(3):247–287, 2005.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 218–229, 1987.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic
Techniques. Cambridge University Press, 2001.

[HMR+19] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, Tomas Toft, and An-
gelo Agatino Nicolosi. Efficient RSA key generation and threshold paillier
in the two-party setting. Journal of Cryptology, 32(2):265–323, 2019.

[HMRT12] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. Effi-
cient RSA key generation and threshold Paillier in the two-party setting.
In Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at
the RSA Conference, pages 313–331, 2012.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost con-
stant round MPC combining BMR and oblivious transfer. In Advances in
Cryptology – ASIACRYPT 2017, part I, pages 598–628, 2017.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes prov-
ably as secure as subset sum. Journal of Cryptology, 9(4):199–216, 1996.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party com-
putation with identifiable abort. In Advances in Cryptology – CRYPTO
2014, part II, pages 369–386, 2014.

[JP99] Marc Joye and Richard Pinch. Cheating in split-knowledge rsa parameter
generation. In Workshop on Coding and Cryptography, pages 157–163,
1999.

[KL15] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy, Second Edition, chapter Digital Signature Schemes, pages 443–486.
Chapman & Hall/CRC, 2015.

[Knu69] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminu-
merical Algorithms. Addison-Wesley, 1969.

47

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT
extension with optimal overhead. In Advances in Cryptology – CRYPTO
2015, part I, pages 724–741, 2015.

[MF06] Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for mali-
cious two-party computation. In Proceedings of the 9th International Con-
ference on the Theory and Practice of Public-Key Cryptography (PKC),
pages 458–473, 2006.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. J. Comput.
Syst. Sci., 13(3):300–317, 1976.

[MWB99] Michael Malkin, Thomas Wu, and Dan Boneh. Experimenting with shared
RSA key generation. In Proceedings of the Internet Society’s 1999 Sympo-
sium on Network and Distributed System Security, pages 43–56, 1999.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-
of-n OT extension with application to private set intersection. In Topics
in Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA
Conference, pages 381–396, 2017.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In Proceedings of the
10th Annual Innovations in Theoretical Computer Science (ITCS) confer-
ence, pages 60:1–60:15, 2019.

[PS98] Guillaume Poupard and Jacques Stern. Generation of shared RSA keys by
two parties. In Advances in Cryptology – ASIACRYPT ’98, pages 11–24,
1998.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal
of Number Theory, 12(1):128–138, 1980.

[Riv80] Ronald L. Rivest. A description of a single-chip implementation of the
RSA cipher, 1980.

[Riv84] Ronald L. Rivest. RSA chips (past/present/future). In Workshop on
the Theory and Application of Cryptographic Techniques, pages 159–165.
Springer, 1984.

[RS62] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some
functions of prime numbers. Illinois J. Math., 6:64–94, 1962.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[Wan20] Xiao Wang. Private Communication, 2020.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Advances in
Cryptology – EUROCRYPT 2019, part III, pages 379–407, 2019.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In Proceedings of the 24th ACM Conference on
Computer and Communications Security, (CCS), pages 39–56, 2017.

48

A The UC Model and Useful Functionalities
A.1 Universal Composability
We give a high-level overview of the UC model and refer the reader to [Can01]
for a further details.

The real-world experiment involves n parties P1, . . . ,Pn that execute a pro-
tocol π, an adversary A that can corrupt a subset of the parties, and an environ-
ment Z that is initialized with an advice-string z. All entities are initialized with
the security parameter κ and with a random tape. The environment activates
the parties involved in π, chooses their inputs and receives their outputs, and
communicates with the adversary A. A semi-honest adversary simply observes
the memory of the corrupted parties, while a malicious adversary may instruct
them to arbitrarily deviate from π. In this work, we consider only static adver-
saries, who corrupt up to n− 1 parties at the beginning of the experiment. The
real-world experiment completes when Z stops activating parties and outputs a
decision bit. Let REALπ,A,Z(z, κ) denote the random variable representing the
output of the experiment.

The ideal-world experiment involves n dummy parties P1, . . . ,Pn, an ideal
functionality F, an ideal-world adversary S (the simulator), and an environment
Z. The dummy parties act as routers that forward any message received from Z
to F and vice versa. The simulator can corrupt a subset of the dummy parties
and interact with F on their behalf; in addition, S can communicate directly
with F according to its specification. The environment and the simulator can
interact throughout the experiment, and the goal of the simulator is to trick the
environment into believing it is running in the real experiment. The ideal-world
experiment completes when Z stops activating parties and outputs a decision
bit. Let IDEALF,S,Z(z, κ) denote the random variable representing the output
of the experiment.

A protocol π UC-realizes a functionality F if for every probabilistic
polynomial-time (PPT) adversary A there exists a PPT simulator S such that
for every PPT environment Z

{REALπ,A,Z(z, κ)}z∈{0,1}∗,κ∈N ≈c {IDEALF,S,Z(z, κ)}z∈{0,1}∗,κ∈N

Communication model. We follow standard practice of MPC protocols:
Every pair of parties can communicate via an authenticated channel, and in the
malicious setting we additionally assume the existence of a broadcast channel.
Formally, the protocols are defined in the (Fauth,Fbc)-hybrid model (see [Can01,
CLOS02]). We leave this implicit in their descriptions.

A.2 Useful Functionalities
To realize FAugMul and FBiprime, we use a number of standard functionalities that
have well-known realizations in the cryptography literature. For completeness,
we give those functionalities in this section. First among them is a simple

49

distributed coin-tossing functionality, which samples an element uniformly at
random from an arbitrary domain.
Functionality A.1. FCT(n,X). Coin Tossing

This functionality is parametrized by the number of parties n and a domain
X.

Sample: Upon receiving (flip, sid) from all parties, where sid is a fresh,
agreed-upon value, uniformly sample a random element x ← X and send
(coin, sid, x) to all parties as adversarially delayed output.

We also make use of a one-to-many commitment functionality, which we
have taken directly from Canetti et al. [CLOS02].
Functionality A.2. FCom(n). One-to-many Commitment

This functionality is parametrized by the number of parties n. In each
instance one specific party Pi commits, and all other parties receive the
commitment and committed value.

Commit: On receiving (commit, sid, x,D) from party Pi, where D ⊆ [n]
and x ∈ {0, 1}∗, if sid is a fresh value, then store (commitment, sid, x,D, i)
in memory and send (committed, sid, i) to each party Pj for j ∈ D.

Decommit: On receiving (decommit, sid) from Pi, if a record of the form
(commitment, sid, x,D, i) exists in memory, then send (decommitted, sid, x)
to every party Pj for j ∈ D.

In πBiprime (Protocol 5.2), we make use of a functionality for randomly sam-
pling integer shares of zero. This functionality can be realized assuming two-
party coin tossing via a slight modification of a protocol of Cramer et al. [CDI05].
Functionality A.3. FZero(n,B). Integer Zero Sharing

This functionality is parametrized by a number of parties n and a maximal
value B.

Sample: Upon receiving (sample, sid) from all parties, where sid is a fresh,
agreed-upon value, uniformly sample x← [−B,B]n×n conditioned on xi,j+
xj,i = 0 for all i ∈ [n] and j ∈ [n], and send (zero-share, sid,

∑
j∈[n] xi,j)

to each party Pi as adversarially delayed private output.

In both πBiprime and πAugMul, we use a functionality for generic commit-and-
compute multiparty computation. This functionality allows each party to com-
mit to private inputs, after which the parties agree on one or more arbitrary
circuits to apply to those inputs. It can be realized using many generic multi-
party computation protocols.

50

Functionality A.4. FComCompute(n). Commit-and-compute MPC
This functionality is parametrized by the number of parties n.

Input Commitment: Upon receiving (commit, sid, x) from party Pi,
if sid is a fresh value, then store (value, sid, i, x) in memory, and send
(committed, sid, i) to all other parties.

Computation: Upon receiving (compute, sid, input-sids, f) from all par-
ties, where sid is a fresh, agreed upon value, and where input-sids is a
vector of session IDs such that for every i ∈ [|input-sids|] there exists in
memory a record of the form (value, input-sidsi, ∗, ∗), and where f is the
description of a function that takes as input the values associated with the
IDs in input-sids and produces as output an n-tuple of values, if the parties
disagree upon the function f or the vector input-sids, then abort, informing
them in an adversarially delayed fashion, and otherwise:

1. Let x be a vector of the same length as input-sids such that for
i ∈ [|input-sids|], there exists in memory a record of the form
(value, input-sidsi, ∗, v) such that xi = v.

2. Compute (y1, . . . , yn) ..= f(x), and then send (result, sid, yi) to each
party Pi as an adversarially delayed private output.

Finally, we use a Delayed-Transmission Correlated Oblivious Transfer func-
tionality as the basis of our multiplication protocols. This functionality can be
realized by combining a standard OT protocol with a commitment scheme, as we
discuss in Appendix B.1. Unlike an ordinary COT functionality, which allows
the sender to associate a single correlation to each choice bit, this functionality
allows the sender to associate an arbitrary number of correlations to each bit.
The transfer action then commits the sender to the correlations, and the sender
can later decommit them individually, at which point the receiver learns either
a random pad, or the same pad plus the decommitted correlation, according to
their choice. We suggest that this functionality be instantiated via either Silent
OT-extension [BCG+19] or the KOS OT-extension protocol [KOS15].
Functionality A.5. FDelayedCOT. Delayed-Transmission COT

This functionality interacts with a sender S and a receiver R.

Receiver Choice: On receiving (choose, sid, β) from the receiver, where
β ∈ {0, 1}, if sid is a fresh value, then store (choice, sid, β) in memory and
send (chosen, sid) to the sender.

51

Sender Commitment: On receiving (commit, sid,α) from the sender,
where α ∈ G1×G2×. . .G`OT (that is, α is a vector of elements of length `OT

from a heterogeneous set of groups), if a record of the form (choice, sid, ∗)
exists in memory, but no record of the form (correlation, sid, ∗) ex-
ists in memory, then store (correlation, sid,α) in memory and send
(committed, sid) to the receiver.

Transfer: On receiving (transfer, sid, i) from the sender, if records of
the form (correlation, sid,α) and (choice, sid, β) exist in memory such
that 0 < i ≤ |α|, but no record (complete, sid, i) exists in memory, then
sample a random pad ρ ← Gi, send (pad, sid, i, ρ) to the sender and
(message, sid, i, ρ+ β ·αi) to the receiver, where the + operator is defined
over Gi, and store (complete, sid, i) in memory.

