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Abstract

Oblivious compaction is a crucial building block for hash-based oblivious RAM. Asharov et al.
recently gave a O(n) algorithm for oblivious tight compaction. Their algorithm is deterministic
and asymptotically optimal, but it is not practical to implement because the implied constant
is� 238. We give a new algorithm for oblivious tight compaction that runs in time < 16014.54n.
As part of our construction, we give a new result in the bootstrap percolation of random regular
graphs.

1 Introduction

1.1 Oblivious RAM

Oblivious RAM has been a critical object of study in cryptography since its introduction by Gol-
dreich and Ostrovksy [13]. ORAM now arises in a number of contexts such as improving security
on SGX chips [9], garbled RAM programs [18] and cloud computing [31]. Many implementations
and variations of ORAM exist, including distributed ORAM, where multiple clients jointly access
a shared array (see e.g. [6, 17]), parallel ORAM (see e.g. [22]). Many variations have explored
optimizations with larger block sizes or client memory, such as the well-known Path ORAM [28],
which has blocks of size Ω(log2 n) and O(log n) · ω(1) client storage (in blocks).

In this paper, we consider the classic ORAM model, with a single server, a single client, blocks
of size O(log n), and O(1) blocks of client storage. Recently Asharov et al. [1] gave the first
ever asymptotically optimal ORAM construction under these conditions, with O(log n) amortized
overhead, which they called OptORAMa. A key building block in their construction is an oblivious
tight compaction algorithm with O(n) runtime.

OptORAMa is noteworthy for being asymptotically optimal and deterministic, but it is not
intended for practical applications. The implied constant in the big-O notation is enormous,� 238.

We construct a new oblivious tight compaction algorithm that matches the asymptotics of
OptORAMa and makes a substantial improvement to the constant. We do this in part by removing
the requirement that the algorithm be deterministic, and by analyzing the behavior of expander
graphs under majority bootstrap percolation. Our algorithm requires 16014.54n steps to compact
an array of length n with negligible failure probability.
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1.2 Main results

Our main theorem is our oblivious tight compaction algorithm:

Theorem 1. There is an algorithm to obliviously tightly compact an array in 16014.54n time.

To demonstrate the correctness of our algorithm, we need the following new result on bootstrap
percolation, which we prove in Appendix D. The proof follows quickly from the expander mixing
lemma and is similar to the proof of Lemma 10 in [8].

Theorem 2. Let G be a d-regular Ramanujan graph. For d ≥ 13 odd and d ≥ 16 even there is
some constant c < 1 such that every subset S ⊆ G with |S|/|G| ≥ c is a percolating set for majority
bootstrap percolation.

1.3 Bootstrap percolation

Bootstrap percolation of a graph is type of cellular automaton where, at each time step, a vertex’s
behavior is determined by the behavior of its neighbors. It is an area of extensive research in
computer science and combinatorics, and also arises in areas from physics studies of the Bethe
lattice [7] and Ising model [27] to the study of social networks [16, 10]. One prominent area of
research is on the size of percolating sets, which are sets that, if activated initially, will cause the
entire graph to be activated.

One common way to phrase this question is to ask when choosing vertices from a graph with
probability p gives a percolating set with high probability (see e.g. [2], [5], [30]). In the case of
random regular graphs, Balogh and Pittel compute the p∗ at which a transition from probability
almost zero to probability almost one occurs [4]. We use their result in the full version of our algo-
rithm given in Appendix A. However, we also desire bounds on initial sets above which percolation
to the entire graph is guaranteed, rather than occurring with high probability. We give such bounds
in Theorem 2 and prove them in Appendix D.

There has been broad interest in the question of the smallest possible percolating set for many
different families of graphs, including expander graphs [8], regular graphs [14], d-dimensional hyper-
cubes [20, 21], and powers of complete graphs [3]. Coja-Oghlan, Feige, Krivelevich and Reichman
studied the size of the largest minimal percolating set for expander graphs [8] in the case of a con-
stant size activation threshold. This question has also been studied for the grid [20], hypercubes
[24] and trees [25].

We are interested in majority bootstrap percolation, where a vertex becomes active if a majority
of its neighbors are active. Gärtner and Zehmakan gave a result equivalent to establishing an upper
bound on the size of the largest minimal percolating set for expander graphs of sufficiently large
degree in [12], (see also [32]) but their result is for two-way majority bootstrap percolation, a
different cellular automaton.

1.4 Comparison to OptORAMa

To clearly present both the similarities to and the improvements over OptORAMa, we describe
below several of the key features of OptORAMa that facilitate its asymptotic optimality and drive
its large runtime. We also describe the approach our algorithm takes to address the same problems.

1. In OptoRAMa, large arrays are divided into smaller bins, where all but a constant fraction
of bins have their density of marked elements bounded above by some constant. For large
enough arrays (compared to W , the word size), this subdivision step happens twice. Bins are
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first chosen to have size less than (W/ logW )2, and then those bins are further subdivided
into bins of size less than W/ logW . These bins are further divided into constant size buckets.
This double division causes the initial density requirement to be ρ < 1/238.

In our algorithm, we likewise divide large arrays into much smaller bins. However, we avoid
making subdivisions of already subdivided bins. We use bins of size O(W ), with an explicit
constant we give later.

This improvement is made possible by various bin distribution schemes that can produce
overly dense bins with probability 1/ loga(n) or 1/nc. We then collect the elements from the
dense bins into another large runoff array, which we must also compact.

2. In OptORAMa, private data about small bins are packed into O(1) memory words, so that
this data can be accessed obliviously in O(1) time. We use the same bitpacking schemes in a
similar way.

3. In OptORAMa, expander graphs are used to simulate random access. This is used in par-
ticular for their LooseSwapMisplaced algorithm, which controls density of marked elements.
Our LooseSwap algorithm is essentially the “re-randomised” version of OptORAMa’s “de-
randomised” LooseSwapMisplaced algorithm.

Note that the runtime analysis in § E.3 also gives a lower bound on the runtime of their
LooseSwapMisplaced. The cost in OptORAMa of pushing out-of-place balls below 1/238 is
thus bounded below by the cost of LooseSwap(A, 1/2, 1/2, 1/238), which is 238|A|. This
gives our very rough lower bound on the runtime of OptORAMa.

4. In OptORAMa, expander graphs are also used as a building block for linear superconcen-
trators on small bins. OptoRAMa adapts the non-oblivious Pippenger construction [23] that
builds from a bipartite expander graph.

We replace linear superconcentrators with bootstrap percolation on expander graphs. This
allows to distribute balls evenly between buckets without forcing us to designate a certain set
of vertices as “input” or “output” vertices.

2 Structure of paper

We begin by describing, in Sections 3 and 4, we describe a construction that has O(n) runtime
and O(log log n) client memory. To improve to the standard O(1) client memory, we give a mod-
ified version of our algorithm which reduces the density of marked elements by a factor of log n.
Running LooseCompact with density γ and word size W = log n log logn is equivalent to run-
ning LooseCompact with density γ/ log n and word size W = log n. We describe the details in
Appendix A.

