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Abstract. Incentive systems (such as customer loyalty systems) are omnipresent nowadays and deployed in
several areas such as retail, travel, and financial services. Despite the benefits for customers and companies, this
involves large amounts of sensitive data being transferred and analyzed. These concerns initiated research on
privacy-preserving incentive systems, where users register with a provider and are then able to privately earn
and spend incentive points.
In this paper we construct an incentive system that improves upon the state-of-the-art in several ways:
– We improve efficiency of the Earn protocol by replacing costly zero-knowledge proofs with a short structure-

preserving signature on equivalence classes.
– We enable tracing of remainder tokens from double-spending transactions without losing backward unlinka-

bility.
– We allow for secure recovery of failed Spend protocol runs (where usually, any retries would be counted as

double-spending attempts).
– We guarantee that corrupt users cannot falsely blame other corrupt users for their double-spending.

We propose an extended formal model of incentive systems and a concrete instantiation using homomorphic
Pedersen commitments, ElGamal encryption, structure-preserving signatures on equivalence classes (SPS-EQ),
and zero-knowledge proofs of knowledge. We formally prove our construction secure and present benchmarks
showing its practical efficiency.
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1 Introduction

Customer loyalty and incentive systems represent an entire industry with massive promising benefits for
many businesses. Those systems offer incentives to users to, for example, buy certain products or repeatedly
visit the same shop (through customer loyalty incentives). They are widely implemented via dedicated
programs ranging from simple point-based programs (e.g., IHG Rewards Club) over tiered programs (e.g.,
Shop.com, Cashback, and Best Buy) to paid and punch systems (e.g., Amazon Prime and Hotels.com)
serving 3.3 billion customers alone in the US.3 Incentive systems are mostly deployed in practice in form of
physical loyalty cards, rewards cards, points cards, advantage cards or club cards, and can be found in
traditional business areas such as retail, travel, or financial services that come with a variety of promotion
and condition flavors.4

While in the past most of these program required dedicated plastic cards, nowadays either smartphone
apps provided by the vendors of the incentive system or dedicated mobile applications (e.g., Apple’s Wallet)
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are becoming more and more popular. Through such programs, a significant amount of data is generated
and provided to the organization behind those incentive systems. While clearly most customers have
to consent in providing their data to organizations via accepting the company’s terms and conditions,
undoubtedly sensitive data is processed in various and sometimes even undesired ways. One famous example
is demonstrated by the retailer Target that hit the headlines in 2012 when they exposed a girl’s pregnancy
to her father with coupons sent by Target.5 Given these facts and an ever increasing number or large-scale
data breaches6 — including large loyalty-card providers such as British Airways, Gap, Starbucks, and
Target —, it is evident that privacy concerns of customers need to be seriously considered. A large-scale
consumer survey conducted by COLLOQUY in 20177 among Americans and Canadians who participate
in at least one loyalty program, shows that 49% of these people do not trust loyalty programs with their
personal information. Although they still consent to those programs, it needs to be expected that there is
a significant number of people who do not participate in such programs due to privacy concerns. This is
supported by another study8 which shows that around 24% of consumers say that they would not enroll in
a loyalty program because it was a risk to their privacy.

There are various lines of research which investigate the design of privacy-preserving incentive systems
(see Sect. 1.2 for a detailed discussion). In these systems, users generally store their own point counts (in
authenticated form) as a single continually updated token. Users can interact with the incentive system
provider to earn points (e.g., at supermarket checkout) or spend points (to reap rewards). To ensure privacy
for users, the provider should not be able to recognize which user is earning or spending points in any
particular transaction. On the other hand, the provider wants to ensure that users can only spend as many
points as they have earned. In particular, users must not be able to use the same token twice to spend
points (i.e., double-spend). Double-spending is usually prevented by embedding an identifier dsid into
each token, which needs to be revealed when spending it. If the user tries to spend a token that he has
already spent, the provider can recognize the dsid and reject the attempt. However, this means that all
locations where points can be spent must be continually online and connected to a database to check dsid .
This poses many practical challenges and limits applicability of cryptographic incentive systems. For this
reason, modern systems support offline double-spending protection, meaning that if the provider accepts
two transactions with the same dsid (e.g., because he is currently unable to check whether dsid has been
used before), there is a mechanism in place that allows the provider to repair this: the provider can reveal
the double-spending user’s identity and reclaim any benefits he illegally gained from double-spending.

There are several works on privacy-preserving incentive systems [1,2,3,4]. Unfortunately, the schemes
are limited in their applicability in practice (as discussed in Sect. 1.2). With our new construction, we
improve upon the state-of-the-art of privacy-preserving incentive systems in the following ways:

– We significantly improve the efficiency of the Earn protocol (which is the most frequent operation).
We do this by replacing costly zero-knowledge proofs with a short structure-preserving signature on
equivalence classes [5,6].

– When spending k out of v points from a token, the spend operation yields a remainder token for the
remaining point count v − k. In case of double-spending, these remainder tokens must be dealt with by
the provider. Otherwise, a user can effectively double his point count by double spending, receiving two
remainder tokens for v − k points. Prior work either was not able to trace these remainder tokens at all
[2,3], or did so at the cost of losing backward unlinkability [4] (i.e., if a user double-spends once, all

5 https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
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8 https://www.businessnewsdaily.com/4615-loyalty-programs-privacy-concerns.html



past transactions can be traced by the provider). We provide a mechanism for remainder token tracing
that is compatible with backward unlinkability.

– In practical scenarios, the spend protocol may be interrupted (e.g., through a technical fault). In prior
work, this meant that users would lose all of their points, as retrying the transaction would be detected
as double-spending. We present a recovery mechanism that can handle arbitrary faults (as well as
malicious attempts at provoking faults).

– Prior work ensures that malicious users (and a dishonest provider) cannot blame honest users for
double-spending. In practice, one also should require that a malicious user B cannot simply blame
another malicious user A for double-spending conducted by B. Without this property, malicious users
would be incentivized to double-spend while avoiding any blame by simply blaming another party. We
give a formal definition to model framing resistance for (non-colluding) malicious users. Our construction
provides this property.

1.1 Our Construction

For the sake of exposition, we will explain the ideas behind our construction in several steps, starting with
a basic version of an incentive system and working towards our full scheme and omit details the sake of
simplicity of exposition.

A basic construction. In the most basic version (reminiscent of [2]), the user holds a commitment C to
the user’s current point total v (initially, v = 0), the user’s secret usk , a token identifier dsid , and a random
value dsrnd . Additionally, he holds a signature σ on C. To earn points, the user sends a randomized version
C ′ of C to the provider (and proves possession of a corresponding signature). The provider homomorphically
increments the point total v within C ′ by k points and signs the resulting commitment C ′′, which is a
commitment to (v + k, usk , dsid , dsrnd).

Spending points is more complicated because we need to account for double-spending. To spend k out
of v ≥ k points, the user reveals the token identifier dsid to the provider. If the provider is aware that
the token with id dsid has been spent before, he can immediately reject the attempt as double-spending.
However, the provider may not be aware of dsid if it has been spent before at an offline location. To
cover such cases, the provider sends a random value γ ← Zp and the user reveals c = usk · γ + dsrnd
mod p (explained below). The user then chooses fresh random values dsid ′ and dsrnd ′ and prepares a
commitment C ′ to (v − k, usk , dsid ′, dsrnd ′) for his remainder token. The user proves possession of his old
signed commitment on (v, usk , dsid , dsrnd), that all the sent values have been computed correctly, and
that v ≥ k. Then the provider signs the new token commitment C ′, which is on (v − k, usk , dsid ′, dsrnd ′).

The idea is that a double spending user would be forced to reveal c = usk · γ + dsrnd in the first
transaction and c′ = usk · γ′ + dsrnd in the second (with, likely, γ 6= γ′). c, γ and c′, γ′ allow the provider
to compute usk , both revealing the identity of the double-spender and providing proof of guilt (as usk
cannot be computed if no double-spending occurs). If the user does not double-spend, then usk is perfectly
hidden within c (because dsrnd is only used once), and every revealed dsid is just some random identifier.
We will call this the “Schnorr trick”.

Through this mechanism, a double-spending user can be identified and punished for any time he double-
spends a token. However, after double-spending a token with v points, the user holds two remainder tokens
with v − k points each. These remainder tokens can be used without being traceable to the double-spender,
almost doubling his point value.

Tracing remainder tokens. To fix the remainder token problem from the previous construction, we
augment the basic construction as follows (using ideas from [4]): When spending points, we now force



Table 1. Comparison of incentive systems. We list the features (e.g., double-spending protection) and the security guarantees
(soundness, anonymity, framing-resistance, backward unlinkability, and framing-resistance for non-colluding malicious users).
Earn protocol highlights the main technique used: GS (Groth-Sahai NIZK), ZKP (zero-knowledge proof of knowledge based on
Σ-protocols), SPS-EQ. ”?” is used where the guarantee is not clear.
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the user to additionally reveal an encryption of dsid ′ (which he chose for his remainder token) under usk .
This way, if the user double-spends, the provider can extract usk as in the construction above and use it
to obtain the remainder token’s id dsid ′. Then if dsid ′ has also already been spent, he can again use usk
to decrypt that transaction’s remainder token id, and so on. Basically, this allows to provider to find all
tokens that resulted directly or indirectly from a double-spending transaction.

Unfortunately, this modification also means that as soon as a user double-spends, the provider can
use usk not only to decrypt encryptions of remainder tokens of double-spending transactions, but also all
other transactions of that user. This means that as soon as a user double-spends, all past transactions also
become traceable; the scheme does not have backward unlinkability.

