
Post-quantum WireGuard

Andreas Hülsing
Eindhoven University of Technology

The Netherlands
andreas@huelsing.net

Kai-Chun Ning
KPN B.V.

The Netherlands
kaichun.ning@kpn.com

Peter Schwabe
Radboud University

The Netherlands
peter@cryptojedi.org

Florian Weber
Eindhoven University of Technology

The Netherlands
mail@florianjw.de

Philip R. Zimmermann
Delft University of Technology & KPN B.V.

The Netherlands
prz@mit.edu

Abstract—In this paper we present PQ-WireGuard, a post-
quantum variant of the handshake in the WireGuard VPN
protocol (NDSS 2017). Unlike most previous work on post-
quantum security for real-world protocols, this variant does not
only consider post-quantum confidentiality (or forward secrecy)
but also post-quantum authentication. To achieve this, we replace
the Diffie-Hellman-based handshake by a more generic approach
only using key-encapsulation mechanisms (KEMs). We establish
security of PQ-WireGuard, adapting the security proofs for
WireGuard in the symbolic model and in the standard model to
our construction. We then instantiate this generic construction
with concrete post-quantum secure KEMs, which we carefully
select to achieve high security and speed. We demonstrate
competitiveness of PQ-WireGuard presenting extensive bench-
marking results comparing to widely deployed VPN solutions.

I. INTRODUCTION

WireGuard is a VPN protocol presented by Donenfeld
in [1]. It combines modern cryptographic primitives with a
simple design derived from the Noise framework [2], a very
small codebase, and very high performance.

These properties are achieved partially because WireGuard
is “cryptographically opinionated” [1]: instead of support-
ing multiple cipher suites, WireGuard fixes X25519 [3]1for
elliptic-curve Diffie-Hellman key exchange, Blake2 [4] for
hashing, and ChaCha20-Poly1305 [5], [6], [7] for authenti-
cated encryption. Not only are those primitives known for
their outstanding software performance, fixing those primitives
eliminates the need for an algorithm-negotiation phase, which
keeps the protocol simple and its codebase small, and avoids
any potential downgrade attacks. Also, high performance is
achieved by implementing the protocol in the Linux kernel
space, which eliminates the need for moving data between
user and kernel space.

In addition to its superior performance and small codebase,
WireGuard was designed to provide security properties that are
not supported by other VPN software, e.g., identity hiding, and
DoS-attack resistance. The security considerations that lead to
the design of WireGuard are layed out in [1]. Donenfeld and
Milner give a computer-verified proof of the protocol in the

1For naming of X25519, see https://mailarchive.ietf.org/arch/msg/cfrg/
-9LEdnzVrE5RORux3Oo_oDDRksU.

symbolic model in [8]. In [9] Dowling and Paterson present
a computational proof of the WireGuard handshake with an
additional key-confirmation message.

Given its properties it is thus not surprising to see that
WireGuard is becoming increasingly popular. For example,
CloudFlare is working on “BoringTun”, a WireGuard-based
userspace VPN solution written in Rust [10]. Torvalds called
WireGuard’s codebase a “work of art” compared to OpenVPN
and IPsec and advocated for its inclusion in Linux [11].
WireGuard is scheduled to become part of the next mainline
Linux kernel (version 5.6).

As WireGuard aims to be the next-generation VPN protocol,
it is natural to see that security against quantum attackers
played a role in its design as well, albeit a small one.
Specifically, it allows users to include a symmetric shared
key into the handshake, which protects against an attacker
who records handshake transcripts now and attacks them in
the future with a quantum computer [1, Sec. V.B]. Post-
quantum asymmetric schemes are explicitly declared as “not
practical for use here” by Donenfeld and are thus not included
in the handshake. Recently, Appelbaum, Martindale, and Wu
took another look at post-quantum security of WireGuard and
proposed a small tweak to the protocol that aims at protecting
against pretty much the same future quantum attacker with
recorded transcripts [12], but without requiring a long-term
secure pre-shared key. The tweak consists in transmitting the
hash of a long-term public key instead of the public key itself;
the quantum attack is prevented with this tweak if static public
keys are not known to the attacker.

A. Contributions of this paper.

In this paper we present PQ-WireGuard, a post-quantum
variant of the WireGuard handshake protocol. Unlike the
mitigation techniques described above and unlike various
earlier works aiming at transitioning protocols to post-quantum
security, we do not only aim for confidentiality against quan-
tum attackers, but target full post-quantum security including
authentication. The main design goal of PQ-WireGuard is to
stay as close as possible to the original WireGuard protocol
in terms of security and performance characteristics, i.e.,
PQ-WireGuard should

mailto:andreas@huelsing.net
mailto:kaichun.ning@kpn.com
mailto:peter@cryptojedi.org
mailto:mail@florianjw.de
mailto:prz@mit.edu
https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU
https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU

• achieve all the security properties of WireGuard, but now
also resist attacks using a large-scale quantum computer;

• make a concrete choice of high-security, efficient cryp-
tographic primitives instead of including an algorithm
negotiation phase;

• finish the handshake in just one round trip;
• fit each of the two handshake messages into just one

unfragmented IPv6 packet of at most 1280 bytes; and
• achieve much higher computational performance than

other VPN solutions such as IPsec or OpenVPN.
PQ-WireGuard manages to tick all these boxes and thus shows
that the assessment from the original WireGuard paper stating
that post-quantum security is “not practical for use here” is no
longer correct.

From Diffie-Hellman to KEMs. The original WireGuard
protocol is heavily based on (non-interactive) Diffie-Hellman
key exchange, which is not easy to replace straight-forwardly
with post-quantum primitives. The only somewhat practical
post-quantum non-interactive key exchange is CSIDH [13],
which is both very young and rather inefficient. Furthermore,
the security of concrete CSIDH parameters is still heavily
debated [14], [15], [16], [17]. We therefore take a different ap-
proach and first transform the WireGuard protocol to a version
using only interactive key-encapsulation mechanisms (KEMs).
This approach is based on the KEM-based authenticated key
exchange described in [18].

Security. Security of WireGuard is supported by the symbolic
proof of Donenfeld and Milner [8] and the computational
proof by Dowling and Paterson [9]. The symbolic proof covers
more security properties than the computational proof and is
computer verified. However, a correct computational proof
gives stronger security guarantees as the proof makes less
idealizing assumptions. Consequently, we adapt both proofs
to the case of PQ-WireGuard and thereby establish the same
level of security guarantees as WireGuard. On the way, we
point out (and fix) a few small mistakes in the computational
proof.

A concrete instantiation. The generic KEM-based approach
allows us in principle to use any post-quantum KEM submitted
to the NIST post-quantum project as a proposal for future
standardization2. Now the main challenge becomes one of
public-key and ciphertext sizes: WireGuard operates over UDP
and the existing codebase assumes that all handshake messages
fit into one unfragmented IPv6 packet. The reason for this
requirement is that increasing the number of packets in a
handshake would make the state machine of the protocol more
complex and contradict WireGuard’s aim for simplicity in both
protocol design and codebase. Fragmenting and reassembling
IPv6 packets comes with various issues. For example a denial-
of-service (DoS) attack can fill up the reassembly buffer with
fragments of packets that are never completed. This is just
one example of IP fragmentation attacks [19]. To prevent
such attacks, some firewalls drop fragmented IPv6 packets,

2See https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

so avoiding fragmentation ensures that the protocol remains
robust against such firewall configurations.

IPv6 packets are guaranteed not to be fragmented as long as
they do not exceed 1280 bytes [20]. With the IPv6 header oc-
cupying 40 bytes and the UDP header occupying 8 bytes, there
are 1232 bytes left for the content of handshake messages.
In both, initiation message and response, those 1232 bytes
need to fit several MACs and protocol-specific fields alongside
a public key and a ciphertext (for the initiator’s packet)
respectively two ciphertexts (for the responder’s packet). For
some of the schemes proposed to NIST, this is not much of a
problem. For example, compressed SIKE [21] uses only 331
bytes for the public key and 363 bytes for the ciphertext, even
at the highest security level. However, SIKE is not exactly
known for its high computational performance; for example,
it is more than an order of magnitude slower than most lattice-
based KEMs.

PQ-WireGuard uses a combination of two KEMs, namely
Classic McEliece [22] and a passively secure variant of
Saber [23], [24]. One advantage of this solution for actual
applications is that most security properties are guaranteed
by the Classic McEliece scheme, considered by many as the
most conservative choice among all NIST candidates. Another
advantage is the computational efficiency (see below). Finally,
our approach allows us to give a concrete example of an
application that

1) works extremely efficiently with Classic McEliece, a
cryptosystem that is often discarded as “impractical”
because of its large public keys; and

2) heavily benefits from the savings in public-key and
ciphertext size that lattice-based KEMs can achieve if
they do not aim for active security.

The second point may be seen as new insight into the question
whether or not KEMs which only provide passive security
really offer any benefits for real-world applications, which was
repeatedly raised by Bernstein on the NIST pqc-forum mailing
list [25], [26]. The parameters our proposal uses achieve the
“AES-192-equivalent” security level (NIST level 3).

Performance evaluation. To evaluate the performance of
PQ-WireGuard, we compare the handshake efficiency of
PQ-WireGuard with that of WireGuard, the strongSwan im-
plementation of IPsec, and OpenVPN. We show that a
PQ-WireGuard handshake is less than 60% slower than a
WireGuard handshake, is more than 5 times faster than an
IPsec handshake using Curve25519, and more than 1000 times
faster than an OpenVPN handshake.

B. Related Work.

Related work can be grouped in four categories.
First, there is ongoing effort for post-quantum security

in the Noise framework [2] that the WireGuard handshake
is based on. Currently this effort only covers “transitional
post-quantum security” (i.e., no post-quantum authentication),
which is achieved by combining ephemeral-ephemeral ECDH
with a post-quantum KEM (currently NewHope-Simple [27]).

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

Noise calls this approach hybrid forward secrecy (HFS); the
details are described in [28]. As the WireGuard handshake is
one of the more complex Noise key-exchange patterns, our
work may also be seen as a first step towards fully post-
quantum Noise.

Second, there is a large body of work on authenticated
key exchange including works on generic KEM-based con-
structions. Most important for this work is the generic KEM-
based approach by Fujioka, Suzuki, Xagawa, Yoneyama [18]
(which can be seen as a generalization of "Efficient one-
round key exchange in the standard model" [29]). All cur-
rently considered actively secure post-quantum KEMs start in
their construction from a passively secure encryption scheme
and obtain active security through variants of the Fujisaki-
Okamoto (FO) transform [30]. In [31], Hövelmanns, Kiltz,
Schäge, and Unruh present a generic AKE construction that
starts directly from passively secure encryption schemes and
moves some of the FO machinery into the AKE construction.
A somewhat similar idea of reconsidering the FO transform
in the context of authenticated key exchange is presented by
Xue, Lu, Li, Liang, and He in [32]. However, the primitive they
start from in their generic construction is what they call a “2-
key KEM”. Also more specialized, non-generic, constructions
of post-quantum AKEs have been described in the literature.
In [33], Zhang, Zhang, Ding, Snook, and Dagdelen describe
a lattice-based AKE (which, however, was later outperformed
by instantiating a generic construction with the lattice-based
KEM Kyber in [34, Sec. 5]). Isogeny-based constructions were
presented by Longa in [35], by Xu, Xue, Wang, Au, Liang,
and Tian in [36], and by Fujioka, Takashima, Terada, and
Yoneyama in [37].

Third, there have been additional efforts on proving security
properties of WireGuard and more generally Noise. Most
notably, in [38], Lipp, Blanchet, and Bhargavan present a
computer-verified proof of security of the WireGuard hand-
shake in the computational model. The proof is in the ROM;
a meaningful translation to PQ-WireGuard would require first
moving to the QROM or the standard model. In [39], Dowling,
Rösler, and Schwenk introduce a generalization of the ACCE
model from [40] and prove 8 out of the fundamental 15
Noise AKE patterns secure in this generalized ACCE model;
the IK pattern used by WireGuard is not one of those 8
patterns. In [41], Kobeissi, Nicolas, and Bhargavan present
“Noise Explorer”, a tool that fully automatically proves certain
security properties of Noise AKE patterns in the symbolic
model using ProVerif [42]. Adapting Noise Explorer to support
KEM-based AKE such as the one we use in this paper
would certainly be interesting, but for the concrete case of
PQ-WireGuard would not provide any more insight than our
adaptation of the Tamarin proof.

Finally, there are proposals to upgrade other VPN solu-
tions to post-quantum security. Specifically, we are aware of
two independent efforts to migrate OpenVPN [43] to post-
quantum cryptography. One of these efforts is described in the
Master’s thesis by de Vries, which adds transitional security
to OpenVPN through the use of McEliece as additional

key exchange [44]. The other effort is PQCrypto-VPN by
Easterbrook, Kane, LaMacchia, Shumow, and Zaverucha at
Microsoft Research [45]. We give a performance comparison
between our proposal and PQCrypto-VPN in Section VI.

C. Availability of Software.

Just like the Linux kernel module implementing the original
WireGuard protocol, we make all software described in this
paper available under the GPLv2 license. The software is avail-
able online from https://cryptojedi.org/crypto/#pqwireguard.
Note that the optimized Classic-McEliece and the Saber soft-
ware we make use of has been placed into the public-domain.

D. Organization of this paper.

Section II gives a brief summary of the cryptographic
primitives involved in the WireGuard handshake and then
reviews the full handshake. Section III introduces the abstract,
KEM-based construction of the PQ-WireGuard handshake and
analyzes its security. Section V describes the instantiation of
PQ-WireGuard using McEliece and a passively secure version
of Saber. Finally, Section VI presents benchmark results for
PQ-WireGuard.

II. PRELIMINARIES

In the following we briefly discuss the security properties
WireGuard aims to achieve. Then we recall some crypto-
graphic primitives used by WireGuard and PQ-WireGuard,
and eventually provide a brief description of the WireGuard
handshake protocol.

A. Security Properties

WireGuard was designed to achieve eCK-PFS-PSK security
and a couple of additional properties. WireGuard considers a
setting where an initiator I initiates a secure connection with a
responder R. Using this notation, WireGuard aims to achieve
the following security goals:
• Session Key Secrecy: The established session key is

pseudorandom, i.e., it is indistinguishable from a random
bit string for everyone except the initiator and the respon-
der.

• Session Key Uniqueness: The established session key is,
with overwhelming probability, never repeated.

• Authenticity: Both, initiator and responder, know who
they are talking to. Specifically, it is infeasible for a party
to impersonate another party.

• Identity Hiding: The identities of initiator and responder
are only revealed to each other.

• DoS protection: The receiver can detect unauthorized
connection-attempts early and abort the protocol before
performing expensive computations.

These security goals should even be preserved under corrup-
tion of secrets. Towards the definition of different corruption
models consider the following. All parties have a static long-
term secret (usually the secret key of a key-pair). Identity
is defined as knowledge of a certain long-term secret. In
addition, parties have ephemeral secrets (think of ephemeral

https://cryptojedi.org/crypto/#pqwireguard

keys but also the randomness used during the execution of the
protocol3) which are only used in a single execution of the
protocol and are erased afterwards. We consider these a parties
secrets and assume that they may be corrupted independently
by an adversary. In addition, every pair of parties may or
may not have a pre-shared secret that can be corrupted by the
adversary as well. This allows to define corruption patterns. In
general we consider maximal exposure (MEX) attacks [46,
Sec. 3.3],[47],[18] allowing adversaries to corrupt arbitrary
combinations of static and ephemeral secrets. However, certain
corruption patterns allow for trivial, unpreventable attacks
against certain security goals. E.g., if all secret data is cor-
rupted, there is no way to protect against active adversaries.
Below we discuss under which corruption patterns which
security goals should still be achieved, explicitly excluding
such trivial attacks.

Session Key Secrecy. The session key remains pseudorandom
if either the parties share an uncorrupted pre-shared key or if
each party has at least one uncorrupted secret. This notion
implies Forward Secrecy (also known as pre-compromise
security) as ephemeral secrets are deleted after use.

Session Key Uniqueness. The session keys will with over-
whelming probability be unique for each execution of the
handshake. This is true for all considered passive adversaries
that only observe secrets of corrupted parties.

Authenticity. The handshake provides authenticity even un-
der corruption except for two cases. Assume Eve wants to
impersonate Alice towards Bob then there exist two trivial
corruption patterns.

If Eve corrupts Alice’s long-term secrets and any pre-
shared secrets between Alice and Bob authenticity cannot
be achieved. Identity is defined as knowledge of long-term
secrets. In case of corruption of the long-term secret only a
pre-shared key (and thereby the former authentication) could
establish authenticity but also the pre-shared key is corrupted
in this case.

In addition to that, the impersonation may succeed if all of
Bobs secrets are compromised, that is if Eve knows Bob’s
long-term and ephemeral secrets as well as the pre-shared
secret between Alice and Bob.

All other attacks against the authenticity, including Key
Compromise Impersonation Attacks (KCI), are prevented.

Also related to authenticity are Unknown Key Share
Attacks (UKS) in which an attacker tricks an honest party
into believing that they are communicating with someone else
than they actually do. WireGuard is designed to prevent all
versions of these attacks.

Identity Hiding. WireGuard is designed to reveal no informa-
tion about the identity of either the initiator or the responder
as long as both long-term secrets and the initiators ephemeral

3Some definitions limit the meaning of ephemeral secrets to ephemeral
key pairs. We use it to refer to all temporary secret data in a parties state,
especially all used randomness. This turns out to be important when using
KEMs.

secrets are uncompromised. Note that a compromise of a
parties long-term secret is by definition also a reveal of its
identity.

DoS Prevention. The receiver will abort early (before issuing
a reply) on any connection-attempt where the initiator does
not present knowledge of a valid combination of long term
key and pre-shared secret.

B. Cryptographic building blocks

In the following we discuss cryptographic building blocks
used in WireGuard and PQ-WireGuard.

Diffie-Hellman key exchange. Strictly speaking Diffie-
Hellman key exchange (DH) is not a generic cryptographic
building block in the sense of the other building blocks
below. Instead it is an actual scheme. However, authenticated
key-exchange protocols built using the Noise framework are
explicitly based on DH instead of some generic building block.
This is what lead to complicated security arguments for such
protocols, requiring the introduction of non-standard security
assumptions like the PRFODH-assumption discussed below.
Nevertheless we describe DH as it is a core ingredient of
WireGuard.

We use the multiplicative notation for the group G with
generator g in which the DH is carried out. To highlight
similarities to the KEM-based approach, we write DH.Gen
for DH key generation which returns a keypair (a, ga). DH
shared-key computation is denoted DH.Shared and outputs
gab on input a secret key a and a public key gb. WireGuard
instantiates the DH key exchange with X25519 [3].

The use of DH is precisely what is vulnerable to Shor’s
algorithm [48], [49] and thus what makes the WireGuard
handshake vulnerable to quantum attacks. Consequently, this
is what we have to replace for post-quantum security. Note
that from a more abstract point of view, DH supports (and
is, in fact, the most common example of) non-interactive key
exchange (NIKE) [50].

The way that the Diffie-Hellman key exchange is used
in WireGuard seems to prevent a security proof that only
uses the (standard) Decisional Diffie-Hellman (DDH) assump-
tion ((gx, gy, gxy) being indistinguishable from (gx, gy, gz)
for random x, y, z). Instead the proof requires assumptions
from the family of PRFODH-assumptions. These essentially
combine the DDH-assumption with a prf assumption described
below. Roughly they state that for some hash function H and
message m, H(gxy,m) is indistinguishable from a random
value even if the adversary has (limited) oracle access to
H(ax, b) and H(ay, b), where he is allowed to choose a and b.
The exact limitations on the oracle-access then vary depending
on the exact version of the PRFODH-assumption that is used.
For more details on both the PRFODH family and their use
in the context of WireGuard we refer to [9].

Key-encapsulation mechanisms. A key-encapsulation mech-
anism (KEM) is a triple of algorithms (KEM.Gen, KEM.Enc,

KEM.Dec). The probabilistic key-generation KEM.Gen gen-
erates a keypair (sk, pk). Encapsulation KEM.Enc is a prob-
abilistic algorithm which takes as input a public key pk and
computes a ciphertext c and a shared key k. We make the
probabilistic behavior explicit, treating KEM.Enc as determin-
istic algorithm which takes as additional input random coins r.
This is necessary to deal with situations where the local ran-
domness source is compromised. The decapsulation algorithm
KEM.Dec takes as input a ciphertext c and a secret key sk and
returns a shared key k or a failure symbol ⊥. A KEM is (1−δ)-
correct if it holds for all (sk, pk) ← KEM.Enc() that we get
Pr [KEM.Dec(c, sk) = k | (c, k)← KEM.Enc(pk, r)] = 1−δ.
We call δ the failure probability.

The security notions we need from a KEM in this paper
are indistinguishable ciphertexts under chosen-plaintext at-
tacks (IND-CPA) and under adaptive chosen-ciphertext attacks
(IND-CCA). For the formal definitions of these notions in the
context of KEMs, see e.g. SABER paper [23]. Intuitively, an
IND-CPA-secure KEM allows two parties to agree on a shared
key k without any passive attacker being able to learn any non-
trivial information about that key. An IND-CCA-secure KEM
then provides essentially the same notion, but this time for
active attackers.

Like DH, a KEM can be used to establish a shared key
between two parties over an untrusted channel in a confidential
way. However, unlike DH, the communication scenario as-
sumes interaction. When using DH, two parties that each know
their own secret-key and their peer’s public key can derive
a shared secret without any further interaction. In contrast,
when using KEMs, this does not work generically, since it is
not generally possible to combine two keypairs to acquire a
shared secret. Instead one party has to encapsulate a key using
their peers public key and send the encapsulation to their peer,
requiring one interaction.

In many applications, DH is also actually used this way.
For example, whenever one of the two parties is sending an
ephemeral DH key to their peer. As a consequence, removing
DH from existing protocols is usually not a trivial replacement
by KEMs. In most cases it will require more substantial
changes and WireGuard is no exception in that regard.

Pseudorandom Functions.
In order to keep the proof as similar as possible to that

of the original WireGuard, we use the same prf-definition as
Dowling and Paterson [9], except that we also require security
against quantum adversaries:

A pseudo-random function family is a collection of deter-
ministic functions PRF = {PRFλ : K ×M → O : λ ∈ N},
one function for each value of λ. Here, K, M, O all depend
on λ, but we suppress this for ease of notation. Given a key
k in the keyspace K and a bit string m ∈ M, PRFλ outputs
a value y in the output space O = {0, 1}λ. We define the
security of a pseudo-random function family in the following
game between a challenger C and an adversary A, with λ as
an implicit input to both algorithms:

1) C samples a key k $← K and a bit b uniformly at random.

2) A can now query C with polynomially-many distinct mi

values, and receives either the output yi ← PRFλ(k,mi)

(when b = 0) or yi
$← {0, 1}λ (when b = 1).

3) A terminates and outputs a bit b′.
We say that A wins the PRF security game if b′ = b
and define the advantage of an algorithm A in breaking the
pseudo-random function security of a PRF family PRF as
Advprf

PRF,A(λ) = |2 · Pr(b′ = b) − 1|. We say that PRF is
secure if for all QPT algorithms A, Advprf

PRF,A(λ) is negligible
in the security parameter λ.

Traditionally most authors require that m can have (almost)
arbitrary length. We consider a setting where m and k both
have the same fixed length.

In case a function f becomes a PRF when its arguments
are swapped (that is f(m, k) satisfies the prf-assumption), we
say that f satisfies the prfswap-assumption.

If a function satisfies both the prf-assumption and the
prfswap-assumption we say that it is a dual-PRF and satisfies
the dual-prf-assumption. Intuitively this means that if at least
one input is random and unknown to the adversary, the
resulting bit string is still indistinguishable from a random
value.

Authenticated Encryption with Associated Data. An au-
thenticated encryption scheme with associated data (AEAD) is
a triple of algorithms (AEAD.Gen, AEAD.Enc, AEAD.Dec).
The key-generation algorithm AEAD.Gen returns a random
key k that can then be used with the other two algorithms.
The encryption algorithm AEAD.Enc takes a key k, a nonce
n, a message m and associated data a and returns a ciphertext
c. The decryption algorithm AEAD.Dec takes a key k, a
ciphertext c and associated data a and returns either a message
m or ⊥.

For the purposes of our protocol we require that AEAD.Gen
outputs just a random bit string instead of a key that has
more structure. We note that this is not a real limitation as
all practical AEAD schemes that we are aware of satisfy this
property.

For a formal definition of the security properties of an
AEAD scheme we refer to the seminal work of Phillip
Rogaway [51]. Informally however, an AEAD scheme should
provide confidentiality and authenticity. Confidentiality is de-
fined in the sense of IND-CCA which in this case means that
no efficient attacker can learn anything about the message
m from a ciphertext c (except for its length), even when
provided with encryption- and decryption-oracles (as long
as it does not repeat nonces or query the decryption of
c directly). Authenticity is defined as the inability of any
efficient adversary to forge a valid ciphertext given access to
the above en- and decryption oracles.

C. The WireGuard handshake

We are now ready to review the handshake protocol of
WireGuard. In Algorithm 1 we first give a high-level view
of the handshake, largely following the description in [9]. The
initiator and responder are identified by their long-term, static

public keys spki and spkr (with corresponding secret keys
sski and sskr, respectively). Those key pairs are generated
before the first handshake between two parties and WireGuard
assumes that the public keys are exchanged in a secure way
(guaranteeing at least authenticity) before the first handshake.

Algorithm 1 High-level view on the WireGuard handshake

Initiator Responder
1: (eski, epki)← DH.Gen()
2: sidi

$← {0, 1}32
3: ltk← AEAD.Enc(κ3, 0, spki, H3)
4: now ← Timestamp()
5: time← AEAD.Enc(κ4, 0, H4, now)
6: m1← MAC(H(lbl3 ‖ spkr), type ‖ 03 ‖ sidi ‖ epki ‖ ltk ‖ time)
7: m2← MAC(cookie, type ‖ 03 ‖ sidi ‖ epki ‖ ltk ‖ time ‖ m1)
8: InitHello← type ‖ 03 ‖ sidi ‖ epki ‖ ltk ‖ time ‖ m1 ‖ m2

InitHello−−→

9: (eskr, epkr)← DH.Gen()
10: sidr

$← {0, 1}32
11: zero← AEAD.Enc(κ9, 0, H9, ∅)
12: m1← MAC(H(lbl3 ‖ spki), type ‖ 03 ‖ sidr ‖ sidi ‖ epkr ‖ zero)
13: m2← MAC(cookie, type ‖ 03 ‖ sidr ‖ sidi ‖ epkr ‖ zero ‖ m1)
14: RespHello← type ‖ 03 ‖ sidr ‖ sidi ‖ epkr ‖ zero ‖ m1 ‖ m2

RespHello
←−−

15: tki ← KDF1(C9, ∅)
16: tkr ← KDF2(C9, ∅)

From a cryptographic point of view, and in particular for
the context of this paper, what is most interesting is how
the values Hk, κk, and Ck are computed. This is layed out
in Table I, again largely following the description in [9].
The values lbl1, lbl2, and lbl3 are fixed strings (see [1,
Sec. V.D]). The value cookie is most of the time just 16 zero
bytes, except when the server is under load and is sending out
so-called “cookie replies” as denial-of-service countermeasure;
for details, see [1, Sec. V.D7].

III. FROM WireGuard TO PQ-WireGuard
As outlined in Sections I and II, the WireGuard handshake

is heavily based on DH, which does not have an efficient
and well established post-quantum equivalent. Hence, we
have to replace DH by KEMs for which well-established,
efficient post-quantum instantiations exist. To discuss our
KEM-based variant, first consider a simplified view on the
core of the DH-based WireGuard handshake. The initiator
has a long-term static DH key pair (sski, spki) and the
responder has a long-term static DH key pair (sskr, spkr).
The handshake proceeds as follows:

Initiator Responder

(eski, epki)← DH.Gen()
epki−−→

(eskr, epkr)← DH.Gen()
epkr←−−

k1 ← DH.Shared(sski, spkr) k1 ← DH.Shared(sskr, spki)
k2 ← DH.Shared(eski, spkr) k2 ← DH.Shared(sskr, epki)
k3 ← DH.Shared(sski, epkr) k3 ← DH.Shared(eskr, spki)
k4 ← DH.Shared(eski, epkr) k4 ← DH.Shared(eskr, epki)

The final session key is computed using the keys k1, k2, k3,
and k4.

