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Abstract. Private intersection-sum with cardinality allows two parties,
where each party holds a private set and one of the parties additionally
holds a private integer value associated with each element in her set, to
jointly compute the cardinality of the intersection of the two sets as well
as the sum of the associated integer values for all the elements in the
intersection, and nothing beyond that.
We present a new construction for private intersection sum with cardi-
nality that provides malicious security with abort and guarantees that
both parties receive the output upon successful completion of the proto-
col. A central building block for our constructions is a primitive called
shuffled distributed oblivious PRF (DOPRF), which is a PRF that of-
fers oblivious evaluation using a secret key shared between two parties,
and in addition to this allows obliviously permuting the PRF outputs of
several parallel oblivious evaluations. We present the first construction
for shuffled DOPRF with malicious security. We further present several
new sigma proof protocols for relations across Pedersen commitments,
ElGamal encryptions, and Camenisch-Shoup encryptions that we use in
our main construction, for which we develop new batching techniques to
reduce communication.
We implement and evaluate the efficiency of our protocol and show that
we can achieve communication cost that is only 4− 5× greater than the
most efficient semi-honest protocol. When measuring monetary cost of
executing the protocol in the cloud, our protocol is 25× more expensive
than the semi-honest protocol. Our construction also allows for different
parameter regimes that enable trade-offs between communication and
computation.

1 Introduction

Private Set Intersection. A private set intersection (PSI) protocol enables
two parties, each with a private input set, to compute the intersection of the two
sets while revealing nothing more than the intersection itself. Despite the simplic-
ity of the functionality, PSI has found many applications in privacy-preserving
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location sharing [49], testing of fully sequenced human genomes [3], collabora-
tive botnet detection [47], data mining [2], social networks [45, 48], online gam-
ing [11], measuring ads conversion rates [39], and so on. Due to its importance
and wide applications, PSI has been extensively studied in a long sequence of
works [17,21,22,24,25,27,30,37,38,42,44,53–59].

Enhanced Functionality. While the PSI functionality models successfully the
confidentiality requirements in several application scenarios, there are information-
sharing settings where revealing the whole intersection is unacceptable and in-
stead a more fine-grained privacy preserving computation is needed. In particular
different aggregated computations over the intersection set model a wide range
of applications with restricted privacy leakage. PSI-cardinality is one example of
such an aggregated functionality that limits the two parties to learning only the
cardinality (or size) of the intersection [1, 20,30,38,41,50,60].

The private intersection-sum functionality introduced by Ion et al. [39] is
another example of an aggregate functionality where one of the input sets has
integer values associated with the elements in the set and the two parties compute
the cardinality of the intersection as well as the aggregate of the integer values
associated with the intersection set. This primitive models many applications in
practice. These include settings where one party holds private statistics about a
set of people and another party has information about the membership of the
people in a particular group, and the two parties want to compute an aggregate
of the statistics over the members of the set. A particular instantiation of this
scenario was consider by Nagu et al. [48] in the context of social networks where
a user has knowledge of weights associated with each of her friends and wants
to compute the total (or average) weight of the friends that she has in common
with another user. In measuring ads conversion rates [39], an advertiser may
know the purchase amount for every customer, and the advertiser and an ads
publisher can jointly compute the total number and total purchase amount of
the customers who have seen the ads from the publisher and end up buying the
product.

Existing solutions for private intersection-sum [39] provide security only in
the semi-honest case where each party is assumed to follow the protocol honestly.
While this level of security might be sufficient in settings where the interacting
parties have external incentives (e.g. legal agreements) to follow the protocol,
this level of security is not sufficient for a broad set of scenarios where the
adversary could deviate arbitrarily from the protocol. In the setting of malicious
security we have protocols that achieve only the PSI functionality, however,
constructions with competitive efficiency [29, 57, 58] have a major shortcoming
that they support only one-sided output, where in many settings both parties
need to obtains the output of the computation. Upgrading these protocols to
achieve two-sided output in a non-trivial task since as explained by Rindal et
al. [58], the output recipient from the one-sided protocol will need to prove
that it executed the last step of the protocol honestly. We do not have tailored
constructions for this task and applying generic approaches comes with a high
price.
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In this work we consider the problem of private intersection sum with cardi-
nality in the malicious setting which provides protection against such adversaries.
We require that either both parties receive the output of the computation or they
abort. Our focus is on optimizing the communication efficiency of the protocol
since as discussed in the work of Ion et al. [39] this is the most significant cost
in practice.

Our Contributions. We present a new protocol for private intersection-sum
with cardinality which achieves malicious security with abort, which guarantees
that both parties receive the intersection sum if the protocol does not abort.
Our protocol provides two-sided output, which is already an improvement even
if we restrict our attention only to the PSI functionality since existing malicious
PSI protocols [29,57,58] are restricted to a single output recipient.

Our construction is the first construction for private intersection-sum with
cardinality with malicious security to achieve linear communication and com-
putation overhead in the size n of the sets. This improves significantly over the
only other existing approach [37] that can be used to solve this problem, which
uses existing generic MPC techniques with malicious security, and as we discuss
in the related work, incurs at least a factor of λ log n multiplicative overhead
assuming a security parameter λ. As can be seen in Table 6, these generic tech-
niques incur 250× higher communication and 65× higher monetary cost than
our protocol on inputs of size 220.

Our construction can also be instantiated such that the overhead required to
achieve malicious security over the semi-honest version requires sublinear com-
munication O(

√
n) with computation O(n log n), which would be advantageous

in setting where communication is much more expensive that computation.
Our construction adopts the general approach from the work of Ion et al. [39],

which leverages an oblivious pseudorandom function (PRF) with a shared key,
which can be evaluated in a distributed way to permute and map the input set
values to a pseudorandom space that enables the computation of the intersection,
and homomorphic encryption, which allows to pair the associated values during
the PRF evaluation and then evaluate the intersection sum. In order to upgrade
this general approach to malicious security we develop several new techniques,
which can be of independent interest.

New Distributed OPRF. A central building block for our solution is a dis-
tributed oblivious PRF with malicious security. In order to achieve distributed
oblivious evaluation with malicious security we leverage a PRF construction due
to Dodis and Yampolskiy [23], for which we can construct proofs for honest eval-
uation with respect to a committed PRF key. An issue that we need to deal with
is the fact that this PRF was proven secure only for polynomial domains. To
circumvent this problem we introduce a weaker selective security notion for the
PRF, which is is satisfied by the construction with exponential domain, and we
show that this property suffices for our PSI-sum with cardinality protocol.

Verifiable Parameter Generation. We construct a distributed PRF evaluation
protocol, which uses several times evaluations on committed and encrypted val-
ues. Thus, in order to achieve malicious security for this protocol we use proofs
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for relations among encrypted and committed values, which crucially rely on the
assumption that the parameters for these schemes were generated honestly. Since
we do not want to assume any trusted setup, we present protocols for verifiable
generation of parameters for Pedersen commitments, Camenish-Shoup (CS) and
ElGamal encryption with shared key.

Range Proofs with Slack. The final extension to the distributed OPRF is to
enable a shuffle of the oblivious evaluations on multiple inputs that are executed
in parallel, which hides the mapping to the original inputs and is required in
order to hide what elements are in the intersection. In order to enable that we
develop a proof protocol for shuffle decryption of Camenisch-Shoup encryptions.
We leverage the Bayer-Groth shuffle proof [5], which allows to prove that two sets
of cipheretexts encrypt the same set of plaintexts up to a permutation. In order
to enable proving knowledge of exponents in this step, the prover needs to switch
from Camenisch-Shoup encryption to ElGamal encryption, which have different
domains. We introduce a proof technique for consistency of values encrypted
under CS and ElGamal encryptions that uses range proofs with a slack.

Our construction leverages heavily sigma proof protocols [18] in several places
including the proofs for evaluation of the DOPRF, the re-encryption step for
shuffling, the re-randomization for intersection-sum.

Batching for Range Proofs. We introduce new batching techniques for range
proofs based on sigma protocols. While existing efficient batch proofs that do not
work with the bit level representation of the values operate in a group of unknown
order [10,14], batching techniques for sigma protocols have been constructed only
in the case of a known order group [32]. We show how to batch range proof over
groups of unknown order while avoiding a large blowup in the slack of the range
proof which is incurred if we adapt directly the batching approach for known
group order to hidden order by providing sufficient space to avoid the need for
modulus reduction.

Batching Proofs for CS and ElGamal Encryptions. We also use batching
techniques for commitments and develop batching approaches for Camenisch-
Shoup encryptions. We leverage multi-exponentiation arguments from the work
of Bayer and Groth [5] in a new way to batch proofs for relations among El-
Gamal ciphertexts for which prover does not know the encryption randomness.
Since we need an additively homomorphic encryption scheme that has a prov-
able threshold decryption, we use exponential ElGamal to encrypt associated
values. This means that our construction supports evaluations for which the fi-
nal intersection-sum is within a polynomial domain where discrete log can be
computed for decryption.

Implementation and Evaluation. We implemented our malicious secure pri-
vate intersection-sum protocol and evaluated its performance on large-scale datasets.
Our experiments show that, when we set parameters to minimize communica-
tion overhead, our protocol performs with communication cost approximately
4× greater than the most communication-efficient semi-honest protocol based
on DDH. A less aggressive choice of parameters leads to about 7× expansion
over the semi-honest DDH-based protocol, with a much improved computational
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efficiency. We also estimate the monetary cost of running our protocols using the
pricing for Google Cloud and obtain that executing our PSI-Sum protocols on
inputs of size 220 costs 13 cents. The monetary cost is about 25× more than
that of the semihonest protocol, which we believe is a reasonable cost for the
much stronger security guarantees. We present our experimental measurements
in Section 6. Our costs give a large improvement in monetary cost over existing
generic approaches for private intersection sum with cardinality. Our monetary
costs are also within a factor of 2 of the most efficient protocols for Malicious
PSI [58], which we note only provide one-sided output and are not compatible
with computing functions on the intersection.

Related Work. Before presenting the technical overview of our construction,
we overview existing PSI solutions in the malicious setting [12, 16, 17, 21, 29, 35,
36, 40, 41, 57, 58] and discuss the challenges in extending the approaches from
these works to the private intersection-sum problem. We restrict our discussion
to constructions that provide linear communication complexity as our major
goal is communication efficiency.

The work of De Cristofaro et al. [21] presents a PSI protocol, where only one
party (P2) learns the PSI output and nothing is revealed to the other party (P1).
Our goal is to obtain a protocol where both parties receive the output, and next
we explain the challenges for achieving this functionality here. At a high level
the protocol works as follows. First, the two parties jointly evaluate an oblivi-
ous pseudorandom function (OPRF) on every element of P2 where P1 holds the
OPRF key k and only P2 obtains the OPRF values. Second, P1 computes the
OPRF values on its own elements using the key k and sends to P2. Finally, P2

computes the intersection of the OPRF values and the corresponding set inter-
section. The protocol used an OPRF defined as Fk(x) = H2(x||H1(x)||H1(x)k),
where H1(·), H2(·) are hash functions modeled as random oracles [7]. In the
OPRF protocol, P2 learns H1(x)k without revealing any information about x to
P1, and finally computes H2(x||H1(x)||H1(x)k). Since we want both parties to
learn the PSI output, one natural idea is to let P2 send back its OPRF values
to P1, but P2 has to prove that H2(·) is computed correctly on desired inputs
without revealing any information about x, which is a challenge. Another idea is
to run the protocol twice with alternative roles, where the parties have to prove
input consistency during the two executions. In other words, P1 should prove
in zero knowledge that its inputs to Fk(·) in the first execution are consistent
with its inputs to the OPRF in the second execution, which is also challeng-
ing. More importantly, it is hard to extend this protocol to PSI-cardinality or
private intersection-sum. In the last step of their OPRF protocol, P2 computes
H2 on x||H1(x)||H1(x)k for each of its element x. It is crucial that P2 knows
the inputs to H2 to compute the OPRF value. Therefore, the elements in the
intersection must be known to P2, making it hard to extend the protocol to even
PSI-cardinality.

The PSI protocol of Jarecki and Liu [40] is also based on an OPRF protocol
similarly as above, but the parties can prove consistency of their inputs to the
OPRF with previously committed values. Therefore, the two parties can first
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commit to their inputs and then run the above protocol in both directions so
that both parties learn the PSI output. However, the protocol has some lim-
itations. First, their security proof requires the domain of the elements to be
restricted to polynomial in the security parameter. Besides, the protocol re-
quires a Common Reference String (CRS), where the CRS includes a safe RSA
modulus that must be generated by a trusted third party, which is something we
would like to avoid. To extend this protocol to PSI-cardinality, the receiver (P2)
of the OPRF protocol should learn the OPRF values without learning the cor-
respondence between its elements {x}x∈X and OPRF values {Fk(x)}x∈X , which
requires shuffling techniques that we develop in this work. More ingredients and
techniques are needed for extending the protocol to private intersection-sum as
well as removing the above restrictions.

The idea in the protocol of Freedman et al. [29] to achieve malicious security
is to require one party (P1) to redo the other party’s (P2’s) computation on the
elements in the intersection and verify consistency. This is achieved as follows:
P1 generates a polynomial Q(·) of degree m, with roots set to the m elements
of P1’s set, and sends the homomorphically encrypted coefficients of Q(·) to P2.
Then for each element x in P2’s set, P2 replies with an encryption of r ·Q(x) + s
for random r and s. Importantly, the randomness used in this computation is
taken from H(s) where H(·) is a hash function modeled as a random oracle. If
x is in the intersection, then P1 can learn s and verify P2’s computation on x;
otherwise nothing about x is revealed to P1. This protocol crucially needs P1 to
learn the elements in the intersection, therefore extending the protocol to even
PSI-cardinality seems to require innovative ideas. Moreover, the techniques of
hashing into bins are leveraged in the protocol for achieving linear computational
complexity. Computing PSI for each bin is sufficient for the PSI problem, however
revealing intersection-cardinality or intersection-sum for each bin compromises
security in the problem of PSI-cardinality or private intersection-sum.

Another option for constructing a private intersection sum protocol with
malicious security is to apply directly malicious two party computation protocols
to our functionality. Such protocols use the circuit representation of the evaluated
functionality. The most efficient way to compute the intersection of two sets of
size O(n) uses oblivious sorting which reduces the number of needed comparisons
from O(n2) to O(n log n). In our construction, in contrast, we aim for linear
dependence on the number of inputs. Further, circuit solutions are bound to incur
additional security factor multiplicative overhead since they need to operate with
the bit-level representation of the set values. In the case of garbled circuit-based
solutions this is inherent in the constructions, and in the case of solutions using
arithmetic circuits the need for using the bit representation comes from the
fact that we will be computing comparisons over these values and the most
efficient way to do this is using the binary representation of the values. The
work of Pinkas et al. [55] presents a semi-honest PSI construction that uses
circuits and achieves linear communication, however, this construction achieves
only linear number of comparison in the circuit by using oblivious programmable
PRF techniques [43] and Cuckoo hashing [51]. Generalizing these techniques to
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the malicious setting presents many challenges. Our construction presents an
approach to obtain oblivious PRF evaluation in the malicious setting.

2 Technical Overview

In this section we give a technical overview of our malicious secure private
intersection-sum protocol. Our starting point is the semi-honest private intersection-
sum protocol [39]. We identify the technical challenges to obtain malicious secu-
rity from the semi-honest version and then present our approach to addressing
them.

Semi-Honest Private Intersection-Sum. The semi-honest protocol of Ion et
al. [39] leverages a cryptographic primitive called distributed oblivious pseudo-
random function (DOPRF), which enables the following functionality. The key
k of a DOPRF is shared between two parties, where each party can generate in-
dependently their share. The DOPRF has an oblivious evaluation functionality,
which is a 2-party computation protocol, which the two parties jointly evaluate
the PRF F , under key k, on an input x, held by one of the parties who receives
the PRF output Fk(x) and nothing more is revealed to either party.

The DOPRF functionality suffices to construct a PSI protocol as follows.
First, the two parties generate independently key shares of the DOPRF key.
Then, they use the oblivious evaluation protocol to evaluate the DOPRF on
each of P1’s input elements xi, from which P2 learns Fk(xi) and then sends
it back to P1. Similarly, they evaluate the DOPRF on P2’s input elements yj
to obtain Fk(yj). Computing the intersection of the resulting two sets of PRF
values enables both parties to compute the PSI since each party has the mapping
from the intersecting PRF values to their corresponding input elements.