Backward unlinkability. To add backwards-unlinkability to the previous construction (while still allowing
the provider to trace “forwards”), we effectively create a chain of encryption keys instead of encrypting
everything with usk . More specifically, we now interpret dsid as the public key of an encryption scheme
with secret key esk . The user’s commitment now contains (v, usk , esk , dsrnd0, dsrnd1), where esk replaces
dsid and we now have two dsrnd values. Earning points is essentially unchanged (as it only touches v).
When spending points, the user now chooses a fresh encryption key esk∗ as well as random dsrnd∗0, dsrnd∗1
for his remainder token. He encrypts esk∗ under the old token’s dsid . He then reveals c0 = usk · γ + dsrnd0

and c1 = esk ·γ+ dsrnd1 for the provider’s random challenge γ. Now if the user double-spends, the provider
can compute the secret key esk for dsid through the Schnorr trick and hence decrypt the remainder token’s
esk∗. Then esk∗ can be used to decrypt the next esk∗∗ from the remainder token and so on.

With this mechanism, the provider can still trace all remainder tokens resulting (directly or indirectly)
from double-spending, but cannot use esk to decrypt any older ciphertexts. This preserves backward
unlinkability, i.e., if users are corrupted (and, for example, double-spend as a result), their past transactions
stay private (provided they discard the esks for old transactions).

Recovering failed spends. The previous construction already improves upon the state-of-the-art by
combining remainder token traceability with backward unlinkability. However, assume that some spend
transaction is aborted after c0, c1 have been sent, but before the user receives his signature on his new
commitment. This can either happen accidentally (e.g., equipment failure), or maliciously. In this case, the
user has effectively lost all his points, as re-trying to run the spend protocol (with the same token) would
allow the provider to extract the user’s secret. This is unacceptable for an incentive system in practice.



For this, we introduce a recovery functionality. We need to ensure security for the user (repeat
recovery attempts do not threaten anonymity) and for the provider (users must not be able to abuse
recovery to double-spend). First, for every spend transaction, the provider chooses a (unique) transaction
id tid . In contrast to before, the challenge γ for the Schnorr trick is now deterministically derived as
γ = H(γ)(k, dsid , tid , C ′) using a (collision-resistant) hash function H(γ). This means that for the same
transaction tid , if the user spends the same amount k, reveals the same dsid and uses the same commitment
C ′ for the remainder token, he will receive the same challenge γ. This prevents the provider from kicking
off the mechanism to punish double-spending. As before, for different transactions tid ′, the user will (likely)
get a different challenge γ, which enables double-spending punishment. Furthermore, trying to change
C ′ will (likely) result in a different challenge. This prevents the user from receiving a second/different
remainder token from the retry (any attempt will reveal the user’s identity and void the transaction using
the mechanisms explained above).

Removing zero-knowledge proofs from Earn. When earning points, currently, the user needs to send
a randomized version C ′ of his commitment C and then prove knowledge of a signature (in zero-knowledge).
The user cannot simply send his signature to the provider in plain, as this would de-anonymize the
user. To solve this, we need a signature scheme that (1) allows randomizing signatures and (2) allows
randomizing messages C to C ′ without making the signature invalid. A perfect fit for this scenario are
structure-preserving signatures on equivalence classes (SPS-EQ [5,6]), for which a signature on a vector
(h, g) of group elements can be adapted to a signature on (hs, gs) (in a sense, the signer actually signs all
exponentiations of (h, g)).

For this, the user holds an SPS-EQ signature σ on the vector (C, g1) for his (Pedersen) commitment
C = hv1 · husk2 · hesk3 · hdsrnd0

4 · hdsrnd1
5 · hr6 and some fixed element g1. To earn points, the user randomizes

(C, g1) to (Cs, gs1), which looks random to the provider (assuming decisional Diffie-Hellman). He also adapts
the signature σ to a signature σ′ on (Cs, gs1). The provider can then, using gs1 and knowledge of x such
that gx1 = h1, add k to the v component of the commitment: Cs · ((gs1)x)k is a Pedersen commitment on
(v+k, . . . ) (just raised to the power of s). The provider then signs (Cs ·((gs1)x)k, gs1) with the SPS-EQ scheme
and sends the signature to the user. The user can transform this into a signature on (C · hk1, g1) = (C ′, g1),
where C ′ is a Pedersen commitment on v + k.

This way of running the earn protocol means that the user simply sends two group elements plus a
signature (which he can even prepare in advance) and receives a single signature in return, which is a
significant improvement over the zero-knowledge proof that had to be conducted previously. However, the
previous version of the earn protocol was much more convenient to prove secure: Zero-knowledge ensured
anonymity for the user. The proof of knowledge property allowed a reduction to trace every single operation
and the commitments, signatures, and openings involved, allowing it to immediately catch signature forgers
or commitment breakers. Replacing the zero-knowledge proof of knowledge with an SPS-EQ introduces
many technical challenges into the concrete construction (cf. Sect. 4) and its security proofs.

1.2 Related Work

Ideas on mechanisms similar to incentive systems have been pursued in various fields, for instance, in
public-transport payment with refunds [8], privacy-preserving cloud-resource payments [9,10] or privacy-
preserving multi-coupon systems [11,12,13,14]. We stress that these approaches essentially use pre-paid
mechanisms, where in contrast to incentive systems, the spending is a much more frequent operation than
earning/debt clearance. As those solutions do not match the requirements of incentive systems, we now
discuss schemes that are more closely related to the collection of points (as done in incentive systems).



In the basic incentive system by Milutinovic et al. [1] points can neither be accumulated nor updated,
and so the system induces storage and communication cost linear in the number of tokens. Moreover,
double-spending protection is limited to online providers. In [2], Jager and Rupp introduce black-box
accumulation (BBA) as a building block for incentive systems. BBA has been improved in two follow-up
works to a system called BBA+ [3] by Hartung et al. and Black-box Wallet (BBW) by Hoffmann et al. [7].
BBA+ adds offline double-spending protection and the collection of negative points. Further, they introduce
in BBA+ [3] the important and strong notion of forward and backward unlinkable transactions. While BBA
and BBA+ use Groth-Sahai NIZK proofs [15] in all protocols, in BBW [7] the system is further optimized
for smart-card usage. In contrast to our construction, the concurrent work BBW [7] aims at applications
where the spend operation is frequent, e.g. subway turnstiles, and optimizes it using Bulletproofs [16].
BBA+ has been further extended for electronic toll collection [17] and vehicle-to-grid systems [18], where
in contrast to incentive systems, tokens are used to accumulate debt instead of points. We stress that BBA,
BBA+, and BBW do not allow to partially spend credits, i.e., they lose all guarantees after a spend where
credits remain. Our approach does not suffer from this problem, since we support remainder token tracing.

Blömer et al. [4] introduce a model for updatable anonymous credentials (UACS) and show how incentive
systems can be generically constructed from UACS. They also provide an instantiation based on UACS
obtained from Pointcheval-Sanders signatures [19]. Their scheme introduces a remainder token tracing,
but their tracing mechanism rules out backward unlinkability. We take their definitions as a starting point
but extend and strengthen it in various ways. In particular, we add the features recoverability, backward
unlinkability, and framing-resistance for non-colluding malicious users.

To the best of our knowledge, no prior schemes considered recovery mechanisms or framing resistance
for non-colluding malicious users. Furthermore, all prior work relied on zero-knowledge proofs for (in
particular) the Earn protocol, which comes with a significant performance impact.

An overview of the features of directly related incentive systems is presented in Tab. 1. Since the
definition of framing-resistance for non-colluding malicious users is introduced in this paper it is not clear
if existing systems satisfy it.

Apart from these specific solutions, there are some classical well-known concepts that are clearly related,
e.g., e-cash systems. However, modern approaches to e-cash such as compact e-cash [20] are not suitable as
once a double-spending occurs, all coins of the respective user can be traced. In our approach, however,
we want old tokens to stay anonymous, but tokens spent starting from the double-spending have to be
traceable (see remainder token tracing in Tab. 1).

In transferable e-cash systems [21,22] or divisible e-cash systems [23,24,25], tracing is only possible
for individual coins, i.e., yields only double-spending detection, and, hence, does not provide the desired
security (e.g. handling of tokens resulting from a double-spending) that we want to achieve. Moreover,
most of the existing e-cash solutions are far too inefficient for our use cases.

In [26], Camenisch et al. present glitch protection which preserves anonymity of users even if they
use their one-time authentication token not more than n times, but all authentications with the same
token are linkable. Users in [26] can then be identified after n+ 1 uses of the same token. Applied to our
scenario this would lead to unsatisfactory guarantees, because then we essentially allow n double-spendings
before we can identify the user to claim the losses. Our recovery feature (recoverability) compared to the
glitch protection in [26] also preserves anonymity in case something goes wrong, e.g., hardware failure, but
unlike the protection in [26] our goal is to bring the user back into the system and we cannot consider
double-spending as a glitch, rather we consider failure during the spend process as a glitch. The additional
tracing feature presented in [26] enables the provider to identify all possible authentication tokens of a user
after the user reuses one token. This is similar to the all-or-nothing unlinkability provided in [4] where all
users’ tokens can be linked after one double-spending. Our backward unlinkability still guarantees user



anonymity for tokens issued before the double-spending. The backward unlinkability and recoverability
that our scheme provides are new features that can be added to the elaborate list presented in [26] and
improves upon the work in [4].

2 Building Blocks

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security parameter. For a finite set S, we
denote by s← S the process of sampling s uniformly from S. For an algorithm A, let y ← A(x) be the
process of running A on input x with access to uniformly random coins and assigning the result to y.

PRF. We denote a pseudorandom function PRF as follows: β ← PRF.KeyGen(1λ) generates a key. For a
finite set S and a bit string x ∈ {0, 1}∗, we denote the evaluation as y = PRF.EvalSβ (x), which outputs
some y ∈ S. As usual, no PPT adversary should be able to distinguish evaluations of the PRF from a truly
random function.

SPS-EQ. Structure-preserving signatures on equivalence classes (SPS-EQ) [5,6] sign messages-vectors of
length ` from one of the prime order p source groups Gi (i ∈ {1, 2}) of a bilinear group and ` > 1. An
SPS-EQ-scheme signs equivalence classes [M ] of vectors M ∈ (G∗i )` with equivalence relation: M,N ∈ G`

i :
M ∼R N ⇔ ∃ s ∈ Z∗p : M = N s.

