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Abstract: All mainstay ciphers share an 
underemphasized vulnerability: their ciphertext commits to 
its generating plaintext.  This means that fast enough 
computers will cryptanalyze them, and so will an attacker 
smarter than their designers. By contrast, the Vernam One-
Time-Pad cipher is free from these vulnerabilities, which is 
why it is the cipher of choice against such perceived threats. 
Alas, Vernam key management is very exacting and 
cumbersome, and it is also plagued by a serious 
authentication vulnerability.  It is therefore of some interest 
to use a cipher that shares the mathematical secrecy 
delivered by Vernam, while overcoming its weaknesses.  
Such is the here proposed unary cipher.  It uses the 
fundamental aspect of Vernam -- a very large key, and takes 
it even further -- an even larger key space.  As a result the 
unary cipher exhibits good resilience to re-use of the same 
key (no resilience with Vernam), and it is also immunized to 
the Vernam authentication flaw.  The unary cipher  re-writes 
the plaintext in a unary alphabet,  allows it to be mixed with 
contents-free bits, and then it transposes the resultant 
plaintext. Since it is possible to build the plaintext out of 
contents-free bits only,  then use of the unary cipher 
successfully hides usage pattern.  It is shown that the 
transposed message can be reverse-transposed to every 
plaintext up to a certain size. This plaintext variety is the 
same principle Vernam relies on to deliver its mathematical 
security.  The unary cipher offers a disadvantage in the form 
of a larger ciphertext compared to Vernam, and so its 
practical use will have to be carefully evaluated. 

 

I. INTRODUCTION 

Transposition is arguably the most basic 
cryptographic primitive, it requires no alphabet, and its 
complexity is super-exponential. It lends itself to very 
efficient execution in hardware, which explains its 
popularity in most common cryptographic protocols. 
Herewith we investigate the premise that it may be a 
sufficient operation for purpose of security. We present  
Transposition Encryption Unary Alphabet Method, a cipher 

based on one round of transposition for generating secrecy. 
This  Unary cipher is based on randomized at-will encoding 
of the plaintext so that its transposition will generate any 
desired measure of security.  

A bit string b comprised of t bits, can be encoded in a 
format b* through a string bv comprised of v+1 bits of 
identity "0" where v is the binary value interpretation of b, 
associated with a string br, of r+1 bits of identity "0", where 
r represents the count of leading zeros in b.  

Illustration: let b = 0001011. We write v = 11, r=3, 
and hence:  

b*: {bv, br} = {v+1 "0"s, r+1 "0"} = {000 000 000 000, 0000} 

There is clear bijection between b and b*.  

Let string b1 be so encoded to b*1, and b2 so encoded 
to b*2 only that for b*2, we switch the bit identities from "0" 
to "1". . We write:  

b1 = {v1+1 "0", r1+1 "0"}  
b2 = {v2+1 "1", r2+1 "1"}  

We now express a concatenation between b1, and b2 as 
follows:  

b1||b2 = {bv1||bv2, br1|| br2} 

Illustration: let b1 = 00101 and b2 = 0001000. 
Accordingly v1 = 5, r1 = 2, and v2 = 8, r2 = 3. And thus we 
write:  
b1= {v1+1 "0", r1+1 "0"} = {000 000, 000}  
b2= {v2+1, r2+1} = {111 111 111, 1111}  

b1||b2 = {bv1||bv2, br1|| br2} = {000 000 111 111 111, 000 
1111}  

Since bv2 is comprised of "1"s and br1 is comprised of 
"0"s we can concatenate without confusion:  
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b1||b2 = {bv1||bv2, br1|| br2} = bv1||bv2||br1|| br2 

Similarly for a string B comprised of arbitrary 
number, n, of subsections: B = b1||b2......||bn versus B* = 
b*1||b*2......||b*n. For an even value of i (i=1,2,...n) the bvi 
and bri strings of bi will be written with "1"s while for an 
odd value of i bvi and bri will be written with :"0"s.  

We now write:  

B* = {B*v = bv1||b2v||.....bnv, B*r = br1||b2r||.....bnr} 

Further concatenating the two strings:  

B* = B*v || B*r = bv1||bv2||.....bvn|| br1||br2||.....brn 

In order to mark where the bits of bvn end, and the bits 
of br1 begin, it is necessary that n will be divided by 4 ( n = 
0 MOD 4). We shall see below that this requirement may be 
overcome, using the NULL entity.  