The above PSI protocol can be extended to obtain PSI-cardinality and private
intersection-sum protocols. To achieve PSI-cardinality, it suffices to construct a
shuffled DOPRF protocol, which allows n parallel executions of the oblivious
PRF evaluation where the PRF value that one of the parties receives are ran-
domly shuffled with a permutation selected by the other party. The party who
receives the PRF values can still compute the intersection between the two sets
of PRF values but no longer has a mapping between the intersecting PRF values
and the inputs to which they correspond. Thus, the only thing this party can
learn is the cardinality of the intersection. We can extend this idea to further
obtain private intersection-sum in the setting where one party (say P1) has asso-
ciated integer values with its set elements. In this setting, the two parties first run
the shuffled DOPRF for P2’s input set. For P1’s input set, the two parties eval-
uate the DOPRF on each of P1’s inputs xi. In addition, P1 attaches an encryp-
tion of xi’s associated integer vi under re-randomizable additive-homomorphic
encryption for which P1 holds the secret key. This allows P2 to learn an (Fk(xi),
Encpk(vi))-pair for each xi, so it can compute the set intersection from the two
sets of PRF values and then homomorphically add up the corresponding cipher-
texts. The resulting ciphertext is then re-randomized and sent back to P1, who
has the decryption key to recover the intersection-sum.
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The primitives and protocols described above are only secure against semi-
honest adversaries. In order to construct a private intersection-sum protocol that
provides malicious security, we design malicious counterparts of these tools.

Malicious DOPRF. The semi-honest intersection-sum protocol of Ion et al. [39]
uses the following Diffie-Hellman-based PRF construction, which is defined as
Fk(x) = H(x)k, where the hash function H(·) is modeled as a random ora-
cle [7]. It can be instantiated as a DOPRF by sharing the PRF key as k = k1k2.
Specifically, the two parties can independently generate key shares k1 and k2.
To evaluate the DOPRF on P1’s input x, P1 sends y = H(x)k1 to P2 and then
P2 can compute the PRF output z = yk2 . When we switch to the malicious set-
ting, a malicious P1 may send ỹ = H(x)r·k1 to P2 for an arbitrary r and obtain
z̃ = H(x)r·k1k2 , from which P2 can learn the PRF output by raising z̃ to the
power r−1. In order to upgrade this DOPRF protocol to the malicious setting es-
pecially with simulation-based security, P1 needs to prove that the hash function
H(·) was properly applied or equivalently prove the knowledge of a preimage for
a hash value, which is a challenge.

In view of the above difficulties associated with the use of the DH-based
DOPRF in the malicious setting, we choose to use a different PRF as a starting
point for a new DOPRF construction, for which correct evaluation can be proven.

We use the function Fk(x) = g
1

k+x , which is defined on a group 〈g〉 of prime order.
This function was originally introduced as a weak signature in the work of Boneh-
Boyen [8], and subsequently was proven to be a pseudorandom function under
the decisional q-Diffie Hellman Inversion (q-DHI) assumption [46] by Dodis-
Yampolskiy [23]. We combine ideas from Belenkiy et al. [6] and Jarecki-Liu [40]
to construct a distributed oblivious evaluation protocol for this PRF and prove
its security in the malicious setting.

We start with a description of a distributed evaluation protocol for the above
PRF that provides semi-honest security. We refer to the two parties as a sender
and a receiver, where the party holding the input x is called the sender and the
party obtaining the PRF output is called the receiver. For the distributed key
generation the two parties randomly pick secret key shares ks and kr such that
the PRF key k is set as k = ks + kr. The starting point for our distributed
evaluation protocol is the following idea. The receiver encrypts its key share kr
using an additive-homomorphic public-key encryption scheme for which it holds
the secret key, and sends the encryption Encpk(kr) to the sender. The sender then
homomorphically computes Encpk(ks+kr +x) and sends it back to the receiver.
The receiver can decrypt the ciphertext to obtain ks + kr + x and compute the

PRF output g
1

ks+kr+x .

In the above protocol the receiver learns information beyond the PRF output,
which consists of the value ks + kr + x. To remove this leakage we introduce
a random multiplicative mask a on the sender’s side. That is, the encrypted
value that the receiver obtains is a(ks + kr + x). We remove this mask during
exponentiation by having the sender also send ga to the receiver and letting the

receiver compute (ga)
1

a(ks+kr+x) . In fact, this randomization does not suffice for a
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simulation proof. Since a(ks+kr+x) is homomorphically computed by the sender
who cannot take modulo operation under the homomorphic encryption, the value
a(ks+kr+x) learned by the receiver may still leak information about ks+kr+x.
That is why we further modify the randomization to a(ks+kr+x)+bq where b is
random and q is the order of the group 〈g〉. This randomization guarantees that
the value obtained by the receiver is simulatable and at the same time correct
since the order of the group is q.

To obtain malicious security in the above protocol, the sender needs to prove
the correctness of the homomorphic encryption and the consistency of a in the
new ciphertext and in ga. To achieve this we use Camenisch-Shoup encryp-
tion [14], for which we can use sigma protocols to provide zero-knowledge proofs
for these operations.

Exponential Domain for Dodis-Yampolskiy PRF. The work of Dodis and
Yampolsky [23] proved adaptive security for the PRF construction that we dis-
cussed above but only in the setting of polynomial size domains. However, this
is not true for the inputs used in many real-world applications. Therefore, we
revisit the security proof for this construction and show that for exponential size
domains the PRF satisfies a weaker notion of selective security, where the inputs
to the PRF are chosen by the adversary in advance in the security game, under
the q-DHI assumption. Furthermore, this level of security for the PRF is suffi-
cient for the security of our private intersection-sum protocol for the following
reason. At a high level, we make the two parties first commit to their own in-
put along with a zero-knowledge proof of knowledge and then jointly decide the
PRF parameters. In the simulation-based proof, the simulator can first extract
the adversary’s input and then reduce to the security game of the PRF, where
selective security suffices for our purpose.

Malicious PSI. As we discussed for the semi-honest setting, a secure DOPRF
protocol suffices for a PSI protocol. In the malicious setting, to construct a
malicious PSI protocol from the above malicious DOPRF protocol, the receiver
should send back the PRF values to the sender and prove correctness of its

computation (ga)
1

a(ks+kr+x)+bq with respect to ga and the ciphertext Encpk(a(ks+
kr + x) + bq), in a zero-knowledge fashion. This can also be achieved by sigma
protocols.

Malicious Shuffled DOPRF. To extend the malicious PSI protocol to mali-
cious PSI-cardinality, we need to additionally enable the shuffled DOPRF func-
tionality that provides all the PRF outputs to the sender in a randomly shuffled
(permuted) order determined by the receiver. While our malicious DOPRF pro-
tocol provides the receiver with the leverage to shuffle the PRF outputs before
sending back to the sender, we still need a way to prove the correctness of the
shuffle.

While it is possible to try to leverage generic zero-knowledge protocols to
prove directly the correctness of the shuffled outputs, we choose to use a shuffle-
and-decrypt protocol by Bayer-Groth [5], which can efficiently prove in zero-
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knowledge that given a set of ciphertexts and a set of plaintexts, the plaintexts
correspond to the decryption of some permutation of the ciphertexts. To incor-
porate this shuffle proof in our protocol, the receiver no longer just sends the
PRF outputs back to the sender after the DOPRF evaluation, but rather sends
encryptions of these outputs together with proofs that each of them encrypts

the correctly computed value (ga)
1

a(ks+kr+x)+bq . In addition to this the receiver
sends the PRF outputs in the clear in a shuffled order together with a Bayer-
Groth shuffle proof that they are consistent with the decryption of the above
ciphertexts in some permuted order.

In the above construction which we design in order to leverage an efficient
shuffle proof, let β := a(ks + kr + x) + bq. The prover needs to switch from
Camenisch-Shoup encryption to ElGaml encryption because β was encrypted
in Camenisch-Shoup encryption while the value to encrypt in this step is σ =
(ga)β

−1

and what the prover needs to prove knowledge about is β−1i instead of
σ. Encrypting σ using ElGamal in the group 〈g〉 enables proof of knowledge in
the exponent. However, the prover needs to provide a proof that the Camenish-
Shoup ciphertext, which has plaintext domain ZN , and the ElGamal cipheretext,
which has plaintext domain Zq where q � N , encrypt consistent values β and
β−1. To achieve this we observe that it suffices to prove the consistency of the
two encrypted values in their respective domains (i.e., x mod N = x′ mod q)
and in addition to this prove that x′ < q. For the later since q � N , it suffices to
use range proofs that have slack for sigma protocols, which can only guarantee
that x′ < q · r. This completes a malicious DOPRF protocol with randomly
shuffled PRF outputs.

From Shuffled DOPRF to Intersection-Sum. The shuffled DOPRF proto-
col suffices to obtain PSI-cardinality in the semi-honest setting by running two
shuffled DOPRF with the same key, where in one protocol P1 holds the input
and acts as the sender while in the other protocol their roles are reversed. In the
malicious setting when the two protocols are executed in parallel, we have to
additionally make sure the two parties are using consistent DOPRF key shares.
Each party will first commit to their DOPRF key shares and then prove con-
sistency of their key shares used in the two protocols, which can be done using
sigma protocols.

To further achieve private intersection-sum, similar to the semi-honest set-
ting, we encrypt the integer values associated with one of the sets using addi-
tive homomorphic encryption. The secret key for this encryption is now shared
between the two parties, which will be important for preserving the secrecy
guarantees of the shuffle proof. The sender appends these encryptions to the
corresponding inputs in the malicious shuffled DOPRF evaluation. Now the re-
ceiver that applies the shuffle in this protocol additionally needs to re-randomize
the encryptions of the associated values and provides a proof that the shuffle ap-
plied to these encryptions is the same as the shuffle on the PRF values. This can
be achieved in the Bayer-Groth shuffle proof because in their protocol the prover
commits to the permutation and we can use the same commitment through the
two shuffle proofs. Different from the semi-honest setting, now both parties can
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compute the intersection of the two sets of PRF values and homomorphically
add up the corresponding re-randomized ciphertexts. To jointly decrypt the re-
sulting ciphertext, each party partially decrypts the ciphertext using their own
key share and sends to the other party. They also have to prove the correctness
of their partial decryption, again by sigma protocols.

Batching Protocol Components. In our construction outlined above we use
sigma style protocols to provide proofs for the correctness of DOPRF evaluation,
re-encryption for shuffling, and re-randomization for intersection-sum. In order
to optimize the communication efficiency of such protocols, we utilize various
techniques to batch components of the protocol. At a high level there are three
types of batching we use: batching Pedersen commitments, batching Camenisch-
Shoup encryptions, and batching sigma protocols.

These batching techniques are described in Section 5. Further care needs
to be taken to ensure the compatibility between different batching techniques,
and we describe the detailed composition of these techniques as it relates to our
protocol in Appendix D.

We believe that these batching techniques may be of independent interest.
For example, our batched sigma protocols include tighter bounds on proofs of
ranges than known techniques, and our batched Camenisch-Shoup encryption
enables batched proofs of decryption, which brings asymptotic efficiency gains.

Organization. We introduce our notations, security assumptions, important
definitions and cryptographic schemes in Section 3 and present our private
intersection-sum protocol in Section 4. We prove the selective security of the
PRF used in our protocol in Appendix B and prove the malicious security of our
protocol in Appendix C. Our batching techniques are described in Section 5 and
the concrete sigma protocols are presented in Appendix D.

3 Preliminaries

3.1 Notation

We use λ to denote the security parameter. Let Zn be the set {0, 1, 2, . . . , n−1}.
Z∗n is defined as Z∗n := {x ∈ Zn| gcd(x, n) = 1}. We use [n] to denote the set
{1, 2, . . . , n}. We use ord(G) to denote the order of a group G. By negl(λ) we
denote a negligible function, i.e., a function f such that f(λ) < 1/p(λ) holds for
any polynomial p(·) and sufficiently large λ.

3.2 Computational Assumptions

Decisional q-Diffie-Hellman Inversion (q-DHI) Assumption [46]. The
computational q-DHI problem in a group G with generator g and order p is to
compute g1/α given the tuple (g, gα, . . . , gα

q

) for random α in Z∗p. We define the
hardness of the decisional version of this problem for any fixed constant q as
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follows. Let gGen be an algorithm which on input a security parameter 1λ picks
a modulus p and a generator g of a multiplicative group G of order p. We say
that the Decisional q-DHI Assumption holds on group (family) G if for every
efficient algorithm A,∣∣∣∣Pr [A(g, gα, . . . , gα

q

, g1/α) = 1
∣∣∣(g, p)← gGen(1λ);α← Z∗p

]
− Pr

[
A(g, gα, . . . , gα

q

, h) = 1
∣∣∣(g, p)← gGen(1λ);α← Z∗p;h← G

] ∣∣∣∣ ≤ negl(λ).

Strong RSA Assumption [4, 31]. The strong RSA assumption states that
given an RSA modulus N of unknown factorization and a random element g ∈
Z∗N , it is computationally hard to find any pair of h ∈ Z∗N and e > 1 such that
he = g mod N .

3.3 Cryptographic Tools

We introduce some cryptographic tools in this section. See Appendix A for de-
scriptions of Pedersen commitment [52], Camenisch-Shoup encryption [14], El-
Gamal encryption [26], and 2-out-of-2 threshold encryption.

Zero-Knowledge Argument of Knowledge. We use the notation introduced
in [15] for the various zero-knowledge argument of knowledge of discrete loga-
rithms and arguments of the validity of statements about discrete logarithms.
The following example is taken verbatim from [14].

ZK-AoK{(a, b, c) : y = gahb ∧ y = gahc ∧ (v < a < u)}

denotes a “zero-knowledge argument of knowledge of integers a, b, and c such
that y = gahb and y = gahc hold, where v < a < u,” in which y, g, h, y, g, h are
elements of some groups G = 〈g〉 = 〈h〉 and G = 〈g〉 = 〈h〉. The convention is
that the elements listed in the round brackets denote quantities the knowledge
of which is being proved (and are in general not known to the verifier), while all
other parameters are known to the verifier. Using this notation, a proof-protocol
can be described by just pointing out its aim while hiding all details.

We use similar notations for zero-knowledge proofs. As an example,

ZK{∃x : h = gx}

denotes a zero-knowledge proof that there exists x such that h = gx.

In our protocol we instantiate this form of zero-knowledge arguments of
knowledge and zero-knowledge proofs by sigma protocols. We elaborate how this
can be done and how batching techniques work for sigma protocols in Section 5.
The concrete sigma protocols used in our construction are shown in Appendix D.
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Fiat-Shamir Heuristic. The sigma protocols presented in Appendix D are all
interactive and public-coin, where the messages from the verifier are all chosen
uniformly at random and independently of the messages sent by the prover. We
only prove they are honest-verifier zero-knowledge. By the Fiat-Shamir heuris-
tic [28], these protocols can be turned into a non-interactive proof or argument
where the prover computes the public-coin challenges with a cryptographic hash
function instead of interacting with a verifier, which reduces rounds of commu-
nication as well as total communication cost. Furthermore, the resulting non-
interactive protocol can be proved malicious secure in the random oracle model.

Shuffle Proof. Bayer-Groth [5] proposed a zero-knowledge argument of knowl-
edge for the correctness of re-randomized and shuffled of homomorphic encryp-
tions, which achieves sublinear communication complexity. More specifically,
given the public key pk of the homomorphic encryption, original ciphertexts
{cti}i∈[n], a permutation π over [n], re-randomized and shuffled ciphertexts
{ct′π(i)}i∈[n] where ct′π(i) = cti · Encpk(1; ri). The following ZK-AOK

ZK-AoK
{

(π, {ri}i∈[n]) : cti · Encpk(1; ri) ∀i ∈ [n]
}

can be prove with communication complexity O(
√
n). In addition, two state-

ments can be proved to use the same permutation π. The protocol is interactive
with public-coins, hence it can be turned into a non-interactive malicious secure
one using the Fiat-Shamir heuristic.

3.4 Security Model

We define security of a private intersection-sum protocol against malicious adver-
saries in the ideal/real world paradigm. The definition compares the output of a
real-world execution to the output of an ideal-world execution involving a trusted
third party, which we call an ideal functionality. The ideal functionality F , de-
fined in Figure 1, receives the two parties’ inputs, computes the intersection-sum
and returns the output to both parties. Loosely speaking, the protocol Π is se-
cure if the output of the adversary in the real-world execution is computationally
indistinguishable from the output of the adversary in the ideal-world execution,
which means that a real-world execution of the protocol does not leak any more
information than the ideal-world execution. Hence, the parties can only learn
what they can infer from their inputs and the output.

Formally, we say a private intersection-sum protocol is secure against mali-
cious adversaries if for every PPT adversary A in the real world, there exists a
PPT adversary S in the ideal world such that for any input (X,V ) and Y ,

RealΠ,A((X,V ), Y )
c
≈ IdealF,S((X,V ), Y ),

where RealΠ,A((X,V ), Y ) denotes the output of A in the real-world execution of
protocol Π, and IdealF,S((X,V ), Y ) denotes the output of S in the ideal-world
execution.

13



Public Parameters: P1’s set size n1 and P2’s set size n2.

Inputs: Party P1 inputs a set of identifiers along with associated integer values
(X,V ) = {(xi, vi)}i∈[n1], Party P2 inputs a set of identifiers Y = {yi}i∈[n2].

