
DRAFT
Diogenes: Lightweight Scalable RSA Modulus Generation with a

Dishonest Majority

Megan Chen
Northeastern U.
& Ligero Inc.

Carmit Hazay
Bar-Ilan U.

& Ligero Inc.

Yuval Ishai
Technion

Yuriy Kashnikov
Ligero Inc.

Daniele Micciancio
UC San Diego

Tarik Riviere
Ligero Inc.

abhi shelat
Northeastern U.
& Ligero Inc.

Muthu Venkitasubramaniam
U. of Rochester
& Ligero Inc.

Ruihan Wang
Ligero Inc.

Abstract

In this work, we design and implement the first protocol for RSA modulus construction that can
support thousands of parties and offers security against an arbitrary number of corrupted parties. In a
nutshell, we design the “best” protocol for this scale that is secure against passive corruption, then am-
plify it to obtain active security using efficient non-interactive zero-knowledge arguments. Our protocol
satisfies a stronger security guarantee where a deviating party can be identified when the protocol aborts
(referred to as security with identifiable-abort) and allows for “public verifiability”.

Our passively secure protocol extends the recent work of Chen et al. [CCD+20] that, in turn, is based
on the blueprint introduced in the original work of Boneh-Franklin protocol (CRYPTO 1997, J. ACM,
2001). Specifically, we reduce the task of sampling a modulus to secure distributed multiplication, which
we implement via an efficient threshold additively homomorphic encryption (AHE) scheme based on
the Ring-LWE assumption. This results in a protocol where the amortized per-party communication cost
grows logarithmically in the number of parties. In order to keep the parties lightweight, we employ an
“untrusted” coordinator that is connected to all parties and performs all public and broadcast operations.

We amplify this protocol to obtain active security (with identifiable-abort) by attaching zero-knowledge
proofs. We instantiate our ZK proof system by composing two different types of ZK proof systems: (1)
the Ligero sub-linear zero-knowledge proof system (Ames et al., CCS 2017), and (2) Σ-protocol for
proving the knowledge of a discrete logarithm in unknown order groups (Shoup, Eurocrypt 2000).

We implemented both the passive and the active variants of our protocol and ran experiments using
2 to 4,000 parties. This is the first such implementation of any MPC protocol that can scale to more than
1,000 parties. For generating a 2048-bit modulus among 1,000 parties, our passive protocol executed in
under 4 minutes and the active variant ran in 22 minutes.

1

DRAFT

Contents

1 Introduction 3
1.1 Our Contribution . 3
1.2 Overview of Techniques . 5
1.3 Related Work . 7

2 Preliminaries 8
2.1 Chinese Remainder Theorem (CRT) . 8
2.2 Public Key Encryption Schemes (PKE) . 9
2.3 Threshold Homomorphic Encryption . 10
2.4 Σ-Protocols . 13
2.5 Beaver’s Triples . 13
2.6 The RSA Composite Functionality . 14
2.7 Commit-and-Prove Ideal Functionality . 15

3 Certified Triples Functionality 15

4 The Actively Secure Protocol 18

5 Concrete Costs 26
5.1 The Number of Prime Candidates . 26
5.2 Communication Complexity . 27
5.3 Round Complexity . 28

6 Instantiating Our Primitives 28
6.1 Instantiating Our AHE Based on Ring-LWE . 28
6.2 Identifying Prime Buckets for Triples Generation . 32
6.3 Implementing FCP (Commit-and-Proof) . 33

7 Implementation and Experiments 35
7.1 Experiments . 37

7.1.1 Setup . 37
7.1.2 Empirical Results . 38

8 Acknowledgements 40

A UC Security 44

B Evaluating Ring-LWE Noise 46

C Noise Accounting for ΠMULT−RLWE 48

D Proof of Theorem 2 49

2

DRAFT

1 Introduction

We present the first secure computation protocol for sampling a 2048-bit RSA modulus (a product of two
secret 1024 bit primes) that can practically scale to thousands of parties while tolerating a dishonest ma-
jority. Our protocol achieves security against either a passive (i.e., semi-honest) or active (i.e., malicious)
adversary, who may corrupt all-but-one of the parties. We implemented and benchmarked the active variant
of the protocol. As far as we know, our protocol increases the number of parties that can participate in
practical secure computation of this kind by an order of magnitude; prior work reports at most 256 parties
in a protocol involving a signature task [DKLS19].

The motivation for our work comes from applications of large-scale permissionless consensus. Cryp-
tocurrencies and blockchains have re-invigorated the design of threshold cryptosystems, where crypto-
graphic operations under a “secret-key” are delegated across a set of nodes and corrupting up to a given
threshold of nodes does not compromise security. The problem of generating a shared RSA modulus, intro-
duced in the seminal work of Boneh and Franklin [BF97, BF01], has recently regained attention owing to
new and efficient constructions of so-called verifiable delay functions (VDFs) [RSW96, BBBF18, Wes19,
Pie19, EFKP19] and zero-knowledge proof systems based on hidden-order groups [BFS19].

Beyond the application to VDFs, distributed RSA key generation is a powerful primitive that is moti-
vated by many old and new applications in threshold cryptography; see [Rab98, Des94, Sho00, CDN01] for
some earlier works in this area. One class of applications is generating keys for the public-key encryption
scheme of Paillier [Pai99], which is widely used in secure computation protocols. Paillier’s encryption is
an useful building block because it is additively homomorphic and has short ciphertexts. A recent applica-
tion that depends on Paillier public-key setup is the reusable non-interactive secure computation protocol
from [CDI+19]. Another application of distributed RSA keys is using them as part of the common reference
string (CRS) for secure computation in the UC setting [Can01]. This was demonstrated for general func-
tions in [JS07] and for concrete functions such as the Fiat-Shamir authentication protocol [FS86, FFS88],
set-intersection [JL09], and oblivious pseudorandom functions [JL09]. As noted above, more recent ap-
plications include setting up public parameters for VDFs, which can be used in decentralized systems for
generating public random beacons and have many other applications.

1.1 Our Contribution

This paper pushes the boundaries of deployable secure computation protocols for non-trivial tasks. We fo-
cus on the RSA modulus generation task because it’s useful for a wide range of applications, as discussed
above. We were particularly motivated by the immediate application of constructing a concrete VDF im-
plementation that is useful in Ethereum’s next generation consensus protocol. This task must be run with
(n− 1)-security, namely security against any subset of the n parties. This contrasts with the easier honest-
majority setting, in which simpler techniques based on linear secret sharing can be used. Furthermore, this
task needs to accommodate thousands of participating parties in order to ensure the VDF’s security.

Contribution overview. Our contributions include improvements to the basic distributed RSA modulus
generation algorithm, improvements to the design of secure computation protocols for many parties, and an
implementation that involves many system-level optimizations. Specifically, we introduce a new protocol
for distributed RSA modulus generation with the following features:

1. Security with identifiable abort against an active adversary that corrupts an arbitrary subset of parties.

2. The transcript of the protocol is publicly-verifiable.

3. The protocol is concretely efficient and scalable up to 4,000 parties (and beyond).

3

DRAFT

We now explain the above features in more detail.

Performance. We implemented both the passive and active variants of our protocol and ran experiments
ranging from 2 to 4,000 parties geographically distributed across multiple AWS cloud centers. We used
t3.small instances (2GB RAM, up to 2MBps uplink) for all parties and r5dn.24xlarge instances
for the (untrusted) coordinator. For generating a 2048-bit modulus among 1,000 parties, our passive variant
protocol executed in under 4 minutes on average. For 4,000 parties, our passive protocol executed in 12
minutes. For active security, the 1,000 party case ran in roughly 22 minutes while the 4,000-party instance
ran in 76 minutes. Note that our protocol also scales down to the 2-party case, which requires 22 seconds in
the passive case and 382 seconds in the active one.

As far as we know, this is the first reported implementation of active security for this problem, as well
as the first protocol to claim identifiable-abort security.

Security challenges. An inherent challenge of achieving active security is that the adversary can always
mount a “denial-of-completion” attack, even by corrupting only a single party [Cle86]. Thus when the
number of parties n is large, poor network connections could repeatedly cause the entire protocol to fail. The
natural defense against such attacks is to support identifiable abort. That is, if the protocol fails to complete,
the protocol must (publicly) identify at least one malicious or crashed party. Generally, identifying cheaters
is challenging for concretely efficient protocols [IOZ14, SF16, BOS16] since parties must reach a consensus
on the cheater’s identity.

Another desirable feature of actively secure protocols is public verifiability, where an honest party can
convince an external third party (e.g., a judge) that another party cheated in the computation but a dishon-
est party cannot incorrectly accuse an honest party [AO12, BDO14, BOS16]. This property is useful for
deterring active attacks by penalizing malicious parties.

Our protocol achieves both identifiable abort and public verifiability. An external “auditor” can inspect
the protocol’s transcript and identify parties who deviated from the protocol’s specification. In addition, this
auditor can be convinced of the correctness of the protocol’s outcome in the sense that every party “knows”
an additive share such that the protocol’s output is the (valid) RSA composite defined by these shares.

The coordinator model. In contrast to prior works on concretely efficient secure computation, our protocol
runs in the untrusted coordinator model. As discussed in Appendix 1.3, a natural bottleneck in large-scale
secure computation is communication; most practical protocols require O(|C| · n2) communication, where
|C| is the size of the computation and n is the number of parties, due to pairwise interaction. To circumvent
the pairwise interaction barrier, we employ an untrusted third party, called a coordinator, with an aggregate-
and-broadcast functionality. This setup keeps computation and communication lightweight for the parties
without compromising any security guarantees. Nevertheless, we note that the coordinator is not necessary.
Its actions can be performed by a single party or divided equally among all parties.

Since the coordinator is untrusted, its operations need to be verifiable. In principle, the coordinator can
prepare a work-saving proof showing that its actions were honest. However, our experiments show that
it is faster to simply store the entire protocol transcript in a cloud service and allow anyone to validate it,
eliminating the need for work-saving proofs. This is because the coordinator’s computations are performed
on public values, in contrast to the parties’ (lighter-weight) computations involving secrets.

Architecture. Our system architecture provides the following benefits:

• Before the ceremony begins, we deploy a bandwidth throughput test to eliminate parties with slow
uplink speeds.

• If a run aborts due to an incorrect message, the corrupted party is identified and eliminated before
another run of the protocol is restarted.

4

DRAFT

1.2 Overview of Techniques

We begin with the framework implicit in the work of Boneh and Franklin [BF97, BF01]. On a high-level,
the protocol proceeds in the following steps:

STEP 1: SAMPLE CANDIDATE PAIRS. Generate candidates {(pi, qi)}Ni=1 for pairs of primes, where the
values pi and qi are congruent to 3 mod 4 for all i.

STEP 2: PRE-SIEVING. The goal of this step is to reduce the number of samples. In particular, prime
candidates that are divisible by small prime factors are eliminated.

STEP 3: GENERATE CANDIDATE COMPOSITE. For every index i that is not eliminated, compute a candi-
date RSA modulus Ni = pi · qi. Based on the revealed Ni, further eliminate the candidates that are
divisible by prime factors up to some threshold. Let N ′ be the set of indices that survive this step.

STEP 4: BI-PRIMALITY TEST. Execute a test to identify a valid modulus among {Ni}i∈N ′ with better
soundness. This is called the biprimality test and requires executing the following two steps for each
candidate composite Ni:

1. Sample a random γ such that the Jacobi symbol of γ is 1 overNi. EliminateNi if γ(Ni+1−pi−qi)/4 6∈
{1,−1}. As the error is bounded by 1/2, this step is repeated s times where s is the statistical
security parameter (e.g., 80 or 128).

2. Compute GCD(Ni, φ(Ni)) and eliminate Ni if the outcome does not equal 1. We note that it
is not required to compute φ(Ni) in order to conclude the GCD outcome. Specifically, it holds
that GCD(Ni, φ(Ni)) = GCD(Ni, Ni − φ(Ni)) = GCD(Ni, pi + qi − 1).

STEP 5: OUTPUT PHASE. Output Ni for every index i that survives the biprimality test.

The main bottleneck in scaling secure computation to a large number of parties is the cost of securely multi-
plying secret values. Recent works [KOS16, ADI+17, HIMV19] rely on efficient realizations of the oblivi-
ous transfer and oblivious linear evaluation primitives to achieve secure multiplication in the two-party set-
ting. However, in the multi-party setting, the communication complexity of these techniques scales quadrat-
ically with the number of parties. This quadratic overhead is prohibitive in practice when the number of
parties is large. Indeed, current implementations for general purpose secure computation [WRK17, KPR18]
have not been deployed beyond 128 parties with fast communication links.

Our first design choice is to avoid the quadratic overhead by employing a threshold additively homo-
morphic encryption scheme ((T)AHE): parties encrypt their shares of each secret and send them to the
coordinator, who then aggregates the ciphertexts. At first glance, this seems to lead to circularity, since
threshold cryptosystems themselves require an MPC protocol for setup. For example, prior work utilizing
the Paillier AHE scheme [CDN01] runs into this issue. To circumvent this problem, we rely on a lattice-
based AHE, which has much simpler setup. A distributed coin-tossing protocol suffices to set up the public
and private parameters. This leads to total communication and computation scaling almost linearly with the
number of parties.

Originating from [FH96, CDN01], recent works utilize AHE to realize secure computation for which
online cost scales well with the number of parties. However in these protocols, the cost of distributing the
setup is much higher than ours, making their setup prohibitively expensive for our motivating application.
This also applies to protocols in the SPDZ line of work. They either assume a trusted setup [DPSZ12], are
limited to covert security [DKL+13], or scale quadratically with the number of parties [KOS16, KPR18,
RST+19].

5

DRAFT

Our protocol design involves two stages: we start with building a passively secure version then amplify
its security using zero-knowledge proofs. A major difference from previous works is that we use recent
general techniques for lightweight sublinear zero-knowledge proofs and compose different proof types to
enjoy their respective advantages. Another optimization includes proving correctness only for a single
successful protocol iteration and carefully analyzing security in case the adversary cheats in the remaining
iterations. As a final practical optimization, we decouple the verification of computations involving public
values from computations involving secret values. We use the untrusted coordinator to aggregate the publicly
verifiable part of the computation and post it on a bulletin board for any (internal or external) party to verify.
This effectively allows us to settle for security against an adversary who can actively corrupt up to n − 1
parties and passively corrupt the coordinator.

We now give a more technical overview of the two parts of our protocol design.

The passively secure protocol. The main building block of our passively secure protocol is a threshold AHE
scheme that performs secure arithmetic operations. At a high level, the protocol is structured as follows. The
parties sample additive shares p1, . . . , pn for the first prime p and send their encryptions to the coordinator.
The coordinator then combines these encryptions to get a ciphertext c encrypting p =

∑
i pi. Upon receiving

c, each party Pi, who holds a share of the second prime q, computes the encryption of qi · p and sends it
to the coordinator. The coordinator aggregates these encryptions, resulting in a ciphertext encrypting p · q
that the parties decrypt jointly. In fact, this protocol is semi-malicious secure, meaning that the adversary
follows the protocol’s instructions honestly while using arbitrary and adaptively chosen random tapes.

Before computing the RSA product with the above protocol, the parties perform a pre-sieving phase
that disqualifies candidates that are divisible by the first 150 small primes. Our protocol uses the technique
from [CCD+20] based on the Chinese Remainder Theorem, which samples non-zero residues modulo small
primes to ensure that the reconstruction is not divisible by these small primes. This approach increases
the probability of hitting a valid prime to 1/60. Upon computing the product, the parties complete the
biprimality test as in the Boneh-Franklin test [BF97, BF01].

Upgrading to active security. Our actively secure protocol follows the above blueprint with a few key
differences. First, we modify the passive distributed multiplication procedure to consume random instances
of Beaver’s multiplication triples, given by functionality FR−Triples [Bea91]. This modification reduces the
overall round complexity and makes it easier to batch zero-knowledge proofs. We obtain active security
via an optimized version of the “GMW paradigm” [GMW87]. First, the parties commit to their secret
randomness used throughout the protocol. Then, they use efficient zero-knowledge proofs to show that their
outgoing messages are consistent with the committed randomness and incoming messages.

We rely on special features of our passive protocol to further optimize the costs of zero-knowledge
proofs. In particular, we exploit the fact that RSA modulus generation is a “sampling” functionality that
does not involve secret inputs. This allows us to prove correctness of transcripts leading to a surviving
candidate. If a proof verification fails, the entire execution is aborted, and the prover is identified as being a
cheater. Due to our concrete choices of AHE and proof system, our zero-knowledge proofs are considerably
more efficient than those employed in previous related works [HMRT12, FLOP18, CCD+20].

Instantiating the building blocks. We instantiate our AHE scheme with a packed variant of an encryption
scheme based on Ring Learning With Errors (RLWE) [LPR13a, LPR13b]. This batched variant performs
homomorphic operations on a vector of plaintexts in parallel. We exploit this feature by packing a vector
of CRT shares, which are later reconstructed into a single share. Similarly to [CCD+20], we leverage the
fact that the CRT reconstruction algorithm is a linear procedure that each party can run locally. Our main
technical contribution is a precise analysis of the parameters needed to achieve the desired level of security.
Our RLWE based threshold AHE is significantly more efficient than previous LWE-based threshold AHE
from [BD10] and threshold fully homomorphic encryption from [BGG+18].

6

DRAFT

Our actively secure protocol relies on the Ligero zero-knowledge proof system [AHIV17], which has
proof size square-root in the verification circuit size. While other proof systems can offer better asymptotic
proof size [GGPR13, Gro16, BCR+19, BBHR19, XZZ+19], they have higher prover computation or mem-
ory costs. Here we devise optimized NP statements for ensuring the correctness of the operations related
to the underlying AHE (e.g., encryptions, decryptions and randomness sampling), as well as the correctness
of the Boneh-Franklin RSA generation protocol. For the biprimality test, we employ a special-purpose Σ-
protocol based on [Sho00] for proving correctness of exponentiations in a hidden-order group. We compose
these different proof types by checking the overlapping portions their witnesses.

Importantly, excluding the setup phase, the parties only need to use these proofs with respect to the
surviving candidates. The prime factor shares of any eliminated candidate and all associated random coins
are revealed for anyone to verify correctness. Overall, our zero-knowledge proofs are roughly 40MB per
party; in particular, the theorem statements are in fact much larger (see Table 4).