We now define b0 = 'NULL' as the 'NULL' string 
which will be mapped to b*0 with v = 0, and r=0, namely: 
b*0 = {v+1 "0", r+1 "0"} = {0,0} or: b*0 = {v+1 "1", r+1 
"1"} = {1,1} where we agree to switch bit identities for 
adjacent NULLs characters: b0b0 = {0,0}{1,1}, or 
{1,1}{0,0}, no {00}{0,0} {1,1}{1,1} .  

One ready use of the NULL is to allow an arbitrary 
string B to be parceled out to any n number of subsections. 
Adding one, two, or three NULLs anywhere in B will make 
the total number of subsections n' = 0 MOD 4 and will 
insure that the bit identity comprising bvn will be opposite 
the bit identity comprising br1 so there will be no confusion 
as to when bvn ends and br1 begins.  

We can implant NULL characters throughout a bit-
string:  

B = b1 || b2 ||.. || bn = b1 || b2 ||...|| bi || b0 || b0.... || b0 || bi+1 || bi+2... || bn  

and so:  

B* = b*1 || b*2 ||... || b*n = b*1 || b*2 ||.....|| b*i || b*0 || b*0... || b*0 || 
b*i+1 || b*i+2.... || b*n  

We shall regard the above described encoding of an 
arbitrary bit string as Unary-encoding, and the reverse 
process as Unary-decoding.  

Let B*T be an arbitrary transposition of B* using a 
transposition key, KT: B*T = TP ( B*, KT), and let |B*| = 
|B*T| be the bit count of either of these two strings.  

Both B*T, and B* have the same number of '0' bits, 0c, 
and the same number of '1' bits, 1c where 0c + 1c = |B*| = 
|B*T|. Let bit string B' ≠ B be encoded into B'* where 0'c = 
0c, and 1'c = 1c. Accordingly there exists a transposition key 
K't such that B*T = TP(B'*, K't). In other words, anyone with 
possession of B*T without a possession of its generating 
transposition key, Kt will not be able to determine whether 
B or B' were used to generate it. Since B' is arbitrary, this 
means that all the bit strings that can be encoded to a string 
with 0c zeros and 1c ones -- are valid candidates for being 
the string that was transposed to B*T. The larger the class of 
such B' string, the larger the equivocation -- up to perfect 
secrecy as defined by Claude Shannon.  

We shall show now how to encode an arbitrary B' to 
B'* with 0'c = 0c, and 1'c = 1c  

Step 1: parcel B' to m consecutive subsections of 
arbitrary sizes: b'1|| b'2|| ....||.b'm.  

Step 2: Unary-encode B': Read b'1v and b'1r and 
construct b'1 = {v'1 + 1 "0", r'1 + 1 "0"]. Continue 
respectively with b'i for i=1,2,...p where p ≤ m, as follows:  

b'i = {v'i + 1 "Q", r'i + 1 "Q"] 

where 'Q' represent bits of identity '0' for odd i, and 
identity '1' for even i.  

Step 3: Unary-Encode B' to B'*, as above, then count 
the number of '0' bits in B'* (0'c), and the number of '1' bits 
in B'* (1c):  

0'c = Σ v'2i+1 + r'2i+1 + 2 ........ for i=0,1,2,3.... no higher than p/2.  

1'c = Σ v'2i + r'2i + 2 ........ for i=1,2,.... no higher than p/2 .  

If 0'c > 0c, or 1'c > 1c then B' go to "oversize options". 
Otherwise:  

Step 4: compute:  

Δ0 = 0c - 0'c  
Δ1 = 1c - 1'c 

Add Δ0 '0' bits as a header according to the set forth 
"header protocol", and add Δ1 '1' bits as a trailer according 
to the set forth "trailer protocol.". The resultant header and 
trailer wrapped string B'* → B'*w is comprised of 0c bits of 
identity '0' and 1c bits of identity '1', and hence B'*w is a 
permutation of both B* and B*T. Namely, there exists a 
transposition key K't such that:  

B*T = TP ( B'*w, K't) 
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Hence anyone holding B*T without holding Kt cannot 
conclude that B*T was generated from B*, and not from B'*. 
Every bit string sufficiently short will qualify as B' in the 
preceding analysis. This includes B' comprised of a string of 
'NULLS'. In other words the size of B*, |B*|, and its 
Hamming weight, not its content, determines the range of 
candidate strings (B') that all qualify to be the string that 
generates B*T. It is this vastness of this range that 
determines the security of the cipher.  