B Instantiating Multiplication
In this section, we describe how to instantiate the FAugMul functionality, and
discuss the efficiency of our protocols. In Appendix B.1, we begin by using
oblivious transfer and commitments to build delayed correlated oblivious trans-
fer (FDelayedCOT). In Appendix B.2, we use FDelayedCOT to realize a two-party
multiplier FReuseMul2P that allows inputs to be reused, and postpones the de-
tection of malicious behaviour. In Appendix B.3, we plug this into the classic
GMW multiplication technique [GMW87] in order to realize an n-party multi-
plier FReuseMul, with the same properties of input-reuse and delayed cheat de-
tection. Finally, in Appendix B.4, we combine this component with generic
multiparty computation (FComCompute) via a simple MAC to realize FAugMul. We
discuss security and give concrete efficiency analysis in parallel. In our efficiency
analysis, we make the same assumptions and concessions as in Section 6.

B.1 Delayed-Transmission Correlated Oblivious Transfer
Given groups G1, . . . ,G`OT , the functionality FDelayedCOT with respect to G1 ×
. . . × G`OT can be realized in the (FCom,FOT)-hybrid model, where FOT is the
standard oblivious-transfer functionality [CLOS02]. Our construction uses a
collection of `OT hash functions Hi : {0, 1}λ 7→ Gi such that for r ← {0, 1}λ, the
vector (H1(r), . . . ,H`OT(r)) is indistinguishable from (g1, . . . , g`OT)← G1× . . .×
G`OT . This is trivial when each Hi is modeled as a random oracle.

1. The sender samples two uniformly random messages (r0, r1) ← {0, 1}λ ×
{0, 1}λ, and the receiver (who has an input bit β ∈ {0, 1}) uses FOT to
receive rβ .

2. In order to commit to sending its input-correlation vector α, the sender uses
FCom to commit to Hi(r0) +Hi(r1) +αi for i ∈ [|α|].

3. To implement the transfer instruction for index i, the sender instructs FCom

52

to decommit x = Hi(r0) + Hi(r1) + αi, and then the receiver retrieves its
output follows:

• If β = 0, then the receiver can calculate its output Hi(r0).
• If β = 1, then the receiver subtracts Hi(r1) from the value FCom delivered
to calculate Hi(r0) +αi.

Meanwhile, the sender outputs Hi(r0).

It is clear to see that at the end of this protocol, the sender and receiver hold
additive shares of β ·αi for every index i that has been decommitted, and that
the sender is committed to α. One may notice a small gap between the protocol
and the ideal functionality: the sender’s share is available before the transfer
phase, as is the receiver’s share, if β = 0. Fixing this is simple but not important
for our usage of FDelayedCOT, and so we omit it.

Theorem B.1. Let G1, . . . ,G`OT be groups and assume there exists a collection
{Hi : {0, 1}λ 7→ Gi}i∈[`OT] as described above. Then, there exists a protocol in
the (FOT,FCom)-hybrid model that UC-realizes FDelayedCOT with respect to G1 ×
. . .×G`OT , which requires a single invocation of FOT.

We note that with a particular usage pattern, there is a more efficient
instantiation available, based upon a non-black-box usage of either Silent
OT [BCG+19] or KOS OT [KOS15], which we introduced in Section 6.2. In
particular, assume there is some specific point in time, and that all correlations
are decommitted either immediately after they are committed, or at that point.
Both Silent OT and KOS OT involve sending a message from the receiver to the
sender first, followed by a message from the sender to the receiver, where each
bit in this latter message corresponds to one bit of the correlation(s) transferred
(and any correlation bit can be recovered from only the one associated message
bit). Thus, FDelayedCOT can be realized in the following context-optimized way:
the receiver sends its message, and then the sender sends the bits of its message
associated with the correlations to be immediately released, and commits (using
a single commitment) to the other bits of its message. These bits are decommit-
ted later. This eliminates the potential overhead associated with transferring
the r0 and r1 values in our above construction. Furthermore, if many FDelayedCOT
instances are invoked at once, and the delayed-release correlations are released
simultaneously across all instances, then the instances can share a single com-
mitment. Our usage of FDelayedCOT matches this pattern, and so its cost is equal
(up to a few bits) to that of either Silent OT or KOS OT. When calculating
concrete efficiency figures, we assume the overhead is exactly zero.

B.2 Two-Party Reusable-Input Multiplier
Our basic two-party multiplication functionality FReuseMul2P allows parties to
input arbitrarily many values, whereafter, on request, it returns additive shares
of the product of any pair of them. Unlike the standard two-party multiplica-
tion functionality, however, we allow the adversary to both request the honest

53

party’s inputs and determine the output products, and then add an explicit
check command which notifies the honest party of such behaviour if called. In
addition, we give the functionality an interface by which the parties can agree
to open their private inputs to each other (which, as a side effect, also notifies
the honest party of any cheating behavior).
Functionality B.2. FReuseMul2P(m). Two-Party Multiplication

This functionality is parametrized by the prime modulus m. It interacts
with two parties, Alice and Bob, who have indices A and B, respectively,
and it also interacts directly with an ideal adversary S, who corrupts one
of the parties. The index of the honest party is given by h, and the index
of the corrupt party is given by c.

Cheater Activation: Upon receiving (cheat, sid) from S, store
(cheater, sid) in memory and send every record of the form (value, sid, i, x)
to S. For the purposes of this functionality, we will consider session IDs to
be fresh even when a cheater record already exists in memory.

Input: Upon receiving (input-self, sid, x) from party Pi, where i ∈
{A,B}, and also receiving (input-other, sid) from the opposite party: if sid
is a fresh, agreed-upon value and if 0 ≤ x < m, then store (value, sid, i, x)
in memory and send (value-loaded, sid) to both parties. If a record of the
form (cheater, sid) exists in memory, then send (value, sid, i, x) to S.

Multiplication: Upon receiving (multiply, sid1, sid2, sid3) from Ph and
(adv-multiply, sid1, sid2, sid3, zc) from S where 0 ≤ zc < m,a if sid3 has
not previously been used, and if records of the form (value, sid1, i, x)
and (value, sid2, j, y) exist in memory such that i 6= j, and if no record
of the form (cheater, sid1) or (cheater, sid2) exists in memory, then
let zh ..= (x · y − zc) mod m. If the previous conditions hold, but
a record of the form (cheater, sid1) or (cheater, sid2) exists in mem-
ory, then send (cheat-multiply, sid1, sid2, sid3) to S and in response re-
ceive (cheat-product, sid3, zh) where 0 ≤ zh < m. Regardless, send
(product, sid3, zA) and (product, sid3, zB) to Alice and Bob respectively
as adversarially delayed private output.

Cheater Check: Upon receiving (check, sid) from both parties, if a
record of the form (cheater, sid) exists in memory, then abort, inform-
ing both parties in an adversarially delayed fashion. Otherwise, send
(no-cheater, sid) to both parties as adversarially delayed output. Regard-
less, refuse all future messages with this sid.

Input Revelation: Upon receiving (open, sid) from both parties, if a
record of the form (cheater, sid) exists in memory, then abort, informing
both parties in an adversarially delayed fashion. Otherwise, if a record of
the form (value, sid, i, x) exists in memory, then send (opening, sid, x) to
Pj , where j ∈ {A,B} and j 6= i, as adversarially delayed output. Refuse all

54

future messages with this sid.
aIn the semi-honest setting, the adversary does not send zc to the functionality;

instead the functionality samples the share for the corrupt party just as it does for
honest party.

Theorem B.3. The functionality FReuseMul2P can be UC-realized in the
FDelayedCOT-hybrid model.

The proof of this theorem is via construction of a protocol πReuseMul2P, which
we sketch here, along with a security argument. We adapt the multiplication
protocols of Doerner et al, and refer the reader to their work [DKLS19, Section
3] for a more in-depth technical explanation.

Common parameters and hybrid functionalities. The protocol
πReuseMul2P is parametrized by the statistical security parameter s and a prime
m ∈ O(log s). For convenience, we define a batch-size ξ ..= 2s+ |m|, a repetition
count r = ds/|m|e, and a randomly sampled public gadget vector g ← Zξm.
Looking ahead, Bob will encode his input via an inner product of ξ random
bits and the gadget vector g. The parameter ξ is set so that deleting up to s
elements of g still leaves sufficient rank in g to encode any element Zm with over-
whelming probability. The participating parties have access to the commitment
functionality FCom and the delayed-transfer COT functionality FDelayedCOT.

Inputs and multiplication. For the sake of succinctness, we will describe
the input and multiplication processes jointly: each party will supply exactly
one input, and they will receive shares of the product, in a single step. Later,
we will discuss how the parties can input values independently, and how those
input values can be reused. Alice begins the protocol with an input a ∈ [0,m),
and Bob with an input b ∈ [0,m), and they both know a fresh, agreed-upon
session ID sid. They take the following steps:

1. Alice and Bob both independently compute a vector of session IDs bit-sids ..=
{GenSID(sid, j)}j∈[ξ].

2. Alice samples a consistency-check vector ã← Zrm.

3. Bob samples a vector of choice bits β ← {0, 1}ξ.

4. For each i ∈ [ξ] (concurrently):

(a) Bob sends (choose, bit-sidsi,βi) to FDelayedCOT, and Alice is notified.
(b) Alice sends (commit, bit-sidsi, (a, ã1, . . . , ãr) ∈ Zr+1

m) to FDelayedCOT, and
Bob is notified.

(c) Alice sends (transfer, bit-sidsi, 1) to FDelayedCOT. As a consequence, she
receives zA,i from FDelayedCOT, and Bob receives zB,i, such that zA,i +
zB,i ≡ a · βi (mod m).

55

5. Alice uses FCom to commit to (a, zA,∗), and Bob is notified.

6. Bob computes b̃ ..= 〈g,β〉 and sends δ ..= b− b̃ mod m to Alice.

7. Alice outputs zA ..= a · δ + 〈g, zA,∗〉 mod m, while Bob outputs zB ..=
〈g, zB,∗〉 mod m.

While the correctness of the above procedure is easy to verify when both par-
ties follow the protocol, we note that it omits the consistency-check components
of the protocols of Doerner et al. [DKLS18, DKLS19], which will appear in the
next protocol phase. In particular, the consistency-check vector ã is committed
by the end of the protocol, but it has not yet been transferred to Bob. This
omission admits attacks, such as a corrupt Alice using different values for a in
each iteration of Step 4b. We model these attacks in FReuseMul2P by allowing
the ideal adversary to fully control the results of a multiplication, once it has
explicitly notified FReuseMul2P that it wishes to cheat.