We follow [1] in using tight compaction to refer to moving all marked elements to the left of
all unmarked elements, and loose compaction to refer to moving all marked elements into an array
whose size is decreased by some constant fraction. As in [1], we note that tight compaction can be
reduced to loose compaction.

Our loose compaction algorithm uses an involved construction to control the density of marked
elements on part of the array. It then shuffles elements from that part of the array into bins
of size Θ(log n), i.e. proportional to W/ log logW . We then run BinCompact to loosely com-
pact each bin. This produces a sparse runoff array and a discard array populated with unmarked
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and dummy elements. The sparse runoff array we compact with a modified bin compaction algo-
rithm BinCompactMargulis. The discard array we compact by running TightCompact again,
since the discard array produced in this iteration is made up entirely of dummy elements. We give
a more detailed description of how these algorithms interact in Section 3.

In the algorithm BinCompact, we shuffle each bin into buckets of constant size, and identify
each bucket with the vertex of an expander graph G. Via bitpacking, we can store the private data
of G in a single memory word.

By treating empty buckets as active in the sense of majority bootstrap percolation, and applying
Theorem 2, we assign weights to edges of G, so that every non-empty vertex has a majority of edges
pointing away from it. This algorithm is essentially nonoblivious, since we can analyze the private
data of G locally. Once the edge weights are set, we perform oblivious swaps in the directions
indicated by the edge weights. We give a more detailed description of BinCompact in Section 4.

For sparse arrays with density bounded above by nc−1, we use a variant of BinCompact built
on Margulis graphs that we call BinCompactMargulis. We use here a tree traversal algorithm
that is similar to bootstrap percolation in its effects. We give the details in Appendix B.

We defer proofs of a number of lemmas to Appendix C. The proof of Theorem 2 is given in
Appendix D. A careful accounting of runtime cost is given in Appendix E.

3 Compaction algorithms

Algorithm 1 Oblivious tight compaction

Require: Array A of size n with some subset of elements marked
Ensure: Obliviously shuffle A so that all marked elements are at the front of the array
1: procedure TightCompact(A)
2: s← 0
3: if More than half of A is marked then
4: s← 1
5: Switch all markings
6: end if
7: Temporarily mark additional elements until exactly half of A is marked
8: TightCompactByTwo(A)
9: Unmark the temporarily marked elements

10: TightCompact(A[1 : n2 ])
11: if s = 1 then
12: Swap element in position i with position n+ 1− i
13: Unswitch all markings
14: else
15: Perform dummy access to positions i and n+ 1− i
16: end if
17: end procedure

3.1 Analysis of Algorithm 1

The purpose of this algorithm is to reduce tight compaction to the case where exactly half of the
elements are marked. First, we observe that compressing marked elements to the left side of an
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array is equivalent to compressing unmarked elements to the right half. The formal implementation
of this observation is given in lines 1-5 and lines 10-15.

Next, assume less than or equal to half of the elements are marked. If we can loosely compact
those elements into the left half of the array, then, by induction we can tightly compact the left
half of the array. Equivalently, we mark additional elements until exactly half of the elements are
marked, and then compact those elements tightly into the left half. The formal implementation is
given in lines 6-9.

The correctness of this algorithm is an immediate consequence of induction and the correctness
of TightCompactByTwo, that is, Algorithm 2 shown in § 3.2.

In § E.2, we show the runtime of this algorithm is 4621.6n.

3.2 Analysis of Algorithm 2

In TightCompactByTwo we introduce a number of constants, to be optimized later. The
constant α represents the fraction of the array on which we will perform LooseCompact, while β,
γ, and γ′ are bounds on density of marked elements in subarrays. The degree of the expander
graph is given by d, and the word size is W = Θ(log n log log n). We determine in § 4.2 that we
must have d ≥ 13 to get the desired expansion.

The purpose of TightCompactByTwo is to isolate a subarray A1 ⊆ I whose density of marked
elements is very low. We then call LooseCompact on A1, which in turn calls BinCompact. We
require A1 to have density ≤ γ′, which ensures that all but nc of the bins created in LooseCompact
will have density≤ γ, for some constant c < 1 (where c is a function of γ, γ′ and W ; see Lemma C.6).

The algorithm relies on exactly half of the elements being marked. This allows us to divide the
array in half and control the density in both halves. We write I = A∪ Ã, and treat Ã as the mirror
of A, reversing the role of marked and unmarked balls. To begin, we use SwapMisplaced to force
the density of A to be less than β, which pushes the density of Ã above 1− β.

We divide A into A = A1∪A2, with |A1| = α|A|, and likewise divide Ã = Ã1∪ Ã2. We push the
density of A2 below γ′ by runing SwapMisplaced on A1 and A2, and likewise push the density
of Ã2 above γ′. We have now increased the density of A1 and decreased the density of Ã1, so we
use SwapMisplaced to push their densities back to β and 1− β.

We can now run LooseCompact on A1 and Ã1. This compacts A1 by a factor of d
d+1 , and so

increases the density of A1 by a factor of (1+ 1
d). It compacts A by a factor of (1− α

d+1). We adjust
the borders of A1 and A2 so that A1 again covers α of A. We now need to run SwapMisplaced
twice, both to push down the density of the former A1 array from (1+ 1

d)γ′ to γ′, and to push down
the density of what used to be A2 from β to γ′. We can then run LooseCompact again on the
new A1. This is the loop described in Lines 11-21.

After line 21, we must deal with two additional arrays, B, the union of RunOff(A1) and R
the union of Discard(A1).

The array R is a mix of unmarked and dummy elements. We show in § 3.3 that the density of
unmarked elements is exactly 1

d+1 . We no longer can exchange with the mirror R̃, since R̃ also
has mostly dummy elements. However, using a slightly modified version of our loop in lines 23-26,
we can compact the non-dummy elements of R into an array of size 1

logn(d+1) |R|, and then tightly
compact the result.

The array B is sparse, with density bounded above by nc−1. We run SparseLooseCompact
repeatedly on B until we have compressed it by a factor of 8 log3 n. Note that after compressing it
by this factor, B remains sparse.
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Algorithm 2 Tight compaction by two

Require: Array I of size n with exactly half of I marked, constants α, β, γ,γ′, W , and d
Ensure: Obliviously shuffle I so that all marked elements are at the front of the array
1: procedure TightCompactByTwo(A,α, β, γ,W, d)
2: Divide I into its left and right half, I = A ∪ Ã
3: LooseSwap(A, Ã, 12 ,

1
2 , β)

4: For every statement in lines 5-23 other than line 12, execute the statement again on Ã,
reversing the role of marked and unmarked elements

5: Divide A = A1 ∪A2 with |A1| = αn/2 and |A2| = (1− α)n/2
6: LooseSwap(A1, A2, β, β, γ

′)
7: B,R, S ← {}
8: LooseCompact(A1, γ

′, γ,W, d)
9: Append RunOff(A1) to B

10: Append Discard(A1) to R
11: while |A1|+ |A2| > n/(6 log3 n) do
12: Divide A2 = A′1 ∪A′2 so that (1− α)(|A1|+ |A1|′) = α|A′2|
13: LooseSwap(A2, Ã2,

β
1−α , 1−

β
1−α , β)