Modular analysis via certified triples. To facilitate a modular description and composable security analysis
of our main protocol, we introduce and efficiently realize a “certified triples” functionality FTctriple. This
functionality naturally extends the “certified OT” functionality from [IKO+11, HIV17] to the arithmetic
setting and allows parties to obtain multiplication triples that are guaranteed to satisfy some global relation.
(See Figure 4 for a more precise specification.) We present an efficient UC-secure implementation of FTctriple
using any threshold AHE with security against semi-malicious adversaries, and then modularly analyze the
security of our main protocol in the FTctriple-hybrid model.

Prior work We briefly compare against a few recent works in this area. Frederiksen et. al. [FLOP18]
present a 2-party protocol for RSA generation using OT-based multipliers. Their protocol has a weaker
ideal functionality in that it leaks much more information about the prime factors and becomes inefficient
when supporting the standard security with abort notion; this is due to their sieving techniques and the
inability to distinguish between cheating and sampling failures. They report on a passive implementation
for 2 parties that takes 35 seconds. Chen et al [CCD+20] present an improved approach which does not
suffer the security leakage, extends the protocol from 2 parties to n parties, and has a modular security
analysis, and can be based only on OT. Our protocol relies on their protocol techniques, but improves by
(a) developing a different, more efficient multiplier, (b) introduces the coordinator model, and (c) achieves
malicious security using a purely zero-knowledge technique, and (d) reports both a passive and actively
secure implementation for up to 4000 parties.

1.3 Related Work

We recount the main prior works about distributed RSA key generation. The seminal work by Boneh and
Franklin [BF97, BF01] initiated the line of research on concretely efficient protocols for this task. They
introduced the first non-trivial technique for choosing an RSA composite and verifying that it is a biprime.
Based on this method, they proposed a protocol in the multi-party honest-majority setting with security
against passive (semi-honest) adversaries. Two followup papers [FMY98, NS10], still in the honest-majority
setting, strengthened this result and obtained security against active (malicious) adversaries. Additional
solutions for testing primality in the multi-party setting appear in [ACS02, DM10]. Unlike previous ap-
proaches that relied on the biprimality testing procedure from [BF01], these works showed how to securely
implement the Miller-Rabin test when the primes are additively shared.

Security in the presence of a dishonest majority in the two-party case poses additional challenges even
with only passive corruptions. Cocks [Coc97] initiated the study of the shared generation of the RSA
composite in the two-party semi-honest model. Nevertheless, his proposed protocol was later found to be
insecure [Cop97, BBBG99]. The problem was solved by Gilboa [Gil99] who presented a protocol in the
passive two-party setting, adapting the technique from [BF01]. This work also introduced the technique

7

DRAFT

for secure multiplication based on oblivious transfer, which is now used extensively for secure arithmetic
multiplication.

Blackburn et al. [BBBG99] presented the first protocol for the active two-party setting, but did not
provide a proof of security. Concurrently, Poupard and Stern [PS98] proposed a provable protocol. However,
its running time scaled linearly (rather than logarithmically) with the domain from which the primes are
sampled, and moreover there was some leakage about the primes to the adversary. The first fully secure and
concretely efficient RSA key generation in the active two-party setting was given by Hazay et al. [HMRT12].
This work further provided the first implementation of such a protocol in the passive two-party setting as
well as an extension to the multi-party setting. Finally, based on more recent techniques such as fast, actively
secure OT extension, Frederiksen et al. [FLOP18] have improved the state-of-the-art in the two-party setting
with active security and also provided an implementation. Their protocol takes on average 35 seconds with
64GB RAM machines and 40Gbps network. Finally, a recent work of Chen et al. [CCD+20] further
improves this protocol and extends it to more than two parties; however, no concrete analysis is provided.
Moreover, the communication complexity of this protocol scales quadratically with the number of parties.

Beyond the concrete context of RSA modulus generation, there has a been a large body of work on
scaling general-purpose secure computation protocols to a large number of parties. Relevant protocols
can be divided into ones that involve communication for every gate (or “block” of gates) in a Boolean or
arithmetic circuits, and ones in which the communication complexity is independent of the circuit size.
Protocols of the latter type, originating from [Gen09, AJL+12], employ fully homomorphic encryption and
are not yet competitive for most practical tasks. Protocols that follow the gate-by-gate approach have been
optimized for the case of many parties in both the honest-majority and dishonest-majority setting. Assuming
a (strict) honest majority, share-packing techniques [FMY98] can be used to make the total communication
complexity scale only polylogarithmically with the number of parties [DI06, DIK10, BBC+19] for “typical”
circuits. Other related works in the honest majority setting include [DN07, BH08, BFO12, BCP15, GLS19].
More relevant to the present work, efficient “gate-by-gate” multi-party protocols for the dishonest majority
setting were presented in [FH96, CDN01, DPSZ12, KPR18]. The total communication complexity in all
of these protocols scales roughly linearly with the number of parties (up to polylogarithmic factors). This
should be contrasted with protocols based on oblivious transfer (OT) [GMW87, Kil88, IPS08, KOS16],
where the communication grows quadratically with the number of parties. Our work follows the approach
initiated by Franklin and Haber [FH96] that relies on threshold additively-homomorphic encryption to avoid
the quadratic overhead of OT-based protocols.

2 Preliminaries

Basic notations. We let κ be the computational security parameter and s the statistical security parameter.
We denote by n the number of parties and by ` the bit-length of each prime factor of the RSA modulus. We
denote by [a] the set of integers {1, . . . , a}. We say that a function µ : N → N is negligible if for every
positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the abbreviation
PPT to denote probabilistic polynomial-time and the bold notation a for denoting vectors.

2.1 Chinese Remainder Theorem (CRT)

First, we recall the beloved (generalized) Chinese Remainder Theorem from Katz and Lindell’s textbook
Introduction to Modern Cryptography [KL14].

Theorem 1 (Chinese Remainder Theorem (CRT)). Let p1, p2, . . . , p` be pairwise relatively prime, ie GCD(pj , pj) =
1 for all i 6= j. Let N = Π`

i=1pj . Then,

ZN ' Zp1 × . . .× Zp` and Z∗N ' Z∗p1 × . . .× Z∗p` .

8

DRAFT

Moreover, let f be the function mapping elements x ∈ {0, . . . , N − 1} to tuples (xp1 , . . . , xp`) with
xpj ∈ {0, . . . , pj − 1} defined by

f(x) = ([x mod p1], . . . , [x mod p`]).

Then f is an isomorphism from ZN to Zp1× . . .×Zp` as well as an isomorphism from Z∗N to Z∗p1× . . .×Z∗p`
(where the inputs of f are restricted to Z∗N).

The linear CRT algorithm which computes f−1 is standard and omitted here for space. Next, we give
the linear CRT algorithm, which computes f−1. To convert an element represented as (xp1 , . . . , xp`) to its
representation mod N :

Algorithm 1 (Linear CRT Algorithm). Let (xp1 , . . . , xp`), {p1, . . . , p`}, and N be defined as above.

1. For all i ∈ {1, . . . , `}, compute Nj = N/pj , and find Mj satisfying Nj ·Mj ≡ 1 mod pj .

2. Compute x := [
∑`

i=1 xpjNjMj mod N].

Note that we can compute Nj ,Mj in preprocessing.

2.2 Public Key Encryption Schemes (PKE)

We specify first the definitions of public key encryption and IND-CPA.

Definition 1 (PKE). We say that Π = (Gen,Enc,Dec) is a public key encryption scheme if Gen,Enc, and
Dec are polynomial-time algorithms specified as follows:

• Gen, given a security parameter 1κ, outputs keys (PK, SK), where PK is a public key and SK is a
secret key. We denote this by (PK, SK)← Gen(1κ).

• Enc, given the public key PK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncPK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncPK(m; r).

• Dec, given the public key PK, secret key SK and a ciphertext c, outputs a plaintext message m or an
error. We denote this by m← DecPK,SK(c).

For a public key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform adversary A = (A1,A2),
we consider the following IND-CPA game:

(PK, SK)← Gen(1κ).

(m0,m1, history)← A1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b← {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

Denote by AdvΠ,A(κ) the probability that A wins the IND-CPA game.

Definition 2 (IND-CPA). A public key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable en-
cryptions under chosen plaintext attacks (IND-CPA), if for every non-uniform adversary A = (A1,A2)
there exists a negligible function negl such that AdvΠ,A(κ) ≤ 1

2 + negl(κ).

9

DRAFT

2.3 Threshold Homomorphic Encryption

All definitions are parameterized by a security parameter κ and an integer number of players n. All algo-
rithms take κ and n as input, possibly together with some additional common parameters, which may be a
function of κ, n. For notational simplicity, we leave these parameters implicit and provide definitions for the
case of n-out-of-n secret sharing. Definitions are easily generalized to arbitrary thresholds t (or arbitrary
access structures) by including t as an additional parameter.

Definition 3 (THE). We say that (Gen,Pub,Eval,Dec,Rec) is a Threshold Homomorphic Encryption
scheme if Pub,Gen,Eval,Dec,Rec are polynomial time algorithms specified as follows:

• Gen is a randomized algorithm that on input an integer i ∈ {1, . . . , n}, outputs a pair (PKi, SKi)←
Gen(i) of public/secret key shares. Without loss of generality, one may assume that the secret key
share SKi is the randomness ri used by the key generation algorithm (PKi, r) = Gen(i; r), and it
is often convenient to think of key generation as consisting of a probabilistic algorithm to sample the
secret key share SKi ← Sec(i), together with a deterministic algorithm to derive the public key share
PKi = Gen(SKi).

• Pub is a deterministic algorithm that on input public key shares PKi, produces1 a public key PK =
Pub(PK1, . . . , PKn). More generally, one may consider multi-round key generation algorithms,
where, for i = 1, . . . , n and r = 1, 2, . . ., one computes a sequence of public shares

PKi[r] = Gen(SKi, [PK[1], . . . , PK[r − 1]])

(starting with PKi[1] = Gen(SKi, [])) and round keys

PK[r] = Pub(PK1[r], . . . , PKn[r]).

Then, the public key PK is set to (a deterministic function of) the concatenation (PK[1], . . . , PK[r])
of the keys produced in each round.

• Eval is a randomized algorithm that on input the public key PK, an integer k ≥ 0, the description of a
function f : Mk →M (possibly from a restricted set of possible functions) and a list of k ciphertexts
c1, . . . , ck, outputs a new ciphertext c← Eval(PK, k, f, [c1, . . . , ck])

• As a special case, encryption of a message m is modeled by the evaluation

Enc(PK,m) = Eval(PK, 0, f(), [])

of a 0-ary function f : M0 → M , that on input an empty list of messages, outputs a fixed value
f() = m.

• Dec is a randomized algorithm that on input a secret share SKi and ciphertext c, outputs a message
share mi = Dec(SKi, c)

• Rec is a deterministic algorithm that on input all message sharesm1, . . . ,mn, reconstructs the output
message m = Rec(PK,m1, . . . ,mn).

1As far as security is concerned, the public key may be just the concatenation of the shares Pub(PK1, . . . , PKn) =
(PK1, . . . , PKn). But it is usually possible to combine these shares into a more compact public key.

10

DRAFT

We write Eval(PK, k, f, c; r) when we want to emphasize the randomness used by the encryption or
evaluation algorithm. This randomness r may be chosen uniformly at random, or according to some other ef-
ficiently sampleable distribution. Non-uniform distributions are useful in the semimalicious settings, where
the adversary may choose the value of the sample r, rather than the randomness used by the sampling algo-
rithm. For simplicity, we leave these sampling algorithms implicit in the definition. In lattice based schemes
r is often chosen as a vector with (truncated) discrete gaussian distribution.

Functions f provided to the evaluation algorithm may take any number of arguments k ≥ 0, but different
schemes may support different, restricted sets of functions f . The distribution of the randomness r used
by the evaluation algorithm may depend on the function f . The evaluation of some functions f may be
deterministic, in which case the randomness r is ignored by Eval.

A Threshold Homomorphic Encryption scheme is usually employed as follows:

1. A client C communicates with n independent servers S[i], a fraction of which may be corrupted in a
honest-but-curious or semimalicious manner.

2. Each server S[i] locally generates a secret key SKi and sends PKi = Gen(SKi) to the client C

3. The client C reconstructs the public key PK = Pub(PK1, . . . , PKn) from the public shares using
Pub. In the case of a multiround key generation algorithm, the clients keep computing the val-
ues PKi[r] = Gen(SKi, [PK[1], . . . , PK[r − 1]]) and sending them to the server which replies with
PK[r] = Pub(PK1[r], . . . , PKn[r]).

4. The client may encrypt message m using Enc(PK,m) = Eval(PK, 0, f() = m, [])

5. The client may homomorphically compute on messages using Eval(PK, k, f, [c1, . . . , ck]) for any
function f supported by the scheme and previously computed (or freshly encrypted) ciphertexts.

6. The client may ask the server to decrypt a previously computed ciphertext c. In response, each server
locally computes Dec(i, SKi, c) and sends the output to C. The output of decryption is produced by
combining the partial decryptions with Rec.

Correctness of a THE scheme is defined in the obvious way via a game where a client issues a sequence
of evaluation queries, including queries with 0-ary functions to encrypt new messages.

Definition 4. Let (PKi, SKi)← Gen(i) and PK = Pub(PK1, . . . , PKn) be chosen using the key generation
algorithms. A THE scheme is correct if for any valid sequence of evaluation queries

c← Eval(PK, k, f, [c1, . . . , ck])

we have
Rec(PK,Dec(1, SK1, c), . . . ,Dec(n, SKn, c)) = m(c)

with probability 1 (over the randomness used by the key generation, evaluation and decryption algorithms),
where the input ciphertexts ci to each query are the result of some previous query in the sequence, and each
ciphertext c (produced by a query) is associated to a message m(c) as follows:

• If k = 0, then m(c) = f() is the message being encrypted.

• If k ≥ 1, then m(c) = f(m(c1), . . . ,m(ck)) is the result of applying function f to the messages
associated to the input ciphertexts.

11

DRAFT

A scheme may be restricted to specific sequences of encryption/evaluation queries. For example, stan-
dard lattice based cryptosystems are only bounded-homomorphic, supporting the evaluation of bounded
sequences of operations.

All the above definitions can be extended to functions f :
∏
iMi → M with input messages from

different sets. But this is not needed in our protocol, so we focus on the simpler definition.
We now define security of a THE scheme. We provide a simple indistinguishability based definition. We

focus on security against non-adaptive semi-malicious adversaries, as these are the type needed to obtain full
(malicious) security using zero-knowledge proofs. The definition is easily extended to adaptive attacks. We
remark that our THE construction and proof of security (see Theorem 5) only uses non-adaptivity during key
generation, and this is necessary to achieve security. (If adversary can choose semimalicious secret shares
SKi after seeing the honest public share PKh, it can easily bias the value of the public key, and easily break
the protocol. But once the public key has been chosen, the proof of security of Theorem 5 works also for
adversaries that issue their queries adaptively.

Definition 5. A THE scheme is secure against non-adaptive semi-malicious attacks if any efficient (proba-
bilistic polynomial time) adversary A has only a negligible advantage in the following game. The game is
parameterized by a bit b ∈ {0, 1}, and consists of the following steps:

1. The adversary A selects the index2 of an honest party h ∈ {1, . . . , n}, secret key shares {SKi}i 6=h
for all other parties, and a sequence of queries Q described below.3

2. SKh ← Sec(h) is chosen at random, and PKh = Gen(SKh) is given to A. The adversary can
compute the public key PK = Pub(PK1, . . . , PKn) on its own. For multi-round key generation, the
adversary is given honest public key shares PKh[r] = Gen(SKh, [PK[1], . . . , PK[r − 1]]) for every
round r, where PK[r] = Pub(PK1[r], . . . , PKn[r]).

3. The adversary’s queries Q are answered in sequence q = 1, 2, . . . as follows. There are three types of
queries. Challenge and semimalicious queries define a pair of messagesm0[q],m1[q] and a ciphertext
c[q]. Challenge and decryption queries produce an output which is returned to the adversary. Semi-
malicious queries produce no output, and are issued for the sole purpose of definingm0[q],m1[q] and
c[q].

Challenge queries consist of two functions f0, f1 : Mk →M and a list of indexes [i1, . . . , ik]. These
are used to compute

m0[q] = f0(m0[i1], . . . ,m0[ik])

m1[q] = f1(m1[i1], . . . ,m1[ik])

c[q] = Eval(PK, k, fb, c[i1], . . . , c[ik]).

The ciphertext c[q] is returned to the adversary.

Semimalicious queries consist of a single function f : Mk → M , an index list [i1, . . . , ik], and
randomness r. These are used to compute

m0[q] = f(m0[i1], . . . ,m0[ik])

m1[q] = f(m1[i1], . . . ,m1[ik])

c[q] = Eval(PK, k, f, c[i1], . . . , c[ik]; r).

2More generally, for general threshold t, the adversary selects a subset of honest parties.
3Specifying all queries at the outset is what makes the definition non-adaptive. In a fully adaptive definition the adversary can

choose each query after receiving the answer to previous queries. The non-adaptive security definition is enough for our purposes
as the protocol is ultimately made secure against active attacks by letting each party commit to its randomness at the outset of the
execution, and then behaving deterministically, proving that it followed the protocol in ZK.

12

DRAFT

Notice that the adversary can compute c[q] on its own, because it knows the randomness r and the
list of previous ciphertexts. These queries are useful to generate ciphertexts c[q] which may be re-
ferred to in subsequent honest evaluation and decryption queries. Notice also that the two messages
m0[q],m1[q] may be different even if they are computed using the same function f .

Decryption queries consist of just an index q, subject to the requirement that m0[q] = m1[q]. The
query is answered with (a sample from) Dec(h, SKh, c[q]).

After receiving the answers to all queries, A outputs a bit b′ ∈ {0, 1}. The advantage of A is defined as
|Pr{1← A | b = 0} − Pr{1← A | b = 1}|.

In decryption queries, after receiving Dec(h, SKh, c[q]), the adversary can compute Dec(i, SKi, c[q]) for
all other i 6= h on its own, and recover the message mb[q] = Rec(PK, x1, . . . , xn) = mb[q]. This provides
no information about b because decryption queries are allowed only when m0[q] = m1[q]. However, the
decryption share Dec(h, SKh, c[q]) may provide additional information about the secret SKh.

Similarly to Definition 4, The security definition may be restricted to subsets of valid query sequences,
e.g., sequences of bounded length, or sequences where the adversary is allowed a single decryption query at
the end of the execution.