When we combine this fact with the ability of the The 
cipher user to increase the size of the UNARY- encoded 
version, (B*), of the original string B, at will (using as many 
NULL elements as desired, as well as wrapping the B with 
header and trailer as described ahead), we conclude that a 
transmitter of a message B using the UNARY cipher would 
be able to increase indefinitely the range of plaintext 
candidates that would encrypt to the transmitted ciphertext 
(B*). This is a very strong statement. Which in effect makes 
it unnecessary to use any more algorithmic protection for 
data. Using the UNARY cipher, security is achieved through 
investing in greater computational effort in terms of 
executing transposition of large bits strings and through 
handling and transmitting large ciphertext. This resource 
investment is decided ad hoc by the user, not the cipher 
designer or builder. Such shift of responsibility for the 
security of transmitted data is far reaching.  

OVERSIZE OPTIONS  

In the event that O'c > 0c, or 1'c > 1 c, then one can try 
a different way to parcel out B'. Otherwise, it is possible to 
increase the size of B through adding NULLs or through 
attaching larger headers and trailers. This can be done until 
0c and 1c are high enough, implying that the UNARY 
encoder has full control over the degree of equivocation that 
protects their transmission.  

A. Header/Trailer Wrapping 

The UNARY-encoded bit string B* over bit string B, 
may be wrapped with a leading header, HDR, and a trailing 
trailer TRL: B* → B*w = HDR-B*-TRL.  

The header will be in the form 00.....1. Namely h '0' 
bits followed by '1', where h=1,2,.... open ended.  

The trailer will be in the form 011.. 1. Namely l '1' bits 
following a single '0', where l = 1,2,.... open ended.  

The values of h and l are arbitrary, and determined by 
the encoder.  

As defined, the recipient of the wrapped string B*w 
will readily strip the header and the trailer to recover the 

unwrapped version, B*. To strip the header the recipient 
will remove all the leading zeros and the following '1'. To 
strip the trailer the recipient will remove all the trailing '1' 
and the preceding '0'.  

Wrapping allows the UNARY encoder to add as many 
'0' and '1' bits to the pre-transposed string, in order to pack 
the transposed list with the same number of '1' an '0' bits, or 
any other ratio.  

If headers and trailers are allowed then, at a minimum 
a single 0 added header and a single 1 added trailer will be 
needed to properly interpret the bit string.  

B. Encoding Considerations 

UNARY encoding creates an encoded string B* off a 
pre-encoded bit string B, such that the encoded size (bit 
count) is larger than the pre encoded size. We first examine 
this size-factoring.  

It is readily seen that the smallest increase in size will 
happen for a string comprised of n "0" bits: 00....0. Encoded 
as a single section, it will register v=0, r=n. Hence: B* = { 1 
"Q", (n+1) "Q"} where Q is a bit of either identity "1" or 
identity "0". Since there is only one section we may have 
opposite identities for the v and the r. Alternatively we 
could add a NULL element. and keep both the r bits and the 
v bits of same identity.  

So if B = 000000 then B* = { 0000000, 1} = 
00000001 or B* = B* NULL = 0000000101  

In the first way the size of B* is |B*| = n + 2, and the 
latter way it is |B*| = n + 2 + 2. Namely |B*| ~ |B|.  

The largest expansion happens for a string of n bits of 
identity "1": B =11......1. In the case where the string is 
referred to as a single section we have B* = {2n - 1 "Q", 1 
"Q"}. An exponential expansion: η = |B*|/|B| = 2n/n.  

The actual expansion, η, ranges between these two 
extremes:  

1 < η ≤ 2n 

When an n-"1" bits string B is divided to s subsections 
of equal size then the encoded version, B* counts: |B*| = s * 
2 n/s bits where the size decreases with rising value of s.  

To minimize the value of η for an arbitrary bit string, 
B, comprised of n bits, one should divide it to the maximum 
number of subsections: one-bit size each. We can write:  
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for b=0 we have v=0, r=1, and hence b* = {Q, QQ}  
and for b=1 we have v=1, r=0, and hence b* = {QQ, Q}  

where Q is a bit of either identity 1 or identity 0.  