14: LooseSwap(A1, A
′
2, γ
′(1 + 1

d), β, γ′)
15: LooseSwap(A′1, A

′
2, β, β, γ

′)
16: A1 ← A1 ∪A′1
17: A2 ← A′2
18: LooseCompact(A1, γ

′, γ,W, d).
19: Append RunOff(A1) to B
20: Append Discard(A1) to R
21: end while
22: Divide R = R1 ∪R2 with |R1| = d−1

d+1 |R| and |R2| = 2
d+1 |R|

23: LooseSwap(R1, R2,
1
d ,

1
d , γ
′)

24: while |R1| > 1
logn(d+1) |R| do

25: LooseSwap(R1, R2, γ
′(1 + 1

d), 12 , γ
′)

26: LooseCompact(R1, γ
′, γ,W, d)

27: end while
28: R← TightCompact(R1 ∪R2, α, β, γ,W, d)
29: R← leading 1

d+1 |R| elements of R

30: while |B| > n/(8 log3 n) do
31: SparseLooseCompact on B
32: Append Discard(B) to S
33: end while
34: while |S| > n/(8 log3 n) do
35: SparseLooseCompact on S
36: end while
37: B ← B ∪ S̃
38: I ← Batcher sort of (A ∪ B) ∪ (Ã ∪ B̃), sorted with marked elements first, then unmarked

elements, then dummy elements
39: I ← leading |A|+ |Ã| elements of I
40: I ← R̃ ∪ I ∪R
41: end procedure
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This step also produces a Discard array S that is a mix of unmarked and dummy elements.
We compress this array in the same way. Then B ∪ S̃ is a sparse array of unmarked elements
among dummy elements, and B̃ ∪ S is a sparse array of marked elements among dummy elements.
The number of non-dummy elements in these two arrays matches exactly the number of dummy
elements in A ∪ Ã. The Batcher sort in line 37 therefore moves all non-dummy elements to the
leading |A|+ |Ã| positions of I. Appending R̃ to the front of the result and R to the end completes
the compaction.

We show in § E.3, § 3.3 and § 3.4 that the probability of failure for LooseSwap, LooseC-
ompact and SparseLooseCompact, respectively, is negligible in n for |A| = Ω(n/ log3 n). The
loops in this subsection will run at most O(log log n) times, so by a union bound the probability
of failure of this algorithm is also negligible. In § E.2, we show the runtime of this algorithm is
2306.8n.

Algorithm 3 Loose swap misplaced

Require: Arrays A1 and A2 with densities of marked elements bounded above by ρ1 and ρ2
respectively and |Ai| = Ω(n/ log3 n).

Ensure: Density of A1 bounded above by ρ′1 < ρ1 with all but negligible probability
1: t← 0

2: T ← εn+ |A1|
∫ ρ1
ρ′1

(
1− |A1|(ρ1−ρ)+|A2|ρ2

|A2|

)−1
dρ
ρ

3: for t < T do
4: t← t+ 1
5: Choose random indices i1 and i2 from A1 and A2

6: if A1[i1] is marked and A2[i2] is unmarked then
7: Obliviously swap the contents of i1 and i2
8: else
9: Perform fake accesses

10: end if
11: end for

3.3 Analysis of Algorithm 4

This algorithm shuffles elements into bins where we can then apply BinCompact. By Lemma C.6,
the probability that a bin Di has more than γ|Di| marked balls is n−c, for some constant c < 1.

The proof of correctness is an immediate consequence of the proof of correctness of BinCompact
given in § 4.1.

3.4 Analysis of Algorithm 5

This is the sparse analogue of LooseCompact given in the previous section.
By Lemma C.7, the probability that a fixed bin has more than log log n elements is negligible

in n. By taking a union bound over the bins, the probability that at least one bin has more
than log log n marked elements is also negligible in n.

The proof of correctness relies on the proof of correctness of BinCompactMargulis given
in § B.1.
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Algorithm 4 Loose compaction

Require: Array A with |A| = Ω(n/ log3 n) and at most γ′|A| marked elements, for some con-
stant γ′ < γ.

Ensure: Compact A by a factor of (1 − 1
d+1). The algorithm also returns arrays RunOff(A)

and Discard(A). The array RunOff(A) satisfies |A| = |RunOff(A)| and has O(n−c) marked
elements. The array Discard(A) satisfies |Discard(A)| = |A|. It is made up of a mix of
dummy and unmarked elements.

1: procedure LooseCompact(A, γ,W, d)
2: Shuffle A in the clear with Fischer-Yates.
3: Divide A into bins {Di} of size (d+ 1)W/(1 + lg(d) + d

2).
4: A← {}
5: RunOff(A)← {}
6: Discard(A)← {}
7: for bin Di do
8: BinCompact(Di,W, d)
9: Append RunOff(Di) to RunOff(A)

10: Append Discard(Di) to Discard(A)
11: Append Di to A
12: end for
13: end procedure

Algorithm 5 Sparse loose compaction

Require: Array A with |A| = Ω(n/ log3 n) and at most |A|nc−1 marked elements, for c < 1
Ensure: Compact A by a factor of 2

3 . The algorithm also returns an array Discard(A) of size 2
3 |A|.

It is made up of a mix of unmarked and dummy elements.
1: procedure SparseLooseCompact(A, c,W )
2: Shuffle A in the clear with Fischer-Yates
3: Divide A into bins {Di} of size 3W/2.
4: A← {}
5: Discard(A)← {}
6: for bin Di do
7: BinCompactMargulis(Di,W )
8: Append Di to A
9: Append Discard(Di) to Discard(A)

10: end for
11: end procedure
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4 Bin compaction with bootstrap percolation

In this section, we give the algorithm BinCompact, and related algorithms needed to implement
it. The algorithm BinCompactMargulis used for SparseCompact is similar, and we describe
it in B. In both algorithms, the idea is the same: we assign elements to buckets of constant size,
place each bucket at the vertex of an expander graph, and use some graph algorithm to assign
directions to the edges of the graph.

4.1 Analysis of Algorithm 6

The algorithm BinCompact(A,W, d) replaces A with a new array that is (1− 1
d+1) times smaller,

with all marked elements from the old A moved into the new A. In this process, some unmarked
elements will be removed from A. They are placed into a new array Discard(A), which also
contains a number of dummy elements.

The first time we call BinCompact, we generate a d-regular expander graph G of size |G| =
W/(logW + 1 + lg d+ d

2). This takes polylogarithmic time, as shown in Lemmas C.2, C.3 and C.4.
Each time we call BinCompact, we also assign to G a set of private data so that the edge set

of G and its private data fit into a single memory word. The edge set and private data of G can
therefore be accessed and altered without revealing the access pattern.

The array A is required to have size |A| = (d + 1)|G| so that we can assign d + 1 elements
of A to each vertex of G. We consider a vertex to be Empty if it contains no marked elements,
and Nonempty otherwise. As part of the private data of G, for each vertex we store a single bit
representing Empty or Nonempty, and another lg(d) bits to store a variable Count that counts
the number of Empty neighbors. Count is used only in the Explore subroutine.