2.4 Σ-Protocols

A Σ-protocol is a special zero-knowledge protocol where indistinguishability only holds for honest verifiers.
Compiling a Σ-protocol into a zero-knowledge system against an arbitrary verifier can be achieved either
using commitment schemes (where the verifier is committing to its challenge before the prover sends its first
message and then decommits to as part of the third message), or a random oracle.

Definition 6 (Σ-protocol). A protocol π is a Σ-protocol between a prover P and a verifier V for relationR
if it is a 3-round public-coin protocol and the following requirements hold:

• COMPLETENESS: If P and V follow the protocol on input x and private input ω to P where (x, ω) ∈
R, then V always accepts.

• SPECIAL SOUNDNESS: There exists a polynomial-time algorithm E that given any x and any pair of
accepting transcripts (a, e, z), (a, e′, z′) on input x, where e 6= e′, outputs ω such that (x, ω) ∈ R.

• SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPT algorithmM such that

{〈P(x, ω),V(x, e)〉}x∈L ≡ {M(x, e)}x∈L

where M(x, e) denotes the output of M upon input x and e, and 〈P(x, ω),V(x, e)〉 denotes the
output transcript of an execution between P and V , where P has input (x, ω), V has input x, and V’s
random tape (determining its query) equals e.

2.5 Beaver’s Triples

We recall Beaver’s multiplication triples functionality FTriples that takes additive shares of two secrets over
some field F and produces additive shares of their product. In fact, we will reduce FTriples to a ran-
dom instance FR−Triples where all shares are chosen uniformly at random from F. The reduction, due to
Beaver [Bea91], is as follows. Denote by [a] the additive sharing of some value a ∈ F, namely, the tuple
(a1, . . . , am). Then, given a random triple [a], [b], [c] obtained as the output of FR−Triples, and inputs [x], [y]
for FTriples, we can compute [xy] by first reconstructing e = [x− a] and d = [y − b]. Next, the parties com-
pute a (trivial) secret sharing [ed] of ed by having P1 set its share to ed, and the rest of the parties set their

13

DRAFT

shares to 0. Finally, the parties compute the following equation (each party locally computes the equation
on its own shares)

[xy] = [c] + e[y] + d[x]− [ed]

= [ab] + (x− a)[y] + (y − b)[x]− (x− a)(y − b).

2.6 The RSA Composite Functionality

Functionality FRSA−ML, Figure 1, captures the distributed generation of n parties of the RSA composite in
the active (malicious) setting by allowing corrupted parties to arbitrarily choose their shares and restart the
execution. This models a corrupted party that aborts after seeing the composite. In case of an abort, the func-
tionality reveals the factorization of the discarded composite and restarts. Looking ahead, we require such a
modeling in order to conclude the simulation successfully, as our active protocol only catches deviations at
the last round of the protocol; see more discussion in Section 4.

Functionality FRSA−ML

Functionality FRSA−ML communicates with parties P1, . . . , Pn, a coordinator C and an adversary
S corrupting a subset U ⊂ [n]. FRSA−ML is parameterized by parameter `.

1. Adversary shares. Upon receiving a message (shares, sid, ssid, Pj , pj , qj) for j ∈ U from the
adversary, record the tuple (sid, ssid, Pj , pj , qj) and send message (receipt, sid, ssid, Pj) to Pj
and S.

2. Shares generation. Upon receiving a messages (sample, sid, ssid, Pj) from the honest Pj ,
record the tuple (sid, ssid, Pj) send message (receipt, sid, ssid, Pj) to Pj and S .

Once tuple (sid, ssid, Pj) has been recorded from all parties Pj , sample random `-bit values for
the honest parties’ shares {pj , qj}j /∈U satisfying

• p1 ≡ q1 ≡ 3 mod 4

• p2, . . . , pn ≡ q2 . . . , qn ≡ 0 mod 4

• p =
∑n

j=1 pj and q =
∑n

j=1 qj are primes

3. Output. Send (output, N = pq) to all Pj and S .

4. Identify Cheater. If the functionality receives (corrupt, sid, ssid, Pj), it records (cheater, sid, Pj)
and sends (factors, sid, ssid, p, q) to S.

5. Certify. Upon receiving (certify, sid, ssid, Pj) from all Pj , check if (cheater, sid, Pj) exists in
memory. If so, the functionality aborts the execution and restarts with the same set of parties
excluding Pj .

Figure 1: The shared RSA functionality in the active setting.

14

DRAFT

2.7 Commit-and-Prove Ideal Functionality

[CLOS02] gives the following one-to-many commit-and-prove ideal functionality, Figure 2, which will be
used for certifying our triples generation.

Functionality FCP

FunctionalityFCP communicates with parties P1, . . . , Pn, a coordinator C and an adversary S who
corrupts the subset of parties in U ⊂ [n]. FCP is parameterized by an NP relationR and an integer t.

• Commit phase: Upon receiving a message (commit, sid, ssid, Pj , w) from Pj where w ∈
{0, 1}t, record the value w within w̄ and send the message (recv-commit, sid, ssid, Pj) to C
and S. (Initially, the list w̄ is empty.)

• Prove phase: Upon receiving a message (CP-prover, sid, ssid, Pj , x) from Pj where x ∈
{0, 1}poly(t), computeR(x, w̄): IfR(x, w̄) = 1, then send the message (CP-proof, sid, ssid, x)
to C and S. Otherwise, ignore.

Figure 2: Functionality for commit-and-prove.

3 Certified Triples Functionality

A core building block in our protocol is a functionality that generates multiplication triples (or Beaver triples
[Bea91]) (see Section 2.5). In this section, we introduce an extension of this functionality which generates
triples and allows the parties to prove at a later point a global relation over their individual triples (Figure 4).

The certified triples functionality helps abstract the public key cryptographic primitive that we rely on,
namely a threshold additively homomorphic encryption with security against semi-malicious adversaries.
Furthermore, it allows us to modularly analyze the security of the main protocol assuming ideal access to
the Fctriple functionality. In more detail, this functionality allows for the parties to first obtain multiplication
triples and later certify their actions w.r.t some global relation on the triples. This is similar to the certified
oblivious transfer functionality that allows the sender in a oblivious transfer (OT) protocol [IKO+11] to
certify its inputs to the OT w.r.t. some global NP relation. Our abstraction also supports identifiable abort,
where the functionality identifies the party that failed the execution. In our protocol, if a party deviates, its
identity is revealed to all parties. The complete protocol is shown in Figure 4.

Next, we realize our functionality via a threshold (additively) homomorphic encryption (THE) scheme.
We give the security definition for THE in Section 2.3. We discuss implementing these functionalities using
Ring-LWE in Section 6.1.

15

DRAFT

Functionality FTctriple

Functionality Fctriple communicates with parties P1, . . . , Pn, coordinator C and an adversary S
who corrupts the subset of parties in U ⊂ [n]. Fctriple is parameterized by an NP relation REXT, an
integer T , and domains B1, . . . , BT . The functionality generates T triples where the ith triple is over
the finite field FBi .

Triples generation phase: Upon receiving a message (generate, sid, ssid, Pj), record the tuple
(ssid, Pj) and send the message (receipt, sid, ssid, Pj) to Pj and S. Upon receiving a message
(generate, sid, ssid,S, {aj , bj , cj}j∈U) from S record (ssid, {aj , bj , cj}j∈U). Once a tuple (ssid, Pj)
has been received from all parties, sample {aj , bj , cj}j /∈U at random from FBi conditioned on the fol-
lowing equation

n∑
j=1

cij =

(n∑
j=1

aij

)
·
(n∑
j=1

bij

)
for all i ∈ [T] where xj = (x1

j , . . . , x
T
j) for x ∈ {a, b, c}.

Abort: If the functionality receives (abort, sid, ssid, Pj) for j ∈ U before any generate message was
received, it ignores all messages in the Triples generation phase. If after receiving an abort message it

receives (assign, sid, ssid,S, {aj , bj , cj}j /∈U) from the adversary, it records (sid, ssid, {aj , bj , cj}j /∈U).

Output phase: If a triple is recorded for every party, send (triple, sid, ssid,aj , bj , cj) to party Pj for
j 6∈ U .

Certification phase: Upon receiving a message (certify, sid, ssid, Pj , (xj , ωj)), record the tuple
(ssid, Pj , (xj , ωj)). If no abort message was recorded for Pj , send the message (verify, sid, ssid,
Pj ,REXT(xj , ωj ,aj , bj , cj)) to all parties and S. If an abort message was received on behalf of Pj ,
send (abort, sid, ssid, Pj) to C.

Figure 3: The certified triples functionality.

PROTOCOL ΠT
ctriple

Notations. The protocol communicates with parties P1, . . . , Pn and a coordinator C, is parameter-
ized by modulus M , and relies on a threshold additively-homomorphic encryption scheme (Gen,Pub,
Eval,Dec,Rec) with plaintext ring R, packing factor T , and an rEnc-round key-generation protocol.
Let B1, . . . , BT be the corresponding domains from which each of the T vectors is sampled. Let
Com(·, ·) be a non-interactive commitment scheme. Let λ denote the security parameter.

Commit phase: Each partyPj commits to its randomnessRj for the protocol by sending (commit, sid,
ssid,Rj) to FCP. FCP sends (receipt, sid, ssid) to C.

THE setup phase.

1. Party Pj runs Gen(j; rj) to obtain PKj [1], SKj with security parameter λ and number of parties
n, where rj is obtained from the random tape Rj . Pj sends PKj [1] to the coordinator. The
coordinator C computes PK[1] = Pub(PK1[1], . . . , PKn[1]) and broadcasts to all parties.

16

DRAFT

2. For r = 2, . . . , rEnc, party Pj computes PKj [r] = Gen(SKj , PK[1], . . . , PK[r− 1]) and sends it
to the coordinator. The coordinator computes PK[r] = Pub(PK1[r], . . . , PKn[r]) and broadcasts
to all parties.

3. At the end of rEnc-round, the parties set PK = PK[rEnc].

Input generation phase. Party Pj samples vectors aj , bj , cj , where the ith element of each vector is in
ZBi . Also, Pj samples offsets zj [1], . . . , zj [T] where zj [i] is sampled uniformly from [−nBi2λ, nBi2λ].
Let zj = (zj [1]B1, . . . , zj [T]BT).

Triples generation phase.

1. Party Pj sends αj = EncPK(aj) to C.

2. Upon receiving input from all parties, C computes and broadcasts α = Eval(PK, n,ADD(·),
[α1, . . . , αn]), where ADD(·) is the pointwise addition operation on length T vectors.

3. Each party Pj computes βj = Eval(PK, 1, flin(bj , c
′
j , ·), α) and sends βj to C where c′j = zj −

cj . The function flin is defined over three inputs: bj , c′j , and m (a plaintext vector corresponding
to α’s decrypted ciphertexts). It takes the ith component of bj , cj and m (denoted b, c,m) and
returns bm+ c as the ith component of the output vector.

4. C computes and broadcasts β = Eval(PK, n,ADD(·), [β1, . . . , βn]).

5. Each party Pj computes dj = Dec(j, SKj , β) and transmits it to C.

6. C computes w = Rec(PK, d1, . . . , dn) and sends w to P1.

7. P1 outputs its triples as (a1, b1, c
′′
1) where the ith element of c′′1 is set to ci1 + wi mod ZBi . All

other parties output (aj , bj , cj) as their triples.

Inputs for certification. Party Pj receives a statement xj and a witness ωj from the environment
Z . (Recall that this part of the NP statement is used to certify how the triples are used in the larger
protocol.)

Generating proofs. Let τj be Pj’s transcript of interaction with the coordinator. Party Pj sends
(commit, sid, ωj) and (CP-prover, sid, (xj , τj)) to FCP. (We instantiate FCP with the NP-relation
RCP that takes as input the statement (xj , τj) and witness (ωj , Rj ,aj , bj , cj). FCP outputs 1 if

(xj , (ωj ,aj , bj , cj)) ∈ REXT

and (aj , bj , cj) are consistent with Rj , and τj is consistent with the honest party’s code using random-
ness Rj).

Figure 4: Protocol realizing the certified triples functionality FTctriple.

Theorem 2. Protocol Πctriple UC-realizes Fctriple in the (FCOM,FCP)-hybrid model, in the presence of
active adversaries.

Proof. (sketch) Let A be an active adversary; we construct a simulator S for the ideal process Fctriple.
Simulator S internally invokes A and proceeds as follows:

17

DRAFT

– Simulating the communication with Z: The input values received by S from Z are written on A’s input
tape, and the output values of A are copied to S’s own output tape.
– Simulating the commit phase: S extracts all the randomness used by the corrupted parties by intercepting
the message sent to the FCP.
– Simulating the THE setup phase:

The simulator S simulates the messages from uncorrupted parties honestly. At the end of the phase, if
the simulator observes that any corrupted party Pj sends a message inconsistent with the randomness Rj , it
samples random inputs for the honest parties {aj , bj , cj}j 6∈U and completes the internal emulation till the
end of the Triples generation phase. Party P1’s c1 is altered in Step 7 as per the protocol. Then, S sends
(abort, Pj) and (assign, sid, ssid,S, {aj , bj , cj}j 6∈U) to Fctriple.
– Simulating the triples generation phase:

If an abort message has not yet been sent, then the simulator proceeds honestly with uncorrupted parties
sampling inputs {aj , bj , cj}j 6∈U . If all corrupted parties proceed consistently w.r.t. their randomness, the
simulator identifies the inputs of the corrupted parties from the randomness extracted in the commit phase
and sends (generate, sid, ssid,S, {aj , bj , cj}j∈U) to Fctriple.

At the end of the phase, if the simulator observes that any corrupted party Pj sends a message inconsis-
tent with the randomness Rj , then, as in the previous step, it completes the emulation until the end of the
Triples generation phase and sends (abort, Pj) and (assign, sid, ssid,S, {aj , bj , cj}j 6∈U) to Fctriple.
– Simulating the proof generation phase:

In this phase, the simulator extracts the witness ωj from the commit command. Then, for every cor-
rupted Pj , it verifies that aj , bj , cj is consistent with Rj , and Rj is consistent with τj . If they are, it sends
(certify, sid, Pj , (xj , ωj)) to Fctriple. Otherwise, it sends (abort, Pj).

Next, we argue correctness of the simulation. We show that for every environment Z it holds that:

IDEALFctriple,S,Z(n) ≈ REALFCOM,FCP
Πctriple,A,Z (n)

In arguing security, there are two main cases:

Case 1: Some corrupted party deviates during the protocol. Namely, its actions are inconsistent with ran-
domness that it committed during the Commit phase. In this case, we observe that the simulated
transcript is identically distributed to the real world. This is because the simulator sets the inputs of
the honest parties as per the real world execution.

Case 2: No corrupted party deviates until the end of the Triples generation phase. For this case, we argue
that the simulation is computationally indistinguishable to the real world by a reduction to the security
of threshold THE scheme. We detail the argument in Appendix D.

4 The Actively Secure Protocol

The classic GMW paradigm [GMW87] provides a generic compiler from passive to active security via
zero-knowledge proofs and commitments, where zero-knowledge proofs are employed in each round of the
protocol to enforce honest behavior in each round. We follow this paradigm with one important difference.
After parties commit to their randomness at the beginning of the computation, parties provide only one
zero-knowledge proof at the end of the protocol, instead of in each round. We will argue that this suffices to
provide full security in our protocol. We note that our approach generalizes to any input-less functionality.

18

DRAFT

On a high-level, our protocol has four phases (1) Sample primes or pre-sieving, (2) Compute bi-prime,
(3) Sieve easy non-bi-primes or post-sieve and (4) Sieve all non-bi-primes. Most of the tasks in the phases
can be further reduced to multiple invocations of securely multiplication. Towards this, we use the certi-
fied Beaver triples ideal functionality Fctriple (Figure 4) that provides the following guarantees: (I) first,
sufficiently many Beaver multiplication triples are generated in parallel (Section 2.5 for more details) (II)
at a later point, the parties prove an arbitrary predicate over the sampled triples. We analyze our protocol
modularly in the Fctriple-hybrid model.

PROTOCOL ΠRSA−ML

Notations. Let s be the statistical security parameter, P1, . . . , Pn be the set of parties and C is a
coordinator. Let T1, T2 be natural numbers such that the product

∏T1
j=1 dj is `− 2 bits and the product∏T2

j=1 dj is greater than 2`− 2 bits where d1, . . . , dT1 , . . . , dT2 denote the first T2 primes excluding 2.
We bucket the primes d1, . . . , dT1 into T buckets of at most m bits and denote the buckets by τ1 . . . τT
the products of the primes in the corresponding buckets, i.e.

∏T
i=1 τi =

∏T1
j=1 dj . Finally, letN be the

number of share instances that are sampled and N ′ be the number of candidates.

Triples generation. Every Party Pj sends (generate, sid, ssid, Pj) to Fctriple and receives the receipt
message for NT + d`/meN ′ + d(5`+ 2 log n+ s)/meJsurv multiplication triples [a], [b], [c], where
Jsurv is the number of candidates surviving the Jacobi test and assuming that ` = log2

(∏T2
j=T1+1 dj

)
−

log2

(∏T1
j=1 dj

)
.

Pre-sieving. The parties consume the first NT multiplication triples. In detail, for every i ∈ N and
t ∈ [T],

- Pj samples rji,t ← [0, τt − 1] and r̃ji,t ← [0, τt − 1].

- Now, parties consume a multiplication triple. Observe that rji,t, r̃
j
i,t are additive shares of x =∑

j r
j
i,t and y =

∑
j r̃

j
i,t. So each party locally computes [e] = [x − a] mod τt and [d] =

[y − b] mod τt and sends these values to the coordinator C. The coordinator computes e =∑
j [e] mod τt and d =

∑
j [d] mod τt and sends e, d to all parties. Next, the parties locally

multiply ed and do a (trivial) secret sharing [ed] via P1 getting ed and all other parties getting 0.
Finally, each party locally computes and sends to the coordinator its share

[xy] = [c] + e[y] + d[x]− [ed] mod τt

= [ab] + (x− a)[y] + (y − b)[x]

− (x− a)(y − b) mod τt.

Upon receiving from all parties’ [xy], the coordinator computes multi,t = xy mod τt and sends
back the value to all parties.

- The parties record multi,t and conclude with the GCD check: If GCD(multi,t, τt) = 1, Pj adds
the pair (rji,t, r̃

j
i,t) to a list Ljt .