A. Moving from DH to KEMs

In [18], Fujioka, Suzuki, Xagawa, and Yoneyama describe
an approach to authenticated key exchange using only
KEMs; we are largely following their approach in our
design. Towards our final proposal, let us first try to straight-
forwardly translate the DH picture to a KEM picture. The
problem is, as described in Subsection II-B, that we cannot
perform a non-interactive key exchange, i.e., we cannot
build an equivalent to the static-static DH computation of
k1. What we get as a naive KEM-based handshake without
this static-static DH requires an IND-CCA-secure KEM
CCAKEM = (CCAKEM.Gen,CCAKEM.Enc,CCAKEM.Dec)
and an IND-CPA-secure KEM CPAKEM =
(CPAKEM.Gen,CPAKEM.Enc,CPAKEM.Dec). The initiator
has a long-term static CCAKEM key pair (sski, spki) and
the responder has a long-term static CCAKEM key pair
(sskr, spkr). Now, the handshake proceeds as follows:

Initiator Responder

(eski, epki)← CPAKEM.Gen()
r1

$← {0, 1}λ, (c1, k1)← CCAKEM.Enc(spkr, r1)

Ae, c1−−→

r2
$← {0, 1}λ, (c2, k2)← CCAKEM.Enc(spki, r2)

r3
$← {0, 1}λ, (c3, k3)← CPAKEM.Enc(epki, r3)

c2, c3←−−

k1 ← CCAKEM.Dec(sskr, c1)
k2 ← CCAKEM.Dec(sski, c2)
k3 ← CPAKEM.Dec(eski, c3)

The role of static-static DH. This naive approach already has
lots of the security properties of the WireGuard handshake,
but it is lacking three properties that are achieved through the
inclusion of the static-static DH.

1) Security under MEX attacks. One corruption pattern
in MEX attacks reveals all ephemeral secrets to the
adversary, including the used randomness. The motiva-
tion for this pattern is a situation in which the protocol
is executed on a device with a subverted, or simply
broken RNG – in this case security can only be derived
from the long-term secret keys that have (ideally) been
generated in a secure environment. However, in the
above naive approach we do not obtain any security
in this scenario. The reason is that the randomness
used by CCAKEM.Enc is corrupted and consequently,
an adversary can recompute the shared secret simply
running CCAKEM.Enc.
The general approach to address this issue is to securely
combine ephemeral randomness r with some long-term

k seed Ck key κk hash Hk
1 H(lbl1) — H(C1 ‖ lbl2)
2 KDF1(C1, epki) — H(H1 ‖ spkr)
3 KDF1(C2,DH.Shared(eski, spkr)) KDF2(C2,DH.Shared(eski, spkr)) H(H2 ‖ epki)

KDF1(C2,DH.Shared(sskr, epki)) KDF2(C2,DH.Shared(sskr, epki)) H(H2 ‖ epki)
4 KDF1(C3,DH.Shared(sski, spkr)) KDF2(C2,DH.Shared(sski, spkr)) H(H3 ‖ ltk)

KDF1(C3,DH.Shared(sskr, spki)) KDF2(C2,DH.Shared(sskr, spki)) H(H3 ‖ ltk)
5 — — H(H4 ‖ time)
6 KDF1(C4, epkr) — H(H5 ‖ epkr)
7 KDF1(C6,DH.Shared(eski, epkr)) — —

KDF1(C6,DH.Shared(eskr, epki)) — —
8 KDF1(C7,DH.Shared(sski, epkr)) — —

KDF1(C7,DH.Shared(eskr, spki)) — —
9 KDF1(C8, psk) KDF3(C8, psk) H(H6 ‖ KDF2(C8, psk))
10 — — H(H9 ‖ zero)

TABLE I
COMPUTATION OF SEED VALUES, KEYS, AND HASHES THROUGH THE WireGuard HANDSHAKE. FOR VALUES OF k WITH TWO ROWS, THE FIRST ROW

DENOTES COMPUTATION ON THE INITIATOR SIDE AND THE SECOND ROW THE CORRESPONDING COMPUTATION ON THE RESPONDER SIDE.

secret σ before using it as protocol input. In [52] this is
done using PRF(r, σ)⊕PRF(σ′, r′) for two independent
ephemeral values r and r′ and two independent long-
term secret values σ and σ′, where ⊕ denotes exclusive
or. This “twisted PRF” trick ensures that nothing beyond
PRF security is required to prove this approach secure in
the standard model. In the case of WireGuard we will
see that we require a dual-PRF assumption on KDF1

anyway, so we can use this assumption here as well and
simplify the construction to KDF1(σ, r).

2) Resistance to unknown-keyshare attacks. The static-
static DH is also the only line of defense in WireGuard
against unknown-keyshare attacks. This is because the
IDs (or public keys) of the two parties are not hashed
into the final session key. As briefly discussed in Sec-
tion I, WireGuard has the option to hash a pre-shared
key psk into the final session key; by default psk is set
to the all-zero string. In PQ-WireGuard we instead set
psk to H(spki ⊕ spkr). This ensures that session keys
are linked to the static public keys of the communicating
parties and thus prevents unknown-keyshare attacks.

3) Authenticated initiation. Finally, the static-static DH
ensures that the first message from the initiator is
already authenticated. This allows the server to detect
illegitimate messages already at this very early stage
and consequently abort the handshake. This is not a
security property in the cryptographic sense, but helps
mitigate the effects of DoS attacks. If we follow the
argumentation of [12] stating that static public keys of
WireGuard users are typically not public and hence not
known to attackers, the same level of DoS protection is
achieved by the default value of psk = H(spki⊕spkr).
Users who do not want to rely on this assumption need
to set psk to an actual secret shared key that is agreed on
out-of-band to achieve the same level of DoS protection
as in WireGuard.

Our full proposal for the KEM-based PQ-WireGuard hand-
shake is given in Algorithm 2 and Table II. Aside from
translating all DH key exchanges, except for the static-static

Algorithm 2 High-level view on our PQ-WireGuard hand-
shake. Highlighted in blue are differences to Alg. 1.

Initiator Responder
1: (eski, epki)← CPAKEM.Gen()
2: sidi

$← {0, 1}32
3: ri ← {0, 1}λ
4: (ct1, shk1)← CCAKEM.Enc(spkr,KDF1(σi, ri))
5: ltk← AEAD.Enc(κ3, 0,H(spki), H3)
6: now ← Timestamp()
7: time← AEAD.Enc(κ4, 0, H4, now)
8: m1← MAC(H(lbl3 ‖spkr), type‖03 ‖sidi ‖epki ‖ct1‖ltk‖time)
9: m2← MAC(cookie, type ‖ 03 ‖ sidi ‖ epki ‖ ct1 ‖ ltk ‖ time ‖ m1)

10: InitHello← type ‖ 03 ‖ sidi ‖ epki ‖ ct1 ‖ ltk ‖ time ‖ m1 ‖ m2

InitHello−−→

11: (ct2, shk2)← CPAKEM.Enc(epki)
12: rr ← {0, 1}λ
13: (ct3, shk3)← CCAKEM.Enc(spki,KDF1(σr, rr))

14: sidr
$← {0, 1}32

15: zero← AEAD.Enc(κ9, 0, H9, ∅)
16: m1← MAC(H(lbl3‖spki), type‖03‖sidr ‖sidi‖ct2 ‖ ct3‖zero)
17: m2← MAC(cookie, type ‖ 03 ‖ sidr ‖ sidi ‖ ct2 ‖ ct3 ‖ zero ‖ m1)
18: RespHello← type ‖ 03 ‖ sidr ‖ sidi ‖ ct2 ‖ ct3 ‖ zero ‖ m1 ‖ m2

RespHello
←−−

19: tki ← KDF1(C9, ∅)
20: tkr ← KDF2(C9, ∅)

one, to corresponding KEM operations, we introduce the
following changes to the WireGuard handshake:

• We use calls to KDF1(σi, ri) and KDF1(σr, rr) in steps
4 and 13 of Alg. 2 to securely mix ephemeral randomness
with long-term randomness. This is precisely the coun-
termeasure against MEX attacks discussed above.

• We use H(spki ⊕ spkr) as default value for psk.
• Instead of feeding spki into AEAD.Enc in step 5, we

use H(spki). This is essentially the same trick proposed
in [12], except that we need it for a very different reason.
In [12] the reason is to add some protection against future
quantum attackers who are recording handshakes today.
For us the reason is simply a size reduction from the
potentially large public key of CCAKEM to a 32-byte

k seed Ck key κk hash Hk
1 H(lbl1) — H(C1 ‖ lbl2)
2 KDF1(C1, epki) — H(H1 ‖ spkr)
3 KDF1(C2, shk1) KDF2(C2, shk1) H(H2 ‖ epki)

KDF1(C2,CCAKEM.Dec(sskr, ct1)) KDF2(C2,CCAKEM.Dec(sskr, ct1)) H(H2 ‖ epki)
4 KDF1(C3, psk) KDF2(C2, psk) H(H3 ‖ ltk)
5 — — H(H4 ‖ time)
6 KDF1(C4, ct2) — H(H5 ‖ ct2)
7 KDF1(C6,CPAKEM.Dec(eski, ct2)) — —

KDF1(C6, shk2) — —
8 KDF1(C7,CCAKEM.Dec(sski, ct3)) — —

KDF1(C7, shk3) — —
9 KDF1(C8, psk) KDF3(C8, psk) H(H6 ‖ KDF2(C8, psk))
10 — — H(H9 ‖ zero)

TABLE II
COMPUTATION OF SEED VALUES, KEYS, AND HASHES THROUGH THE PQ-WireGuard HANDSHAKE. FOR VALUES OF k WITH TWO ROWS, THE FIRST

ROW DENOTES COMPUTATION ON THE INITIATOR SIDE AND THE SECOND ROW THE CORRESPONDING COMPUTATION ON THE RESPONDER SIDE.
HIGHLIGHTED IN BLUE ARE DIFFERENCES TO TABLE I.

hash of this public key.

IV. SECURITY ANALYSIS

We provide two proofs of security for PQ-WireGuard:
one in the computational and one in the symbolic model.
Thereby we establish the same setting as for WireGuard. In
the following we outline both proofs. In the computational
model we prove that the PQ-WireGuard handshake, like the
WireGuard handshake, achieves so called eCK-PFS-PSK-
security. While certainly on the stronger end of security
notions for authenticated key-exchange, eCK-PFS-PSK only
guarantees that the exchanged key is indistinguishable from
a random bit string. Further notions that PQ-WireGuard also
targets, such as anonymity and DoS-protection, are not covered
by it. These additional notions are covered by the symbolic
proof. The symbolic proof not only covers additional security
properties but also has the advantage of being computer-
verified. However, this comes at the cost of being done in
the symbolic model which treats all building blocks as ideal
and consequently can only lead to a heuristic argument.

A. The Computational Proof

To prove that the PQ-WireGuard handshake achieves
eCK-PFS-PSK-security, we adapt the computational proof for
WireGuard [9] by Dowling and Paterson (who kindly provided
us with their LATEX-sources) to PQ-WireGuard. The core step
is to replace proof steps (i.e., game-hops) making use of
either the PRFODH- or the DDH-assumptions with generic
KEM-security- and prf-assumptions. Most of these changes are
straightforward and readers who are familiar with the original
proofs should find the result familiar.

On a high level both proofs consist of the same case-
distinction between whether the adversary tries to impersonate
a party or learn information about the established key and the
ways in which the adversary is allowed to corrupt parties.
Then, for each case the proof uses a sequence of games to
show that the adversary has to either directly break the au-
thenticity of the AEAD-scheme for a successful impersonation

attack or distinguish two information-theoretically indistin-
guishable bit strings to learn any non-trivial information about
the key.

The majority of game hops are ones where the prf or the
prfswap assumptions are used. In these game-hops the output
of an HKDF, used to combine two intermediate values, at
least one of which is random (which one depends on the
adversarial corruption), gets replaced by a random value.
These ”symmetric game hops” are essentially the same in the
WireGuard and the PQ-WireGuard proof.

The other major category of game hops are those where
the output of some asymmetric primitive is replaced by a
random value. For WireGuard, these are the cases where two
DH shares get combined and hashed afterwards. In this case,
different versions of the PRFODH assumption are used to
argue indistinguishability of the games before and after the
hop. For PQ-WireGuard, these steps use KEM encapsulations
and decapsulations. In these cases, indistinguishability can be
argued using either IND-CPA- or IND-CCA-security of the
respective KEM.

The differences between the proofs for WireGuard and
PQ-WireGuard are not just limited to these asymmetric game
hops: The ways values are combined in some cases in
PQ-WireGuard differ substantially from WireGuard. This is
necessary to deal with the more limited abilities of KEMs
when compared to the Diffie-Hellman. As a consequence we
had to add multiple new symmetric game hops, particularly
around most asymmetric hybrids.

In addition to that we noticed one minor mistake in the
WireGuard proof that also directly affects our proof. The
WireGuard proof claims that it is sufficient for the used hash
function to be a prf. This turns out to be too weak. The hash
is used to combine two inputs. While in different corruption
settings there is always one input that is pseudorandom, it is
not always the same input. Consequently, the function actually
has to be a dual-prf (which can be keyed on either input). For
the most part this occurs in asymmetric game hops where the
prf-assumption is “hidden” in the PRFODH assumption but it
also occurs in one symmetric hop. We notified the authors of

the WireGuard proof who acknowledged the issue.
Given these changes, we are able to show that there is

no efficient adversary against the eCK-PFS-PSK security of
PQ-WireGuard under the assumptions that the used hash func-
tion is a secure dual-prf, that the used KEMs are respectively
IND-CCA and IND-CPA secure and that the used AEAD
scheme is secure in terms of authenticity. More specifically
we show that for every possibly quantum adversary A:

AdveCK-PFS-PSK
pqWG,cleaneCK-PFS-PSK,nP ,nS ,A(λ)

≤ n2PnS

(7nS + 9) · Advprf
HKDF,A(λ)

+ (2nS + 4) · Advprfswap

HKDF,A(λ)

+ (nS + 2) · AdvIND-CCA
CCAKEM,A(λ)

+ nS · AdvIND-CPA
CPAKEM,A(λ)

+ 2 · Advauth-aead
AEAD,A (λ)

+ (nS + 2) · ns
2λ

where nP is the number of parties and nS is the number of

sessions. Our security proof, including a slightly tighter and
more precise bound is available in Appendix B.

Finally we would like to point out a pleasant side-result of
the strong security-notion and the use of two different KEMs
that correspond to static and ephemeral keys: If we model the
break of a KEM as the reveal of all secret keys (and therefore
also encapsulated secrets) then a break of either KEM does not
break the confidentiality of PQ-WireGuard as long as there is
no further corruption:

A break of our CCA-KEM would be equivalent to a corrup-
tion of all static secrets, but notably not the ephemeral keys
used with the CPA-KEM. As long as no ephemeral secrets
are compromised the eCK-PFS-PSK still promises in this case
that the established key remains confidential. (Authenticity is
trivially broken however.)

A break of our CPA-KEM on the other hand would be
equivalent to a corruption of all ephemeral secrets, but not
of the static secrets that are used with the CCA-KEM. As
long as no static secrets are compromised the eCK-PFS-PSK-
security still promises both authenticity and confidentiality,
though without forward secrecy.

The consequence of this is an increased robustness of
the scheme which is relevant to us as most post-quantum
primitives (in case of our proposed instantiation particularly
Dagger) are rather new and therefore more likely to break than
more traditional schemes. The practical consequence of this is
that there is less need for us to provide a hybrid version of
PQ-WireGuard and WireGuard than there would normally be,
allowing for a more efficient protocol.

B. The Symbolic Proof

The symbolic proof of PQ-WireGuard uses the Tamarin
prover [53], building on the symbolic proof for WireGuard.
Tamarin is a formal verification tool for cryptographic proto-
cols. It supports stateful protocols, falsification and unbounded
verification. Those features as well as its built-in support of
Diffie-Hellman exponentiation motivate the use of Tamarin
to model several cryptographic protocols, including TLS 1.3

[54] and the 5G protocol[55]. In Appendix C we give a brief
introduction to Tamarin. A full tutorial can be found in the
Tamarin manual [56].

Our Symbolic Model. The symbolic model of PQ-WireGuard
is based on the Tamarin model of WireGuard [8] but ex-
tends it. The Tamarin model of WireGuard does not cover
replay resistance and DoS attack resistance, both claimed by
WireGuard, which we add. Furthermore, the WireGuard model
did not allow an adversary to compromise the random number
generator of an honest party, which is allowed in our extended
model, e.g. when corrupting the ephemeral state of a party.

We modified the original model to reflect PQ-WireGuard
and extended the ability of the adversary. In particular, we
analyze the PQ-WireGuard protocol for an unbounded number
of concurrent handshakes under MEX attacks.

The DH-based key exchange of WireGuard was modeled as

r u l e H a n d s h a k e _ I n i t :
l e t pkI = ’g ’^~ l t k I

pek I = ’g ’^~ e k I
e i s r = pkR^~ e k I
c i i = h (’ n o i s e ’)
h i i = h (< c i i , ’ id ’ , pkR , pekI >)
c i 0 = h (< c i i , pekI , ’1 ’ >)
c i 1 = h (< c i0 , e i s r , ’1 ’ >)
k i 1 = h (< c i0 , e i s r , ’2 ’ >)
a s t a t = aead (ki1 , <pkI , ~ p k I S u r r o g a t e > , h i i)
h i 0 = h (< h i i , a s t a t >)
c i 2 = h (< c i1 , s i s r , ’1 ’ >)
k i 2 = h (< c i1 , s i s r , ’2 ’ >)
a t s = aead (ki2 , $ t s , h i 0)
h i 1 = h (< hi0 , a t s >)
m1 = < ’1 ’ , ~ s i d I , pekI , a s t a t , a t s , $mac1 , $mac2

> i n
[. . .

For PQ-WireGuard this key exchange is replaced by the KEM-
based construction described in Algorithm 2. We model this
approach with the following rule

r u l e H a n d s h a k e _ I n i t :
l e t pkI = pk (~ l t k I)

kb = p r f (~ tpk , ~ r3)
pek I = pk (~ e k I)
c i i = h (’ n o i s e ’)
h i i = h (c i i , ’ id ’ , pkR)
c i 0 = h (c i i , pekI , ’ 1 ’)
h i 0 = h (h i i , pek I)
s c t = aenc { kb }pkR
c i 1 = h (c i0 , kb , ’ 1 ’)
k i 1 = h (c i0 , kb , ’ 2 ’)
a s t a t = aead (ki1 , <h (pkI) , ~ p k I S u r r o g a t e > , h i 0)
h i 1 = h (hi0 , a s t a t)
c i 2 = h (c i1 , ~psk , ’ 1 ’)
k i 2 = h (c i1 , ~psk , ’ 2 ’)
a t s = aead (ki2 , < $ t s , ’TAI64N ’ > , h i 1)
h i 2 = h (hi1 , a t s)
m1 = < ’1 ’ , ~ s i d I , s c t , pekI , a s t a t , a t s , $mac1 ,

$mac2> i n
[. . .

This way we modified both the model and the proofs of the ex-
isting security properties to match PQ-WireGuard. In addition,
we analyzed the aforementioned missing security properties
that were not included in the original model. For each of
those security properties, we identify the exact conditions
under which the security property holds. The results for the
added security proofs are presented in the rest of this section.
Appendix D provides the results for the remaining properties.

The full Tamarin proof is part of the supplementary material
of this paper.

Replay Attack. We model the replay attack protection on the
responder as a restriction that only allows a responder to accept
an initiation message with a particular timestamp once.
restriction OnlyOnce:

"All i r t #i #j. OnlyOnce(i, r, t) @ i
& OnlyOnce(i, r, t) @ j ==> #i = #j"

This timestamp value is public, which reflects the fact that
an adversary can easily infer the timestamp. Only accepting
a particular timestamp once is a relaxation of the actual
protection mechanism in the implementation, as the responder
would reject an initiation message with a timestamp that is less
or equal to the last known timestamp from a particular initiator,
while in our model a responder only rejects an initiation
message if the timestamp is equal to the last known timestamp.
Note that this restriction already prevents an adversary from
replaying an initiation message as a whole.

Consequently, we allow an adversary to tamper with
arbitrary fields in an initiation message before it is
replayed. An initiation message contains the fields
(sidi, epki, ct1, ltk, time). sidi is purely a handshake
session identifier and plays no role in the actual handshake.
ct1 encapsulates shk1. The ephemeral public key epki is
mixed together with shk1 to generate the symmetric keys κ3
and κ4 used to encrypt ltk and time. Therefore, the adversary
must compromise shk1 in order to tamper the timestamp
value encrypted in time.

With this notion in mind, the replay attack protection seems
to rely on the secrecy of shk1 alone, and we prove with lemma
replay_attack_resistance that this is indeed the case.
lemma replay_attack_resistance:

"All pki pkr peki peki2 psk psk2 cr cr2 kb ka ka2 k k2
ts ts2 tpk r #i #i1 #j.
// if R receives an init msg containing secret kb
RKeys(<pki, pkr, peki, psk, cr, kb, ka, k>) @ i
& OnlyOnce(pki, pkr, ts) @ i
// and the init msg indeed comes from I, and
& ISend(<pki, pkr, peki, psk, kb>) @ i1 & #i1 < #i
& PRFGen(tpk, r, kb) @ i1
// R receives later another init msg containing the same secret kb
& RKeys(<pki, pkr, peki2, psk2, cr2, kb, ka2, k2>) @ j & #i < #j
// with a different timestamp
& OnlyOnce(pki, pkr, ts2) @ j & not(ts = ts2)

==> // then the adversary crafted the second init msg
not(Ex #j1. ISend(<pki, pkr, peki2, psk2, kb>) @j1

& #j1 < #j & #i < #j1) & (
// by compromising the static key of R
(Ex #j1. Reveal_AK(pkr) @ j1 & #j1 < #j)
// or by compromising both I’s RNG and I’s PRF key
| ((Ex #j1. Reveal_rnd(r) @ j1)

& (Ex #j1. Reveal_prfk(tpk) @ j1))
)"

In particular, we prove that an adversary cannot trick a
responder into accepting an initiation message with an encap-
sulated secret shk1 that the responder has seen before, without
compromising
• the responder’s static private key, or
• the initiator’s random number generator and PRF secret.

DoS Attack. In WireGuard, the result of the static-static DH is
used to authenticate the initiation message. In PQ-WireGuard,

there is no static-static DH to use anymore; instead, the pre-
shared key is used for this purpose. Without the pre-shared key,
the authenticity of an initiation message cannot be established,
and the initiation message will be processed. With lemma
dos_resistance we prove that an adversary must compromise
the pre-shared key in order to launch a DoS attack on a victim.
lemma dos_resistance:

"All pki pkr peki psk cr kb ka k #i.
// if R accepts an init msg containing secret kb
RKeys(<pki, pkr, peki, psk, cr, kb, ka, k>) @ i
// but the init msg was crafted by the adversary,
// either by encapsulating kb herself or by
// using a ciphertext created by
// an honest initiator that contains kb
& not(Ex pki pkr peki1 psk1 #j.

ISend(<pki, pkr, peki1, psk1, kb>) @ j & #j < #i)
==> // then the PSK was compromised (or not in use)

Ex #j. Reveal_PSK(psk) @ j & #j < #i"

To be more specific, we prove that a responder R will not
process an initiation message from the claimed initiator I
unless the initiation message was indeed sent by I or the pre-
shared key between R and I has been compromised.

In summary, our Tamarin model shows that all the security
properties of WireGuard are satisfied except for DoS-attack
resistance, which relies on static-static Diffie-Hellman results.
We show that by mixing an optional pre-shared symmetric key
into the initiation message, one can achieve the same level of
DoS resistance as WireGuard.

V. INSTANTIATION WITH MCELIECE AND SABER

The generic approach for a purely KEM-based variant of
WireGuard allows us in principle to instantiate the protocol
with any post-quantum KEM(s) with the required security
properties. In this section we describe the concrete instanti-
ation we chose. We selected the Classic McEliece [22] IND-
CCA KEM and an IND-CPA secure variant of Saber [24],
[23]. One could say that this choice, —just like the choices of
primitives in WireGuard— is “cryptographically opinionated”.
The criteria by which we made this choice are the following:
• stick to primitives that are in the second round of the

NIST PQC project and thus have potential to become a
future standard;

• choose parameters that reach NIST security level 3
(see [57, Sec. 4.A.5]);

• do not increase the number of required unfragmented
IPv6 packets for the handshake compared to WireGuard
(one sent by the initiator and one by the responder);

• pick primitives that have high-performance timing-attack
protected implementations;

• pick “conservative” primitives, i.e, primitives building on
a history of cryptanalytic results;

• stay away from primitives that the submitters declare to
be encumbered by patents; and

• do not modify or tweak primitives in any way that would
invalidate security reductions.

The most limiting of these criteria is to fit both the initiator’s
and the responder’s handshake messages into one IPv6 packet.
IPv6 mandates every link in the internet to support an MTU

of at least 1280 bytes [20, Sec. 5]. Out of those 1280 bytes,
40 are required for the IPv6 header and another 8 are required
for the UDP header. This leaves 1232 bytes for the WireGuard
handshake payloads. In the initiator’s message, the fields type,
03, sidi, ltk, time, m1, and m2 together occupy 116 bytes,
which leaves 1116 bytes for a CPAKEM public key and a
CCAKEM ciphertext. In the responder’s message, the fields
type, 03, sidi, sidr, zero, m1, and m2 together occupy 60
bytes, which leaves 1172 bytes for a CPAKEM ciphertext and
a CCAKEM ciphertext.

Classic McEliece as CCAKEM. Note in Alg. 2 that the
handshake never sends public keys of CCAKEM; also the
computation does not involve any CCAKEM.Gen operations.
This means that for the instantiation of CCAKEM we are
mainly concerned about ciphertext size with secondary criteria
being encapsulation and decapsulation speed. Out of all round-
2 NIST PQC candidate KEMs4, Classic McEliece has the
smallest ciphertext by far, weighing in at only 188 bytes
for the level-3 parameter set mceliece460896. Also, Classic
McEliece comes with very fast timing-attack-protected soft-
ware for encapsulation and decapsulation, which makes it the
ideal choice of primitive for our use case. Note that McEliece
is often regarded as a conservative, but rather inefficient
choice, because of its slow key generation and large public
keys – however, these disadvantages are precisely the aspects
that do not matter for us here.

Tweaked Saber as CPAKEM. With the rather straightforward
choice of Classic McEliece as instantiation of CCAKEM
fixed, we need to find an IND-CPA KEM among the NIST
candidates that has public keys of at most 928 bytes and
ciphertexts of at most 984 bytes for parameters that reach
the NIST security level 3. The only KEMs that meet these
criteria are Round5 [58], SIKE [59], and ROLLO-I [60].
Unfortunately, none of these three meets our other criteria.
Round-5 is covered by patents held by the submitters; SIKE
is rather slow, for example more than an order of magnitude
slower than most lattice-based KEMs, and ROLLO-I cannot be
seen as a particularly conservative choice. Specifically, in the
document explaining the choice of round-2 candidates [61],
NIST writes about the rank-based candidate ROLLO-I:

“Nonetheless rank-based cryptography is quite new
and not as well studied as lattice-based cryptogra-
phy or code-based cryptography using the Hamming
metric. More cryptanalysis on rank-based primitives
would be valuable.”

However, among the remaining candidates, there are mul-
tiple lattice-based KEMs with public keys and ciphertext that
are only slightly larger than what we need. Also, most of
them aim for IND-CCA security (which we do not need to
instantiate CPAKEM) and some of them allow to reduce the
size of public keys and ciphertexts at the expense of achieving
only IND-CPA security and increasing failure probability.