An SPS-EQ scheme now signs an equivalence class [M ] by signing a representative M of [M ] and given
a signature for [M ] one can publicly derive a signature for each representative. More precisely, given the
description of a bilinear group BG and a length parameter `, KeyGen outputs a key pair (pk , sk) and Sign
on input a message M ∈ (G∗i )`, which is a representative of the class [M ], and a secret key sk outputs a
signature. The algorithm ChgRep on input an representative M of [M ], a corresponding signature σ, an
exponent µ ∈ Z∗p and a public key pk outputs a pair M ′ = Mµ and σ′ where σ′ is a valid signature for the
representative Mµ. The verification algorithm on input a message M , a signature σ and a public key pk
outputs a bit indicating whether the signature is valid. Additionally, there is a VKey algorithm that on
input sk and pk outputs a bit indicating whether the key pair is valid. Unforgeability is defined analogous
to digital signatures, but for equivalence classes instead of messages. One of the goals of SPS-EQ is to
guarantee that message-signature pairs output by Sign and ChgRep are identically distributed and that it
is hard to distinguish different equivalence classes, which yields a type of unlinkability. For more details,
consult Appendix B.1.

Zero-Knowledge PoKs. LetR be a witness relation for some NP language LR = {x | ∃w s.t. (x,w) ∈ R}.
A zero-knowledge proof of knowledge is a a proof system that allows a prover P to convince a verifier V that
it knows a witness w to some word x ∈ LR, i.e., such that (x,w) ∈ LR, without revealing anything beyond
this fact and in particular no information about w to V . Consider, for example, a prime order p group
(G, p, g) with fixed generator g and let us define (x,w) ∈ R if gw = x. In our notation a zero-knowledge proof
of knowledge for this relation is denoted as ZKP[(w) : gw = x]. For more details, consult Appendix B.2.

3 Definition of Incentive Systems

In this section, we formally define incentive systems, their syntax, and their security. We start with a
high-level description of an incentive system for point collection. Our definitions are based on [4], which
we extend with a recovery feature and completely new security definitions for backward unlinkability and
framing-resistance for non-colluding malicious users.



3.1 Syntax Definition of Incentive Systems

In a nutshell, after having set up the system parameters, the provider and the users generate their private
key material. In order to join the system, the user engages in an issuance protocol with the provider, where
he receives an initial token initialized with 0 points. After this, the user can earn and spend points through
interactions with the provider, after which she receives updated tokens for the new balance. To increase
fault tolerance, the spend protocol can be run repeatedly with the same input without it being interpreted
as double-spending or losing points; this is useful, e.g., if the spend-protocol aborts when removing the user
device from the terminal too early, or in case that the user does not receive the announced benefit from
the provider after having spent the points. Transaction ids tid are used to differentiate repeat attempts
from new transactions. Finally, double-spending protection, in particular required when considering offline
spending, is achieved through linking and verification algorithms; furthermore, tracing of remainder tokens
that are a direct or indirect result of double-spending is supported. More details are also given below.

Definition 1. An incentive system consists of the following PPT algorithms:

Setup(1λ)→ pp generates public parameters pp. We assume that some maximum point score vmax ∈ N
and a bounded maximum number kmax ∈ N of points a user can earn at once are (implicitly) encoded in
pp (we assume both limits to be large enough never to be hit in practice).

ProviderKeyGen(pp)→ (pk , sk) generates a key pair (pk , sk) of an provider.
KeyGen(pp, pk)→ (upk ,USK ) generates a user’s public key upk and secret key USK for the given provider.
Issue(pp, pk , upk , sk)↔ Join(pp, pk , upk ,USK )→ (token, dsid) is an interactive protocol with common in-

put pp and public keys pk , upk. The provider gets its secret key sk as private input and the receiver gets
its user secret key USK as private input. After the protocol, the receiver outputs a token token with 0
points and a double-spend id dsid, or the failure symbol ⊥.

Credit(pp, pk , k, sk)↔ Earn(pp, pk , k,USK , token)→ token∗ is an interactive protocol with common input
pp, the provider’s pk, and earn amount k ∈ N. As private input, the provider gets sk and the receiver
gets its key USK and token-to-be-updated token. The earner outputs an updated token token∗ or the
failure symbol ⊥.

(token∗, dsid∗)← Spend(pp, pk , k, dsid , tid ,USK , token)↔ Deduct(pp, pk , k, dsid , tid , sk) → (b, dstag , γ)
is an interactive protocol with common input pp, the provider’s pk, spend amount k ∈ N, a double-spend
id dsid, and a (fresh, unique) transaction ID tid. The spender gets its key USK and token token as
private input. The provider outputs a bit b, a double-spend tag dstag, and a transaction tag γ. The
spender outputs a token token∗ and its dsid∗ or an error symbol.

Link(pp, pk , dstag , dstag ′)→ (upk , dsblame, dstrace) given two double-spend tags dstag , dstag ′, determin-
istically outputs the spending user’s upk, double-spending blaming information dsblame, and tracing
information dstrace, or ⊥.

VerifyDs(pp, dsblame, upk)→ b given dsblame and upk, outputs a bit b indicating whether dsblame proves
that upk has double-spent.

Trace(pp, dstrace, dstag)→ (dsid∗, dstrace∗) given dstrace and dstag, deterministically outputs the remain-
der token’s dsid∗ and dstrace∗.

Double-spending protection is inspired by [4]. The provider sets up a central database DB. This database
is a directed bipartite graph, which contains (1) one token node dsid for each dsid the provider has seen, and
(2) one transaction node (tid , γ) for a corresponding successful spend process with id tid and transaction
tag γ. Two Spend protocol runs with the same tid and same γ are considered to be attempts of the
same transaction and only one of them appears in the database. Edges establish known consume/produce
relations for transactions: every transaction (tid , γ) effectively consumes exactly one dsid (which the user



DBsync(tid , γ, dsid , dstag , k,DB):

– If (tid , γ) is not yet in the database, add new spend operation node (tid , γ) to DB, associate it
with k and dstag .

– If dsid is not in DB, add the node dsid and an edge from dsid to (tid , γ).
– Otherwise, add the edge from dsid to (tid , γ), and:
• If dsid has no (upk , dsblame, dstrace) associated with it, then there exist two outgoing edges

from dsid to transactions (tid , γ), (tid ′, γ′). In this case, compute (upk , dsblame, dstrace) =
Link(pp, pk , dstag , dstag ′) using the two tags dstag , dstag ′ associated with (tid , γ) and (tid ′, γ′),
respectively. Associate (upk , dsblame, dstrace) with dsid .

• Mark (tid , γ) invalid (this triggers the steps below).
– Whenever some node (tid , γ) with incoming edge from some dsid is marked invalid
• Use record (upk , dsblame, dstrace) associated with dsid and dstag associated to tuple (tid , γ)

to compute (dsid∗, dstrace∗) = Trace(pp, dstrace, dstag). Add dsid∗ to the graph (if it does
not already exist), associate (upk , dsblame, dstrace∗) with dsid∗, and add an edge from (tid , γ)
to dsid∗. If there is an edge from dsid∗ to some (tid ′, γ′), mark all such (tid ′, γ′) invalid (if
they were not already marked). This triggers this routine again.

Fig. 1. DBsync algorithm

reveals), inducing an edge dsid → (tid , γ). If double-spending occurs, Trace may uncover the remainder
token’s dsid∗ produced by (tid , γ), in which case the graph would contain an edge (tid , γ)→ dsid∗.

Providers periodically send their observed transactions (tid , γ) (together with their k, dsid , and dstag)
to the central database. If dsid is not yet in the database, the database simply adds dsid → (tid , γ) to the
graph. If dsid was already in the database, then it has already been spent in a transaction (tid ′, γ′). tid is
marked invalid and Link,Trace are used to find (tid , γ)’s successor dsid∗. If dsid∗ is already in the database,
any transaction descendants of dsid∗ are marked invalid and the process repeats. The exact algorithm
DBsync(tid , γ, dsid , dstag , k,DB) to add a transaction to the graph is given in Fig. 1.

Correctness. We omit a formal definition of correctness here. In a nutshell, the property should guarantee
that no algorithm or protocol will terminate in an error state if all participants take honestly generated
inputs and follow the protocol specification.

3.2 Security Definitions

To define security for incentive systems, we first define several stateful oracles, a selection of which will be
available to an adversary A in each of the subsequent security games. For these definitions, we assume that
pp has been generated honestly and is available to each of the oracles. Oracles modeling the behavior of
honest users are presented in Fig. 2, and those for honest providers in Fig. 3. Note that upon failing to
spend a token, users will enter a state in which they must retry the exact same spend operation again.
This models recovery of failed spend protocols in practice (where a user would also retry). It is noteworthy
that users will also consider any spend operation failed if the provider claims that it has failed, allowing a
corrupt provider to force users to retry transactions.

We next define anonymity, backward unlinkability, framing resistance, as well as soundness for incentive
systems.

Anonymity. Anonymity guarantees that an adversary controlling the provider cannot link a specific
transaction to a specific user. More precisely, we let the adversary arbitrarily interact with honest users,
mimicked by the oracles defined before. Then, in the challenge phase, the adversary may trigger one further
interaction. The adversary wins if he correctly guesses which user it was interacting with. To rule out trivial



RegisterKeys(pk):

– This interface must be called before any other honest-user
oracles, and may only be called a single time. It registers
the provider’s public key pk for further use.

Keygen():

– It chooses a fresh user handle u, runs
(upk ,USK ) ← KeyGen(pp, pk) and then stores user
state (upku,USKu, vu, tokenu, dsidu,mustRetryu)
← (upk ,USK , 0,⊥,⊥,⊥). It outputs (u, upk).

Join(u):

– Given user handle u, the oracle runs (token, dsid) ←
Join(pp, pk , upku,USKu). If token =⊥, the oracle outputs
⊥. Otherwise, it stores tokenu ← token, and dsidu ←
dsid . This oracle can only be called once for each u. It must
be called before any calls to Earn(u, ·) and Spend(u, ·, ·).