The rest of the private data of G is made up of edge weights. We use kd/2 bits to assign a
direction to each edge of the graph. Formally, we replace each edge e between vertices vi and vj
with a pair of directed edges e(vi, vj) and e(vj , vi). To indicate an edge pointing from vi to vj , we
assign Outgoing to wt(e(vi, vj)) and Incoming to wt(e(vj , vi)). To indicate an edge pointing in
the opposite direction, we reverse the labels. Of course, since the weights of e(vi, vj) and e(vj , vi)
are always opposite, it only requires one bit to store both weights. The total storage cost for the
private data of G is thus

|G|(1 + lg d+ d
2)

bits, which explains our choice of the size of |G|.
We can now describe the algorithm BinCompact in terms of the private data of G. In lines 2-25,

we mark vertices as Empty or Nonempty and check against certain failure conditions. In lines 26-
28, we mark every edge as Incoming or Outgoing. Then in lines 29-47 we swap elements between
vertices in the directions indicated by the edge weights, and compact each vertex’s elements.

The edge weights are assigned by the subroutine Explore, which guarantees that every vertex
with marked elements has more Outgoing edges than incoming edges. We show this in § 4.2.
The subroutine ReduceEdges given as Algorithm 8 then ensures every such vertex has exactly
one more Outgoing edge.

The loop in lines 32-41 ensures that every bucket Di holds at most d marked elements, and at
most d + 1 dummy elements. Indeed, vertices marked initially as Empty will receive at most d
marked elements from their d neighbors. Vertices marked initially as Nonempty will have more
edges marked Outgoing than Incoming. Note that the swap in line 37 does not necessarily
transfer a marked element, but it does guarantee that position j in Di holds an unmarked element.
Let the number of Outgoing edges be o and the number of Incoming edges be i. After lines
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Algorithm 6 Loose bin compaction with degree d Rucinski-Wormald graphs

Require: Array A with |A| = (d+ 1)W/(d logW + 1 + lg d+ d
2), and some constant γ

Ensure: Compact A by a factor of (1 − 1
d+1). Also returns arrays RunOff(A), which has only

dummy elements with probability 1 − nc−1, and Discard(A), which has no marked elements
and dummy elements distributed independently of A.

1: procedure BinCompact(A,W, d)
2: B ← |A| dummy elements
3: if more than γ|A| marked elements then
4: RunOff(A)← A
5: Return B
6: end if
7: k ← |A|/(d+ 1)
8: G← a d-regular expander graph with k vertices {v1, . . . , vk}
9: Divide A into k bins D1, . . . , Dk of size (d+ 1)

10: Let w be a single memory word of W bits
11: w ← wt(vi) ∈ {Empty,Nonempty} ∪ wt(e(vi, vj)) ∈ {Incoming,Outgoing} ∪

Count(vi) ∈ {0, . . . , d}
12: for i ∈ {1, . . . , k} do
13: Count(vi) = 0
14: if Di contains no marked elements then
15: wt(vi)← Empty
16: else
17: wt(vi)← Nonempty
18: end if
19: end for
20: if proportion of vertices marked Empty is less than (1− γ)d+1 − ε then
21: RunOff(A)← A
22: Return B
23: end if
24: for v ∈ V do
25: Explore(v)
26: end for
27: for v ∈ V do
28: ReduceEdges(v)
29: end for
30: for i ∈ {1, . . . , k} do
31: Add d dummy elements to Di

32: end for
33: for vi ∈ V do
34: for neighbors {vi1 , . . . , vij , . . . , vid} of vi do
35: if wt(e(vi, vij )) = Outgoing then
36: j′ ← index of vi in list of neighbors of vij
37: Swap element j in Di with element d+ 1 + j′ in Dij

38: else
39: Perform dummy memory accesses
40: end if
41: end for
42: end for
43: A, Discard(A)← {}
44: for i ∈ {1, . . . , k} do
45: SlowCompact(Di)
46: Append leading d elements of Di to A
47: Append the remainder of Di to Discard(A)
48: end for
49: end procedure
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33-42 the number of marked elements will be at most d + 1 − o + i = d. Likewise the number of
dummy elements for an initially Nonempty vertex will be exactly d+ 1− o+ i = d.

Now Di has 2d + 1 elements, with at most d elements marked, so we can run the algorithm
SlowCompact(Di) described in § 4.3. We obtain an output array A of size dk holding all the
marked elements from the original A along with an array Discard(A) of size (d+ 1)k, as desired.

BinCompact fails when A begins with more than γ|A| elements marked, or when fewer
than (1−γ)d+1−ε bins contain no marked elements. Since |A| = Ω(W/ logW ) = Ω(log n), The first
event occurs with probability nc−1, by Lemma C.6. The second event occurs with probability n−c

′
,

by Lemma C.8. Thus the failure probability of BinCompact is n−c
′′
, for some constant c′′ > 0. In

case of failure, the contents of A are emptied into RunOff(A), and BinCompact(A) returns an
array of dummy elements.

Algorithm 7 Explore subroutine for Rucinski-Wormald graphs

1: procedure Explore(vertex v)
2: if wt(v) = Nonempty then
3: if Count = 0 then
4: for neighbors w of v do
5: if wt(w) = Empty then
6: Count← Count + 1
7: end if
8: end for
9: else

10: Count = Count + 1
11: end if
12: if Count > d/2 then
13: wt(v)← Empty
14: for neighbors w of v do
15: if wt(w) = Empty then
16: wt(e(v, w))← Outgoing
17: else
18: wt(e(v, w))← Incoming
19: Explore(w)
20: end if
21: end for
22: end if
23: end if
24: end procedure

4.2 Analysis of Explore

We desire to implement majority bootstrap percolation, where Empty vertices are treated as active,
and Nonempty vertices are inactive. Then vertices that are initially Nonempty will be activated
when a majority of their neighbors are active, so that a majority of its edges will be marked
as Outgoing.

Let S be the collection of vertices marked Empty. We show in Corollary D.1 that, for |S||G| ≥

11



Algorithm 8 ReduceEdges subroutine for Rucinski-Wormald graphs

1: procedure ReduceEdges(vertex v)
2: i← number of Incoming edges
3: o← number of Outgoing edges
4: while o− i > 1 do
5: w ← some neighbor of v with wt(e(v, w)) = Outgoing
6: wt(e(v, w))← Off
7: o← o− 1
8: ReduceEdges(w)
9: end while

10: end procedure

(1− γ)d+1, |S| is a percolating set, i.e. majority bootstrap percolation activates every vertex.
However, running majority bootstrap percolation would take time superlinear in |A|. The Ex-

plore subroutine is similar to majority bootstrap percolation, but activates neighbors of active
vertices as they become available, rather than looping through the entire array at each time step.

Claim 4.1. The set of vertices activated after the Explore subroutine has been run on every
vertex is the same as when we run majority bootstrap percolation on G.

Proof. A vertex v activated after t calls to Explore will certainly have been activated after t
time steps of majority bootstrap percolation. Conversely, suppose that t0 is the first t for which
some vertex v activated by majority bootstrap percolation is never activated by Explore. Then
after time step t0 − 1, a majority of v’s neighbors are activated, so a majority of v’s neighbors are
eventually activated by Explore. But this is a contradiction, since each time we activate a vertex
with Explore, we check each of its neighbors to see if they can be activated. This completes the
proof.