Output: Upon receiving the inputs from both parties, the ideal functionality F com-
putes the intersection I = X ∩Y and intersection-sum S =

∑
i:xi∈I vi and outputs the

intersection-cardinality |I| and intersection-sum S first to the corrupted party, then to
the honest party.

Corrupted Party: The corrupted party may deviate from its input, may abort the
procedure at any time by sending abort to the ideal functionality, and may decide the
time of message delivery.

Fig. 1: Ideal functionality of malicious secure private intersection-sum.

4 Protocol Description

Our constructions consists of two phases. The first one is an offline setup where
the two parties jointly decide parameters for the cryptographic primitives, which
will be used in the online computation. Note that we do not assume trusted setup
for any of the primitives and provide secure two party computation protocols
for those. The second phase is the online computation that is dependent on the
input sets and uses the parameters from the setup. The main building block for
our online phase is a shuffled distributed oblivious PRF (DOPRF) construction,
which is a primitive of independent interest and other potential applications.
Thus, we present the shuffled DOPRF construction separately.

Offline Setup. In our malicious secure private intersection-sum protocol, the
two parties first run a (one-time) offline setup to generate the parameters for
encryption and commitment schemes. The two parties first agree on a group G
where max(n1, n2)-DHI assumption holds. This group will be the group where
they compute DOPRF on. Each party generates parameters for Camenisch-
Shoup encryption, ElGamal encryption and Pedersen commitments, and sends
the public parts to the other party with corresponding proofs for correct genera-
tion (which is done as discussed in Section 3.3 and Appendix D). The two parties
generate parameters for the 2-out-of-2 threshold ElGamal encryption, which can
be done by each party generating locally ElGamal parameters and setting the
shared secret key to be the sum of the two local secret keys, and computing the
corresponding public key. The detailed protocol is described in Figure 2.

Online Phase. After the one-time offline setup, for each private intersection-
sum instance, the two parties run an online protocol described in Figure 3.
The inputs for the two parties are as follows: P1 has an input set of elements
X = {xi}i∈[n1] with associated integer values V = {vi}i∈[n1], while P2 has only
a set of elements Y = {yi}i∈[n2]. The output of the protocol is that either both
parties abort, or both parties obtain the intersection sum

∑
i:xi∈Y vi.
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0. P1 and P2 agree on a group G of order q with a generator g̃ for which the
max(n1, n2)-DHI assumption holds.

1. Each party Pb generates (pkb, skb)← CS Gen(1λ) where gb = (rb)
2N for a random

element rb ∈ ZN2 , pkb = (Nb, rb, gb, yb) and Nb ≥ 23λq2, skb = xb. Party Pb sends
pkb to the other party along with a ZK-proof that Nb is a product of two large safe
primes and that yb is correctly formed:

ZK
{
∃xb : yb = (gb)

xb mod N2
b

}
.

2. Each party Pb generates Pedersen commitment parameters (gb, hb) for the large
subgroup of Z∗Nb and sends (gb, hb) to the other party together with a zero-
knowledge proof that gb ∈ 〈hb〉:

ZK-AoK {∃rb : gb = (hb)
rb} .

3. Each party Pb generates (tpkb, tskb) ← EG Gen(1λ) for the 2-out-of-2 threshold
encryption scheme on the group G with generator g̃ and sends tpkb to the other
party along with a ZK-AOK of tskb:

ZK-AoK{tskb : tpkb = (g̃)tskb}.

Both parties compute the public key tpk = tpk1 · tpk2.
4. Each party Pb generates an ElGamal key pair (pkb, skb) for the group G with

generator g̃ and sends pkb to the other party with a proof:

Fig. 2: One-time offline setup of the malicious secure private intersection-sum
protocol.

At a high level this protocol uses the shuffled DOPRF to enable both parties
to obtain shuffled PRF evaluations for the values in X and Y , where the PRF
values from X are paired with ElGamal encryptions of the corresponding integer
values from V , which are encrypted under the 2-out-of-2 threshold ElGamal.
Afterwards, the two parties compute independently the ElGamal encryption of
the intersection sum since they can compute the intersection on the PRF values
and then sum the encryptions of the integer values. At that point, the two
ciphertexts held by the parties should be identical. Now each party verifiably
half-decrypts the ciphertexts it has obtained and sends the resulting verifiable
partial decryption to the other party. Then both parties can half-decrypt the
partial decryption they received to obtain the output.

Shuffled DOPRF Protocol. We describe our malicious secure shuffled DO-
PRF construction as a stand-alone primitive in Figure 4. For the purposes of
the following discussion P1 is the party that holds input elements {xi}i∈[n1],
and P1 and P2 jointly evaluate the shuffled DOPRF on these elements. First,
P2 commits to its PRF key share k2 and also sends a Camenisch-Shoup en-
cryption of it under its own key to P1 together with a proof that the en-
crypted and the committed values are the same. P1 can then homomorphi-
cally compute CS Encpk2(k1 + k2 + xi) for each of its element xi. To mask
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1. Each party Pb samples a random PRF key share kb
$← [q].

2. P1 computes Cxi ← comg2,h2(xi) for all i ∈ [n1], sends Cxi with ZK-AOK to P2:

ZK-AoK {(xi, ri) : Cxi = (g2)xi · (h2)ri} .

P2 computes Cyi ← comg1,h1(yi) for all i ∈ [n2], sends Cyi with ZK-AOK to P1:

ZK-AoK {(yi, si) : Cyi = (g1)yi · (h1)si} .

3. P1 and P2 jointly decide on a random generator g for the group G.
4. P1 and P2 run two shuffled DOPRF protocols described in Figure 4 in parallel,

one with P1 holding the input and the other with P2 holding the input:

– Shuffled DOPRF 1: P1 and P2 perform the shuffled DOPRF protocol on
P1’s input X = {xi}i∈[n1]. The output PRF values are denoted as {σπ(i)}i∈[n1].
In parallel to this protocol, they do the following:
• Round 2: P1 computes ctvi ← Exp EG Enctpk(vi) for each i ∈ [n1] and

sends {ctvi}i∈[n1] to P2.
• Round 3: P2 re-randomizes {ctvi}i∈[n1] to obtain {ct′vi}i∈[n1], and then

uses the permutation π (same as in the shuffled DOPRF protocol) to

shuffle the re-randomized ciphertexts to obtain
{

ct′vπ(i)

}
i∈[n1]

. P2 sends{
ct′vπ(i)

}
i∈[n1]

to P1 along with a ZK-AOK:

ZK-AoK
{

(π, {ri}i∈[n1
) : ct′vπ(i)

= ctvi · Exp EG Enctpk(1; ri) ∀i ∈ [n1]
}

– Shuffled DOPRF 2: P1 and P2 perform the shuffled DOPRF protocol, with
roles reversed, on P2’s input Y = {yi}i∈[n2]. We denote the set of PRF values
as Fk(Y ).

5. Each party Pb determines the intersection set I := {t : σt ∈ Fk(Y )} and computes
ctS =

∏
t∈I ct′vt . Pb verifiably half-decrypts ctS using tskb and sends to the other

party.
6. Each party half-decrypts the ciphertext half-decrypted by the other party, and

outputs the intersection sum S.

Fig. 3: Online phase of the malicious secure private intersection-sum protocol.

the value k1 + k2 + xi, P1 chooses randomizing values ai and bi and compute
ctβi = CS Encpk2(ai · (k1 + k2 + xi) + bi · q) and gi = gai . P1 also commits to
the values ai, bi, αi = ai · (k1 +xi) together with proofs that these commitments
and encryptions use consistent values. P2 verifies the correctness of the proofs,
decrypts ctβi to obtain βi = ai · (k1 + k2 + xi) + bi · q and computes the PRF

evaluation σi = g
β−1
i
i = g

1
k1+k2+xi . Then, P2 computes an ElGamal encryption

EG Encpk2(σi) and a commitment Cβi and sends them to P1 together with a
proof that these values encrypt and commit to the decryption of ctβi , which
P1 verifies. In addition P2 re-randomizes and shuffles values ctσi with output
{ct′σπ(i)

}i∈[n1], and sends these values together with a proof of shuffling. Finally,
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Round 1. Party P2 computes ctk2 ← CS Encpk2(k2) and Ck2 ← comg1,h1(k2). Recall
that pk2 = (N2, g2, y2). P2 sends ctk2 = (u, e) and Ck2 to P1 along with a ZK-AOK

ZK-AoK
{

(k2, r1, r2) : u = gr12 ∧ e = (1 +N2)k2 · yr12 ∧

Ck2 = (g1)k2 · (h1)r2 ∧ k2 ≤ q · 22λ+1
}
.

Round 2. For each input xi where i ∈ [n1], party P1 does the following:

(a) Choose a random ai
$← [q] and bi

$← [q · 2λ]. Compute gi = gai .
(b) Compute αi = ai · (k1 + xi) and commitments Cai ← comg2,h2(ai), Cbi ←

comg2,h2(bi), Cαi = comg2,h2(αi).
(c) Let βi = ai · (k1 + k2 + xi) + bi · q = ai · k2 + αi + bi · q and compute ctβi ←

(ctk2)ai · CS Encpk2(αi) · (CS Encpk2(bi))
q.

(d) Send (Cai ,Cbi ,Cαi , ctβi , gi) to P2, together with a ZK-AOK

ZK-AoK
{

(ai, bi, αi, r1, r2, r3, r4, r5, r6) :

Cai = (g2)ai · (h2)r1 ∧ ai ≤ q · 22λ+1 ∧

Cbi = (g2)bi · (h2)r2 ∧ bi ≤ q · 23λ+1 ∧

Cαi = (g2)αi · (h2)r3 ∧ Cαi = (Ck1 · Cxi)
ai · (h2)r4 ∧ αi ≤ q · 22λ+1 ∧

ctβi = (ctk2)ai · CS Encpk2(αi; r5) · (CS Encpk2(bi; r6))q∧
gi = gai

}
.

Note that Cxi was sent by P1 in Step 2 of the online phase, and Ck1 was sent by
P1 in Round 1 of the other shuffled DOPRF protocol where P2 holds the input.

Round 3. Party P2 does the following:

(a) Verify all the ZK-AOKs received from P1; otherwise abort.
(b) For each i ∈ [n1], compute βi ← CS Decsk2(ctβi) and Cβi ← comg1,h1(βi). Compute

γi = β−1
i mod q and σi = gγii . Compute ctσi ← EG Encpk2(σi).

(c) Verify that {σi}i∈[n1] are all distinct; otherwise abort.
(d) For each i ∈ [n1], send (Cβi , ctσi) to P2 together with a ZK-AOK

ZK-AoK
{

(sk2, βi, r1, r2) : βi = CS Decsk2(ctβi) ∧

Cβi = (g1)βi · (h1)r1 ∧ βi ≤ q2 · 23λ+1 ∧

ctσi = EG Encpk2

(
(gi)

β−1
i ; r2

)}
.

(e) Re-randomize {ctσi}i∈[n1] to obtain {ct′σi}i∈[n1] with randomness 0. Pick a random

permutation π over [n1] and send
{
ct′σπ(i)

}
i∈[n1]

to P1 together with a ZK-AOK:

ZK-AoK
{

(π, {ri}i∈[n1
) : ct′σπ(i)

= ctσi · EG Encpk2(1; ri) ∀i ∈ [n1]
}
.

As
{
ct′σπ(i)

}
i∈[n1]

has randomness 0, P1 obtains
{
σπ(i)

}
i∈[n1]

.

Output. P1 verifies all the ZK-AOKs received from P2 and aborts otherwise. Both
parties obtain {σπ(i)}i∈[n1].

Fig. 4: Malicious secure shuffled DOPRF protocol where P1 holds the input.
17



σπ(i) are revealed to P1 if P2 re-randomizes the ciphertexts using randomness 0.
P1 verifies the proofs and accepts the values σπ(i) as its output PRF values. In
this step, P2 switches from Camenisch-Shoup encryption to ElGaml encryption

because the value to encrypt is σi = g
β−1
i
i and what P2 needs to prove knowl-

edge about is β−1i instead of σi. Encrypting σi using ElGamal in the group G
enables this proof of knowledge. If the verification of any of the proofs during
the execution so the protocol fails, then the parties abort.

Additionally, during the execution of the DOPRF on the inputs of P1, the
parties run the following additional steps in parallel with the DOPRF evaluation
in order to facilitate keeping the values vi paired with the appropriate PRF
evaluations. In Round 2 of the DOPRF protocol, P1 encrypts the vi values using
the ElGamal encryption parameters where the secret key is shared between the
two parties. P1 sends these encryptions paired with the partial PRF evaluations
on its elements xi. When P2 returns the completed DOPRF evaluations in a
permuted order, it also sends the re-randomized encryptions of the values vi
permuted in the same order along with a proof that these two sets were shuffled
with the same permutation.

Enabling Batching. So far we described our shuffled DOPRF construction for
each element xi and the ZK-AOKs in the protocol are all sigma protocols for
single statements. To reduce communication of the protocol we utilize various
batching techniques which we describe in Section 5. The concrete instantiation
of our private intersection-sum protocol does not use the shuffled DOPRF in a
completely non-black box way, which we discuss in the following.

In Step 2 of the online phase, P1 will commit implicitly to its inputs by
committing to the values ai and αi = ai(k1 + xi) and P2 will implicitly commit
to its inputs similarly. These values can be batched and the sigma protocols
for the batched commitments can also be batched. In addition each party will
commit to their DOPRF key share in this step. This change does not affect our
security guarantee because the commitments of ai and αi suffice to extract the
set elements in the simulation proofs before the PRF parameters are generated
and hence security can still be reduced to the weaker selective security notion for
the underlying PRF. Looking ahead, the commitments of ai, αi and kb will be
used directly later in Round 2 of the DOPRF protocol for further computation
avoiding the need to prove the consistency of xi, ai and αi in batched Cxi and
batched Cαi , which would have been the case if the parties commit only to their
elements before the PRF parameter generation.

To enable batching the first component of the Camenisch-Shoup ciphertexts,
every batched Camenisch-Shoup ciphertext has t slots. In Round 1 of the DO-
PRF protocol, P2 will encrypt t copies of k2, where the i-th copy of k2 is en-
crypted in the i-th slot and the other slots are all 0. These encryptions will
be used later in Round 2 of the shuffled DOPRF protocol to enable batching
Camenisch-Shoup encryptions of βi.

Finally, in Round 2 of the DOPRF protocol, P1 can make use of previously
committed ai, αi, k1 along with encryption of k2 to batch Camenisch-Shoup en-
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cryptions and Pedersen commitments of βi. The sigma protocols in this step can
also be batched. The details of batching each sigma protocol are presented in
Appendix D.

5 Batching Techniques

In this section we discuss batching techniques in various parts of our protocol.
These techniques have a significant effect on our protocol’s communication cost
and may be of independent interest.

5.1 Batching Pedersen Commitments

As mentioned in Section 3.3, Pedersen commitments can be genenralized to allow
committing to vectors of values. For batched commitments of vectors of length
t, the parameters are group generators g1, . . . , gt, h ∈ G such that loggi h is hard
to compute for each i, and loggi gj is hard to compute for any pair i, j. The

commitment to a vector x = (x1, . . . , xt) is c =
∏t
i=1 g

xi
i · hr where r is selected

at random r
$← ord(G).

Batched Pedersen commitments are also compatible with sigma protocols of
the knowledge and equality of exponents. To do so, the prover simply proves
knowledge of all exponents simultneously. Furthermore, if the group G is one
in which the Strong RSA assumption holds, then the following generalization of
Theorem 3 from [14] holds: given randomly chosen g1, . . . , gt, h ∈ G, it is hard
to find w ∈ G and (a1, ..., at, b, c) such that

wc =

t∏
i=1

gaii · h
b

Unless c | ai for all i ∈ [t], and also c | b. The proof of this generalization closely
follows from the proofs of Theorems 2 and 3 from [14].

Given these properties, we can replace most commitments in our protocols
with batched commitments, that is, we commit to t values together. To enable
this, each of our sigma protocols will commit to and prove statements about t
messages simultaneously. Note that this reduces the number of commitments we
send by a factor of t, but we still need to send one element per committed value
in the last step of each sigma protocol. At first this does not seem to lead to a
significant gain in efficiency. However, sigma protocols for batched commitments
can also be batched, enabling the prover to send a single set of t elements in the
last step to verify ` sigma protocols simultaneously. Combining the two forms
of batching by setting t and ` to approximately

√
n, we can reduce the overall

communication cost of the sigma protocols to be sublinear. We will discuss how
to batch sigma protocols in Section 5.3, and we refer the reader to Appendix D.4
for a concrete example of batching sigma protocols for batched commitments.
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5.2 Batching Camenisch-Shoup Encryption

We notice that Camenisch Shoup encryption introduces a 4× expansion in the
ciphertext as compared to the plaintext. This is due to the fact that a ciphertext
contains 2 elements mod N2 of total length 4n bits (where n = logN), while the
ciphertext can only hold a message of |n| bits. This causes a significant constant
expansion to our protocol messages.

We describe various types of batching that enable reducing the expansion of
Camenisch-Shoup encryption to be as close to 1× as desired.