Earn(u, k) :

– This oracle ignores the call if tokenu =⊥, k > kmax , vu +
k > vmax , or mustRetryu 6=⊥. Otherwise, the oracle runs
token∗ ← Earn(pp, pk , k,USKu, tokenu). If token∗ =⊥,
the oracle outputs ⊥. Otherwise, it updates tokenu ←
token∗ and vu ← vu + k.

Spend(u, k, tid) :

– This oracle ignores the call if tokenu =⊥,
vu < k, or mustRetryu = (k′, tid ′) 6= (k, tid)
holds. The oracle sends dsidu to its communi-
cation partner. It then runs (token∗, dsid∗) ←
Spend(pp, pk , k, dsidu, tid ,USKu, tokenu). If the output
of Spend is ⊥ or the provider sends b = 0, it sets
mustRetryu = (k, tid) and outputs 0. Otherwise, it
updates (vu, tokenu, dsidu)← (vu−k, token∗, dsid∗) and
mustRetryu =⊥.

Fig. 2. Honest user oracles

ProviderKeyGen() :

– This oracle runs (pk , sk)← ProviderKeyGen(pp). It stores
pk and sk for further use. It initially sets the set of users
U ← ∅ and sets the double-spend database DB to the
empty graph. Furthermore, initially vearned, vspent ← 0.
Further calls to this oracle are ignored. This oracle must
be called before any of the other provider-related oracles.
The oracle outputs pk .

Issue(upk):

– If upk ∈ U , the request is ignored. Otherwise, the oracle
runs Issue(pp, pk , upk , sk) and adds upk to U .

Credit(k):

– On input k ≤ kmax , this oracle runs Credit(pp, pk , k, sk)
and increments vearned ← vearned + k.

Deduct(k, tid):

– The oracle waits to receive dsid . Afterwards, it
runs Deduct(pp, pk , k, dsid , tid , sk) → (b, dstag , γ).
It sends b to the user. If b = 0, it out-
puts ⊥. Otherwise, it chooses a fresh token spend
handle s and stores (tids, γs, dsids, dstags, ks) ←
(tid , γ, dsid , dstag , k), then it outputs s. If this is the first
time that Deduct(·, ·, ·, ·, tid , ·) has output b = 1, update
vspent ← vspent + k.

DBsync(s):

– This interface runs DB′ ←
DBsync((tids, γs, dsids, dstags, ks),DB). It then up-
dates DB ← DB′. Let vinvalid be the sum of values k
associated with invalid transactions within DB′.

Fig. 3. Honest provider oracles

distinguishers, both users must have valid tokens and sufficient points to spend/must not hit the vmax limit
through Earn. Furthermore, the users must not be in the mustRetry error state (multiple tries of the same
user for the same transaction are linkable).

Definition 2 (Anonymity). An incentive system Π is anonymous iff for every PPT adversary A there
exists a negligible function negl such that for all λ it holds that Pr[Expanon

A,Π (λ) = 1] ≤ 1/2 + negl(λ), where
Expanon

A,Π (λ) is as defined in Fig. 4.

Backward-unlinkability. This property guarantees that a malicious provider cannot link past transactions
to a user even if all of the user’s long-term local information (key material, token) are leaked to the provider.
This is reminiscent of forward secrecy for key exchange: even if long-term secrets are leaked, secrecy is still
protected for operations that occurred before the leakage.

To model this, we imagine two honest users u0, u1 who run transactions with a corrupted provider.
Eventually, both users are corrupted, their states are leaked to the provider. Then the provider should not
be able to tell which user state belongs to which of the two users.

For the formal definition, we choose an equivalent formulation (which lends itself better to the security
proofs): the provider does not know which user he interacts with in the first phase (he can interact with ub



Experiment Expanon
A,Π(λ)

pp ← Setup(1λ), b←$ {0, 1}, (pk , st)← A(pp)
RegisterKeys(pk), (u0, upk0), (u1, upk1)← Keygen()

st ← AJoin(·),Earn(·,·),Spend(·,·,·)(st , u0, upk0, u1, upk1)

b′ ← AEarn(ub,·),Spend(ub,·,·)(st)
where A is restricted to a single oracle query, and:

If A calls Earn(ub, ·) on input k,
if max{vu0 , vu1} > vmax or ⊥∈ {tokenu0 , tokenu1}
or (mustRetryu0

,mustRetryu1
) 6= (⊥,⊥), output 0.

If A calls Spend(ub, ·, ·) on input k, tid ,
if min{vu0 , vu1} < k or ⊥∈ {tokenu0 , tokenu1}
or (mustRetryu0

,mustRetryu1
) 6= (⊥,⊥), output 0.

return 1 iff b = b′

Fig. 4. Anonymity

Experiment Expbu
A,Π(λ)

pp ← Setup(1λ), b←$ {0, 1}, (pk , st)← A(pp)
RegisterKeys(pk), (u0, upk0), (u1, upk1)← Keygen()

st ← Aoracles(st , u0, upk0, u1, upk1)
where oracles = (Join(·),Earn(ub, ·),Earn(u1−b, ·),

Spend(ub, ·, ·),Spend(u1−b, ·, ·)
b′ ← A(st ,USKu0 , tokenu0 ,USKu1 , tokenu1)
return 1 iff b = b′ and vu0 = vu1 and mustRetryu0

= mustRetryu1
=⊥.

Fig. 5. Backward unlinkability

and u1−b, but does not know b). Then he receives the secrets of u0 and u1 (knowing which secrets belong
to u0 and u1, respectively) and needs to decide which of the oracles belongs to which secrets (i.e., guess b).
To exclude trivial distinguishers, the balances of the two users must be the same when their token is leaked
and they must not currently be in a mustRetry state. The latter restriction is because if the user is stuck
in a mustRetry state, he holds on to a token with a dsid he has already used, allowing the provider to
easily link the user to his previous spend attempt. In practice, this means that if the most recently spend
transaction has failed, it may be linked to the user upon corruption (but all other transactions remain
unlinkable).

Definition 3 (Backward-unlinkability). An incentive system Π is backwards unlinkable iff for every
PPT adversary A there exists a negligible function negl such that for all λ it holds that Pr[Expbu

A,Π(λ) =

1] ≤ 1/2 + negl(λ), where Expbu
A,Π(λ) is as defined in Fig. 5.

Framing-resistance. Informally, framing-resistance guarantees that an honest user cannot be blamed
for double-spending. To model this, the adversary plays the role of a corrupt provider, interacting with
an honest user. Note that by definition, honest users do not perform double-spending (cf. Fig. 2). The
adversary outputs some double-spending blaming information dsblame. He wins if dsblame is accepted as
valid proof of double-spending.

Definition 4 (Framing-resistance). An incentive system Π is framing resistant iff for every PPT
adversary A there exists a negligible function negl such that for all λ it holds that Pr[Expfr

A,Π(λ) = 1] ≤
negl(λ), where Expfr

A,Π(λ) is as defined in Fig. 6.



Experiment Expfr
A,Π(λ)

pp ← Setup(1λ), (pk , st)← A(pp), RegisterKeys(pk)

(dsblame, u)← AKeygen(),Join(·),Earn(·,·),Spend(·,·,·)(st)
return 1 iff VerifyDs(pp, dsblame, upku) = 1.

Fig. 6. Framing resistance

Experiment Expsoundness
A,Π (λ)

pp ← Setup(1λ), pk ← ProviderKeyGen(), RegisterKeys(pk)

AIssue(·),Credit(·),Deduct(·,·),DBsync(·)(pp, pk)
return 1 if vspent − vinvalid > vearned

and A has queried DBsync(·) for all spending record
handles s output by Deduct

return 1 if ∃(upk , dsblame) ∈ DB associated with some dsid such
that VerifyDs(pp, dsblame, upk) 6= 1 or upk /∈ U

return 0

Fig. 7. Soundness

Soundness. Soundness protects an honest provider against malicious users. On the one hand, it guarantees
that users can spend at most as many points as they have previously earned. On the other hand, the
property guarantees that double-spending can be detected and traced to a valid user.

To model this property, we allow the adversary to interact with honest-provider oracles in the role of
corrupted users. We also give the adversary control over the order that double-spending information is
synchronized into the central database. In the end, the adversary wins if some double-spending transaction
cannot be traced to one of the corrupted users, or if the adversary was able to spend more points than he
was credited by the provider. For this count of spent points, we do not count spending operations that have
been detected as double-spending – the idea here is that as soon as the provider detects double-spending
operations, he will recoup any losses from the blamed party.

Definition 5 (Soundness). An incentive system Π is sound iff for every PPT adversary A there
exists a negligible function negl such that for all λ it holds that Pr[Expsoundness

A,Π (λ) = 1] ≤ negl(λ), where

Expsoundness
A,Π (λ) is as defined in Fig. 7.

Framing-resistance for non-colluding malicious users. Via Definition 5, we have ensured that a
malicious user cannot frame an honest user for double-spending. One may also want to ensure that malicious
users cannot frame another malicious user for double-spending. This is because if a user B is able to frame
some user A, this would effectively allow B to circumvent the tracing mechanism, regardless of whether A
behaves honestly or not.

Note that for colluding users, this requirement can never be fulfilled. If A colludes with B, it may share
all his cryptographic secrets with B. Then obviously, B will be able to make it look as if B’s actions were
conducted by A. Since we cannot possibly prevent colluding users from using each others’ secrets, we clarify
our security requirement to “non-colluding malicious users should not be able to frame one another for
their actions”. This is still a nontrivial property to define (essentially, we are protecting some malicious
user from another malicious user). In this scenario, we require the provider to behave honestly (in reality,
this would be enforced through legal means).