Accordingly b* is three times the size of b: η = 3  

Analyzing subsections of size 2 bits:  

 
b  v r b*  
- - - - - - -  
00 0 2 Q,QQQ  
01 1 1 QQ,QQ  
10 2 0 QQQ,Q  
11 3 0 QQQQ,Q  

This is average size increase of η = 4.25  

for |b| = 3 the η will range from 5, (for 000, 001, 010, 
011) to 9 (for 111).  

C. Subsection Strategy 

The strategy for parceling the plaintext B to 
subsections is critical in determining the size increase of the 
ciphertext, B* = B*T over the plaintext B. We have seen 
above how large is this range. In practice the subsections 
may be of varying sizes. These size variety may be chosen 
through a randomization process, perhaps between two 
limits (upper and lower per subsection size). By using ad-
hoc randomness the security of the operation vastly 
increases. Yet, it can also be chosen in some deterministic 
way. In fact the very choice of the subsection sizes may be 
used to deliver a secondary hidden message to the intended 
recipient.  

D. Decoy Strategy 

The transmitter of a UNARY message may increase 
security by using a high η value -- a large ciphertext 
compared to the un-encoded plaintext. They can use two 
ready methods to inflate the ciphertext, and add so called 
'decoy bits'. One method is by peppering the message with 
NULL elements. A NULL element does not add anything to 
the message but it requires 2 bits to be expressed. With 
NULLs it is impossible to add at will more 0 bits than 1, or 
at will more 1 bits than 0. The alternative  method is headers 
and trailers where both '1' bits and '0' bits can be added in 
any desires number.  

The following string, E. is empty:  

E = 000000000001010101010101010101010111111  

because it is comprised a header, 10 NULLS, and a 
trailer: HDR NULL NULL NULL NULL NULL NULL 
NULL NULL NULL NULL TRL  

E = 000000000001 01010101010101010101 0111111 

The transmitter may 'hide' a message M in a series of 
empty transmissions E1, E2, .,,:  

E1 E2 ,....... Ei M Ei+1, E i+2 ......, Eq 

By applying sufficient decoys the transmitter may 
protect his message with any desired measure of security.  

E. Comparing Unary to Vernam 
 Both the Unary and the Vernam ciphers offer 

mathematical secrecy to their users. And as such they stand 
in sharp contrast to the large array of ciphers which have 
one attribute in common: their ciphertext commits to their 
generating plaintext. These "committed ciphertexts" are 
shielded by their assumed (not proven) cryptanalytic burden 
of computation, and hence they are all vulnerable to super 
fast computers (e.g. quantum computers) and also 
vulnerable to a mathematician smarter than their designer. 
Both Vernam and the unary cipher are distinguished by not 
sharing this 'committed ciphertext' liability, securing their 
hidden message on proven mathematical grounds. 
 

The NSA defines four security categories, Types I 
to IV, all relying on committed ciphertexts, but for top of 
the line security they reportedly resort to Vernam (e.g. The 
DIANA cipher). Should Vernam users switch to this unary 
cipher? One reason not to switch is the burden of dealing 
with a ciphertext that may be quite larger than the message 
it hides. Yet, this size disadvantage is temporary, applies 
only in the brief period of passing it from transmitter to 
recipient. There is no need to store the large ciphertext file. 
For text transmission in today's 5G era this size issue is a 
very small disadvantage.  

 
On the other hand the unary cipher offers two 

substantial advantages over Vernam: (i) re-use resilience, 
(ii) authentication edge. If the Vernam cipher key is used 
twice, then right away the exposed ciphertexts become 
plaintext-committed, and Vernam loses its edge (as 
happened to the Russians when they stole the US atomic 
secrets). The unary cipher, by contrast, shows inherent 
resilience to such double use. This is because the unary key 
space is larger than the unary message space. Given an n 
bits long plaintext (after converting to the unary 
representation), the respective encryption key space is |K|= 
n!, however, there are only 2n possible n-bits messages, so 
each plaintext is associated with n!/2n keys, which means 
that only if the same key is used n!/2n times will the set of 
ciphertexts commit to their generating plaintext. In other 
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words, the Unary cipher shows much greater resilience to 
repeat use of the same key.  

The other unary advantage is authentication. An attacker 
can send Alice a message, which he would expect her to 
encrypt using Vernam and send the ciphertext to Bob. The 
attacker intercepts the encrypted message, and since he 
knows the respective plaintext, he can extract the key, and 
use it to send Bob a false message. This will not work with 
the unary cipher because of two reasons: (i) there are 
n!/2n indistinguishable keys to choose from, and (ii) Alice 
uses ad-hoc unilateral randomness to break her message to 
subsections, keeping the attacker in the dark.  