For all lists Lt, the parties re-index the elements (i.e., the first element has i = 1, etc). Furthermore,
all lists are trimmed to match the size of the smallest list, namely N ′ = mint |Lt|.

19

DRAFT

CRT reconstruction. Each party Pj locally computes its shares of the prime candidates by invoking
the CRT reconstruction algorithm. For the ith share of the primes, Pj first collects the ith pairs from
each of the lists (rji,1, r̃

j
i,1), . . . , (rji,T , r̃

j
i,T) and sets pi,j and qi,j by respectively applying the CRT

construction on the tuples (rj0, r
j
i,1, . . . , rj,T) and (r̃j0, r̃

j
i,1, . . . , r̃j,T) w.r.t the modulus (4, τ1, . . . , τT)

where P1 sets r0
0 = r̃0

0 = 3 and the rest of the parties set r0
j = r̃0

j = 0.

Candidate generation. Next, for i ∈ [0,N ′] the parties compute the candidate RSA modulus Ni =
(
∑n

j=1 pi,j)(
∑n

j=1 qi,j). We rely on CRT to perform this multiplication. More precisely, the parties
bucket primes such that the product in each bucket is at most m-bits as before, but up to T2 primes.
The parties will then deconstruct pi,j and qi,j w.r.t the products in each bucket. Finally, using the multi-
plication triples consumption technique from Pre-sieving, compute the products w.r.t to corresponding
modulus and then apply CRT reconstruction.

Jacobi test. The parties execute the following steps s times:

- Using a coin-tossing protocol, the parties sample a random γi ∈ Z∗Ni
for each i ∈ N ′. This

involves each party sampling a random value modulo Ni and sending it to the coordinator. The
coordinator sums these values to obtain γi and checks that γi has Jacobi symbol 1 over Ni. If so,
send γi to all parties. Otherwise, they restart and repeat the sampling until they find γi that has
Jacobi symbol 1 w.r.t Ni.

- Each party sends γ(−pi,j−qi,j)/4
i mod Ni to C. Then, C computes γ(Ni+1−pi−qi)/4

i mod Ni and
eliminates candidate Ni if the value is not {1,−1}.

GCD test. For candidates Ni that pass the Jacobi test, let V = 23`+logn+s and choose a number
QGCD > V · Ni · n such that it is a product of m-bit numbers, say (B1, . . . , BdlogQGCD/me). Parties
sample random numbers aj ∈ ZNi and vj ∈ [−V, V]. Then Pj maps aj and pi,j + qi,j into the CRT
domain using modular reduction. In each bucket Bk, the parties consume a multiplication triple (as
described in Pre-sieving) to receive the share [zk] of zk = a · (pi + qi − 1) mod Bk. Then, each party
computes [αk]j = [zk]+vj ·Ni mod Bk. Once this is done for all buckets, each Pj locally applies CRT
reconstruction to their [αk]j and get αj . Parties send αj to C, who computes α =

∑
j αj mod QGCD

and sends α to the parties. Parties locally compute z = α mod Ni. The parties eliminate Ni if
GCD(Ni, z) 6= 1.

Certification and Σ-protocol. If no i survives, parties restart the protocol at Triples generation. Oth-
erwise, for the minimum i that survives the biprimality test, every party Pj invokes the Certification
phase of Fctriple with its input (certify, sid, ssid, Pj , (xj , ωj)) to certify that they behaved honestly.
The parties proceed based on the response from Fctriple. Condition on not aborting, the parties further
run the Σ-protocol ΠDL for proving the knowledge of a discrete log in groups with unknown order
[Sho00] (Figure 6).

Output phase. If the certification and Σ-protocol pass for all parties, output (Ni, pi,j , qi,j) to Pj .
Otherwise, the protocol outputs Pj for parties who fail the above test.

Figure 5: Actively secure generation of an RSA composite.

Security proof. We prove security by describing a simulator and arguing indistinguishability of simulation
in the UC-model. Recall that our protocol on a high-level follows the classic GMW paradigm with one
modification. Namely, we employ zero-knowledge proofs to certify the actions of a party only once and

20

DRAFT

at the end of the protocol. The main subtlety that arises in the simulation is simulating messages from the
honest party in an indistinguishable way up until the certification if the adversary deviates ahead of the
certification. Recall that, the goal of the simulator is to receive a bi-prime from the FRSA−ML-functionality
and embed it within the simulation. In our design, the protocol up until the certification remains secure as
long as the adversary remains honest. However, if a bi-prime has been embedded and the adversary deviates,
this no longer holds and the simulator still needs to be able to continue simulating honest party messages
until the certification (where the protocol will abort as the adversary cannot provide a valid witness for
certification).

Our strategy to tackle this is to ensure that the simulator can identify exactly when the adversary deviates.
This can be achieved by having the adversary commit to its randomness ahead of the protocol and attest
later in the certification that is follows the honest code with the committed randomness. Next, we carefully
simulate the honest party messages in such a way that when the adversary deviates, either (1) the simulator
will refrain from embedding the target bi-prime (received from FRSA−ML) and produce a view identically
distributed to the real world, or (2) the simulator embeds the bi-prime and when a deviation occurs, the
simulator can complete the simulation with the knowledge of the factors of the target bi-prime. We remark
that in the second case, the target bi-prime is not secure. We therefore extend the FRSA−ML functionality to
additionally accommodate a special request from the adversary upon which it will provide the factors of the
bi-prime.

In slight more detail, the two cases will depend on exactly where the first deviation by some corrupted
party occurs. If it occurs before the end of the triples generation phase, then we will be in case (1) and
otherwise case (2).

Theorem 3. Protocol ΠRSA−ML UC-realizes FRSA−ML in the {Fctriple}-hybrid model , in the presence of up
to n− 1 active adversaries.

Proof. Let A be an active adversary interacting with the parties running the ΠRSA−ML. We construct an ad-
versary S for the ideal process for FRSA−ML such that no environment Z can distinguish beyond a negligible
probability if it is interacting with A and the above protocol or with A in the ideal process for FRSA−ML.
Let U be a coalition of at most n − 1 parties that A corrupts. Without loss of generality we assume the
coordinator is corrupted passively. S corrupts the parties in U and proceeds as follows:

1. S receives an RSA biprime N from FRSA−ML and emulates the role of Fctriple.

2. Triples generation. The simulator emulates the role of functionality Fctriple and either receives
a (generate, sid, ssid,A, {aj , bj , cj)}j∈U) or (abort, sid, ssid, Pj) from A. In the former case, it
records {aj , bj , cj)}j∈U . In the latter case, it waits until it receives (assign, sid, ssid,A, {aj , bj , cj)}j 6∈U)
fromA which it records. Furthermore, in the latter case, the simulator uses the triples provided by the
adversary to simulate the honest parties for the rest of the protocol (until certification).

3. Pre-sieving. If an abort message was not received in the previous phase, it identifies the index i∗

to implant the target RSA candidate. In order to maintain the right distribution for the index, the
simulator simulates Fctriple honestly and samples triples for honest parties. Based on the triples of the
honest parties and the corrupted parties (recorded in the previous step). Next, the simulator identifies
the first index i∗ ∈ N ′ in the candidate generation step that would lead to valid RSA biprime. If no
index leads to a biprime, then the simulator proceeds honestly with the sampled triples. If an index
i∗ is found, the simulator also identifies their indices before the lists Ljt were re-indexed. These are
the positions that need to be manipulated in the pre-sieving stage. For all indices aside from i∗, the
messages will be simulated according to the honest algorithm. We continue the rest of the simulation
specifically for index i∗ as follows:

21

DRAFT

(a) At index i∗, the simulator manipulates the honest parties’ messages as follows.

• To simulate the honest parties’ [e] and [d], S samples them uniformly at random from
[0, τt − 1]. Afterwards, S receives the corrupted parties’ [e], [d] messages. Observe that
after this point, A’s future messages are determined, so S can detect when A sends incor-
rect messages.
• For simulating the honest parties’ [xy] messages, S does the following:

– S computes e =
∑

[n][e] and d =
∑

[n][d].
– Recall that S knows the corrupted parties’ triples {[a], [b], [c]}j∈U . Then using the

[e], [d] from above, compute:∑
U

[x] = e−
∑

[n]−U

[e] +
∑
j∈U

[a] mod τt

and ∑
U

[y] = d−
∑

[n]−U

[d] +
∑
j∈U

[b] mod τt.

– Now, compute the corrupted∑
U

[xy] =
∑
j∈U

[c] + e ·
∑
U

[y] + d ·
∑
U

[x]−
∑
U

[ed] mod τt.

– Since the target value is xy = N mod τt, the simulator can simply compute the honest
shares [xy] mod τt as additive shares of xy −

∑
U [xy] mod τt.

• Index i∗ was chosen so that the GCD test always passes, ie outputs 1.

After every simulated message, S receives the corrupted parties’ corresponding messages and
checks that it is consistent with the previous transcript and committed triples. If A sends the
messages honestly, the simulator simply continues to the next message in the simulation. If not,
S follows Step 3b. This means that if the adversary sends all messages in this phase honestly, S
ignores Step 3b and continues to the next phase.

(b) IfA deviates, i.e. sends [xy] messages inconsistent with the committed triples and transcript, for
any corrupted party Pj , the simulator (acting as Fctriple) records (abort, sid, ssid, Pj) and sends
(corrupt, sid, ssid, Pj) to the functionalityFRSA−ML, receiving the prime factors p, q ofN . Then
the adversary completes the rest of the simulation for index i∗ using p and q. Specifically, we
update the honest parties’ prime shares [x], [y] and random triple [a], [b], [c]:

• To set the honest parties’ [x] for the rest of the simulation, recall that S knows the corrupted
parties’ [x] = [e] + [a] via and their [e] message and committed triple. Then, S computes
r′ = p −

∑
U [x]. Then for the rest of triples consumption, S sets the honest parties’ [x] to

be an additive share of r′, ie. [x] = [r′] mod τt. Similarly for [y], compute r̃′ = q−
∑

U [y]
(where [y] = [d] + [b]) then set [y] = [r̃′] mod τt for the honest parties.
• Next, S updates the honest parties’ triples values [a], [b] to be consistent with the previously-

sent messages. That is, S updates each honest party’s [a] to be [r′]− [e] mod τt. Similarly,
S sets the honest parties’ [b] to be [r̃′]− [d] mod τt.
• Last, S computes the honest parties’ last triples value: [c]. Since S computed the honest

[a], [b] in the previous step, it does c′ = a · b −
∑

U [c] mod τt. Then each honest party is
given an additive share of c′, ie. [c] = [c′] mod τt.
• S continues to the next stage of the simulation. Note that once S knows the prime factors
p, q, it will always use them to simulate.

22

DRAFT

Emulating Fctriple, S records updated triples {(assign, sid, ssid,S, [a], [b], [c])}j∈[n]−U for ev-
ery honest party. Note that the simulation will abort with overwhelming probability in certifica-
tion phase.

4. Candidate generation. S buckets the primes dT1+1, . . . , dT2 into T ′ buckets and denote the products
of the primes in the corresponding buckets τ1, . . . τT ′ . At index i∗ (as defined in Step 3), if S knows
the factors p, q of N , then the simulator follows Step 3b to set the honest parties’ prime shares and
random triple values but using τ1, . . . τT ′ as moduli.

Otherwise, the simulator follows Step 3a to emulate the honest parties for triples consumption, but
using τ1, . . . τT ′ as moduli and N mod τ t (where t ∈ [T ′]) as the target xy value. Note that if the
adversary sends an incorrect message at any point (including for the [e], [d] messages), S will set the
honest shares and triple values according to Step 3b. Subsequently, S uses these values to complete
the rest of the simulation according to the real protocol.

5. Jacobi test. For the execution corresponding with index i∗, S does the following s times:

(a) S samples γi∗ uniformly from the elements in Z∗N with Jacobi symbol 1 according to the proof
of [BF01]’s Lemma 4.2. In detail, S picks random x ∈ Z∗N and b ∈ {0, 1}, and then sets
γi∗ = x2 · (−1)b mod N .

(b) If S knows the factors p, q of N , then the simulator computes and sends γ
(−pi∗,j−qi∗,j)/4
i∗ to

C on behalf of the honest parties such that pi∗,j , qi∗,j are consistent with the honest parties’
previously-generated shares. Specifically, compute pi∗,j , qi∗,j via applying the CRT reconstruc-
tion algorithm to the honest [x], [y] shares with respect to the moduli τ1, . . . , τT . Recall that
these shares are set by the simulator in Step 3b if the adversary deviates in pre-sieving. Ad-
ditionally (to set the honest shares for moduli when the adversary acts honestly), the simulator
samples the honest shares as additive shares of

p−
∑
j∈U

[x] mod τt = p− (
∑
j∈U

[e] +
∑
j∈U

[a]) mod τt.

(c) Otherwise if S does not know the factorization ofN . Recall first that [BF01]’s Jacobi test checks
whether γ(N−p−q+1)/4

i∗ ≡ ±1 mod N where

γ
(N−p−q+1)/4
i∗ = γ

(N+1)/4
i∗ · γ−(

∑
j∈U pi∗,j+

∑
j∈U qi∗,j)/4

i∗ · γ−(
∑

j /∈U pi∗,j+
∑

j /∈U qi∗,j)/4

i∗

and
∑

j∈U pi∗,j and
∑

j∈U qi∗,j are computed as the CRT reconstruction of the
∑

U [x] and∑
U [y] values, respectively. Denoting by u = γ

−(
∑

j∈U pi∗,j+
∑

j∈U qi∗,j)/4

i∗ , then S assigns each
honest party a multiplicative random share of c, with c satisfying

γ
(N+1)/4
i∗ · u · c ≡ b′ mod N

and b′ = (−1)b. Finally, each honest party sends its share of c to the coordinator C. This
simulation step is based on the observation from [BF01] that the sign of b′ is determined by
whether γi∗ is a quadratic residue mod N for γ values that have a Jacobi symbol 1. Therefore,
setting b′ = (−1)b properly simulates the protocol.
Next, S receives the corrupted parties’ corresponding messages and checks that they are consis-
tent with the committed randomness and prior transcript. If A sends the messages honestly, the
simulator simply continues to the next step in the simulation. If A uses randomness different

23

DRAFT

from what it was previously committed (i.e. deviates) for any corrupted party Pj , the simulator
sends (corrupt, sid, ssid, Pj) to the functionality FRSA−ML and receives the prime factors p, q of
N .

6. GCD test. For the execution corresponding with index i∗, S does the following:

If S knows the factors p, q of N , it emulates the honest parties as follows:

• First, if S hasn’t set the honest parties’ pi∗,j , qi∗,j values, S emulates them according to the
method from Step 5b. Next, on behalf of honest parties, S samples aj ∈ ZN . Then for
each bucket Bk, it samples [e], [d] mod Bk for honest parties and receives the corrupted par-
ties’ [e], [d] messages, thus setting the honest triples values. S simulates the rest of the GCD test
honestly according to the real-world protocol.

If S doesn’t know the factors p, q of N ,

(a) In each bucketBk, S emulates triples consumption for computing zk = a ·(pi+qi−1) mod Bk.
S samples the honest parties’ [e], [d] ← [0, Bk − 1] and sends them to C. Following that, S re-
ceives the corrupted parties’ [e], [d]. (The corrupted parties’ [d] messages are already determined
by previous transcript, namely, S can reconstruct pi,j , qi,j and has access to the corrupted parties’
triple. Further, the corrupted [e] message sets aj . Thus, S can test that aj (which is reconstructed
in QGCD) is a value in Z∗N .) If a cheat is detected, it (emulating functionality Fctriple) records
(abort, sid, ssid, Pj) and sends (corrupt, sid, ssid, Pj) to the functionality FRSA−ML and re-
ceives the prime factors p, q of N .

(b) Next, compute the honest parties’ [xy] = [zk] mod Bk messages as described in Step 3a, replac-
ing the target value xy mod τt with z = a ·(pi+qi−1) mod Bk where a ∈ Z∗N and (pi+qi−1)
is consistent wit the previous transcript. On behalf of honest parties, sample vj ∈ [±V]. Then,
for all k, compute [αk]j = [zk] + vj · N mod Bk. Once this is done in all buckets, use the
CRT reconstruction algorithm to get αj mod QGCD and send αj to C. Then, receive αj from
corrupted parties. S checks that the corrupted parties’ αj satisfy

i. N | (αj − aj(pi,j + qi,j)) where aj and pi,j + qi,j are consistent with previous transcript.
ii. ṽj = N | (αj − aj(pi,j + qi,j)) is in [±V].

If these checks don’t pass for any Pj , then S sends (corrupt, Pj) to the functionality FRSA−ML

and receives the prime factors p, q of N .

7. Certification. To simulate certification, S emulates the role of Fctriple and receives the parties’ certify
messages. If S has previously sent an abort message for any party Pj , then it emulates sending an
abort message from Fctriple, sending (abort, sid, ssid, Pj) to C.

8. Σ-protocol. S invokes the simulator for the Σ-protocol proof system.

9. Output. Conditioned on the success of the the certification and Σ-protocol proof, S completes the
simulation as described in the protocol.

Next, we argue security by proving indistinguishability of simulation via a sequence of intermediate
hybrid distributions. We begin with the following cases.

Case 1: The adversary has deviated before reaching the pre-sieving phase. Note that in this case, the parties
have not yet used their RSA product shares and therefore the only deviation by the adversary is abort which
aborts the simulation as well. Therefore, the simulation is perfect.

24

DRAFT

Case 2: The adversary has deviated during or after the pre-sieving phase. Note that in this case, the simu-
lator uses fake random shares on behalf of the honest parties, which are inconsistent with the RSA product
N obtained from FRSA−ML. Consequently, the differences between the real and the simulated executions are
with respect to the messages produced by the honest parties.

Hybrid H0. In this hybrid experiment, we consider an execution that proceeds identically to the real world.
The output of the experiment is defined as the output of the environment.

Hybrid H1. This hybrid is defined by a simulator S1 that plays the role of the honest parties as in the previous
hybrid with the exception that it fakes the certification step as described in Step 7 of the simulator. Since
the honest party always passes the certification in the real world, the output of this hybrid is identically
distributed to the previous hybrid.

Hybrid H2. This hybrid is defined by a simulator S2 that plays the role of the honest parties as in the
previous hybrid with the exception that it completes the biprimality GCD test step as described in Step 6 of
the simulator.