4For an overview, see https://pqc-wiki.fau.edu/

Concretely, Saber already includes public-key and ciphertext
compression, and, in order to achieve IND-CCA security, care-
fully chooses parameters to minimize sizes while keeping the
failure probability δ cryptographically negligible. We decided
to propose an IND-CPA version of Saber, which compresses
public keys and ciphertexts even further. This comes at the
additional advantage that the underlying hard lattice problem
becomes harder, but at the expense of significantly increased
failure probability. Specifically, the Saber specification states
that “a higher choice for parameters p and T , will result
in lower security, but higher correctness” [24, Sec. 2.2]; the
parameters p and T are precisely what controls public-key and
ciphertext sizes.

The original parameters for the level-3 parameters of Saber
use p = 210 and T = 24; we propose to use p = 29 and
T = 23 for an IND-CPA variant of Saber. In the following
we will refer to this variant of Saber as “Dagger”. Compared
to Saber, the modifications in Dagger reduce the public-key
size from 992 bytes to 896 bytes and the ciphertext size from
1088 bytes to 960 bytes, which is well within our limits. To
analyze the failure rate and bit security of Dagger, we adapt the
Python script that comes with the Saber submission package
to run on the new parameters. This adapted Python script is
included with the software package at . Compared to Saber,
the post-quantum bit security of Dagger increases from 180
to 198 bits; the failure probability increases from 2−136.14 to
2−25.25. Note that on the protocol level such a failure has a
similar effect to a failed UDP packet transmission. Essentially
it means that about one out of every 40 million handshakes will
need to be repeated. In addition to the modified values of p and
T , Dagger does not use the Fujisaki-Okamoto transform [30],
i.e., the construction that Saber uses to build an IND-CCA
KEM from an IND-CPA public-key encryption scheme. For a
pseudocode description of Dagger see Appendix A.

VI. PERFORMANCE ANALYSIS

In this Section, we present performance benchmarks
of our proposal of PQ-WireGuard and compare to origi-
nal WireGuard (version 0.0.20191206), IPsec (strongSwan
in version U5.6.2/K4.15.0-72-generic), OpenVPN (version
2.4.4, linked against OpenSSL 1.1.1), OpenVPN-NL (version
2.4.7, linked against mbed TLS 2.16.2), and PQCrypto-VPN
(OpenVPN 2.4.4, linked against OQS-OpenSSL 1.0.2 [62]).
OpenVPN-NL is a branch of OpenVPN, which is mandated for
critical infrastructure in the Netherlands by the Dutch govern-
ment, while PQCrypto-VPN is the aforementioned VPN soft-
ware from Microsoft [45] based on OpenVPN and the Open
Quantum Safe (OQS) framework [62]. Note that PQCrypto-
VPN has optional post-quantum authentication using the Pic-
nic signature scheme [63], [64]; in our experiments we do
not use this option, but benchmark PQCrypto-VPN only with
post-quantum confidentiality. To achieve this post-quantum
confidentiality, PQCrypto-VPN has two options, both provided
through OQS: either SIDH-503 as described in [65] or Frodo-
752 as described in [66].

https://pqc-wiki.fau.edu/

Our implementation of the PQ-WireGuard software is
based on the original WireGuard implementation. For Classic
McEliece we use the “avx” software targeting recent 64-bit In-
tel processors, which has been submitted to SUPERCOP [67]
by the Classic McEliece team. For the implementation of
Dagger we start from the Saber reference implementation and
adapt the files kem.c (to remove the CCA transform) and
SABER_params.h (to change the values of p and T).

We carried out the experiments between two virtual ma-
chines managed by VMware’s “vSphere” in version 6.7 and
connected through a virtual Ethernet link (VMware “vSwitch”)
with a bandwidth limit of 10 Gbit/s. Both virtual machines are
running Linux kernel 4.15.0. The underlying physical machine
is powered by Intel Xeon Gold 6130 (Skylake) CPUs running
at 2.1 GHz.

We compare the handshake efficiency by the following met-
rics: the amount of traffic, the number of packets exchanged,
and the time span of the handshake. The client time span is the
elapsed time between when the client starts any computation
for a handshake and when session keys are derived from the
handshake on the client side. Similarly, the server time span
is when the server receives an initiation packet from the client
and starts any computation for it and when session keys are
derived on the server side.

The handshake protocol of each VPN software was invoked
for 1000 times to compute the average and standard deviation
(enclosed by parentheses) of those metrics. The results with
IPv4 and IPv6 are presented in Table III and Table IV,
respectively. In both tables, the amount of traffic includes the
14-byte Ethernet frame headers.

VPN Software Packet Traffic Client Time Server Time
Number (bytes) (milliseconds) (milliseconds)

WireGuard 2 324 0.606 0.187
(0) (0) (0.572) (0.005)

PQ-WireGuard 2 2492 0.924 0.296
(this paper) (0) (0) (0.573) (0.027)
IPsec 6 4123 17.046 11.823
(RSA-2048) (0) (0) (0.826) (0.726)
IPsec 4 2145 5.127 2.807
(Curve25519) (0) (0) (0.375) (0.431)
OpenVPN 21.005 7535.507 1150.872 1144.994
(RSA-2048) (0.071) (7.940) (244.288) (251.304)
OpenVPN 19.005 5408.572 1152.238 1150.310
(NIST P-256) (0.007) (7.997) (242.014) (253.582)
OpenVPN-NL 19.005 5685.585 1157.732 1151.446
(RSA-2048) (0.007) (8.155) (244.015) (246.534)
OpenVPN-NL 19.006 5681.711 1159.099 1156.482
(NIST P-256) (0.078) (8.979) (241.534) (235.703)
PQ-OpenVPN 63.001 34348.114 1151.529 1143.337
(Frodo-752) (0.032) (3.569) (235.234) (238.465)
PQ-OpenVPN 23.003 8536.345 1266.838 1265.332
(SIDHp503) (0.055) (6.188) (258.101) (264.271)

TABLE III
RESOURCES REQUIREMENT FOR HANDSHAKE PROTOCOL OVER IPV4,

NUMBERS IN PARENTHESES ARE STANDARD DEVIATION

We see that both WireGuard and PQ-WireGuard only
require 2 packets, which is optimal for an authenticated key
exchange. We also see that in PQ-WireGuard, the total time
required for the handshake increases by less than 60% com-
pared to WireGuard, at least when it is run over a high-speed
network link as in our experiments. Similarly, the time required

VPN Software Packet Traffic Client Time Server Time
Number (bytes) (milliseconds) (milliseconds)

WireGuard 2 364 0.580 0.184
(0) (0) (0.628) (0.005)

PQ-WireGuard 2 2532 0.917 0.295
(this paper) (0) (0) (0.544) (0.026)
IPsec 6 4299 17.188 11.912
(RSA-2048) (0) (0) (0.712) (0.535)
IPsec 4 2281 5.226 2.822
(Curve25519) (0) (0) (0.575) (0.436)
OpenVPN 21.003 7955.409 1148.733 1142.650
(RSA-2048) (0.055) (7.319) (250.513) (243.184)
OpenVPN 19.005 5788.610 1139.140 1133.944
(NIST P-256) (0.007) (9.423) (247.659) (240.691)
OpenVPN-NL 19.005 6065.700 1162.649 1151.790
(RSA-2048) (0.072) (9.665) (261.078) (246.363)
OpenVPN-NL 19.001 6061.138 1159.627 1153.949
(NIST P-256) (0.003) (4.304) (252.989) (247.470)
PQ-OpenVPN 63.006 35608.817 1160.922 1155.713
(Frodo-752 [66]) (0.078) (10.324) (259.246) (245.614)
PQ-OpenVPN 23.005 8996.684 1277.172 1269.074
(SIDHp503) (0.072) (9.449) (251.461) (257.427)

TABLE IV
RESOURCES REQUIREMENT FOR HANDSHAKE PROTOCOL OVER IPV6,

NUMBERS IN PARENTHESES ARE STANDARD DEVIATION

for server-side computations increases by a little less than 60%
compared to WireGuard. The computational effort for both
WireGuard and PQ-WireGuard are dominated by public-key
cryptography; we would expect that future improvements to
the McEliece or Dagger software will bring PQ-WireGuard
even closer to the performance of WireGuard.

Just as the original WireGuard software, PQ-WireGuard
outperforms the main competitors IPsec and OpenVPN in
terms of handshake time, computation time on the server,
number of transmitted packets, and amount of transmitted
data. Specifically, the PQ-WireGuard handshake is more than
5 times faster than the handshake of IPsec and more than three
orders of magnitude faster than the handshake of any variant
of OpenVPN,

ACKNOWLEDGEMENTS

We would like to thank Benjamin Dowling and Kenneth G.
Paterson for helpful discussions and the LATEX sources of their
proof.

This work has been supported by the European Commission
through the ERC Starting Grant 805031 (EPOQUE), and by
the Dutch Ministry of Economic Affairs and Climate Policy
through the WBSO R&D tax credit.

REFERENCES

[1] J. Donenfeld, “WireGuard: Next Generation Kernel Network Tunnel,”
in 24th Annual Network and Distributed System Security Symposium.
Internet Society, 2017, https://www.ndss-symposium.org/wp-content/
uploads/2017/09/ndss2017_04A-3_Donenfeld_paper.pdf. 1, 6

[2] T. Perrin, “Noise protocol framework,” https://noiseprotocol.org/noise.
pdf (accessed 2019-10-22). 1, 2

[3] D. J. Bernstein, “Curve25519: new Diffie-Hellman speed records,” in
Public Key Cryptography – PKC 2006, ser. LNCS, M. Yung, Y. Dodis,
A. Kiayias, and T. Malkin, Eds., vol. 3958. Springer, 2006, pp. 207–
228, http://cr.yp.to/papers.html#curve25519. 1, 4

[4] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“BLAKE2: Simpler, smaller, fast as MD5,” in Applied Cryptography and
Network Security – ACNS 2013, ser. LNCS, M. Jacobson, M. Locasto,
P. Mohassel, and R. Safavi-Naini, Eds., vol. 7954. Springer, 2013, pp.
119–135, . 1

https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-3_Donenfeld_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-3_Donenfeld_paper.pdf
https://noiseprotocol.org/noise.pdf
https://noiseprotocol.org/noise.pdf
http://cr.yp.to/papers.html#curve25519

[5] D. J. Bernstein, “The Poly1305-AES message-authentication code,” in
Fast Software Encryption, ser. LNCS, H. Gilbert and H. Handschuh,
Eds., vol. 3557. Springer, 2005, pp. 32–49, http://cr.yp.to/papers.html#
poly1305. 1

[6] ——, “ChaCha, a variant of Salsa20,” in Workshop Record of SASC
2008: The State of the Art of Stream Ciphers, 2008, http://cr.yp.to/papers.
html#chacha. 1

[7] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF protocols,”
IETF RFC 8439, 2018, https://tools.ietf.org/pdf/rfc8200.pdf. 1

[8] Jason Donenfeld and Kevin Milner, “Formal verification of the Wire-
Guard protocol,” 2018, version June 7, 2018, https://www.wireguard.
com/papers/wireguard-formal-verification.pdf. 1, 2, 9

[9] B. Dowling and K. G. Paterson, “A cryptographic analysis of the
WireGuard protocol,” in Applied Cryptography and Network Security.,
ser. LNCS, B. Preneel and F. Vercauteren, Eds., vol. 10892. Springer,
2018, https://eprint.iacr.org/2018/080. 1, 2, 4, 5, 6, 8, 15, 23

[10] “BoringTun,” https://github.com/cloudflare/boringtun. 1
[11] L. Torvalds, “Re: [GIT] Networking,” Posting to the Linux kernel mail-

ing list, 2018, http://lkml.iu.edu/hypermail/linux/kernel/1808.0/02472.
html. 1

[12] J. Appelbaum, C. Martindale, and P. Wu, “Tiny WireGuard tweak,” in
Progress in Cryptology – AFRICACRYPT 2019, ser. LNCS, J. Buch-
mann, A. Nitaj, and T. Rachidi, Eds., vol. 11627. Springer, 2019, pp.
3–20, https://eprint.iacr.org/2019/482. 1, 7

[13] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, “CSIDH:
An efficient post-quantum commutative group action,” in Advances in
Cryptology – ASIACRYPT 2018, ser. LNCS, T. Peyrin and S. Galbraith,
Eds., vol. 11274. Springer, 2018, pp. 395–427, https://csidh.isogeny.
org/csidh-20181118.pdf. 2

[14] X. Bonnetain and A. Schrottenloher, “Submerging CSIDH,” Cryptology
ePrint Archive, Report 2018/537, 2018, https://eprint.iacr.org/2018/537.
2

[15] D. J. Bernstein, T. Lange, C. Martindale, and L. Panny, “Quantum
circuits for the CSIDH: optimizing quantum evaluation of isogenies,”
in Advances in Cryptology – EUROCRYPT 2019, ser. LNCS, Y. Ishai
and V. Rijmen, Eds., vol. 11477. Springer, 2019, pp. 409–441,
https://eprint.iacr.org/2018/1059. 2

[16] C. Peikert, “He gives C-sieves on the CSIDH,” Cryptology ePrint
Archive, Report 2019/725, 2019, https://eprint.iacr.org/2019/725. 2

[17] D. J. Bernstein, “Re: [pqc-forum] new quantum cryptanalysis
of CSIDH,” Posting to the NIST pqc-forum mailing list, 2019,
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/
svm1kDy6c54/0gFOLitbAgAJ. 2

[18] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, “Strongly
secure authenticated key exchange from factoring, codes, and lattices,”
in Public-Key Cryptography – PKC 2012, ser. LNCS, M. Fischlin,
J. Buchmann, and M. Manulis, Eds. Springer, 2012, pp. 467–484,
https://eprint.iacr.org/2012/211. 2, 3, 4, 6

[19] A. Atlasis, “Attacking IPv6 implementation using fragmentation,”
Blackhat Europe, 2012, http://media.blackhat.com/bh-eu-12/Atlasis/
bh-eu-12-Atlasis-Attacking_IPv6-WP.pdf. 2

[20] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6) specifi-
cation,” IETF RFC 8200, 2017, https://tools.ietf.org/pdf/rfc8200.pdf. 2,
11

[21] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess,
A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes,
V. Soukharev, D. Urbanik, and G. Pereira, “Supersingular isogeny key
encapsulation,” Round-2 submission to the NIST PQC project, 2019,
https://sike.org/files/SIDH-spec.pdf. 2

[22] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki,
R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier,
J. Szefer, and W. Wang, “Classic McEliece: conservative
code-based cryptography,” Round-2 submission to the NIST
PQC project, 2019, https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-2/submissions/
Classic-McEliece-Round2.zip. 2, 10

[23] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,” in Progress in Cryptology – AFRICACRYPT 2018, ser.
LNCS, A. Joux, A. Nitaj, and T. Rachidi, Eds., vol. 10831. Springer,
2018, pp. 282–305, https://eprint.iacr.org/2018/230. 2, 5, 10

[24] ——, “SABER: Mod-LWR based KEM (round 2 submission),” Round-2
submission to the NIST PQC project, 2019, https://www.esat.kuleuven.
be/cosic/pqcrypto/saber/resources.html. 2, 10, 11, 14

[25] D. J. Bernstein, “Re: [pqc-forum] ROUND 2 OFFICIAL COMMENT:
NewHope,” Posting to the NIST pqc-forum mailing list, 2019,
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/
u3FoYrN-7fk/3EZwDIvDBQAJ. 2

[26] ——, “Re: [pqc-forum] ROUND 2 OFFICIAL COMMENT:
NewHope,” Posting to the NIST pqc-forum mailing list, 2019,
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/
u3FoYrN-7fk/MxBVn9M7CQAJ. 2

[27] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “NEWHOPE
without reconciliation,” Cryptology ePrint Archive, Report 2016/1157,
2016, https://eprint.iacr.org/2016/1157. 2

[28] T. Perrin, “KEM-based hybrid forward secrecy for Noise,” 2018,
https://github.com/noiseprotocol/noise_hfs_spec/blob/master/output/
noise_hfs.pdf. 3

[29] C. Boyd, Y. Cliff, J. Gonzalez Nieto, and K. G. Paterson, “Efficient one-
round key exchange in the standard model,” in Information Security and
Privacy, Y. Mu, W. Susilo, and J. Seberry, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 69–83. 3

[30] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Advances in Cryptology - CRYPTO
’99, ser. LNCS, M. Wiener, Ed., vol. 1666. Springer, 1999, pp.
537–554, http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/
KyYeu/DuLieuNuocNgoai/4.Advances%20in%20cryptology-Crypto%
201999-LNCS%201666/16660537.pdf. 3, 11

[31] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh, “Generic authenti-
cated key exchange in the quantum random oracle model,” Cryptology
ePrint Archive, Report 2018/928, 2018, https://eprint.iacr.org/2018/928.
3

[32] Understanding and C. A. via Double-key Key Encapsulation Mechanism,
“Haiyang xue and xianhui lu and bao li and bei liang and jingnan he,”
in Advances in Cryptology – ASIACRYPT 2018, ser. LNCS, T. Peyrin
and S. Galbraith, Eds., vol. 11274. Springer, 2018, pp. 158–189, https:
//eprint.iacr.org/2018/817. 3

[33] J. Zhang, Z. Zhang, J. Ding, M. Snook, and Ö. Dagdelen, “Authenti-
cated key exchange from ideal lattices,” in Advances in Cryptology –
EUROCRYPT 2015, ser. LNCS, E. Oswald and M. Fischlin, Eds., vol.
9057. Springer, 2015, pp. 719–751, https://eprint.iacr.org/2014/589/. 3

[34] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, and D. Stehlé, “CRYSTALS – Kyber: a CCA-secure
module-lattice-based KEM,” in 2018 IEEE European Symposium on
Security and Privacy, EuroS&P 2018. IEEE, 2018, pp. 353–367,
https://eprint.iacr.org/2017/634. 3

[35] P. Longa, “A note on post-quantum authenticated key exchange from
supersingular isogenies,” Cryptology ePrint Archive, Report 2018/267,
2018, https://eprint.iacr.org/2018/267. 3

[36] X. Xu, H. Xue, K. Wang, , M. H. Au, B. Liang, and S. Tian, “Strongly
secure authenticated key exchange from supersingular isogenies,” in
Advances in Cryptology – ASIACRYPT 2019, ser. LNCS, S. D. Galbraith
and S. Moriai, Eds., vol. 11921. Springer, 2019, pp. 278–308,
https://eprint.iacr.org/2018/760. 3

[37] A. Fujioka, K. Takashima, S. Terada, and K. Yoneyama, “Supersingular
isogeny diffie-hellman authenticated key exchange,” in Information Se-
curity and Cryptology – ICISC 2018, ser. LNCS, K. Lee, Ed., vol. 11396.
Springer, 2019, pp. 177–195, https://eprint.iacr.org/2018/730.pdf. 3

[38] B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised cryptographic
proof of the WireGuard virtual private network protocol,” in IEEE
European Symposium on Security and Privacy (EuroS&P’19). IEEE,
2019, pp. 231–246, https://prosecco.gforge.inria.fr/personal/bblanche/
publications/LippBlanchetBhargavanEuroSP19.html. 3

[39] B. Dowling, P. Rösler, and J. Schwenk, “Flexible authenticated and
confidential channel establishment (fACCE): Analyzing the noise pro-
tocol framework,” Cryptology ePrint Archive, Report 2019/436, 2019,
https://eprint.iacr.org/2019/436. 3

[40] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of TLS-
DHE in the standard model,” in Advances in Cryptology – CRYPTO
2012, ser. LNCS, R. Safavi-Naini and R. Canetti, Eds., vol. 7417.
Springer, 2012, pp. 273–293, https://eprint.iacr.org/2011/219. 3

[41] N. Kobeissi, G. Nicolas, and K. Bhargavan, “Noise Explorer: Fully
automated modeling and verification for arbitrary Noise protocols,” in
IEEE European Symposium on Security and Privacy (EuroS&P’19).
IEEE, 2019, pp. 356–370, https://eprint.iacr.org/2018/766. 3

[42] B. Blanchet, “ProVerif: Cryptographic protocol verifier in the formal
model,” https://prosecco.gforge.inria.fr/personal/bblanche/proverif/ (ac-
cessed 2019-10-21). 3

http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#chacha
http://cr.yp.to/papers.html#chacha
https://tools.ietf.org/pdf/rfc8200.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://eprint.iacr.org/2018/080
https://github.com/cloudflare/boringtun
http://lkml.iu.edu/hypermail/linux/kernel/1808.0/02472.html
http://lkml.iu.edu/hypermail/linux/kernel/1808.0/02472.html
https://eprint.iacr.org/2019/482
https://csidh.isogeny.org/csidh-20181118.pdf
https://csidh.isogeny.org/csidh-20181118.pdf
https://eprint.iacr.org/2018/537
https://eprint.iacr.org/2018/1059
https://eprint.iacr.org/2019/725
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/svm1kDy6c54/0gFOLitbAgAJ
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/svm1kDy6c54/0gFOLitbAgAJ
https://eprint.iacr.org/2012/211
http://media.blackhat.com/bh-eu-12/Atlasis/bh-eu-12-Atlasis-Attacking_IPv6-WP.pdf
http://media.blackhat.com/bh-eu-12/Atlasis/bh-eu-12-Atlasis-Attacking_IPv6-WP.pdf
https://tools.ietf.org/pdf/rfc8200.pdf
https://sike.org/files/SIDH-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Classic-McEliece-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Classic-McEliece-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Classic-McEliece-Round2.zip
https://eprint.iacr.org/2018/230
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/resources.html
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/resources.html
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/u3FoYrN-7fk/3EZwDIvDBQAJ
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/u3FoYrN-7fk/3EZwDIvDBQAJ
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/u3FoYrN-7fk/MxBVn9M7CQAJ
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/u3FoYrN-7fk/MxBVn9M7CQAJ
https://eprint.iacr.org/2016/1157
https://github.com/noiseprotocol/noise_hfs_spec/blob/master/output/noise_hfs.pdf
https://github.com/noiseprotocol/noise_hfs_spec/blob/master/output/noise_hfs.pdf
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYeu/DuLieuNuocNgoai/4.Advances%20in%20cryptology-Crypto%201999-LNCS%201666/16660537.pdf
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYeu/DuLieuNuocNgoai/4.Advances%20in%20cryptology-Crypto%201999-LNCS%201666/16660537.pdf
http://antoanthongtin.vn/Portals/0/UploadImages/kiennt2/KyYeu/DuLieuNuocNgoai/4.Advances%20in%20cryptology-Crypto%201999-LNCS%201666/16660537.pdf
https://eprint.iacr.org/2018/928
https://eprint.iacr.org/2018/817
https://eprint.iacr.org/2018/817
https://eprint.iacr.org/2014/589/
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2018/267
https://eprint.iacr.org/2018/760
https://eprint.iacr.org/2018/730.pdf
https://prosecco.gforge.inria.fr/personal/bblanche/publications/LippBlanchetBhargavanEuroSP19.html
https://prosecco.gforge.inria.fr/personal/bblanche/publications/LippBlanchetBhargavanEuroSP19.html
https://eprint.iacr.org/2019/436
https://eprint.iacr.org/2011/219
https://eprint.iacr.org/2018/766

[43] O. Inc., “VPN software solutions & services for business | OpenVPN,”
2019, https://openvpn.net/ (accessed 2019-10-21). 3

[44] S. de Vries, “Achieving 128-bit security against quantum attacks
in OpenVPN,” Master’s thesis, University of Twente, 2016,
https://essay.utwente.nl/70677/1/2016-08-09%20MSc%20Thesis%
20Simon%20de%20Vries%20final%20color.pdf. 3

[45] K. Easterbrook, K. Kane, B. LaMacchia, D. Shumow, and
G. Zaverucha, “Post-quantum cryptography VPN,” 2019,
https://www.microsoft.com/en-us/research/project/post-quantum-crypto-
vpn/. 3, 11

[46] H. Krawczyk, “HMQV: A high-performance secure Diffie-Hellman
protocol,” Cryptology ePrint Archive, Report 2005/176, 2005, https:
//eprint.iacr.org/2005/176, extended abstract published at Crypto’05. 4

[47] A. Fujioka and K. Suzuki, “Sufficient condition for identity-
basedauthenticated key exchange resilientto leakage of secret keys,” in
Information Security and Cryptology – ICISC 2011, ser. LNCS, H. Kim,
Ed., vol. 7259. Springer, 2011, pp. 490–509. 4

[48] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in SFCS ’94 Proceedings of the 35th Annual Symposium
on Foundations of Computer Science. IEEE, 1994, p. 124–134, http:
//www-math.mit.edu/~shor/papers/algsfqc-dlf.pdf. 4

[49] ——, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Journal on Computing,
vol. 26, no. 5, p. 1484–1509, 1997. 4

[50] E. S. V. Freire, D. Hofheinz, E. Kiltz, and K. G. Paterson, “Non-
interactive key exchange,” in Public-Key Cryptography – PKC 2013,
ser. LNCS, K. Kurosawa and G. Hanaoka, Eds., vol. 7778. Springer,
2013, pp. 254–271, https://eprint.iacr.org/2012/732. 4

[51] P. Rogaway, “Authenticated-encryption with associated-data,” in
Proceedings of the 9th ACM Conference on Computer
and Communications Security, ser. CCS ’02. New York,
NY, USA: ACM, 2002, pp. 98–107. [Online]. Available:
http://doi.acm.org/10.1145/586110.586125 5

[52] A. Fujioka, K. Suzuki, K. Xagawa, and K. Yoneyama, “Strongly secure
authenticated key exchange from factoring, codes, and lattices,” Design,
Codes, and Cryptography, vol. 76, no. 3, pp. 469–504, 2015, https:
//eprint.iacr.org/2012/211. 7

[53] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN
prover for the symbolic analysis of security protocols,” in Computer
Aided Verification, ser. LNCS, N. Sharygina and H. Veith, Eds., vol.
8044. Springer, 2013, pp. 696–701, http://www-oldurls.inf.ethz.ch/
personal/basin/pubs/cav13.pdf. 9

[54] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe, “A
comprehensive symbolic analysis of tls 1.3,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. ACM, 2017, pp. 1773–1788, https://people.cispa.io/cas.
cremers/downloads/papers/CHHSV2017-TLS13.pdf. 9

[55] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler,
“A formal analysis of 5g authentication,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’18. ACM, 2018, pp. 1383–1396, https://people.inf.ethz.ch/
rsasse/pub/5G-CCS18.pdf. 9

[56] T. T. Team, “Tamarin-prover manual,” https://tamarin-prover.github.io/
manual/tex/tamarin-manual.pdf. 9

[57] N. I. for Standards and Technology, “Submission requirements
and evaluation criteria for the post-quantum cryptography
standardization process,” 2016, https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf. 10

[58] H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon, T. Laarhoven,
R. Player, R. Rietman, M.-J. O. Saarinen, L. Tolhuizen, J. e Luis Torre-
Arce, , and Z. Zhang, “Round5: KEM and PKE based on (ring) learning
with rounding,” Round-2 submission to the NIST PQC project, 2019,
https://round5.org/#spec. 11

[59] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. Hess,
A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira,
J. Renes, V. Soukharev, and D. Urbanik, “Supersingular isogeny key
encapsulation,” Round-2 submission to the NIST PQC project, 2019,
https://sike.org/#resources. 11

[60] C. A. Melchor, N. Aragon, M. Bardet, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, A. Hauteville, A. Otmani, O. Ruatta,
J.-P. Tillich, and G. Zémor, “ROLLO – Rank-Ouroboros, LAKE &
LOCKER,” Round-2 submission to the NIST PQC project, 2019,
https://pqc-rollo.org/documentation.html. 11

[61] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y.-K.
Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson, and
D. Smith-Tone, “Status report on the first round of the NIST post-
quantum cryptography standardization process,” NISTIR 8240, 2019,
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf. 11

[62] M. Mosca and D. Stebila, “Open quantum safe,” 2020, https://
openquantumsafe.org/ (accessed 2020-01-30). 11

[63] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rech-
berger, D. Slamanig, and G. Zaverucha, “Post-quantum zero-knowledge
and signatures from symmetric-key primitives,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS’17. ACM, 2017, pp. 1825–1842, https://eprint.iacr.org/
2017/279. 11

[64] M. Chase, D. Derler, S. Goldfeder, J. Katz, V. Kolesnikov, C. Orlandi,
S. Ramacher, C. Rechberger, D. Slamanig, X. Wang, and G. Zaverucha,
“The Picnic signature scheme – design document,” Round-2 submis-
sion to the NIST PQC project, 2019, version 2.0, https://github.com/
microsoft/Picnic/blob/master/spec/design-v2.0.pdf. 11

[65] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super-
singular isogeny diffie-hellman,” in Advances in Cryptology – CRYPTO
2016. 11

[66] J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko,
A. Raghunathan, and D. Stebila, “Frodo: Take off the ring! practical,
quantum-secure key exchange from lwe,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16, 2016. 11, 12

[67] D. J. Bernstein and T. Lange, “eBACS: ECRYPT benchmarking of
cryptographic systems,” http://bench.cr.yp.to (accessed 2020-01-22). 12

[68] C. J. F. Cremers and M. Feltz, “Beyond eCK: Perfect forward se-
crecy under actor compromise and ephemeral-key reveal,” in Com-
puter Security – ESORICS 2012, ser. LNCS, S. Foresti, M. Yung,
and F. Martinelli, Eds., vol. 7459. Springer, 2012, pp. 734–751,
https://eprint.iacr.org/2012/416. 20, 23

[69] B. A. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security
of authenticated key exchange,” in Provable Security, ser. LNCS,
W. Susilo, J. K. Liu, and Y. Mu, Eds., vol. 4784. Springer,
2007, pp. 1–16, https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/02/strongake-submitted.pdf. 20

[70] J. Donenfeld, “WireGuard: Next generation kernel network
tunnel,” in 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California,
USA, 2017. [Online]. Available: https://www.internetsociety.org/doc/
wireguard-next-generation-kernel-network-tunnel 20

APPENDIX

A. The Dagger IND-CPA-secure KEM

A description of the Dagger KEM is given in Algo-
rithms 3, 4, and 5. These algorithms use as underlying
routines Saber.PKE routines and related notation defined
in [24, Sec. 2.4]. The parameters Dagger uses to instantiate
Saber.PKE are l = 3, n = 256, q = 213, p = 29, T = 23,
µ = 8. These are the same parameters as listed for Saber-PKE
in [24, Table 1], except that we decrease p and T for smaller
public key and ciphertext and higher security of the underlying
lattice problem at the cost of increased failure probability.