Formally, we model this property as a game between two malicious users A and B and an honest
provider. A and B may both interact with the provider (through the usual oracles), but cannot interact with



Experiment Expadv-fr
A,B,Π(λ)

pp ← Setup(1λ), pk ← ProviderKeyGen(), RegisterKeys(pk)
(st , upkA)← A(pp, pk)

Run st ′ ← AIssue(upkA)(st) (require that A queries the oracle exactly once)

Run ACredit(·),Deduct(·,·),DBsync(·)(pp, pk , st ′) and

BIssue(·),Credit(·),Deduct(·,·),DBsync(·)(pp, pk , upkA) in parallel
(note that A and B cannot communicate with each other, but their
oracles work on the same state).

return 1 iff there is transaction tid with predecessor dsid in DB such that
dsid is associated with upkA but
the transaction id tid does not belong to one of A’s Deduct queries.

Fig. 8. Framing-resistance for non-colluding malicious users

one another. During the experiment, we associate each transaction id (tid , γ) to either A or B, depending
on who issued the corresponding Deduct query. B wins if the provider’s database DB contains some
transaction (tid , γ) that does not belong to A but that has been traced to A.

As a technical restriction, A may only use the Issue(upk) oracle once, as it returns the error symbol if
it has already been called for upk . Without this restriction, the oracle could be used as a covert channel for
A and B to communicate (to communicate a bit b` to B, A would query Issue(`) iff b` = 1, then B can
query Issue(`) afterwards to check for the error symbol).

We stress that the framing-resistance for non-colluding malicious users property neither implies (normal)
framing resistance as in Definition 4 (since in Definition 4, the provider is not assumed to be honest), nor
vice versa (since in Definition 4, the relevant users are assumed to be honest).

Definition 6 (Framing-resistance for non-colluding malicious users). An incentive system Π has
framing-resistance for non-colluding malicious users iff for every pair of PPT adversaries (A,B), there
exists a negligible function negl such that for all λ it holds that Pr[Expadv-fr

A,B,Π(λ) = 1] ≤ negl(λ), where

Expadv-fr
A,B,Π(λ) is as defined in Fig. 8.

4 Instantiation

In this section we present a concrete and practical construction. It is particularly interesting from an
efficiency perspective, as the operation that is most frequently conducted in such a system, i.e., the Earn
operation run by the user, does not require zero-knowledge proofs. This is achieved by the use of SPS-EQ
and some tricks to integrate them with other building blocks.

Before presenting the formal construction (see Alg. 1 to 4) we present the intuition behind it. As a
central building block we use an SPS-EQ scheme, which we use in a way that is inspired by their use
to construct round-optimal blind signatures in [27], but significantly extended to handle updates. More
precisely, the key of the provider represents an SPS-EQ key for vectors of length ` = 2 and the commitment
parameters (h1, . . . , h6) of a generalized Pedersen commitment, where the trapdoors (q1, . . . , q6) of the
generalized Pedersen commitment are contained in the secret key (latter is important for our update
functionality). Furthermore, we obtain another base h7 for the generalized Pedersen commitment via a
random oracle H, which allows us to equivocate the commitment in our security proofs. Every user possesses
a unique key upk = wusk and how the key is used in our construction is reminiscent of signatures with
efficient protocols [28,19], where users include their secret key into a commitment which is signed in an
interactive protocol in a blind way. Both the user and the provider set up respective keys for a PRF to
derive randomness for the spend protocol.



A user token is a Pedersen commitment C = husk1 · hesk2 · hdsrnd0
3 · hdsrnd1

4 · hv5 · hz6 · ht7 and an SPS-EQ
signature σ on (C, g1), where usk is the user’s secret key, esk is a secret encryption key (and, at the same
time, the corresponding public key dsid = wesk is a unique identifier for the token), dsrnd0, dsrnd1 are
random values to use with the Schnorr trick when spending the token, v is the token’s current point count,
and z, t are randomization values for the commitment. To ensure that esk is actually unique, whenever a
new token is created (during Issue or Deduct), both the user and the provider contribute randomness to it,
i.e., the user chooses a random share eskusr and the provider contributes random share eskprov. Overall,
esk = eskusr + eskprov.

Join. The very basic idea is that a user when joining the system forms a commitment C = husk1 · heskusr
2 ·

hdsrnd0
3 · hdsrnd1

4 · hz6 · ht7 (this expression implicitly contains h05, i.e. the user starts with v = 0 points). Now
the user assembles (C, g1) forming an equivalence class for the SPS-EQ scheme and switches it to random
representative C(pre) = (Cu, gu1 ) for u ← Z∗p and sends it to the provider. Simultaneously, it provides a
zero-knowledge proof of well-formedness of the sent vector.

The provider can now use its knowledge of the trapdoor q2 in the secret key to update the Pedersen
commitment Cu in C(pre) homomorphically without knowing the opening and produces C ′u := Cu ·
(gu1 )q2eskprov , contributing his share eskprov to the encryption key esk = eskusr + eskprov. Then it signs
(C ′u, gu1 ) using the SPS-EQ and sends the signature σ to the user, who checks well-formedness, verifies the
SPS-EQ signature σ and changes the representative to an unlinkable version (C∗, σ∗) = ((C ′, g1), σ

′). In
our intuitive description, we omit the opening information in the tokens for brevity.

Earn. Earn is a very simple protocol. A user who holds a token for v points and earns k points, takes his
pair ((C ′, g1), σ′) from his token, changes the representative obtaining ((C ′s, gs1), σ′′) for s← Z∗p and sends it

to the provider, who verifies the SPS-EQ signature. It then updates the commitment to C ′′s := C ′s · (gs1)q5k

which adds k points to the user’s token. Then it issues a fresh signature σ′′ on (C ′′s, gs1), which the user
verifies and then unblinds, obtaining the new token (C∗, σ∗) = ((C ′′, g1), σ

′′′) for v + k points.

Setup(1λ)

− BG← SPS-EQ.Gen(1λ), where BG = (G1,G2,GT, p, e, g1, g2)
− Choose hash function H : {0, 1}∗ → G1 (modeled as random oracle)
− w = H(’w’||BG), h7 = H(’h7’||BG)
− Output pp = (BG, w, h7)

P.KeyGen(pp)

− (pkSPS-EQ, skSPS-EQ)← SPS-EQ.KeyGen(BG, 2)

− (pkΣ , skΣ)← Σ.KeyGen(1λ)
− q1, . . . , q6 ← Zp, hi = gqi1 for i = 1, . . . , 6

− βprov ← PRF.KeyGen(1λ)
− Output sk = (skSPS-EQ, skΣ , q1, . . . , q6, βprov ) and pk = (pkSPS-EQ, pkΣ , h1, . . . , h6)

U.KeyGen(pp, pk)

− usk ← Zp
− βusr ← PRF.KeyGen(1λ)

− Output USK = (usk , βusr ) and upk = wusk

Alg. 1. Setup, provider, and user key gen. algorithms



Link(pp, dstag , dstag ′)

− Parse dstag = (c0, c1, γ, ctrace, eskprov) and
− dstag ′ = (c′0, c

′
1, γ
′, ctrace ′, esk ′prov)

− dsblame = (c0 − c′0)/(γ − γ′)
− upk = wdsblame

− dstrace = (c1 − c′1)/(γ − γ′)
− Output (dsblame, upk , dstrace)

Trace(pp, dstrace, dstag)

− Parse dstag = (c0, c1, γ, ctrace, esk
∗
prov)

− Parse ctrace = (ctrace1,i, ctrace2,i)i∈[ρ]

− mi =

{
β, if wβ = (ctrace1,i)

−dstrace · ctrace2,i for some 0 ≤ β < base

⊥ otherwise
for i = 0, . . . , ρ− 1

− If mi = ⊥ for some i output ⊥, otherwise

− dstrace∗ =
∑ρ−1
i=0 mi · basei + esk∗prov

− Output (dsid∗ = wdstrace∗ , dstrace∗)

VerifyDs(pp, dsblame, upk)

− Output 1 if wdsblame = upk , and 0 otherwise

Alg. 2. Link and trace algorithms

Spend. The user holds a token with commitment C = husk1 ·hesk2 ·h
dsrnd0
3 ·hdsrnd1

4 ·hv5 ·hz6 ·ht7 for v points and
wants to spend k ≤ v points. The user sends C and the signature on (C, g1) to the provider. He also forms a

commitment husk1 ·h
esk∗usr
2 ·hdsrnd

∗
0

3 ·hdsrnd
∗
1

4 hv−k5 ·hz∗6 ·ht
∗
7 for a fresh remainder token with v−k points. Similarly

to Join, he sends a random representative C(pre) = ((husk1 · hesk
∗
usr

2 · hdsrnd
∗
0

3 · hdsrnd
∗
1

4 hv−k5 · hz∗6 · ht
∗
7 )u

∗
, gu

∗
1 ) to

the provider. The user derives the values esk∗usr, dsrnd∗0, dsrnd∗1, z
∗, t∗, u∗ from a pseudorandom function

PRF.Eval
Z6
p

βusr
(dsid), such that if he retries this transaction, he will send the same C(pre) every time.

The user computes the challenge γ = H(γ)(k, dsid , tid , C(pre)) and sends c0 = usk · γ + dsrnd0. If the
user spends this token only once, then usk is perfectly hidden. However, if the user tries to spend the
same token again for a different transaction id tid (or if he tries to get a different remainder token using

C(pre)′ 6= C(pre)), he will be forced to reveal usk · γ′ + dsrnd0 with γ 6= γ′ with overwhelming probability.
This allows the provider to compute a double-spending user’s key usk . To enable the provider to trace the
remainder token prepared above, the user additionally publishes c1 = esk · γ + dsrnd1 and encrypts esk∗usr
(or, rather, its decomposition to base base) under esk using lifted ElGamal for each digit of esk∗usr. If the
user double-spends, the provider can compute esk and decrypt esk∗usr, which ultimately enables tracing of
remainder tokens.