In summary, the unary cipher delivers the same 
mathematical secrecy delivered by Vernam, but it comes 
with distinct operational and security advantages. 
 

II. OPERATION 

The transmitter of a UNARY enciphered message 
enjoys a great measure of control over the security of the 
sent message. The transmitter decides how much to pay, 
aware of how much security will be purchased. The price is 
rated with computational burden. Some of this burden may 
be alleviated through hardware, and some through 
communication channels and memory.  

UNARY security is based on a shared transposition 
key and a single transposition round, on encoding variety, 
and on decoy strategy. The larger the transposition list, the 
better the security. This size, depending on implementation, 
may be non pre-shared, namely unilaterally determined by 
the transmitter on account of the desired security. Same for 
the encoding scheme, and the decoy management, which are 
also unilaterally determined and feed on ad-hoc randomness. 
That means the transmitter who is in the best position to 
appreciate the security needs for its transmission, is the right 
agent to determine which encoding scheme to use and the 
degree of decoy defense. This determination may be made 
for each transmission. So that when a single key must be 
used over and over again, it can each time, be used with 
more protection through more elaborate encoding and more 
extensive decoy management. This is an important 
distinction relative to mainstay ciphers where security is 
built in to the published algorithm and is threatened by 
unpublished attack scheme. The UNARY user relies on ad-
hoc high quality randomness in desired quantities. Security 
shifts from the algorithm designer to the message 
transmitter; from well known cipher algorithm to unknown 
on-demand randomness.  

A. Unary Encoded Packaging 
The figure abreast shows how the payload (the 

ciphertext) is wrapped by a header and a trailer. The header 
has 6 elements: (a). message start signal, (b) sender id, time 
of transmission, open fields, (c) encoding data, (d) 
transposition key indicators, (e) payload size, (f) header end 

indicator. The trailer is 
identified with four 
elements: (p) trailer start 
indicator, (q) 
transmission history, (r). 
signature (payload hash 
/ header hash), (u). end 
of trailer indicator.  

 

 

B. Transposition Options 

We consider two methods. One is based on US Patent 
10608814, Equivoe-T, the other on hard-wired TSIC 
(Transposition Specific Integrated Circuits). Equivoe-T 
offers the advantage of having an integer as a key, which 
applies to any size of transposed list. This gives the 
UNARY user the advantage of choosing each time a 
different size of bit string to transpose. TSIC is much faster, 
but it is geared towards a fixed size bit string to be 
transposed. We will focus on the TSIC fixed size option. 

C. Fixed Size Transposition 

The advantage of fixed 
size transposition in hardware 
implementation is that it 
allows for hard wiring of the 
transposition operation to 
allow any permutation of n-
items list to any other 
permutation of the same list. 
The issue here is that this 
transposition is fixed, and 
applies to a fixed size list.  

Size variety can still be 
applied over a range from 
some low threshold L, and high threshold H (bit count). Any 
size value X: L ≤ X ≤ H can be used for the payload, with 
the balance of H-X bits contributed through NULLs or 
through header or trailers, such that the pre-transposition 
size will always be H, which is the hard wired size.  

It can be implemented over a fixed size input and 
output, of n item, where some t fixed transposition wiring 
units are listed in order: T1, T2,.... Tt. These t transposition 
rounds are combined into a single device. The input to the 
combined device includes a designation of which u 
transposition units (among the available t transposition 
operations) are to be applied over the input to generate the 
respective output. This list of u items is the 'secondary 
transposition key', K*t. The first key is expressed in the 
hard-wired t units. This implies that a group can share the 
hard-wired device with t transposition units, but bilateral 



 

 6 

confidential communication within the group will be carried 
out via a secret shared secondary transposition key, which 
has a key space of 2t.  

Every processing round in the device may involve a 
randomized selection of the next K*t key, to be used in the 
next processing round in the device (the next application of 
the TSIC). Say the first payload P1 is comprised of the first 
message M1, and the secondary transposition key to be used 
for the next message: K*t1: P1 = M1 - K*t2. P1 will be 
transposed with the pre agreed first transposition key, K*1:  

P1
T = TP ( [M1-K*t2], K*t1) 

and then:  

P2
T = TP ( [M2-K*t3], K*t2) 

and so on for i=1,2,...  