5.2.1 Computing mod Ns+1

Analogous to the Damg̊ard-Jurik extension to the Paillier cryptosystem [19], one
can generalize the Camenisch-Shoup cryptosystem to compute modulo Ns+1. In
more detail, the public key in this generalization consists of (N, g, y, s) where N
is generated same as before, g is a random 2Ns-th residue modulo Ns+1, and
y = gx mod Ns+1 for a random x ∈ ZbN/4c, and x is the secret key.

Similarly to the Damg̊ard-Jurik extension, this generalization of Camenisch-
Shoup encryption enables encrypting messages of size up toNs. Concretely, given
m ∈ ZNs , it would be encrypted as ct = (gr mod Ns+1, (1 +N)myr mod Ns+1),

where r
$← ZbN/4c. Decryption is slightly more involved. To decrypt ct = (u, e),

one must compute e/(ux) mod Ns+1 and then perform a recursive decoding to
recover m, exactly as described in Section 3 of [19].

Additionally, similar to the proof of Theorem 1 in [19], the security of the gen-
eralized Camenisch-Shoup scheme follows from the Decisional Composite Resid-
uousity Assumption.

We note that, with this generalization, one can encrypt a message of length
n · s using a ciphertext of size 2 ·n · (s+ 1), meaning that the expansion factor is

reduced from 4× to 2(s+1)
s ×, which becomes arbitrarily close to 2× as s grows.

5.2.2 Sharing the first ciphertext component

A remaining source of ciphertext expansion is that each ciphertext has 2 com-
ponents, (u, e). One way to reduce this type of expansion is to have multiple
components e that all share the first component u.

More concretely, we modify the scheme so that the public key consists of
(N, g, {yi}ti=1), where yi = gxi mod N2 for random xi ∈ ZbN/4c. The secret key
becomes {xi}ti=1.

This scheme allows encrypting t messages by t+ 1 components. Specifically,

to encrypt messages {mi}ti=1, one computes u = gr mod N2 for r
$← ZbN/4c,

and ei = (1 + N)mi · yri mod N2 for each i ∈ [t], and sets ct = (u, {ei}ti=1).
To decrypt a particular ciphertext, one simply decrypts each piece, computing

mi =
( ei
uxi
−1) mod N2

N .
This scheme is also entry-wise additively homomorphic. Given ct = (u, {ei}ti=1)

encrypting {mi}ti=1 and ct′ = (u′, {e′i}ti=1) encrypting {m′i}ti=1, the cipher-
text ctsum = (u · u′ mod N2, {e · e′i mod N2}ti=1) is an encryption of {mi +
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m′i mod N}ti=1. One can also homomorphically multiply each underlying mi with
a single scalar a by computing cta = (ua mod N2, {(ei)a mod N2}ti=1), which is
an encryption of {a ·mi mod N}ti=1.

This optimization enables t messages of size n bits to be encrypted using a
ciphertext of size (t + 1) · 2n bits, which corresponds to an expansion factor of
2(t+1)
t .
The two optimizations can be combined, meaning that for any choice s and

t, we can encrypt t messages each of size n · s bits using a ciphertext of size

(s+1)·(t+1)·n bits. This means the ciphertext has an expansion of (s+1)·(t+1)
s·t ×.

As t and s grow, this means we can make the ciphertext expansion as close to 1
as we like.

5.2.3 Encrypting multiple messages in a single ciphertext

Utilizing the batching techniques in the previous two subsections, one can reduce
the ciphertext expansion of the Camenisch-Shoup encryption scheme, but the
plaintext space becomes as large as Ns. We now describe how the plaintext space
can be decomposed into slots of size B each. More concretely, each ciphertext
can be viewed as having t · s′ “slots” of messages ≤ B, where s′ = bN

s

B c. Recall
that t comes from the fact that we encrypt t messages each of size up to Ns

with shared first component. The s′ component comes from the fact that the
message space Ns is now divided into s′ slots of size B each. Specifically, given

t · s′ messages {mi,j}i∈[t],j∈[s′] in ZB , we compute mi =
∑s′

j=1mi,j · Bj−1 for

each i ∈ [t] and then encrypt the t messages {mi}ti=1. (Note that each mi ≤ Ns.)
Given a public key (g, {yi}i∈[t]) the ciphertext is computed as follows:

ct =



u = (g)r

e1 = (1 +N)
∑s′
j=1m1,j ·Bj−1

· (h1)r

...

ei = (1 +N)
∑s′
j=1mi,j ·B

j−1

· (hi)r
...

et = (1 +N)
∑s′
j=1mt,j ·B

j−1

· (ht)r

We observe that the resulting encryption is slot-wise additively homomorphic
as long as the sum in each slot never exceeds B. In addition, all the slots can
be homomorphically multiplied by a single scalar simultaneously as long as the
resulting value in each slot does not exceed B.

These slotted encryptions are compatible with all the other pieces of our
protocol. In particular the following needed properties of the Camenisch-Shoup
encryption scheme can be extended to the slotted encryptions (including in com-
bination):

1. Proof that the value encrypted in a ciphertext is identical to the value un-
derlying another commitment.
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2. Proof that a ciphertext decrypts to a value underlying another commitment.
3. Proof that a ciphertext was produced by homomorphically adding a com-

mitted value to another ciphertext, and rerandomizing.
4. Proof that a ciphertext was produced by homomorphically scalar-multiplying

a committed value to another ciphertext and rerandomizing.

5.2.4 Batching commitments of decrypted values

In our protocol (see Appendix D.7 for the specific step), we need to commit to a
set of values {βi} that are decrypted from the batched Camenisch-Shoup cipher-
texts and prove consistency between the committed values and decrypted values.
We can batch the commitments as described in Section 5.1, and prove consis-
tency between batched commitments with batched decryption. The high-level
idea is the following. Given a set of commitments and ciphertexts, the verifier
first picks a set of random coefficients {ci}. Then both parties can compute a
single commitment and a single encryption of a random linear combination of
the underlying values, namely

∑
ciβi. After that, the prover simply proves con-

sistency between the resulting commitment and encryption. Our batched proof
for this step has sublinear communication complexity.

5.3 Batching Sigma Protocols

In certain circumstances, it is possible to batch a set of ` sigma protocols that
prove similar statements, such that the batched protocol has communication
cost similar to a single sigma protocol. Batching sigma protocols is well-known
in the literature [32,34]. In this section we describe a variant that is compatible
with range proofs, and in particular, induces much less slack in the range-proof
bound.

We describe the technique by an example. Let g be a generator of a group G
of order q, and let {yi = gxi}i∈[`], where each xi ∈ [q]. We give a batched sigma
protocol in Figure 5 for the following ZK-AOK:

ZK-AoK
{
{xi}i∈[`] : yi = gxi ∀i ∈ [`]

}
.

1. Prover samples x̃
$← [q] and sends ỹ = gx̃ to Verifier.

2. Verifier chooses random challenges ci
$← {0, 1}λ for i ∈ [`], and sends to Prover.

3. Prover computes x̂ = x̃+
∑`
i=1 ci · xi mod q, and sends x̂ to Verifier.

4. Verifier verifies that gx̂ = ỹ ·
∏`
i=1(yi)

ci .

Fig. 5: Example for batching sigma protocols.

We can see in the figure that the prover sends a single group element in its first
message (as opposed to ` group elements in an unbatched execution) and a single
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element in its response to the verifier (as opposed to ` elements in an unbatched
execution). The verifier sends ` challenges instead of one, but the communication
cost of these can be ignored if we use the Fiat-Shamir heuristic to make the
protocol non-interactive. This means that the communication cost is essentially
the same as a single unbatched sigma-protocol execution. Completeness of the
protocol is straightforward. Next we prove its soundness and zero-knowledge
property.

Soundness and Extraction. We construct a PPT extractor that interacts
with a cheating prover and extracts valid witnesses {xi}i∈[`]. The extractor
first executes the protocol honestly with the prover and obtains a transcript
(ỹ, {ci}i∈[`], x̂) such that gx̂ = ỹ ·

∏`
i=1 y

ci
i .

Now the extractor rewinds the protocol to Step 2 and sends a different ran-
dom challenge c′1 while keeping all the other challenges the same, and obtains x̂′

such that gx̂
′

= ỹ ·(y1)c
′
1
∏`
i=2(yi)

ci . Combining the two equations, the extractor
gets g∆x̂ = y∆c1 where ∆x̂ = x̂ − x̂′ and ∆c = c1 − c′1. Now the extractor can
compute x1 = ∆x̂ · (∆c)−1 mod q. This process can be repeated for all i ∈ [`] to
extract all xi.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by

constructing a PPT simulator that does the following. First it samples ci
$←

{0, 1}λ for all i ∈ [`] and x̂
$← [q], and then computes ỹ = gx̂/

∏`
i=1(yi)

ci . Finally
it outputs the transcript (x̃, {ci}i∈[`], x̂). The simulated transcript is statistically
identical to the real protocol.

This batching technique extends naturally to more complex sigma protocols
that prove relations between multiple elements and consistency between expo-
nents. Concrete examples of the batched sigma protocols we use in our protocol
can be found in Appendix D.

Effect of batching on range proofs. Batching has a small effect on the slack
of range proofs that we consider. Recall that the size bound on a particular
exponent x is related to the size of x̂, that is, the part of the prover’s response
related to that element. Batching ` sigma protocols increases the size of each
element of the prover’s response by a factor of `. This is because the value needs
to be big enough to statistically mask

∑`
i=1 ci · xi, which is ` times larger than

the unbatched case. Therefore, batching introduces an additional factor of ` to
the proved range.

5.4 Multi-exponentiation Argument

In our protocol (see Appendix D.7 for the specific step), we will need to batch
a set of arguments that an ElGamal ciphertext ct′i is a re-randomization of an-
other ciphertext cti raised to a hidden committed value βi. Our idea is to first
take a random linear combination of these equations and then prove an ElGamal
ciphertext c̃t is the product of a set of known ciphertexts

{
c̃ti
}

raised to a set of
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hidden committed values {βi}, where the commitments are batched as described
in Section 5.1. We notice that this can be achieved by a multi-exponentiation
argument from the work of Bayer and Groth [5], which has sublinear commu-
nication complexity. One subtlety is that the values {βi} are committed in the
group of the Camenisch-Shoup encryption for proving consistency with the de-
crypted values, but to the apply multi-exponentiation argument, they must be
committed in the group of the ElGamal encryption. Therefore, we commit to
{βi} in both groups and prove consistency between the commitments. Since all
the commitments and sigma protocols can be batched, the overall communica-
tion complexity is sublinear.

6 Communication, Computation and Monetary Costs

In this section, we present the communication, computation and monetary costs
of our protocol. The offline phase for generating parameters for the different
primitive we will use has a fixed cost, which includes four ZK-AoK of exponent
per party plus one proof that a modulus N is a product of safe primes [13], which
requires O(κ2 logN) communication and computation where κ is the security
parameter for the soundness of the last proof.

For our online phase, we have several batching optimizations described in
Section 5 that allow us to achieve different trade-offs between communication
and computation. Thus, we state our efficiency estimates parameterized with
the different batching parameters presented in Table 1 that we apply for the
commitments and encryptions. Our shuffled DOPRF has 3 rounds, each of which
has an associated sigma protocol. Wherever the sigma protocols can be batched,
we batch them into a single execution, and this is reflected in the costs. The
specifics of the batching can be seen in Appendix D.

Notation Parameter Meaning

n number of inputs in each set
G group for OPRF
sizeG size of elements in G
N RSA modulus
λ security parameter for sigma protocol soundness and hiding
scam modulus parameter for CS encryptions, their modulus will be Nscam+1

s′cam number of plaintexts that fit in the message space Nscam+1

tcam number of components ei per CS encryption that share the first component u
Ncam total number of CS ciphertexts (dn/(s′cam · tcam)e)
sped number of values committed in a Pedersen vector commitment in DOPRF round 2
nped number of Pedersen vector commitments in DOPRF round 2 (dn/spede)
n′cam number of batched CS ciphertexts per batched Pedersen commitment dsped/(s′cam · tcam)e
mmultiexp dimension m to use in the multiexponentation proof from Bayer et al [5] in DOPRF Round 3.

Table 1: Parameter notation

In Table 2 we present the computation and communication cost estimates for
the different phases of out protocol. There are three different types of compu-
tational operations we perform in the protocol, namely group operations in G,
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exponentiations mod N (for commitments), and exponentiations mod Nscam+1

for Camenisch-Shoup encryption. There are also 4 types of elements we commu-
nicate: group elements in G, elements modulo N , elements modulo Ns+1, and
sigma protocol response messages from the prover. The entries of Table 2 reflect
counts of each of these types of operations and elements transferred.

Computation Communication

DOPRF Round 1

Messages 2 exp mod N +tcam · (tcam + 1) exp mod Nscam+1 |N | · (1 + tcam · (tcam + 1) · (scam + 1))

Sigma Protocol 5 exp mod N +3tcam · (tcam + 1) exp mod Nscam+1 |N | · (tcam + 3 + tcam · (tcam + 1) · (scam + 1))

DOPRF Round 2

Messages (n+ ncam) · (tcam + 1) exp mod Nscam+1 (ncam · (tcam + 1)(scam + 1) · |N |))
+(3n+ 3nped) exp mod N + n exp in G +n · sizeG + 3nped · |N |

Sigma Protocol 2 · (ncam + sped) · nsig(tcam + 1) exp mod Nscam+1 |N | · n′cam((scam + 1) · (tcam+1) + lognped + k)
(10sped + 10) + 5nped exp mod N + (2sped + n) exp in G +(5sped + 8) · |N | + sped · sizeG

DOPRF Round 3

Messages n/s′cam exp mod Nscam+1 + (n+ nped) exp mod N (3n+ nped) · sizeG + nped|N |
+4n+ nped exp in G

Sigma Protocol 1 (2 + nped) · (ncam + 1) · (tcam + 1) exp mod Nscam+1 (ncam + 1) · (scam + 1) · (tcam + 1)|N |
+2(sped + 1) + nped exp mod N +(|N |+ k)tcam

+2(sped + 1) + nped exp in G +sped · (3k + 2sizeG)

Sigma Protocol 2 2n(mmultiexp + 6 · dn mmultiexpe + exp in G (5mmultiexp + dn mmultiexpe+ 10) · sizeG
Table 2: Counts of various operations performed in each step of the DOPRF
protocol, and corresponding communication cost.

We will compare our protocol’s cost against the baseline, namely the semi-
honest Diffie-Hellman based intersection-sum protocol [39]. In our concerete in-
stantiation, we use safe RSA moduli of length 1536 bits. We use NIST curve
prime256v1 as our group G.

To minimize communication costs, in the first and seconds rounds of the
shuffled DOPRF protocol, we set sped =

√
n and batch

√
n sigma protocols

together. We further set tcam = 8. scam = 4, s′cam = 8 and mmultiexp = 8. We
compare costs with the DDH-based shuffled DOPRF with semi-honest security.
The measurements appear in Table 3.

We briefly discuss how we choose our parameters. First we discuss our choice
of sped. In Round 2 of the DOPRF, batching Pedersen commitments allows us
to send 1 element mod N instead of sped elements in the Round 2 messages.
However, each sigma protocol statement in this round now also grows to be of
length sped, since we must prove knowledge of all values contained in a commit-
ment together. Since each sigma protocol is of size sped individually, the batched
sigma protocol is also be of length sped. In order to minimize both the number of
commitments sent and the size of the batched sigma protocol, we set sped =

√
n,

and bsig =
√
n.

We note that generating the messages of the DOPRF Round 2 constitutes
the computation bottleneck of the protocol. In this round, for each entry in the
Receiver’s set, the Receiver has to perform a homomorphic Camenisch-Shoup
scalar multiplication with the encrypted key, and homomorphically add it to its
encrypted and masked entry. In fact, the overall computation scales with tcam,
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Our Protocol DDH-based

Input size Comm. (KB) Comp. (s) Comm. (KB) Comp. (s) Comm. Expansion

212 1,287 1,150 256 0.71 5.03 ×
216 17,716 17,865 4,096 11.39 4.325 ×
220 275,675 284,075 65,536 182.29 4.21 ×

Table 3: Comparison of communication and computation costs between our shuf-
fled DOPRF protocol with parameters set to minimize communication, and the
baseline protocol, namely the semi-honest DDH-based shuffled DOPRF.

.

Network cost( USD per GB) Computational cost (USD per CPU-hour)

$0.08 0.01

Table 4: Costs for network and computation on Google Cloud Platform. Network
costs are from https://cloud.google.com/compute/network-pricing/, and Com-
pute costs are from https://cloud.google.com/compute/vm-instance-pricing.

Our Protocol DDH-based

Input size Comm(KB) Comp(s) Cost(c) Comm(KB) Comp(s) Cost(c) Cost Increase

212 1,893 141 0.053 256 0.71 0.002 24.9×
216 28,289 2,215 0.831 4,096 11.39 0.034 24.2×
220 436,719 35,583 13.1 65,536 182.29 0.551 24.00×

Table 5: Comparison of communication and computation costs between our shuf-
fled DOPRF protocol when we set parameters to minimize computational cost.
These parameters also minimize monetary cost.

