

 1

A Unary Cipher with Advantages over the Vernam Cipher
 VERNAM IS SHORTER BUT THE UNARY HIDES PATTERN OF USAGE

Gideon Samid

Gideon@BitMint.com

Keywords: Vernam cipher, unary encoding, transposition, mathematical secrecy, trans-Vernam ciphers.

Regular Research Paper

Abstract: All mainstay ciphers share an
underemphasized vulnerability: their ciphertext commits to
its generating plaintext. This means that fast enough
computers will cryptanalyze them, and so will an attacker
smarter than their designers. By contrast, the Vernam One-
Time-Pad cipher is free from these vulnerabilities, which is
why it is the cipher of choice against such perceived threats.
Alas, Vernam key management is very exacting and
cumbersome, and it is also plagued by a serious
authentication vulnerability. It is therefore of some interest
to use a cipher that shares the mathematical secrecy
delivered by Vernam, while overcoming its weaknesses.
Such is the here proposed unary cipher. It uses the
fundamental aspect of Vernam -- a very large key, and takes
it even further -- an even larger key space. As a result the
unary cipher exhibits good resilience to re-use of the same
key (no resilience with Vernam), and it is also immunized to
the Vernam authentication flaw. The unary cipher re-writes
the plaintext in a unary alphabet, allows it to be mixed with
contents-free bits, and then it transposes the resultant
plaintext. Since it is possible to build the plaintext out of
contents-free bits only, then use of the unary cipher
successfully hides usage pattern. It is shown that the
transposed message can be reverse-transposed to every
plaintext up to a certain size. This plaintext variety is the
same principle Vernam relies on to deliver its mathematical
security. The unary cipher offers a disadvantage in the form
of a larger ciphertext compared to Vernam, and so its
practical use will have to be carefully evaluated.

I. INTRODUCTION

Transposition is arguably the most basic
cryptographic primitive, it requires no alphabet, and its
complexity is super-exponential. It lends itself to very
efficient execution in hardware, which explains its
popularity in most common cryptographic protocols.
Herewith we investigate the premise that it may be a
sufficient operation for purpose of security. We present
Transposition Encryption Unary Alphabet Method, a cipher

based on one round of transposition for generating secrecy.
This Unary cipher is based on randomized at-will encoding
of the plaintext so that its transposition will generate any
desired measure of security.

A bit string b comprised of t bits, can be encoded in a
format b* through a string bv comprised of v+1 bits of
identity "0" where v is the binary value interpretation of b,
associated with a string br, of r+1 bits of identity "0", where
r represents the count of leading zeros in b.

Illustration: let b = 0001011. We write v = 11, r=3,
and hence:

b*: {bv, br} = {v+1 "0"s, r+1 "0"} = {000 000 000 000, 0000}

There is clear bijection between b and b*.

Let string b1 be so encoded to b*1, and b2 so encoded
to b*2 only that for b*2, we switch the bit identities from "0"
to "1". . We write:

b1 = {v1+1 "0", r1+1 "0"}
b2 = {v2+1 "1", r2+1 "1"}

We now express a concatenation between b1, and b2 as
follows:

b1||b2 = {bv1||bv2, br1|| br2}

Illustration: let b1 = 00101 and b2 = 0001000.
Accordingly v1 = 5, r1 = 2, and v2 = 8, r2 = 3. And thus we
write:
b1= {v1+1 "0", r1+1 "0"} = {000 000, 000}
b2= {v2+1, r2+1} = {111 111 111, 1111}

b1||b2 = {bv1||bv2, br1|| br2} = {000 000 111 111 111, 000
1111}

Since bv2 is comprised of "1"s and br1 is comprised of
"0"s we can concatenate without confusion:

 2

b1||b2 = {bv1||bv2, br1|| br2} = bv1||bv2||br1|| br2

Similarly for a string B comprised of arbitrary
number, n, of subsections: B = b1||b2......||bn versus B* =
b*1||b*2......||b*n. For an even value of i (i=1,2,...n) the bvi
and bri strings of bi will be written with "1"s while for an
odd value of i bvi and bri will be written with :"0"s.