4.3 Analysis of Algorithm 9

The loop in lines 3-15 ensures that both the left and right half of A have at most half of their
elements marked. The correctness of this algorithm follows by induction. The runtime analysis
showing O(n log n) cost is given in § E.8.
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Algorithm 9 Slow loose compaction

Require: Array A of size t with at most t/2 marked elements
Ensure: compact A so that all marked elements are in the first bt/2c positions
1: procedure SlowCompact(A)
2: u← bt/2c, LCount← 0 and RCount← t− 2u
3: for i ∈ {1, . . . , u} do
4: if A[i] is marked then
5: LCount← LCount + 1
6: end if
7: if A[u+ i] is marked then
8: RCount← RCount + 1
9: end if

10: if |LCount−RCount| = 2 then
11: Swap A[i] and A[u+ i]
12: LCount← LCount± 1
13: RCount← RCount∓ 1
14: end if
15: end for
16: SlowCompact(A[1 . . . u]) and SlowCompact(A[u+ 1 . . . t])
17: for i ∈ 1, . . . , bu/2c do
18: Swap A[u+ i] and A[u+ 1− i]
19: end for
20: end procedure
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A From O(log log n) blocks of client memory to O(1) blocks

A.1 Description of algorithm

To get rid of the log log n factor in client memory, we begin with an additional step of compaction
that reduces density by a factor of log n in linear time.

This compaction follows the same model as before, by calling first TightCompact, then TightCompactByTwo
to produce arrays with density less than

0.15 = η′ < η = 1− 4
√

0.51 ≈ 0.155

Then we shuffle into bins of size O(log n/ log logn).
Adapting the argument in Lemma C.6, we find that the probability of density greater than η is

e−O(logn/ log logn) � e− log logn =
1

log n
.

We therefore can run BinCompact for all but 1/ log n bins. We transfer these bins, obliviously,
to a runoff array.

Then, for each bin, we run a modified version of BinCompact, where instead of using a random
expander graph of degree d = 13, we use a random expander graph of degree d = 3. The probability
a bucket of 4 elements is Empty is at least

1− η4 ≥ 0.51.
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By [4, Corollary 11], for any p > 1
2 , all but O(1) elements will be reached by majority bootstrap

percolation, with probability 1 − log−a n. In the log−a n probability that it fails, we transfer the
entire bin to the runoff array. Otherwise, we transfer the O(1) buckets that are not reached by
percolation to the runoff array.

When we complete this process, we have a sorted array with n log−a n dummy elements, and a
runoff array of size 4n and density 1/ loga n.

We now compact out the dummy elements from the sorted array and the non-dummy elements
from the runoff array to give the final tightly compacted array.

Again, we sort into bins and then compact each bin using BinCompact. Now, however, we
do not need to use LooseSwap or splitting the array to control density. We show that requisite
bounds hold for bin and bucket sorting regardless.

Modifying the argument in Lemma C.6 once more, we find that for choosing k log n/ log logn
elements from an array with density 1/ loga n, and for b < 1 such that a+ b > 1, the logarithm of
the probability that X = ` > logb n is bounded above by

`(log log n)(1− a− b)− log log log n log `

<− b log n log log log n.

Thus the probability that there are more than logb n marked elements chosen is negligible in n.
This means the density of each bin, and so also the fraction of non-empty buckets, can be made
arbitrarily small by choosing n large enough. We can thus apply BinCompact.

We compress the marked elements into a subarray of size n/ logb
′
n, for some b′ < b, and then

recursively call this algorithm. The cost of this recursion is (1 + 1

logb
′
n

) = 1 + o(1).

After running BinCompact, all but logb−1 n fraction of the leading elements of the runoff
buckets Di will be unmarked, while all but logb−1 n fraction of the remaining d elements of each
bucket will be dummy elements. Thus we can again use this compaction algorithm to separate
dummy and unmarked elements.

A.2 Runtime of main algorithm

Here we give the cost of our main algorithm by analyzing the previous section and modifying
the arugment in Appendix E. The first half of the algorithm, achieving O(1/ loga n) compaction,
requires an analysis similar to the analysis given in § E.1 and § E.2. We find

[(
5 + lg(d) +

(1− (1− γ)d+1 + ε)(5d+ 1)− 2 lg(d)

2d+ 2

)
·
(
(d+ 1) + (d2 − 1)

)
+
α

β
(d+ 1)

]
n

+

[(
1− β

1− α

)−1
(log(1 + 1/d)d+ (1− α) log(β/γ)) + 2(d2 − 1) log(1 + 1/d)

]
n

+

(
1

β
− 2

)
n+ (d− 1)(1− 2

d
) log(d/γ)n+

2

d+ 1
U(n).

Taking d = 3, α = 0.01, β = 0.3395, γ = 0.15, gives a run time of

200.24n.

We then have to run the remainder of our algorithm on the array of size 4n with density 1
loga n .

However, the guarantee of low density eliminates the costs from α, β, and sparse arrays. The cost
here is
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4

[
log(1 + 1/d) +

(
5 + lg(d) +

o(1)

2d+ 2

)
·
(
(d+ 1) + (d2 − 1)

)]
n

+
2

d+ 1
U(n).

Which gives a cost of
7807.03n.

Adding back in the cost of the original algorithm gives a cost of

U(n) = 8007.27n,

for TightCompactByTwo and a cost of

T (n) = 16014.54n

for general tight compaction.

B Margulis graph compaction

B.1 Analysis of Algorithm 10

The argument here is similar to the argument in § 4.1. We explain the modifications from BinCompact
we make due to the sparsity of the array and the use of a Margulis graph.

The private data of G here is made up of two choices for the weight of a vertex wt(v), ei-
ther Empty or Nonempty. We also have three choices for the edge weights: Incoming, Outgoing
or Off. There are 2|G| edges, and each of the above variables require 2 bits, so we require 5|G|
bits to store the private data of G. This gives |G| = W/(4 logW + 5). We use a bucket size of 3
elements from A per vertex, giving A = 3W/(4 logW + 5).

We show in § B.2 that the algorithm ExploreMargulis fails with negligible probability. The
guarantee from ExploreMargulis is that every vertex initially marked Nonempty will have at
least 3 edges marked Outgoing, and every vertex will have at most 1 edge marked Incoming.
Therefore running lines 22-37 moves all marked elements out of Di[j], for all i and j = 1, 2, 3, and
at most one element is moved into Di[4], for all i. Note that Outgoing edges from vertices initially
marked as Empty will never carry marked elements; these edges are marked only to guarantee that
no vertex marked Empty has two or more Incoming edges.

B.2 Analysis of Algorithm 11

Claim B.1. Let H be the set of vertices visited when we call SubExploreMargulis(v), for some
vertex v. Then H is a tree with all but negligible probability.

Proof. Suppose by way of contradiction that C ⊆ H is a cycle. By Lemma C.1, the shortest cycle
of G has length at least 0.756 log log n. Every vertex in C initially marked as Empty is adjacent to
a vertex initially marked Nonempty. Therefore at least 1/3 of the elements of C must be initially
marked. But by Lemma C.7 the probability that there are more than 0.25 log log n marked elements
in A is negligible in n. Since

0.25 log log n <
0.756 log log n

3
this is impossible.
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Algorithm 10 Loose compaction for bins of Margulis graphs

Require: Array A with |A| ≤ 3W/(4 logW + 5)

Ensure: Compact A so that none of the final 2|A|
3 elements are marked.