Input size 212 Input size 216 Input size 220

Comm Comp Cost Comm Comp Cost Comm Comp Cost

DDH-DOPRF (semihonest) 256 0.71 0.002 4096 11.39 0.034 65536 182.29 0.55

Sort-Compare-Shuffle [37] 209920 0.61 1.60 4941824 12.65 37.7 108691456 235.3 829.3
EC-ROM (one-sided PSI) [58] 4915.2 0.19 0.037 80896 0.94 0.61 1353728 12.6 10.3
DE-ROM (one-sided PSI) [58] 3584 0.23 0.027 62464 1.3 0.47 1118208 18 8.53

Our SDOPRF (low comm.) 1287 1150 0.329 17716 17865 5.09 275675 284075 81.01
Our SDOPRF (low comp.) 1893 141 0.05 28289 2215 0.83 436719 35583 13.21

Table 6: Comparison of computation, communication and monetary costs of our
protocols compared to related works. Monetary costs use the values in Table 4.
Communication cost is in KB, Time is in seconds, and Cost is in cents (USD).
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the number of components in the Camenisch-Shoup ciphertext. This means that
if we increase the number of components of the Camenisch-Shoup ciphertexts, we
end up greatly increasing the computation. Furthermore, when we increase the
parameter scam, we are performing operations in the substantially larger group
nscam+1, which induces non-linearly increasing computation cost. In Table 5, we
attempt to minimize computation, by reducing tcam to 2, scam to 1 and s′cam to
2 . In this case, communication cost increases by about 60%, but computation
cost drops by about 90%.

To compare monetary costs, we use the costs from Google Cloud Platform.3

The costs are given in Table 4. For computation, we use the price for pre-emptible
virtual CPUs, which correspond to machines with an Intel Xeon E5 processor
and 3.75 GB of memory, which matches the machines we used for benchmarking.
We consider pre-emptible computation to capture the offline batch-processing
scenario described by works that deploy PSI in practice [39]. We also use the
cheapest tier of network cost, considering the cost for internet egress, since that
captures the scenario of the two parties being in different datacenters or clouds.
We note that, at the time of publication, all the major cloud providers have costs
that are within a tight range.

Comparison with existing works. In Table 6, we compare concrete costs of
our protocol against existing works that achieve security against malicious adver-
saries. The key comparison is against the Sort-Compare-Shuffle (SCS) approach
of Huang et al [37], which is the only existing work that is compatible with mali-
cious security, two sided output, and computing a function on associated values
in the intersection. We note that both our SDOPRFs have significantly lower
communication, and crucially, lower concrete monetary cost. In particular, the
”Low Computation” variant of our SDOPRF has monetary cost 30× less for 212
entries, and 64× less for 220 entries. We note that the SCS approach has lower
computation costs and end-to-end running time, but that in the batch-processing
setting, the computation cost is less of a factor than concrete monetary costs,
since responses are not needed in real time.

We also compare against the most efficient one-sided Malicious PSI works
due to Rindal et al [58], and show that our protocols are in the same ballpark
of total monetary cost. In particular, the ”Low Computation” variant of our
SDOPRF has monetary cost about 1.5× that of the DE-ROM variant of [58].
We note that [58] do not easily support two sided output or computing over the
intersection. We believe the modest increased cost of our protocol is reasonable
in order to support these additional functionalities.
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Supplementary Material

A Cryptographic Tools

Pedersen Commitment. The Pedersen commitment [52] is a commitment
scheme based the hardness of discrete logarithm which provides perfect hiding
and computational binding. The parameters for the Pedersen commitment are
group generators g, h ∈ G where logg h is hard to compute. The commitment of

a value x, denoted as comg,h(x), is computed as c = gx ·hr for some random r
$←

ord(G). The decommitment of c is (x, r). The commitment scheme is additively
homomorphic, namely, comg,h(x1) · comg,h(x2) = comg,h(x1 + x2).

Note that the Pedersen commitment scheme is perfectly hiding as long as g
and h are indeed generators or more weakly, if g is in the subgroup generated
by h. This perfectly hiding property holds even if the receiving party knows all
the secret information about g, h and G. In our protocol we need to prove that
the Pedersen parameters are generated correctly (i.e., that g ∈ 〈h〉) by sigma
protocols.

In the more general case the Pedersen commitment scheme can be used to
commit to vectors. The parameters for a vector commitment are group gener-
ators g1, . . . , gn, h ∈ G (loggi h is hard to compute for each i). The commit-
ment to a vector x = (x1, . . . , xn) is c =

∏n
i=1 g

xi
i · hr where r is selected

at random r
$← ord(G). The decommitment of c consists of x1, . . . , xn and r.

The vector commitment is component-wise additively homomorphic, namely,
com(x1) · com(x2) = com(x1 + x2).
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Camenisch-Shoup Encryption. In our protocol we use the Camenisch-Shoup
encryption scheme [14] which is additively homomorphic and supports verifiable
encryption and decryption. The key generation algorithm CS Gen samples a
random RSA modulus N = pq, where p = 2p′ + 1, q = 2q′ + 1, and p′, q′ are
uniformly distributed over all `-bit primes for some ` = `(λ) such that p, q are
also primes and p 6= q. Then it chooses a 2N -th residue g = r2N mod N2

for a random r ∈ ZN2 and sets y = gx mod N2 for a random x ∈ ZbN/4c.
The public key is pk = (N, g, y) and the secret key is sk = x. The encryption
CS Enc of a message m ∈ ZN is ct =

(
gr mod N2, (1 +N)m · yr mod N2

)
where r

$← ZbN/4c. The decryption CS Dec of a ciphertext ct = (u, e) given

the secret key is m =
( e
ux−1) mod N2

N . This encryption scheme slightly differs
from [14] in that we drop the last component from the ciphertext since they
further achieve non-malleability which is not needed in our setting.

In our protocol we have to prove that N is a product of two large safe primes
(a safe prime p is a prime number of the form 2p′ + 1 where p′ is also a prime),
which is needed for the soundness of sigma protocols we use related to g and y.
In particular, we make use of the fact that there exists a large subgroup of order
p′q′ modulo N2. See [13,33] for details on how N can be proved to be a safe prime
product. We also need to additionally prove that the Camenisch-Shoup public
key is properly generated. In particular, the party generating the key must show
that g is a random 2N -th residue mod N2, and furthermore that there exists
some x such that y = gx mod N2. The former can be proved by using r equal to
some fixed value (e.g. r = 2). Then, assuming N is a safe prime product, with
high probability, r2N will generate a large subgroup of order p′q′ mod N2. To
show y = gx mod N2 for a hidden x, one can use a standard sigma protocol.

ElGamal Encryption. The ElGamal encryption scheme [26] is an multiplica-
tively homomorphic encryption scheme that is used in the shuffle proof [5]. For a
cyclic group G of order q with generator g, the key generation algorithm EG Gen

samples a random integer x
$← Zq and computes h = gx. The public key is

pk = h and the secret key is sk = x. The encryption EG Enc of a message
m ∈ G is ct = (gy, hy ·m). The decryption EG Dec of a ciphertext ct = (u, e)
given the secret key is m = e

ux . Note that a ciphertext ct = (u, e) can easily be
re-randomized as ct′ = (u · gr, e · hr).

2-out-of-2 Threshold Encryption. We use the exponential ElGamal encryp-
tion scheme that is additively homomorphic as the 2-out-of-2 threshold encryp-
tion scheme for encrypting the integer values in our protocol. In the key gen-
eration procedure, each party Pb (b = 1, 2) can use EG Gen for the ElGamal
encryption scheme to generate a public key share tpkb and a secret key share
tskb, where tpkb = gtskb . The public key for the threshold encryption scheme
is tpk = tpk1 · tpk2 and the secret key is tsk = tsk1 + tsk2. The encryption
Exp EG Enc of a message m ∈ Zq is ct = (gy, tpky · gm). To decrypt a ciphertext
ct = (u, e), one party (say P1) half-decrypts it to be ct′ =

(
u, e′ = e

utpk1

)
and the

other party (P2) half-decrypts ct′ to obtain m = logg
e′

utpk2
. In our protocol each
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party needs to provide proofs that their half-decryption is done correctly, which
can be done by sigma protocols.

B Selective Secure Pseudorandom Function

In this section we define and construct a selective secure pseudorandom func-
tion, where the inputs to the PRF are chosen by the adversary in advance in
the security game. This weaker definition of PRF is sufficient for our private
intersection-sum protocol. We prove our PRF construction is selective secure
under the decisional q-DHI assumption. 4

The above security notion for the PRF suffices for our private intersection-
sum protocol since we make the two parties first commit to their own inputs along
with a zero-knowledge proof of knowledge and then jointly decide the PRF pa-
rameters. Thus, the selective security of the PRF suffices for the simulation-based
proof of the overall constructions since the simulator the private intersection-sum
can first parties’ inputs from the commitments and then rely on the selective
security of the PRF.

We state formally the selectively security PRF definition as follows:

Definition 1 (Selectively Secure PRF). Let group G be a group of order p
for which the decisional q-DHI assumption holds. Let kGen be an algorithm which
on input a security parameter 1λ generates a public parameter pp and secret key
k. We say that the function Fk : Z∗p → G is a q-selective secure pseudorandom
function (family) if∣∣∣∣∣Pr

[
A (Fk(x1), . . . , Fk(xq), Fk(xq+1)) = 1

∣∣∣∣ (x1, . . . , xq, xq+1)← A(1λ);
(pp, k)← kGen(1λ)

]

− Pr

[
A (Fk(x1), . . . , Fk(xq), y) = 1

∣∣∣∣ (x1, . . . , xq, xq+1)← A(1λ);

(pp, k)← kGen(1λ); y
$← G

] ∣∣∣∣∣ ≤ negl(λ).

B.1 Construction

We construct a PRF that satisfies the above definition as follows: let G be a
group of order p where the decisional q-DHI assumption holds, then our PRF is
defined by the following algorithms:

– (pp, k) ← kGen(1λ): on input the security parameter λ, outputs public pa-

rameter pp and a secret key k
$← Z∗p.

– σ ← Fk(x): on input x output PRF evaluation Fk(x) = g
1

k+x .

4 We note that [9] consider a similar question, but their construction is not oblivious.
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B.2 Security Proof

We prove that Fk is a q-selective secure PRF by showing that if there exists
an adversary A that breaks its selective security, then we can construct another
adversary B that breaks the decisional q-DHI assumption.

First, B is given elements (g, gα, . . . , gα
q

) along with h that could be g1/α or
a random group element. It is also given (x1, . . . , xq, xq+1) chosen by A.

Let β := α− xq+1. Define f(y) as a polynomial

f(y) =

q∏
i=1

(y − xq+1 + xi) =

q∏
i=1

(y − xq+1 + xi) =

q∑
i=0

ci · yi

for some coefficients c0, c1, . . . , cq. Notice that f(α) =
∏q
i=1(β+xi). Then B can

compute

g̃ = gf(α) = g
∑q
i=0 ci·α

i

=

q∏
i=0

(
gα

i
)ci

.

B implicitly sets the public parameter pp = g̃ and secret key k = β as the PRF
key. Notice that g̃ and k are both uniformly distributed in G and Z∗p, respectively.
To compute Fk(xi) for 1 ≤ i ≤ q,

Fk(xi) = g̃
1

β+xi = g
∏q
j=1,j 6=i(β+xj) = g

∑q−1
j=0 d

(i)
j ·α

j

=

q−1∏
j=0

(
gα

j
)d(i)j

.

For the q − 1 coefficients d
(i)
j that result from viewing

∏q
j=1,j 6=i(β + xj) as a

polynomial in α. Finally, to compute Fk(xq+1),

Fk(xq+1) =g̃
1

β+xq+1 = g̃
1
α = gf(α)·

1
α = g

∑q
i=0 ci·α

i· 1α

=g
∑q
i=1 ci·α

i−1+
c0
α =

q∏
i=1

(
gα

i−1
)ci
·
(
g

1
α

)c0
.

B computes

y =

q∏
i=1

(
gα

i−1
)ci
· hc0 ,

and gives (Fk(x1), . . . , Fk(xq), y) to A. Notice that if h = g1/α, then y =
Fk(xq+1); otherwise y is a random element in G. Therefore, if A breaks the
selective security of the PRF, then B breaks the decisional q-DHI assumption.

C Security Analysis

Correctness of the protocol for honest participants can be verified by inspection.
Correctness holds even when one of the parties is malicious, following from the
fact that each party proves it performed the computation each step honestly.
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C.1 Security Against Malicious P1

We first prove security against malicious P1. Let RealΠ,A((X,V ), Y ) denote the
output of the adversary A (i.e., malicious P1) in the real-world execution of our
protocol Π. We construct a PPT simulator S such that

RealΠ,A((X,V ), Y )
c
≈ IdealF,S((X,V ), Y ),

where IdealF,S((X,V ), Y ) denotes the output of S in the ideal-world execution.

Run the protocol with A behaving like P2 honestly expect the following:

One-time setup. Extract A’s secret key share tsk1 in Step 3 and compute tsk =
tsk1 + tsk2.

Online phase.

– In Step 2, extract A’s input {xi}i∈[n1] from the ZK-AOKs. Commit to 0 instead
of yi and replace its ZK-AOKs with simulated ones.

– In Shuffled DOPRF 1 Round 2, decrypt ctvi by tsk to obtain vi. Send {xi, vi}i∈[n1]

to F and get back the intersection-cardinality |I| and intersection-sum S.
– In Shuffled DOPRF 2 Round 2, for each i ∈ [n2]:

(a) Sample σi
$← G, ri

$← [q2 · 2λ], and compute gi = σ
1/ri
i . Let R2 = {σi}i∈[n2

.
(b) Compute Cai ← comg1,h1(0), Cbi ← comg1,h1(0), Cαi ← comg1,h1(0), ctβi ←

CS Encpk1(ri).
(c) Send (Cai ,Cbi ,Cαi , ctβi , gi) to A together with a simulated ZK-AOK.

– In Shuffled DOPRF 1 Round 3, sample R1 = {σ′i}i∈[n1] such that |R1 ∩R2| = |I|.
In Step (e), send encryption of σ′i along with a simulated ZK-AOK.

– In Step 5, send a fresh encryption of S under tpk1 to A along with a simulated
proof for correct half decryption.

Finally, output whatever A outputs.

Fig. 6: The simulator for malicious P1.

We construct a simulator S in Figure 6. The simulator executes a simulated
protocol with A which we prove is indistinguishable from A’s view in a real-world
protocol with an honest P2.

Theorem 1. For any PPT adversaries A and input ((X,V ), Y ),

RealΠ,A((X,V ), Y )
c
≈ IdealF,S((X,V ), Y ).

Proof. We prove the indistinguishability of A’s view in the simulated protocol
and in a real-world protocol via a hybrid argument.

Hyb0 A’s view of a real-world execution with P2.
Hyb1 Same as Hyb0 except that in Shuffled DOPRF 2 Round 2, P2 computes

Cai ← comg1,h1
(0), Cbi ← comg1,h1

(0), Cαi ← comg1,h1
(0) for each i ∈ [n2]
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and sends to A together with simulated ZK-AOKs. Hyb1 is computationally
indistinguishable from Hyb0 because of the hiding property of the commit-
ment scheme and zero-knowledge property of the ZK-AOKs.

Hyb2 Same as Hyb1 except that P2 does the following:

– In Step 2 of the online phase, extract A’s input {xi}i∈[n1] from the ZK-
AOKs.

– In Shuffled DOPRF 2 Round 1, extract k1 from the ZK-AOK.

– In Shuffled DOPRF 2 Round 2, compute σi = Fk1+k2(yi), sample ri
$←

[q2 ·2λ−2], and compute ctβi ← CS Encpk1(ri), gi = σ
1/ri
i for each i ∈ [n2].

Update the corresponding simulated ZK-AOKs.
– In Shuffled DOPRF 1 Round 3, compute σ′i = Fk1+k2(xi) for all i ∈ [n1]

and use those with simulated ZK-AOKs.

Hyb2 and Hyb1 are computationally indistinguishable based on the zero-
knowledge property of the ZK-AOKs sent by P2 and soundness of the ZK-
AOKs sent by A.

Hyb3 Same as Hyb2 but in Shuffled DOPRF 1 Round 1, P2 sends CS Encpk2(0)
instead of ctk2 along with a simulated ZK-AOK. Note that while the en-
cryption of k2 is changed to be to 0, P2 continues to use a randomly chosen
k2 when computing Fk1+k2(·) in the remainder of the protocol. Hyb3 and
Hyb2 are computationally indistinguishable based on the semantic security
of ctk2 .