Algorithm 3 Dagger.KEM.KeyGen()
(seedA,b, s) = Saber.PKE.KeyGen()
Return (pk := (seedA,b), sk := s)

B. Computational Proof

We prove that the PQ-WireGuard handshake protocol
(from now on abbreviated pqWG) is eCK-PFS-PSK-secure
with cleanness predicate cleaneCK-PFS-PSK (capturing perfect
forward secrecy and resilience to KCI attacks). That is,

https://openvpn.net/
https://essay.utwente.nl/70677/1/2016-08-09%20MSc%20Thesis%20Simon%20de%20Vries%20final%20color.pdf
https://essay.utwente.nl/70677/1/2016-08-09%20MSc%20Thesis%20Simon%20de%20Vries%20final%20color.pdf
https://eprint.iacr.org/2005/176
https://eprint.iacr.org/2005/176
http://www-math.mit.edu/~shor/papers/algsfqc-dlf.pdf
http://www-math.mit.edu/~shor/papers/algsfqc-dlf.pdf
https://eprint.iacr.org/2012/732
http://doi.acm.org/10.1145/586110.586125
https://eprint.iacr.org/2012/211
https://eprint.iacr.org/2012/211
http://www-oldurls.inf.ethz.ch/personal/basin/pubs/cav13.pdf
http://www-oldurls.inf.ethz.ch/personal/basin/pubs/cav13.pdf
https://people.cispa.io/cas.cremers/downloads/papers/CHHSV2017-TLS13.pdf
https://people.cispa.io/cas.cremers/downloads/papers/CHHSV2017-TLS13.pdf
https://people.inf.ethz.ch/rsasse/pub/5G-CCS18.pdf
https://people.inf.ethz.ch/rsasse/pub/5G-CCS18.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://round5.org/#spec
https://sike.org/#resources
https://pqc-rollo.org/documentation.html
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://openquantumsafe.org/
https://openquantumsafe.org/
https://eprint.iacr.org/2017/279
https://eprint.iacr.org/2017/279
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf
http://bench.cr.yp.to
https://eprint.iacr.org/2012/416
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-submitted.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/strongake-submitted.pdf
https://www.internetsociety.org/doc/wireguard-next-generation-kernel-network-tunnel
https://www.internetsociety.org/doc/wireguard-next-generation-kernel-network-tunnel

Algorithm 4 Dagger.KEM.Encaps()
m← U({0, 1}256)
(K̂, r) = G(m)
c = Saber.PKE.Enc(pk, K̂; r)
K = H(K̂)
Return (c,K)

Algorithm 5 Dagger.KEM.Decaps()

K̂ ′ = Saber.PKE.Dec(s, c)
Return K ′ = H(K̂ ′)

for any QPT algorithm A against the eCK-PFS-PSK key-
indistinguishability game AdveCK-PFS-PSK

pqWG,cleaneCK-PFS-PSK,nS ,nP ,A(λ) is
negligible under the dual-prf, auth-aead, IND-CPA and
IND-CCA assumptions.

Our proof largely follows the proof by Dowling and Pa-
terson [9] with as little modification as necessary. The only
game hops that are really affected by the replacement of our
primitives are those that are based on the different PRFODH-
assumptions and the DDH-assumption. This concerns Game 5
of Case 1, Game 5 of Case 2, Game 3 of Case 3.2, Game 3
of Case 3.3, Game 3 of Case 3.4 and Game 3 of Case 3.5 .
Of these Game 3 of Case 3.5 is the only one relying on the
sym-mm-PRFODH assumption and Game 3 of Case 3.2 is
the only one relying on the DDH-assumption. All others rely
on sym-ms-PRFODH assumption.

This distinction has its correspondence in our proof as well:
Case 3.2 which only relied on the DDH assumption is now
based on the IND-CPA-security of CPAKEM, whereas the
PRFODH cases are now based on the IND-CCA-security of
CCAKEM. The case in which the original protocol relied on
the stronger sym-mm-PRFODH assumption is special in our
case as well and will be discussed later.

Finally we had to modify Game 3 of Case 3.1 to fix a bug
that we discovered in the original paper.

Given the extreme similarity between the cases that relied
on the sym-ms-PRFODH assumption in the original paper we
will start by providing a detailed proof for Game 5 of Case 1
and then discuss the changes necessary for the other cases
afterwards. To highlight the similarity to the Dowling-Paterson
proof, we will follow their proof verbatim whenever possible
and only deviate where necessary.

Game 5. In this game we replace the computation of C3, κ3
with uniformly random and independent values C̃3, κ̃3. We
note that the replacement of the sym-ms-PRFODH assump-
tions with the more standard IND-CCA assumption for KEMs
forces us to split the original game hop into three hops. This
is necessary because of the more convoluted combination of
the static keys with both the other parties static and ephemeral
keys and because the application of the KDF to the shared-
secret is not part of the IND-CCA game while it was part
of the PRFODH game. As such we first replace the pseudo-
random value used for key-encapsulation with CCAKEM with
a truly random value (Game 5a) and then replace shk1 with a

random value k∗ (Game 5b). After that we replace the output
of the KDF that this value is passed to with a random one
(Game 5c). The reason for why we split the game hop instead
of inserting new ones is that we want to preserve consistency
with the numbering in the original proof.

The one case where we will deviate from the original
numbering-scheme is in the labels for the “break”-events
in Case 1: The original proof numbers these such that
Pr(break4) is the probability that the fifth hybrid is broken;
in all other cases the numbers coincide however. Because
we believe that skipping break4 and increasing all following
indices by one is more readable and since this is what we do
in the full version, the indices in our proof don’t mach the
ones from the original proof here.

In Game 5a we replace the value r̂ := HKDF(σi, ri) passed
to CCAKEM.Enc for the computation of ct1 and shk1 with
a random bitstring r̂′.

By the definition of this case, we know that at least one of
ri and σi is random and uncorrupted.

In the first case (ri is unknown to the adversary), we
initialize a prfswap challenger, query σi, and use the output
r̃ from the prfswap challenger to replace the computation of
r̂. By the definition of this case ri is a uniformly random
and independent value, therefore this replacement is sound.
If the test bit sampled by the prfswap challenger is 0, then
r̂ ← HKDF(σi, ri) and we are in Game 4. If the test bit
sampled by the prfswap challenger is 1, then r̂ $← {0, 1}|HKDF|

is a truly random value and we are in Game 5a.
For the second case we first establish that ri, while being

(potentially) known to the adversary is still fresh in the sense
that HKDF(σi, ri) has never been evaluated: Since ri is a
random value, there is a chance that it could be sampled in
another session. This probability can be upper-bounded by the
total number of sessions divided by the number of possible
values, namely nS

2|ri|
(which when multiplied by the number of

sessions results in the famous approximation of the birthday-
bound n2

S

2|ri|
).

Given that, we initialize a prf challenger and replace all
computations of HKDF(σi, ·) with queries to the challenger.
By the definition of this case σi is a uniformly random
and independent value, therefore this replacement is sound.
If the test bit sampled by the prf challenger is 0, then
r̂ ← HKDF(σi, ri) and we are in Game 4. If the test bit
sampled by the prf challenger is 1, then r̂

$← {0, 1}|HKDF| is
a truly random value. Since we established furthermore that
ri is not used with σi in any other session, r̂ is furthermore
independent of all other r̂ in other sessions, therefore we are
in Game 5a.

Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the prf
security or the prfswap security of HKDF, and we find:

Pr(abortaccept)

≤ nS
2|ri|

+ Advprf
HKDF,A(λ) + Advprfswap

HKDF,A(λ) + Pr (break5a)

In Game 5b we replace the computation of shk1 by
sampling the value uniformly at random from the space of
shared secrets of the KEM and ignoring the second output
of CCAKEM.Enc(spkr). To show that this is undetectable
under the IND-CCA-assumption of the used KEM, we interact
with an IND-CCA challenger in the following way: Note that
by Game 1, we know at the beginning of the experiment
the index of session πsi such that Test(i, s) is issued by the
adversary. Similarly, by Game 2, we know at the beginning
of the experiment the index of the intended partner Pj of the
session πsi . Thus, we initialize an IND-CCA challenger and use
the received public-key pk∗ as long-term public-key of party
Pj and give it with all other (honestly generated) public keys
to the adversary. Note that by Game 4 and the definition of
this case, A is not able to issue a CorruptASK(j) query, as we
abort if πsi .α ← reject and abort if πsi .α ← accept. Thus
we will not need to reveal the private key sk∗ of the challenge
public-key to A. However we must account for all sessions
t such that πtj must use the private key for computations.
In PQ-WireGuard, the long-term private keys are used to
compute the following:
• In sessions where Pj acts as the initiator:
C8 ← HKDF(C6,CCAKEM.Dec(sski, ct3))

• In sessions where Pj acts as the responder:
C3, κ3 ← HKDF(C2,CCAKEM.Dec(sskr, ct1))

(Note that these are fewer cases than in the original proof
because we don’t combine static and ephemeral keys directly.)
Dealing with the challenger’s computation of these values will
be done in two ways:
• The encapsulation was created by another honest party.

The challenger can then use its own internal knowledge
of the encapsulated value to complete the computations.

• The encapsulation was not created by another honest
party, but by the adversary and the challenger is therefore
unaware of the encapsulated value.

In the second case, the challenger can instead use the
decapsulation-oracle provided by the CCA-challenger, specif-
ically querying CCAKEM.Dec(ctX), (where ctX is the rele-
vant encapsulation) which will output shkX using the CCA
challenger’s internal knowledge of sk∗.

During session i we request a challenge consisting of a
ciphertext and a candidate shared secret (c∗, k∗) from the
IND-CCA challenger and use those values in place of ct1
and shk1. Given the definition of the IND-CCA game, there
are two cases:
• If the test bit sampled by the IND-CCA challenger is 0,

then k∗ is indeed the shared secret encapsulated in c∗

and we are in Game 5a.
• If the test bit sampled by the IND-CCA challenger is 1,

then k∗ is not the shared secret encapsulated in c∗ but
sampled uniformly at random from the space of shared
secrets and we are in Game 5b.

Thus, any adversary A capable of distinguishing this change
can be turned into a successful adversary against the IND-CCA
security of the used KEM and we find:

Pr(break5a) ≤ AdvIND-CCA
CCAKEM,A(λ) + Pr(break5b)

In Game 5c we replace the values of C3, κ3 with uniformly
random and independent values C̃3, κ̃3

$← {0, 1}|HKDF| (where
{0, 1}|HKDF| is the output space of the HKDF) used in the
protocol execution of the test session. Specifically, we initialize
a prfswap challenger and query shk1, and use the output
C̃3, κ̃3 from the prfswap challenger to replace the computa-
tion of C3, κ3. Since by Game 5b, shk1 is a uniformly
random and independent value, this replacement is sound.
If the test bit sampled by the prfswap challenger is 0, then
C̃3, κ̃3 ← HKDF(C2, shk1) and we are in Game 5b. If
the test bit sampled by the prfswap challenger is 1, then
C̃3, κ̃3

$← {0, 1}|HKDF| and we are in Game 5c.
Thus any adversary A capable of distinguishing this change

can be turned into a successful adversary against the prfswap

security of HKDF, and we find:

Pr(break5b) ≤ Advprfswap

HKDF,A(λ) + Pr(break5c)

Regarding the other games that need to be replaced: Game 3
of Case 3.3 is very similar to Game 5 of Case 1. The biggest
difference is that the case-distinction in the first sub-game is
no longer necessary since the definition of the case ensures
that the ephemeral key of the initiator is uncorrupted. As such
the first case can be removed. Furthermore the references to
the surrounding games have to be updated in the manner listed
below.

Game 5 of Case 2 and Game 3 of Case 3.4, which are
again (except for the first sub-game, their number and the
references) almost identical to each other, only differ slightly
from Game 5 of Case 1. In order to refit the proof to them
perform the following changes, except for leaving the listing
after the first paragraph in the second sub-game that lists the
uses of the uncorrupted static key alone:
• In the first sub-game replace all occurrences of Xi with
Xr for all identifiers X .

• In Game 3 of Case 3.4 remove the first case of the first
sub-game (as in Case 3.3).

• Replace all occurrences of C̃3, κ̃3 with C̃8.
• Replace all occurrences of C3, κ3 with C8.
• Replace all occurrences of ct1 with ct3.
• Replace all occurrences of shk1 with shk3.
• In the third subhybrid replace all occurrences of HKDF

with KDF1.
• In the third subhybrid replace C2 with C7

Game 3 of Case 3.5 is special in that it can be proven secure
in two slightly different ways by slightly modifying either the
proof for Case 1 or the proof for Case 2. For the sake of
brevity we will only explain the first way: Take the proof for
Game 5 of Case 1 and only modify Game 5a be removing the
second case. After that, the entire argument works analogous.

Other than that only the following inconsequential changes
are required:

• The phrase “by Game 4 and the definition” must be
replaced with “by the definition” in all subcases of
Case 3.

• The reference to Game 1 in Case 1 must be replaced by
a reference to Game 2 in all other games.

• The reference to Game 2 in Case 1 must be replaced by
a reference to Game 1 in Case 3.4 and by a reference to
Game 3 in all other games.

• The references to Pr(abortaccept) must be replaced with
Pr(break2) in all sub-cases of case 3.

• The probabilities Pr(break5a), Pr(break5b) and
Pr(break5c) must be replaced with Pr(break3a),
Pr(break3b) and Pr(break3c) in all sub-cases of case 3.

• The games that follow our modified games must re-
place their references to Pr(break5)/Pr(break3) by
Pr(break5c)/Pr(break3c), respectively.

• Replace all uses of guv with psk, gy with ct2, gxy with
shk2, guy with shk3 and gz with shk2.

Game 3 is somewhat special in that both ephemeral keys
are assumed to be uncorrupted. In the original version this
meant that only the DDH-assumption was necessary, whereas
our version is fine with an IND-CPA-secure KEM. We again
follow the original proof as closely as possible:

In this game, we replace the value shk2 computed in the
test session πsi and its honest contributive keyshare session
with a random element from the same keyspace. Note that
since the initiator session and the responder session both
get key confirmation messages that include derivations based
on the encapsulated shared key, both know that the key
was received by the other session without modification. We
explicitly interact with an IND-CPA challenger, and replace
the ephemeral epki and ct2 values sent in the InitiatorHello
and ResponderHello messages with the challenge public-key
and ciphertext from the IND-CPA challenger. We only require
the encapsulated key in one computation (as opposed to three
in the original proof):
• C7 ← HKDF(c2, shk2)
Here we can replace shk2 with the supposed shared key

k∗ from the IND-CPA-challenger. When the test bit sampled
by the IND-CPA challenger is 0, then k∗ is the actually
encapsulated shared key and we are in Game 2. When
the test bit sampled by the IND-CPA challenger is 1, then
k∗

$← KCPAKEM and we are in Game 3. Any adversary that
can detect that change can be turned into an adversary against
the IND-CPA problem and thus

Pr(break2) ≤ AdvIND-CPA
CPAKEM,A(λ) + Pr(break3).

Finally, in Game 3 of Case 3.1 replace all occurrences of
“prf ” with “prfswap ” during the entire hybrid.

After applying all these changes we can compute the com-
plete adversarial advantage AdveCK-PFS-PSK

pqWG,cleaneCK-PFS-PSK,nP ,nS ,A(λ).
As required by the security-definition, it is bounded by a
polynomial factor of A’s advantage in the dual-prf, IND-CCA,
IND-CPA and auth-aead games. Specifically:

AdveCK-PFS-PSK
pqWG,cleaneCK-PFS-PSK,nP ,nS ,A(λ)

≤ n2PnS

2 · AdvIND-CCA
CCAKEM,A(λ) + 9 · Advprf

HKDF,A(λ)

+ 4 · Advprfswap

HKDF,A(λ) + 2 · Advauth-aead
AEAD,A (λ)

+ 2 · ns
2λ

+ nS ·max

 AdvIND-CPA
CPAKEM,A(λ)

+ 4 · Advprf
HKDF,A(λ)

+ Advprfswap

HKDF,A(λ)

 ,

 AdvIND-CCA
CCAKEM,A(λ)

+ 7 · Advprf
HKDF,A(λ)

+ 2 · Advprfswap

HKDF,A(λ)

 ,

AdvIND-CCA

CCAKEM,A(λ)

+ 7 · Advprf
HKDF,A(λ)

+ Advprfswap

HKDF,A(λ)

+ ns
2λ

≤ n2PnS

(7nS + 9) · Advprf
HKDF,A(λ)

+ (2nS + 4) · Advprfswap

HKDF,A(λ)

+ (nS + 2) · AdvIND-CCA
CCAKEM,A(λ)

+ nS · AdvIND-CPA
CPAKEM,A(λ)

+ 2 · Advauth-aead
AEAD,A (λ)

+ (nS + 2) · ns
2λ

(The last term is slightly less tight, but we include it here

for the sake of simplicity.)
Overall the result is similar to that for WireGuard, except

that we have a slight tightness-loss relative to the prf-security
and replaced the pre-quantum assumptions with generic KEM-
security assumptions.

C. The Tamarin Prover.

Tamarin operates based on multiset rewriting. A Tamarin
model is in essence a state machine whose state is a multiset of
facts. The transition between states are defined by rules. Rules
define the behavior of honest parties as well as the ability of an
adversary. A Tamarin rule has a left-hand side (premise) and
a right-hand side (conclusion) separated by the arrow symbol.
To apply a rule, facts in its premise must exist in the current
state. After the rule is applied, the facts in its premise are
consumed and the facts in its conclusion are produced. For
example,

rule Reveal_ltk:
[!Ltk(A, ltk)]--[LtkReveal(A)]->[Out(ltk)]

defines a rule Reveal_ltk with which an adversary can com-
promise the long term key of a party A. To apply this rule, the
fact !Ltk(A, ltk) must exist in the current state, and after the
rule is applied, the fact Out(ltk) is added to the state. A fact
can be linear or persistent, which decides how the fact can
be consumed. In this case the fact Ltk(A, ltk) is prepended by
an exclamation mark, which marks it as a persistent fact. A
persistent fact can be consumed multiple times and will stay
in the state, while a linear fact can only be consumed once
and will disappear from the state afterwards. A rule may also

produce one or more action facts, which are facts included
between the arrow symbol of its definition. Action facts are
not added into the state; instead, they are recorded and used
to prove security properties, as we will discuss later. In this
example LtkReveal(A) is the action fact.

To model cryptographic protocols, one has to model crypto-
graphic primitives, e.g. hashing and symmetric encryption. In
Tamarin, cryptographic primitives are modeled using functions
and equations. For example, an AEAD scheme can be modeled
with two ternary functions, one binary function and two
equations:

functions: aead/3, decrypt/2, verify/3, true/0
equations: decrypt(aead(key, text, tag), key) = text
equations: verify(aead(key, text, tag), tag, key) = true

Some commonly used primitives are defined as built-ins in
Tamarin, e.g. Diffie-Hellman group operations, symmetric and
asymmetric encryption, digital signatures, and hashing. Since
Tamarin is a tool for symbolic analysis, those cryptographic
primitives are assumed to be perfect. In other words,
• Encryption reveals nothing about the plaintext,
• Signatures are not forgeable,
• Hash functions are random oracles with zero collision

probability, and
• Random values are truly random and never repeat.
Tamarin also allows to define restrictions to restrict the

possible state transitions in the protocol analysis. This can
be useful for instance to model the verification of signatures.
E.g.

restriction Equality:
"All x y #i. Eq(x, y) @ #i ==> x = y"

rule B_receive_message:
[!Ltk(B, ltkB), !Pk(A, pkA), In(<m, sig>)]
--[Eq(verify(sig, m, pkA), true)]->
[St_B_1(B, ltkB, pkA, A, m)]

defines a restriction Equality which specifies that party B must
verify the signature sig with the incoming message m. With
this restriction all the execution flows where the signature is
not valid are ignored.

To prove a security property it has to be formalized as a
lemma, which is a first-order logic formula. The action facts
produced by the rules are used as building blocks of lemmas.
For example,

lemma client_session_key_honest_setup: exists-trace
"Ex S k #i. SessKey(S, k) @ #i &
not(Ex #r. LtkReveal(S) @ #r)"

defines a security property which claims that an honest peer
S can establish a session key k at timestamp i if the long
term key of S is never compromised. Tamarin will either
prove the lemma to be true or falsify the claim by raising
a counterexample.

D. Remaining proofs in symbolic model

Session Key Secrecy. In WireGuard and PQ-WireGuard, an
initiator does not send the first data packet, which is encrypted

with the derived session key, until she receives a valid response
message from the receiver. The ciphertext of encrypting an
empty message (zero in Algorithm 2) is used to authenticate
the identity of the responder to the initiator.

Similarly, a responder does not send any encrypted data until
she received the first data packet encrypted with the correct
session key from the initiator. Consequently, an adversary must
wait until a handshake is completed, either by impersonating
an honest party or by passively observing a handshake be-
tween two honest parties in order to be able to intercept any
encrypted packets that contain actual data.

We formally model and analyze the session key secrecy with
three Tamarin lemmas.
lemma key_init_secrecy[reuse]:

"All pki pkr peki psk ck kb ka k tpk r #i #j #i1.
// If I thinks the handshake is done and
// she can send the first data
IKeys(<pki, pkr, peki, psk, ck, kb, ka, k>) @ i
& PRFGen(tpk, r, kb) @ i1
// and adversary knows the session key
& K(ck) @ j

==> // then the PSK is compromised (or not in use)
(Ex #j1. Reveal_PSK(psk) @ j1)
// and R’s static key is compromised
& ((Ex #j1. Reveal_AK(pkr) @ j1)

// or both I’s RNG and PRF key are compromised
| ((Ex #j1. Reveal_rnd(r) @ j1)

& (Ex #j1. Reveal_prfk(tpk) @ j1))
)"

lemma key_resp_secrecy[reuse]:
"All pki pkr peki psk ck kb ka k tpk r #i #j #i1.

// If R thinks the key is confirmed and
// she can accept the first data
RConfirm(<pki, pkr, peki, psk, ck, kb, ka, k>) @ i
& PRFGen(tpk, r, ka) @ i1 & #i1 < #i
// and adversary knows the session key
& K(ck) @ j

==> // then the PSK was compromised (or not in use)
(Ex #j1. Reveal_PSK(psk) @ j1)
// and I’s static key is compromised
& ((Ex #j1. Reveal_AK(pki) @ j1)
// or both R’s RNG and PRG key are compromised

| ((Ex #j1. Reveal_rnd(r) @ j1)
& (Ex #j1. Reveal_prfk(tpk) @ j1))

)"

/* This includes forward secrecy */
lemma key_secrecy:

"All pki pkr peki psk ck kb ka k tpk1 tpk2 r1 r2 r3 #i #i2 #i3 #i4.
// If I and R agree on keys
IKeys(<pki, pkr, peki, psk, ck, kb, ka, k>) @ i
& PRFGen(tpk1, r1, kb) @ i4
& RKeys(<pki, pkr, peki, psk, ck, kb, ka, k>) @ i2
& PRFGen(tpk2, r2, ka) @ i2 & PRFGen(tpk2, r3, k) @ i2
// and adversary knows the session key
& K(ck) @ i3

==> // then the PSK was compromised (or not in use)
// and all 3 secrets are compromised.
(Ex #j. Reveal_PSK(psk) @ j) & (

((Ex #j1. Reveal_AK(pki) @ j1)
| ((Ex #j1. Reveal_rnd(r2) @ j1)

& (Ex #j1. Reveal_prfk(tpk2) @ j1))
)
& ((Ex #j1. Reveal_AK(pkr) @ j1)

| ((Ex #j1. Reveal_rnd(r1) @ j1)
& (Ex #j1. Reveal_prfk(tpk1) @ j1))

)
& ((Ex #j1. Reveal_EphK(peki) @ j1)

| ((Ex #j1. Reveal_rnd(r3) @ j1)
& (Ex #j1. Reveal_prfk(tpk2) @ j1))

)
)"

In the case of a passive attack, we prove that if Alice and
Bob established a session and the adversary knows the session

keys (tki, tkr), then the adversary must have compromised
all the encapsulated secrets (shk1, shk2, shk3). This can be
achieved by compromising the static private keys of both
Alice and Bob, as well as the ephemeral private key. Alter-
natively, the adversary can learn the encapsulated secrets by
compromising the random number generators of both parties
and their PRF secrets. Note that the adversary may not need
to compromise the static private keys or the random number
generators of both parties at the same time; any combination
of the two approaches would be sufficient.

In the case of an active attack, we prove that the adver-
sary must compromise the secret encapsulated with the other
party’s static public key (shk1 or shk3) in order to complete
the handshake, thereby learning the session keys. For the
initiator, either her static private key is compromised, or the
random number generator of the responder as well as her PRF
secret are compromised. The same applies for the responder.
Note that if either the initiator or the responder make use of
the pre-shared key, then the adversary must also compromise
the pre-shared key(s) to compromise the session keys.

Session Key Uniqueness. For a pair Alice and Bob, we prove
with lemma session_uniq that the session keys (tki, tkr) of
any session between them will be unique with uncompromised
random number generators, which follows from the fact that
both Alice and Bob mix random nonces to derive the final
session keys. To violate session key uniqueness between
Alice and Bob, the adversary would have to compromise
and manipulate the random number generators of both parties
and their PRF secrets in order to enforce the same set of
(epki, shk1, ct2, shk2, shk3) on two different handshakes.
lemma session_uniq[reuse]:

"(All pki pkr peki psk ck kb ka k #i.
IKeys(<pki, pkr, peki, psk, ck, kb, ka, k>) @ i

==>
not(Ex peki2 #j1.