• If the adversary does not deviate during this phase,

The simulated honest [e], [d] messages are sampled uniformly mod Bk for all k. The real protocol
first selects triples values (ie masks) [a], [b] mod Bk and adds them to [x] = aj mod Bk and [y] =
pi,j + qi,j mod Bk respectively. Using the CRT reconstruction algorithm to interpret all values mod
QGCD, it easy to verify that these distributions differ information-theoretically since log(aj) = 2` and
log(pi,j + qi,j) = `.

Next, the honest parties’ [zk] values are computed in relation to the corrupted parties’ correct [zk]
values, ie they are consistent with the corrupted parties’ previous [e], [d] messages and their triples.
Thus, honest [zk] values additively share the expected honest party sum: z −

∑
j∈U [zk] mod Bk.

Hence, the [zk] values are identically distributed with in the real world. Then, then S samples vj from
the real distribution, so the honest αj messages are distributed as in the real protocol.

• If the adversary deviates and the deviation occurs in the first message (i.e. corrupted parties’ [e], [d]
messages), the simulator obtains the factorization of the candidate and then samples inputs and triples
for honest parties consistent with the factorization and completes te GCD phase honestly. indistin-
guishability follows from the passive security of Beaver triples. Now, to analyze the case when the
adversary deviates when sending the αj message, observe that the honest party has no additional
(passive protocol) messages, so this cannot influence the distribution of honest messages.

Hybrid H3. This hybrid is defined by a simulator S3 that plays the role of the honest parties as in the previous
hybrid with the exception that it invokes the simulator of the Σ-protocol at the last phase. Indistinguishability
here follows from the indistinguishability of the simulation of the Σ-protocol.

Hybrid H4. This hybrid is defined by a simulator S4 that plays the role of the honest parties as in the previous
hybrid with the exception that it completes the Jacobi test as described in Step 5 of the simulator.

• If the adversary does not deviate during this phase, the simulation is perfect and it follows from
Lemma 4.2 in [BF01].

• If the adversary deviates, first observe that the simulation perfectly simulates the real γi values due
to Lemma 4.2 in [BF01]. Next, S samples the honest parties’ γ(−pi,j−qi,j)/4

i as random multiplicative
shares in relation to the product of the corrupted parties’ values, which are constructed as specified in
the protocol. Thus, the distribution of the honest parties’ messages are identical to in the real-world
protocol. Hence, the broadcasted γ(−pi,j−qi,j)/4

i also perfectly simulate the real distribution.

25

DRAFT

Hybrid H5. This hybrid is defined by a simulator S5 that plays the role of the honest parties as in the previous
hybrid with the exception that it completes the Pre-Sieving phase as described in Step 3 of the simulator.

• If the adversary does not deviate during this phase, the real and simulated views are indistinguishable
at index i∗. In the real protocol, the [a], [b], [x], [y] values are sampled as uniform, independent values
mod τt. Then, computing [e] = [x− a] and [d] = [y − b] is distributed identically to sampling [e], [d]
uniformly from [0, τt − 1]. Hence, sampling uniformly from [0, τt − 1] in the simulation perfectly
emulates the honest parties’ [e], [d] messages. Next, since the simulated [xy] are generated using the
corrupted parties’ real inputs and xy = N mod τt, the honest parties’ simulated [xy] messages are
identically distributed to the real messages.

• If the adversary deviates during this phase, we claim that the simulated and real views are indistin-
guishable. First, observe that in the simulation, the honest [e], [d] messages are sampled uniformly
mod τt, ie they do not depend on the triples received from Fctriple. Hence, regardless of if the under-
lying triples values are real (received from Fctriple) or set by the simulation, the distribution of these
messages is identical. Thus, if S receives incorrect [xy] values from any corrupted party, it can update
the honest shares [x], [y] and assign triple values [a], [b], [c] upon learning the factors p, q, as described
in the simulation’s Step 3b.

Hybrid H6. This hybrid is defined by a simulator S6 that plays the role of the honest parties as in the previous
hybrid with the exception that it completes the Candidate generation phase as described in Step 4 of the
simulator.

• If the adversary does not deviate during this phase, this argument follows exactly from the previous
hybrid, except with replacing moduli τt with τ t.

• If the adversary deviates for the first time in this step, this argument follows exactly as in the previous
hybrid.

Hybrid H7. This hybrid corresponds to the simulator defined above.

Case 3: The adversary has not deviated. Observe that this case is equivalent to following the Case 2 hybrids
when the adversary acts honestly. Indistinguishability follows accordingly.

5 Concrete Costs

5.1 The Number of Prime Candidates

In this section we analyze the number of primes candidates required for successfully generating a valid RSA
composite (if all the parties were honest). We call running ΠRSA−ML from top to bottom once, regardless of
if an output is produced, an iteration. We refer to the pi,j , qi,j values output from the CRT Reconstruction
step of ΠRSA−ML as prime candidates.

First, we need to understand the probability an `-bit integer is prime, given that it survives trial division
up to a bound B. Observe that this corresponds directly to prime candidates in ΠRSA−ML with trial division
up to bound T1. De Bruijn [Bru50] shows

pprime = Pr[p is prime | trial division up to B]

= 2.57
lnB

`

(
1 + o

(
1

`

))
.

26

DRAFT

Then, the probability that the product of two such integersNi is actually biprime is (pprime)
2. If we tryN ′

possible biprimes, then the probability that we fail to find any biprime in a single iteration is (1−(pprime)
2)N

′
.

Now, we calculate the values above based on our parametrization. With ` = 1024 and a trial division
bound B = 863 (the 150th prime), we get that pprime ≥ 1/60. Thus, any Ni produced by our protocol is a
biprime with probability at least 1/3600. This implies we want to generate at least 3600 possible biprimes,
ie N ′ ≥ 3600. Last, given these prime candidates, the probability that we actually generate at least one
biprime is ≈ 36.78%.

Number of CRT coefficient samples. In the Pre-sieving step from protocol ΠRSA−ML, each αt is the product
of odd primes di1 , di2 , . . . dil . Then the probability a random sample rji,t ← [0, αt− 1] has GCD(rji,t, αt) = 1

is ptd =
∏l
x=1 (1− (1/dix)) . As we want N ′ = 3600 biprime samples in expectation, we need the parties

to sample d2 · 3600 · 1
ptd
e times for each t.

Biprimality test: number of iterations. From the soundness of the biprimality tests, the Jacobi test has
soundness 1/2. Hence we need to repeat the Jacobi test s times to get soundness 2−s. However, we only
need to run the Jacobi test s times for the potential modulus. We therefore run it once for every candidate,
then s more times for the survivors. In practice, we have observed that every modulus that passes the
first Jacobi test is eventually a modulus. Similarly to the Miller-Rabin test [DLP93], we believe that the
Boneh-Franklin tests indeed have stronger soundness for large moduli.

5.2 Communication Complexity

We calculate the total per-party communication for generating a 2048-bit modulus among 1024 parties.
First, we show that all distributed multiplications can be packed into a single Ring-LWE element with a
packing factor of 216 = 65536 (see Table 1 for all Ring-LWE parameters). Then we count the number of
ring elements transferred for a single iteration of the protocol. Knowing that each ring element in RQ is
(21 · 8 · 65536/(1024 · 1024))MB = 10.5MB, we arrive at our total communication estimate.

We show that a single Ring-LWE element with our parametrization gives sufficiently-many slots for all
of the distributed multiplications in our protocol.

First consider the multiplications required for pre-sieving. Since our Ring-LWE parameters supports
175-bit modular arithmetic, we need d1024/175e = 6 buckets for generating 1024-bit primes via CRT. We
use a greedy strategy to bucket the primes so that the probability of elimination in each bucket is roughly the
same. We lose roughly half of the candidates in pre-sieving and therefore require at least 2·3600·6 = 43200
multiplications. Note that using only 43200 multiplications will leave empty packing slots in our Ring-LWE
element, so our implementation allocates 43900 multiplications to maximize the number of prime candidates
generated.

For the candidate generation step, we need to multiply two 1024-bit numbers using CRT. With each
CRT factor around 175-bits, this requires 12 buckets. However, we already know the remainders of the
modulus w.r.t the first 150 primes due to pre-sieving, so we do not recompute them. We only compute the
product w.r.t the additional CRT factors whose product exceeds 1024-bits. Pre-sieving gives 3600 biprime
candidates, so we require another 3600 ∗ 6 = 21600 products.

Finally for the GCD test, we need to multiply a 1024 bit number with a 2048 bit number, requiring 18
buckets. Overall, we need 43900 + 21600 + 18 multiplications, which is less than 65536, the Ring-LWE
packing factor.

We now compute the total communication cost. The key-generation and pre-sieving steps require trans-
ferring 14 ring elements overall, i.e. 14 · 10.5 = 147MB per party. The rest of the protocol amounts to less
than 3MB per iteration. To conclude, a single run of our protocol requires each party to transfer 150MB,
split evenly between upload and download.

27

DRAFT

For active security, we estimate that our zero-knowledge proof will require less than 20MB per party.
We provide more details in Section 6.3.

5.3 Round Complexity

We analyze the round complexity for our protocol. Key generation requires 2 rounds, and triples generation
requires 3 rounds. Each of pre-sieving, candidate generation and GCD test requires 2 rounds. The Jacobi
test runs twice and will incur 4 rounds of communication. This boils down for a total of 15 rounds of
communication.

To reduce the number of rounds, we can perform the pre-sieving in parallel with the triples generation
and the GCD test in parallel with the second iteration of the Jacobi test. This reduces the round complexity
of our passive protocol to 11. For active security we include a commitment round at the beginning of the
protocol and this brings our round complexity to 12.

6 Instantiating Our Primitives

6.1 Instantiating Our AHE Based on Ring-LWE

This section describes the Ring-LWE scheme used to implement multiplication in our protocol.

Notations. We emphasize that the notation in this section is self-contained. For an integer p, we write Zp
as the cyclic group {0, 1, . . . , p− 1} with addition modulo p and Z[x] is the set of polynomials with integer

coefficients. we write function exp(y) to mean ey. For a vector x, the Euclidean norm is ‖x‖2 =
√∑

i |xi|
2

and the `-max norm is ‖x‖∞ = maxi |xi|.
Polynomial rings. Our encryption scheme’s plaintext and ciphertext spaces are polynomial rings of the form
RP = ZP [X]/Φm(X), where Φm(x) ∈ Z[x] is the mth cyclotomic polynomial with degree n = φ(m) (the
totient function of m). For our scheme, we set Φm(x) = xn + 1 where m is a power of 2, so n = m/2.
Recall that the ring RP represents all polynomials up to degree n − 1 with coefficients in [0, P − 1]. We
choose the modulus P to be a product of primes p1, . . . , ph such that 2n = 2k+1 divides pi − 1. Then,
for every i, there is a 2n-th root of unity ζi ∈ Z∗pi . Let ζ = (ζ1, . . . , ζh) be the corresponding element in
ZP = ΠiZpi .

The plaintext and ciphertext spaces are RP and RQ, respectively. Both P and Q will only have factors
pi satisfying 2n|pi− 1. We choose P and Q as follows. First, choose Q = Πh

i=1pi, where p1, . . . , ph are the
first h small primes. Next, we specify that P is the product of a subset of the primes in Q, ie P = Πi⊂[h]pi.

For our implementation, we parametrize using values listed in Table 1.

Message packing. A message in our scheme is in ZP . We encode messages bigger than P via vectorizing
the messages as m ∈ ZnP . For simplicity, we call ZnP our message space. Recall that the plaintext space of
our encryption scheme is RP .

To keep our communication lightweight, we pack an n-length message into a single polynomial in RP .
Intuitively, to map from m ∈ ZnP to a polynomial m(X) ∈ RP , we want the components of m to be
the roots of unity for a polynomial m(X) ∈ RQ, ie mi = m(ζ2i+1) for all i ∈ [0, n − 1]. We compute
m(X) using the inverse of the discrete fast Fourier transform (FFT).This implicitly means that we need a
polynomial of degree n to encode a message of length n to have sufficiently-many roots of unity. Note that
recovering m simply involves applying FFT to m(X).

We observe that FFT is a ring isomorphism that maps polynomial addition and multiplication (in RP)
to vector addition and pointwise multiplicaton in ZnP . Hence, doing homomorphic operations is easy to
understand and implement. Note that to multiply by a scalar c, one must first map c to RP using inverse
FFT, then multiply.

28

DRAFT

Threshold homomorphic encryption from Ring-LWE. We describe a threshold additively homomoprhic
encryption scheme supporting the computation of sums and affine functions based on the Ring-LWE prob-
lem. Using the notation from Definition 3, the protocol works as follows:

1. Secret key shares and randomness consists of triples SKi = (ai, si, ei) where ai ∈ RQ is chosen
uniformly at random, and si, ei ← χ are sampled from the LWE truncated discrete gaussian error
distribution.

2. The public key reconstruction function takes as input n ring elements xi ∈ RQ and outputs their sum.

Pub(x1, . . . , xn) =
∑
i

xi ∈ RQ

3. Key generation has two rounds, defined by the function

Gen((ai, si, ei), []) = ai ∈ RQ
Gen((ai, si, ei), [a]) = si · a+ ei ∈ RQ.

In the first round, each party sends a random ring element ai and receives the sum a =
∑

i ai =
Pub(a1, . . . , an). In the second round, each party uses a (and its secret key) to compute the public
share bi = si · a+ ei, and receives

b =
∑
i

bi = Pub(b1, . . . , bn) = s · a+ e

where s =
∑

i si and e =
∑

i ei. The public key is PK = (a, b) ∈ R2
Q. Once the public key is

computed, the values ai and si are no longer needed, and the secret key can be simply set to SKi = si.

4. The (randomized) distributed decryption algorithm Dec(SKi, (c, d); r), on input a secret key share
si ∈ RQ and ciphertext (c, d) ∈ R2

Q, outputs mi = δi,1 · d − si · c + r, where r ∈ RQ is chosen at
random from a sufficiently large interval [−U,+U] described below, and δi,1 equals 1 if i = 1 and 0
otherwise.

5. The message space is RP for some P dividing Q. The output reconstruction algorithm

Rec(m1, . . . ,mn) =

⌊
(P/Q)

∑
i

mi

⌉
(mod P)

sums the message shares and rounds the (coefficients of the) sum to the closest multiple of Q/P .

Next, we describe the (randomized) encryption and homomorphic evaluation function Eval. The scheme
supports the following functions:

1. Constant functions f() ∈ RP , used to compute the encryption of a message x ∈ RP . These are
evaluated as a standard Ring-LWE encryption:

Eval(PK, 0, f()) = Enc((a, b), x;u, v, w)

= (a · u+ v, b · u+ w + (Q/P)x)

2. Sums fΣ(x1, . . . , xn) =
∑

i xi ∈ RP . These are evaluated deterministically as the sum of the
corresponding ciphertexts:

Eval(PK, n, fΣ, [c1, . . . , cn]) =
∑
i

ci

29

DRAFT

3. Affine functions fy,z(x) = yx + z, where y, z ∈ RP are ring elements, possibly from a restricted
subset of RP . The evaluation is randomized, and outputs

Eval(PK, 1, fy,z, [c];u, v, w)

= yc + (au+ v, bu+ w + (Q/P) · z)

where u, v, w ← χ as in the encryption queries

Parameters and the allowed sequences of queries are chosen to satisfy our correctness and security
requirements. For any Ring-LWE ciphertext (c, d) encrypting a message m under key s, define the error

Errs((c, d),m) = d− sc− (Q/P)m.

At any point during the evaluation of a sequence of queries one can define an upper bound on the error of the
ciphertexts |Errs(cq,mq)| ≤ βq. These bounds depend on the sequence of operations in the scheme. These
bounds depend on the sequence of operations supported by the scheme or required by the application. See
Appendix B for bounds specific to our protocol.

• For security, we require the size U of the error added by decryption queries q to be bigger than βq by
a factor 2κ exponentially large in the security parameter κ.

• For correctness, the modulus Q should be larger than 2PUβq, so that rounding eliminates the error,
and recovers the correct message.

We emphasize that the amount of noise U added in distributed decryption operations should be tuned
to the error bounds βq specific to the sequence of operations performed by the protocol. This is similar to
the common requirement in lattice-based (leveled) homomorphic encryption that the modulus Q be chosen
large enough to correct the errors that arise from the execution of specific homomorphic operations. Once
the bounds βq have been determined, the correctness and security of our threshold homomorphic encryption
scheme can be proved in a rather generic way, as shown in the next two theorems.

Theorem 4. Assume Q > 2P (nU + βq) for all decryption queries q. Then, the Ring-LWE threshold
homomorphic encryption scheme is correct.

Proof. The error in the decryption queries is bounded by βq by definition. Each party in the distributed
decryption algorithm adds at most U to the error. So, before the rounding operation performed by Rec, we
have ∑

i

mi =
Q

P
m+ r

where m is the correct output message and r is an error term bounded by βq + nU < Q/(2P). Multiplying
by (P/Q) and rounding to the closest integer, Rec correctly recovers m (mod P).

Theorem 5. Assume U > 2κβq for all decryption queries q. Then, the Ring-LWE threshold homomorphic
encryption scheme is secure under the standard hardness of Decisional Ring-LWE.

Proof. Consider a security game as described in Definition 5 with challenge bit ḃ, and assume without loss
of generality that the adversary picks the index h = 1. We make a sequence of modifications to the security
game (formally, we define a sequence of hybrids) that alter the adversary’s advantage only by a negligible
amount. The changes lead to a game where the adversary has advantage 0. It follows that the advantage in
the original game from the definion must be negligible.

30

DRAFT

Let SKi = (ai, si, ei) be the secret key shares picked at random for i = h = 1 or semi-maliciously by
the adversary for i ≥ 2, and define a =

∑
i ai, ā =

∑
i≥2 ai = a− a1, and similarly for s, s̄, e, ē and b, b̄.

Notice that since the adversary has to pick the ai’s (and their sum ā) before seeing a1, and a1 is chosen
uniformly at random, the value a = a1 + ā is also uniformly distributed. Since the ai values are not used
anywhere else, we can replace a ∈ RQ with a uniformly random ring element, and ignore the ai’s.