The user then proves in zero-knowledge that all the sent values are well-formed. If the proof and
the signature on the old token are valid, then the provider contributes his random share esk∗prov to the

remainder token commitment C(pre), and produces an SPS-EQ signature σ on the changed C(pre) and sends
it back to the user. If everything is valid, then the user obtains the new token (C ′, g1) by changing the
representative of the SPS-EQ. Note that the provider’s share is deterministically derived from a PRF:
esk∗prov = PRF.Eval

Zp
βprov

(C(pre)). This means that if the user retries this transaction, the resulting token

will get the exact same esk∗ = esk∗usr + esk∗prov (if this were not the case, the user would be able receive a

second token with a different dsid = wesk∗ from retrying, which he could then legally spend without being
detected).



P.Issue(pp, pk , upk , sk) U.Join(pp, pk , upk ,USK )

ZKP[(skSPS-EQ,(qi)i∈[6]):VKey(skSPS-EQ,pkSPS-EQ)=1
∧
i∈[6] hi=g

qi
1 ]

-

esk∗usr, dsrnd
∗
0, dsrnd

∗
1, z
∗, t∗, u∗ ← Zp

C(pre) = (C
(pre)
0 , C

(pre)
1 ) =

((husk
1 · hesk∗usr

2 · hdsrnd∗0
3 · hdsrnd∗1

4 · hz
∗

6 · ht
∗
7 )u

∗
, gu
∗

1 )

C(pre)�

ZKP[(usk ,t∗,u∗,esk∗usr,dsrnd
∗
0,dsrnd

∗
1): upk=wusk

∧ C(pre)=((husk1 ·h
esk∗usr
2 ·hdsrnd

∗
0

3 ·hdsrnd
∗
1

4 ·hz∗6 ·ht
∗
7 )u

∗
,gu
∗

1 )]�

esk∗prov ← Zp
Parse C(pre) = (C

(pre)
0 , C

(pre)
1 )

σ ← SPS-EQ.Sign((C
(pre)
0 · (C(pre)

1 )q2·esk
∗
prov , C

(pre)
1 ), skSPS-EQ)

σ,esk∗prov -

(C∗, σ∗) = SPS-EQ.ChgRep((C
(pre)
0 · hu

∗·esk∗prov
2 , C

(pre)
1 ), σ, 1

u∗ , pkSPS-EQ)
Output (token∗ = (C∗, esk∗ = esk∗usr + esk∗prov, dsrnd

∗
0,

dsrnd∗1, z
∗, t∗, v = 0, σ∗), dsid∗ = wesk∗).

P.Credit(pp, pk , k, sk) U.Earn(pp, pk , k,USK , token)

s← Zp
(C′, σ′) = SPS-EQ.ChgRep(C, σ, s, pkSPS-EQ)

C′,σ′�

Parse C′ = (Cs0 , g
s
1) and check σ′

σ′′ ← SPS-EQ.Sign((Cs0 · (gs1)q5·k, gs1), skSPS-EQ)
σ′′ -

(C∗, σ∗) = SPS-EQ.ChgRep((Cs0 · (hs5)k, gs1), σ′′, 1
s
, pkSPS-EQ)

Output token∗ = (C∗, esk , dsrnd0, dsrnd1, z, t, v + k, σ∗)

Alg. 3. Joining and earning protocols

Linking and tracing. Linking is based on the fact that a double-spending of the same token will with
overwhelming probability involve two challenges γ, γ′ from the provider such that γ 6= γ′ and given two
pairs (c0, c

′
0) with c0 = usk · γ + dsrnd0 and c′0 = usk · γ′ + dsrnd0, and (c1, c

′
1) with c1 = esk · γ + dsrnd1

and c′1 = esk · γ′ + dsrnd1 allows to extract usk and esk . The key usk , then easily allows to identify the
double-spender, and esk allows to track all the actions of the respective user after double-spending. For
tracing, when given esk , remember that ctrace is an ElGamal encryption of esk∗usr under secret key esk .
The provider also remembers his share esk∗prov for every transaction. Basically, then trace can work through
all transactions by always decrypting the next encryption key, which is made efficient by the use of DBsync.

4.1 Our Construction

Subsequently, in Alg. 1 to 4 we present our concrete construction. Our convention is that we do assume
that an algorithm always aborts if verification of a (SPS-EQ) signature fails or a ZKP proof does not verify
and we will not make these checks explicit to keep the algorithms as compact as possible. Moreover, kmax

is some polynomial in λ and vmax ≤ p− 1. We model H as a random oracle and H(γ) as collision-resistant
(we omit the hash function key in the trusted setup for brevity).



U.Spend(pp, pk , k, dsid , tid ,USK , token) P.Deduct(pp, pk , k, dsid , tid , sk)

Parse token = (C, esk , dsrnd0, dsrnd1, z, t, v, σ)

(esk∗usr, dsrnd
∗
0, dsrnd

∗
1, z
∗, t∗, u∗) = PRF.Eval

Z6
p

βusr
(dsid)

C(pre) = (C
(pre)
0 , C

(pre)
1 ) = ((husk

1 · hesk∗usr
2 · hdsrnd∗0

3 · hdsrnd∗1
4 · hv−k5 · hz

∗
6 · ht

∗
7 )u

∗
, gu
∗

1 )

Set γ = H(γ)(k, dsid , tid , C(pre))
c0 = usk · γ + dsrnd0

c1 = esk · γ + dsrnd1

Let [esk∗usr]ρ be decomposition of esk∗usr w.r.t. base

(i.e. esk∗usr =
∑ρ−1
i=0 esk∗usr,i · basei) where 0 ≤ esk∗usr,i < base for all i

(ri)i∈[ρ] ← Zp
ctrace = (wri , (wri)esk · wesk∗usr,i)i∈[ρ]

c0,c1,σ,C,C(pre),ctrace -

Set γ = H(γ)(k, dsid , tid , C(pre))

ZKP[(usk ,v,z,z∗,t,t∗,u∗,esk ,[esk∗usr]ρ,(ri)i∈[ρ],esk
∗
usr,dsrnd0,dsrnd

∗
0,

dsrnd1,dsrnd
∗
1) : c0=usk ·γ+dsrnd0 ∧ c1=esk ·γ+dsrnd1

∧ dsid=wesk∧ C=(husk1 ·hesk2 ·h
dsrnd0
3 ·hdsrnd14 ·hv5 ·hz6·ht7,g1)

∧ C(pre)=((husk1 ·h
esk∗usr
2 ·hdsrnd

∗
0

3 ·hdsrnd
∗
1

4 ·hv−k5 ·hz∗6 ·ht
∗
7 )u

∗
,gu
∗

1 )

∧ v≥k∧ ctrace=(wri ,(wri )esk ·wesk∗usr,i )i∈[ρ]
∧ esk∗=

∑ρ−1
i=0 esk∗usr,i·basei ∧

ρ−1
i=0 esk∗usr,i<base]

-

If SPS-EQ.Vrfy(C, σ, pkSPS-EQ) = 0, abort and output (0,⊥,⊥)

Set esk∗prov = PRF.Eval
Zp

βprov
(C(pre))

Parse C(pre) = (C
(pre)
0 , C

(pre)
1 )

σ′ ← SPS-EQ.Sign((C
(pre)
0 · (C(pre)

1 )q2·esk
∗
prov , C

(pre)
1 ), skSPS-EQ)

Output (1, dstag = (c0, c1, γ, ctrace, esk
∗
prov), γ)

σ′,esk∗prov�

(C∗, σ∗) = SPS-EQ.ChgRep((C
(pre)
0 · hu

∗·esk∗prov
2 , C

(pre)
1 ), σ′, 1

u∗ , pkSPS-EQ)

Set esk∗ := esk∗usr + esk∗prov and dsid∗ = wesk∗

token∗ = (C∗, esk∗, dsrnd∗0, dsrnd
∗
1, z
∗, t∗, v − k, σ∗)

Output (token∗, dsid∗)

Alg. 4. Spending protocol

We remark that although we are presenting our ZKPs in an interactive fashion it is easy to convert all
ZKP to NIZK proofs in the random oracle model (ROM) (without a CRS) by applying the Fiat-Shamir (FS)
heuristic. Care needs to be taken for the first ZKP in the issuing. We could include the proof in the pk of
the provider, but then we can not apply the FS heuristic and would require a straight-line extractable NIZK
in the ROM [29] instead. We stress that the option of removing interaction from the ZKPs is interesting if
communication rounds are a limiting factor.

4.2 Security

We state the following theorems to formalize that our construction from Sect. 4.1 satisfies all the desired
security guarantees defined in Sect. 3. Formal definitions of assumptions can be found in Appendix A. The
formal proofs are given in Appendix C.



Theorem 1. If PRF is a pseudorandom function, the ZKP is zero-knowledge and a proof of knowledge,
SPS-EQ provides perfect adaption, and the DDH assumption holds, then our incentive system provides
backward unlinkability in the ROM.

Theorem 2. If PRF is a pseudorandom function, the ZKP is zero-knowledge and a proof of knowledge,
SPS-EQ provides perfect adaption, and the DDH assumption holds, then our incentive system provides
anonymity in the ROM.

Theorem 3. If PRF is a pseudorandom function, H(γ) is collision-resistant, ZKP is zero-knowledge and a
proof of knowledge, the discrete logarithm problem is hard in G1, SPS-EQ is EUF-CMA secure, and Σ is
EUF-CMA secure, then our incentive system is sound.

Theorem 4. If PRF is a pseudorandom function, ZKP is zero-knowledge and the discrete logarithm problem
is hard in G1, then our incentive system is framing resistant.

Theorem 5. If PRF is a pseudorandom function, ZKP is a zero-knowledge proof of knowledge, the discrete
logarithm problem is hard in G1, and SPS-EQ is EUF-CMA secure, then our incentive system has framing-
resistance for non-colluding malicious users.

5 Performance Evaluation

Table 2. Average computation time over 50 runs in milliseconds. Emphasized: typical execution platform for each algorithm.