If the parties agree that Alice should be compelled to reuse an input in
multiple different multiplications, then she must also reuse the same consistency-
check vector ã in all of those multiplications. The consistency-check mechanism
(in the next protocol phase) that ensures the internal consistency of a single
multiplication will also ensure the consistency of many multiplications.

If the parties agree that Bob should be compelled to reuse an input in mul-
tiple different multiplications, then the above protocol is run exactly once, and
Alice combines her inputs for all of those multiplications (and their associated,
independent consistency-check vectors) into a single array, which she commits
to in Step 4b. She then repeats Step 4c, changing the index as appropriate to
cause the transfer of each of her inputs (but not, for now, the consistency-check
vectors). The remaining steps in the protocol are repeated once for each mul-
tiplication, except for Step 6, which is performed exactly once, for Bob’s one
input.

In the case that only Bob inputs a value, the parties can run the above
protocol until Step 4a is complete, and then pause the protocol until a mul-
tiplication using Bob’s input must be performed. In the case that only Alice
inputs a value, Bob must input a dummy value, and compulsory input reuse is
employed to ensure she uses her input in the appropriate multiplications.

We will briefly review the relevant parts of the simulation argument of Do-
erner et al. [DKLS19]. Simulation against a corrupt Bob is simple: he has no
avenue for cheating, and his ideal input in any single instance of the above pro-
tocol is defined by b ..= δ + 〈g,β〉 mod m. Simulating against a corrupt Alice is
more involved: if she uses inconsistent values of a in Step 4b, then the simulator
takes her most common value to be her ideal input, and tosses a coin for each
inconsistency. If any coin returns 1, then the simulator activates the cheat in-
terface of FReuseMul2P, receives Bob’s inputs, and can thereafter behave exactly
as he would in the real world. If all coins return 0, then the simulator samples
a uniform δ ← Zm and sends it to Alice. Doerner et al. show via a lemma of
Impagliazzo and Naor [IN96] that this simulated δ is distinguishable from the
real one with probability no greater than 2−s.

56

Finally, we observe that the dominant cost of the above protocol is incurred
by the ξ = 2s+|m| invocations of FDelayedCOT per multiplication, each invocation
with a correlation of size |m|. If we realize FDelayedCOT via Silent OT, then Alice
must transmit |m| ·(|m|+2s)+2λ bits in total and Bob must transmit 2|m|+2s
bits it total. If we realize FDelayedCOT via KOS OT, then Alice must transmit
|m| · (|m|+ 2s) + 2λ bits in total and Bob must transmit λ · (|m|+ 2s) + |m| bits
in total. Regardless, they require three rounds.

Cheater check. In this phase of the protocol, the parties perform a process
analogous to the consistency check in the multiplication protocols of Doerner
et al. [DKLS19]. This reveals to the honest parties any cheats in the protocol
phases described above, and corresponds to the Predicate Cheater Check phase
in FAugMul. As we have previously noted, Bob does not have an opportunity to
cheat; thus this check leverages the consistency-check vector ã, to which Alice
is committed, in order to verify her behavior. In addition to the consistency-
check vector, Alice begins the protocol with an input a, and both parties know
a vector sids of all the multiplications in which Alice was expected to use this
input, along with a vector bit-sids of the individual FDelayedCOT instances (over
all of the multiplications associated with sids) in which she was expected to
commit a‖ã. Bob begins with a vector of choice bits, β, one bit for each entry
in bit-sids. We assume for the sake of simplicity that Bob was not expected to
reuse his inputs. The parties take the following steps:

1. For each i ∈ [|bit-sids|] and j ∈ [r], Alice sends (transfer, bit-sidsi, j +
1) to FDelayedCOT and receives z̃A,i,j in response such that 0 ≤ z̃A,i,j < m,
while Bob receives z̃B,i,j such that 0 ≤ z̃B,i,j < m. Note that if Alice has
behaved honestly, then per the specification of FDelayedCOT, it holds for all
i ∈ [|bit-sids|] and j ∈ [r] that

z̃A,i,j + z̃B,i,j ≡ βi · ãj (mod m)

2. Bob sends a random challenge e← Zrm to Alice.

3. Alice computes her responses

ψ ..= {(ãj + ej · a) mod m}j∈[r]

ζ ..= {(z̃A,i,j + ej · zA,i) mod m}i∈[|bit-sids|], j∈[r]

4. Bob verifies that for each i ∈ [|bit-sids|] and j ∈ [r],

z̃B,i,j + ej · zB,i ≡ ζi,j − βi ·ψj (mod m)

Notice that in the foregoing procedure, Bob learns nothing about α or zA; all
values derived from these are masked by Alice using uniformly sampled one-time
pads before being transmitted to him. Notice also that the equality in Step 4
will fail for some index i ∈ [|bit-sids|] if and only if Alice has used a value other

57

than α‖zA as her correlation in that instance of FDelayedCOT, and βi = 1. Thus,
if she guesses Bob’s choice bits correctly and cheats only where he has chosen 0,
her cheats will go undetected (and since the bits are 0, her cheats will have no
effect on the output). Alice can leverage this fact to learn some of Bob’s choice
bits via selective failure. Fortunately, Bob’s choice bits are chosen by encoding
his true input, using a random public vector g. Doerner et al. [DKLS18] proved
that under this encoding scheme, she has a negligible chance to learn enough
bits to distinguish his input from a uniform string with noticeable probability.
We refer the reader to their work for a full explanation.

This protocol can be optimized (at the cost of straight-line extractability
and therefore UC-security) by applying the Fiat-Shamir transform [FS86] to
generate the challenge e. When either KOS OT or Silent OT is used to realize
FDelayedCOT, and this optimization is applied, the cheater check costs only one
round and 2s · (|m| + 2s) · c bits of transmitted data for Alice, where c is the
number of multiplications in which the input to be checked was used.

Input revelation. In this phase of the protocol, the parties can open their
inputs to one another. This phase may be run in place of the cheater check
phase, but they may not both be run. It has no analogue in the protocols of
Doerner et al. [DKLS18, DKLS19]. For the sake of simplicity, we assume that
both parties wish to reveal their inputs simultaneously, though the protocol
may be extended to allow independent release. Alice begins the protocol with
an input a and a consistency-check vector ã, to which Alice is committed, and
an output vector zA. Bob begins with a vector of choice bits, β and an output
vector zB. In addition, they both know the vector bit-sids of session IDs of all
relevant FDelayedCOT instances (i.e., one instance for each of Bob’s bits, where
Alice was expected to use the same input in all instances). The parties take the
following steps:

1. For each i ∈ [|bit-sids|] and j ∈ [r], Alice sends (transfer, bit-sidsi, j + 1)
to FDelayedCOT and receives z̃A,i,j in response such that 0 ≤ z̃A,i,j < m, while
Bob receives z̃B,i,j such that 0 ≤ z̃B,i,j < m.

2. In order to prove that he used an input b, for each i ∈ [|bit-sids|], Bob sends
(βi, z̃B,i,∗) to Alice, who verifies for each i ∈ [|bit-sids|] and j ∈ [r] that

z̃A,i,j + z̃B,i,j ≡ βi · ãj (mod m)

If these equations hold, then Alice also verifies that

δ ≡ 〈g, β〉 − b (mod m)

The security of this step lies in the inherent committing nature of OT; Bob
is able to pass the test while also lying about his choice bit (without loss of
generality, βi) only by outright guessing the value for z̃B,i,∗ that will cause the
test to pass. This is as hard as guessing ã, and Bob succeeds with probability
less than 2−s.

58

3. In order to prove that she used an input a for all FDelayedCOT instances asso-
ciated with the session IDs in bit-sids, Alice decommits (a, {zA,i}i∈[|bit-sids|])
via FCom. Bob verifies that for each i ∈ [|bit-sids|], it holds that

zA,i + zB,i ≡ a · βi (mod m)

Alice is able to subvert this check for some index i if and only if she correctly
guesses Bob’s corresponding choice bit βi during the input phase, and ap-
propriately offsets zA,i. We again refer the reader to Doerner et al. [DKLS19]
for a full explanation.

We note that the foregoing protocol can only be simulated for small fields.
Specifically, we require that |m| ∈ O(log s). This is due to the fact that open-
ing Bob’s input to some value b requires the simulator to compute b̂ = δ + b
and then find β ∈ {0, 1}ξ such that 〈g,β〉 ≡ b̂ (mod m) (and such that any
choice bit already fixed by a coin that the simulator flipped in the input phase
is consistent). The brute-force approach to finding such a vector of choice bits
(i.e., guess and check) succeeds in polynomial time with overwhelming proba-
bility only when each individual guess satisfies the predicate with probability
Ω(1/ poly(s)). Given a randomly chosen g ∈ Z|m|+2s

m , it follows from Impagli-
azzo and Naor [IN96] that a random sampling of β ← {0, 1}|m|+2s satisfies the
predicate with probability no less than 1/m− 2−s ∈ Ω(1/ poly(s)). As we have
mentioned, Alice’s (undetected) cheats in the input phase trigger coin flips that
fix some of the simulator’s choice bits. In the full version of this document,
we will show that Alice has a negligible chance to prevent the simulator from
finding a satisfying assignment in the ideal world while also avoiding an abort
in the real world.

In the random oracle model, this protocol can be optimized by having Bob
send a 2s-bit digest of his z̃B,∗,∗ values, instead of sending the values themselves,
since Alice is able to recompute the same values herself using only β and the
information already in her view. Under this optimization, the cost of this pro-
tocol is |m|+ 2s bits for Bob, |m| · (|m|+ 2s) bits for Alice, and 3 messages in
total.

B.3 Multiparty Reusable-Input Multiplier
Plugging FReuseMul2P into a GMW-style multiplication protocol [GMW87] yields
an n-party equivalent of the same functionality, i.e., FReuseMul. This flavor of
composition is standard (it is used, for example, by Doerner et al. [DKLS19]),
and the security argument follows along similar lines to prior work. Note that
we give the ideal adversary slightly more power than strictly necessary, in order
to simplify our description: when it cheats, it always learns the secret inputs of
all honest parties; in the real protocol, on the other hand the adversary may
cheat on honest parties individually.

59

Functionality B.4. FReuseMul(m,n). Multiparty Multiplication
This functionality is parametrized by the party count n and a prime modu-
lusm. In addition to the parties it interacts directly with an ideal adversary
S who corrupts the parties indexed by P∗. The remaining honest parties
are indexed by P* ..= [n] \P∗.

Cheater Activation: Upon receiving (cheat, sid) from S, store
(cheater, sid) in memory and send any record of the form (value, sid, i, xi)
to S. For the purposes of this functionality, we will consider session IDs to
be fresh even when a cheater record already exists in memory.