IKeys(<pki, pkr, peki2, psk, ck, kb, ka, k>) @ j1
& not(#j1 = #i)

)
)
&(All pki pkr peki psk ck kb ka k #i.

RConfirm(<pki, pkr, peki, psk, ck, kb, ka, k>) @ i
==>

not(Ex peki2 psk2 #j1.
RConfirm(<pki, pkr, peki2, psk2, ck, kb, ka, k>) @ j1
& not(#j1 = #i)

)
)"

On the other hand, an adversary may trick three honest
parties into sharing the same session keys under extreme
conditions, as we discuss below in UKS attack.

Key Compromise Impersonation Attacks. For
PQ-WireGuard, an adversary cannot impersonate an arbitrary
party to a party whose static private key is compromised as in
TLS, because Diffie-Hellman key exchange is no longer used.
We prove KCI in the two lemmas KCI_on_initiator_resistance
and KCI_on_responder_resistance which cover both
directions.
lemma KCI_on_initiator_resistance[reuse]:

"All pki pkr peki psk ck kb ka k tpk r #i #i1.
// If I believes she has completed a handshake with R

IKeys(<pki, pkr, peki, psk, ck, kb, ka, k>) @ i
& PRFGen(tpk, r, kb) @ i1 & #i1 < #i
// but R doesn’t have a matching session
& not(Ex #j. #j < #i
& RKeys(<pki, pkr, peki, psk, ck, kb, ka, k>) @ j)

==> // then the PSK was compromised (or not in use), and
(Ex #j. Reveal_PSK(psk) @ j & #j < #i)
& (// either R’s static key was compromised, or

(Ex #j. Reveal_AK(pkr) @ j & #j < #i)
// I’s RNG and her PRF keys are both compromised
| ((Ex #j. Reveal_rnd(r) @ j) & (Ex #j. Reveal_prfk(tpk) @ j))

)"

lemma KCI_on_responder_resistance[reuse]:
"All pki pkr peki psk ck kb ka k tpk r #i.

// If R believes she has a confirmed session with I
RConfirm(<pki, pkr, peki, psk, ck, kb, ka, k>) @ i
& PRFGen(tpk, r, ka) @ #i
// but I doesn’t have a matching session
& not(Ex #j. #j < #i

& IKeys(<pki, pkr, peki, psk, ck, kb, ka, k>) @ j)
==> // then the PSK was compromised (or not in use), and

(Ex #j. Reveal_PSK(psk) @ j & #j < #i)
& (// either I’s static key was compromised, or

(Ex #j. Reveal_AK(pki) @ j & #j < #i)
// R’s RNG and her PRF key are both compromised
| ((Ex #j. Reveal_rnd(r) @ j) & (Ex #j. Reveal_prfk(tpk) @ j))

)"

The lemmas show that in the case of KCI attacks, the
adversary also has to compromise the pre-shared key between
the party that she impersonates and the intended victim:
• If an initiator I believes that she has completed a hand-

shake with a responder R, but R does not have a matching
session (where the ephemeral public key and the 3 shared
secrets are identical), then the pre-shared key between I
and R is compromised or not in use. In addition, either
the static private key of R has been compromised, or both
the RNG and the PRF secret of I are compromised.

• If a responder R believes that she has a confirmed session
with an initiator I, but I does not have a matching session
(where the ephemeral public key as well as the 3 shared
secrets are identical), then the pre-shared key between I
and R is compromised or not in use. In addition, either
the static private key of I has been compromised, or both
the RNG and the PRF secret of R are compromised.

Unknown Key Share Attacks. We prove full UKS security
proving unilateral UKS security in both directions. We prove
that unilateral UKS on the responder is not possible with
lemma UKS_on_responder_resistance.
lemma UKS_on_responder_resistance[reuse]:

"not(Ex pki1 pki2 pkr peki1 peki2 psk1 psk2 ck kb ka k #i #j.
IKeys(<pki1, pkr, peki1, psk1, ck, kb, ka, k>) @ i
& RKeys(<pki2, pkr, peki2, psk2, ck, kb, ka, k>) @ j
& not(pki1 = pki2)

)"

In other words, we prove that a responder cannot be tricked
into believing that she shares the session with another party
other than the actual initiator. This is because the responder
encapsulates the random secret shk3 in Algorithm 2 with the
static public of the (claimed) initiator and mixes the ciphertext
into the session key material. Consequently, bilateral UKS is
also not possible.

With lemma UKS_on_initiator_resistance we prove UKS
security for the initiator.
lemma UKS_on_initiator_resistance[reuse]:

"All pki pkr1 pkr2 peki1 peki2 psk1 psk2 ck kb ka k
tpk1 tpk2 r1 r2 r3 #i #j #i1.
// If I and R agree on keys, and it’s not the case that
IKeys(<pki, pkr1, peki1, psk1, ck, kb, ka, k>) @ i
& PRFGen(tpk1, r3, kb) @ i1 & #i1 < #i
& RKeys(<pki, pkr2, peki2, psk2, ck, kb, ka, k>) @ j
& PRFGen(tpk2, r1, ka) @ j & PRFGen(tpk2, r2, k) @ j & not(

// I’s intended responder’s static key is compromised
((Ex #j1. Reveal_AK(pkr1) @ j1)

// or I’s RNG and her PRF key are both compromised
| ((Ex #j1. Reveal_rnd(r3) @ j1)

& (Ex #j1. Reveal_prfk(tpk1) @ j1))
)
// I’s static key is compromised
& ((Ex #j1. Reveal_AK(pki) @ j1)

// or R’s RNG and her PRF key are both compromised
| ((Ex #j1. Reveal_rnd(r1) @ j1)

& (Ex #j1. Reveal_prfk(tpk2) @ j1))
)
// and the ephemeral key from I is compromised
& ((Ex #j1. Reveal_EphK(peki1) @ j1)

// or R’s RNG and her PRF key are both compromised
| ((Ex #j1. Reveal_rnd(r2) @ j1)

& (Ex #j1. Reveal_prfk(tpk2) @ j1))
)
// and both PSK’s are compromised (or not in use)
& (Ex #j2. Reveal_PSK(psk1) @ j2)
& (Ex #j2. Reveal_PSK(psk2) @ j2)

)
==> // then UUKS on initiator is not possible

pkr1 = pkr2 & peki1 = peki2 & psk1 = psk2"

UKS security for the initiator holds due to the initialization of
the shared secret string pskwith a default value that – although
not necessarily secret – identifies both communicating parties
even if no shared secret is established. As the adversary cannot
influence this value, a UKS attack will always be detected. We
prove this with the following rule and lemma.
/* Generate one default PSK */
rule DefaultPSKGen:

let pkA = pk(~ltkA)
pkB = pk(~ltkB)
psk = h(pkA XOR pkB) in

[!F_AgentKey(~ltkA)
, !F_AgentKey(~ltkB)]--[

DefaultPSK(pkA, psk)
, DefaultPSK(pkB, psk)
, Reveal_PSK(psk)
]->
[

Out(psk) // the adversary can easily derive the same psk
, !F_AgenPSK(psk)
]

/* UKS on initiator is not possible with the default PSK */
lemma UKS_on_initiator_with_default_psk[reuse]:

"not(Ex pki pkr1 pkr2 peki1 peki2 psk1 psk2 ck kb ka k #i #j #i1.
IKeys(<pki, pkr1, peki1, psk1, ck, kb, ka, k>) @ i
& RKeys(<pki, pkr2, peki2, psk2, ck, kb, ka, k>) @ j
& DefaultPSK(pki, psk1) @ i1 & DefaultPSK(pkr1, psk1) @ i1
& not(pkr1 = pkr2)

)"

Identity Hiding. The identity of an initiator is encrypted
in the initiation message as in WireGuard. We prove that
the adversary cannot learn the identity of the initiator, i.e.
decrypt the identity, without learning the random secret shk1
encapsulated with the intended responder’s static public key. In
other words, the adversary must compromise the static private
key of the intended responder, or the random number generator
and the PRF secret of the initiator.

E. Security-Model

The following section is essentially copied verbatim from
the original paper by Benjamin Dowling and Kenneth G.

Paterson with the only change being that our model ex-
plicitly considers quantum-adversaries. All our changes are
highlighted in the same way as this paragraph.

We propose a modification to the eCK-PFS security model
introduced by Cremers and Feltz [68] that incorporates pre-
shared keys and strengthens the security definitions accord-
ingly. We explain the framework and give an algorithmic
description of the security model in Section E1, and describe
the corruption abilities of the adversary in Section E2. We
then describe the modifications necessary to capture the exact
security guarantees that WireGuard attempts to achieve by ex-
plaining the differences between our partnering definitions and
traditional notions of partnering in Section E3. We then give
our modified cleanness definitions in Section E4. Given that
WireGuard uses a mix of long-term identity keys, ephemeral
keys and pre-shared secrets in its key exchange protocol, it
is appropriate to use an extended-Canetti-Krawcyzk model (as
introduced in [69]), wherein the adversary is allowed to reveal
subsets of these secrets. It is claimed in [70] that WireGuard
“achieves the requirements of authenticated key exchange
(AKE) security, avoids key-compromise impersonation, avoids
replay attacks, provides perfect forward secrecy,” [70]. These
are all notions captured by our extended eCK-PFS model,
so our subsequent security proof will formally establish that
WireGuard meets its goals.

1) Execution Environment: Consider an experiment
ExpeCK-PFS-PSK

KE,nP ,nS ,A (λ) played between a challenger C and an
adversary A. C maintains a set of nP parties P1, . . . , PnP
(representing users interacting with each other via the
protocol), each capable of running up to nS sessions of a
probabilistic key-exchange protocol KE, represented as a tuple
of algorithms KE = (f,ASKeyGen,PSKeyGen,EPKeyGen).
We use πsi to refer to both the identifier of the s-th instance of
the KE being run by party Pi and the collection of per-session
variables maintained for the s-th instance of KE run by Pi.
We describe the algorithms below:

KE.f(λ, pki, ski, π,m)
$→ (m′, π′) is a (potentially) prob-

abilistic algorithm that takes a security parameter λ, the
long-term asymmetric key pair pki, ski of the party Pi, a
collection of per-session variables π and an arbitrary bit string
m ∈ {0, 1}∗∪{∅}, and outputs a response m′ ∈ {0, 1}∗∪{∅}
and an updated per-session state π′, acting in accordance with
an honest protocol implementation.

KE.ASKeyGen(λ)
$→ (pk, sk) is a probabilistic

asymmetric-key generation algorithm taking as input a
security parameter λ and outputting a public-key/secret-key
pair (pk, sk).

KE.PSKeyGen(λ)
$→ (psk, pskid) is a probabilistic

symmetric-key generation algorithm that also takes as input a
security parameter λ and outputs a symmetric pre-shared secret
key psk and (potentially) a pre-shared secret key identifier
pskid.

KE.EPKeyGen(λ)
$→ (ek, epk) is a probabilistic

ephemeral-key generation algorithm that also takes as input
a security parameter λ and outputs an asymmetric public-

key/secret-key pair (ek, epk).
C runs KE.ASKeyGen(λ) nP times to generate a

public-key/secret-key pair (pki, ski) for each party Pi ∈
{P1, . . . , PnP } and delivers all public-keys pki for i ∈
{1, . . . , nP } to A. The challenger C then randomly samples
a bit b $← {0, 1} and interacts with the adversary via the
queries listed in Section E2. Eventually, A terminates and
outputs a guess b′ of the challenger bit b. The adversary
wins the eCK-PFS-PSK key-indistinguishability experiment if
b′ = b, and additionally if the session πsi such that Test(i, s)
was issued satisfies a cleanness predicate clean, which we
discuss in more detail in Section E4. We give an algorithmic
description of this experiment in Figure 1.

Each session maintains the following set of per-session
variables:

• ρ ∈ {init, resp} – the role of the party in the current
session. Note that parties can be directed to act as init

or resp in concurrent or subsequent sessions.
• pid ∈ {1, . . . , nP , ?} – the intended communication

partner, represented with ? if unspecified. Note that the
identity of the partner session may be set during the
protocol execution, in which case pid can be updated
once.

• ms ∈ {0, 1}∗∪{⊥} – the concatenation of messages sent
by the session, initialized by ⊥.

• mr ∈ {0, 1}∗ ∪ {⊥} – the concatenation of messages
received by the session, initialized by ⊥.

• kid ∈ {0, 1}∗ ∪ {⊥} – the concatenation of public
keyshare information received by the session, initialized
by ⊥.

• α ∈ {active, accept, reject,⊥} – the current status
of the session, initialized with ⊥.

• k ∈ {0, 1}∗ ∪ {⊥} – the computed session key, or ⊥ if
no session key has yet been computed.

• ek ∈ {0, 1}∗ × {0, 1}∗ ∪ {⊥} – the ephemeral key pair
used by the session during protocol execution, initialized
as ⊥.

• psk ∈ {0, 1}∗×{0, 1}∗∪{⊥} – the pre-shared secret and
identifier used by the session during protocol execution,
initialized as ⊥.

• st ∈ {0, 1}∗ – any additional state used by the session
during protocol execution.

Finally, the challenger manages the following set of corrup-
tion registers, which hold the leakage of secrets that A has
revealed.

• pre-shared keys { ~PSKflagi,
~PSKflag2, . . . ,

~PSKflagnP }
where for each element ~PSKflagi[j] ∈ ~PSKflagi,

~PSKflagi[j] ∈ {corrupt, clean,⊥} ∀ i, j ∈ [nP] and
~PSKflagi[j] = ⊥ for i = j

• long-term keys {SKflag1, . . . ,SKflagnP }, where
SKflagi ∈ {corrupt, clean,⊥} ∀ i ∈ [nP]

• ephemeral keys { ~EKflag1, . . . ,
~EKflagnP }, where

~EKflagi[s] ∈ {corrupt, clean,⊥} ∀ i ∈ [nP] and
s ∈ [nS].

We formalize the advantage of a (potentially quantum) algo-
rithm A in winning the eCK-PFS-PSK key indistinguishability
experiment in the following way:

Definition 1 (eCK-PFS-PSK Key Indistinguishability): Let
KE be a key-exchange protocol, and nP , nS ∈ N. For
a particular given predicate clean, and a (potentially quan-
tum) algorithm A, we define the advantage of A in the
eCK-PFS-PSK key-indistinguishability game to be:

AdveCK-PFS-PSK,clean
KE,nP ,nS ,A (λ) = |Pr[ExpeCK-PFS-PSK,clean

KE,nP ,nS ,A (λ) = 1]−1

2
|.

We say that KE is eCK-PFS-PSK-secure if, for all A in QPT,
AdveCK-PFS-PSK,clean

KE,nP ,nS ,A (λ) is negligible in the security parameter
λ.

2) Adversarial Interaction: Our security model is intended
to be as generic as possible, in order to capture eCK-like
security notions, but to also include long-term pre-shared
keys. This would allow our model to be used in analyzing
(for example) the Signal protocol, where users exchange both
long-term Diffie-Hellman keyshares used in many protocol
executions, but also many ephemeral Diffie-Hellman keyshares
that are only used within a single session. Another example
would be TLS 1.3, where users may have established pre-
shared keys to reduce the protocol’s computational overheads,
or to enable 0-RTT confidential data transmission.

Our attacker is a standard key-exchange model adversary,
in complete control of the communication network, able
to modify, inject, delete or delay messages. They can also
compromise several layers of secrets:
• long-term private keys, modeling the misuse or corruption

of long-term secrets in other sessions, and additionally
allowing our model to capture forward-secrecy notions.

• ephemeral private keys, modeling the use of bad random-
ness generators.

• pre-shared symmetric keys, modeling the leakage of
shared secrets, potentially due to the misuse of the pre-
shared secret by the partner, or the forced later revelation
of these keys.

• session keys, modeling the leakage of keys by their use
in bad cryptographic algorithms.

The adversary interacts with the challenger via the queries
below. An algorithmic description of how the challenger
responds is in Figure 1.
• Create(i, j, role) → {(i, s),⊥}: allows the adversary to

begin new sessions. The challenger C creates a new ses-
sion πsi with πsi .pid← j, πsi .ρ← role, πsi .α← active,
πsi .T ← ⊥, πsi .sid ← ⊥, πsi .k ← ⊥. C also computes
KE.EKeyGen(λ)

$→ (ek, epk) and sets πsi .ek ← ek.
If a session πsi has already been created, C returns ⊥.
Otherwise, C returns (i, s) to A.

• CreatePSK(i, j) → {pskid,>,⊥}: allows the adversary
to direct parties to generate a pre-shared key for use
in future protocol executions. The challenger C checks
that i 6= j and that ~PSKi[j] = ~PSKj [i] = ⊥. C then
computes KE.PSKeyGen(λ)

$→ psk and sets ~PSKi[j] =

ExpeCK-PFS-PSK-ind
KE,clean,nP ,nS ,A(λ):

1: b
$← {0, 1}

2: tested← false
3: for i = 1 to nP do
4: (pki, ski)

$← ASKeyGen(λ)
5: ASKflagi ← clean

6: ~PSKi[1], . . . , ~PSKi[nP]← ⊥
7: ~PSKflagi[1], . . . ,

~PSKflagi[nP]← ⊥
8: ~EPKflagi[1], . . . ,

~EPKflagi[nS]← ⊥
9: ~RSKflagi[1], . . . ,

~RSKflagi[nS]← ⊥
10: ctri ← 0
11: end for
12: b′

$← ASend,Create∗,Corrupt∗,Reveal,Test(pk1, . . . , pknP)
13: if clean(πsi) ∧ (b = b′) then
14: return 1
15: else
16: b′

$← {0, 1}
17: return b′

18: end if

Create(i, j, role):
1: ctri ← ctri + 1
2: s← ctri
3: πsi .pid← j
4: πsi .ρ← role
5: πsi .ek ← KE.EPKeyGen(λ)
6: πsi .psk ← ~PSKi[j] (i, s)

Send(i, s,m):
1: if πsi = ⊥ then ⊥
2: else
3: πsi .mr ← πsi .mr‖m
4: (πsi ,m

′)← KE.f(λ, pki, ski, π
s
i ,m)

5: πsi .ms ← πsi .ms‖m′
6: πsi .T ← πsi .T‖m‖m′ m′
7: end if

CreatePSK(i, j):

1: if (i = j) ∨ (~PSKflagi[j] 6= ⊥) then ⊥
2: end if
3: (psk, pskid)← KE.PSKeyGen(λ)
4: ~PSKi[j]← (psk, pskid)
5: ~PSKj [i]← (psk, pskid)
6: ~PSKflagi[j],

~PSKflagj [i]← clean
7: if pskid 6= ∅ then pskid
8: else>
9: end if

Reveal(i, s):
1: if πsi .α 6= accept then ⊥
2: else
3: ~RSKflagi[s] ← corrupt
πsi .k

4: end if

CorruptASK(i):
1: ASKflagi ← corrupt ski

CorruptEPK(i, s):

1: ~EKflagi[s] ← corrupt
πsi .ek

CorruptPSK(i, j):

1: if ~PSKi[j] = ⊥ then ⊥
2: end if
3: if ~PSKflagi[j] 6= clean then
⊥

4: else
5: ~PSKflagi[j]← corrupt

6: ~PSKflagj [i] ← corrupt
~PSKi[j]

7: end if

Test(i, s):
1: if (tested = true) ∨ (πsi .α 6= accept) then ⊥
2: end if
3: tested← true
4: if b = 0 then πsi .k
5: else
6: k

$← K k
7: end if

Fig. 1. eCK-PFS-PSK experiment for adversary A against the key-indistinguishability security of protocol KE.

~PSKj [i] ← psk, and the PSK register ~PSKflagi[j] =
~PSKflagj [i]← clean. If pskid 6= ∅, then C returns pskid

to A, otherwise C returns > (where > is a generic success
flag) to A. If ~PSKi[j] 6= ⊥ or ~PSKj [i] 6= ⊥ (i.e. if A has
previously issued a CreatePSK(i, j) or CreatePSK(j, i)
query), then C returns ⊥ to A.

• Reveal(i, s): allows the adversary access to the secret
session key computed by a session during protocol exe-
cution. The challenger checks whether the cleanness of
the session πsi has been upheld and πsi .α = accept and
if so, returns πsi .k to A. Otherwise, C returns ⊥ to A.

• CorruptPSK(i)→ {psk,⊥}: allows the adversary access
to the secret pre-shared key jointly shared by parties
prior to protocol execution. The challenger C checks
that ~PSKi[j] = ~PSKj [i] 6= ⊥, and that ~PSKflagi[j] =

~PSKflagj [i] = clean. If so, C returns PSK ← ~PSKi[j]

to A and sets ~PSKflagi[j] =
~PSKflagj [i]← corrupt. If

~PSKi[j] = ~PSKj [i] = ⊥ or ~PSKflagi[j] =
~PSKflagj [i] 6=

clean, (i.e. that the adversary has either not previously

created a psk between the two parties Pi and Pj , or has
previously issued a CorruptPSK(i, j)/CorruptPSK(j, i)
query), then C returns ⊥ to A.

• CorruptASK(i)→ {ski,⊥}: allows the adversary access
to the secret long-term key generated by a party prior
to protocol execution. The challenger C checks that
ASKflagi 6= corrupt. If so, C returns ski to A. If
ASKflagi = corrupt (i.e. A has previously issued a
CorruptASK(i) query), then C returns ⊥ to A.

• CorruptEPK(i, s) → {ek,⊥}: allows the adversary ac-
cess to the secret ephemeral key generated by a session
during protocol execution. The challenger C checks that

~EPKflagi,s = clean. If so, C returns πsi .ek to A, and
sets ~EPKflagi,s ← corrupt. If ~EPKflagi,s = corrupt,
(i.e. A has previously issued a CorruptEPK(i, s) query),
then C returns ⊥ to A.

• Send(i, s,m) → {m′,⊥}: allows the adversary to send
messages to sessions for protocol execution and receive
their output. If a session πsi has not been previously
created, or πsi .α 6= active, then C returns ⊥ to A.

Otherwise, C computes KE.f(λ,m, πsi)→ (m′, πsi), sets
πsi ← πsi

′, and returns m′ to A.
• Test(i, s) → {k,⊥}: sends the adversary a real-or-

random session key used in determining the success of A
in the key-indistinguishability game. If a session πsi exists
and πsi .α = accept, then the challenger C samples a key
k0

$← D where D is the distribution of the session key,
and sets k1 ← πsi .k. C then returns kb (where b is the
random bit sampled during set-up) to A. If a session πsi
does not exist, or πsi .α 6= accept, then C returns ⊥ to
A.

3) Partnering Definitions: In order to evaluate which se-
crets the adversary is able to reveal without trivially break-
ing the security of the protocol, key-exchange models must
define how sessions are partnered. Otherwise, an adversary
would simply run a protocol between two sessions, faithfully
delivering all messages, Test the first session to receive the
real-or-random key, and Reveal the session partner’s key. If
the keys are equal, then the Test key is real, and otherwise
the session key has been sampled randomly. BR-style key-
exchange models traditionally use matching conversations in
order to do this. When introducing the eCK-PFS model,
Cremers and Feltz [68] used the relaxed notion of origin
sessions. However, both of these are still too restrictive for
analyzing WireGuard, because this protocol does not explicitly
authenticate the full transcript. Instead, for WireGuard, we
are concerned matching only on a subset of the transcript
information – the honest contributions of the keyshare and key-
derivation materials. We introduce the notion of contributive
keyshares to capture this intuition.

Definition 2 (Contributive keyshares): Recall that πsi .kid is
the concatenation of all keyshare material sent by the session
πsi during protocol execution. We say that πtj is a contributive
keyshare session for πsi if πtj .kid is a substring of πsi .mr.

This definition is protocol specific: in WireGuard πsi .kid
consists only of the long-term public Diffie-Hellman value
and the ephemeral public Diffie-Hellman value provided by
the initiator and responder; in TLS 1.3 (for example) it would
consist of the long-term public keys, the ephemeral public
Diffie-Hellman values and any pre-shared key identifiers pro-
vided by the client and selected by the server.

4) Cleanness Predicates: We now define the exact com-
binations of secrets that an adversary is allowed to leak
without trivially breaking the protocol. The original cleanness
predicate of Cremers and Feltz [68] allows the reveal of
long-term secrets for the test session’s party Pi at any time,
which places us firmly in the setting where the adversary has
key-compromise-impersonation abilities, but only allowed the
reveal of long-term secrets of the intended peer after the test
session has established a secure session, which captures perfect
forward secrecy.

We now turn to modifying the cleanness predicate
cleaneCK-PFS-PSK for the pre-shared secret setting.

Definition 3 (cleaneCK-PFS-PSK): A session πsi such that
πsi .α = accept in the security experiment defined in Figure
1 is cleaneCK-PFS-PSK if all of the following conditions hold:

1) The query Reveal(i, s) has not been issued.
2) For all (j, t) ∈ nP × nS such that πsi matches πtj , the

query Reveal(j, t) has not been issued.
3) If ~PSKflagi[π

s
i .pid] = corrupt or πsi .psk = ⊥, the

queries CorruptASK(i) and CorruptEPK(i, s) have not
both been issued.

4) If ~PSKflagi[π
s
i .pid] = corrupt or πsi .psk = ⊥, and

for all (j, t) ∈ nP × nS such that πtj is a contributive
keyshare session for πsi , then CorruptASK(j, t) and
CorruptEPK(j, t) have not both been issued.

5) If there exists no (j, t) ∈ nP × nS such that πtj is a
contributive keyshare session for πsi , CorruptASK(j) has
not been issued before πsi .α← accept.

We specifically forbid the adversary from revealing the long-
term and ephemeral secrets if the pre-shared secret between the
test session and its intended partner has already been revealed.
Since pre-shared keys are optional in our framework, we also
must consider the scenario where a pre-shared secret does not
exist between the test session πsi and its intended partner. Simi-
larly, we forbid the adversary from revealing the long-term and
ephemeral secrets if there exists no pre-shared secret between
the two parties. Finally, since WireGuard does not authenticate
the full transcript, but relies instead on implicit authentication
of derived session keys based on secret information, we must
use our contributive keyshare partnering definition instead of
the origin sessions of [68]. Like eCK-PFS, we capture perfect
forward secrecy under key-compromise-impersonation attack
in condition 5, where the long-term secret of the test session’s
intended partner is allowed to be revealed only after the test
session has accepted. Additionally, we allow for the optional
incorporation of pre-shared secrets in conditions 3 and 4,
where the adversary falls back to eCK-PFS leakage paradigm
if the pre-shared secret between the test session and its peer
either does not already exist, or has been already revealed.

F. Full Proof

In this section we present the full security-proof of our
scheme. Most of it is taken verbatim from the WireGuard-
proof[9] by Benjamin Dowling and Kenneth G. Paterson
whom we thank for kindly providing us with their LATEX-
sources; the highlighted parts (such as this one) are our
own modifications to that proof so that it also works with
PQ-WireGuard. This was done with the intention of allowing
readers who are already familiar with the older proof to
concentrate on our changes to it. For the same reason we also
tried to keep the style of our additions as close to the original
paper as possible.

One thing that we would like to point out concerns the
game-hops that use the prf- and the prfswap assumptions:
One might intuitively assume that keys or messages could
potentially collide and result in a tightness-loss (like the ones
that actually occur in Game 5a of Case 1, Game 5a of Case 2
and Game 3a of Case 3.5). This is not the case however: Since
the key is random and independent from any other key in all
these cases, any potential collision of the key is already part
of the adversarial advantage against the prf/prfswap-security. As

any (non-colliding) key is furthermore only used once (except
for the aforementioned cases), there cannot be any colliding
messages. The later part actually strengthens the real security
of the protocol, since it massively reduces the kinds of attacks
against the HKDF that can be converted into attacks against
PQ-WireGuard.

While Dowling and Paterson don’t make this statement as
explicitly (possibly because they considered it obvious), it
applies to their proof just as well.