We now write:

B* = {B*v = bv1||b2v||.....bnv, B*r = br1||b2r||.....bnr}

Further concatenating the two strings:

B* = B*v || B*r = bv1||bv2||.....bvn|| br1||br2||.....brn

In order to mark where the bits of bvn end, and the bits
of br1 begin, it is necessary that n will be divided by 4 (n =
0 MOD 4). We shall see below that this requirement may be
overcome, using the NULL entity.

We now define b0 = 'NULL' as the 'NULL' string
which will be mapped to b*0 with v = 0, and r=0, namely:
b*0 = {v+1 "0", r+1 "0"} = {0,0} or: b*0 = {v+1 "1", r+1
"1"} = {1,1} where we agree to switch bit identities for
adjacent NULLs characters: b0b0 = {0,0}{1,1}, or
{1,1}{0,0}, no {00}{0,0} {1,1}{1,1} .

One ready use of the NULL is to allow an arbitrary
string B to be parceled out to any n number of subsections.
Adding one, two, or three NULLs anywhere in B will make
the total number of subsections n' = 0 MOD 4 and will
insure that the bit identity comprising bvn will be opposite
the bit identity comprising br1 so there will be no confusion
as to when bvn ends and br1 begins.

We can implant NULL characters throughout a bit-
string:

B = b1 || b2 ||.. || bn = b1 || b2 ||...|| bi || b0 || b0.... || b0 || bi+1 || bi+2... || bn

and so:

B* = b*1 || b*2 ||... || b*n = b*1 || b*2 ||.....|| b*i || b*0 || b*0... || b*0 ||
b*i+1 || b*i+2.... || b*n

We shall regard the above described encoding of an
arbitrary bit string as Unary-encoding, and the reverse
process as Unary-decoding.

Let B*T be an arbitrary transposition of B* using a
transposition key, KT: B*T = TP (B*, KT), and let |B*| =
|B*T| be the bit count of either of these two strings.

Both B*T, and B* have the same number of '0' bits, 0c,
and the same number of '1' bits, 1c where 0c + 1c = |B*| =
|B*T|. Let bit string B' ≠ B be encoded into B'* where 0'c =
0c, and 1'c = 1c. Accordingly there exists a transposition key
K't such that B*T = TP(B'*, K't). In other words, anyone with
possession of B*T without a possession of its generating
transposition key, Kt will not be able to determine whether
B or B' were used to generate it. Since B' is arbitrary, this
means that all the bit strings that can be encoded to a string
with 0c zeros and 1c ones -- are valid candidates for being
the string that was transposed to B*T. The larger the class of
such B' string, the larger the equivocation -- up to perfect
secrecy as defined by Claude Shannon.

We shall show now how to encode an arbitrary B' to
B'* with 0'c = 0c, and 1'c = 1c

Step 1: parcel B' to m consecutive subsections of
arbitrary sizes: b'1|| b'2||||.b'm.

Step 2: Unary-encode B': Read b'1v and b'1r and
construct b'1 = {v'1 + 1 "0", r'1 + 1 "0"]. Continue
respectively with b'i for i=1,2,...p where p ≤ m, as follows:

b'i = {v'i + 1 "Q", r'i + 1 "Q"]

where 'Q' represent bits of identity '0' for odd i, and
identity '1' for even i.

Step 3: Unary-Encode B' to B'*, as above, then count
the number of '0' bits in B'* (0'c), and the number of '1' bits
in B'* (1c):

0'c = Σ v'2i+1 + r'2i+1 + 2 for i=0,1,2,3.... no higher than p/2.

1'c = Σ v'2i + r'2i + 2 for i=1,2,.... no higher than p/2 .

If 0'c > 0c, or 1'c > 1c then B' go to "oversize options".
Otherwise:

Step 4: compute:

Δ0 = 0c - 0'c
Δ1 = 1c - 1'c

Add Δ0 '0' bits as a header according to the set forth
"header protocol", and add Δ1 '1' bits as a trailer according
to the set forth "trailer protocol.". The resultant header and
trailer wrapped string B'* → B'*w is comprised of 0c bits of
identity '0' and 1c bits of identity '1', and hence B'*w is a
permutation of both B* and B*T. Namely, there exists a
transposition key K't such that:

B*T = TP (B'*w, K't)

 3

Hence anyone holding B*T without holding Kt cannot
conclude that B*T was generated from B*, and not from B'*.
Every bit string sufficiently short will qualify as B' in the
preceding analysis. This includes B' comprised of a string of
'NULLS'. In other words the size of B*, |B*|, and its
Hamming weight, not its content, determines the range of
candidate strings (B') that all qualify to be the string that
generates B*T. It is this vastness of this range that
determines the security of the cipher.