Pi
T = TP ( [Mi-K*ti+1], K*ti) 

There are 2t combinations to select active units among 
the available t, so the key space for the secondary key is: 
|K*t| = 2t.  

The transposition can be hard wired to operate on 
individual bits or on sub-strings of bits of equal size.  

The device input string S0 will enter the first hard 
wired transposition unit, T1, and come out transposed, S1. 
This output string, S1, will then encounter a decision node. 
If T2 is listed in K*t as a unit to be activated then S1 will be 
fed into T2 for another round of transposition. If T2 is not 
listed in K*t then S1 will by pass the 2nd transposition unit 
and be routed to a similar decision before node T3. Every 
transposition unit will be preceded by a routing decision 
junction based on the value of K*t.  

The device will be built to allow for reverse 
transposition by simply reversing the input/output ports, 
using the same K*t.  

TSIC may feature, say, n=106 register bits, and t=1000 
transposition units, which will allow this device to be used 
in 21000 different ways: |K*t| = 21000 = 1.07 * 10301. 

D. Latchable UNARY cipher 

The transposition operation is the security hub of the 
UNARY operation. One may then implement it in a 
latchable device, to be bio-activated, and be latchable to a 
computer to provide specifically transposition and reverse 
transposition services only.  

E. Decryption 

The recipient of the ciphertext (the transposed 
encoded message, B*T), will first reverse-transpose it, then 
decode it to extract the original message:  

B*T → B* → B 
 

F. UNARY hash 

Any bit string can be parceled out to substrings, such 
that each substring is comprised only of same identity bits. 
And if the number of such substrings divides by 4 then this 
string can be interpreted as UNARY-encoded off a smaller 
string. If the total number of such substrings does not divide 
by four then one could concatenate to it Q, QQ, or QQQ as 
required: " where Q is a bit of identity opposite the identity 
of the last bit in the string to which it is concatenated (or a 
similar solution). Hence if a string B is comprised of 37 
strings and the last string is 111, then QQQ is needed to 
make the count of subsections divide by 4, namely QQQ = 
010. This arbitrary string comprised of 4k same identity 
substrings (k=1,2,...) can be compressed to its UNARY-
decoded version. The compressed encoding can be further 
compressed iteratively. This 'decoding' process is not 
reversible because the corresponding encoding involves an 
arbitrary division of the decoded string to substrings.  

Let B0 be the original string, of size |B0|l bits. It can be 
compresses (as stated above, in a lossy way) to B1, which in 
turn can be compressed (decoded) to B2, and so on, string Bi 
may be compressed to string Bi+1 . This process may 
continue until a terminal string Bt comprised on NULLs. 
Unlike the typical hashing procedures, the UNARY hash 
does not end at a preset size, but it can be continued until the 
hash equals or is less than a threshold size. The resultant 
hash may be applied like the more common hash 
procedures.  

We designate dB as the UNARY-decoded version of 
string B. And so we can write: Bi = dBi-1 = djBi-j = diB0.  

Illustration: Let B0 = 11100110010001. B0 is 
comprised of 7 same-bit-identity strings: 111 00 11 00 1 000 
1. We need therefore to concatenate it with Q=0:  

B'0 = 111 00 11 00 1 000 1 0 

So dB' = b1 || b2 || b3 || b4, where:  

 
b1 = (v1 = 2, r1 = 0) = 10  
b2 = (v2 = 1, r2 = 2) = 001  
b3 = (v3 = 1, r3 = 0) = 1  
b4 = (v4 = 1, r4 = 0) = 1  
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Thus: 

dB' = b1 || b2 || b3 || b4 = 10 001 1 1 

The original string is comprised of 14 bits, and the 
decoded one is comprised of 7 bits.  

Decoding again: dB' = 1 000 111 is comprised of 3 
same-bit-identity subsections, so Q=0 will have to be added 
to create a number of subsections that divides by 4:  

d(dB')' = d(1 000 111 0) = b1 || b2 

 
b1 = (v1 = 0, r1 = 2) = 00  
b2 = (v2 = 2, r2 = 0) = 10  

And hence:  

d(dB')' = d(1 000 111 0) = b1 || b2 = 0010 

To continue we need to add '1', and end up with a 
string with four subsections  

d(d(dB')')' = d(00 1 0 1) = b1 || b2 

 
b1 = (v1 = 1, r1 = 0) = 1  
b2 = (v2 = 0, r2 = 0) = NULL  

and hence:  

d(d(dB')')' = d(00 1 0 1) = b1 || b2 = 1 

To continue, we must add QQQ = 010  

d(d(d(dB')')')''' = d(1010) = b1 || b2 

 
b1 = (v1 = 0, r1 = 0) = NULL  
b2 = (v2 = 0, r2 = 0) = NULL  

 

G. Transposed HASH 

Any string in the series B0, B1, .... may be transposed 
before it is decoded. When these transpositions are carried 
out with a secret key, they create a secret hash.  