Next we look at the decryption queries. Let (cq, dq) be the qth (decryption) query, andmq the associated
message. Notice that in the security game this message does not depend on the challenge bit because of the
constraint m0

q = m1
q . So, this message can be efficiently computed by the adversary or by a simulator. The

decryption query is answered with the honest party partial decryption

dq − s1 · cq + rq = dq − (s− s̄) · cq + rq

= (Q/P)mq + r′q + s̄ · cq + rq

where r′q = Errs((cq, dq),mq), by definition, is bounded by ‖r′q‖∞ < βq, and rq is chosen uniformly at
random from [−U,+U]. Since U ≥ 2κβq ≥ 2κ‖r′q‖∞, the distribution of rq+r′q is statistically close (within
distance 2−κ) to that of rq, without the addition of r′q. So, we can replace the decryption oracle answer with
a value

(Q/P)mq + s̄ · cq + rq

which can be computed by the adversary on its own because it knows both mq and s̄. In particular, the
decryption query is answered without using the honest key share s1.

After repeating the above process for all decryption queries, we see that the honest secret key share s1 is
not used anywhere, except for the initial computation of the public b1 = a·s1+e1, during the key generation
stage. Under the Ring-LWE assumption, this value is computationally indistinguishable from a uniformly
random b1 ∈ Rq. So, we can replace b1 with a truly random values. Moreover, similarly to a, since the
adversary has to choose all ei, si (and the resulting bi = asi + ei and b̄) before receiving any information
about b1, the sum b = b1 + b̄ is also uniformly random.

At this point we can also replace b with a uniformly random ring element, and ignore all other values
computed during the key generation stage. So, both a and b are now uniformly random and independent.

At this point, both a and b are uniformly random and independent. To conclude, we consider the chal-
lenge queries, which are the only queries that depend on the hidden bit ḃ of the security game. Our cryp-
tosystem supports three types of evaluation queries: encryption, sums, and affine functions. These queries
are answered as follows:

• Sum queries are trivial because for every n there is only one sum function fΣ(x1, . . . , xn) =
∑

i xi.
So, the adversary can compute f0 = f1 = fΣ on its own, without knowing the challenge bit ḃ.

• Encryption queries (m0,m1) are answered with

Enc(PK,mḃ) = (au+ v, ḃu+ w) + (0,mḃ ·Q/P).

Since a, b are uniformly random, and u, v, w are chosen from the LWE error distribution χ, the pair
(a, au+ v) and (b, bu+w) are LWE samples with secret u and noise v, w respectively. So, under the
Decisional Ring-LWE assumption, au+ v and bu+ w are indistinguishable from uniformly random
values. So, we can answer the query with

Enc(PK,mḃ) = (x, y) + (0,mḃ ·Q/P)

where x, y are chosen uniformly at random and independently from a, b. Adding (0,mḃ ·Q/P) maps
the uniform distribution to itself. So, we can also eliminate (0,mḃ ·Q/P), and answer the encryption
query Enc(PK,mḃ) with a pair of uniformly random ring elements (x, y) ∈ R2

Q, independently of the
bit ḃ.

31

DRAFT

Parameter Notation Value

Security parameter κ 128

Number of parties N 1024

Gaussian parameter σ 8

Degree/Packing Factor n 216

Ciphertext Modulus Size |Q| 1302 bits
Plaintext Modulus Size |P | 558 bits
Maximum number of bits for τ max bits(τ) 175 bits

Table 1: Ring-LWE choice of parameters.

• Affine queries (y0, z0), (y1, z1) are treated similarly. Just as before, the answer to the query

Eval(PK, 1, fyḃ,zḃ , [c];u, v, w) = (yḃc + (0, zḃQ/P)) + (au+ v, bu+ w)

is the sum of a fixed value (yḃc+ (0, zḃQ/P)) and a pair (au+ v, bu+w) which is indistinguishable
from a uniformly random element of R2

Q. So, we can answer the query with just a pair of random ring
elements (x, y) ∈ RQ.

At this point all queries are answered without using the challenge bit ḃ at all. So, the adversary advantage in
guessing the value of ḃ is 0.

Implementation parameters. Our code implements Ring-LWE operations using the open source library
NFLlib [nfl], with parameters given in Table 1. Recall that both P and Q have prime factors pi such that
2n | pi − 1 for message-packing purposes. Then with n = 216, we have the constraint 217|pi − 1. Hence,
each pi needs to be ≥ 218 to allow for a sufficient message packing.

Our implementation sets pi to be 62 bits for better soundness with respect to the zero-knowledge proofs.
In detail, the statistical soundness is the inverse of the smallest prime factor’s field size, so we get soundness
2−62. NFLlib provides the mechanisms to easily force each factor of P and Q to be 62 bits: one simply
specifies the desired number factors for P and Q. We set P = 9 and Q = 21.

Lastly, based on the noise analysis for our multiplication protocol (Appendix C), the moduli P and Q
are related via the inequality Q > 2κ+2σP 2N2n. It is easy to verify that our parameterization satisfies this
inequality.

6.2 Identifying Prime Buckets for Triples Generation

During the triples generation phase, party Pj samples vectors aj , bj , cj ∈ [B1]× [B2]× · · · × [Bn]. Recall
that the triples are used in three places: (1) Pre-sieving, (2) Candidate generation, and (4) GCD steps. We
discuss here how the Bi’s are chosen.

For pre-sieving, we need to first identify the prime buckets B1, . . . , BT . Recall that the product of
Bi’s must equal the product of the first T1 primes excluding 2, and each Bi is at most 175-bits given our
instantiation of the underlying TAHE scheme. Let B = p1 × p2 × · · · × pW . When we sample a random
number mod Bi, the probability of getting a number that is not relatively prime with Bi is given by the
inclusion-exclusion formula

∑
i 1/pi−

∑
i,j 1/pipj +

∑
i,j,k 1/pipjpk− Denote this probability be qBi .

We use a greedy strategy to bucket the primes across the Bi’s so mini qBi is maximized. Then to choose
the number of triples needed for each Bi, we proportionally divide the total number of triples available.
Namely, we allocate 1/(1− qBi) fraction of the triples for Bi.

32

DRAFT

For candidate generation, we allocate enough triples to multiply pairs of 2048-bit numbers that survive
the pre-sieving phase. We multiply by deconstructing the numbers into CRT factors of at most 175-bits and
reconstructing after multiplying across the individual CRT moduli. Since the product of the shares modulo
B1, . . . , BT is already available from the pre-sieving phase, we already have 1024 bits of information. We
just need enough additional moduli for the remaining 1024 bits. We choose 175-bit primes directly for these
moduli.

For the GCD test, we multiply two numbers modulo Q = (3 × 1024 + 2 × log n + 128 + 5) bits. We
do this only once for the candidate that survives the Jacobi test.

In order to divide the total number of triples n (i.e. the degree of the encryption scheme) between the
three categories, first we allocate enough for the GCD phase. Since we need roughly 3600 candidates to
get one bi-prime in expectation, next we allocate enough triples for 3600 multiplications in the candidate
generate phase. Finally, we distribute the remaining for the pre-sieving as described above. For n =
65536, we averaged between 3000 and 3600 candidates from the pre-sieving using our allocation. Let
nPS, nCAN, nGCD be the number of triples allocated for each of the three categories respectively.

6.3 Implementing FCP (Commit-and-Proof)

We will implement the commit-and-prove functionality using the Ligero zero-knowledge argument system
[AHIV17] and Shoup’s Σ-protocol [Sho00]. We first describe our NP statement and then discuss the imple-
mentation. We list the components of the NP statement:

1. Key generation: Recall that the parties commit to si, ei ∈ RQ at the beginning of the protocol, where
si and ei are elements of ZnQ. Then, party Pj needs to prove that:

(a) Each element of the vectors sj and ej is bounded in [−10σ, 10σ], ie is roughly 80 bits.

(b) Second, the bj value transmitted by party Pj in the second round of the key generation protocol
satisfies bj = a× sj + ej ∈ RQ.

2. Triples generation: Parties choose the ith elements of aj , bj , cj from Bi where B1, . . . , Bn We use
a greedy strategy to identify B1, . . . , Bn and the number of triples we allocate for each category. In
this section, the party proves that there exists aj , bj , cj ∈ B1 . . . Bn and randomness such that:

(a) The ith elements of aj , bj , cj are in [Bi] and ith element of zj is in [−nBi2λ, nBi2λ].

(b) Each element of u1, u2 is in [−80, 80].

(c) Each element of v1, w1, v2, w2 is in [−80, 80].

(d) Party Pj transmits αj = (a ·u1 +v1, b ·u1 +w1 +(Q/P)m1) ∈ R2
Q to the coordinator in Step 1

of triples generation.

(e) m1 is a polynomial over RP such that m1(ζfi) = aj [f] mod pi for i ∈ {1, . . . , 9} and 1 ≤ f ≤
65536.

(f) βj = Eval(PK, 1, flin(bj , c
′
j , ·), α) = (m2β1 +a ·u2 +v2, β2 +b ·u2 +w2 +(Q/P)m3), where

m2(ζfi) = bj [f], m2(ζfi) = zj [f]− cj [f] mod pi for i ∈ {1, . . . , 9} and 1 ≤ f ≤ 65536.

(g) dj = Dec(j, SKj , β) = δi · β2 − β1si + r, where r ∈ RQ.

(h) Every entry in r is in [−U,U].

3. Pre-sieving: The parties sample random shares and multiply using the triples generated in the previ-
ous phase. Each party Pj proves that there exists rji,t, r̃

j
i,t such that the triples were used correctly to

compute (
∑

i r
j
i,t)× (

∑
i r
j
i,t) mod Bt and that 0 < rji,t, r̃

j
i,t < Bt.

33

DRAFT

4. Candidate generation: The parties prune their lists based on the result of the pre-sieving. Party Pj
identifies prime shares pi,j and qi,j . Next, it consumes triples to compute Ni = (

∑
j pi,j)× (

∑
j qi,j).

Recall that the parties already know Ni mod Bt for all t ∈ [T] from pre-sieving. In this step we
compute Ni mod Bt+1 . . . BT ′ such that blog2(

∏T ′

i=1Bi)c > 2048. Parties prove that each candidate
pi,j is the reconstructed value from pre-sieving and that the triples were consumed correctly.

5. Jacobi test: The parties raise γ to the exponent (−pi,j − qi,j)/4. The parties employ the Σ-protocol
proof of knowledge for an exponent of an unknown order group w.r.t. γ [Sho00].

6. GCD test: The parties prove that the triples were consumed correctly w.r.t. pi,j , qi,j in a similar way
to candidate generation.

We introduce the following optimization that reduces the size of the NP statement. Upon concluding the
protocol execution, the parties reveal all of the triples except those used to generate the survived candidates.
This means parties only need to prove correctness w.r.t triples that led to these biprimes.

The first issue with this optimization is that we rely on packed ciphertexts for the Ring-LWE encryption
scheme. We want to keep some elements in the encrypted vectors private while revealing others. Interest-
ingly, our version of packing can be “unpacked”. Given a, s, e, b ∈ RQ such that as+ e = b, we can extract
A[i] ∈ ZnQ such that 〈A[i], s〉+ e[i] = b[i]. This insight to simplifies the equations in Items 2d and 2f. More
precisely, by unpacking these equations, it suffices to bound specific indices of the vector v1, w1, v2, w2 for
Item 2c and all elements of u1 and u2. Suppose we need to keep f triples private. In fact, if we want to
keep f positions of aj , bj and cj hidden, we can bound the first f elements of the vectors v1, w1, v2, w2.
Recall that the LWE encryption scheme encrypts polynomials m1,m2,m3 and the actual messages are the
evaluation of these polynomials on specific roots of unity. Therefore, to hide f evaluations of m1,m2,m3

it suffices to keep any f coefficients of the polynomial private and reveal the remaining in the clear. For the
vectors in Items 2a and 2h, it suffices to bound the specific indices that contribute to the final biprime.

We will incorporate our NP statement using three proof systems that will share witnesses. Then, in order
to compose the proofs, we argue that the three proof systems have identical values for the shared portions of
their witnesses. The three proof systems are:

1. Range proofs. We will use the Ligero zero-knowledge system to prove the constraints in Items 1a
and 2b, where the underlying field is Fp1 .

We follow a standard approach to provide range proofs. In order to prove a comparison v < L, the
prover includes the bit representation of v = v0v1 · · · vj and another number v′ = v′0v

′
1 · · · v′j in the

witness. It proves that: (1) both vi and v′i are bits using a quadratic constraint x2 − x = 0, and (2)∑j−1
i=0 2i · (vi + v′i) + (2j − L) = 2j where j = dlog2(L)e, and (3) all computations are modulo p1.

2. Σ-protocol. We rely on a standard discrete log Σ-protocol [Sho00] to prove correctness in the Jacobi
test (see Figure 6). We note that it suffices to prove correctness of the Jacobi test for the final biprime
as the shares for the remaining candidates are revealed in the clear.

3. Main proof. We provide a second proof using the Ligero zero-knowledge system that incorporates
the rest of the NP statements listed above. Recall that our LWE ciphertext modulus Q is the product
of 21 different 61-bit primes p1, . . . , p21. We generate a proof of the remaining constraints modulo
each of these primes.

Proving consistency between the three proof systems. In order to compose the three different proof
systems, we identify the overlapping parts of the witnesses.

In order to compose the three different proof systems we need to argue that the overlapping witnesses
are identical in the different proof systems. First, we identify the overlapping parts of the witness.

34

DRAFT

1. Range proof and main proof: si, ei, u1, u2 are both in the range proof and main proof, though the
elements are represented as bits in the range proof. In order to prove that they encode the same values,
we first choose rblind uniformly at random from [p1] in both proof systems. Then, we introduce a linear
function that computes an inner product over Fp1 with inputs (1) the vector obtained by combining all
the elements from si, ei, u1, u2 and rblind and (2) another random vector of the same length where each
element is chosen uniformly at random from [p1]. Then compare the outputs of the linear function
w.r.t. to the inputs in both the proofs and test for equality. Since both the range proof and the main
proof are use the Ligero proof system, such a function can be incorporated as a linear constraint where
the random values are obtained via the Fiat-Shamir heuristic once the (extended) witness is committed
via Merkle tree in both the proof systems.

2. Σ-protocol and main proof: The overlapping parts of the two witnesses are the shares of the primes
pi,j , qi,j . To show that the sigma protocol used the right values, we will prove that the pi,j , qi,j values
in the main proof satisfies the linear constraint z = r + ex, which is revealed in the third step of
the sigma protocol. For soundness, the witness must be committed in advance. This holds since we
commit aj , bj , cj at the beginning.

Our current active implementation does not include the stitching of the proofs together . We remark
that our results will not be significantly affected after we incorporate this part. In particular, the
computational and communication cost involves adding one linear constraint for each of the two cases
and will result in a small additive overhead (< 5MB) in the generation of the zero-knowledge proofs.

PROTOCOL ΠDL

Inputs. u, v ∈ Z∗N . A private input for the prover P is x such that x = logv u.

Prover’s first message. The prover chooses a random value r of length 2` + s bits (where 2` is the
modulus length and s is the statistical security parameter), and sends a = vr mod N .

The verifier’s challenge message. The verifier V responses with a random challenge message e of
length t bits.

Prover’s third message. P sends its third message z = r + ex (over the integers) and V checks that
vz = aue.

Figure 6: Σ-protocol for proving the knowledge of a discrete log in groups with unknown order.

7 Implementation and Experiments

We developed a robust and optimized implementation of our protocol in approximately 14500 lines of C++
code (excluding external libraries) with an additional 3300 lines of unit, integration, and end-to-end testing
code. Our implementation’s networking layer defines primitives for sending messages and awaiting replies
and a separte encryption protocol performs the computation and tests the data. A substantial effort was made
to properly select Ring-LWE, commitment, zero-knowledge, and hashing parameters in order to achieve
roughly 128-bits of security.

Software engineering. We use ZeroMQ [zer], a fast request-reply concurrency framework for all network-
ing operations. We used the ZMQ ROUTER pattern for the coordinator, which is a bidirectional unrestricted

35

DRAFT

pattern that checks the identities of the parties to determine where to route messages. This pattern drops
messages once a high watermark backlog is reached for all peers, which is called a mute state. For our
parties, we use the ZMQ DEALER pattern, which is also bidirectional. But, instead of dropping messages, it
blocks once a party gets to the mute state. We manually tuned parameters for the parties and the coordinator
to increase the high watermark for our coordinator to 15,000 messages. We configure a Keep-Alive strategy
to lower network load.
NFLlib enhancements. We implement ring operations using NFLlib [nfl], a highly optimized, open source
C++ library for ideal lattice cryptography. We changed NFLlib’s default allocator to use the heap instead of
the stack in order to support our scheme’s polynomial degree parameters which exceeded the defaults.
Coordinator optimizations. Our protocol coordinator performs two types of operations: data aggregation
and broadcasting the result of the aggregation. To do data aggregation, coordinator receives data shares
from the parties, deserializes and validates them, and then applies a given operation in a way similar to map-
reduce. We do operations over vectors, including summation and multiplication defined as the Hadamard
(element-wise) product. Data aggregation is much more computationally intensive than broadcasting, so we
optimized those operations by running the coordinator runs on multiple CPUs with substantial amount of
RAM and implementing a Divide-and-Conquer approach that splits the data into blocks, performs a given
operation on these blocks, and promotes results to the top of the call chain. In contrast, our optimizations
for the party code are algorithmic only and assume single-threaded execution.
Distributed verifier. For active security, our coordinator verifies all parties’ public data and proofs. To
parallelize and expedite verification, we introduce multiple verifiers who run as separate processes. The
coordinator receives the parties’ proofs and load-balances them to the verifiers. Once the verification process
is done, the verifiers send reports back to coordinator. If all reports succeed, the coordinator finishes the
ceremony.

In active mode our coordinator verifies parties public data and proofs. In order to speed up this process
we parallelize it accross multiple verifiers running them as separate processes. The coordinator receives
proofs from parties and redirects them to the corresponding verifier without deserialization acting as a load
balancer in this case. Each verifier can handle data for all modulis and for one or a few parties. Along with
proofs coordinator sends public data based on shares submitted by parties. Once verification process is done
all verifiers send the verification reports back to coordinator. If all reports are successful coordinator finally
finishes the ceremony.
Serialization. After analyzing running times and profile information, one of the main bottlenecks of our
protocol was data serialization and deserialization on the coordinator side. To lower network load, we used
Boost binary serialization to minimize the amount of data transferred.

One of the major improvements for serialization that we implemented was multithreaded aggregation of
data on the coordinator side. Since the coordinator runs on a powerful node, we implemented a multithreaded
deserialization for the coordinator, i.e. any aggregation first splits data into chunks then uses an approach
similar to Divide-and-Conquer to redistribute deserialization among multiple threads.
Throughput test. The total amount of time the coordinator spends on sending or receiving messages de-
pends not only on the coordinator’s hardware or network, but also on the parties’ network quality. At the
very beginning of our protocol, even before parties register to participate, we perform a throughput test for
each party wanting to join. Using ZeroMQ primitives, this throughput test measures the amount of time
needed to transfer a given amount of data to the party and to receive an acknowledgement message from it.
We implement the test with ZeroMQ primitives.