1: procedure BinCompactMargulis(A,W, b = 3, ` = 3, d = 4)
2: p← min{prime i

∣∣i3 − i ≥ |A|/3}
3: k ← p3 − p
4: G← a 4-regular Margulis expander graph with k vertices, i.e. a Cayley graph for SL2(Fp)
5: Label the vertices V of G as V = {v1, . . . , vk}
6: Divide A into k bins D1, . . . , Dk of size 3, adding dummy elements if necessary
7: Let w be a single memory word of W bits
8: w ← wt(vi) ∈ {Empty,Nonempty,Terminal} ∪ wt(e(vi, vj)) ∈
{Incoming,Outgoing, Off}

9: for i ∈ {1, . . . , k} do
10: if Di contains no marked elements then
11: wt(vi)← Empty
12: else
13: wt(vi)← Nonempty
14: end if
15: end for
16: for v ∈ V do
17: ExploreMargulis(v)
18: end for
19: for i ∈ {1, . . . , k} do
20: Add 1 blank space to Di

21: end for
22: for vi ∈ V do
23: for First three neighbors {vi1 , vi2 , vi3} of vi do
24: if wt(e(vi, vij )) = Outgoing then
25: Swap element j in Di with element 4 in Dij

26: else
27: Perform dummy memory accesses
28: end if
29: end for
30: for j ∈ {1, 2, 3} do
31: if Di[j] is marked and wt(e(vi, vi4)) = Outgoing then
32: Swap element j in Di with element 4 in Di4

33: else
34: Perform dummy memory accesses
35: end if
36: end for
37: end for
38: for i ∈ {1, . . . , k} do
39: A[i]← Di[4]
40: end for
41: end procedure
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Algorithm 11 Explore subroutine for Margulis graphs

1: procedure ExploreMargulis(vertex v)
2: if wt(v) = Nonempty then
3: SubExploreMargulis(v)
4: end if
5: end procedure
6: procedure SubExploreMargulis(v)
7: if wt(v) = Nonempty then
8: wt(v)← Empty
9: for neighbors w of v do

10: if wt(e(v, w)) = Off then
11: wt(e(v, w))← Outgoing
12: SubExploreMargulis(w)
13: end if
14: end for
15: else
16: for neighbors w of v do
17: if wt(e(v, w)) = Off then
18: if wt(w) = Nonempty then
19: wt(e(v, w))← Outgoing
20: SubExploreMargulis(w)
21: end if
22: end if
23: end for
24: end if
25: end procedure
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Since H is a tree, all edges are oriented away from the root v, and every vertex has at most
one Incoming edge. Additionally, all initially Nonempty vertices have all four neighbors in H,
and so three Outgoing edges. Note that all vertices in H with fewer than four edges in H were
initially marked Empty and all neighbors of such vertices in GnH were also initially Empty.
Since SubExploreMargulis never assigns a weight to an edge between two Empty vertices, no
swaps will occur between H and GnH.

C Combinatorial Lemmas

We state here a number of combinatorial lemmas we need throughout the paper, and give a citation
if the result is well-known, or a proof otherwise.

Lemma C.1. [Margulis [19]] There is a family of 4-regular expander graphs {Gk}k≥0 with girth
satisfying |Gk| ≥ 0.756 logGk, with Gk = (p3k − pk), for pk the kth prime.

The following result is due to Friedman [11] proving a conjecture of Alon.

Lemma C.2 (Friedman). The probability that a random d-regular graph G on n vertices, with dn
even and n > d, has second eigenvalue ≤ 2

√
d− 1 + ε, is 1−O(n−c).

The following is due to Steger and Wormald [29], though the algorithm was first studied by
Rucinski and Wormald [26].

Lemma C.3 (Steger, Wormald). There is an algorithm for generating a random d-regular graph,
uniformly, in time O(nd2).

Their algorithm is not difficult to describe. They take dn points, and, while possible, choose
two points, and, if suitable, draw an edge between the corresponding vertices of G. If successful,
the algorithm terminates. If unsuccessful, the algorithm resets. The following result is an imme-
diate consequence of the well-known polynomial time algorithms for computing the characteristic
polynomial and approximating roots.

Lemma C.4. It is possible to test whether a d-regular graph G on n vertices is Ramanujan in
time poly(n).

Combining these three results gives us an algorithm for generating a d-regular expander graph
on n vertices in time poly(n). Since our expander graphs will have O(log n) vertices, and we only
need to generate O(log n) such graphs, this is sufficient for our needs.

Lemma C.5. Consider a random walk along the integers Z where the probability of moving from i
to i + 1 is f( in) for some increasing function f . Let X be a random variable denoting the time it
takes to walk from ρn to ρ′n. Then

Pr

(∣∣X − n ∫ ρ′

ρ

dx

f(x)

∣∣ > εn

)
= e−8(ρ

′−ρ)ε2n.

Proof. Let Xi be the time it takes to walk from ρn to ρ′n. From the definition of f , we have

E[Xi] =
1

f(i/n)
,
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so that

E[X] =

ρ′n∑
i=ρn

E[Xi] = n

ρ′n∑
i=ρn

1

nf(i/n)
.

The right hand side is a Riemann sum for 1/f(i) from ρ to ρ′ including both the left and right
endpoints, which gives

1

f(ρ′)
+ n

∫ ρ′

ρ

dx

f(x)
≤ n

ρ′n∑
i=ρn

1

nf(i/n)
≤ 1

f(ρ)
+ n

∫ ρ′

ρ

dx

f(x)
.

For sufficiently large n, we therefore have

|E[X]− n
∫ ρ′

ρ

dx

f(x)
| ≤ εn

2
.

By the Chernoff-Hoeffding Theorem, we have

Pr
(
|X − E[X]| ≥ εn

2

)
≤ e−8(ρ′−ρ)ε2n,

and applying the triangle inequality completes the proof.

Lemma C.6. Fix constants γ′ < γ, and let A be an array of length n with γ′n marked balls. Then
if k log n balls are chosen at random from A, the probability there are more than γk log n marked

balls chosen is n
− (γ−γ′)2k

γ+γ′ .

Proof. Let X be the number of marked balls chosen. The probability of X = ` is bounded above
by (

k log n

`

)(
γ′ +

`

n

)`(
1− γ′ + `

n

)k logn−`
≤
(
k log n

`

)
(γ′)`

(
1− γ′

)k logn−`(
1 +

k log n

nγ′

)k logn(
1 +

k log n

(1− γ′)n

)k logn
≤
(
k log n

`

)
(γ′)`

(
1− γ′

)k logn−`(
1 +O

(
log2 n

n

))
.

The probability of X = ` is similarly bounded below by(
k log n

`

)
(γ′)`

(
1− γ′

)k logn−`(
1−O

(
log2 n

n

))
.