Input: Upon receiving (input, sid, xi) from each party Pi for i ∈ [n],
if 0 ≤ xi < m for all i ∈ [n], then store (value, sid, i, xi) in memory for
each i ∈ [n] and send (value-loaded, sid) to all parties. If a record of
the form (cheat, sid) exists in memory, then send (value, sid, i, xi) to S for
each i ∈ [n].

Multiplication: Upon receiving (multiply, sid1, sid2, sid3) from each
party Pi for i ∈ P* and (adv-multiply, sid1, sid2, sid3, i, zi) from S for
each i ∈ P∗,a if all three session IDs are agreed upon and sid3 is fresh, and
if no record of the form (cheater, sid1) or (cheater, sid2) exists in memory,
and if records of the form (value, sid1, i, xi) and (value, sid2, i, yi) exist in
memory for all i ∈ [n], then sample zi ← Zm for i ∈ P* subject to∑

i∈[n]

zi ≡
∑
i∈[n]

xi ·
∑
i∈[n]

yi (mod m)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) ex-
ists in memory, then send (cheat-multiply, sid1, sid2, sid3) to S and in
response receive (cheat-product, sid3, {zi}i∈P*) where 0 ≤ zi < m for
all i. Regardless, send (product, sid3, zi) to each party Pi for i ∈ [n] as
adversarially delayed private output.

Cheater Check: Upon receiving (check, sid) from all parties, if a record
of the form (cheat, sid) exists in memory, then abort, informing all parties
in an adversarially delayed fashion. Otherwise, send (no-cheater, sid) to
both parties as adversarially delayed private output. Regardless, refuse all
future messages with this sid, except for the open message.

Input Revelation: Upon receiving (open, sid) from all parties, if a record
of the form (cheat, sid) exists in memory, then abort, informing all parties
in an adversarially delayed fashion. Otherwise, for each record of the form
(value, sid, i, xi) in memory, send (opened-value, sid, i, xi) to all parties as
adversarially delayed output. Refuse all future messages with this sid.

aIn the semi-honest setting, the adversary does not send these values to the func-
tionality; instead the functionality samples the shares for corrupt parties just as it does
for honest parties.

60

We defer an efficiency analysis of the protocol that realizes this functionality
to the next subsection.

B.4 Augmented Multiplication
Finally, we describe a protocol πAugMul that realizes FAugMul in the
(FReuseMul,FComCompute)-hybrid model. It comprises five phases. Its Input, Mul-
tiplication, and Input Revelation phases essentially fall through to FReuseMul. Its
Cheater Check phase falls through to the Cheater Check phase of FReuseMul, but
also takes additional steps to securely evaluate an arbitrary predicate over the
checked values, using generic MPC. Finally, it adds a Sampling phase, which
samples pairs of nonzero values by running a sequence of FReuseMul instructions.

Theorem B.5. The protocol πAugMul UC-realizes FAugMul in the
(FReuseMul,FComCompute)-hybrid model.

Protocol B.6. πAugMul(n). Augmented Multiplication
This protocol is parametrized by the number of parties n; let s be the
statistical security parameter. The parties have access to the FReuseMul and
FComCompute functionalities.

Sampling: Upon receiving (sample, sid1, sid2,m) from the environment
where sid1 and sid2 are fresh values, each party Pi for i ∈ [n] sets ctr ..= 0
and sidx ..= GenSID(sid1, sid2, x) for x ∈ [3, 6] and then:

1. For every x ∈ [1, 6], Pi computes ctrsidx ..= GenSID(sidx, ctr).

2. Pi samples three private random values, (ri, xi, yi) ← Z3
m, and

then loads them into FReuseMul(m,n) by sending the messages
(input, ctrsid1, xi), (input, ctrsid2, yi), and (input, ctrsid3, ri), waiting
after each for confirmation.

3. Pi sends (multiply, ctrsid1, ctrsid2, ctrsid4) to FReuseMul(m,n), and re-
ceives (product, ctrsid4, zi) in response.

4. Pi sends (input, ctrsid5, zi) to FReuseMul(m,n), and waits for con-
firmation, after which it sends (multiply, ctrsid3, ctrsid5, ctrsid6) to
FReuseMul(m,n), and receives (product, ctrsid6, z̃i) in response.

5. Pi sends z̃i to all other parties, and in response it receives z̃j for j ∈
[n] \ {i}. Pi stores (sample, sid1, ctr, xi,m) and (sample, sid2, ctr, yi,m)
in memory and outputs (sampled-product, sid1, sid2, xi, yi, zi) to the
environment if and only if∑

j∈[n]

z̃j 6≡ 0 (mod m)

61

Otherwise, Pi sends (open, ctrsid1), (open, ctrsid2), and (open, ctrsid3) to
FReuseMul(m,n). If FReuseMul(m,n) aborts, then Pi aborts. If Pi receives
xj , yj , and rj for j ∈ [n] from FReuseMul(m,n) in response, and if∑

j∈[n]

xj ·
∑
j∈[n]

yj ·
∑
j∈[n]

rj 6≡ 0 (mod m)

then Pi aborts. Otherwise, Pi increments ctr and begins again from
Step 1.

Input: Each party Pi for i ∈ [n] begins this protocol phase upon receiving
(input, sid, xi,m) from the environment where 0 ≤ xi < m and sid is a
fresh value.

6. Pi sends (input,GenSID(sid, 1), xi) to FReuseMul(m,n), and waits to re-
ceive (value-loaded,GenSID(sid, 1)) in response.

7. Pi stores (value, sid, 1, xi,m) in memory.

Multiplication: Each party Pi for i ∈ [n] begins this protocol phase upon
receiving (multiply, sid1, sid2, sid3) from the environment, where records of
the form (value, sid1, ctr1, xi,m) and (value, sid2, ctr2, yi,m) exist in mem-
ory with the same value of m (either or both of these records may also be
of type sample), and where sid3 is a fresh value.

8. Pi sends (multiply,GenSID(sid1, ctr1),GenSID(sid2, ctr2), sid3) to
FReuseMul(m,n), and receives (product, sid3, zi) in response, which it
forwards to the environment.

Predicate Cheater Check: Each party Pi for i ∈ [n] begins this protocol
phase upon receiving (check, sids, f) from the environment, where sids is a
vector of input session IDs such that for each sid ∈ sids, there exists a record
of the form (value, sid, ∗, ∗, ∗) or (sample, sid, ∗, ∗, ∗) in Pi’s memory, and
where f is the description of a predicate over the stored values associated
with the input session IDs. Pi does nothing if a previous iteration of this
protocol phase or the Input Revelation phase included any of the session
IDs in sids. Let s be the statistical security parameter, and for convenience,
let joint-sid ..= GenSID(sids), and let m be a vector (without duplication)
of all the moduli associated with the records referenced by the IDs in sids,
and let filter(sids,m) denote the subvector of IDs in sids associated with
records that have the modulus m.

9. For each m ∈m (concurrently):

62

(a) For each sid ∈ filter(sids,m), each party Pi for i ∈ [n] retrieves its
record (value, sid, ∗, xi,m) (or sample) from memory and sends
(commit,GenSID(joint-sid, 1, i, sid), xi) to FComCompute(n), waiting
afterward for confirmation that all parties have submitted inputs.

(b) Each party Pi samples a vector ri,∗ ← Zds/|m|em .
(c) For each j ∈ [ds/|m|e], each party Pi for i ∈ [n] sends

(commit,GenSID(joint-sid, 2, i, j,m), ri,j) to FComCompute(n) and
(input,GenSID(joint-sid, 2, j), ri,j) to FReuseMul(m,n), waiting after-
ward for confirmation that all other parties have submitted their
inputs to both functionalities.

(d) For each j ∈ [ds/|m|e] and each sid ∈ filter(sids,m), in parallel:
i. Each Pi retrieves its record (value, sid, ctr, xi,m) (or sample)

and sends (multiply,GenSID(sid, ctr),GenSID(joint-sid, 2, j),
GenSID(joint-sid, 3, j)) to FReuseMul(m,n), and receives
(product,GenSID(joint-sid, 3, j), ti,j) in response.

ii. Each Pi sends (commit,GenSID(joint-sid, 3, i, j,m), ti,j) to
FComCompute(n), waiting afterward for confirmation that all
parties have submitted inputs.

iii. Let f ′ be a description of the circuit that verifies whether∑
i∈[n]

ri,j ·
∑
i∈[n]

xi ≡
∑
i∈[n]

ti,j (mod m)

and if j = 1 and this sid is associated with a sampled value,
then let f ′ also verify that∑

i∈[n]

xi 6≡ 0 (mod m)

and let

check-sids ..=

GenSID(joint-sid, 1, i′, sid),
GenSID(joint-sid, 2, i′, j,m),
GenSID(joint-sid, 3, i′, j,m)

i′∈[n]

Each party Pi sends (compute,GenSID(sid, j), check-sids, f ′)
to FComCompute(n), and aborts if FComCompute(n) aborts or if
FComCompute(n) indicates that the predicate f ′ is false.

(e) For each j ∈ [ds/|m|e], each party Pi for i ∈ [n] sends
(check,GenSID(joint-sid, 2, j)) to FReuseMul(m,n), and aborts if
FReuseMul(m,n) aborts.

63

(f) For each sid ∈ filter(sids,m), each party Pi for i ∈ [n] retrieves its
record (value, sid, ctr, xi,m) and sends (check,GenSID(sid, ctr)) to
FReuseMul(m,n). If FReuseMul(m,n) aborts, then Pi aborts.

10. Let
pred-sids ..= {GenSID(joint-sid, 1, i′, sid)}i′∈[n],sid∈sids

Each party Pi for i ∈ [n] sends (compute, joint-sid, pred-sids, f) to
FComCompute(n) and aborts if FComCompute(n) aborts. Otherwise, Pi re-
ceives the output of the predicate from FComCompute, and forwards it to
the environment.

Input Revelation: Each party Pi for i ∈ [n] begins this protocol phase
upon receiving (open, sid) from the environment, such that a record of the
form (value, sid, ctr, ∗,m) exists in Pi’s memory. No party executes this
phase with the same sid more than once.

11. Pi sends (open,GenSID(sid, ctr)) to FReuseMul(m,n), and then waits to
receive (opened-value,GenSID(sid, ctr), j, xj) from FReuseMul(m,n) for
j ∈ [n]. It then outputs (opening, sid, j, xj) for j ∈ [n] to the environ-
ment.

We now discuss security and efficiency of πAugMul, phase-by-phase.