When we combine this fact with the ability of the The
cipher user to increase the size of the UNARY- encoded
version, (B*), of the original string B, at will (using as many
NULL elements as desired, as well as wrapping the B with
header and trailer as described ahead), we conclude that a
transmitter of a message B using the UNARY cipher would
be able to increase indefinitely the range of plaintext
candidates that would encrypt to the transmitted ciphertext
(B*). This is a very strong statement. Which in effect makes
it unnecessary to use any more algorithmic protection for
data. Using the UNARY cipher, security is achieved through
investing in greater computational effort in terms of
executing transposition of large bits strings and through
handling and transmitting large ciphertext. This resource
investment is decided ad hoc by the user, not the cipher
designer or builder. Such shift of responsibility for the
security of transmitted data is far reaching.

OVERSIZE OPTIONS

In the event that O'c > 0c, or 1'c > 1 c, then one can try
a different way to parcel out B'. Otherwise, it is possible to
increase the size of B through adding NULLs or through
attaching larger headers and trailers. This can be done until
0c and 1c are high enough, implying that the UNARY
encoder has full control over the degree of equivocation that
protects their transmission.

A. Header/Trailer Wrapping

The UNARY-encoded bit string B* over bit string B,
may be wrapped with a leading header, HDR, and a trailing
trailer TRL: B* → B*w = HDR-B*-TRL.

The header will be in the form 00.....1. Namely h '0'
bits followed by '1', where h=1,2,.... open ended.

The trailer will be in the form 011.. 1. Namely l '1' bits
following a single '0', where l = 1,2,.... open ended.

The values of h and l are arbitrary, and determined by
the encoder.

As defined, the recipient of the wrapped string B*w
will readily strip the header and the trailer to recover the

unwrapped version, B*. To strip the header the recipient
will remove all the leading zeros and the following '1'. To
strip the trailer the recipient will remove all the trailing '1'
and the preceding '0'.

Wrapping allows the UNARY encoder to add as many
'0' and '1' bits to the pre-transposed string, in order to pack
the transposed list with the same number of '1' an '0' bits, or
any other ratio.

If headers and trailers are allowed then, at a minimum
a single 0 added header and a single 1 added trailer will be
needed to properly interpret the bit string.

B. Encoding Considerations

UNARY encoding creates an encoded string B* off a
pre-encoded bit string B, such that the encoded size (bit
count) is larger than the pre encoded size. We first examine
this size-factoring.

It is readily seen that the smallest increase in size will
happen for a string comprised of n "0" bits: 00....0. Encoded
as a single section, it will register v=0, r=n. Hence: B* = { 1
"Q", (n+1) "Q"} where Q is a bit of either identity "1" or
identity "0". Since there is only one section we may have
opposite identities for the v and the r. Alternatively we
could add a NULL element. and keep both the r bits and the
v bits of same identity.

So if B = 000000 then B* = { 0000000, 1} =
00000001 or B* = B* NULL = 0000000101

In the first way the size of B* is |B*| = n + 2, and the
latter way it is |B*| = n + 2 + 2. Namely |B*| ~ |B|.

The largest expansion happens for a string of n bits of
identity "1": B =11......1. In the case where the string is
referred to as a single section we have B* = {2n - 1 "Q", 1
"Q"}. An exponential expansion: η = |B*|/|B| = 2n/n.

The actual expansion, η, ranges between these two
extremes:

1 < η ≤ 2n

When an n-"1" bits string B is divided to s subsections
of equal size then the encoded version, B* counts: |B*| = s *
2 n/s bits where the size decreases with rising value of s.

To minimize the value of η for an arbitrary bit string,
B, comprised of n bits, one should divide it to the maximum
number of subsections: one-bit size each. We can write:

 4

for b=0 we have v=0, r=1, and hence b* = {Q, QQ}
and for b=1 we have v=1, r=0, and hence b* = {QQ, Q}

where Q is a bit of either identity 1 or identity 0.