Therefore, up to a factor of
(

1±O
(
log2 n
n

))
, we can approximate X by a binomial random variable

with k log n trials and probability γ′. Let

δ =
γ

γ′
− 1.
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By a Chernoff bound, we have

Pr(X ≥ γk log n)

= Pr(X ≥ (1 + δ)E[X])

≤ e−
δ2

2+δ
E[X]

= n−
δ2kγ′
2+δ

= n
− (γ−γ′)2k

γ+γ′ ,

as desired.

Lemma C.7. Fix a constant c < 1, and let A be an array of Ω(n/ log3 n) balls with ≤ nc−1|A|
marked balls. Then if k log n balls are chosen at random from A, the probability there are more
than ` log log n marked balls chosen is negligible in n, for every choice of k, ` > 0.

Proof. The probability a randomly selected ball is marked is nc−1. Let X be the number of marked
balls chosen out of k log n. Then

Pr(X > log logn) ≤ 2k logn
(
nc + ` log log n

n

)` log logn(
1− nc − ` log log n

n

)1−` log logn

= nk log 2+(c−1)` log logn+o(1),

which is negligible in n, as desired.

Lemma C.8. Fix constants ε, γ and k. Let A be an array of kn balls, with γkn balls marked.
Shuffle A and divide it into bins of size k. The probability that there are fewer than

(
(1− γ)k − ε

)
n

empty bins is e−cn, for some constant c.

Proof. We give two proofs.
In the first proof, we observe that the probability an individual bin is empty is

≈ (1− γ)k.

If Yi is the event that bin i is empty, then the events {Yi} are negatively associated, and so we can
apply a Chernoff bound to give the desired result.

In the second proof, we let Xi be random variables representing the number of bins with i
marked balls in that bin, for 0 ≤ i ≤ k.

Suppose that Xi = nxi. We then have the following two equations:∑
xi = 1 (C.1)∑
ixi = kγ (C.2)

The number of ways to arrange marked balls to give Xi = nxi is(
n

nx0, nx1, · · · , nxk

)
·
k∏
i=0

(

(
k

i

)
)nxi .
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We maximize this expression using Lagrange multipliers. Taking the logarithm, dividing by n, and
taking the gradient gives

∇x =

(
−1− log xi + log

(
k

i

))
i

.

The method of Lagrange multipliers tells us

−1− log xi + log

(
k

i

)
= λA + iλB.

Taking i = 0, then i = 1, then i arbitrary allows us to cancel λA and λB to give

xi = x0

(
k
i

)
xi1

xi0
.

Returning to our original equations, we have

1 = x0

k∑
i=0

(
k

i

)
(
x1
x0

)i = x0(1 +
x1
x0

)k

and

kγ = x0

k∑
i=0

i

(
k

i

)
(
x1
x0

)i = x1k(1 +
x1
x0

)k−1

. Solving gives
x1
x0

=
γ

1− γ
and

x0 = (1− γ)k.

In particular, this means for x0 < (1−γ)k−ε, the probability of this event occurring is exponentially
smaller in n.

D Proof of Theorem 2

Proof. Choose c > 1
2 and suppose by way of contradiction there is some set U with |U |

|G| > c that
does not activate all of G under percolation. Let S be the set that is activated by U . Then we
also have |S||G| > c, and all vertices in T = G\S have fewer than dd+1

2 e edges to S. By the expander

mixing lemma (see e.g. [15]) we have

e(T, T ) ≤ d|T |2

|G|
+ λ|T |

≤
(
d|T |
|G|

+ 2
√
d− 1

)
|T |,

when G is an expander graph. Taking T = G\S gives

e(T, T ) ≤
(
d− dS

G
+ 2
√
d− 1

)
|T |

≤
(
d(1− c) + 2

√
d− 1

)
|T |.
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First consider the case when d is odd. We have

2
√
d− 1 <

d+ 1

2

for d ≥ 13, so that, for c sufficiently close to 1, we have

e(T, T ) <
d+ 1

2
|T |

and

e(S, T ) >
d− 1

2
|T |.

Thus at least one vertex of T has at least d+1
2 edges to S, and can be activated, a contradiction.

The proof for d even is similar, and relies on the fact that d = 16 is the smallest value with

2
√
d− 1 <

d

2
.

Corollary D.1. For d = 13, there is some constant γ such that every set S with |S|/|G| ≥ (1−γ)d+1

is a percolating set for majority bootstrap percolation.

Proof. This is an immediate consequence of Theorem 2 but we derive γ explicitly. We desire(
d− d(1− γ)d+1 + 2

√
d− 1

)
<
d+ 1

2
,

and so choose γ < 0.005307.

E Runtime analysis of warm-up algorithm

E.1 Runtime of Algorithm 1

To analyze the cost, suppose the cost of this algorithm is T (n) and the cost of Algorithm 2 is U(n).
Then:

Lines 2-6 require n steps to scan and count markings, and n steps to scan again and switch
markings.

Line 7 requires U(n) steps.
Line 8 requires n steps.
Line 9 requires T (n/2) steps.
Lines 10-14 require n steps.
We thus have

T (n) = 4n+ U(n) + T (n/2).

Solving the recurrence gives

T (n) = 8n+
∑
k≥0

U(n/2k).

We show that U(n) is linear in n in § E.2, so we have

T (n) = 8n+ 2U(n).

By § E.2 this simplifies to
T (n) = 4621.6n
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E.2 Runtime of Algorithm 2

The cost of Line 3 is

(
1

β
− 2)n,

and the cost of Line 6 is

log(β/γ)

(
1− β

1− α

)−1
αn.

Both bounds come from the results in § E.3.
By the analysis in § E.4, the cost of Line 8 and Line 18 over the course of the loop is(

5 + lg(d) +
(1− (1− γ)d+1 + ε)(5d+ 1)− 2 lg(d)

2d+ 2

)
αn
∑
k≥0

(
1− α

d+ 1

)k
=

(
5 + lg(d) +

(1− (1− γ)d+1 + ε)(5d+ 1)− 2 lg(d)

2d+ 2

)
· (d+ 1)n

Lines 13-15 require again the estimates from § E.3. The cost of line 13 is

∑
k≥0

(
1

β
− 1− α

β

)
α

(
1− α

d+ 1

)k
n

=
α

β
(d+ 1)n.

The cost of line 14 is∑
k≥0

log(γ d+1
d /γ)(1− β

1− α
)−1α

(
1− 1

d+ 1

)(
1− α

d+ 1

)k
= log(1 + 1/d)(1− β

1− α
)−1dn

And the cost of line 15 is

(1− α)(1− β

1− α
)−1 log(β′/γ)n.

In lines 22-28, the size of Discard(A1) is equal to the size of A1 before running LooseCompact,
so that the total size of R is ∑

k≥0

(
1− α

d+ 1

)k
αn.