Input. The input phase of πAugMul defers directly to FReuseMul, and therefore
inherits its security. When realized as we have discussed in Section B.3, a single
call to FReuseMul among all parties corresponds to all pairs of parties making
two calls each to FReuseMul2P. Recall that in FReuseMul2P, loading inputs from the
party playing Bob is effectively free, and as a consequence, we need only count
costs due to inputs loaded from Alice. The first party, P1, plays Alice in all of
its interactions with FReuseMul2P, and pays a cost of (n−1) ·(|m| ·(|m|+2s)+2λ)
bits if FDelayedCOT is realized via Silent OT [BCG+19] or KOS OT [KOS15]. The
last party, Pn, always plays Bob, and pays a cost of (n − 1) · (2|m| + 2s) bits
if FDelayedCOT is realized via Silent OT, or (n − 1) · (λ · (|m| + 2s) + |m|) bits
if FDelayedCOT is realized via KOS OT. The other parties play a mixture of the
roles, and thus in general they each pay an average cost17 of

Bits multiply
ReuseMul(m) 7→ (n− 1) · (|m|+ 1) · (|m|+ 2s) + |m|+ 2λ

2
transmitted bits with Silent OT or

Bits multiply
ReuseMul(m) 7→ (n− 1) · (|m|+ λ) · (|m|+ 2s) + |m|+ 2λ

2
transmitted bits with KOS OT. Regardless, three rounds are required.

17We define a function in order to express other costs in terms of this cost; note that the
variables n, s and λ are assumed to be global, and thus for simplicity we do not include them
among the function’s parameters.

64

Multiplication. The input phase of πAugMul defers directly to FReuseMul. As
we have noted in Section B.2, the multiplication and input phases of FReuseMul2P
cost the same; however, whereas the input phase of πAugMul corresponds costwise
to one invocation of the input phase of FReuseMul2P for each pair of parties (due
to Bob’s inputs being free), the multiplication phase of πAugMul corresponds to
two invocations of the multiplication phase of FReuseMul2P for each pair of par-
ties. Thus the parties pay three rounds and an average cost of 2Bits multiply

ReuseMul(m)
transmitted bits per party. Note that as an optimization two input phases can
be fused with one multiplication (in which they are used), and the inputs will
consequently add no additional cost.

Input revelation. The input revelation phase of πAugMul defers directly to
FReuseMul, and corresponds to two invocations of the FReuseMul2P open command
for each pair of parties (where each invocation opens both parties’ inputs). Thus
the cost of this phase is

Bits open
ReuseMul(m) 7→ (n− 1) · (|m|+ 1) · (|m|+ 2s)

transmitted bits per party on average, and three rounds.

Sampling. This procedure is probabilistic. Specifically, each iteration suc-
ceeds with probability ((m − 1)/m)3. We will analyze the costs associated
with iterating sequentially until a value is successfully sampled (as described in
πAugMul). So long as only a single instance of the sampling procedure is con-
sidered, the expected number of sequential iterations depends only on m, but
we note that when multiple instances of the sampling procedure are run con-
currently, the expected maximum number of iterations among the concurrent
instances grows with the number of instances [CCGZ19]. Such concurrency is
required in order to achieve biprime sampling in expected-constant or constant
rounds, as discussed in Section 6.4. In order to avoid huge overhead costs, an
elaborate analysis is required. We perform this analysis in Section 6.4 and, as
we have said, focus here on the sequential case.

In the sequential case, (m/(m− 1))3 iterations are required in expectation.
Each iteration requires two calls to the FReuseMul multiplication command (we
will assume that the FReuseMul input command is coalesced and therefore free, as
described previously), and all iterations after the first require two invocations
of the FReuseMul open command. In addition, every party broadcasts a value in
Zm to the other parties in each iteration. Thus the average cost per party is(

m

m− 1

)3
·

(
4 · Bits multiply

ReuseMul(m) + 2 · Bits open
ReuseMul(m)

+(n− 1) · |m|

)
− 2 · Bits open

ReuseMul(m)

transmitted bits, in expectation, and the expected round count is 10(m/(m −
1))3− 3. For values of m of any significant size, these costs converge to the cost
of two sequential multiplications, plus one additional round.

65

With respect to security, we observe that the values z̃i for i ∈ [n] jointly
reveal nothing about the secret values xi and yi, because the latter pair of values
have been masked by ri. Thus the security of a successful iteration reduces
directly to the security of the constituent multipliers.18 In failed iterations,
all values are opened and the computations are checked locally by each party.
This ensures that the adversary cannot force sampling failures by cheating, and
thereby prevent the protocol from terminating.

Predicate cheater check. Unlike the other protocol phases, this phase takes
an input of flexible dimension and therefore its cost does not have a convenient
closed-form cost. Consequently we will describe the cost piecemeal. For each
input to be checked, let m be the modulus with which the input is associated
and let c be the number of multiplications in which it has been used. The
parties engage in ds/|m|e additional invocations of the FReuseMul Multiplication
command, with inputs that have previously been loaded, and then run the
Cheater Check command of FReuseMul, which implies running the Cheater Check
command of FReuseMul2P in a pairwise fashion. Together, these operations incur
a cost of

s · Bits multiply
ReuseMul(m)
|m|

+ (n− 1) · s ·
(
c+ s

|m|

)
· (|m|+ 2s)

transmitted bits per party, on average. Finally, for every input to be checked,
the parties each input ds/|m|+ 1e · |m| bits into a generic MPC, and then run a
circuit that performs 3 ·(n−1) ·ds/|m|e modular additions and ds/|m|e modular
multiplications and equality tests over Zm. Using the circuit component sizes
reported in Section 6.2, the size of this circuit comprises (3·(n−1)·modadd(|m|)+
modmul(|m|) + |m|) · ds/|m|e AND gates, with |m| additional gates in the case
that the input to be checked was sampled. In addition to these costs for each
input to be checked, the generic MPC also evaluates the predicate f , comprising
|f | AND gates, over the inputs already loaded. A handful of additional AND
gates are required to combine the results from the predicate and the per-input
checks, and the circuit has exactly one output wire.

With respect to security, we note that the protocol effectively uses a straight-
forward composition of secure parts to implement an information-theoretic MAC
over the shared values corresponding to the inputs to be checked, in order to
ensure that they are transferred into the circuit of the generic MPC faithfully.
Forced reuse ensures that the MACs are applied to the correct values, and be-
cause each MAC has soundness error 1/m = 2−|m|, it is necessary to repeat the
process s/|m| times in order to achieve a soundness error of 2−s. The multipli-
cations (including those used to apply the MACs) are then checked for cheats,
and the MACs are verified inside the circuit before the predicate f is evaluated.

18Note that the constituent multipliers in this case admit cheats, which are caught later
by the Cheater Check command, if it is invoked

66

C Proof of Security for Our Biprime-Sampling
Protocol

In this section, we provide the full proof of Theorem 4.6, showing that πRSAGen
realizes FRSAGen in the malicious setting.

Theorem 4.6. If factoring biprimes sampled by BFGM is hard, then πRSAGen
UC-realizes FRSAGen in the (FAugMul,FBiprime)-hybrid model against a static, ma-
licious PPT adversary that corrupts up to n− 1 parties.

Proof. We begin by describing a simulator SRSAGen for the dummy adversary
A.19 Next, we prove by a sequence of hybrid experiments that no PPT envi-
ronment can distinguish with more than negligible probability between running
with the dummy adversary and real parties executing πRSAGen, and running with
SRSAGen and dummy parties that interact with FRSAGen. Formally speaking, we
show that

{REALπRSAGen,A,Z(z, κ)}z∈{0,1}∗,κ∈N ≈c {IDEALFRSAGen,SRSAGen,Z(z, κ)}z∈{0,1}∗,κ∈N
for all environments Z, assuming the hardness of factoring primes generated
by BFGM. Since the following simulator is quite long and involves complex
state tracking, we invite the reader to revisit Section 4.4 for an overview of the
simulation strategy.
Simulator C.1. SRSAGen(κ, n,B). Distributed Modulus Sampling

This simulator is parametrized by the RSA security parameter κ, the num-
ber of parties n, and the trial-division bound B. It interacts with the
parties on behalf of the functionalities FAugMul and FBiprime, and also in-
teracts directly with A, who plays the role of the ideal adversary for the
aforementioned functionalities. Let P∗ be the set of corrupted parties, let
P* be the set of non-corrupted parties, and let (m, `′, `,M) be the (κ, n)-
compatible parameter set as in Definition 4.3. The simulator initializes
two flags for each individual session, which represent its internal state:
queryflag ..= 0 indicates whether FRSAGen is waiting on a response from
SRSAGen and cheatflag ..= 0 indicates whether a cheat has occurred.

Candidate Sieving:

1. Receive (adv-sample, psidsj , qsidsj ,pi,j ,qi,j ,Ni,j ,mj) from A on be-
half of FAugMul for every j ∈ [2, `] and i ∈ P∗, where psidsj and qsidsj
are derived consistently from a single fresh session ID sid. That is, let
sid be such that psidsj = GenSID(sid, j, p) and qsidsj = GenSID(sid, j, q).
If A previously sent (cheat, psidsj) or (cheat, qsidsj) to FAugMul at
any point, then send (cheat-sample, psidsj , qsidsj) to A on behalf of

19This adversary essentially allows the environment direct control over all corrupt parties
and communication channels, and a simulator for this adversary implies a simulator for all
adversaries. We refer the reader to Canetti [Can01] for details.

67

FAugMul, receive (cheat-samples, psidsj , qsidsj , {(pi,j ,qi,j ,Ni,j)}i∈P*)
in response, store the records (sim-samples, sid, j, {(pi,j ,qi,j)}i∈P*) and
(sim-product, sid, j, {Ni,j}i∈P*) in memory, and set cheatflag ..= 1.
Regardless, send (sampled-product, psidsj , qsidsj ,pi,j ,qi,j ,Ni,j) to Pi
for every i ∈ P∗ on behalf of FAugMul. This simulates Step 1 of πRSAGen.
If at any point after the sampled-product message is sent to the corrupt
parties, A sends (cheat, psidsj) or (cheat, qsidsj) to FAugMul, then set
cheatflag ..= 1, retroactively sample (pi,j ,qi,j ,Ni,j) for every i ∈ P*

using the method to follow, and finally respond to A on behalf of FAugMul
with (value, psidsj , i,pi,j ,mj) for all i ∈ P* if it sent (cheat, psidsj), or
with (value, qsidsj , i,qi,j ,mj) for all i ∈ P* if it sent (cheat, qsidsj).
In order to retroactively sample (pi,j ,qi,j ,Ni,j) for all i ∈ P* and for
some j ∈ [`], the following steps must be taken:

(a) If cheatflag = 1 and queryflag = 1, then send (cheat, sid) to FRSAGen,
receive (factors, sid, p, q) in response, store this response in mem-
ory if no such record already exists, and set queryflag ..= 0.