Theorem 1: The modified WireGuard handshake proto-
col pqWG is eCK-PFS-PSK-secure with cleanness predicate
cleaneCK-PFS-PSK (capturing forward secrecy and resilience to
KCI attacks). That is, for any (potentially quantum) algo-
rithm A against the eCK-PFS-PSK key-indistinguishability
game (defined in Figure 1) the adversarial advantage
AdveCK-PFS-PSK

pqWG,cleaneCK-PFS-PSK,nP ,nS ,A(λ) is bounded by a polynomial
factor of A’s advantage in the dual-prf, IND-CCA, IND-CPA
and auth-aead games. Specifically:

AdveCK-PFS-PSK
pqWG,cleaneCK-PFS-PSK,nP ,nS ,A(λ)

≤ n2PnS

(
ns
2λ

+ AdvIND-CCA
CCAKEM,A(λ) + 6 · Advprf

HKDF,A(λ)

+ 2 · Advprfswap

HKDF,A(λ) + Advauth-aead
AEAD,A (λ)

)

+ n2PnS

(
ns
2λ

+ AdvIND-CCA
CCAKEM,A(λ) + 3 · Advprf

HKDF,A(λ)

+ 2 · Advprfswap

HKDF,A(λ) + Advauth-aead
AEAD,A (λ)

)

+ max

(
n2Pn

2
S

(
2 · Advprf

HKDF,A(λ)

+ Advprfswap

HKDF,A(λ)

))
,n2Pn2S

 AdvIND-CPA
CPAKEM,A(λ)

+ 4 · Advprf
HKDF,A(λ)

+ Advprfswap

HKDF,A(λ)

 ,

n2Pn2S
 AdvIND-CCA

CCAKEM,A(λ)

+ 7 · Advprf
HKDF,A(λ)

+ 2 · Advprfswap

HKDF,A(λ)

 ,

n2Pn2S
 AdvIND-CCA

CCAKEM,A(λ)

+ 3 · Advprf
HKDF,A(λ)

+ 2 · Advprfswap

HKDF,A(λ)

 ,

n2Pn2S

ns
2λ

+ AdvIND-CCA
CCAKEM,A(λ)

+ 7 · Advprf
HKDF,A(λ)

+ Advprfswap

HKDF,A(λ)

By combining some terms we can simplify this equation to
the following, simpler one:

AdveCK-PFS-PSK
pqWG,cleaneCK-PFS-PSK,nP ,nS ,A(λ) ≤

n2PnS

2 · AdvIND-CCA
CCAKEM,A(λ) + 9 · Advprf

HKDF,A(λ)

+ 4 · Advprfswap

HKDF,A(λ) + 2 · Advauth-aead
AEAD,A (λ)

+ 2 · ns
2λ

+ nS ·max

 AdvIND-CPA
CPAKEM,A(λ)

+ 4 · Advprf
HKDF,A(λ)

+ Advprfswap

HKDF,A(λ)

 ,

 AdvIND-CCA
CCAKEM,A(λ)

+ 7 · Advprf
HKDF,A(λ)

+ 2 · Advprfswap

HKDF,A(λ)

 ,

AdvIND-CCA

CCAKEM,A(λ)

+ 7 · Advprf
HKDF,A(λ)

+ Advprfswap

HKDF,A(λ)

+ ns
2λ

At the cost of a (remarkably small) loss in tightness, we
can further simplify this to the following:

AdveCK-PFS-PSK
pqWG,cleaneCK-PFS-PSK,nP ,nS ,A(λ)

≤ n2PnS

(7nS + 9) · Advprf
HKDF,A(λ)

+ (2nS + 4) · Advprfswap

HKDF,A(λ)

+ (nS + 2) · AdvIND-CCA
CCAKEM,A(λ)

+ nS · AdvIND-CPA
CPAKEM,A(λ)

+ 2 · Advauth-aead
AEAD,A (λ)

+ (nS + 2) · ns
2λ

Note that for readability reasons, we drop the conven-

tion of including the cleanness predicate cleaneCK-PFS-PSK
in the advantage notation in what follows. We begin by
dividing the proof into three separate cases (and denote
with AdveCK-PFS-PSK,Cl

pqWG,nP ,nS ,A (λ) the advantage of the adversary in
winning the key-indistinguishability game in Case l) where
the query Test(i, s) has been issued:

1) The session πsi (where πsi .ρ = init) has no contributive
keyshare session.

2) The session πsi (where πsi .ρ = resp) has no contributive
keyshare session.

3) The session πsi has a contributive keyshare session.
It follows then that AdveCK-PFS-PSK

pqWG,nP ,nS ,A ≤(
AdveCK-PFS-PSK,C1

pqWG,nP ,nS ,A (λ) + AdveCK-PFS-PSK,C2

pqWG,nP ,nS ,A (λ) +

AdveCK-PFS-PSK,C3

pqWG,nP ,nS ,A (λ)
)
. We then bound the probability of each

case, and show that under certain assumptions, the probability
of the adversary winning in the key-indistinguishability game
is negligible.

In the first two cases, we show that the adversary’s prob-
ability in getting the session πsi to reach an “accept” state
(and thus generate keys used in the real-or-random key in-
distinguishability game) is negligible, and since the adversary
cannot cause the test session πsi to reach the accept state, the
experiment will act identically regardless of whether the test

bit b is 0 or 1, and thus the adversary’s probability in winning
the key indistinguishability game is negligible.

In the third case, we show that under certain assump-
tions, replacing the session keys with uniformly random,
independent keys from the same distribution has a negligible
chance of being detected and thus, the adversary’s advantage
in distinguishing the real-or-random key-indistinguishability
game is also negligible. We begin with the first case.

1) Case 1: Test init session without contributive keyshare
session: In this case we bound the probability that a test
initiator session will accept when there exists no contributive
keyshare session. Recall that a contributive keyshare session
πtj exists for a session πsi when πtj .kid is a substring of πsi .mr.
Informally, the test session πsi has not received keying material
from an honest partner session, having either been modified
or injected wholesale by the adversary.

a) Proof Sketch: We begin first by adding an abort
rule that triggers if there is ever a hash collision during the
challenger’s execution of any honest session. We follow by
guessing the index of the test session, and adding an abort
event that occurs if a Test query is directed to a session
that does not have the index of the guessed session, and
similarly, guess the party index of the intended partner session.
Afterwards, we add another abort event that occurs if the
guessed test session πsi reaches the reject status. Since we
already abort if the guessed session is not the session indicated
by the Test query, and if the session πsi has reached the reject
status, the Test(i, s) query will always respond with ⊥, there
is no difference in the adversary’s advantage in the two games
- any further queries that the adversary makes is responded to
identically regardless of the sampling of the random test bit b.

We define an abort event abortaccept that will occur if
πsi ← accept. The following games then are designed to
bound the probability of abortaccept occurring to be negligibly
close to zero. Note that from this game onwards, the adversary
is unable to make a CorruptASK(j) query, since we now abort
the game when the session πsi reaches a status that is not
active, and by the Case 1 definition (a test session without
a contributive keyshare session) and the cleanness predicate
cleaneCK-PFS-PSK, the adversary can only win by not issuing a
CorruptASK(j) query before the test session completes. We
can now (cleverly) embed CCAKEM challenge values from
the IND-CCA challenger into the long-term asymmetric keys
of the party Pj without needing to address the adversary’s
ability to issue a CorruptASK(j) query.

We then replace the values C3, κ3 with uniformly random
and independent values C̃3, κ̃3, and argue that any adversary
capable of distinguishing this change would be able to break
either the prf or the IND-CCA assumption. In the next game
we replace the values C4, κ4 with uniformly random and in-
dependent values C̃4, κ̃4, and argue that any adversary capable
of distinguishing this change would be able to break the prf
security of HKDF.

In a similar fashion, we use a chain of prf challengers to
replace C6, C7, C8 and finally C9, tmp, κ9 with uniformly
random and independent values C̃6, C̃7, C̃8 and C̃9, t̃mp,

κ̃9. We argue that any adversary A capable of distinguishing
these changes can be turned into a successful distinguishing
adversary against the prf security of HKDF.

In the final game hop, we use the fact that κ̃9 is a uniformly
random and independent value to embed κ̃9 within an aead
challenger, and add an abort rule abortdec that triggers when
the test session πsi decrypts a zero ciphertext received in the
RespHello message. To do so, we use the aead decryption
oracle to replace concrete decryptions performed in the test
session. Logically then, since the κ̃9 value is internal to
the aead challenger, if zero decrypts correctly, then A has
managed to produce a ciphertext AEAD.Enc(κ̃9, 0, ∅, H9) that
has not been the result of an encryption oracle query on
(∅, H9), and we can use zero, to break the aead security of the
AEAD scheme. We note that since κ̃9 is already a uniformly
random and independent value, that this change is sound, and
that the probability of abortdec triggering is bound by the
probability of adversary breaking the aead security of AEAD.

Since a session with role πsi .ρ = init will only accept
if it receives a ciphertext zero that decrypts correctly, and
abortdec triggers if such a ciphertext decrypts correctly, then
the probability of πsi reaching an accept state is 0 in the final
game, and the adversary cannot force a session πsi to accept
without an honest partner πtj . We show this using the following
sequence of games: Game 0 This is a standard eCK-PFS-PSK
game. Thus we have

AdveCK-PFS-PSK,C1

pqWG,nP ,nS ,A (λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s) of the session
πsi , and abort if during the execution of the experiment, a
query Test(i∗, s∗) is received and (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · Pr(break1)

Game 2 In this game, we guess the party of the intended
partner of the test session πsi , and abort if πsi .pid 6= j. Thus

Pr(break1) ≤ nP · Pr(break2).

Game 3 In this game, we abort if the session πsi sets the
status πsi .α← reject. Note that by Game 2 we abort if the
Test query is ever issued to a session that is not πsi . If the
session πsi ever reaches the status πsi .α ← reject, then the
Test(i, s) query will be rejected by the challenger as specified
in Figure 1. Note that the difference between the adversary’s
advantage in Game 2 and Game 3 is 0: The sampling of
the test bit b by the challenger only affects the response to the
Test(i, s) query, which is always rejected if πsi .α = reject.
Thus

Pr(break2) = Pr(break3).

Game 4 In this game we define an abort event abortaccept
that triggers if the status of the test session πsi ← accept. It
is clear then that

Pr(break3) = Pr(abortaccept) + 1/2.

In the following sequence of games, we show that the
probability of the abort event triggering (i.e. Pr(abortaccept))
is negligibly close to zero.

Game 5 In this game we replace the computation of
C3, κ3 with uniformly random and independent values C̃3, κ̃3.
We note that the replacement of the sym-ms-PRFODH as-
sumptions with the more standard IND-CCA assumption for
KEMs forces us to split the original hybrid into three. This
is necessary because of the more convoluted combination of
the static keys with both the other parties static and ephemeral
keys and because the application of the KDF to the shared-
secret is not part of the IND-CCA game while it was part
of the PRFODH game. As such we first replace the pseudo-
random value used for key-encapsulation with CCAKEM with
a truly random value (Game 5a) and then replace ct1 with a
random value k∗ (Game 5b). After that we replace the output
of the KDF that this value is passed to with a random one
(Game 5c). The reason for why we split the hybrid instead of
inserting new ones is that we want to stay consistent with the
numbering of the hybrids in the original proof.

The one case where we will deviate from the original
numbering-scheme is in the labels for the “break”-events
in Case 1: The original proof numbers theses such that
Pr(break4) is the probability that the fifth hybrid is broken;
in all other cases the numbers coincide however. Because
we believe that skipping break4 and increasing all following
indices by one is more readable and since this is what we do
in the full version, the indices in our proof don’t match the
ones from the original proof by Dowling and Paterson. (Again:
This does not affect cases 2 and 3.)

In Game 5a we replace the value r̂ := HKDF(σi, ri) passed
to CCAKEM.Enc for the computation of ct1 and shk1 with
a random bitstring r̂′.

By the definition of this case, we know that at least one of
ri and σi is random and uncorrupted.

In the first case (ri is unknown to the adversary), we
initialize a prfswap challenger, query σi, and use the output
r̃ from the prfswap challenger to replace the computation of
r̂. By the definition of this case ri is a uniformly random
and independent value, therefore this replacement is sound.
If the test bit sampled by the prfswap challenger is 0, then
r̂ ← HKDF(σi, ri) and we are in Game 4. If the test bit
sampled by the prfswap challenger is 1, then r̂ $← {0, 1}|HKDF|

is a truly random value and we are in Game 5a.
For the second case we first establish that ri, while being

(potentially) known to the adversary is still fresh in the sense
that HKDF(σi, ri) has never been evaluated: Since ri is a
random value, there is a chance that it could be sampled in
another session. This probability can be upper-bounded by the
total number of sessions divided by the number of possible
values, namely nS

2λ
(which when multiplied by the number of

sessions results in the famous approximation of the birthday-
bound n2

S

2λ
).

Given that, we initialize a prf challenger and replace all
computations of HKDF(σi, ·) with queries to the challenger.
By the definition of this case σi is a uniformly random
and independent value, therefore this replacement is sound.
If the test bit sampled by the prf challenger is 0, then
r̂ ← HKDF(σi, ri) and we are in Game 4. If the test bit

sampled by the prf challenger is 1, then r̂
$← {0, 1}|HKDF| is

a truly random value. Since we established furthermore that
ri is not used with σi in any other session, r̂ is furthermore
independent of all other r̂ in other sessions, therefore we are
in Game 5a.

Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the prf
security or the prfswap security of HKDF, and we find:

Pr(abortaccept)

≤ nS
2λ

+ Advprf
HKDF,A(λ) + Advprfswap

HKDF,A(λ) + Pr (break5a)

In Game 5b we replace the computation of shk1 by
sampling the value uniformly at random from the space of
shared secrets of the KEM and ignoring the second output
of CCAKEM.Enc(spkr). To show that this is undetectable
under the IND-CCA-assumption of the used KEM, we interact
with an IND-CCA challenger in the following way: Note that
by Game 1, we know at the beginning of the experiment
the index of session πsi such that Test(i, s) is issued by the
adversary. Similarly, by Game 2, we know at the beginning
of the experiment the index of the intended partner Pj of the
session πsi . Thus, we initialize an IND-CCA challenger and use
the received public-key pk∗ as long-term public-key of party
Pj and give it with all other (honestly generated) public keys
to the adversary. Note that by Game 4 and the definition of
this case, A is not able to issue a CorruptASK(j) query, as we
abort if πsi .α ← reject and abort if πsi .α ← accept. Thus
we will not need to reveal the private key sk∗ of the challenge
public-key to A. However we must account for all sessions t
such that πtj must use the private key for computations. In our
version of WireGuard, the long-term private keys are used to
compute the following:
• In sessions where Pj acts as the initiator:
C8 ← HKDF(C6,CCAKEM.Dec(sski, ct3))

• In sessions where Pj acts as the responder:
C3, κ3 ← HKDF(C2,CCAKEM.Dec(sskr, ct1))

(Note that these are fewer cases than in the original proof
because we don’t combine static and ephemeral keys directly.)
Dealing with the challenger’s computation of these values will
be done in two ways:
• The encapsulation was created by another honest party.

The challenger can then use its own internal knowledge
of the encapsulated value to complete the computations.

• The encapsulation was not created by another honest
party, but by the adversary and the challenger is therefore
unaware of the encapsulated value.

In the second case, the challenger can instead use the
decapsulation-oracle provided by the CCA-challenger, specif-
ically querying CCAKEM.Dec(ctX), (where ctX is the rele-
vant encapsulation) which will output shkX using the CCA
challenger’s internal knowledge of sk∗.

During session i we request a challenge consisting of a
ciphertext and a candidate shared secret (c∗, k∗) from the
IND-CCA challenger and use those values in place of ct1

and shk1. Given the definition of the IND-CCA game, there
are two cases:
• If the test bit sampled by the IND-CCA challenger is 0,

then k∗ is indeed the shared secret encapsulated in c∗

and we are in Game 5a.
• If the test bit sampled by the IND-CCA challenger is 1,

then k∗ is not the shared secret encapsulated in c∗ but
sampled uniformly at random from the space of shared
secrets and we are in Game 5b.

Thus, any adversary A capable of distinguishing this change
can be turned into a successful adversary against the IND-CCA
security of the used KEM and we find:

Pr(break5a) ≤ AdvIND-CCA
CCAKEM,A(λ) + Pr(break5b)

In Game 5c we replace the values of C3, κ3 with uniformly
random and independent values C̃3, κ̃3

$← {0, 1}|HKDF| (where
{0, 1}|HKDF| is the output space of the HKDF) used in the
protocol execution of the test session. Specifically, we initialize
a prfswap challenger and query shk1, and use the output
C̃3, κ̃3 from the prfswap challenger to replace the computa-
tion of C3, κ3. Since by Game 5b, shk1 is a uniformly
random and independent value, this replacement is sound.
If the test bit sampled by the prfswap challenger is 0, then
C̃3, κ̃3 ← HKDF(C2, shk1) and we are in Game 5b. If
the test bit sampled by the prfswap challenger is 1, then
C̃3, κ̃3

$← {0, 1}|HKDF| and we are in Game 5c.
Thus any adversary A capable of distinguishing this change

can be turned into a successful adversary against the prfswap

security of HKDF, and we find:

Pr(break5b) ≤ Advprfswap

HKDF,A(λ) + Pr(break5c)

Game 6 In this game we replace the values C4, κ4 with uni-
formly random and independent values C̃4, κ̃4

$← {0, 1}HKDF

(where {0, 1}HKDF is the output space of the HKDF) used
in the protocol execution of the test session. Specifically, we
initialize a prf challenger and query psk, and use the output
C̃4, κ̃4 from the prf challenger to replace the computation
of C4, κ4. Since by Game 5c, C̃3 is a uniformly random
and independent value, this replacement is sound. If the
test bit sampled by the prf challenger is 0, then C̃4, κ̃4 ←
HKDF(C3, psk) and we are in Game 5c. If the test bit
sampled by the prf challenger is 1, then C̃4, κ̃4

$← {0, 1}|HKDF|

and we are in Game 6. Thus any adversary A capable of
distinguishing this change can be turned into a successful
adversary against the prf security of HKDF, and we find:

Pr(break5c) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Game 7 In this game we replace the value C6 with a
uniformly random and independent value C̃6

$← {0, 1}|HKDF|

(where {0, 1}|HKDF| is the output space of HKDF) used in
the protocol execution of the test session. Specifically, we
initialize a prf challenger, query it with ct2, and use the output
C̃6 from the prf challenger to replace the computation of C6.

Since by Game 6, C̃4 is a uniformly random and independent
value, this replacement is sound. If the test bit sampled by
the prf challenger is 0, then C̃6 ← prf(C4, ct2) and we are
in Game 6. If the test bit sampled by the prf challenger is
1, then C̃6

$← {0, 1}|HKDF| and we are in Game 7. Thus
any adversary A capable of distinguishing this change can be
turned into a successful adversary against the prf security of
HKDF, and we find:

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7)

Game 8 As in previous games, we replace the computation
of C7 with a uniformly random value C̃7 from the same dis-
tribution, in the challenger’s execution of the test session πsi .
We do so by interacting with a prf challenger in the following
way: When it is time to compute C7 ← HKDF(C̃6, shk2)
we instead initialize a prf challenger and query it with shk2.
We note that by Game 7 that C̃6 is a uniformly random
value and independent value, and thus this replacement is
sound.If the random bit b sampled by the prf challenger is
0, then C̃7 ← HKDF(C̃6, shk2) and we are in Game 7.
If the random bit b sampled by the prf challenger is 1, then
C̃7

$← {0, 1}|HKDF| and we are in Game 8 . Any adversary
A capable of distinguishing this change in the experiment can
be turned into an algorithm against the prf security of HKDF,
and thus

Pr(break7) ≤ Advprf
HKDF,A(λ) + Pr(break8).

Game 9 As in previous games, we replace the computation
of C8 with a uniformly random value C̃8 from the same dis-
tribution, in the challenger’s execution of the test session πsi .
We do so by interacting with a prf challenger in the following
way: When it is time to compute C8 ← HKDF(C̃7, shk3)
we instead initialize a prf challenger and query it with shk3.
We note that by Game 8 that C̃7 is a uniformly random
value and independent value, and thus this replacement is
sound.If the random bit b sampled by the prf challenger is
0, then C8 ← HKDF(C̃7, shk3) and we are in Game 8.
If the random bit b sampled by the prf challenger is 1, then
C̃8

$← {0, 1}|HKDF| and we are in Game 9. Any adversary
A capable of distinguishing this change in the experiment can
be turned into an algorithm against the prf security of HKDF,
and thus

Pr(break8) ≤ Advprf
HKDF,A(λ) + Pr(break9).

Game 10 As in previous games, we replace the computation of
C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9 from
the same distribution, in the challenger’s execution of the test
session πsi and its partner session πtj . We do so by interacting
with a HKDF challenger in the following way: When it is
time to compute C9, tmp, κ9 ← HKDF(C̃8, psk) we instead
initialize a prf challenger and query it with psk. We note
that by Game 9 that C̃8 is a uniformly random value and
independent value, and thus this replacement is sound.If the
random bit b sampled by the prf challenger is 0, then we are
in Game 9. If the random bit b sampled by the prf challenger

is 1, then we are in Game 10. Any adversary A capable of
distinguishing this change in the experiment can be turned into
an algorithm against the prf security of HKDF, and thus

Pr(break9) ≤ Advprf
HKDF,A(λ) + Pr(break10).

Game 11 In this game, the test session πsi will only
set πsi .α ← accept if the adversary is able to produce a
value zero = AEAD(κ̃9, 0, H9, ∅) that decrypts correctly.
In this game, we now initialize an aead challenger to de-
crypt RespHello.zero ciphertexts in the test session πsi . By
Game 10 that κ̃9 is a uniformly random and independent
value, and thus this change is undetectable. Since the κ̃9
is internal to the aead challenger, then it follows that the
adversary capable of forging such a zero ciphertext breaks
the security of the AEAD scheme. We find that

Pr(break10) = Advauth-aeadAEAD,A (λ).

Thus

Pr(abortaccept) ≤
(nS
2λ

+ AdvIND-CCA
CCAKEM,A(λ)

+6 · Advprf
HKDF,A(λ) + 2 · Advprfswap

HKDF,A(λ)

+Advauth-aeadAEAD,A (λ)
)

It follows then

AdveCK-PFS-PSK,C1

pqWG,nP ,nS ,A (λ) ≤ n2PnS

(nS
2λ

+ AdvIND-CCA
CCAKEM,A(λ)

+ 6 · Advprf
HKDF,A(λ)

+ 2 · Advprfswap

HKDF,A(λ)

+ AdvaeadAEAD,A(λ)
)
.

2) Case 2: Test resp session without contributive keyshare
partner: In this case we bound the probability that a session
πsi such that πsi .ρ = resp will accept when there exists
no contributive keyshare partner. Recall that an contributive
keyshare partner exists for a session πsi when for some session
πtj , π

t
j .kid is a substring of πsi .mr. Informally, the test session

πsi has not received the keyshares that were honestly generated
by another session, having either been modified or injected
wholesale by the adversary.

a) Proof sketch: We begin by guessing the index of the
test session, and adding an abort event that occurs if a Test
query is directed to a session that does not have the index
of the guessed session, and similarly, guess the party index
of the intended partner session. Afterwards, we add another
abort event that occurs if the guessed test session πsi reaches
the reject status. Since we already abort if the guessed
session is not the session indicated by the Test query, and
if the session πsi has reached the reject status, the Test(i, s)
query will always respond with ⊥, there is no difference in the
adversary’s advantage in the two games - any further queries
that the adversary makes is responded to identically regardless
of the sampling of the random test bit b.

We define an abort event abortaccept that will occur if
πsi ← accept. The following games then are designed to

bound the probability of abortaccept occurring to be negligibly
close to zero. Note that from this game onwards, the adversary
is unable to make a CorruptASK(j) query, since we now abort
the game when the session πsi reaches a status that is not
active, and by the Case 1 definition (a test session without
a contributive keyshare session) and the cleanness predicate
cleaneCK-PFS-PSK, the adversary can only win by not issuing a
CorruptASK(j) query before the test session completes. We
can now (cleverly) embed CCAKEM challenge values from
the IND-CCA challenger into the long-term asymmetric keys
of the party Pj without needing to address the adversary’s
ability to issue a CorruptASK(j) query.

We then replace the value C8 with a uniformly random and
independent value C̃8, and argue that any adversary capable
of distinguishing this change would be able to break either
the prf or the IND-CCA assumption. In the next game we
replace the values C9, tmp, κ4 with uniformly random and
independent values C̃9, t̃mp, κ̃4, and argue that any adversary
capable of distinguishing this change would be able to break
the PRF assumption. In a similar fashion, we replace the val-
ues C10, κ10 with uniformly random and independent values
C̃10, κ̃10 and again argue that any distinguishing adversary
can be turned into an adversary against the PRF assumption.
Finally, we argue that the test session πsi will only reach an
accept state (and trigger the abortaccept event) if it receives a
value conf = AEAD.Enc(κ̃10, 0, ∅, H10). We use the fact that
κ̃10 is a uniformly random and independent value to embed
κ̃10 within an aead-auth challenger, and add an abort rule
abortdec that triggers if the conf ciphertext received in the
SenderConf message would decrypt without error. Logically
then, since the κ̃10 value is internal to the aead challenger, if
conf would decrypt correctly, then A has managed to produce
a ciphertext AEAD.Enc(κ̃10, 0, ∅, H10) that has not been the
result of an encryption oracle query on (0, ∅, H10), and we
can use zero to break the aead-auth security of the AEAD
scheme. We note that since κ̃10 is already a uniformly random
and independent value, that this change is sound, and that the
probability of abortdec triggering is bound by the probability
of adversary breaking the aead-auth security of AEAD.

Since a session with role πsi .ρ = resp will only accept
if it receives a ciphertext conf that decrypts correctly, and
abortdec triggers if such a ciphertext decrypts correctly, then
the probability of πsi reaching an accept state is 0 in the final
game, and the adversary cannot force a session πsi to accept
without a contributive keyshare partner πtj . Game 0 This is a
standard eCK-PFS-PSK game. Thus we have:

AdveCK-PFS-PSK,C2

pqWG,nP ,nS ,A (λ) = Pr(break0)

Game 1 In this game, we guess the index (i, s) of the
session πsi , and abort if during the execution of the experiment,
a query Test(i∗, s∗) is received and (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · Pr(break1)
Game 2 In this game, we guess the party of the intended

partner of the test session πsi , and abort if πsi .pid 6= j. Thus:

Pr(break1) ≤ nP · Pr(break2)

Game 3 In this game, we abort if the session πsi sets the
status πsi .α← reject. Note that by Game 1 we abort if the
Test query is ever issued to a session that is not πsi . If the
session πsi ever reaches the status πsi .α ← reject, then the
Test(i, s) query will be rejected by the challenger as specified
in Figure 1. Note that the difference between the adversary’s
advantage in Game 2 and Game 3 is 0 as the sampling of
the test bit b by the challenger only affects the response to the
Test(i, s) query, which is always rejected if πsi .α = reject.
Thus:

Pr(break2) = Pr(break3)

Game 4 In this game we define an abort event abortaccept
that triggers if the status of the test session πsi ← accept. It
is clear then that

Pr(break3) ≤ Pr(abortaccept) + Pr(break4)

and additionally that Pr(break4) = 1/2, since all responses to
the adversary are identical regardless of the sampling of the
test bit b. In the following sequence of games, we show that the
probability of the abort event triggering (i.e. Pr(abortaccept))
is negligibly close to zero.

Game 5 In this game we replace the computation of C8 with
uniformly random and independent values C̃8. This works very
similar to Game 5 of Case 1 and mostly changes labels. For
the same reason as back then, we also split this game into
three subhybrids numbered 5a, 5b and 5c.

In Game 5a we replace the value r̂ := HKDF(σr, rr)
passed to CCAKEM.Enc for the computation of ct1 and shk1
with a random bitstring r̂′.

By the definition of this case, we know that at least one of
rr and σr is random and uncorrupted.