Hyb4 Same as Hyb3 except that P2 computes a random function F (x) in the pro-
tocol instead of Fk1+k2(x) and updates the simulated ZK-AOKs correspond-
ingly. Hyb4 and Hyb3 are computationally indistinguishable based on the
selective security of the PRF. In particular, if A can distinguish between
Hyb4 and Hyb5, then we can construct a PPT adversary B that can break
the selective security of the PRF. The adversary B runs the protocol with A
as in Hyb5 and extracts all the inputs {xi}i∈[n1] of A. Then B feeds all the
inputs to the security game of the PRF and obtains the public parameters
pp along with values {σi}i∈[n1], which could be PRF values or random val-
ues. In Step 3 of the online phase when the two parties jointly decide on a
random generator g, B makes pp the generator. Later when P2 computes the
PRF values, B instead uses {σi}i∈[n1]. Since A can distinguish between Hyb4
and Hyb3, B can distinguish whether σi’s are PRF values or truly random
and break the selective secure PRF.

Hyb5 Same as Hyb4 except that P2 uses random elements sampled from G instead
of computing F (x). Hyb5 is statistically identical to Hyb4.

Hyb6 Same as Hyb5 but in Shuffled DOPRF 1 Round 1, P2 send CS Encpk2(k2)
instead of CS Encpk2(0) with updated simulated ZK-AOK. Hyb6 and Hyb5
are computationally indistinguishable based on the semantic security of ctk2 .

Hyb7 Same as Hyb6 but in Step 2 of the online phase, P2 commits to 0 instead
of yi’s and simulates the ZK-AOKs. Hyb7 and Hyb6 are computationally
indistinguishable because of the perfect hiding property of the commitment
scheme.

Hyb8 Same as Hyb7 except that P2 does the following:
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– In Step 3 of the one-times setup, extract A’s secret key share tsk1 and
compute tsk = tsk1 + tsk2.

– In Shuffled DOPRF 1 Round 2, decrypt ctvi by tsk to obtain vi for all
i ∈ [n1]. Compute the intersection-sum S.

– In Step 5 of the online phase, send a fresh encryption of S under tpk1 to
A along with an updated simulated proof.

Hyb8 and Hyb7 are computationally indistinguishable by the hiding prop-
erty of the 2-out-of-2 threshold-encryption scheme together with the zero-
knowledge property of the verifiable half-decryption proof.

Hyb9 Same as Hyb8 but in Shuffled DOPRF 1 Round 3 Step (e), P2 sends randomly
shuffled encryption of σ′i with updated ZK-AOKs. Hyb9 is computationally
indistinguishable from Hyb8 because of the hiding property of the ElGamal
encryption scheme and zero-knowledge property of the ZK-AOKs.

Hyb10 Same as Hyb9 except that in Shuffled DOPRF 1 Round 3 Step (e), σ′i values
are replaced with random strings, such that there are exactly |I| repeated
values in the two shuffled DOPRF protocols. Hyb10 and Hyb9 are computa-
tionally indistinguishable based on the zero-knowledge property of the shuffle
proof.

Hyb11 A’s view in an ideal-world execution with S. Hyb11 and Hyb10 are identical.

C.2 Security Against Malicious P2

To prove security against malicious P2, we construct another simulator in Fig-

ure 7 and prove RealΠ,A((X,V ), Y )
c
≈ IdealF,S((X,V ), Y ) by arguing the indis-

tinguishability of A’s view in the simulated protocol and in a real-world protocol.

Run the protocol with A behaving like P1 honestly expect the following:

Online phase.

– In Step 2, extract A’s input {yi}i∈[n2] from the ZK-AOKs. Commit to 0 instead
of xi and replace its ZK-AOKs with simulated ones. Send {yi}i∈[n2] to F and get
back the intersection-cardinality |I| and intersection-sum S.

– In Shuffled DOPRF 1 Round 2, for each i ∈ [n1]:

(a) Sample σi
$← G, ri

$← [q2 · 2λ], and compute gi = σ
1/ri
i . Let R1 = {σi}i∈[n1].

(b) Compute Cai ← comg2,h2(0), Cbi ← comg2,h2(0), Cαi ← comg2,h2(0), ctβi ←
CS Encpk2(ri).

(c) Send (Cai ,Cbi ,Cαi , ctβi , gi) to A together with a simulated ZK-AOK.
(d) Compute ctvi ← Exp EG Enctpk(0) and send to A.

– In Shuffled DOPRF 2 Round 3, sample R2 = {σ′i}i∈[n2] such that |R1 ∩R2| = |I|.
In Step (e), send encryption of σ′i along with a simulated ZK-AOK.

– In Step 5, send a fresh encryption of S under tpk2 to A along with a simulated
proof for correct half decryption.

Finally, output whatever A outputs.

Fig. 7: The simulator for malicious P2.
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Hyb0 A’s view of a real-world execution with P1.
Hyb1 Same as Hyb0 except that in Shuffled DOPRF 1 Round 2, P1 computes

Cai ← comg2,h2
(0), Cbi ← comg2,h2

(0), Cαi ← comg2,h2
(0) for each i ∈ [n1]

and sends to A together with simulated ZK-AOKs. Hyb1 is computationally
indistinguishable from Hyb0 because of the hiding property of the commit-
ment scheme and zero-knowledge property of the ZK-AOKs.

Hyb2 Same as Hyb1 except that P1 does the following:
– In Step 2 of the online phase, extract A’s input {yi}i∈[n2] from the ZK-

AOKs.
– In Shuffled DOPRF 1 Round 1, extract k2 from the ZK-AOK.

– In Shuffled DOPRF 1 Round 2, compute σi = Fk1+k2(xi), sample ri
$←

[q2 ·2λ−2], and compute ctβi ← CS Encpk2(ri), gi = σ
1/ri
i for each i ∈ [n1].

Update the corresponding simulated ZK-AOKs.
– In Shuffled DOPRF 2 Round 3, compute σ′i = Fk1+k2(yi) for all i ∈ [n2]

and use those with simulated ZK-AOKs.
Hyb2 and Hyb1 are computationally indistinguishable based on the zero-
knowledge property of the ZK-AOKs sent by P1 and soundness of the ZK-
AOKs sent by A.

Hyb3 Same as Hyb2 but in Shuffled DOPRF 2 Round 1, P1 sends CS Encpk1(0)
instead of ctk1 along with a simulated ZK-AOK. Hyb3 and Hyb2 are compu-
tationally indistinguishable based on the semantic security of ctk1 .

Hyb4 Same as Hyb3 except that P1 computes a random function F (x) in the pro-
tocol instead of Fk1+k2(x) and updates the simulated ZK-AOKs correspond-
ingly. Hyb4 and Hyb3 are computationally indistinguishable based on the
selective security of the PRF.

Hyb5 Same as Hyb4 except that P1 uses random elements sampled from G instead
of computing F (x). Hyb5 is statistically identical to Hyb4.

Hyb6 Same as Hyb5 but in Shuffled DOPRF 2 Round 1, P1 send CS Encpk1(k1)
instead of CS Encpk1(0) with updated simulated ZK-AOK. Hyb6 and Hyb5
are computationally indistinguishable based on the semantic security of ctk1 .

Hyb7 Same as Hyb6 but in Step 2 of the online phase, P2 commits to 0 instead
of yi’s and simulates the ZK-AOKs. Hyb7 and Hyb6 are computationally
indistinguishable because of the perfect hiding property of the commitment
scheme.

Hyb8 Same as Hyb7 except that P1 does the following:
– In Shuffled DOPRF 1 Round 2, compute ctvi ← Exp EG Enctpk(0)for all
i ∈ [n1] and send to A with updated ZK-AOKs.

– In Step 5 of the online phase, compute the intersection-sum S and send
a fresh encryption of S under tpk2 to A along with an updated simulated
proof.

Hyb8 and Hyb7 are computationally indistinguishable by the hiding prop-
erty of the 2-out-of-2 threshold-encryption scheme together with the zero-
knowledge property of the verifiable half-decryption proof.

Hyb9 Same as Hyb8 but in Shuffled DOPRF 2 Round 3 Step (e), P1 sends randomly
shuffled σ′i with updated ZK-AOKs. Hyb9 is computationally indistinguish-
able from Hyb8 because of the hiding property of the ElGamal encryption
scheme and zero-knowledge property of the ZK-AOKs.
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Hyb10 Same as Hyb9 except that in Shuffled DOPRF 1 Round 3 Step (e), σ′i values
are replaced with random strings, such that there are exactly |I| repeated
values in the two shuffled DOPRF protocols. Hyb10 and Hyb9 are computa-
tionally indistinguishable based on the zero-knowledge property of the shuffle
proof.

Hyb11 A’s view in an ideal-world execution with S. Hyb11 and Hyb10 are identical.

D Sigma Protocols

In this section we describe all the sigma protocols used in our private intersection-
sum protocol. We utilize various batching techniques to reduce the communica-
tion cost.

D.1 Step 1 of Offline Setup

In Step 1 of the offline setup of our protocol (see Figure 2), each party generates a
Camenisch-Shoup encryption key pair (pk, sk) where pk = (N, r, g, y) and sk = x.
Each party sends pk to the other party along with a zero-knowledge proof that
y is correctly formed:

ZK
{
∃x : y = gx mod N2

}
.

1. Prover samples x̃
$← [N/4 · 22λ] and sends ỹ = gx̃ mod N2 to Verifier.

2. Verifier chooses a random challenge c
$← {0, 1}λ and sends to Prover.

3. Prover computes x̂ = x · c+ ỹ and sends to Verifier.
4. Verifier verifies that gx̂ = yc · ỹ mod N2.

Fig. 8: Sigma protocol for ZK
{
∃x : y = gx mod N2

}
.

The sigma protocol for the zero-knowledge proof is shown in Figure 8. The
completeness of the proof is straightforward. Next we prove its soundness and
zero-knowledge property.

Soundness. If y 6= gx mod N2 for any x, then for any ỹ, we have yc · ỹ 6= gx̂

for any x̂ with overwhelming probability and therefore the proof can only pass
with negligible probability.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by

constructing a PPT simulator that does the following. First it samples c
$←

{0, 1}λ and x̂
$← [N/4 · 22λ], and then computes ỹ = gx̂/yc. Finally it outputs

the transcript (ỹ, c, x̂). The simulated transcript is statistically identical to the
real protocol except when x · c + x̃ > N/4 · 22λ, which happens with negligible
probability.
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D.2 Step 2 of Offline Setup

In Step 2 of the offline setup of our protocol (see Figure 2), each party generates
Pedersen commitment parameters (g, h) for the large subgroup of Z∗N and prove
in zero-knowledge that g ∈ 〈h〉. Looking ahead, to enable batching Pedersen
commitments via vector commitment, in the actual protocol each party generates
parameters (g1, g2, . . . , gt, h) for some t and prove in zero-knowledge that gi ∈ 〈h〉
for each i ∈ [t].

1. Prover samples r̃
$← [N · 22λ] and sends g̃ = hr̃ to Verifier.

2. Verifier chooses a random challenge c
$← {0, 1}λ and sends to Prover.

3. Prover computes r̂ = r · c+ r̃ and sends to Verifier.
4. Verifier verifies that hr̂ = gc · g̃.

Fig. 9: Sigma protocol for ZK {∃r : g = (h)r}.

The sigma protocol for the zero-knowledge proof ZK {∃r : g = (h)r} is shown
in Figure 9. The completeness of the proof is straightforward. Next we prove its
soundness and zero-knowledge property.

Soundness. If g /∈ 〈h〉, then for any g̃, we have gc · g̃ /∈ 〈h〉 with overwhelming
probability and therefore there does not exist r̂ such that hr̂ = gc · g̃. Hence the
proof can only pass with negligible probability.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by

constructing a PPT simulator that does the following. First it samples c
$←

{0, 1}λ and r̂
$← [N · 22λ], and then computes g̃ = hr̂/gc. Finally it outputs

the transcript (g̃, c, r̂). The simulated transcript is statistically identical to the
real protocol except when r · c + r̃ > N · 22λ, which happens with negligible
probability.

D.3 Step 3 of Offline Setup

In Step 3 of the offline setup of our protocol (see Figure 2), each party generates
(tpk, tsk) ← EG Gen(1λ) for the 2-out-of-2 threshold encryption scheme on the
group G with order q and generator g̃ and sends tpk to the other party along
with a ZK-AOK of tsk:

ZK-AoK{tsk : tpk = (g̃)tsk}.

The sigma protocol for the ZK-AOK is shown in Figure 10. The complete-
ness of the proof can be easily verified. Next we prove its soundness and zero-
knowledge property.
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1. Prover samples t̃sk
$← [q] and sends t̃pk = (g̃)t̃sk to Verifier.

2. Verifier chooses a random challenge c
$← {0, 1}λ and sends to Prover.

3. Prover computes t̂sk = tsk · c+ t̃sk mod q and sends to Verifier.

4. Verifier verifies that (g̃)t̂sk = tpkc · t̃pk.

Fig. 10: Sigma protocol for ZK-AoK{tsk : tpk = (g̃)tsk}.

Soundness. We construct a PPT extractor that interacts with a cheating
prover and extracts a valid witness tsk. The extractor first executes the pro-

tocol honestly with the prover and obtains a transcript (t̃pk, c1, t̂sk1) such that

(g̃)t̂sk1 = tpkc1 · t̃pk. Now the extractor rewinds the protocol to Step 2 and sends

a different random challenge c2 and obtains (t̃pk, c2, t̂sk2) such that (g̃)t̂sk2 =

tpkc2 · t̃pk. Combining the two equations, the extractor gets (g̃)∆t̂sk = tpk∆c

where ∆t̂sk = t̂sk1 − t̂sk2 and ∆c = c1 − c2. Now the extractor can compute

tsk = ∆t̂sk · (∆c)−1 mod q.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by

constructing a PPT simulator that does the following. First it samples c
$←

{0, 1}λ and t̂sk
$← [q], and then computes t̃pk = (g̃)t̂sk/tpkc. Finally it outputs

the transcript (t̃pk, c, t̂sk). The simulated transcript is statistically identical to
the real protocol.

D.4 Step 2 of Online Phase

In Step 2 of the online phase of our protocol (see Figure 3), each party commits
to their input elements {xi}i∈[n] on the other party’s Pedersen commitment
parameters (g, h) on the big subgroup of Z∗N and gives a ZK-AOK:

ZK-AoK {(xi, ri) : Cxi = gxi · hri} .

Recall that in order to enable batching Pedersen commitments later in the
protocol, the Pedersen commitment parameters are in fact (g1, . . . , gt, h). In or-
der to enable batching sigma protocols for batched commitments later in Round
2 of the shuffled DOPRF protocol (see Figure 4 and Appendix D.6), we need to
modify the protocol in this step.

Specifically, each party chooses a random ai
$← [q] and computes αi = ai ·

(k + xi) mod q for each i ∈ [n], where k is this party’s PRF key share. Then
it commits to k, ai, and αi, and proves knowledge of these values to the other
party. This change does not affect our security proof, because the simulator can
still extract k, ai, αi and deduce xi from those values. Later in Round 2 of the
shuffled DOPRF protocol, this party will use the commitments of ai and αi in
this step for further computation (see Appendix D.6 for more details).
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All the above commitments are batched in this step. In more detail, let
` = n/t, then the commitments of {ai}i∈[n] are computed and batched as follows:

Ca:1 = (g1)a1 · (g2)a`+1 · · · (gt)a(t−1)`+1 · hrC:a:1

...

Ca:s = (g1)as · (g2)a`+s · · · (gt)a(t−1)`+i · hrC:a:s =

t∏
i=1

(gi)
a(i−1)`+s · hrC:a:s

...

Ca:` = (g1)a` · (g2)a2` · · · (gt)at` · hrC:a:`

Similarly, the commitments of {αi}i∈[n] are computed and batched as follows:

Cα:s =

t∏
i=1

(gi)
α(i−1)`+s · hrC:α:s ∀s ∈ [`]

The PRF key share k is committed to (g1, h), namely Ck = (g1)k · hrC:k .
Now we prove the following ZK-AOK:

ZK-AoK
{(
{ai, αi}i∈[n], {rC:a:s, rC:α:s}s∈[`], k, rC:k

)
:

Ca:s =

t∏
i=1

(gi)
a(i−1)`+s · hrC:a:s ∀s ∈ [`] ∧

Cα:s =

t∏
i=1

(gi)
α(i−1)`+s · hrC:α:s ∀s ∈ [`] ∧

Ck = (g1)k · hrC:k
}
.

(1)

The batched sigma protocol for the above in Figure 11. The completeness
of the protocol can be checked. We prove its soundness and zero-knowledge
property.