(b) Either retrieve (sim-product, sid, j, {Ni,j}i∈P*) from memory if it
is stored, or else sample Ni,j ← Zmj for every i ∈ P* subject to∑

i∈[n]

Ni,j ≡ p · q (mod mj)

if the record (factors, sid, p, q) exists in memory, or subject to∑
i∈[n]

Ni,j 6≡ 0 (mod mj)

if it does not. Store the aforementioned sim-product record using
the sampled values, if such a record does not already exist.

(c) Either retrieve (sim-samples, sid, j, {(pi,j ,qi,j)}i∈P*) from mem-
ory if it is stored, or else sample pi,j ← Zmj and qi,j ← Zmj for
every i ∈ P* subject to∑

i∈[n]

pi,j ·
∑
i∈[n]

qi,j ≡
∑
i∈[n]

Ni,j (mod mj)

and also subject to∑
i∈[n]

pi,j ≡ p (mod mj) and
∑
i∈[n]

qi,j ≡ q (mod mj)

68

if the record (factors, sid, p, q) exists in memory. Store the afore-
mentioned sim-samples record in memory using the sampled val-
ues, if such a record does not already exist.

Note that this retroactive sampling procedure will be used throughout
this simulator.

2. On behalf of FAugMul, for j ∈ [` + 1, `′], receive (input, psidsj ,pi,j ,mj)
and (input, qsidsj ,qi,j ,mj) from every party Pi for i ∈ P∗, where
psidsj = GenSID(sid, j, p) and qsidsj = GenSID(sid, j, q), and in each
case reply with (value-loaded, psidsj) and (value-loaded, qsidsj) as
FAugMul would. This partially simulates Step 3 of πRSAGen.
If A sends (cheat, psidsj) or (cheat, qsidsj) to FAugMul at any point
subsequently, then set cheatflag ..= 1, retroactively sample pi,j and qi,j
for every i ∈ P* using the method to follow, and respond to A on
behalf of FAugMul with (value, psidsj , i,pi,j ,mj) for all i ∈ P* if it sent
(cheat, psidsj), or with (value, qsidsj , i,qi,j ,mj) for all i ∈ P* if it
sent (cheat, qsidsj). If at any point previously one of these messages
has already been received, then take the foregoing steps immediately.
In order to retroactively sample pi,j and qi,j for all i ∈ P* and for some
j ∈ [`+ 1, `′], the following steps must be taken:

(a) For j′ ∈ [`], retroactively sample (pi,j′ ,qi,j′ ,Ni,j′) for every i ∈ P*

as necessary, using the method described in Step 1.
(b) Compute

pi,j ..= CRTRecon
(
{mj′}j′∈[`] ,

{
pi,j′

}
j′∈[`]

)
mod mj

qi,j ..= CRTRecon
(
{mj′}j′∈[`] ,

{
qi,j′

}
j′∈[`]

)
mod mj

for every i ∈ P* and store (sim-inputs, sid, j, {(pi,j ,qi,j)}i∈P*) in
memory, if such a record does not already exist.

Note that as before, this retroactive sampling procedure will be used
throughout this simulator.

3. On behalf of FAugMul, for all j ∈ [` + 1, `′] and i ∈ P∗, receive
(adv-multiply, psidsj , qsidsj ,Nsidsj , i,Ni,j) from A, where Nsidsj =
GenSID(sid, j, N). If A previously sent (cheat, psidsj) or (cheat, qsidsj)
to FAugMul, then send (cheat-multiply, psidsj , qsidsj ,Nsidsj) to A on
behalf of FAugMul, receive (cheat-product,Nsidsj , {Ni,j}i∈P*) in re-
sponse, and store (sim-product, sid, j, {Ni,j}i∈P*) in memory. Regard-
less, send (product,Nsidsj ,Ni,j) to Pi for every i ∈ P∗ on behalf of
FAugMul. This completes the simulation of Step 3 of πRSAGen.

69

In order to retroactively sample Ni,j for all i ∈ P* and for some j ∈
[`+ 1, `′], the following steps must be taken:

(a) Retroactively sample pi,j and qi,j for every i ∈ P* if necessary,
using the method described in Step 2.

(b) Either retrieve (sim-product, sid, j, {Ni,j}i∈P*) from memory if it
is stored, or else sample Ni,j ← Zmj for every i ∈ P* subject to∑

i∈[n]

Ni,j ≡
∑
i∈[n]

pi,j ·
∑
i∈[n]

pi,j (mod mj)

and store the aforementioned sim-product record in memory using
the sampled values, if such a record does not already exist.

Note that there is no reason to do this retroactive sampling yet, but we
may need to later, and thus we define the method here.

4. For each i ∈ P∗, compute

pi ..= CRTRecon
(
{mj}j∈[`] ,

{
pi,j
}
j∈[`]

)
qi ..= CRTRecon

(
{mj}j∈[`] ,

{
qi,j
}
j∈[`]

)
where p1,1

..= q1,1
..= 3 and pi,1 ..= qi,1 ..= 0 for i ∈ [2, n]. If there exists

any j ∈ [`+ 1, `′] such that∑
i∈P∗

pi,j 6≡
∑
i∈P∗

pi (mod mj) or
∑
i∈P∗

qi,j 6≡
∑
i∈P∗

qi (mod mj)

then set cheatflag ..= 1.

5. Now it is time to construct a candidate modulus, taking one of two paths
depending on whether or not any cheating has occurred.

• If cheatflag = 1, then we know that we will eventually instruct FRSAGen
to abort, and so we simulate the behavior of the honest parties directly.
We must sample a complete and consistent view for each honest party.
In order to do this, the following sequence of steps must be taken:
(a) For each j ∈ [`], retroactively sample (pi,j ,qi,j ,Ni,j) for every

i ∈ P* as necessary, using the method outlined in Step 1.
(b) For each j ∈ [`+ 1, `′], retroactively sample (pi,j ,qi,j) and then

Ni,j for every i ∈ P* as necessary, using the methods outlined in
Steps 2 and 3, respectively.

70

(c) For each i ∈ P*, compute

pi ..= CRTRecon
(
{mj}j∈[`] ,

{
pi,j
}
j∈[`]

)
qi ..= CRTRecon

(
{mj}j∈[`] ,

{
qi,j
}
j∈[`]

)
where p1,1

..= q1,1
..= 3 and pi,1 ..= qi,1 ..= 0 for i ∈ [2, n].

(d) If no record of the form (factors, sid, p, q) exists in memory, then
compute

p ..=
∑
i∈[n]

pi and q ..=
∑
i∈[n]

qi

and store such a record in memory, using the computed values.
(e) Compute N ..= p · q and determine whether N is a biprime.

• If cheatflag = 0, then set queryflag ..= 1, send (adv-sample, sid, i, pi, qi)
directly to FRSAGen for every i ∈ P∗ and receive (factors, sid, p, q) or
(biprime, sid, N) in response. If biprime is received, then sample
Ni,j ← Zmj

uniformly for all i ∈ P* subject to∑
i∈[n]

Ni,j ≡ N (mod mj)

and store (sim-product, sid, j, {Ni,j}i∈P*) in memory.a On the other
hand, if factors was received, then store (factors, sid, p, q) in mem-
ory, and sample views for all honest parties using the method de-
scribed in the previous bullet point of this step.b

Note that the factors p and q are now known to the simulator (as are
the honest parties’ simulated shares of those factors) unless N is a
biprime and no cheating has occurred (that is, cheatflag = 0). The
honest parties’ simulated shares of N are known in all cases. Note also
that queryflag = 1 if and only if cheatflag = 0.

6. Broadcast Ni,j to all corrupt parties on behalf of every honest party Pi
for i ∈ P*. In response, receive broadcasts of N′i,j for every j ∈ [`′] from
every corrupt party Pi for i ∈ P∗. This simulates Step 4 of πRSAGen.

7. Compute

N ′ ..=
∑
i∈P∗

CRTRecon
(
m,N′i,∗

)
+
∑
i∈P*

CRTRecon (m,Ni,∗)

and if N ′ 6= N , then set cheatflag ..= 1. If N ′ 6= N or N ′ is divisible
by any prime smaller than B, then sample a view for each honest party
using the method described in the first bullet of Step 5. If N ′ is divisible

71

by any prime smaller than B, then proceed to simulating the privacy
free consistency check by skipping to Step 13 without executing the
intervening steps. This simulates Step 5 of πRSAGen.

Biprimality Test:

8. On behalf of FBiprime, receive (check-biprimality, sid, N ′′i , p′i, q′i) from
every corrupted party Pi for i ∈ P∗.

9. If ∑
i∈P∗

p′i =
∑
i∈P∗

pi and
∑
i∈P∗

q′i =
∑
i∈P∗

qi

and if for all i ∈ P∗ it holds that p′i < M and q′i < M and N ′′i = N ′, and
if cheatflag = 0 and N is known to be a biprime, then send (biprime, sid)
to A on behalf of FBiprime.
If A responds to FBiprime with (proceed, sid), then send (biprime, sid) to
every corrupt party Pi for i ∈ P∗ on behalf of FBiprime, and skip directly
to Step 13 without executing any intervening steps. Note that if this
occurs, cheatflag = 0 and N is known to be a biprime.
If A instead responds to FBiprime with (cheat, sid), then set cheatflag ..=
1, sample a view for each honest party using the method described in
the first bullet of Step 5, and skip directly to Step 12 without executing
any intervening steps.

10. If cheatflag = 0, but∑
i∈P∗

p′i 6=
∑
i∈P∗

pi or
∑
i∈P∗

q′i 6=
∑
i∈P∗

qi

or there exists some i ∈ P∗ for which p′i ≥ M or q′i ≥ M or N ′′i 6= N ′,
then set cheatflag ..= 1 and sample a view for each honest party using
the method described in the first bullet of Step 5.

11. Compute

p′ ..=
∑
i∈P∗

p′i +
∑
i∈P*

pi and q′ ..=
∑
i∈P∗

q′i +
∑
i∈P*

qi

and if p′ and q′ are both prime, and p′ · q′ = N ′, and N ′′i = N ′ for all
i ∈ [P∗], then send (biprime, sid) directly to A on behalf of FBiprime. If
A responds to FBiprime with (proceed, sid), then send (biprime, sid) to
every corrupt party Pi for i ∈ P∗ on behalf of FBiprime, and skip directly
to Step 13 without executing any intervening steps.