Device Issue Join Credit Earn Deduct Spend

Google Pixel (2016, Phone, Snapdragon 821) 88 116 28 60 1083 1017

Surface Book 2 (Laptop, i7-8650U) 14 19 4 9 237 220

We implemented our construction using the SPS-EQ scheme from [6]. The zero-knowledge proofs
were implemented as a non-interactive variant of Σ-protocols. For the range proofs, we follow the usual
base-b-decomposition approach [30]; PS signatures [19] are used to ensure the hidden digits are smaller
than the base b. As a basis for the implementation, we used the open-source Java library upb.crypto

with bilinear group bn256 by mcl9. Our implementation is not optimized and even for a rather outdated
smartphone (Google Pixel, 2016) the performance figures in Tab. 2 are very promising. We envision the
system to be used in an scenario where the smartphone communicates with the provider (terminal) over
Near Field Communication (NFC).

The computation times highlighted in Tab. 2 give an estimated improvement of the most frequently
used earn protocol of a factor of 4.5, 6.7 and 2 compared to BBA [2], BBA+ [3] and UACS [4] respectively.
Our earn protocol consists of 5 pairings, 7 exponentiations in G1, and 2 exp. in G2 for the user while
the provider computes 5 pairings and 4 exp. in G1. We note that Spend is relatively costly, though still
practical, compared to prior works. Its costs are mostly driven by the cost of range proofs to allow partially
spending points (which, for example, are omitted in BBA and BBA+), and by the cost of encrypting the
digits of the ElGamal secret key esk∗ with ElGamal, which enables remainder token tracing with backward
unlinkability (this combination is not offered by any other incentive system that we are aware of).

9 upb.crypto: https://github.com/upbcuk. mcl: https://github.com/herumi/mcl
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A Complexity Assumptions

We recall the DDH assumptions and we define the advantage of an adversary A relative to a group
generator (G, p, g)← GGen(1λ) as AdvDDH

A,GGen(λ) :=∣∣∣∣Pr

[
r, s, t← Zp, b← {0, 1},
b∗ ← A((G, p, g), gr, gs, grs+bt)

: b∗ = b

]
− 1

2

∣∣∣∣ .
We say that the DDH assumption holds if AdvDDH

A,GGen is negligible functions in the security parameter λ for
all PPT adversaries A, respectively. We note that in our construction we will require the problem relative
to the group G1 in a bilinear group generated by BGGen.

Additionally, we rely on the generalized version of DDH for the backward unlinkability and anonymity
proofs. In generalized DDH the adversary gets a set of DDH instances. We define Advx,y-DDH

A,GGen (λ) :=∣∣∣∣∣∣∣∣Pr


r1, . . . , rx, s1,1, . . . , sx,y,
t1,1, . . . , tx,y ← Zp, b← {0, 1},
b∗ ← A((G, p, g), [gri , gsi,j ,
grisi,j+bti,j ]i=1,...,x;j=1,...,y)

: b∗ = b

− 1

2

∣∣∣∣∣∣∣∣ .
We say that the x, y-DDH assumption holds if Advx,y-DDH

A,GGen is a negligible function in the security parameter
λ for all PPT adversaries A. The x, y-DDH assumption holds under the DDH assumption under a tight
security proof [31,32,33].

B Formal Definitions of Building Blocks

In the following we introduce the formal definitions of building blocks that we use to build our incentive
system.

B.1 SPS-EQ

Definition 7 (SPS-EQ). A structure-preserving signature on equivalence classes (SPS-EQ) scheme
SPS-EQ on message space (G∗i ) for i ∈ {1, 2} consists of the following PPT algorithms.



Gen(1λ) on input a security param. λ, outputs a bilinear group BG.

KeyGen(BG, `) on input BG and message vector length ` > 1, outputs a key pair (pk , sk).

Sign(M, sk) on input representative M ∈ (G∗i )` and a secret key sk, outputs a signature σ for the equivalence
class [M ].

ChgRep(M,σ, µ, pk) on input representative M ∈ (G∗i )` of equivalence class [M ], a signature σ on M ,
a value µ and a public key pk, returns an updated message-signature pair (M ′, σ′), where the new
representative is M ′ = Mµ and σ′ its corresponding (or, updated) signature.

Vrfy(M,σ, pk) is a deterministic algorithm and, on input a representative M ∈ (G∗i )`, a signature σ, and
public key pk and outputs a bit b ∈ {0, 1}.

VKey(sk , pk) is a deterministic algorithm and, on input secret key sk and a public key pk, outputs a bit
b ∈ {0, 1}.

Below, we define correctness, EUF-CMA security and perfect adaption of signatures for SPS-EQ schemes.

Definition 8 (Correctness). An SPS-EQ scheme on (G∗i )` is called correct if for all security parameters
λ ∈ N, ` > 1, BG← Gen(1λ), (sk , pk)← KeyGen(BG, `), M ∈ (G∗i )` and µ ∈ Z∗p:

VKey(sk , pk) = 1 ∧ Pr
[
Vrfy(M, Sign(M, sk), pk) = 1

]
= 1

∧Pr
[
Vrfy(ChgRep(M, Sign(M, sk), µ, pk), pk) = 1

]
= 1.

EUF-CMA security is similar to that of conventional signatures, but the forgery output by the adversary
needs to be with respect to an unqueried equivalence class.

Definition 9 (EUF-CMA). An SPS-EQ over (G∗i )` is existentially unforgeable under adaptively chosen-
message attacks, if for any PPT adversaries A there exists a negligible function negl such that for all λ ∈ N
and ` ∈ poly(λ) it holds that

Pr[Expeuf-cma
A,SPS-EQ(λ, `) = 1] ≤ negl(λ),

where Q is the set of queries that A has issued to Sign.

Experiment Expeuf-cma
A,SPS-EQ(λ, `)

BG← Gen(1λ)
(sk , pk)← KeyGen(BG, `)

(M∗, σ∗)← ASign(sk,·)(pk)
return 1 if [M∗] 6= [M ] ∀M ∈ Q ∧ Vrfy(M∗, σ∗, pk) = 1.
return 0

Fig. 9. Unforgeability of SPS-EQ

Definition 10 (Perfect Adaption of Signatures [27]). An SPS-EQ scheme on (G∗i )` perfectly adapts
signatures if for all tuples (sk , pk ,M, σ, µ) where it holds that VKey(sk , pk) = 1, Vrfy(M,σ, pk) = 1,
M ∈ (G∗i )`, and µ ∈ Z∗p, the distributions (Mµ, Sign(Mµ, sk)) and ChgRep(M,σ, µ, pk) are identical.



B.2 Zero-Knowledge Proofs of Knowledge

We consider an (interactive) protocol (P, V ) between a (potentially unbounded) prover P and a PPT
verifier V and denote the outcome of the protocol as (·, b)←

(
P (·, ·), V (·)

)
where b = 0 indicates that V

rejects and b = 1 that it accepts the conversation with P . We require the usual notions of zero-knowledge
and knowledge soundness.

Definition 11 (Zero knowledge). We say that an interactive protocol (P, V ) for a relation R is
zero-knowledge if for all PPT algorithms V ∗ there exists a PPT simulator S such that:{

SV ∗(x)
}
x∈LR

≈
{〈
P (x,w), V ∗(x)

〉}
(x,w)∈R,

where 〈P (·, ·), V ∗(·)〉 denotes the transcript of the interaction of P and V , and “≈” denotes (perfect)
indistinguishability.

Definition 12 (Knowledge soundness). We say that (P, V ) is a proof of knowledge (PoK) relative to
an NP relation R if for any (possibly unbounded) malicious prover P ∗ such that (·, 1)←

(
P ∗(x), V (x)

)
with probability greater than ε there exists a PPT knowledge extractor K (with rewinding black-box access to
P ∗) such that KP ∗(x) returns a value w satisfying (x,w) ∈ R with probability polynomial in ε.

If an interactive protocol is perfect zero knowledge and satisfies knowledge soundness, then we call it a
zero-knowledge proof of knowledge ZKP.

C Proof sketches

We now give intuitions for the security proofs and due to space constraints, more extensive proofs will
appear in the full version of this paper.

C.1 Proof of Theorem 1: Backwards-Unlinkability

Proof. We prove the theorem using a sequence of games, where we use Advi to denote the advantage of
the adversary in Game i.

Game 0. This is the original security experiment Expbu except that PRF.Eval
Z6
p

βusr
is replaced with a

random oracle. Consequently, we have |Adv0 −Advbu
A,Π(λ)| ≤ AdvPRF

B (λ).

Game 1. In this game, on the first call of the adversary to the Join oracle, run the extractor of ZKP to
extract sk = (skSPS-EQ, ·, q1, . . . , q6). Note that this is the first call an adversary has to do as all oracles
return ⊥ unless a token for u0 and u1 exist in the system. Consequently, the view of the adversary is the
same as in the previous game and we have |Adv1 −Adv0| ≤ Advpk

B,ZKP(λ).

Game 2. In this game, we simulate all ZKP proofs within the oracles Join and Spend. We have
|Adv2 −Adv1| ≤ Advzk

B,ZKP(λ).

Game 3. In this game we always use skSPS-EQ to produce new signatures via SPS-EQ.Sign instead of
running SPS-EQ.ChgRep. Under the perfect adaption of SPS-EQ we have Adv3 = Adv2.

Game 4. In this game we guess the index i0 of the last query (or the issue query if there is no spend
query) to the spend (or issue) oracle Spend(u0, ·, ·) among the qe,0 earn and qs,0 spend queries (including
the issue query) that the adversary makes to the Earn(u0, ·) and Spend(u0, ·, ·) oracles. If our guess is
incorrect, we abort. We note that in the following we only speak of spend queries as handling the issue
query (if there are no spend queries) is identical. We have Adv4 = 1

(qe,0+qs,0)
·Adv3.