We write: Bi = H(Bi-1, Kt) = HBi-1 for i=1,2,.. 

 

H. Implementation 

The Unary cipher can be used generically wherever 
symmetric encryption is used. But it would be prominent for 
applications based on a latchable gadget fitted into a 
computer, and holding the TSIC chip. A similar chip will be 
useful for medical devices that are body implanted and are 
fine-tuned remotely. It is important to insure that these 
devices will not be mal-controlled. Alas, same devices use 
tiny battery and can't spare the energy to compute AES or 
alike.  

I. UNARY Security 

While common ciphertexts commit to their generating 
plaintext, and given enough cryptanalysis will yield their 
secret, a UNARY cipher will challenge its attacker with 
irreducible equivocation, the extent of which is determined 
by its user. This is a strong security statement.  

CONTEXTUAL MATHEMATICAL SECRECY 

Contextually an 
adversary aware of the fact 
that his opponent sent a 
ciphertext c of size |c| at a 
given moment of time, will be 
able to list some t candidates 
for the identity of the message 
encrypted into c: M = {m1, 
m2,.... mt}. The adversary, 
again contextually, will 
appraise a probability pi for 
message mi (i=1,2,...t) to be the one encrypted into c, where 
P = {p1, p2, .... pt}. We now define Contextual Mathematical 
Secrecy as the case where knowledge of the content of c 
(not just its size) does not change the probability distribution 
over M: P|c| = Pc.  

We propose to assume that the transmitter of a secret 
message m* ∈ M will share the adversary's list, M (although 
not the probability distribution P), and hence will be able to 
encrypt m* inflated enough (with NULLs, a header and a 
trailer) to insure that all members mi ∈ M will be associated 
with an equally likely reverse-transposition key ki that will 
decrypt c to mi. Thereby the transmitter unilaterally -- 
without pre coordination with the recipient -- will insure 

contextual   mathematical secrecy for their transmission. 

We have seen that given a plaintext P, the transmitter 
thereto will be able to render an arbitrary different plaintext, 
P' ≠ P to be an equally likely candidate for the generating 
plaintext. To do so, the transmitter may have to inflate the 
number of transposable zeros (0c) and the number of 
transposable 1 bits (1c) to a sufficient level. From a practical 
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point of view this feature is equivalent to mathematical 
secrecy as defined by Claude Shannon.  

UNARY cipher equivocation security may be 
extended to repeat use of the same transposition key. Let a 
transmitter use the same transposition key, Kt, over q 
plaintext messages P1, P2, ..... Pq. For each transmission i ( 
i=1,2,...q) let an attacker have a list Li of plausible plaintexts 
for that transmission, where this list is compiled before the 
respective ciphertext is released. So a-priori the number of 
possible sets of q messages is: EQV = π |Li|. Since the 
transmitter can inflate the size of the pre-transposed string to 
any desired size, they can assure that given the q released 
ciphertext, there are likely to remain some desired number s, 
of transposition keys that will reduce the equivocation lists 
L1, L2, .... Lq to L'1, L'2,.....Lq, respectively where while for 
every i=l,2,...q there exists L'i < Li, the residual equivocation 
EQV'(s) = π |L'i| will be above a preset security threshold, S: 
EQV'(s) < S. In practice this implies that the user can 
control the security projection of their transmitted data. 

J. Outlook 

In the post-Coronavirus universe we expect to 
experience a proliferation of work-from-home practice. 
Bankers and confidential workers of all sorts will find it 
necessary to routinely communicate highly confidential data 
among distributed locations. This will pose new challenges 
before cyber technology. Security responsibility will have to 
shift to the transmitters of sensitive information. Not only 
content, but pattern will have to be concealed to enable the 
emerging, lasting work configurations. The new wave of 
Trans Vernam ciphers is well prepared to meet that 
challenge, and the UNARY cipher fits right in. 
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