During the throughput test, each party pushes as much data as it can during a fixed time frame. If a
party pushes enough data, it passes the test. In our experiments, the throughput test cuts off all parties with
an uplink speed slower than 1Mbps. Only parties that survived the throughput test are allowed to register
and join the protocol computation. Of course, these parameters should be tuned for various cases; for cases

36

DRAFT

with a slow network but increasing the total time of the protocol is allowable, increasing the uplink speed
threshold allows slower parties to participate. Meanwhile for extremely large experiments (≥ 1000 parties)
or for benchmarking the protocol, we used nodes from data centers distributed far from each other, thus
inducing a relatively poor network. For this case, turning off the throughput test is necessary to prevent
eliminating most parties.

In more detail, the throughput test begins when the coordinator sends a message to every party client.
In response to the coordinator’s message, each party sends nb max send = 1024 packages, each of
data size = 32kB, to the coordinator. Then, based on the number of packages received within a
duration of 20secs, the coordinator calculates the party’s network bandwidth. If a party has less than the
threshold cutoff of 0.8Mbps bandwidth, it is eliminated. Next, to mitigate against denial-of-service
events, we set the following time bounds on the throughput test. A party will time out in the following
cases: 1) The party waits longer than wait timeout = 5mins for the coordinator to begin the test, and
2) After the throughput test terminates, the party fails to receive a stop message from the coordinator within
timeout = 25secs.

On the coordinator side, we set the following time bounds. The coordinator waits a wait time of
2mins for parties to join the throughput test. After the actual throughput test, the coordinator must cleanup
the queue (of lagging packages). If no package arrives within an interval of cleanup time = 5secs, the
cleanup is done. Additionally, the coordinator times out after 1min.

Protocol restarts. Our protocol may restart if no RSA biprime is sampled or if it identifies a cheating party.
While the protocol may restart arbitrarily-many times, our implementation restarts at most 10 times. If no
RSA biprime is sampled, observe that no party is kicked out. As soon as all candidates are eliminated, the
protocol restarts at triples generation (and skips running another throughput test).

The coordinator identifies cheating parties in the certification/zero-knowledge phase. If any party fails
to send a proof (including when the party times out) or if any party sends an incorrect proof, the protocol
kicks out that party and restarts at triples generation with the remaining parties. If any (distributed) verifier
aborts during the certification and zero knowledge because of poor network connection or faulty node, we
simply record the party’s proof on an AWS instance. Then, the parties’ proofs can be verified at a later time.

7.1 Experiments

7.1.1 Setup

We prepared a Docker image file that runs on Ubuntu 18.04 LTS with kernel version 4.9.184 and the set
of libraries we use: Boost 1.69, GMP 6.1.2, etc. For AWS, we created an AMI which matches our Docker
image and then provisioned this image to all of our party nodes. Using our test orchestration harness (Section
7.1.1), anyone can easily reproduce our results.

To simulate the real-world scenario, we executed our experiments on the AWS Cloud platform using
t3.small nodes for each party; these nodes run on a shared 2.5 Ghz Intel Xeon with 2 virtual CPUs
and 2GB of RAM. Our process is shared with other tasks running on the AWS cloud hardware, and AWS
provides up to 5Gbps network performance for these nodes. Our coordinator ran on r5dn.24xlarge
nodes with 96 virtual CPUs, 768GB of RAM, and up to 100 Gbps network. In all of our experiments, the
coordinator node is always in Oregon (us-west-2). For tests with ≤ 1000 parties, party nodes were
distributed in N. Virginia (us-east-1) and Ohio (us-east-2) AWS EC2 regions. For tests with >
1000 parties, party nodes were distributed in N. Virginia (us-east-1), Ohio (us-east-2), Oregon
(us-west-2), and N. California (us-west-1) regions.

Test orchestration harness. In order to perform experiments and gather logs on hundreds to thousands
of nodes, we developed an orchestration harness on top of AWS tools and basic command line tools. This
harness helps us build and deploy binaries to the nodes, validate them after deployment, and finally launch

37

DRAFT

Node Type Location AWS EC2 Region

Parties N. Virginia us-east-1
Parties Ohio us-east-2
Parties N. California us-west-1
Parties and Coordinator Oregon us-west-2

Table 2: AWS EC2 Data Center Locations.

Parties Passive (µ± σ s) Active (µ± σ s) Registration (s) # Runs (passive/active)

2 23.8 ± 2.6 431 ± 26.9 26.3 30/18
5 22.7 ± 1.8 408 ± 25.3 25.7 29/13

10 25.0 ± 2.6 445 ± 25.3 33.4 29/14
20 27.1 ± 4.9 444 ± 6.7 40.4 30/17
50 39.6 ± 7.4 463 ± 5.2 40.0 12/4

100 56.1 ± 6.8 486 ± 10.8 31.4 30/18
200 99 ± 19.9 590 ± 9.5 28.7 5/3
500 137 ± 5.3 853 81.6 8/1

1000 211 ± 2.5 1306 126.3 6/1
2000 366 ± 8.3 2550 119.6 3/1
4046 684 – 4581 158.7 1/1

Table 3: Overall running time of protocol to sample a 2048-bit modulus in expectation with 128-bit security.
Timings are averages over the number of runs along with standard deviations when applicable.

them seamlessly at scale. After computation all the results are uploaded to AWS S3 storage and could be
easily fetched from there for further data analysis. The whole harness consists of a dozen of script tools or
about 600 lines in Bash. While some of these scripts depend on AWS tooling, others are independent from
the type of cloud used, ie the whole harness can be easily ported to another type of the cloud.

7.1.2 Empirical Results

Table 3, we present empirical data on the runs of our protocol. For n ≤ 1000 parties, we run our protocol at
least 5 times and report averages for all metrics; party-side metrics are averaged across all n parties as well.
For larger instances n > 1000, we report the result of a single run and the party-side metrics are computed as
an average over a subset of 1000 randomly sampled parties. When reporting timings, we measure the wall-
clock time as measured from either the coordinator, party, or distributed verifier depending on the metric, to
produce one modulus in expectation4.

We report the registration time for the protocol separately. This is the time it takes for all n nodes to
register with the coordinator and perform a throughput test to ensure that the node has enough bandwidth to
complete the protocol. This phase is orthogonal to the protocol.

Memory We instrumented the client nodes to measure their peak memory usage. As expected, this value
does not change substantially as n increases. We measured usage from 1857.59–1861.91 MB of RAM usage

4Note, since this functionality is inherently a sampling functionality, there is a noticeable failure probability to produce a
modulus. This probability can be adjusted by setting parameters; we set the parameters to produce one answer in expectation.

38

DRAFT

Message Type Size (b)

Public Key A 11,010,105
Public Key B 11,010,105
Encrypted X 22,020,166
Encrypted XY + Z 22,020,166
Sieving flags 175,724
AX Value 2,625,131
Modulus Candidate 1,901,993
All others 3,674

Total Semihonest 70,767,064

Gather Public Data 143,084,762
Gather Proofs (21) 35,106,330

Total Active 248,958,156

Table 4: Per Party communication complexity of the protocol

as n varied from 2 to 1000.
However, memory usage on the coordinator is indeed a bottleneck in our scaling to larger parties. In

our current implementation of the active-secure protocol, the coordinator in each round stores each message
sent by each of the parties because the NP statement that the party gives is with respect to this message.
Later, to verify the proof, the coordinator will need to send this message to the distributed verifier. This
implementation detail limits us to running 4000 parties because we hit RAM limitations on our coordinator
instance.

Protocol communication. In our coordinator model, each participant’s communication complexity is in-
dependent of n. Table 4 summarizes the size of each major message in the protocol. The “Gather Proofs”
row reports an average of the total of the 21 proofs that are sent, and 17 other small messages are combined
in the “All Others” row. The most expensive message, as predicted, is the gathering of public data which
consists of sending the NP statement to the distributed verifiers.

Protocol timing. Our protocol requires 12 rounds of communication to complete the five basic steps of
Key generation, Beaver triple generation, Modulus construction, Pre-Sieving, and the biprimality testing.
We instrumented the protocol to measure how long each step takes as the number of parties increases. As
expected, the triple generation step requires the most amount of time.

Active security Our protocol uses zero-knowledge proofs of honest behavior to achieve active security. In
particular, there are 21 statements for which each node provides a ZK proof, the coordinator arranges these
proofs and sends them to distributed verifiers. As noted in Table 3, the active security portion of the protocol
dominates the running time. In this section, we further analyze the components of this step.

Figure 8 presents the average amount of time required by the party to produce each of the zero knowledge
proofs as 21 segments per bar, the total time of the active protocol, and finally the verifier work. In particular,
the verifiers are often idle and waiting for messages—these times are depicted as blank gaps between the
bars in the graph. Notice that the verifier work schedule remains fairly constant as n increases. This is
expected because each verifier only considers one proof in our experiment. Neither of these work profiles
account for the overall running time, which is dominated by the coordinator’s task of shuttling messages.
This graph suggests system-level improvements to the running time.

39

DRAFT
0 50 100 150 200 250 300 350 400 450 500 550 600 650

2
5

10
20
50

100
200
500

1000
2000
4046

Time (s)

Time by Phase for Passive Security

Keygen

Triples

Modulus

Sieving

Testing

Figure 7: Cumulative timing per step of the protocol as the number of parties increases

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400

2

5

10

20

50

100

200

500

1000

Time (s)

Proof generation steps
Total
Verifier

Figure 8: Cumulative timing per step of the active protocol as the number of parties increases.

8 Acknowledgements

We thank the Ethereum Foundation, Protocol Labs and the VDF Alliance for funding this project. We specif-
ically thank Justin Drake, Dankrad Feist, Kelly Olson and Simon Peffers for giving us feedback throughout
the development and relaying real-world concerns in deployment. We thank Nick Thompson for develop-
ing the initial transport architecture. We thank Matt DiBiase and Scott Catlin for their encouragement and
logistical support.

References
[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared secret with

application to the generation of shared safe-prime products. In CRYPTO, pages 417–432, 2002.

40

DRAFT

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure arithmetic
computation with constant computational overhead. In CRYPTO, pages 223–254, 2017.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In CCS, pages 2087–2104, 2017.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold FHE.
In EUROCRYPT, pages 483–501, 2012.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public verifiability. In
ASIACRYPT, pages 681–698, 2012.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In CRYPTO,
pages 757–788, 2018.

[BBBG99] Simon R. Blackburn, Simon Blake-Wilson, Mike Burmester, and Steven D. Galbraith. Weaknesses in
shared RSA key generation protocols. In Cryptography and Coding, 7th IMA International Conference,
Cirencester, UK, December 20-22, 1999, Proceedings, pages 300–306, 1999.

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs
on secret-shared data via fully linear pcps. In CRYPTO, pages 67–97, 2019.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge with no
trusted setup. In CRYPTO, pages 701–732, 2019.

[BCP15] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation: Multi-party computation
for (parallel) RAM programs. In CRYPTO, pages 742–762, 2015.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In EUROCRYPT, pages 103–128, 2019.

[BD10] Rikke Bendlin and Ivan Damgård. Threshold decryption and zero-knowledge proofs for lattice-based
cryptosystems. In TCC, pages 201–218, 2010.

[BDO14] Carsten Baum, Ivan Damgård, and Claudio Orlandi. Publicly auditable secure multi-party computation.
In SCN, pages 175–196, 2014.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, pages 420–432,
1991.

[BF97] Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA keys (extended abstract). In
CRYPTO, pages 425–439, 1997.

[BF01] Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA keys. J. ACM, 48(4):702–722,
2001.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty compu-
tation with a dishonest minority. In CRYPTO, pages 663–680, 2012.

[BFS19] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from DARK compilers. IACR
Cryptology ePrint Archive, 2019:1229, 2019.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R. Rasmussen, and
Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryption. In CRYPTO, pages
565–596, 2018.

[BH08] Zuzana Beerliová-Trubı́niová and Martin Hirt. Perfectly-secure MPC with linear communication com-
plexity. In TCC, pages 213–230, 2008.

[BOS16] Carsten Baum, Emmanuela Orsini, and Peter Scholl. Efficient secure multiparty computation with iden-
tifiable abort. In TCC, pages 461–490, 2016.

41

DRAFT

[Bru50] N. G. De Bruijn. On the number of uncancelled elements in the sieve of eratosthenes. Proceedings of the
Koninklijke Nederlandse Akademie van Wetenschappen: Series A: Mathematical Sciences, 53(5-6):803–
812, 1950.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145, 2001.

[CCD+20] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler Rosefield, and abhi shelat.
Multiparty generation of an RSA modulus. Manuscript, 2020.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail Ostrovsky, and
Vinod Vaikuntanathan. Reusable non-interactive secure computation. In CRYPTO, pages 462–488, 2019.

[CDN01] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold homomorphic encryp-
tion. In EUROCRYPT, pages 280–299, 2001.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract).
In STOC, pages 364–369, 1986.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. pages 494–503, 2002.

[Coc97] Clifford C. Cocks. Split knowledge generation of RSA parameters. In Cryptography and Coding, 6th IMA
International Conference, Cirencester, UK, December 17-19, 1997, Proceedings, pages 89–95, 1997.

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J.
Cryptology, 10(4):233–260, 1997.

[Des94] Yvo Desmedt. Threshold cryptography. European Transactions on Telecommunications, 5(4):449–458,
1994.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO, pages 501–520,
2006.

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the
computational overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In ESORICS, pages 1–18,
2013.

[DKLS19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold ECDSA from ECDSA assump-
tions: The multiparty case. In IEEE Symposium on Security and Privacy, SP, pages 1051–1066, 2019.

[DLP93] Ivan Damgård, Peter Landrock, and Carl Pomerance. Average case error estimates for the strong proba-
bility prime test. Journal of Mathematics of Computation, 61:177–194, July 1993.

[DM10] I. Damgård and G. L. Mikkelsen. Efficient, robust and constant-round distributed RSA key generation. In
TCC, pages 183–200, 2010.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation. In
CRYPTO, pages 572–590, 2007.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[EFKP19] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifiable delay functions.
IACR Cryptology ePrint Archive, 2019:619, 2019.

[FFS88] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. J. Cryptology, 1(2):77–94, 1988.

[FH96] Matthew K. Franklin and Stuart Haber. Joint encryption and message-efficient secure computation. J.
Cryptology, 9(4):217–232, 1996.

42

DRAFT

[FLOP18] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed RSA key
generation for semi-honest and malicious adversaries. In CRYPTO, pages 331–361, 2018.

[FMY98] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed rsa-key generation. In
STOC, pages 663–672, 1998.

[FS86] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems.
In CRYPTO, pages 186–194, 1986.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and suc-
cinct nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

[Gil99] Niv Gilboa. Two party RSA key generation. In CRYPTO, pages 116–129, 1999.

[GLS19] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-efficient unconditional MPC with guaranteed
output delivery. In CRYPTO, pages 85–114, 2019.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, pages 305–326,
2016.

[HIMV19] Carmit Hazay, Yuval Ishai, Antonio Marcedone, and Muthuramakrishnan Venkitasubramaniam.
LevioSA: Lightweight secure arithmetic computation. In To appear CCS, 2019.

[HIV17] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Actively secure garbled cir-
cuits with constant communication overhead in the plain model. In TCC, pages 3–39, 2017.

[HMRT12] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas Toft. Efficient RSA key generation and
threshold paillier in the two-party setting. In CT-RSA, pages 313–331, 2012.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient non-
interactive secure computation. In EUROCRYPT, pages 406–425, 2011.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identifiable abort.
In CRYPTO, pages 369–386, 2014.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - effi-
ciently. In CRYPTO, pages 572–591, 2008.

[JL09] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive ot and
secure computation of set intersection. In TCC, pages 577–594, 2009.

[JS07] S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed inputs. In EURO-
CRYPT, pages 97–114, 2007.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. CRC Press,
2014.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 830–842, 2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In EURO-
CRYPT, pages 158–189, 2018.

[LPR13a] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. J. ACM, 60(6):43:1–43:35, 2013.

[LPR13b] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography. In EURO-
CRYPT, pages 35–54, 2013.

43

DRAFT

[nfl] NFLlib. https://github.com/quarkslab/NFLlib/.

[NS10] Takashi Nishide and Kouichi Sakurai. Distributed paillier cryptosystem without trusted dealer. In WISA,
pages 44–60, 2010.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, pages 60:1–60:15, 2019.

[PS98] Guillaume Poupard and Jacques Stern. Generation of shared RSA keys by two parties. In ASIACRYPT,
pages 11–24, 1998.

[Rab98] Tal Rabin. A simplified approach to threshold and proactive RSA. In CRYPTO, pages 89–104, 1998.

[RST+19] Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren, and Tim Wood. Actively secure
setup for SPDZ. IACR Cryptology ePrint Archive, 2019:1300, 2019.

[RSW96] Ronald R. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release crypto. 1996.

[SF16] Gabriele Spini and Serge Fehr. Cheater detection in SPDZ multiparty computation. In ICITS, pages
151–176, 2016.

[Sho00] Victor Shoup. Practical threshold signatures. In EUROCRYPT, pages 207–220, 2000.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In EUROCRYPT, pages 379–407, 2019.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation. In CCS,
pages 39–56, 2017.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song. Libra:
Succinct zero-knowledge proofs with optimal prover computation. In CRYPTO, pages 733–764, 2019.

[zer] ZeroMQ. https://zeromq.org.

A UC Security

We briefly recall the Universal Composability (UC) framework, for more details we refer to [Can01].

Environment. The model of execution includes a special entity called the UC-environment (or environment)
Z . The environment “manages” the whole execution: it invokes all the parties at the beginning of the
execution, generates all inputs and reads all outputs, and finally produces an output for the whole concurrent
execution. Intuitively, the environment models the “larger world” in which the concurrent execution takes
place (e.g., for a distributed computing task over the Internet, the environment models all the other activities
occurring on the Internet at the same time).

Adversarial behavior. The model of execution also includes a special entity called the adversary, that repre-
sents adversarial activities that are directly aimed at the protocol execution under consideration. We consider
both static and adaptive adversaries, where static adversarial strategy implies corruptions at the onset of the
protocol execution, whereas adaptive strategy implies corruptions at any point during the execution and as a
function of what the attacker’s view. When a party is corrupted, it shares all its tapes with the adversary and
follows its instructions for all its future actions.