Summing the geometric series gives |R| = (d + 1)n. The array R is a mix of unmarked elements
and dummy elements, and we desire to compact out the unmarked elements. We show in § 4.1 that
the density of unmarked elements in R is exactly 1

d+1 .
The cost of line 23 is

(d− 1)(1− 2

d
) log(d/γ′)n,

and the cost of line 25 is ∑
k≥0

2 log(1 + 1/d)(1− 1

d+ 1
)k(d− 1)n

=2(d2 − 1) log(1 + 1/d).
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The cost of line 26 is(
5 + lg(d) +

(1− (1− γ)d+1 + ε)(5d+ 1)− 2 lg(d)

2d+ 2

)
(d− 1)n

∑
k≥0

(
1− 1

d+ 1

)k
=

(
5 + lg(d) +

(1− (1− γ)d+1 + ε)(5d+ 1)− 2 lg(d)

2d+ 2

)
· (d2 − 1)n

In addition, the cost of line 28 is 2
d+1U(n).

Line 30-33 requires (3/2) · 14|B|/3 steps, by § 3.4. The size of |B| is the sum of |A1| over all
sizes of |A1| that arose in the previous loop. This is the same computation we did for the size of R
above, so we have |B| = (d+ 1)n, and the total cost is 7 · (d+ 1)n.

The size of Discard(B) is equal to the input size of B, so that the size of S after line 33 is∑
k≥0

(
1

3
)k(d+ 1)n =

3

2
|B|.

Therefore the cost from lines 34-36 is 3/2 the cost of lines 30-33, i.e. 21
2 (d+ 1)n.

Summing all of these expressions gives, as the total cost:[(
5 + lg(d) +

(1− (1− γ)d+1 + ε)(5d+ 1)− 2 lg(d)

2d+ 2

)
·
(
(d+ 1) + (d2 − 1)

)
+
α

β
(d+ 1)

]
n

+

[(
1− β

1− α

)−1
(log(1 + 1/d)d+ (1− α) log(β/γ)) + 2(d2 − 1) log(1 + 1/d) +

35

2
· (d+ 1)

]
n

+

(
1

β
− 2

)
n+ (d− 1)(1− 2

d
) log(d/γ)n+

2

d+ 1
U(n).

The effect of the final 2
d+1 term is equivalent to multiplying the rest of the runtime by d+1

d−1 .
Taking d = 13, α = 0.01, β = 0.278928, γ = 0.005307, gives

U(n) = 2306.8n.

E.3 Runtime of Algorithm 3

When the density of A1 is ρ, the number of marked balls in A2 is |A1|(ρ1− ρ) + |A2|(ρ2). Thus the
probability that a random ball from A1 is marked is 1/ρ and the probability that a random ball
from A2 is unmarked is (

1− |A1|(ρ1 − ρ) + |A2|ρ2
|A2|

)−1
.

Writing X for the number of random swaps required to force the density of A1 to be less than ρ′1
and applying Lemma C.5 gives∣∣∣∣∣X − |A1|

∫ ρ1

ρ′1

(
1− |A1|(ρ1 − ρ) + |A2|ρ2

|A2|

)−1 dρ
ρ

∣∣∣∣∣ < εn,

with all but negligible probability.
We bound the integral in two ways. When ρ2 = 1− ρ1 and |A1| = |A2|, the integral simplifies

to:

|A1|
∫ ρ1

ρ′1

dρ

ρ2
=

1

ρ1
− 1

ρ′1
.
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This is the bound we use to evaluate the cost of lines 3 and 13 in Algorithm 2.
We can also bound the term(

1− |A1|(ρ1 − ρ) + |A2|ρ2
|A2|

)−1
≤
(

1− |A1|ρ1 + |A2|ρ2
|A2|

)−1
=

|A2|
|A1|ρ1 + |A2|(1− ρ2)

.

This gives

X < εn+
|A2|

|A1|ρ1 + |A2|(1− ρ2)
log

(
ρ1
ρ′1

)
,

the estimate we use in our evaluation of lines 6, 14 and 15 of Algorithm 2.

E.4 Runtime of Algorithm 4

Line 2 requires |A| steps.

Line 9 requires
(

4 + lg(d) + (1−(1−γ)d+1+ε)(5d+1)−2 lg(d)
2d+2

)
|Di| steps.

Thus the entire algorithm requires(
5 + lg(d) +

(1− (1− γ)d+1 + ε)(5d+ 1)− 2 lg(d)

2d+ 2

)
|A|

steps.

E.5 Runtime of Algorithm 5

Line 2 requires |A| steps.
Lines 6-10 require 11A/3 steps, by § E.9.
This gives a total cost of 14A/3 steps.

E.6 Runtime of Algorithm 6

The graph generation in line 8 only needs to occur once per call to LooseCompact, and by
Lemmas C.2,C.3 and C.4 can be completed in polylogarithmic, i.e. o(n) time.

Lines 3-23 can be accomplished with a single scan through A, followed by writing to Count(vi)
and wt(vi), which requires |A|+ 2k steps. If either of the runoff conditions are triggered, we must
spend another |A| steps obliviously swapping the contents of A into RunOff(A). This gives a total
cost of 2|A|+ 2k steps.

Lines 24-26 require d+ (1− (1− γ)d+1 + ε)k · (5d+ 1)/2 steps, by § E.7.
Lines 30-39 require dk swap steps.
Line 42 requires d lg(d) steps, by § E.8, so that lines 41-44 require dk lg(d) steps.
Replacing k everywhere with |A|/(d+ 1) gives

(4d+ 8) + 2d+ (1− (1− γ)d+1 + ε)(5d+ 1) + 2d+ 2d lg(d)

2(d+ 1)
|A|

=

(
4 + lg(d) +

(1− (1− γ)d+1 + ε)(5d+ 1)− 2 lg(d)

2d+ 2

)
|A|

total steps.
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E.7 Runtime of Algorithm 7

The if statement on line 2 runs for every vertex, giving a cost of d steps. The rest of the algorithm
only runs for the initially Nonempty vertices. Lines 4-8 and lines 13-21 will be run at most one
time per vertex. Each loop requires one step, since we access and write over the single memory
word containing the private data of G. Line 10 may be run up to (d + 1)/2 times. This gives a
total cost of (5d + 1)/2 per Nonempty vertex. With all but negligible probability, there are less
than (1− (1− γ)d+1 + ε) Nonempty vertices, giving a total cost of

d+
(

1− (1− γ)d+1 + ε
)(5d+ 1

2

)
E.8 Runtime of Algorithm 9

The cost of lines 3-15 is t/2 swaps. Lines 17-19 are not oblivious swaps - i.e., they could be
represented by re-indexing, and cost nothing. Thus if the cost of the algorithm is L(t), we have

L(t) = t/2 + 2L(t/2)

so that
L(t) = t/2 lg(t).

E.9 Cost of Algorithm 10

The argument here is similar to the argument in § 4.1.
As in § E.6, we generate the required expander graph once, which contributes polylogarithmi-

cally to the total cost.
Lines 9-15 require 4k|Di| = 4|A|/3 steps, three steps to read and one step to write.
Lines 16-18 require |G| = |A|/3 steps.
Lines 22-37 require 6k|Di| = 2|A| swap steps.
This gives a total of 11|A|/3 steps.

E.10 Runtime of Algorithm 11

The cost of the subprocedure SubExploreMargulis is either 10 or 13 steps, depending on the
branching statement in line 7. lines 3-16 by direct calculation, is 16 steps. Because SubExploreMargulis
will be called at most O(log log n) times, the total cost is o(log n). Therefore the total cost
of ExploreMargulis is (1 + o(1))|G|.
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