72

If A instead responds to FBiprime with (cheat, sid), then set cheatflag ..=
1, sample a view for each honest party using the method described in
the first bullet of Step 5, if necessary, and continue to Step 12.

12. Send (leaked-shares, sid, {(pi, qi)}i∈P*‖{(p
′
i, q
′
i)}i∈P∗) to A and

(not-biprime, sid) to every corrupt party Pi for i ∈ P∗ on behalf of
FBiprime. Note that this step may be skipped according to conditions in
Steps 9 and 11. Together, Steps 8 through 12 simulate Step 6 of πRSAGen.

Consistency Check:

13. Now, Step 7 of πRSAGen is simulated, taking one of two paths depending
on whether it was reported on behalf of FBiprime that the candidate is a
biprime.c Note that in all cases, cheatflag = 1− queryflag at this point.

• If biprime was sent on behalf of FBiprime in Steps 9 or 11 of this
simulation, then the privacy-preserving check must be simulated. Re-
ceive (check, psids‖qsids, fi) on behalf of FAugMul from every corrupt
party Pi for i ∈ P∗. If there is any i ∈ P∗ such that fi is not a
description of the predicate specified in Step 7 of πRSAGen, then in-
struct FRSAGen to abort,d and signal an abort to every corrupt party
on behalf of FAugMul. On the other hand, if fi is a description of
the correct predicate for all i ∈ P∗, then reply to every corrupt
party with (predicate-result, psids‖qsids, 1 − cheatflag) on behalf
of FAugMul, and either send proceed to FRSAGen if cheatflag = 0, or
instruct FRSAGen to abort if cheatflag = 1.d Regardless, on behalf of
FAugMul, refuse all future cheat instructions that include a session ID
in psids or qsids.

• If not-biprime was sent on behalf of FBiprime in Step 12 of this sim-
ulation, or if N ′ is divisible by some prime smaller than B, then the
privacy-free check must be simulated, and it must be the case that the
simulated honest parties’ shares pi,j and qi,j for i ∈ P* and j ∈ [`′]
are already known. For every j ∈ [2, `′] receive (open, psidsj) and
(open, qsidsj) from Pi for i ∈ P∗ on behalf of FAugMul. Respond with
(opening, psidsj , i,pi,j) and (opening, qsidsj , i,qi,j) for each i ∈ [n]
and j ∈ [2, `′]. If cheatflag = 0, then send proceed to FRSAGen. If
cheatflag = 1, then instruct FRSAGen to abort.d Regardless, on behalf
of FAugMul, refuse all future cheat instructions that include a session
ID in psids or qsids.

aSince cheatflag = 0, no conflicting record can possibly exist.
bPer the description of that method, the views generated will be consistent with the

received factors.
cThis is not the same as depending on whether the candidate is actually a biprime.
dRegardless of its current state in this simulation. This abort instruction may be

redundant, or it might be the first time FRSAGen is activated. Note that to all observers
apart from SRSAGen itself, the abort and cheat instructions produce identical outcomes.

73

We now define our sequence of hybrid experiments. The output of each
experiment is the output of the environment, Z. We begin with the real-world
experiment, constructed per the standard formulation for UC-security.

H0 ..= {REALπRSAGen,A,Z(z, κ)}z∈{0,1}∗,κ∈N

Hybrid H1. In this experiment, we replace the real honest parties with dummy
parties. We then construct a simulator that plays the role of FRSAGen in its
interactions with the dummy parties, and also plays the roles of the honest
parties in their interactions with the corrupt parties. Furthermore, the simulator
plays the roles of FAugMul and FBiprime in their interactions with the corrupt
parties and with the adversary A. Internally, the simulator emulates each honest
party by running its code, and it emulates FAugMul and FBiprime similarly. By
observing the output of each emulated honest party, the simulator can send the
appropriate message to each dummy party on behalf of FRSAGen, such that the
outcome of the experiment for each dummy party matches the output for the
corresponding honest party. The distribution of H1 is thus clearly identical to
that of H0.

Hybrid H2. This hybrid experiment is identical to H1, except that in H2, the
simulator does not internally emulate the honest parties for Steps 1 through 3
of πRSAGen. Instead, the simulator takes one of the following two branches:

• If A sends a cheat message to FAugMul before Step 4 of πRSAGen, or if there is
any i ∈ P∗ and j′ ∈ [`+ 1, `′] such that

pi,j′ 6≡ CRTRecon
(
{mj}j∈[`], {pi,j}j∈[`]

)
(mod mj′)

then at the time the cheat occurs, the simulator must retroactively construct
views for the honest parties that are consistent with the outputs already de-
livered to the corrupt parties.20 After this, the simulation is completed using
the same strategy as in H1 (i.e., the honest parties are internally emulated by
the simulator). It follows immediately from the perfect security of additive
secret sharing that H2 and H1 are identically distributed in this branch.

• If A does not send a cheat message to FAugMul before Step 4 of πRSAGen, and
if for all i ∈ P∗ and j′ ∈ [`+ 1, `′] it holds that

pi,j′ ≡ CRTRecon
(
{mj}j∈[`], {pi,j}j∈[`]

)
(mod mj′)

then before simulating Step 4, the simulator uses the corrupt parties’ inputs
(which it received in its role as FAugMul) to compute

pi ..= CRTRecon
(
{mj}j∈[`], {pi,j}j∈[`]

)
qi ..= CRTRecon

(
{mj}j∈[`], {qi,j}j∈[`]

)
20See the first branch of Step 5 of SRSAGen for a detailed algorithm to sample such views.

74

for i ∈ P∗. Next, the simulator runs CRTSample(κ, n, {(pi, qi)}i∈P∗) inter-
nally, receives as output either (success, p, q) or (failure, p, q), and com-
putes N ..= p · q. With these values, the simulator retroactively constructs
views for the honest parties by sampling (pi,j ,qi,j ,Ni,j) ← Z3

mj
uniformly

for i ∈ P* and j ∈ [`′] subject to∑
i∈[n]

pi,j ≡ p (mod mj) and
∑
i∈[n]

qi,j ≡ q (mod mj)

and
∑
i∈[n]

Ni,j ≡ N (mod mj)

and then the simulator completes the simulation using the same strategy as
in H1 (i.e., it emulates the honest parties internally).
Recall that by construction CRTSample samples from a distribution identical
to that of πRSAGen, conditioned on honest behavior during the Candidate Siev-
ing phase of the protocol. Consequently, it follows from the perfect security
of additive secret sharing that H2 and H1 are identically distributed if this
branch is taken. Note furthermore that in H2 the output of FBiprime will be
biprime only if CRTSample returns success or if there exists some i ∈ P∗
such that pi 6= p′i or qi 6= q′i, where p′i and q′i are corrupt inputs to FBiprime.

Hybrid H3. This hybrid experiment is identical to H2, except in the way that
FBiprime is simulated in Step 6 of πRSAGen. Recall that in H2, the simulator
runs the code of FBiprime internally, and in order to do this, it must know the
factorization of the candidate biprime N in all cases. In H3, if no cheating
occurs until after the biprimality test, and the candidate is in fact a biprime,
then the simulator does not use the factorization of the candidate biprime to
simulate FBiprime.

If cheating occurs before Step 4 of πRSAGen is simulated, then H3 and H2 are
identical: the simulator simply emulates the honest parties internally (retroac-
tively sampling their views as previously described). The experiments differ,
however, if no cheating occurs before Step 4 of πRSAGen. Recall that in H2, un-
der this condition, the simulator runs CRTSample internally and receives p and
q (plus an indication as to whether they are both primes), from which values it
constructs honest-party views that are subsequently used to simulate FBiprime.
In H3, if no cheating occurs before Step 4 of πRSAGen, then there are four cases.
Let N ′ be the candidate biprime reconstructed in Step 4 of πRSAGen, which may
not equal N if cheating occurs, and let (check-biprimality, sid, N ′′i , p′i, q′i) be
the message received on behalf of FBiprime from Pi for every i ∈ P∗ in Step 6 of
πRSAGen. The four cases are as follows.

1. If CRTSample reports that N is a biprime, and the adversary continues to
behave honestly (i.e., in Steps 4 and 6 of πRSAGen, the corrupt parties trans-
mit values that add up to the expected sums), then the simulator outputs
biprime to A on behalf of FBiprime, and reports the same outcome to the
corrupt parties if it receives proceed from A in reply. Note that knowledge

75

of p and q is not used in this eventuality. If A instead replies to FBiprime with
cheat, then p and q are used to formulate the correct response.

2. If the previous case does not occur, and CRTSample reports that N is a
biprime, but there exists some i ∈ P∗ such that N ′′i 6= N ′, then the simulator
sends non-biprime to the corrupt parties on behalf of FBiprime.

3. If neither of previous cases occurs, and CRTSample reports that N is a
biprime, and N ′′i = N for all i ∈ P∗, but∑

i∈P∗
p′i 6=

∑
i∈P∗

pi or
∑
i∈P∗

q′i 6=
∑
i∈P∗

qi

then the simulator sends non-biprime to the corrupt parties on behalf of
FBiprime.

4. If none of the previous cases occur, and CRTSample reports that N is not a
biprime, or for all i ∈ P∗ it holds that N ′′i = N ′ 6= N , then the simulator
constructs honest-party views from p and q and runs the code of FBiprime, as
in H2.

It is easy to see that H3 and H2 are identically distributed in first, second,
and fourth cases above, and also in the case that cheating occurs before Step 4
of πRSAGen. It remains only to analyze the third case. In H3, it leads to an
unconditional abort,21 whereas in H2, the adversary can avoid an abort by
sending p′i and q′i for i ∈ P∗ such that(

p+
∑
i∈P∗

(p′i − pi)
)
·

(
q +

∑
i∈P∗

(q′i − qi)
)

= N

which can be achieved without falling into the first case by finding values of p′i
and q′i such that the factors supplied to FBiprime are effectively switched relative
to their honest order. This is the only condition under which H3 differs ob-
servably from H2, and thus the environment’s advantage in distinguishing the
two hybrids is determined exclusively by the probability that the adversary trig-
gers this condition. We wish to show that the two hybrids are computationally
indistinguishable under the assumption that biprimes drawn from the distribu-
tion of BFGM are hard to factor. We begin by giving a simpler description of
the adversary’s task in the form of a game that is won by the adversary if the
following experiment outputs 1.
Experiment C.2. CRTSwapFactorsA(κ, n,P∗)

1. Invoke A(1n, 1κ,P∗) and receive pi and qi for i ∈ P∗.

2. Sample (status, p, q) ← CRTSample(κ, n, {(pi, qi)}i∈P∗) and compute
N ..= p · q.

21The emulated honest parties abort upon discovering that the candidate really was a
biprime during the privacy-free consistency check.