In the first case (rr is unknown to the adversary), we
initialize a prfswap challenger, query σr, and use the output
r̃ from the prfswap challenger to replace the computation of
r̂. By the definition of this case rr is a uniformly random
and independent value, therefore this replacement is sound.
If the test bit sampled by the prfswap challenger is 0, then
r̂ ← HKDF(σr, rr) and we are in Game 4. If the test bit
sampled by the prfswap challenger is 1, then r̂ $← {0, 1}|HKDF|

is a truly random value and we are in Game 5a.
For the second case we first establish that rr, while being

(potentially) known to the adversary is still fresh in the sense
that HKDF(σr, rr) has never been evaluated: Since rr is a
random value, there is a chance that it could be sampled in
another session. This probability can be upper-bounded by the
total number of sessions divided by the number of possible
values, namely nS

2λ
(which when multiplied by the number of

sessions results in the famous approximation of the birthday-
bound n2

S

2λ
).

Given that, we initialize a prf challenger and replace all
computations of HKDF(σr, ·) with queries to the challenger.
By the definition of this case σr is a uniformly random
and independent value, therefore this replacement is sound.
If the test bit sampled by the prf challenger is 0, then
r̂ ← HKDF(σr, rr) and we are in Game 4. If the test bit

sampled by the prf challenger is 1, then r̂
$← {0, 1}|HKDF| is

a truly random value. Since we established furthermore that
rr is not used with σr in any other session, r̂ is furthermore
independent of all other r̂ in other sessions, therefore we are
in Game 5a.

Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the prf
security or the prfswap security of HKDF, and we find:

Pr(abortaccept)

≤ nS
2λ

+ Advprf
HKDF,A(λ) + Advprfswap

HKDF,A(λ) + Pr (break5a)

In Game 5b we replace the computation of shk3 by
sampling the value uniformly at random from the space of
shared secrets of the KEM and ignoring the second output
of CCAKEM.Enc(spkr). To show that this is undetectable
under the IND-CCA-assumption of the used KEM, we interact
with an IND-CCA challenger in the following way: Note that
by Game 2, we know at the beginning of the experiment
the index of session πsi such that Test(i, s) is issued by the
adversary. Similarly, by Game 3, we know at the beginning
of the experiment the index of the intended partner Pj of the
session πsi . Thus, we initialize an IND-CCA challenger and use
the received public-key pk∗ as long-term public-key of party
Pj and give it with all other (honestly generated) public keys
to the adversary. Note that by Game 4 and the definition of
this case, A is not able to issue a CorruptASK(j) query, as we
abort if πsi .α ← reject and abort if πsi .α ← accept. Thus
we will not need to reveal the private key sk∗ of the challenge
public-key to A. However we must account for all sessions t
such that πtj must use the private key for computations. In our
version of WireGuard, the long-term private keys are used to
compute the following:
• In sessions where Pj acts as the initiator:
C8 ← HKDF(C6,CCAKEM.Dec(sski, ct3))

• In sessions where Pj acts as the responder:
C3, κ3 ← HKDF(C2,CCAKEM.Dec(sskr, ct1))

(Note that these are fewer cases than in the original proof
because we don’t combine static and ephemeral keys directly.)
Dealing with the challenger’s computation of these values will
be done in two ways:
• The encapsulation was created by another honest party.

The challenger can then use its own internal knowledge
of the encapsulated value to complete the computations.

• The encapsulation was not created by another honest
party, but by the adversary and the challenger is therefore
unaware of the encapsulated value.

In the second case, the challenger can instead use the
decapsulation-oracle provided by the CCA-challenger, specif-
ically querying CCAKEM.Dec(ctX), (where ctX is the rele-
vant encapsulation) which will output shkX using the CCA
challenger’s internal knowledge of sk∗.

During session i we request a challenge consisting of a
ciphertext and a candidate shared secret (c∗, k∗) from the
IND-CCA challenger and use those values in place of ct3

and shk3. Given the definition of the IND-CCA game, there
are two cases:
• If the test bit sampled by the IND-CCA challenger is 0,

then k∗ is indeed the shared secret encapsulated in c∗

and we are in Game 5a.
• If the test bit sampled by the IND-CCA challenger is 1,

then k∗ is not the shared secret encapsulated in c∗ but
sampled uniformly at random from the space of shared
secrets and we are in Game 5b.

Thus, any adversary A capable of distinguishing this change
can be turned into a successful adversary against the IND-CCA
security of the used KEM and we find:

Pr(break5a) ≤ AdvIND-CCA
CCAKEM,A(λ) + Pr(break5b)

In Game 5c we replace the values of C8 with uniformly
random and independent values C̃8

$← {0, 1}|KDF1| (where
{0, 1}|KDF1| is the output space of the KDF1) used in the pro-
tocol execution of the test session. Specifically, we initialize a
prfswap challenger and query shk3, and use the output C̃8 from
the prfswap challenger to replace the computation of C8. Since
by Game 5b, shk3 is a uniformly random and independent
value, this replacement is sound. If the test bit sampled by the
prf challenger is 0, then C̃8 ← HKDF(C7, shk3) and we are
in Game 5b. If the test bit sampled by the prf challenger is
1, then C̃8

$← {0, 1}|KDF1| and we are in Game 5c.
Thus any adversary A capable of distinguishing this change

can be turned into a successful adversary against the prfswap

security of HKDF, and we find:

Pr(break5b) ≤ Advprfswap

HKDF,A(λ) + Pr(break5c)

Game 6 In this game we replace the values C9, tmp, κ9
with uniformly random and independent values C̃9, t̃mp, κ̃9

$←
{0, 1}|HKDF| (where {0, 1}|HKDF| is the output space of HKDF)
used in the protocol execution of the test session. Specifically,
we initialize a PRF challenger and issue the challenge psk
to it, and use the output C̃9, t̃mp, κ̃9 from the PRF chal-
lenger to replace the computation of C9, tmp, κ9. Since by
Game 5c, C̃8 is a uniformly random and independent value,
this replacement is sound. If the test bit sampled by the prf
challenger is 0, then C̃9, t̃mp, κ̃4 ← HKDF(C8, psk) and we
are in Game 5c. If the test bit sampled by the prf challenger
is 1, then C̃9, tmp, κ̃9

$← {0, 1}|HKDF| and we are in Game 6.
Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the PRF
assumption, and we find:

Pr(break5c) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Game 7 In this game we replace the values C10, κ10 ←
HKDF(C̃9, ∅) with uniformly random and independent values
C̃10, κ̃10

$← {0, 1}|HKDF| (where {0, 1}|HKDF| is the output
space of the HKDF) used in the protocol execution of the
test session. Specifically, we initialize a PRF challenger and
issue the challenge query ∅ to it, and use the output C̃10, κ̃10

from the prf challenger to replace the computation of C10, κ10.
Since by Game 6, C̃9 is a uniformly random and independent
value, this replacement is sound. If the test bit sampled by the
PRF challenger is 0, then C̃10, κ̃10 ← HKDF(C̃9, ∅) and we
are in Game 6. If the test bit sampled by the prf challenger is
1, then C̃10, κ̃10

$← {0, 1}|HKDF| and we are in Game 7. Thus
any adversary A capable of distinguishing this change can be
turned into a successful adversary against the prf assumption,
and we find:

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7)

Game 8 In this game, we add an abort event abortdecrypt
that triggers if the test session πsi receives a ciphertext conf in
the SenderConf message that decrypts correctly. Since the test
session πsi will only reach an accept status if conf decrypts
correctly, it follows that

Pr(break7) ≤ Pr(abortdecrypt).

Now we show that the probability of abortdecrypt is negligibly
close to zero. We do so by initializing an aead-auth challenger
to decrypt SenderConf.conf ciphertexts in the test session
πsi . We note that by Game 7 that κ̃9 is a uniformly random
and independent value, and since the aead challenger samples
the internal aead key from the same distribution thus this
change is undetectable. If πsi receives a ciphertext conf in
the SenderConf message that decrypts correctly and the aead
encryption oracle has not been queried, then it follows that
this ciphertext conf is a forged ciphertext, breaking the auth
security of the AEAD scheme. Thus, we find that:

Pr(abortdecrypt) ≤ Advauth-aeadAEAD,A (λ).

Thus we find that the probability of A in causing a session
πsi with ρ = resp to reach πsi .α ← accept and triggering
breakaccept to be:

Pr(abortaccept) ≤
(nS
2λ

+ AdvIND-CCA
CCAKEM,A(λ)

+ 3 · Advprf
HKDF,A(λ)

+ 2 · Advprfswap

HKDF,A(λ)

+ Advauth-aeadAEAD,A (λ)
)
.

We can finally show that

AdveCK-PFS-PSK,C2

pqWG,nP ,nS ,A (λ) ≤ n2PnS
(nS
2λ

+ AdvIND-CCA
CCAKEM,A(λ)

+ 3 · Advprf
HKDF,A(λ)

+ 2 · Advprfswap

HKDF,A(λ)

+ Advauth-aeadAEAD,A (λ)
)
.

3) Case 3: Test session with contributive keyshare partner:
By the case definition and the definition of the cleanness pred-
icate cleaneCK-PFS-PSK there are five ways that the cleanness

predicate could potentially be upheld5: A has issued Test(i, s)
where cleaneCK-PFS-PSK(π

s
i) is upheld and has a contributive

keyshare session πtj and either:
1) A pre-shared key exists between party Pi and the

test session’s intended partner, and A did not issue
CorruptPSK(i, j), or CorruptPSK(j, i). We denote with
AdveCK-PFS-PSK,C3.1

pqWG,nP ,nS ,A (λ) the advantage of A in winning
in this case and refer to this as the pre-shared subcase.

2) A did not issue CorruptEPK(i, s) or CorruptEPK(j, t).
We denote with AdveCK-PFS-PSK,C3.2

pqWG,nP ,nS ,A (λ) the advantage A
and refer to this as the ephemerals subcase.

3) A did not issue CorruptEPK(i, s) or CorruptASK(j).
We denote with AdveCK-PFS-PSK,C3.3

pqWG,nP ,nS ,A (λ) the advantage of
A and refer to this as the ephemeral/long-term subcase.

4) A did not issue CorruptASK(i) or CorruptEPK(j, t). We
denote with AdveCK-PFS-PSK,C3.4

pqWG,nP ,nS ,A (λ) the advantage of A
and refer to this as the long-term/ephemeral subcase.

5) A did not issue CorruptASK(i) or CorruptASK(j). We
denote with AdveCK-PFS-PSK,C3.5

pqWG,nP ,nS ,A (λ) the advantage of A
and refer to this as the long-terms subcase.

Since at least one of these subcases must apply, then:

AdveCK-PFS-PSK,C3

pqWG,nP ,nS ,A (λ) = max

AdveCK-PFS-PSK,C3.1

pqWG,nP ,nS ,A (λ),

AdveCK-PFS-PSK,C3.2

pqWG,nP ,nS ,A (λ),

AdveCK-PFS-PSK,C3.3

pqWG,nP ,nS ,A (λ),

AdveCK-PFS-PSK,C3.4

pqWG,nP ,nS ,A (λ),

AdveCK-PFS-PSK,C3.5

pqWG,nP ,nS ,A (λ)

We now turn to bounding the advantage of the adversary A

in each of the subcases, and show that if the advantage of A
in each subcase is negligible, then so too is the advantage of
A in Case 3.

Case 3.1: The Preshared Subcase: In this subcase we
assume that the cleanness predicate is upheld such that a pre-
shared secret between the test session and its honest contribu-
tive keyshare session exists, and has not been corrupted. Due to
the definition of Case 3, we know that such an honest contribu-
tive keyshare session exists. In what follows, we show that the
probability of A in winning the key-indistinguishability game
is negligible.

a) Proof sketch: We begin by guessing the index of the
test session, and add an abort event that occurs if a Test
query is directed to a session that does not have the index
of the guessed session, and similarly, guess the index of the
contributive keyshare partner. We then replace the value of
C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9, and
note that by the subcase definition and the cleaneCK-PFS-PSK,
that the adversary cannot issue either a CorruptPSK(i, j) or
CorruptPSK(j, i) query. Since the psk shared between the
two parties is a uniformly random and independent value,
we argue that any adversary capable of distinguishing this
replacement would be able to break the PRF assumption. In a
similar fashion, we replace the values C10, κ10 with uniformly

5Note that we do not make explicit in each condition that A has not issued
either a Reveal(i, s) or Reveal(j, t) query

random and independent values C̃10, κ̃10, and argue that since
C̃9 was already independent from the protocol execution that
this replacement was sound and that any adversary capable
of distinguishing this change would be able to be turned
into a adversary against PRF security. In the final game and
with a similar argument, we replace tki, tkr with uniformly
random and independent values, based on the PRF security
of HKDF. Since the session keys are now uniformly random
and independent of the test bit b sampled by the challenger,
the advantage of A against the eCK-PFS-PSK-security of the
modified WireGuard protocol in the pre-shared key subcase
is negligible. Game 0 This is a standard eCK-PFS-PSK with
cleanness predicate cleaneCK-PFS-PSK upheld as in Definition
3. Thus

AdveCK-PFS-PSK,C3.1

pqWG,nP ,nS ,A (λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s) of the
Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus

Pr(break0) ≤ nPnS · Pr(break1).

Game 2 In this game, we guess the index (j, t) of the
contributive keyshare session πtj (which exists by the Case
3 definition) and abort if during the experiment, a query
Test(i, s) is issued when the contributive keyshare session πj

∗

t∗

exists such that (j∗, t∗) 6= (j, t). Thus

Pr(break1) ≤ nPnS · Pr(break2).

Game 3 In this game, we replace the computation of
C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9 in the
execution of session πsi and its partner session πtj . We do so
by interacting with a prfswap challenger in the following way:
When it is time to compute C9, tmp, κ9 ← HKDF(C8, psk)
we instead initialize a prfswap challenger and query C8. We
note that by the cleanness predicate and the preconditions of
this subcase that psk is a uniformly random value that will
not be revealed by A through a CorruptPSK(i, j) query, and
thus this replacement is sound. If the random bit b sampled
by the prf challenger is 0, then we are in Game 2. If the
random bit b sampled by the prfswap challenger is 1, then we
are in Game 3. Any adversary A capable of distinguishing
this change in the experiment can be turned into an algorithm
against the prfswap security of HKDF and thus

Pr(break2) ≤ Advprfswap

HKDF,A(λ) + Pr(break3).

Game 4 Similarly to the previous game, we replace the
computation of C10 with a uniformly random value C̃10 from
the same distribution, in the challenger’s execution of the test
session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time
to compute C10 ← HKDF(C9, ∅) we instead initialize a prf
challenger and query it with the empty string ∅. We note that
by Game 3 that C9 is a uniformly random value independent
from the protocol execution, and as such the replacement is
sound.If the random bit b sampled by the prf challenger is 0,

then we are in Game 3. If the random bit b sampled by the
prf challenger is 1, then we are in Game 4. Any adversary
A capable of distinguishing this change in the experiment can
be turned into an algorithm against the prf security of HKDF,
and thus

Pr(break3) ≤ Advprf
prf,A(λ) + Pr(break4).

Game 5 As in previous games, we replace the values
tki, tkr ← HKDF(C̃10, ∅) computed by the challenger in
the execution of the test session and its honest contributive
keyshare session partner πtj with uniformly random values
t̃ki, t̃kr. We do so by interacting with a prf challenger in the
following way: When it is time to compute tki, tkr in the
appropriate sessions, we instead initialize a prf challenger and
query it with the empty string ∅. We note that by Game 4
that C̃10 is a uniformly random value independent from the
protocol execution, and as such the replacement is sound.If
the random bit sampled by the prf challenger if 0, then we are
in Game 4, but otherwise the output of the prf challenger
t̃ki, t̃kr is uniformly random and independent and we are in
Game 5. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF, and thus

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5).

Since the response to the Test(i, s) query is (in Game 5)
uniformly random and independent regardless of the value of
the test bit b, then the adversary’s success in winning the key-
indistinguishability game is reduced to simply guessing and
thus:

AdveCK-PFS-PSK,C3.1

pqWG,nP ,nS ,A (λ) ≤ n2Pn
2
S

(
2 · Advprf

HKDF,A(λ)

+Advprfswap

HKDF,A(λ)
)
.

Case 3.2: The Ephemerals Subcase: In this subcase we
know that (by the definition of cleaneCK-PFS-PSK and the sub-
case preconditions) that the session πsi such that the Test(i, s)
session will be queried has an honest contributive keyshare
session πtj and that CorruptEPK(i, s) and CorruptEPK(j, t)
queries have not been issued during the execution of the
experiment. We now show that in this subcase, the adversary’s
probability in winning the key-indistinguishability game is
negligible.

Game 0 This is a standard eCK-PFS-PSK game with
cleanness predicate cleaneCK-PFS-PSK upheld. Thus we have

AdveCK-PFS-PSK
pqWG,nP ,nS ,A(λ) = Pr(break0).

Game 1 In this game, we guess the index (i, s) of the
Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus

Pr(break0) ≤ nPnS · Pr(break1).

Game 2 In this game, we guess the index (j, t) of the
honest partner session πtj (which we know exists by the Case

3 definition) and abort if, during the experiment, a query
Test(i, s) is issued if the contributive keyshare session πj

∗

t∗

exists such that (j∗, t∗) 6= (i, s). Thus

Pr(break1) ≤ nPnS · Pr(break2).

Game 3 is somewhat special in that both ephemeral keys
are assumed to be uncorrupted. In the original version this
meant that only the DDH-assumption was necessary, whereas
our version is fine with an IND-CPA-secure KEM. We again
follow the original proof as closely as possible:

In this game, we replace the value ct2 computed in the
test session πsi and its honest contributive keyshare session
with a random element from the same keyspace. Note that
since the initiator session and the responder session both
get key confirmation messages that include derivations based
on the encapsulated shared key, both know that the key
was received by the other session without modification. We
explicitly interact with an IND-CPA challenger, and replace
the ephemeral epki and ct2 values sent in the InitiatorHello
and ResponderHello messages with the challenge public-key
and ciphertext from the IND-CPA challenger. We only require
the encapsulated key in one computation (as opposed to three
in the original proof):
• C7 ← HKDF(c2, shk2)
Here we can replace shk2 with the supposed shared key

k∗ from the IND-CPA-challenger. When the test bit sampled
by the IND-CPA challenger is 0, then k∗ is the actually
encapsulated shared key and we are in Game 2. When
the test bit sampled by the IND-CPA challenger is 1, then
k∗

$← KCPAKEM and we are in Game 3. Any adversary that
can detect that change can be turned into an adversary against
the IND-CPA problem and thus

Pr(break2) ≤ AdvIND-CPA
CPAKEM,A(λ) + Pr(break3).

Game 4 In this game, we replace the computation of C7

with a uniformly random value C̃7 from the same distribution,
in the challenger’s execution of the test session πsi and its
partner session πtj . We do so by interacting with a prfswap

challenger in the following way: When it is time to compute
C7 ← HKDF(C6, shk2) we instead initialize a HKDF chal-
lenger and query it with C6. We note that by Game 3 that
shk2 is a uniformly random value and independent value, and
thus this replacement is sound. If the random bit b sampled
by the prfswap challenger is 0, then C̃7 ← HKDF(C6, shk2)
and we are in Game 3. If the random bit b sampled by the
prf challenger is 1, then C̃7

$← {0, 1}|HKDF| and we are in
Game 4. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus

Pr(break3) ≤ Advprfswap

HKDF,A(λ) + Pr(break4).

Game 5 Similarly to the previous game, we replace the
computation of C8 with a uniformly random value C̃8 from
the same distribution, in the challenger’s execution of the test

session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to
compute C8 ← HKDF(C̃7, shk3) we instead initialize a prf
challenger and query it with shk3. We note that by Game 4
that C̃7 is a uniformly random value and independent value,
and thus this replacement is sound. If the random bit b sampled
by the prf challenger is 0, then C8 ← PRF(C̃7, shk3) and
we are in Game 4. If the random bit b sampled by the prf
challenger is 1, then C̃8

$← {0, 1}|PRF| and we are in Game 5.
Any adversary A capable of distinguishing this change in the
experiment can be turned into an algorithm against the prf
security of HKDF, and thus

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5).

Game 6 As in previous games, we replace the computation
of C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9
from the same distribution, in the challenger’s execution of
the test session πsi and its partner session πtj . We do so by
interacting with a prf challenger in the following way: When it
is time to compute C9, tmp, κ9 ← HKDF(C̃8, psk) we instead
initialize a prf challenger and query it with psk. We note
that by Game 5 that C̃8 is a uniformly random value and
independent value, and thus this replacement is sound. If the
random bit b sampled by the prf challenger is 0, then we are
in Game 5. If the random bit b sampled by the prf challenger
is 1, then we are in Game 6. Any adversary A capable of
distinguishing this change in the experiment can be turned into
an algorithm against the prf security of HKDF, and thus

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6).

Game 7 As in previous games, we replace the computation
of C10 with a uniformly random value C̃10 from the same
distribution, in the challenger’s execution of the test session πsi
and its partner session πtj . We do so by interacting with a prf
challenger in the following way: When it is time to compute
C10 ← HKDF(C9, ∅) we instead initialize a prf challenger and
query it with the empty string ∅. We note that by Game 6
that C̃9 is a uniformly random value independent from the
protocol execution, and as such the replacement is sound. If
the random bit b sampled by the prf challenger is 0, then
we are in Game 6. If the random bit b sampled by the prf
challenger is 1, then we are in Game 7. Any adversary A
capable of distinguishing this change in the experiment can
be turned into an algorithm against the prf security of HKDF,
and thus

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7)

Game 8 As in previous games, we replace the values
tki, tkr ← HKDF(C̃10, ∅) computed by the challenger in
the execution of the test session and its honest contributive
keyshare session partner πtj with uniformly random values
t̃ki, t̃kr. We do so by interacting with a prf challenger in the
following way: When it is time to compute tki, tkr in the
appropriate sessions, we instead initialize a prf challenger and
query it with the empty string ∅. We note that by Game 4

that C̃10 is a uniformly random value independent from the
protocol execution, and as such the replacement is sound. If
the random bit sampled by the prf challenger if 0, then we are
in Game 7, but otherwise the output of the prf challenger
t̃ki, t̃kr is uniformly random and independent and we are in
Game 8. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF, and thus

Pr(break7) ≤ Advprf
HKDF,A(λ) + Pr(break8)

Since the response to the Test(i, s) query issued by the
adversary is, in Game 8, uniformly random and independent
of the test bit b sampled by the challenger, then the adver-
sary’s success in winning the key-indistinguishability game is
reduced to simply guessing and thus:

AdveCK-PFS-PSK,C3.2

pqWG,nP ,nS ,A (λ) ≤ n2Pn
2
S

(
AdvIND-CPA

CPAKEM,A(λ)

+ 4 · Advprf
HKDF,A(λ)

+ Advprfswap

HKDF,A(λ)
)

Case 3.3: The Ephemeral/Long-term Subcase: In this sub-
case we know that (by the definition of cleaneCK-PFS-PSK
and the subcase preconditions) that the session πsi such
that the Test(i, s) session will be queried has an honest
contributive keyshare session πtj and that CorruptEPK(i, s)
and CorruptASK(j) queries have not been issued during the
execution of the experiment. Note that in our proof we set
that the test session has role init and the partner session has
role resp, but the case where the test session has role resp

and the partner session has role init follows analogously. In
what follows, we show that in this subcase, the adversary’s
probability in winning the key-indistinguishability game is
negligible under certain security assumptions.Game 0 This
is a standard eCK-PFS-PSK game with cleanness predicate
cleaneCK-PFS-PSK upheld. Thus we have:

AdveCK-PFS-PSK
pqWG,nP ,nS ,A(λ) = Pr(break0)

Game 1 In this game, we guess the index (i, s) of the
Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · (Pr(break1))

Game 2 In this game, we guess the index (j, t) of the
honest partner session πtj (which we know exists by the Case
3 definition) and abort if, during the experiment, a query
Test(i, s) is issued if the contributive keyshare session πj

∗

t∗

exists such that (j∗, t∗) 6= (i, s). Thus:

Pr(break1) ≤ nPnS · (Pr(break2))

Game 3 In this game we replace the computation of C3, κ3
with uniformly random and independent values C̃3, κ̃3. This
is practically identical to the Game 5 of case1, including the
subhybrids.

In Game 3a we replace the value r̂ := HKDF(σi, ri) passed
to CCAKEM.Enc for the computation of ct1 and shk1 with
a random bitstring r̂′.

To show that this replacement is sound, we replace the
value of r̂ with a uniformly random and independent value
r̂′

$← {0, 1}|HKDF| used in the protocol execution of the test
session. Specifically, we initialize a prfswap challenger and
query σi, and use the output r̃ from the prfswap challenger to
replace the computation of r̂. By the definition of this case ri
is a uniformly random and independent value, therefore this
replacement is sound. If the test bit sampled by the prfswap

challenger is 0, then r̂ ← HKDF(σi, ri) and we are in Game 2.
If the test bit sampled by the prfswap challenger is 1, then
r̂

$← {0, 1}|HKDF| is a truly random value and we are in
Game 3a.

Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the prfswap

security of HKDF, and we find:

Pr(break2) ≤ Advprfswap

HKDF,A(λ) + Pr (break3a)

In Game 3b we replace the computation of shk1 by
sampling the value uniformly at random from the space of
shared secrets of the KEM and ignoring the second output
of CCAKEM.Enc(spkr). To show that this is undetectable
under the IND-CCA-assumption of the used KEM, we interact
with an IND-CCA challenger in the following way: Note that
by Game 2, we know at the beginning of the experiment
the index of session πsi such that Test(i, s) is issued by the
adversary. Similarly, by Game 1, we know at the beginning
of the experiment the index of the intended partner Pj of the
session πsi . Thus, we initialize an IND-CCA challenger and
use the received public-key pk∗ as long-term public-key of
party Pj and give it with all other (honestly generated) public
keys to the adversary. Note that by the definition of this case,
A is not able to issue a CorruptASK(j) query, as we abort
if πsi .α ← reject and abort if πsi .α ← accept. Thus we
will not need to reveal the private key sk∗ of the challenge
public-key to A. However we must account for all sessions t
such that πtj must use the private key for computations. In our
version of WireGuard, the long-term private keys are used to
compute the following:
• In sessions where Pj acts as the initiator:
C8 ← HKDF(C6,CCAKEM.Dec(sski, ct3))

• In sessions where Pj acts as the responder:
C3, κ3 ← HKDF(C2,CCAKEM.Dec(sskr, ct1))

(Note that these are fewer cases than in the original proof
because we don’t combine static and ephemeral keys directly.)
Dealing with the challenger’s computation of these values will
be done in two ways:
• The encapsulation was created by another honest party.

The challenger can then use its own internal knowledge
of the encapsulated value to complete the computations.

• The encapsulation was not created by another honest
party, but by the adversary and the challenger is therefore
unaware of the encapsulated value.

In the second case, the challenger can instead use the
decapsulation-oracle provided by the CCA-challenger, specif-
ically querying CCAKEM.Dec(ctX), (where ctX is the rele-
vant encapsulation) which will output shkX using the CCA
challenger’s internal knowledge of sk∗.

During session i we request a challenge consisting of a
ciphertext and a candidate shared secret (c∗, k∗) from the
IND-CCA challenger and use those values in place of ct1
and shk1. Given the definition of the IND-CCA game, there
are two cases:
• If the test bit sampled by the IND-CCA challenger is 0,

then k∗ is indeed the shared secret encapsulated in c∗

and we are in Game 3a.
• If the test bit sampled by the IND-CCA challenger is 1,

then k∗ is not the shared secret encapsulated in c∗ but
sampled uniformly at random from the space of shared
secrets and we are in Game 3b.