Soundness. We construct a PPT extractor that interacts with a cheating prover
and extracts a valid witness

(
{ai, αi}i∈[n], {rC:a:s, rC:α:s}s∈[`], k, rC:k

)
. First we

describe how to extract k and rC:k. The extractor first executes the protocol
honestly with the prover and obtains a transcript that contains (C̃k, c1, k̂, r̂C:k)

satisfying (g1)k̂ · hr̂C:k = (Ck)c1 · C̃k. Now the extractor rewinds the protocol to

Step 2 and sends a challenge containing a different c′1 and obtains (k̂′, r̂′C:k) such

that (g1)k̂
′ ·hr̂′C:k = (Ck)c

′
1 ·C̃k. Combining these two equations, the extractor gets

(g1)∆k̂ ·h∆r̂C:k = (Ck)∆c1 . By the strong RSA assumption on Z∗N , we have ∆c1|∆k̂
and ∆c1|∆r̂C:k. Hence the extractor can compute k = ∆k̂

∆c1
and rC:k = ∆r̂C:k

∆c1
.

To extract {a(i−1)`+1}i∈[t] and rC:a:1, The extractor first executes the proto-

col honestly with the prover and obtains a transcript that contains (C̃a, {cs}s∈[`],
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1. Prover does the following:

(a) Sample ãi, α̃i
$← [q · ` · 22λ] for all i ∈ [t]. Sample r̃C:a, r̃C:α

$← [N · ` · 22λ],

k̃
$← [q · 22λ], and r̃C:k

$← [N · 22λ].

(b) Compute C̃a =
∏t

i=1(gi)
ai ·hr̃C:a , C̃α =

∏t
i=1(gi)

αi ·hr̃C:α , and C̃k = (g1)k̃ ·hrC:k .

(c) Send (C̃a, C̃α, C̃k) to Verifier.

2. Verifier chooses random challenges cs
$← {0, 1}λ for all s ∈ [`] and sends {cs}s∈[`]

to Prover.
3. Prover computes the following and sends to Verifier:

âi =
∑̀
s=1

(
cs · a(i−1)`+s

)
+ ãi ∀i ∈ [t]; r̂C:a =

∑̀
s=1

(cs · rC:a:s) + r̃C:a;

α̂i =
∑̀
s=1

(
cs · α(i−1)`+s

)
+ α̃i ∀i ∈ [t]; r̂C:α =

∑̀
s=1

(cs · rC:α:s) + r̃C:α;

k̂ = c1 · k + k̃; r̂C:k = c1 · rC:k + r̃C:k.

4. Verifier verifies the following:

t∏
i=1

(gi)
âi · hr̂C:a =

∏̀
s=1

(Ca:s)
cs · C̃a;

t∏
i=1

(gi)
α̂i · hr̂C:α =

∏̀
s=1

(Cα:s)
cs · C̃α

(g1)k̂ · hr̂C:k = (Ck)c1 · C̃k.

Fig. 11: Batched sigma protocol for ZK-AOK (1).

{âi}i∈[t], r̂C:a) satisfying
∏t

i=1(gi)
âi ·hr̂C:a =

∏`
s=1(Ca:s)

cs · C̃a Next the extractor
rewinds the protocol to Step 2 and sends a challenge containing a different c′1 and

obtains ({â′i}i∈[t], r̂′C:a) satisfying
∏t

i=1(gi)
â′i · hr̂′C:a =

∏`
s=1(Ca:s)

c′s · C̃a. Combin-

ing these two equations, the extractor gets
∏t

i=1(gi)
∆âi · h∆r̂C:a = (Ca:1)∆c1 . By

the extended strong RSA assumption on Z∗N , we have ∆c1|∆âi for all i ∈ [t] and
∆c1|∆r̂C:a. Hence the extractor can compute a(i−1)`+1 = ∆âi

∆c1
and rC:a:1 = ∆r̂C:a

∆c1
.

Similarly the extractor can extract all the
(
{ai, αi}i∈[n], {rC:a:s, rC:α:s}s∈[`]

)
.

Zero-knowledge. We prove this protocol is honest-verifier zero-knowledge by

constructing a PPT simulator that does the following. First it samples cs
$←

{0, 1}λ for all s ∈ [`]. Then it samples âi, α̂i
$← [q ·`·22λ] for all i ∈ [t] and samples

r̂C:a, r̂C:α
$← [N · ` · 22λ], k̂

$← [q · 22λ], and r̂C:k
$← [N · 22λ]. Now the simulator

can compute C̃a =
∏t

i=1(gi)
âi ·hr̂C:a∏`

s=1(Ca:s)
cs

, C̃α =
∏t

i=1(gi)
α̂i ·hr̂C:α∏`

s=1(Cα:s)cs
, and C̃k = (g1)

k̂·hr̂C:k
(Ck)c1

.

Finally it outputs the simulated transcript, which is statistically identical to the
real protocol except negligible probability.
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D.5 Round 1 of Shuffled DOPRF

In Round 1 of the shuffled DOPRF protocol where P1 holds the input (see
Figure 4), party P2 computes ctk ← CS Encpk(k) and Ck ← comg,h(k), where
k is P2’s PRF key share, pk is P2’s Camenisch-Shoup public key on the big
subgroup of Z∗N2

, and (g, h) are P1’s Pedersen commitment parameters on the
big subgroup of Z∗N1

. Recall that pk = (N2, g, y). P2 sends ctk = (u, e) and Ck
to P1 along with a ZK-AOK

ZK-AoK
{

(k, r1, r2) : u = gr1 ∧ e = (1 +N2)k · yr12 ∧

Ck = gk · hr2 ∧ k ≤ q · 22λ+1
}
.

In fact, to enable batching commitments, P1’s Pedersen commitment parame-
ters are (g1, . . . , gt, h). To enable batching the first component of the Camenisch-
Shoup ciphertexts, P2’s Camenisch-Shoup public key is in fact pk = (N2, g, y1,
y2, . . . , yt). In order to enable batching sigma protocols for batched commitments
and Camenisch-Shoup encryptions later in Round 2 of the shuffled DOPRF pro-
tocol (see Figure 4 and Appendix D.6), we need to modify the protocol in this
step.

Recall that k was committed as Ck = (g1)k · hrC:k in the modified Step 2 of
the online phase of our protocol (see Appendix D.4).

To enable batching in the first component of Camenisch-Shoup encryption,
in this step P2 encrypts t copies of k, where the i-th copy of k is encrypted in
the i-th slot and the other slots are all 0. In more detail, P2 computes ctk:i =
(ui, ei,1, . . . , ei,t) for each i ∈ [t], where ui = gri , ei,i = (1 + N2)k · (yi)ri , and
ei,j = (yj)

ri for all j ∈ [t] \ {i}.
Now we need to prove the following ZK-AOK:

ZK-AoK
{(
k, rC:k, {ri}i∈[t]

)
:

∀i ∈ [t], ui = gri , ei,i = (1 +N2)k · (yi)ri , ei,j = (yj)
ri ∀j ∈ [t] \ {i}

Ck = (g1)k · hrC:k ∧ k ≤ q · 22λ+1
}
.

(2)

The sigma protocol is shown in Figure 12. The completeness of the protocol
can be naturally verified. The only subtlety is that k̂ > q · 22λ with negligible
probability, hence the protocol is complete with all but negligible probability.
Next we prove its soundness and zero-knowledge property.

Soundness. We construct a PPT extractor that interacts with a cheating prover
and extracts a valid witness

(
k, rC:k, {ri}i∈[t]

)
. We focus on the case to k and

rC:k and the other extractions are similar. The extraction of k is same as in
Appendix D.4. In the extraction, since ∆k < q · 22λ+1, we conclude that k ≤
q · 22λ+1. In addition, the extracted value k in the commitments is equal to the
extracted k from the Camenisch-Shoup encryptions. SinceN2 is sufficiently large,
this follows from the fact that k = ∆k

∆c is a valid solution in all the extractions.
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1. Prover does the following:

(a) Sample k̃
$← [q · 22λ], r̃C:k

$← [N1 · 22λ], and r̃i
$← [N2 · 22λ] for all i ∈ [t].

(b) Compute C̃k = (g1)k̃ · hrC:k .
(c) For each i ∈ [t], compute c̃tk:i = (ũi, ẽi,1, . . . , ẽi,t), where ũi = gr̃i , ẽi,i =

(1 +N2)k̃ · (yi)r̃i , and ẽi,j = (yj)
r̃i for all j ∈ [t] \ {i}.

(d) Send
(

C̃k, {c̃tk:i}i∈[t]
)

to Verifier.

2. Verifier chooses a random challenge c
$← {0, 1}λ and sends to Prover.

3. Prover computes k̂ = c · k+ k̃, r̂C:k = c · rC:k + r̃C:k, and r̂i = c · ri + r̃i for all i ∈ [t],
and sends to Verifier.

4. Verifier verifies the following:

gr̂i = (ui)
c · ũi ∀i ∈ [t];

(1 +N2)k̂ · (yi)r̂i = (ei,i)
c · ẽi,i ∀i ∈ [t];

(yj)
r̂i = (ei,j)

c · ẽi,j ∀i ∈ [t], j ∈ [t] \ {i};

(g1)k̂ · hr̂C:k = (Ck)c1 · C̃k;

k̂ ≤ q · 22λ

Fig. 12: Sigma protocol for the ZK-AOK (2).

Zero-knowledge. Similarly as the previous sigma protocols, we prove this pro-
tocol is honest-verifier zero-knowledge by constructing a PPT simulator that

samples c
$← {0, 1}λ and k̂

$← [q ·22λ], r̂C:k
$← [N1 ·22λ], and r̂i

$← [N2 ·22λ] for all

i ∈ [t], and then computes the corresponding
(
C̃k, {c̃tk:i}i∈[t]

)
and outputs the

simulated transcript. The simulated transcript is statistically indistinguishable
to the real protocol.

D.6 Round 2 of Shuffled DOPRF

In Round 2 of the shuffled DOPRF protocol where P1 holds the input (see

Figure 4), for each i ∈ [n1], party P1 computes gi = gai for a random ai
$←

[q] where g is the generator of the G with order q. P1 also computes Cai ←
comg,h(ai), Cbi ← comg,h(bi) for a random bi

$← [q · 2λ], and Cαi = comg,h(αi)
for αi = ai · (k1 +xi), where (g, h) are P2’s Pedersen commitment parameters on
Z∗N2

. In addition it computes ctβi ← (ctk2)ai ·CS Encpk2(αi) · (CS Encpk(bi))
q for

βi = ai ·(k1+k2+xi)+bi ·q = ai ·k2+αi+bi ·q, where pk is P2’s Camenisch-Shoup
public key on Z∗N2

. Note that Cxi was sent by P1 in Step 2 of the online phase,
and Ck1 was sent by P1 in Round 1 of the other shuffled DOPRF protocol where
P2 holds the input. In this round P1 proves the following ZK-AOK:

ZK-AoK
{

(ai, bi, αi, r1, r2, r3, r4, r5, r6) :

Cai = (g2)ai · (h2)r1 ∧ ai ≤ q · 22λ+1 ∧
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Cbi = (g2)bi · (h2)r2 ∧ bi ≤ q · 23λ+1 ∧
Cαi = (g2)αi · (h2)r3 ∧ Cαi = (Ck1 · Cxi)ai · (h2)r4 ∧ αi ≤ q · 22λ+1 ∧
ctβi = (ctk2)ai · CS Encpk2(αi; r5) · (CS Encpk2(bi; r6))q∧
gi = gai

}
.

Recall that in order to enable batching, P2’s Pedersen commitment param-
eters are in fact (g1, . . . , gt, h), and P2’s Camenisch-Shoup public key is in fact
pk = (N2, g2, y1, y2, . . . , yt). We discussed in Section 4 that in order to enable
batching sigma protocols for batched commitments and batched encryptions in
this step, we need to modify our main protocol to make non-black-box use of the
DOPRF protocol. Specifically, we have modified Step 2 of the online phase of our
protocol (see Appendix D.4) and Round 1 of our shuffled DOPRF protocol (see
Appendix D.5). Next we elaborate how to batch commitments and encryptions
in this round using commitments and encryptions from previous steps and how
to batch sigma protocols in this round.

First, recall that the commitments of {ai}i∈[n1] and {αi}i∈[n1] are computed
in Step 2 of the online phase of our protocol and batched as follows (see Ap-
pendix D.4):

Ca:s =

t∏
i=1

(gi)
a(i−1)`+s · hrC:a:s ∀s ∈ [`]

Cα:s =

t∏
i=1

(gi)
α(i−1)`+s · hrC:α:s ∀s ∈ [`]

The commitments of {bi}i∈[n1] can be computed and batched similarly in
this round:

Cb:s =

t∏
i=1

(gi)
b(i−1)`+s · hrC:b:s ∀s ∈ [`]

Recall that in Round 1 of our shuffled DOPRF protocol (see Appendix D.5),
P2 encrypts t copies of k2, where the i-th copy of k2 is encrypted in the i-
th slot and the other slots are all 0. In more detail, P2 computes ctk2:i =
(uk2:i, ek2:i,1, . . . , ek2:i,t) for each i ∈ [t], where uk2:i = (g2)rk2:i , ek2:i,i = (1 +
N2)k2 · (yi)rk2:i , and ek2:i,j = (yj)

rk2:i for all j ∈ [t] \ {i}. In this round, (ctk2)ai

can be computed and batched as follows:

(ctk2)a:1 =



ua:1 = (uk2:1)a1 · (uk2:2)a`+1 · · · (uk2:t)a(t−1)`+1

ea:1,1 = (ek2:1,1)a1 · (ek2:2,1)a`+1 · · · (ek2:t,1)a(t−1)`+1

...
ea:1,i = (ek2:1,i)

a1 · (ek2:2,i)a`+1 · · · (ek2:t,i)a(t−1)`+1

...
ea:1,t = (ek2:1,t)

a1 · (ek2:2,t)a`+1 · · · (ek2:t,t)a(t−1)`+1
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...

(ctk2)a:s =

{
ua:s = (uk2:1)as · (uk2:2)a`+s · · · (uk2:t)a(t−1)`+s =

∏t
j=1(uk2:j)

a(j−1)`+s

ea:s,i = (ek2:1,i)
as · (ek2:2,i)a`+s · · · (ek2:t,i)a(t−1)`+s =

∏t
j=1(ek2:2,i)

a(j−1)`+s ∀i ∈ [t]

...

(ctk2)a:` =



ua:` = (uk2:1)a` · (uk2:2)a2` · · · (uk2:t)at`
ea:`,1 = (ek2:1,1)a` · (ek2:2,1)a2` · · · (ek2:t,1)at`

...
ea:`,j = (ek2:1,j)

a` · (ek2:2,j)a2` · · · (ek2:t,j)at`
...

ea:`,t = (ek2:1,t)
a` · (ek2:2,t)a2` · · · (ek2:t,t)at`

In this round, CS Encpk(αi) can be computed and batched as follows:

ctα:1 =



uα:1 = (g2)rct:α:1

eα:1,1 = (1 +N2)α1 · (h1)rct:α:1

...
eα:1,i = (1 +N2)α(i−1)`+1 · (hi)rct:α:1

...
eα:1,t = (1 +N2)α(t−1)`+1 · (ht)rct:α:1

...

ctα:s =

{
uα:s = (g2)rct:α:s

eα:s,i = (1 +N2)α(i−1)`+s · (hi)rct:α:s ∀i ∈ [t]

...

ctα:` =



uα:` = (g2)rct:α:`

eα:`,1 = (1 +N2)α` · (h1)rct:α:`

...
eα:`,i = (1 +N2)αi` · (hi)rct:α:`

...
eα:`,t = (1 +N2)αt` · (ht)rct:α:`

(CS Encpk(bi))
q can be computed and batched similarly as

∀s ∈ [`], ctb:s =

{
ub:s = (g2)rct:b:s

eb:s,i = ((1 +N2)q)b(i−1)`+s · (hi)rct:b:s ∀i ∈ [t]

Since βi = ai · (k1 + k2 + xi) + bi · q = ai · k2 + αi + bi · q, CS Encpk(βi) can
be computed and batched as follows: for ∀s ∈ [`],

ctβ:s =

uβ:s =
(∏t

j=1(uk2:j)
a(j−1)`+s

)
· (g2)rct:β:s

eβ:s,i =
(∏t

j=1(ek2:j,i)
a(j−1)`+s

)
· (1 +N2)α(i−1)`+s+q·b(i−1)`+s · (hi)rct:β:s ∀i ∈ [t]
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where rct:β:s = rct:α:s + rct:b:s
Now the prover proves the following ZK-AOK:

ZK-AoK
{(
{ai, bi, αi}i∈[n1], {rC:a:s, rC:b:s, rC:α:s, rct:β:s}s∈[`]

)
:

Ca:s =

t∏
i=1

(gi)
a(i−1)`+s · hrC:a:s ∀s ∈ [`] ∧ ai ≤ q · ` · 22λ+1 ∀i ∈ [n1] ∧

Cb:s =

t∏
i=1

(gi)
b(i−1)`+s · hrC:b:s ∀s ∈ [`] ∧ bi ≤ q · ` · 23λ+1 ∀i ∈ [n1] ∧

Cα:s =

t∏
i=1

(gi)
α(i−1)`+s · hrC:α:s ∀s ∈ [`] ∧ αi ≤ q · ` · 22λ+1 ∀i ∈ [n1] ∧

uβ:s =

(
t∏

j=1

(uk2:j)
a(j−1)`+s

)
· (g2)rct:β:s ∀s ∈ [`] ∧

eβ:s,i =

(
t∏

j=1

(ek2:j,i)
a(j−1)`+s

)
· (1 +N2)α(i−1)`+s+q·b(i−1)`+s · (hi)rct:β:s ∀s ∈ [`], i ∈ [t]

gi = gai ∀i ∈ [n1]
}
.