76

3. Send N to A(1κ,P∗) and receive p′i and q′i for i ∈ P∗ in response.

4. Output 1 if and only if status = success and∑
i∈P∗

(p′i − pi) 6= 0 and
∑
i∈P∗

(q′i − qi) 6= 0

and
(
p+

∑
i∈P∗

(p′i − pi)
)
·

(
q +

∑
i∈P∗

(q′i − qi)
)

= N

Note that a reduction from winning the CRTSwapFactors game to distin-
guishing between H3 and H2 exists by construction and there is no loss of
advantage. Now consider a variation on the classic factoring game (see Experi-
ment 3.1) in which CRTSample is used in place of GenModulus, and the adversary
supplies a set of corrupt shares to CRTSample.
Experiment C.3. CRTFindFactorsB(κ, n,P∗)

1. Invoke B(1n, 1κ,P∗) and receive pi and qi for i ∈ P∗.

2. Sample (status, p, q) ← CRTSample(κ, n, {(pi, qi)}i∈P∗) and compute
N ..= p · q.

3. Send N to B(1κ,P∗) and receive p′ and q′ in response.

4. Output 1 if and only if status = success and p′ · q′ = N

We will show a lossless reduction from winning the CRTFindFactors game
to winning the CRTSwapFactors game, which implies as a corollary that any
adversary enabling the environment to distinguish H3 and H2 can be used to
factor biprimes produced by CRTSample with adversarial shares.

Lemma C.4. For every PPT adversary A, there exists a PPT adversary B
such that for all κ, n ∈ N and P∗ ⊂ [n], it holds that

Pr [CRTSwapFactorsA(κ, n,P∗) = 1] = Pr [CRTFindFactorsB(κ, n,P∗) = 1]

Proof. Our reduction plays the role of B in Experiment C.3, and the role of the
challenger in Experiment C.2. It works as follows.

1. When invoked as B with inputs κ and P∗ in Experiment C.3, invoke
A(1κ,P∗) in Experiment C.2. On receiving pi and qi for i ∈ P∗ from A,
forward them to the challenger in Experiment C.3.

2. On receiving N as B in Experiment C.3, forward it to A in Experiment C.2.
Receive p′i and q′i for i ∈ P∗

3. Try to solve the following system of equations for unknowns pH and qH(
pH +

∑
i∈P∗

pi

)
·

(
qH +

∑
i∈P∗

qi

)
=
(
pH +

∑
i∈P∗

p′i

)
·

(
qH +

∑
i∈P∗

q′i

)
= N

77

and if exactly one valid pair (pH, qH) exists, then send

p′ ..= pH +
∑
i∈P∗

p′i and q′ ..= qH +
∑
i∈P∗

q′i

to the challenger in Experiment C.3. Otherwise, send ⊥ to the challenger.

This reduction is correct and lossless by construction. A succeeds in Exper-
iment C.2 only if it holds that∑

i∈P∗
(p′i − pi) 6= 0 and

∑
i∈P∗

(q′i − qi) 6= 0

which implies exactly one solution to the system of equations in Step 3 of our
reduction when A succeeds. It follows easily by inspection that Experiment C.3
outputs 1 if and only if Experiment C.2 outputs 1, and so the reduction is
perfect.

It remains only to apply Lemma 3.7 (see Section 3.1), which asserts that any
PPT algorithm that factors biprimes produced by CRTSample with adversarial
shares can be used (with polynomial loss in the probability of success) to factor
biprimes produced by BFGM without adversarial shares. Thus, if we assume
factoring biprimes from the distribution of BFGM to be hard, then we must
conclude that H3 and H2 are computationally indistinguishable.

Hybrid H4. This experiment is identical to H3, except in the way that the
privacy-preserving check is simulated in Step 7 of πRSAGen (the privacy-free check
is simulated as in H3). In H3, the simulator emulates both FComCompute and the
honest parties internally, using its knowledge of p and q. Specifically, in H3, the
emulated honest parties abort during the check if CRTRecon

(
m,pi,∗

)
≥ M or

CRTRecon
(
m,qi,∗

)
≥ M for any i ∈ P∗, or if a cheat instruction was sent to

FAugMul at any point, or if

N ′ 6=
∑
i∈[n]

CRTRecon
(
m,pi,∗

)
·
∑
i∈[n]

CRTRecon
(
m,qi,∗

)
(6)

In H4, the simulator avoids using knowledge of p or q when the privacy-
preserving check is run. It does not emulate the honest parties or FComCompute.
The simulation instead aborts on behalf of the honest parties if N ′ 6= N or if
there exists any j ∈ [`+ 1, `′] such that∑
i∈P∗

pi,j 6≡
∑
i∈P∗

pi (mod mj) or
∑
i∈P∗

qi,j 6≡
∑
i∈P∗

qi (mod mj) (7)

We will argue that this new predicate is equivalent to the former one.
First, consider a protocol state such that the check in Equation 7 fails.

Without loss of generality, assume that the first half (dealing with p) fails, but
an analogous argument exists for q. If we define a vector of offset values p∆

78

such that p∆
i,j = (pi − pi,j) mod mj for every i ∈ P∗ and j ∈ [`+ 1, `′], then it

is clear that when the parties behave honestly, p∆
i,j = 0 for every pair (i, j). On

the other hand, a violation of Equation 7 implies that there must exist some
pair (i, j) such that p∆

i,j 6= 0. If we let

M ′ ..=
∏
j∈[`′]

mj and recall that M =
∏
j∈[`]

mj

and we define p∆
i,j = 0 for i ∈ P∗ and j ∈ [`] then we find that

CRTRecon
(
m,pi,∗

)
=
(
pi + CRTRecon

(
m,p∆

i,∗
))

mod M ′

where it is certain that pi < M . Notice by inspection of the CRTRecon algorithm
that it must hold that CRTRecon

(
m,p∆

i,∗
)
≡ 0 (mod M). Since it also clearly

holds that M ′ ≡ 0 (mod M) we can conclude that(
pi + CRTRecon

(
m,p∆

i,∗
))

mod M ′ = pi + CRTRecon
(
m,p∆

i,∗
)
≥M

where the equality is taken over the integers. Thus, if the check in Equation 7
fails in H4, causing H4 to abort, then the range check in H3 must also fail,
causing H3 to abort. The converse also holds: Since honest behavior cannot
yield CRTRecon

(
m,pi,∗

)
≥ M , it must be the case that if the range check in

H3 fails, then there exists some (i, j) such that p∆
i,j 6= 0, and thus the check in

Equation 7 fails in H4.
Now, consider a protocol state such that the check in Equation 7 passes. It

is easy to see that in this case∑
i∈[n]

CRTRecon
(
m,pi,∗

)
·
∑
i∈[n]

CRTRecon
(
m,qi,∗

)
= N

which trivially yields∑
i∈[n]

CRTRecon
(
m,pi,∗

)
·
∑
i∈[n]

CRTRecon
(
m,qi,∗

)
= N ′ ⇐⇒ N = N ′

and thus, we can conclude that the two predicates are equivalent, and H4 is
distributed identically to H3.

Hybrid H5. During the entire sequence of hybrids thus far, our simulator
has played the role of FRSAGen. In this hybrid, the simulator instead inter-
acts with the real FRSAGen as a black box. In particular, whenever the simu-
lator would have called CRTSample(κ, n, {(pi, qi)}i∈P∗) in H4, it instead sends
(adv-sample, sid, i, pi, qi) to FRSAGen(κ, n) for every i ∈ P∗ in H5. Whereas
CRTSample outputs factors of the candidate it sampled, regardless of whether
that candidate is a biprime, FRSAGen returns factors only if the candidate is not
a biprime, and if the candidate is a biprime, then FRSAGen outputs the biprime

79

itself.22 Recall that in H4, if the candidate is a biprime, and no cheating occurs,
then the simulator does not use knowledge of the factors in its simulation. Thus,
in H5, it has enough information to simulate when FRSAGen returns a biprime,
until a cheat occurs. If a cheat occurs, and the simulator requires knowledge of
the factors to continue, then the simulator sends (cheat, sid) to FRSAGen, which
returns the factors and aborts. If no cheat occurs, then the simulator sends
(proceed, sid) to FRSAGen at the end of the simulation, so that it releases its
output to the honest parties.

Since FRSAGen simply calls CRTSample internally, it is easy to see that H5
is distributed identically to H4. It is somewhat more difficult but nevertheless
possible to see that our simulator is now identical to SRSAGen as previously
described; all remaining differences between the two are purely syntactic. Thus

H5 = {IDEALFRSAGen,SRSAGen,Z(z, κ)}z∈{0,1}∗,κ∈N

and by the sequence of hybrids we have just shown, it holds that

{REALπRSAGen,A,Z(z, κ)}z∈{0,1}∗,κ∈N ≈c {IDEALFRSAGen,SRSAGen,Z(z, κ)}z∈{0,1}∗,κ∈N

for the dummy adversary A and all environments Z, assuming the hardness of
factoring primes generated by BFGM.

22Note that because the protocol does not permit the adversary to input shares of p or q
with the wrong residues modulo 4, the abort in the Sampling phase of FRSAGen can never be
triggered.

80

	Introduction
	Results and Contributions
	Overview of Techniques
	Additional Related Work
	Organization

	Preliminaries
	Assumptions and Ideal Functionality
	Factoring Assumptions
	The Distributed Biprime-Sampling Functionality

	The Distributed Biprime-Sampling Protocol
	High-Level Overview
	Ideal Functionalities Used in the Protocol
	The Protocol Itself
	Security Sketches

	Distributed Biprimality Testing
	The Semi-Honest Setting
	The Malicious Setting

	Efficiency Analysis
	Per-Instance Success Probability
	The Cost of Instantiating Fbiprime and Faugmult
	Putting It All Together
	Strictly-Constant and Expected-Constant Rounds
	Comparison to Prior Work

	Bibliography
	The UC Model and Useful Functionalities
	Universal Composability
	Useful Functionalities

	Instantiating Multiplication
	Delayed-Transmission Correlated Oblivious Transfer
	Two-Party Reusable-Input Multiplier
	Multiparty Reusable-Input Multiplier
	Augmented Multiplication

	Proof of Security for Our Biprime-Sampling Protocol