Thus, any adversary A capable of distinguishing this change
can be turned into a successful adversary against the IND-CCA
security of the used KEM and we find:

Pr(break3a) ≤ AdvIND-CCA
CCAKEM,A(λ) + Pr(break3b)

In Game 3c we replace the values of C3, κ3 with uniformly
random and independent values C̃3, κ̃3

$← {0, 1}|HKDF| (where
{0, 1}|HKDF| is the output space of the HKDF) used in the
protocol execution of the test session. Specifically, we initialize
a prfswap challenger and query shk1, and use the output
C̃3, κ̃3 from the prfswap challenger to replace the computa-
tion of C3, κ3. Since by Game 3b, shk1 is a uniformly
random and independent value, this replacement is sound.
If the test bit sampled by the prfswap challenger is 0, then
C̃3, κ̃3 ← HKDF(C2, shk1) and we are in Game 3b. If
the test bit sampled by the prfswap challenger is 1, then
C̃3, κ̃3

$← {0, 1}|HKDF| and we are in Game 3c.
Thus any adversary A capable of distinguishing this change

can be turned into a successful adversary against the prfswap

security of HKDF, and we find:

Pr(break3b) ≤ Advprfswap

HKDF,A(λ) + Pr(break3c)

Game 4 In this game, we replace the computation of
C4, κ4 with uniformly random values C̃4, κ̃4 from the same
distribution, in the challenger’s execution of the test session
πsi and its partner session πtj . We do so by interacting with
a prf challenger in the following way: When it is time to
compute C4, κ4 ← HKDF(C̃3, psk) we instead initialize a prf
challenger and query it with psk. We note that by Game 3c
that C̃3 is a uniformly random value and independent value,
and thus this replacement is sound. If the random bit b sampled
by the prf challenger is 0, then we are in Game 3c. If the
random bit b sampled by the prf challenger is 1, then we
are in Game 4. Any adversary A capable of distinguishing
this change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break3c) ≤ Advprf
HKDF,A(λ) + Pr(break4)

Game 5 In this game, we replace the computation of C6

with a uniformly random value C̃6 from the same distribution,
in the challenger’s execution of the test session πsi and
its partner session πtj . We do so by interacting with a prf
challenger in the following way: When it is time to compute
C6 ← HKDF(C̃4, ct2) we instead initialize a prf challenger
and query it with ct2. We note that by Game 4 that C̃4 is a
uniformly random value and independent value, and thus this
replacement is sound. If the random bit b sampled by the prf
challenger is 0, then we are in Game 4. If the random bit b
sampled by the prf challenger is 1, then we are in Game 5.
Any adversary A capable of distinguishing this change in the
experiment can be turned into an algorithm against the prf
security of HKDF and thus:

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5)

Game 6 In this game, we replace the computation of C7

with a uniformly random value C̃7 from the same distribution,
in the challenger’s execution of the test session πsi and
its partner session πtj . We do so by interacting with a prf
challenger in the following way: When it is time to compute
C7 ← HKDF(C̃6, shk2) we instead initialize a prf challenger
and query it with shk2. We note that by Game 5 that C̃6

is a uniformly random value and independent value, and thus
this replacement is sound. If the random bit b sampled by
the prf challenger is 0, then C̃7 ← HKDF(C̃6, shk2) and
we are in Game 5. If the random bit b sampled by the
prf challenger is 1, then C̃7

$← {0, 1}|HKDF| and we are in
Game 6. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Game 7 Similarly to the previous game, we replace the
computation of C8 with a uniformly random value C̃8 from
the same distribution, in the challenger’s execution of the test
session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to
compute C8 ← HKDF(C̃7, shk3) we instead initialize a prf
challenger and query it with shk3. We note that by Game 6
that C̃7 is a uniformly random value and independent value,
and thus this replacement is sound. If the random bit b sampled
by the prf challenger is 0, then C8 ← HKDF(C̃7, shk3) and
we are in Game 6. If the random bit b sampled by the
prf challenger is 1, then C̃8

$← {0, 1}|HKDF| and we are in
Game 7. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7)

Game 8 In this game, we replace the computation of
C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9 from
the same distribution, in the challenger’s execution of the test
session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to

compute C9, tmp, κ9 ← HKDF(C̃8, psk) we instead initialize
a prf challenger and query it with psk. We note that by
Game 7 that C̃8 is a uniformly random value and independent
value, and thus this replacement is sound. If the random bit b
sampled by the prf challenger is 0, then we are in Game 7.
If the random bit b sampled by the prf challenger is 1, then we
are in Game 8. Any adversary A capable of distinguishing
this change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break7) ≤ Advprf
HKDF,A(λ) + Pr(break8)

Game 9 Similarly to the previous game, we replace the
computation of C10 with a uniformly random value C̃10 from
the same distribution, in the challenger’s execution of the test
session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time
to compute C10 ← HKDF(C9, ∅) we instead initialize a prf
challenger and query it with the empty string ∅. We note that
by Game 8 that C̃9 is a uniformly random value independent
from the protocol execution, and as such the replacement is
sound If the random bit b sampled by the prf challenger is 0,
then we are in Game 8. If the random bit b sampled by the
prf challenger is 1, then we are in Game 9. Any adversary
A capable of distinguishing this change in the experiment can
be turned into an algorithm against the prf security of HKDF
and thus:

Pr(break8) ≤ Advprf
HKDF,A(λ) + Pr(break9)

Game 10 Similarly to the previous games, we replace the
values tki, tkr ← HKDF(C̃10, ∅) computed by the challenger
in the execution of the test session and its honest contributive
keyshare session partner πtj with uniformly random values
t̃ki, t̃kr. We do so by interacting with a prf challenger in the
following way: When it is time to compute tki, tkr in the
appropriate sessions, we instead initialize a prf challenger and
query it with the empty string ∅. We note that by Game 9
that C̃10 is a uniformly random value independent from the
protocol execution, and as such the replacement is sound. If
the random bit sampled by the prf challenger if 0, then we are
in Game 9, but otherwise the output of the prf challenger
t̃ki, t̃kr is uniformly random and independent and we are in
Game 10. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break9) ≤ Advprf
HKDF,A(λ) + Pr(break10)

Since the response to the Test(i, s) query issued by the
adversary is, in Game 10, uniformly random and independent
of the test bit b sampled by the challenger, then the adver-
sary’s success in winning the key-indistinguishability game is
reduced to simply guessing and thus:

Pr(break10) = 1/2

AdveCK-PFS-PSK,C3.3

pqWG,nP ,nS ,A (λ) ≤ n2Pn
2
S

(
AdvIND-CCA

CCAKEM,A(λ)

+ 7 · Advprf
HKDF,A(λ)

+2 · Advprfswap

HKDF,A(λ)
)

Case 3.4: The Long-term/Ephemeral Subcase: In this sub-
case we know that (by the definition of the cleanness predi-
cate cleaneCK-PFS-PSK and the subcase preconditions) that the
session πsi such that the Test(i, s) session will be queried
has an honest contributive keyshare session πtj and that
CorruptASK(i) and CorruptEPK(j, t) queries have not been
issued during the execution of the experiment. Note that in
our proof we set that the test session has role init and
the partner session has role resp, but the case where the
test session has role resp and the partner session has role
init follows analogously. In what follows, we show that in
this subcase, the adversary’s probability in winning the key-
indistinguishability game is negligible under certain security
assumptions.Game 0 This is a standard eCK-PFS-PSK game
with cleanness predicate cleaneCK-PFS-PSK upheld. Thus we
have:

AdveCK-PFS-PSK
pqWG,nP ,nS ,A(λ) = Pr(break0)

Game 1 In this game, we guess the index (i, s) of the
Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · (Pr(break1))

Game 2 In this game, we guess the index (j, t) of the
honest partner session πtj (which we know exists by the Case
3 definition) and abort if, during the experiment, a query
Test(i, s) is issued if the contributive keyshare session πj

∗

t∗

exists such that (j∗, t∗) 6= (i, s). Thus:

Pr(break1) ≤ nPnS · (Pr(break2))

Game 3 In this game we replace the computation of C8

with uniformly random and independent values C̃8. This works
almost identical to Game 5 of Case 2 and mostly changes
labels.

In Game 3a we replace the value r̂ := HKDF(σr, rr)
passed to CCAKEM.Enc for the computation of ct1 and shk1
with a random bitstring r̂′.

To show that this replacement is sound, we replace the
value of r̂ with a uniformly random and independent value
r̂′

$← {0, 1}|HKDF| used in the protocol execution of the test
session. Specifically, we initialize a prfswap challenger and
query σi, and use the output r̃ from the prfswap challenger
to replace the computation of r̂. By the definition of this case
rr is a uniformly random and independent value, therefore
this replacement is sound. If the test bit sampled by the
prfswap challenger is 0, then r̂ ← HKDF(σr, rr) and we are in
Game 2. If the test bit sampled by the prfswap challenger is 1,
then r̂ $← {0, 1}|HKDF| is a truly random value and we are in
Game 3a.

Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the prfswap

security of HKDF, and we find:

Pr(break2) ≤ Advprfswap

HKDF,A(λ) + Pr (break3a)

In Game 3b we replace the computation of shk3 by
sampling the value uniformly at random from the space of
shared secrets of the KEM and ignoring the second output
of CCAKEM.Enc(spkr). To show that this is undetectable
under the IND-CCA-assumption of the used KEM, we interact
with an IND-CCA challenger in the following way: Note that
by Game 2, we know at the beginning of the experiment
the index of session πsi such that Test(i, s) is issued by the
adversary. Similarly, by Game 1, we know at the beginning
of the experiment the index of the intended partner Pj of the
session πsi . Thus, we initialize an IND-CCA challenger and
use the received public-key pk∗ as long-term public-key of
party Pj and give it with all other (honestly generated) public
keys to the adversary. Note that by the definition of this case,
A is not able to issue a CorruptASK(j) query, as we abort
if πsi .α ← reject and abort if πsi .α ← accept. Thus we
will not need to reveal the private key sk∗ of the challenge
public-key to A. However we must account for all sessions t
such that πtj must use the private key for computations. In our
version of WireGuard, the long-term private keys are used to
compute the following:
• In sessions where Pj acts as the initiator:
C8 ← HKDF(C6,CCAKEM.Dec(sski, ct3))

• In sessions where Pj acts as the responder:
C3, κ3 ← HKDF(C2,CCAKEM.Dec(sskr, ct1))

(Note that these are fewer cases than in the original proof
because we don’t combine static and ephemeral keys directly.)
Dealing with the challenger’s computation of these values will
be done in two ways:
• The encapsulation was created by another honest party.

The challenger can then use its own internal knowledge
of the encapsulated value to complete the computations.

• The encapsulation was not created by another honest
party, but by the adversary and the challenger is therefore
unaware of the encapsulated value.

In the second case, the challenger can instead use the
decapsulation-oracle provided by the CCA-challenger, specif-
ically querying CCAKEM.Dec(ctX), (where ctX is the rele-
vant encapsulation) which will output shkX using the CCA
challenger’s internal knowledge of sk∗.

During session i we request a challenge consisting of a
ciphertext and a candidate shared secret (c∗, k∗) from the
IND-CCA challenger and use those values in place of ct3
and shk3. Given the definition of the IND-CCA game, there
are two cases:
• If the test bit sampled by the IND-CCA challenger is 0,

then k∗ is indeed the shared secret encapsulated in c∗

and we are in Game 3a.
• If the test bit sampled by the IND-CCA challenger is 1,

then k∗ is not the shared secret encapsulated in c∗ but

sampled uniformly at random from the space of shared
secrets and we are in Game 3b.

Thus, any adversary A capable of distinguishing this change
can be turned into a successful adversary against the IND-CCA
security of the used KEM and we find:

Pr(break3a) ≤ AdvIND-CCA
CCAKEM,A(λ) + Pr(break3b)

In Game 3c we replace the values of C83 with uniformly
random and independent values C̃8

$← {0, 1}|KDF1| (where
{0, 1}|KDF1| is the output space of the KDF1) used in the
protocol execution of the test session. Specifically, we initialize
a prfswap challenger and query shk3, and use the output C̃8

from the prfswap challenger to replace the computation of C8.
Since by Game 3b, shk3 is a uniformly random and indepen-
dent value, this replacement is sound. If the test bit sampled
by the prfswap challenger is 0, then C̃8 ← HKDF(C7, shk3)
and we are in Game 3b. If the test bit sampled by the
prfswap challenger is 1, then C̃8

$← {0, 1}|KDF1| and we are
in Game 3c.

Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the prfswap

security of HKDF, and we find:

Pr(break3b) ≤ Advprfswap

HKDF,A(λ) + Pr(break3c)

Game 4 In this game, we replace the computation of
C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9 from
the same distribution, in the challenger’s execution of the
test session πsi and its partner session πtj . We do so by
interacting with a prf challenger in the following way: When it
is time to compute C9, tmp, κ9 ← HKDF(C̃8, psk) we instead
initialize a prf challenger and query it with psk. We note
that by Game 3c that C̃8 is a uniformly random value and
independent value, and thus this replacement is sound. If the
random bit b sampled by the prf challenger is 0, then we are in
Game 3c. If the random bit b sampled by the prf challenger
is 1, then we are in Game 4. Any adversary A capable of
distinguishing this change in the experiment can be turned into
an algorithm against the prf security of HKDF and thus:

Pr(break3c) ≤ Advprf
HKDF,A(λ) + Pr(break4)

Game 5 Similarly to the previous game, we replace the
computation of C10 with a uniformly random value C̃10 from
the same distribution, in the challenger’s execution of the test
session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time
to compute C10 ← HKDF(C9, ∅) we instead initialize a prf
challenger and query it with the empty string ∅. We note that
by Game 4 that C̃9 is a uniformly random value independent
from the protocol execution, and as such the replacement is
sound. If the random bit b sampled by the prf challenger is 0,
then we are in Game 4. If the random bit b sampled by the
prf challenger is 1, then we are in Game 5. Any adversary
A capable of distinguishing this change in the experiment can

be turned into an algorithm against the prf security of HKDF
and thus:

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5)

Game 6 Similarly to the previous games, we replace the
values tki, tkr ← HKDF(C̃10, ∅) computed by the challenger
in the execution of the test session and its honest contributive
keyshare session partner πtj with uniformly random values
t̃ki, t̃kr. We do so by interacting with a prf challenger in the
following way: When it is time to compute tki, tkr in the
appropriate sessions, we instead initialize a prf challenger and
query it with the empty string ∅. We note that by Game 5
that C̃10 is a uniformly random value independent from the
protocol execution, and as such the replacement is sound. If
the random bit sampled by the prf challenger if 0, then we are
in Game 5, but otherwise the output of the prf challenger
t̃ki, t̃kr is uniformly random and independent and we are in
Game 6. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Since the response to the Test(i, s) query issued by the
adversary is, in Game 6, uniformly random and independent
regardless of the test bit b sampled by the challenger, then
the adversary’s success in winning the key-indistinguishability
game is reduced to simply guessing and thus:

Pr(break6) = 1/2

AdveCK-PFS-PSK,C3.4

pqWG,nP ,nS ,A (λ) ≤ n2Pn
2
S

(
AdvIND-CCA

CCAKEM,A(λ)

+ 3 · Advprf
HKDF,A(λ)

+2 · Advprfswap

HKDF,A(λ)
)

Case 3.5: The Long-terms Subcase: In this subcase we
know that (by the definition of cleaneCK-PFS-PSK and the sub-
case preconditions) that the session πsi such that the Test(i, s)
session will be queried has an honest contributive keyshare
session πtj and that CorruptASK(i) and CorruptASK(j)
queries have not been issued during the execution of the
experiment. In what follows, we show that in this subcase, the
adversary’s probability in winning the key-indistinguishability
game is negligible under certain security assumptions.Game 0
This is a standard eCK-PFS-PSK game with cleanness predi-
cate cleaneCK-PFS-PSK upheld. Thus we have:

AdveCK-PFS-PSK
pqWG,nP ,nS ,A(λ) = Pr(break0)

Game 1 In this game, we guess the index (i, s) of the
Test session πsi and abort if, during the experiment, a query
Test(i∗, s∗) is issued such that (i∗, s∗) 6= (i, s). Thus:

Pr(break0) ≤ nPnS · (Pr(break1))

Game 2 In this game, we guess the index (j, t) of the
honest partner session πtj (which we know exists by the Case

3 definition) and abort if, during the experiment, a query
Test(i, s) is issued if the contributive keyshare session πj

∗

t∗

exists such that (j∗, t∗) 6= (i, s). Thus:

Pr(break1) ≤ nPnS · (Pr(break2))

Game 3 In this game we replace the computation of C3, κ3
with uniformly random and independent values C̃3, κ̃3. This
is mostly identical to Game 5 of case1 and Game 3 of
Case 3.3, except that the first subhybrid Game 3a differs
slightly because we have to assume that σi is uncorrupted
instead of ri.

The case is also special because there exists an alternative
way to proof it secure: Instead of basing the security on the
security of shk1, it would also be possible to base it on shk3,
in which case the proof would resemble those of Case 2 and
Case 3.4. For brevity and because there is little to be gained
from describing them here in detail as well, we will refrain
from doing so.

In Game 3a we replace the values r̂ := HKDF(σi, ri)
passed to CCAKEM.Enc for the computation of ct1 and shk1
with random bitstrings r̂′ in all games of the responder.

We first establish that ri, while being (potentially) known
to the adversary is still fresh in the sense that HKDF(σi, ri)
has never been evaluated: Since ri is a random value, there is
a chance that it could be sampled in another session. This
probability can be upper-bounded by the total number of
sessions divided by the number of possible values, namely
nS
2λ

(which when multiplied by the number of sessions results
in the famous approximation of the birthday-bound n2

S

2λ
).

We do so by interacting with a prf-challenger in the fol-
lowing way: Whenever it is time to compute to compute
HKDF(σr, X) for some value X , we instead query the prf-
challenger with X and use the output r̃ from the prf-challenger
to replace the computation of r̂. By the definition of this case
σi is a uniformly random and independent value, therefore this
replacement is sound.

If the test bit sampled by the prf challenger is 0, then r̂ ←
HKDF(σi, ri) and we are in Game 2. If the test bit sampled
by the prf challenger is 1, then r̂

$← {0, 1}|HKDF| is a truly
random value. Since we established furthermore that ri is not
used with σi in any other session, r̂ is furthermore independent
of all other r̂ in other sessions, therefore we are in Game 3a.

Thus any adversary A capable of distinguishing this change
can be turned into a successful adversary against the prf
security of HKDF, and we find:

Pr(break2) ≤
nS
2λ

+ Advprf
HKDF,A(λ) + Pr (break3a)

Note that this case slightly differs from the previous ones
in the same place in that we replace more than just one value
with randomness. This is because unlike ri and rr, σi is used
in multiple interactions and thus it becomes necessary to deal
with all of them.

In Game 3b we replace the computation of shk1 by
sampling the value uniformly at random from the space of
shared secrets of the KEM and ignoring the second output

of CCAKEM.Enc(spkr). To show that this is undetectable
under the IND-CCA-assumption of the used KEM, we interact
with an IND-CCA challenger in the following way: Note that
by Game 2, we know at the beginning of the experiment
the index of session πsi such that Test(i, s) is issued by the
adversary. Similarly, by Game 1, we know at the beginning
of the experiment the index of the intended partner Pj of the
session πsi . Thus, we initialize an IND-CCA challenger and
use the received public-key pk∗ as long-term public-key of
party Pj and give it with all other (honestly generated) public
keys to the adversary. Note that by the definition of this case,
A is not able to issue a CorruptASK(j) query, as we abort
if πsi .α ← reject and abort if πsi .α ← accept. Thus we
will not need to reveal the private key sk∗ of the challenge
public-key to A. However we must account for all sessions t
such that πtj must use the private key for computations. In our
version of WireGuard, the long-term private keys are used to
compute the following:
• In sessions where Pj acts as the initiator:
C8 ← HKDF(C6,CCAKEM.Dec(sski, ct3))

• In sessions where Pj acts as the responder:
C3, κ3 ← HKDF(C2,CCAKEM.Dec(sskr, ct1))

(Note that these are fewer cases than in the original proof
because we don’t combine static and ephemeral keys directly.)
Dealing with the challenger’s computation of these values will
be done in two ways:
• The encapsulation was created by another honest party.

The challenger can then use its own internal knowledge
of the encapsulated value to complete the computations.

• The encapsulation was not created by another honest
party, but by the adversary and the challenger is therefore
unaware of the encapsulated value.

In the second case, the challenger can instead use the
decapsulation-oracle provided by the CCA-challenger, specif-
ically querying CCAKEM.Dec(ctX), (where ctX is the rele-
vant encapsulation) which will output shkX using the CCA
challenger’s internal knowledge of sk∗.

During session i we request a challenge consisting of a
ciphertext and a candidate shared secret (c∗, k∗) from the
IND-CCA challenger and use those values in place of ct1
and shk1. Given the definition of the IND-CCA game, there
are two cases:
• If the test bit sampled by the IND-CCA challenger is 0,

then k∗ is indeed the shared secret encapsulated in c∗

and we are in Game 3a.
• If the test bit sampled by the IND-CCA challenger is 1,

then k∗ is not the shared secret encapsulated in c∗ but
sampled uniformly at random from the space of shared
secrets and we are in Game 3b.

Thus, any adversary A capable of distinguishing this change
can be turned into a successful adversary against the IND-CCA
security of the used KEM and we find:

Pr(break3a) ≤ AdvIND-CCA
CCAKEM,A(λ) + Pr(break3b)

In Game 3c we replace the values of C3, κ3 with uniformly
random and independent values C̃3, κ̃3

$← {0, 1}|HKDF| (where
{0, 1}|HKDF| is the output space of the HKDF) used in the
protocol execution of the test session. Specifically, we initialize
a prfswap challenger and query shk1, and use the output
C̃3, κ̃3 from the prfswap challenger to replace the computa-
tion of C3, κ3. Since by Game 3b, shk1 is a uniformly
random and independent value, this replacement is sound.
If the test bit sampled by the prfswap challenger is 0, then
C̃3, κ̃3 ← HKDF(C2, shk1) and we are in Game 3b. If
the test bit sampled by the prfswap challenger is 1, then
C̃3, κ̃3

$← {0, 1}|HKDF| and we are in Game 3c.
Thus any adversary A capable of distinguishing this change

can be turned into a successful adversary against the prfswap

security of HKDF, and we find:

Pr(break3b) ≤ Advprfswap

HKDF,A(λ) + Pr(break3c)

Game 4 In this game, we replace the computation of C6

with a uniformly random value C̃6 from the same distribution,
in the challenger’s execution of the test session πsi and
its partner session πtj . We do so by interacting with a prf
challenger in the following way: When it is time to compute
C6 ← HKDF(C̃4, ct2) we instead initialize a prf challenger
and query it with ct2. We note that by Game 3c that C̃4 is a
uniformly random value and independent value, and thus this
replacement is sound. If the random bit b sampled by the prf
challenger is 0, then we are in Game 4. If the random bit b
sampled by the prf challenger is 1, then we are in Game 4.
Any adversary A capable of distinguishing this change in the
experiment can be turned into an algorithm against the prf
security of HKDF and thus:

Pr(break3c) ≤ Advprf
HKDF,A(λ) + Pr(break4)

Game 5 In this game, we replace the computation of C7

with a uniformly random value C̃7 from the same distribution,
in the challenger’s execution of the test session πsi and
its partner session πtj . We do so by interacting with a prf
challenger in the following way: When it is time to compute
C7 ← HKDF(C̃6, shk2) we instead initialize a prf challenger
and query it with shk2. We note that by Game 4 that C̃6

is a uniformly random value and independent value, and thus
this replacement is sound. If the random bit b sampled by
the prf challenger is 0, then C̃7 ← HKDF(C̃6, shk2) and
we are in Game 4. If the random bit b sampled by the
prf challenger is 1, then C̃7

$← {0, 1}|HKDF| and we are in
Game 5. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break4) ≤ Advprf
HKDF,A(λ) + Pr(break5)

Game 6 Similarly to the previous game, we replace the
computation of C8 with a uniformly random value C̃8 from
the same distribution, in the challenger’s execution of the test
session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to

compute C8 ← HKDF(C̃7, shk3) we instead initialize a prf
challenger and query it with shk3. We note that by Game 5
that C̃7 is a uniformly random value and independent value,
and thus this replacement is sound. If the random bit b sampled
by the prf challenger is 0, then C8 ← HKDF(C̃7, shk3) and
we are in Game 5. If the random bit b sampled by the
prf challenger is 1, then C̃8

$← {0, 1}|HKDF| and we are in
Game 6. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break5) ≤ Advprf
HKDF,A(λ) + Pr(break6)

Game 7 In this game, we replace the computation of
C9, tmp, κ9 with uniformly random values C̃9, t̃mp, κ̃9 from
the same distribution, in the challenger’s execution of the test
session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time to
compute C9, tmp, κ9 ← HKDF(C̃8, psk) we instead initialize
a prf challenger and query it with psk. We note that by
Game 6 that C̃8 is a uniformly random value and independent
value, and thus this replacement is sound. If the random bit b
sampled by the prf challenger is 0, then we are in Game 6.
If the random bit b sampled by the prf challenger is 1, then we
are in Game 7. Any adversary A capable of distinguishing
this change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break6) ≤ Advprf
HKDF,A(λ) + Pr(break7)

Game 8 Similarly to the previous game, we replace the
computation of C10 with a uniformly random value C̃10 from
the same distribution, in the challenger’s execution of the test
session πsi and its partner session πtj . We do so by interacting
with a prf challenger in the following way: When it is time
to compute C10 ← HKDF(C9, ∅) we instead initialize a prf
challenger and query it with the empty string ∅. We note that
by Game 8 that C̃9 is a uniformly random value independent
from the protocol execution, and as such the replacement is
sound If the random bit b sampled by the prf challenger is 0,
then we are in Game 7. If the random bit b sampled by the
prf challenger is 1, then we are in Game 8. Any adversary
A capable of distinguishing this change in the experiment can
be turned into an algorithm against the prf security of HKDF
and thus:

Pr(break7) ≤ Advprf
HKDF,A(λ) + Pr(break8)

Game 9 Similarly to the previous games, we replace the
values tki, tkr ← HKDF(C̃10, ∅) computed by the challenger
in the execution of the test session and its honest contributive
keyshare session partner πtj with uniformly random values
t̃ki, t̃kr. We do so by interacting with a prf challenger in the
following way: When it is time to compute tki, tkr in the
appropriate sessions, we instead initialize a prf challenger and
query it with the empty string ∅. We note that by Game 8
that C̃10 is a uniformly random value independent from the
protocol execution, and as such the replacement is sound. If

the random bit sampled by the prf challenger if 0, then we are
in Game 8, but otherwise the output of the prf challenger
t̃ki, t̃kr is uniformly random and independent and we are in
Game 9. Any adversary A capable of distinguishing this
change in the experiment can be turned into an algorithm
against the prf security of HKDF and thus:

Pr(break8) ≤ Advprf
HKDF,A(λ) + Pr(break9)

Since the response to the Test(i, s) query issued by the
adversary is, in Game 9, uniformly random and independent
of the test bit b sampled by the challenger, then the adver-
sary’s success in winning the key-indistinguishability game is
reduced to simply guessing and thus:

Pr(break9) = 1/2

AdveCK-PFS-PSK,C3.5

pqWG,nP ,nS ,A (λ) ≤ n2Pn
2
S

(nS
2λ

+ AdvIND-CCA
CCAKEM,A(λ)

+ 7 · Advprf
HKDF,A(λ)

+ Advprfswap

HKDF,A(λ)
)

	Introduction
	Contributions of this paper.
	Related Work.
	Availability of Software.
	Organization of this paper.

	Preliminaries
	Security Properties
	Cryptographic building blocks
	The WireGuard handshake

	From WireGuard to PQ-WireGuard
	Moving from DH to KEMs

	Security analysis
	The Computational Proof
	The Symbolic Proof

	Instantiation with McEliece and Saber
	Performance analysis
	References
	Appendix
	The Dagger IND-CPA-secure KEM
	Computational Proof
	The Tamarin Prover.
	Remaining proofs in symbolic model
	Security-Model
	Execution Environment
	Adversarial Interaction
	Partnering Definitions
	Cleanness Predicates

	Full Proof
	Case 1: Test init session without contributive keyshare session
	Case 2: Test resp session without contributive keyshare partner
	Case 3: Test session with contributive keyshare partner