(3)

The batched sigma protocol is presented in Figure 13. The completeness of
the protocol holds with all but negligible probability. Next we argue its soundness
and zero-knowledge property.

Soundness. The way to extract {ai, bi, αi}i∈[n1] and the corresponding ran-
domness from the protocol is the same as in Appendix D.4. The range proofs for
these extracted values can be naturally checked. In addition, the extracted values
from the commitments are equal to the extracted values from the encryptions
because they can be deduced in the same way.

Zero-knowledge. Similarly as previous sections, the simulator first samples
random challenges in Step 2 and Prover’s response in Step 3. Then it com-
putes the corresponding messages in Step 1 and finally outputs the simulated
transcript. The simulated transcript is statistically indistinguishable to the real
protocol.

Damg̊ard-Jurik style batched encryption. The sigma protocol description
above does not incorporate the Damg̊ard-Jurik style batching we described in
Sections 5.2.1 and 5.2.3, namely extending the modulus to Ns+1 and dividing the
message space of size Ns into slots of size B each, and combining s′ = bNs/Bc
messages {mi}i∈[s′] into a single large message m =

∑s′

i=1mi · Bi−1 to fully
utilize the large plaintext space.
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1. Prover does the following:

(a) Sample ãi, α̃i
$← [q · ` · 22λ] and b̃i

$← [q · ` · 23λ] for each i ∈ [t] and

r̃C:a, r̃C:b, r̃C:α, r̃C:β
$← [N2 · ` · 22λ].

(b) Compute the following and send to Verifier:

C̃a =

t∏
i=1

(gi)
ãi · hr̃C:a ; C̃α =

t∏
i=1

(gi)
α̃i · hr̃C:α ; C̃b =

t∏
i=1

(gi)
b̃i · hr̃C:b ;

ũβ =

(
t∏

j=1

(uk2:j)
ãj

)
· (g2)r̃ct:β ;

ẽβ:i =

(
t∏

j=1

(ek2:j,i)
ãj

)
· (1 +N2)α̃i+q·b̃i · (hi)

r̃ct:β ∀i ∈ [t];

g̃i = gãi ∀i ∈ [t].

2. Verifier chooses random challenges c1, . . . , c`
$← {0, 1}λ and sends to Prover.

3. Prover computes the following and sends to Verifier:

âi =
∑̀
s=1

cs · a(i−1)`+s + ãi ∀i ∈ [t]; r̂C:a =
∑̀
s=1

cs · rC:a:s + r̃C:a;

b̂i =
∑̀
s=1

cs · b(i−1)`+s + b̃i ∀i ∈ [t]; r̂C:b =
∑̀
s=1

cs · rC:b:s + r̃C:b;

α̂i =
∑̀
s=1

cs · α(i−1)`+s + α̃i ∀i ∈ [t]; r̂C:α =
∑̀
s=1

cs · rC:α:s + r̃C:α;

r̂C:β =
∑̀
s=1

cs · rC:β:s + r̃C:β .

4. Verifier verifies the following:

t∏
i=1

(gi)
âi · hr̂C:a =

∏̀
s=1

(Ca:s)
cs · C̃a;

t∏
i=1

(gi)
α̂i · hr̂C:α =

∏̀
s=1

(Cα:s)
cs · C̃α;

t∏
i=1

(gi)
b̂i · hr̂C:b =

∏̀
s=1

(Cb:s)
cs · C̃b;

t∏
j=1

(uk2:j)
âj · (g2)r̂ct:β =

∏̀
s=1

(uβ:s)
cs · ũβ ;

t∏
j=1

(ek2:j,i)
âj · (1 +N2)α̂i+q·b̂i · (hi)

r̂ct:β =
∏̀
s=1

(eβ:s,i)
cs · ẽβ:s,i ∀i ∈ [t];

gâi =
∏̀
s=1

(g(i−1)`+s)
cs · g̃i ∀i ∈ [t];

âi ≤ q · ` · 22λ; b̂i ≤ q · ` · 23λ; α̂i ≤ q · ` · 22λ.

Fig. 13: Sigma protocol for the ZK-AOK (3).
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However, we observe that the sigma protocol in this section extends naturally
to this type of batching. Notice that the current sigma protocol proves that a
component eβ:s,i encrypts the value αi + q · bi for committed αi and bi. That is,
the sigma protocol already proves that a ciphertext contains a linear combination
of committed values, and this is done by exponentiating (1 + N2) to the power
q, and using (1+N2)q as the base relative to which we prove the sigma protocol.

We can extend the same technique, to show that eβ:s,i contains
∑s′

i=1(αi ·
Bi−1 + q · Bi−1 · bi) for committed αi and bi. That is, we exponentiate the
corresponding bases to the powers Bi−1 and q ·Bi−1. We note that this technique
relies on the range proof to guarantee that none of the extracted values overflow
into neighboring slots, and that the extracted sum does not wrap around in the
message space.

D.7 Round 3 of Shuffled DOPRF

In Round 3 of the shuffled DOPRF protocol where P1 holds the input (see
Figure 4), for each i ∈ [n1], party P2 computes βi ← CS Decsk(ctβi) where
sk is P2’s Camenisch-Shoup secret key, and Cβi ← comg,h(βi) where (g, h) are
P1’s Pedersen commitment parameters. P2 also computes γi = β−1i mod q and
σi = gγii . In addition it computes ctσi ← EG Encpk(σi) where pk is P2’s ElGamal
public key. In this round P2 proves the following ZK-AOK:

ZK-AoK
{

(sk2, βi, r1, r2) : βi = CS Decsk(ctβi) ∧

Cβi = gβi · hr1 ∧ βi ≤ q2 · 23λ+1 ∧

ctσi = EG Encpk
(

(gi)
β−1
i ; r2

)}
.

Note that gi can be viewed as an ElGamal encryption with randomness
0. If we let ctgi = EG Encpk(gi; 0), then we want to prove ctgi = (ctσi)

βi ·
EG Encpk(1;−r2 · βi) for a committed βi. To batch this proof, we can use the
multi-exponentiation argument from the work of Bayer and Groth [5]. However,
it requires βi to be committed under the same group as the ElGamal encryption,
hence we will also commit to βi in the ElGamal group and prove consistency of
the two commitments of βi.

At a high level, our proof consists of three steps. In the first step, we gen-
erate the Pedersen commitment parameters in the ElGamal group and prove
correctness of the parameter generation. Second, we commit to βi under both
the Camenisch-Shoup encryption group and the ElGamal encryption group, and
prove they are both consistent with the Camenisch-Shoup decrypted values.
In the last step, we prove correctness of the ElGamal encryption via multi-
exponentiation argument.

D.7.1 Generating Pedersen commitment parameters

In this step, the verifier generates Pedersen commitment parameters (g1, g2, . . . , gt, h)
for the group ElGamal group G of order q and sends to the prover , together
with a proof that gi ∈< h >.
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The format of this latter proof depends on the specific ElGamal group G.
When G is an appropriate elliptic curve, the prover can simply check that each
gi is a curve point, and a separate proof is not necessary. When G is the prime-
order multiplicative group modulo a safe prime, the verifier must show that each
gi is a square.

D.7.2 Committing to βi

In this step, the prover commits to βi using both the parameters (g1, . . . , gt, h)
and (g1, . . . , gt, h), and proves both commitments are both consistent with the
Camenisch-Shoup decrypted values.

We can batch the commitments of {βi}i∈[n1] as follows:

Cβ:1 = (g1)β1 · (g2)β`+1 · · · (gt)β(t−1)`+1 · hrC:β:1

...

Cβ:s = (g1)βs · (g2)β`+s · · · (gt)β(t−1)`+s · hrC:β:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s

...

Cβ:` = (g1)β` · (g2)β2` · · · (gt)βt` · hrC:β:`

Similarly, commitments under parameters (g1, . . . , gt, h):

Cβ:s = (g1)βs · (g2)β`+s · · · (gt)β(t−1)`+s · hrC:β:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`].

Recall that P2’s Camenisch-Shoup secret key is in fact sk = (sk1, sk2, . . . , skt).
The encryptions of {βi}i∈[n1] are batched in the previous round as ctβ:s =
(uβ:s, eβ:s:1, . . . , eβ:s:t) for all s ∈ [`]. In this round we want to prove

eβ:s:i = (1 +N2)β(i−1)`+s · (uβ:s)ski ∀s ∈ [`], i ∈ [t].

We now prove the consistency of {βi}i∈[n1] between batched Camenisch-
Shoup decryption and batched commitments:

ZK-AoK
{(
{βi}i∈[n1], {rC:β:s, rC:β:s}s∈[`], {ski}i∈[t]

)
:

eβ:s:i = (1 +N2)β(i−1)`+s · (uβ:s)ski ∀s ∈ [`], i ∈ [t] ∧

Cβ:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`] ∧ βi ≤ q2 · ` · 23λ+1 ∧

Cβ:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`]

}
.

(4)

The batched sigma protocol is shown in Figure 14. The protocol is com-
plete with all but negligible probability. Next we prove its soundness and zero-
knowledge.
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1. Prover does the following:

(a) Sample β̃i
$← [q2 · ` · 23λ] for all i ∈ [t] and r̃C:β

$← [N1 · ` · 22λ], r̃C:β
$← [q].

(b) Compute C̃β =
∏t

i=1(gi)
β̃i · hr̃C:β and C̃β =

∏t
i=1(gi)

β̃i · hr̃C:β .

(c) Compute a batched Camenisch-Shoup encryption of
{
β̃i
}

i∈[t]
. Let the encryp-

tion be (ũβ , ẽβ:1, . . . , ẽβ:t), then

ẽβ:i = (1 +N2)β̃i · (ũβ)ski ∀i ∈ [t].

(d) Send
(

C̃β , C̃β , (ũβ , ẽβ:1, . . . , ẽβ:t)
)

to Verifier.

2. Verifier chooses random c1, . . . , c`
$← {0, 1}λ and sends to Prover.

3. Prover does the following:
(a) Compute the following and send to Verifier:

β̂i =
∑
s∈[`]

cs · β(i−1)`+s + β̃i ∀i ∈ [t];

r̂C:β =
∑
s∈[`]

cs · rC:β:s + r̃C:β ; r̂C:β =
∑
s∈[`]

cs · rC:β:s + r̃C:β

(b) Let

uβ̂ = ũβ ·
∏
s∈[`]

(uβ:s)
cs ; eβ̂:i = ẽβ:i ·

∏
s∈[`]

(eβ:s:i)
cs ∀i ∈ [t].

Then (uβ̂ , eβ̂:1, . . . , eβ̂:t) is a batched Camenisch-Shoup encryption of
{
β̂i
}

i∈[t]
.

(c) Sample s̃ki
$← [N2 · 22λ] for all i ∈ [t] and send the following to Verifier:

ẽβ̂:i = (1 +N2)β̂i ·
(
uβ̂

)s̃ki
∀i ∈ [t].

4. Verifier chooses random challenges c
$← {0, 1}λ and sends to Prover.

5. Prover computes ŝki = c · ski + s̃ki for all i ∈ [t] and sends to Verifier.
6. Verifier verifies the following:

t∏
i=1

(gi)
β̂i · hr̂C:β = C̃β ·

∏
s∈[`]

(Cβ:s)
cs ;

t∏
i=1

(gi)
β̂i · hr̂C:β = C̃β ·

∏
s∈[`]

(Cβ:s)
cs ;

(1 +N2)β̂i·(c+1) ·
(
uβ̂

)ŝki
= ẽβ̂:i ·

(
eβ̂:i

)c
∀i ∈ [t];

β̂i ≤ q2 · ` · 23λ ∀i ∈ [t].

Fig. 14: Sigma protocol for the ZK-AOK (4).

Soundness. Starting from Step 3c, the way to extract {ski}i∈[t] is the same as
in Appendix D.4. Given the extracted {ski}i∈[t], we can extract {βi}i∈[n1] and
{rC:β:s, rC:β:s}s∈[`] in the same way as in Appendix D.4. The range proofs for
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these extracted values can be easily checked. In addition, the extracted values
from the commitments are consistent to the extracted values from the decryp-
tions because they can be deduced in the same way.

Zero-knowledge. The simulator first samples random challenges in Step 2
and Prover’s response in Step 3a, from which it can compute C̃β and C̃β in
Step 1b similarly as in previous sections. Then the simulator computes a batched

Camenisch-Shoup encryption of
{
β̂i

}
i∈[t]

, denoted as (uβ̂ , eβ̂:1, . . . , eβ̂:t), from

which it can compute the messages in Step 1c. Afterwards, the simulator sam-
ples the random challenge in Step 4 and Prover’s response in Step 5. Then it
computes the corresponding messages in Step 3c and finally outputs the simu-
lated transcript. The simulated transcript is statistically indistinguishable to the
real protocol.

Damg̊ard-Jurik style batching. The sigma protocol described in Figure 14
proved that a Camenisch-Shoup ciphertext component decrypts to a committed
value. As for the batched sigma protocol for Round 2, this protocol also can be
extended naturally to proving that a Camenisch-Shoup ciphertext component
decrypts to a linear combination of committed values. The idea is largely the
same as described in the intuition for Round 2, and we omit the details. This
extension of the proof allows us to use Damg̊ard-Jurik style ciphertexts and
better utilize a large plaintext space of size Ns.

D.7.3 Multi-exponentiation argument

Recall that we have ctσi = EG Encpk
(

(gi)
β−1
i ; ri

)
, ctgi = EG Encpk (gi; 0), hence

ctgi = EG Encpk(1;−βi · ri) · (ctσi)
βi . (5)

Note that from the previous step we have batched commitments of βi. Let ρi =
−βi · ri, then we want to prove the following:

ZK-AoK
{(
{βi}i∈[n1], {rC:β:i}i∈[t], {ρi}i∈[n1]

)
:

ctgi = EG Encpk(1; ρi) · (ctσi)
βi ∀i ∈ [n1] ∧

Cβ:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`]

}
.

(6)

At a high level, the verifier first picks random coefficients (c1, . . . , cn1). If we
raise Equation 5 to the power ci and multiply all the equations, we get

ct =
∏
i∈[n1]

(ctgi)
ci = EG Encpk

1;
∑
i∈[n1]

ciρi

 · ∏
i∈[n1]

(
ctciσi
)βi

.
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To prove knowledge of {βi}i∈[n1] and ρ =
∑
i∈[n1]

ciρi in the above equation, we

can use the multi-exponentiation argument from the work of Bayer and Groth [5]:

ZK-AoK
{(
{βi}i∈[n1], {rC:β:i}i∈[t], ρ

)
:

ct = EG Encpk(1; ρ) ·
∏
i∈[n1]

(
ctciσi
)βi ∧

Cβ:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`]

}
.

1. Verifier chooses random challenges c1, . . . , cn1

$← {0, 1}λ and sends to Prover.
2. Both parties compute ct =

∏
i∈[n1]

(ctgi)
ci .

3. Parties run a multi-exponentiation argument:

ZK-AoK
{(
{βi}i∈[n1], {rC:β:i}i∈[t], ρ

)
:

ct = EG Encpk(1; ρ) ·
∏
i∈[n1]

(
ctciσi
)βi ∧

Cβ:s =

t∏
i=1

(gi)
β(i−1)`+s · hrC:β:s ∀s ∈ [`]

}
.

Fig. 15: ZK-AOK protocol for (6).

The ZK-AOK protocol is presented in Figure 15. The completeness of the
protocol holds with all but negligible probability. Next we argue its soundness
and zero-knowledge property.

Soundness. The extractor first picks random challenges c1, . . . , cn1

$← {0, 1}λ
and then extract

(
{βi}i∈[n1], {rC:β:i}i∈[t], ρ

)
from the multi-exponentiation argu-

ment. To further extract ρ1, the extractor re-runs the protocol with challenges
c′1, c2, . . . , cn1

and extracts ρ′. We claim that ρ1 = (c1 − c′1)−1(ρ− ρ′). Since

(ctg1)
c′1 ·

n1∏
i=2

(ctgi)
ci = EG Encpk(1; ρ′) ·

(
ct
c′1
σ1

)β1

·
n1∏
i=2

(
ctciσi
)βi

.

Combining the equation with the first run, the extractor gets

(ctg1)
∆c1 = EG Encpk(1;∆c1 · ρ1) ·

(
ctβ1
σ1

)∆c1
.

Therefore ctg1 = EG Encpk(1; ρ1) · (ctσ1
)β1 . Similarly we can extract all the

{ρi}i∈[n1].

Zero-knowledge. The simulator first follows the first two steps honestly and
then launch the simulator for the multi-exponentiation argument.
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