While honest parties only communicate with the environment through the input/output of the functions
they compute, the adversary is also able to exchange messages with the environment in an arbitrary way
throughout the computation.5 Furthermore, the adversary controls the scheduling of the delivery of all mes-
sages exchanged between parties (where messages sent by the environment are directly delivered). Tech-
nically, this is modeled by letting the adversary read the outgoing message tapes of all parties and decide

5Through its interaction with the environment, the adversary is also able to influence the inputs to honest parties indirectly.

44

https://github.com/quarkslab/NFLlib/
https://zeromq.org

DRAFT

whether or not and when (if at all) to deliver the message to the recipient, therefore the communication is
asynchronous and lossy. However, the adversary cannot insert messages and claim arbitrary sender identity.
In other words, the communication is authenticated.

Protocol execution. The execution of a protocol π with the environment Z , adversary A and trusted party
G proceeds as follows. The environment is the first entity activated in the execution, who then activates the
adversary, and invokes other honest parties. At the time an honest party is invoked, the environment assigns
it a unique identifier and inquires the adversary whether it wants to corrupt the party or not. To start an
execution of the protocol π, the environment initiates a protocol execution session, identified by a session
identifier sid, and activates all the participants in that session. An activated honest party starts executing the
protocol π thereafter and has access to the trusted party G. We remark that in the UC model the environment
only initiates one protocol execution session.

Invoking parties. The environment invokes an honest party by passing input (invoke, Pi) to it. Pi is the
globally unique identity for the party and is picked dynamically by the environment at the time it
is invoked. Immediately after that, the environment notifies the adversary of the invocation of Pi
by sending the message (invoke, Pi) to it, who can then choose to corrupt this party by replying
(corrupt, Pi). Note that here as the adversary is static, parties are corrupted only when they are
“born” (invoked).

Session initiation. To start an execution of protocol π, the environment selects a subset U of parties that
has been invoked so far. For each party Pi ∈ U , the environment activates Pi by sending a start-
session message (start-session, Pi, sid, ci,sid, xi,sid) to it, where sid is a session id that identifies
this execution. We remark that in the UC model, the environment starts only one session, and hence
all the activated parties have the same session id.

Honest party execution. An honest party Pi, upon receiving (start-session, Pi, sid, ci,sid, xi,sid), starts
executing its code ci,sid input xi,sid. During the execution,

• The environment can read Pi’s output tape and at any time may pass additional inputs to Pi;

• According to its code, Pi can send messages (delivered by the adversary) to the other parties in
the session, in the format (Pi, Pj , s, content),6 where Pj is the identity of the receiver;

• According to its code, Pi can send an input to the trusted party in the format (Pi, F , s, input).

Adversary execution. Upon activation, the adversary may perform one of the following activities at any
time during the execution.

• The adversary can read the outgoing communication tapes of all honest parties and decides to
deliver some of the messages.

• The adversary can exchange arbitrary messages with the environment.

• The adversary can read the inputs, outputs and incoming messages of a corrupted party, and
instruct the corrupted party for any action.

• The (adaptive) adversary can decide to corrupt any party from the set of honest parties at the
moment.

Output. The environment outputs a final result for the whole execution in the end.
6The session id in the messages enables the receiver to correctly de-multiplexing a message to its corresponding session, even

though the receiver may involve in multiple sessions simultaneously.

45

DRAFT

In the execution of protocol π with security parameter n ∈ N, environment Z , adversary A and trusted
party G, we define REALGπ,A,Z(n) to be the random variable describing the output of the environment Z ,
resulting from the execution of the above procedure.

Let F be an ideal functionality; we denote by πIDEAL the protocol accessing F , called as the ideal pro-
tocol. In πIDEAL parties simply interacts with F with their private inputs, and receive their corresponding
outputs from the functionality at the end of the computation. Then the ideal model execution of the function-
ality F is just the execution of the ideal protocol πIDEAL with environment Z , adversaryA′ and trusted party
F . The output of the execution is thus IDEALFπIDEAL,A′,Z(n). On the other hand, the real model execution
does not require the aid of any trusted party. Let π be a multi-party protocol implementing F . Then, the
real model execution of π is the execution of π with security parameter n, environment Z and adversary
A, whose output is the random variable REALπ,A,Z(n). Additionally, the G-Hybrid model execution of
a protocol π is the execution of π with security parameter n, environment Z and adversary A and ideal
functionality G.

Security as emulation of a real model execution in the ideal model. Loosely speaking, a protocol securely
realizes an ideal functionality if it securely emulates the ideal protocol πIDEAL. This is formulated by saying
that for every adversary A in the real model, there exists an adversary A′ (a.k.a. simulator) in the ideal
model, such that no environment Z can tell apart if it is interacting with A and parties running the protocol,
or A′ and parties running the ideal protocol πIDEAL.

Definition 7. (UC security) Let F and πIDEAL be defined as above, and π be a multi-party protocol in the
G-hybrid model. Then protocol π UC realizes F with static (resp. adaptive) security in G-hybrid model,
if for every uniform PPT static (resp. adaptive) adversary A, there exists a uniform PPTsimulator A′,
such that for every non-uniform PPT environment Z , the following two ensembles are computationally
indistinguishable, {

REALGπ,A,Z(n)
}
n∈N

c
≈
{

IDEALFπIDEAL,A′,Z(n)
}
n∈N.

Multi-session extension of ideal functionalities. Note that the UC model only considers a single session of
the protocol execution. (Namely, the environment is only allowed to open one session). To consider multiple
concurrent executions, we focus on the multi-session extension of ideal functionalities [Can01, CLOS02].
More specifically, let F̂ be the multi-session extension of F . That is, F̂ runs multiple copies of F , where
each copy will be identified by a special “sub-session identifier”. Every k parties, trying access F together,
share a sub-session identifier, ssid. To compute the function, each party simply sends its private input
together with ssid to F̂ . Upon receiving all the inputs, F̂ activates the appropriate copy of F identified by
ssid (running within F̂), and forwards the incoming messages to that copy. (If no such copy of F exists
then a new copy is invoked and is given that ssid.) Outputs that are generated by the copies of F are returned
to corresponding parties by F̂ .

B Evaluating Ring-LWE Noise

We provide our analysis for the Ring-LWE noise of our parametrization (Section 6.1). We first present some
lemmas useful for our parameterization. Subsequently, we determine the size of plaintexts, then analyze the
noise for ciphertexts and homomorphic operations.

Lemma B.1. The sum of N elements, each sampled from a discrete Gaussian distribution with parameter σ
and mean 0 induces a random variable sampled from a discrete Gaussian distribution with parameter

√
Nσ

and mean 0.

46

DRAFT

Proof. It’s well known from probability theory that the sum of independent random variables that are nor-
mally distributed is also normally distributed. Formally, let X0, X1 be independent, normally-distributed
random variables both with respective means µ0, µ1 and parameters σ0, σ1. Then their sum Y = X0 + X1

has mean µ0 + µ1 and parameter
√
σ2

0 + σ2
1 .

For our statement, we first extend this to be a sum of N random variables, first define the sum Y =

X0 + . . .+XN . Then Y will have mean
∑N

j=1 µj and parameter
√∑N

j=1 σ
2
j . Now, plugging in the original

mean µ = 0 and the Gaussian parameter σj = σ, we get that Y has mean 0 and parameter
√
Nσ.

Lemma B.1 implies the following corollary.

Corollary 6. The Euclidean norm of χ, a centered (0-mean) n-dimension Gaussian random variable with
parameter

√
Nσ is at most

√
Nnσ.

Next, we require the following lemma, which can be proved using the Chernoff bound.

Lemma B.2. The sum of N elements, each sampled from a discrete uniform distribution over [±R] (with
R ∈ Z) is at most R

√
N except with negligible probability.

Plaintext size. The shares xi, yi are sampled modulo τ . From Lemma B.2, Sampling xi, yi in the centered
range [±(τ − 1)/2] implies x =

∑N
i=1 xi and y =

∑N
i=1 yi are both at most τ

√
N with high probability,

implying x · y ≤ τ2N.
Our plaintext is x · y + τz, with z =

∑N
i=1 zi and each zi ∈ [±Z]n. We first determine an appropriate

bound for τz. We want x · y + τz to only depend on xy mod τ within a statistical distance of 2−κ. So, we
require that τz = 2κ max(|xy|) ≤ 2κτ2N. Thus,

x · y + τz ≤ τ2N + 2κτ2N < 2κ+1τ2N.

So the plaintext has size at most 2κ+1τ2N .
Now, we determine appropriate values for Z. From the above equation about τz, we deduce that z ≤

2κτN , so max(z) = 2κτN . Our protocol defines z =
∑N

i=1 zi with each zi ∈ [±Z]n. From Lemma
B.2, we have z ≤ Z

√
N with high probability. Note that we want Z

√
N ≤ max(z) to ensure τz doesn’t

overflow. This means Z
√
N ≤ 2κτN . So Z ≤ 2κτ

√
N . For our implementation, we set Z = 2κτ

√
N .

Ciphertext noise. For a given ring element x ∈ RQ, the absolute value |x| is the `-max norm of x’s
coefficients, which are centered in the interval [±(Q−1)/2]. Now, we define the error of an element of RQ.

Definition 8 (Error of an element in RQ). Let ((a, b), s) ← Gen and (c, d) ← Enc(a,b)(m). A ciphertext
(c, d) ∈ R2

Q encrypts a message m ∈ ZnP with error β if d− s · c = (Q/P)m+ e′ and |e′| < β.

We can compute the error of a fresh ciphertext as follows: First recall that the encryption function is

Enc(a,b)(m) = (ua+ v, ub+ w + (Q/P)m),

where u, v, w, e have coefficients sampled from χ. Then, setting e′ = eu + w − sv, we can prove that
|e′| ≤ 2σ2

√
Nn for a fresh ciphertext. We postpone this analysis to the full version.

d− s · c = (ub+ w + (Q/P)m)− s(ua+ v)

= ub+ w + (Q/P)m− sua− sv
= u(as+ e) + w + (Q/P)m− sua− sv
= sua+ eu+ w + (Q/P)m− sua− sv
= eu+ w + (Q/P)m− sv
= (Q/P)m+ eu+ w − sv

47

DRAFT

So e′ = eu+ w − sv. Then,

∣∣e′∣∣ = |eu+ w − sv|
= ‖eu+ w − sv‖∞
≤ ‖eu+ w − sv‖2

=

√
|eu|2 + |w|2 + |−sv|2

=

√
‖eu‖2∞ + ‖w‖2∞ + ‖−sv‖2∞

≤
√

(‖e‖∞ ‖u‖∞)2 + ‖w‖2∞ + (‖−s‖∞ ‖v‖∞)2

=
√

(‖e‖∞ σ)2 + σ2 + (‖−s‖∞ σ)2 (definition max-norm, u, y sampled from χσ)

= σ
√

(‖e‖∞)2 + 1 + (‖−s‖∞)2

< σ

√
2(σ
√
Nn)2 + 1 (Corollary 6)

< σ

√
2(σ
√
Nn)2 + 1 + (2(σ

√
Nn)2 − 1)

= σ
√

4(σ2Nn)

= 2σ2
√
Nn

Thus, the error of a fresh ciphertext is 2σ2
√
Nn. Now, we analyze the error of ciphertexts under homomor-

phic operations.

Addition. Since the error of ciphertexts is defined via upper bounds, the error of a sum of two ciphertexts is
upper-bounded by the sum of their errors. In other words,

∑
j Cj has error

∑
j βj . However, if we have N

fresh ciphertexts, each with error β, we can achieve a stronger noise bound of
√
Nβ with high probability.

Scalar multiplication. Correspondingly, multiplying a ciphertext by α scales the error by α. In the worst
case, this increases the error from β to Pnβ. This can be reduced to P

√
nβ with high probability by

randomizing the constant α in [±P]. (Lemma B.2).

C Noise Accounting for ΠMULT−RLWE

We determine the noise constraints required for the correctness of ΠMULT−RLWE. First, we determine the
ciphertext noise before decryption.

• Each fresh ciphertext Enc(xj) has noise
2σ2
√
Nn.

• The sum of N independent ciphertexts Enc(x) =
∑

j Enc(xj) has noise

√
N(2σ2

√
Nn) = 2σ2N

√
n.

• Multiplying Enc(x) by a constant yj (randomized in [±P]) scales the noise by P
√
n, so we get

P
√
n(2σ2N

√
n) = 2σ2PNn.

48

DRAFT

• Adding a fresh encryption of τzj increases the noise only by a small additive term, which can be
neglected.

• Summing N ciphertexts scales the noise by
√
N . This gives the ciphertext noise before decryption:

√
N(2σ2PNn) = 2σ2PN1.5n.

Now, we examine how the decryption protocol ΠDEC affects noise.

• In order to securely compute partial decryptions, each party adds error rj ← RQ with coefficients
sampled from [±R] where R = 2κ(2σPN1.5n). Summing N parties’ rj samples scales the error by√
N . So we get that the polynomial αQ has noise bounded by

√
N(2κ(2σPN1.5n)) = 2κ+1σPN2n.

• Finally, to avoid wrap-around and thus ensure the correctness of rounding a polynomial in RQ to a
polynomial in RP , we require a noise ceiling of

Q/P > 2κ+2σPN2n.

and a modulus Q satisfying
Q > 2κ+2σP 2N2n.

• Recall from the Plaintext size paragraph above, we know P > 2κ+1τ2N so that it is large enough to
encode integer values. With this, message size for P , we get

Q > 2κ+2σ(22κ+2τ4N2)N2n = 23κ+4τ4σN4n.

Alternatively, if the value of Q is mandated by security considerations, we get that the scheme can
support the (parallel) execution of n multiplications with τ at most

log τ <
logQ− (3κ+ 4)− log σ − 4 logN − log n

4

many bits.

D Proof of Theorem 2

In this section, we complete the proof of security of our implementation of the triples functionality by
reducing it to the semi-malicious security of the underlying threshold AHE scheme.

In Section 3, we described our simulator. Next, we argue indistinguishability of simulation. Assume for
contradiction there exists an adversaryA, distinguisherD and polynomial p(·) such that, for infinitely many
n, D distinguishes the following with probability at least 1

p(n) .

• IDEALFctriple,S,Z(n)

• REALFCOM,FCP
Πctriple,A,Z (n)

49

DRAFT

Fix an n for which this happens. We will arrive at a contradiction by constructing a (semi-malicious)
adversary for the underlying threshold AHE scheme.

First, we observe that the real and the ideal world experiments proceed identically if some corrupted
party Pj deviates anywhere in the protocol before the end of the triples generation phase. This is because
the simulator follows the honest algorithm to simulate the honest parties and sets the triples based on the
outputs of the algorithms, as in the real world. Furthermore, by the soundness of the FCP, we have that Pj
will not succeed in making FCP accept its proof. Therefore, conditioned on deviation, the real and ideal
world are identically distributed.

Let dev denote the event the corrupted party deviates before the end of the triples generation phase.
Now we consider modified experiments ˜IDEAL and R̃EAL that proceed identically to IDEAL and REAL,
except that whenever the adversary deviates we set the output of the experiments to ⊥. From the preceeding
discussion, it follows that D distinguishes ˜IDEAL and R̃EAL with probability at least 1

p(n) .
In the event all corrupted parties proceed honestly during the execution till the end of the triples genera-

tion phase, the real and ideal world are not the same as in the ideal world the Fctriple functionality choses the
input for the honest parties after receiving the inputs of the corrupted parties. We observe that (conditioned
on no party deviating), the distributions of the outputs of all the parties are identically distributed in the real
and ideal world. Since the distinguisher distinguishes the real and ideal with probability 1

p(n) , by an averag-
ing argument, there exists a set of inputs for corrupted parties {(aj , bj , cj)}j∈U such that the distinguisher
distinguishes the real and ideal world with probability 1

p(n) , conditioned on the adversary providing those
inputs (recall that we have already conditioned on the adversary following the protocol honestly, which
means that after the inputs and randomness are committed at the beginning, their inputs for the triples are
determined). In slightly more detail, there is a partial transcript τ and randomness rA for the adversary such
that conditioned on τ , the distinguisher distinguishes with probability at least 1

p(n) .

Using an averaging argument, we can further identify pairs of triples for honest parties {(ãj , b̃j , c̃j)}j 6∈U
and {(aj , bj , cj)}j 6∈U such that

• The adversary’s provides {(aj , bj , cj)}j∈U as its inputs and follows the protocol honestly, and

•
∑

j 6∈U cj =
∑

j 6∈U c̃j

• The adversary distinguishes the cases when the honest parties inputs are {(ãj , b̃j , c̃j)}j 6∈U and {(aj , bj , cj)}j 6∈U
with probability at least 1

p(n) .

In order to construct an adversary for the TAHE scheme, we consider the machine B that incorporates
D and non-uniform advice (rA, {(aj , bj , cj)}j∈U , {(aj , bj , cj)}j 6∈U , {(ãj , b̃j , c̃j)}j 6∈U and emulates an ex-
periment of the ideal world. In the emulation, it chooses one honest party and forwards the messages in the
key generation phase to the challenger of the TAHE scheme. It determines the challenge and semi-malicious
queries using the information stored in the non-uniform advice. Finally, B outputs what the distinguisher
D outputs. By construction, the advantage of B in the TAHE game is at least 1

p(n) , and this contradicts the
security of the TAHE scheme.

50

	Introduction
	Our Contribution
	Overview of Techniques
	Related Work

	Preliminaries
	Chinese Remainder Theorem (CRT)
	Public Key Encryption Schemes (PKE)
	Threshold Homomorphic Encryption
	-Protocols
	Beaver's Triples
	The RSA Composite Functionality
	Commit-and-Prove Ideal Functionality

	Certified Triples Functionality
	The Actively Secure Protocol
	Concrete Costs
	The Number of Prime Candidates
	Communication Complexity
	Round Complexity

	Instantiating Our Primitives
	Instantiating Our AHE Based on Ring-LWE
	Identifying Prime Buckets for Triples Generation
	Implementing FCP (Commit-and-Proof)

	Implementation and Experiments
	Experiments
	Setup
	Empirical Results

	Acknowledgements
	UC Security
	Evaluating Ring-LWE Noise
	Noise Accounting for MULT-RLWE
	Proof of Theorem 2