Game 5. In this game for query i0 we choose R ← G1, r, r
′ ← Zp, and program the random oracle

s.t. h7 = H(”h7”‖BG) := R
1
r · g−

r′
r

1 . On the i0’th query (i.e., the last spend query), we set C(pre) =
(Zw

∗
, gw

∗
1 ) for w ← Zp and Z ← G1. In the guess phase we provide the adversary with an opening

(usku0 , tokenu0 = (usk0, ((R
′, g1), eskusr, dsrnd0, dsrnd1, t, z, v, σ)). Thereby, if i0 is the last spend oracle

call before the guessing phase, then R′ = R·hesk
∗
prov

2 with esk∗prov being the value chosen byA in the last spend
query. Otherwise let v∗ =

∑
j kj be the sum of all earns following the last spend query and we have R′ =

R·hesk
∗
prov

2 ·hv∗5 . Moreover, we have eskusr, dsrnd0, dsrnd1 ← Zp, esk = eskusr+esk∗prov and v := v+v∗ explains

the current state of user u0 and sets t = r and z = 1
q6

(r′−(q1 ·usku0 +q2 ·esk +q3 ·dsrnd0+q4 ·dsrnd1+q5 ·v).

Game 4 → Game 5. We claim that the above changes are not noticeable by A under the DDH assumption.
First, note that choosing Z at random within the last Spend(u0, ·, ·) call does not change the view as

C
(pre)
0 represents a freshly sampled perfectly hiding commitment. It remains to argue that instead the

adversary does not notice that we replace Z with R. Let (U, V,W ) = (ga1 , g
u
1 , g

au+bc
1 ) be our challenge

DDH tuple, then we program the random oracle using R := U . Note that this programming as well
as delivering the final output for u0 in the guessing phase is identical to the original view of A. For
the i0’th query made by A to Spend set C(pre) := (W,V ) = (gau+bc1 , gu1 ) and in the received token set

C = (U ·hesk
∗
usr

2 , g1) = (ga1 ·h
esk∗usr
2 , g1) if i0 is the last query for u0 or C = (U ·hesk

∗
usr

2 ·hv∗5 , g1) if it is followed
by earn queries and v∗ =

∑
kj is the sum of all these earn queries. Now, it is easy to see that if b = 0 we

are in Game 4, and if b = 1 we are in Game 5. Consequently, we have |Adv5 −Adv4| ≤ AdvDDH
B,BGGen(λ).

Game 6. Exactly the same as in Game 4, but now for user u1. We have, Adv6 = 1
(qe,1+qs,1)

Adv5.

Game 7. Exactly the same as in Game 5, but now for user u1. We have, |Adv7−Adv6| ≤ AdvDDH
B,BGGen(λ).

Game 8. In this game in Spend we always output as ctrace ρ, many random tuples (R,R′) ← G2
1

instead of ((wrj , (wrj )esk ·wesk∗j ))j∈[ρ]. Hence, we change it from ElGamal encryptions of esk∗usr to an output
that is independent of esk∗usr and esk . Note that in the Game 8, the values (usku0 , tokenu0 , rtokenu0 , usku1 ,
tokenu1 , rtokenu1) received in the guessing phase are independent of the view of all interactions with the
oracles in the first phase. Consequently, we have Adv8 = 1

2 .

Game 7 → Game 8. We claim that the above changes are not noticeable by A under the x, y-DDH
assumption (Appendix A), which is tightly equivalent to DDH.

First, notice that the x, y-DDH assumption gives us x many y extended DDH instances. Extended means
that instead of challenge (U, V,W ) = (ga1 , g

u
1 , g

au+bc
1 ) as in normal DDH, we get x many extended instances

like (Ui, Vi,1, . . . , Vi,y,Wi,1, . . . ,Wi,y) = (gai1 , g
ui,1
1 , . . . , g

u1,y
1 , g

aiui,1+bci,1
1 , . . . , g

aiui,y+bci,y
1 ) for i = 1, . . . , x.

Next, we describe how we embed the x, y-DDH challenge. First, let A make x many calls to phase 2 of
Spend. In each call we reveal the current dsid i = wesk i . We embed Ui as dsid i = Ui. Additionally, in each
call we send ctracei to A which is a set of ρ many encryptions ((wrj , (wrj )esk · weskusr

∗
j ))j∈[ρ]. With y = ρ

we use the tuples (Vi,j ,Wi,j · weskusr
∗
j )j∈[y] to embed the remaining parts of the x, y-DDH challenge. Now,

it is easy to see that if b = 0 we are in Game 7, and if b = 1 we are in Game 8. Consequently, we have
|Adv7 −Adv8| ≤ Advx,y-DDH

B,BGGen(λ). This concludes the proof.

C.2 Proof of Theorem 2: Anonymity

Proof. The proof is done through a sequence of games and is done exactly as for the backward unlinkability
property in the proof of Theorem 1. The difference is that in the anonymity experiment we do not need to
reveal the token values to the adversary in the challenge phase. Instead we execute either one Earn or
Spend call in the challenge phase and use the prepared token values to execute them. As in the proof of



Theorem 1 we embed the changes in the last Spend (resp. Issue) call to prepare the token values for the
challenge phase.

C.3 Proof of Theorem 3: Soundness

Our proof of soundness is similar in structure to the proof in [4], but in detail our construction calls for
completely new arguments.

As a first step, we replace invocations of PRF.Eval
Zp
βprov

with proper random choices (the adversary

cannot notice this change).

Then essentially, we run the zero-knowledge proof of knowledge extractor on all (accepting) proofs. This
allows us for every Issue query to extract the token and all its hidden values usk , esk , dsrnd0, dsrnd1, v, z, t
from the user. Similarly, for every Credit query, we can extract the values of the token that the user
spends, as well as the values of the remainder token the user receives from that transaction. For Credit
queries, we cannot efficiently figure out what token points were added to, but it is still well-defined: the user
sends a tuple C ′ = (C ′0, g

s
1) of the token he wants to credit points to. Because of SPS-EQ unforgeability,

with overwhelming probability, C ′0
1/s is one of the commitments the provider has signed.

Using this, we can (as a thought experiment) define a bipartite graph in which on type of node are
commitments and their openings and the other type is oracle queries. An edge from a commitment to an
oracle query is present if the commitment was used as input to the oracle query, and an edge from the
oracle query to the commitment if the oracle query resulted in the commitment.

Let errorbind be the event that this graph contains a commitment with two different openings. Using
a standard reduction, we show that Pr[errorbind] is negligible. Note that we cannot efficiently construct
the graph (because the input and output of Credit queries are computationally hidden as explained
above). However, the reduction can overapproximate the set of commitment nodes present in the graph by
essentially homomorphically adding up to poly · kmax points to each commitment extracted during Issue
and Credit.

It then remains to show that this graph fulfills certain properties (essentially that esks are unique, every
node input is explained by some other node’s output, etc.). This then allows us to reason about the DB
graph and, ultimately, that users cannot spend more than they have earned (after subtracting transactions
detected as double-spending).

C.4 Proof of Theorem 4: Framing-Resistance

Proof (Framing-resistance). Let A be a PPT adversary against Expfr. We construct B against the discrete
logarithm assumption. B gets as input a group description BG = (G1,G2,GT, p, e, w, g2) and a some
wx ∈ G1. B programs the random oracle s.t. H(”w”||BG) = w and sets pp = (BG, w, h7) (for some
h7 = H(”h7”||BG)← G1).

Furthermore, B chooses a random index j ← {1, . . . , `}, where ` is an upper bound on the number
of users A creates. Then B runs A. B plays the role of the framing resistance experiment honestly, but
for the jth Keygen() query, B outputs (uj , upkuj ) with upkuj := wx instead of generating a key. B sets
uskuj := 0. For the Join(uj) query, B simulates the user’s ZKP protocol. For all other queries, B follows
the protocol (with uskuj = 0). Eventually, A outputs some (dsblame, u). If u 6= uj or wdsblame 6= upku, then
B aborts. Otherwise, B outputs x = dsblame.

Simulation. B perfectly simulates Expfr. For this, note that uskuj only appears in the following

contexts: (1) in Pedersen commitments C
(pre)
0 and C0, in which uskuj is perfectly hidden (note that z∗

and z are never revealed), (2) in zero-knowledge arguments about Pedersen commitments, and (3) in the



expression c0 = uskuj · γ+ dsrnd0 when spending points. By design of the incentive system, for every token,
there is at most one γ such that c0 = uskuj · γ + dsrnd0 is revealed. Also, for every token, dsrnd0 is chosen
freshly random (and perfectly hidden from A). Hence c0 is uniformly random, independent of uskuj . We
conclude that setting uskuj = 0 does not alter A’s view.

Win probability. B outputs the correct discrete logarithm x if u = uj and wdsblame = upku. It
holds that Pr[B(BG, w, wx) = x] = Pr[u = uj ∧ wdsblame = upku] = Pr[u = uj ] · Pr[wdsblame = upku] =
1
` · Pr[Expfr

A,Π(λ) = 1]. By assumption, Pr[B(BG, w, wx) = x] is negligible and the maximum number of

users ` that A may create is polynomially bounded. Hence Pr[Expfr
A,Π(λ) = 1] is negligible.

C.5 Proof of Theorem 5: Framing-Resistance for Non-Colluding Malicious Users

For the intuition of the proof, we highlight two cases: in DB, when upkA is computed from two transactions
tid , tid ′ to illegally blame A, it is done such that (1) neither of the transactions was done by A, or (2) one
of the was. In the first case, we can effectively run B by itself (we run A until it outputs its upkA, then
never run it again). Because A and B cannot communicate, B cannot tell that A is not actually run and
will still blame A. The proof of knowledge in Deduct forces B to have a signature on (a commitment on)
uskA. We will never have given such a signature to B (note that any Issue(upkA) queries by B will be
ignored, as upkA can only be registered once). Hence B must forge a signature (or break the commitment’s
binding property). In order for the second case to occur, B and A must both get a token with the same dsid .
Because the provider effectively signs only (commitments on) randomized dsids, this is unlikely, except
if A or B forge a signature (or break the commitment’s binding property). The third potential case (3)
is that upkA was computed from two of A’s transactions, but later DBsync adds some by B for the same
dsid . Similarly to the second case, in this case A and B must get a signature on (a commitment on) dsid .

Hence both cases effectively reduce to the security of the ”commit-proof-sign” part of our construction.
The proof is straightforward using techniques from the soundness proof.