Accordingly b* is three times the size of b: η = 3

Analyzing subsections of size 2 bits:

b v r b*
- - - - - - -
00 0 2 Q,QQQ
01 1 1 QQ,QQ
10 2 0 QQQ,Q
11 3 0 QQQQ,Q

This is average size increase of η = 4.25

for |b| = 3 the η will range from 5, (for 000, 001, 010,
011) to 9 (for 111).

C. Subsection Strategy

The strategy for parceling the plaintext B to
subsections is critical in determining the size increase of the
ciphertext, B* = B*T over the plaintext B. We have seen
above how large is this range. In practice the subsections
may be of varying sizes. These size variety may be chosen
through a randomization process, perhaps between two
limits (upper and lower per subsection size). By using ad-
hoc randomness the security of the operation vastly
increases. Yet, it can also be chosen in some deterministic
way. In fact the very choice of the subsection sizes may be
used to deliver a secondary hidden message to the intended
recipient.

D. Decoy Strategy

The transmitter of a UNARY message may increase
security by using a high η value -- a large ciphertext
compared to the un-encoded plaintext. They can use two
ready methods to inflate the ciphertext, and add so called
'decoy bits'. One method is by peppering the message with
NULL elements. A NULL element does not add anything to
the message but it requires 2 bits to be expressed. With
NULLs it is impossible to add at will more 0 bits than 1, or
at will more 1 bits than 0. The alternative method is headers
and trailers where both '1' bits and '0' bits can be added in
any desires number.

The following string, E. is empty:

E = 000000000001010101010101010101010111111

because it is comprised a header, 10 NULLS, and a
trailer: HDR NULL NULL NULL NULL NULL NULL
NULL NULL NULL NULL TRL

E = 000000000001 01010101010101010101 0111111

The transmitter may 'hide' a message M in a series of
empty transmissions E1, E2, .,,:

E1 E2 ,....... Ei M Ei+1, E i+2, Eq

By applying sufficient decoys the transmitter may
protect his message with any desired measure of security.

E. Comparing Unary to Vernam
 Both the Unary and the Vernam ciphers offer

mathematical secrecy to their users. And as such they stand
in sharp contrast to the large array of ciphers which have
one attribute in common: their ciphertext commits to their
generating plaintext. These "committed ciphertexts" are
shielded by their assumed (not proven) cryptanalytic burden
of computation, and hence they are all vulnerable to super
fast computers (e.g. quantum computers) and also
vulnerable to a mathematician smarter than their designer.
Both Vernam and the unary cipher are distinguished by not
sharing this 'committed ciphertext' liability, securing their
hidden message on proven mathematical grounds.

The NSA defines four security categories, Types I
to IV, all relying on committed ciphertexts, but for top of
the line security they reportedly resort to Vernam (e.g. The
DIANA cipher). Should Vernam users switch to this unary
cipher? One reason not to switch is the burden of dealing
with a ciphertext that may be quite larger than the message
it hides. Yet, this size disadvantage is temporary, applies
only in the brief period of passing it from transmitter to
recipient. There is no need to store the large ciphertext file.
For text transmission in today's 5G era this size issue is a
very small disadvantage.

On the other hand the unary cipher offers two

substantial advantages over Vernam: (i) re-use resilience,
(ii) authentication edge. If the Vernam cipher key is used
twice, then right away the exposed ciphertexts become
plaintext-committed, and Vernam loses its edge (as
happened to the Russians when they stole the US atomic
secrets). The unary cipher, by contrast, shows inherent
resilience to such double use. This is because the unary key
space is larger than the unary message space. Given an n
bits long plaintext (after converting to the unary
representation), the respective encryption key space is |K|=
n!, however, there are only 2n possible n-bits messages, so
each plaintext is associated with n!/2n keys, which means
that only if the same key is used n!/2n times will the set of
ciphertexts commit to their generating plaintext. In other

 5

words, the Unary cipher shows much greater resilience to
repeat use of the same key.

The other unary advantage is authentication. An attacker
can send Alice a message, which he would expect her to
encrypt using Vernam and send the ciphertext to Bob. The
attacker intercepts the encrypted message, and since he
knows the respective plaintext, he can extract the key, and
use it to send Bob a false message. This will not work with
the unary cipher because of two reasons: (i) there are
n!/2n indistinguishable keys to choose from, and (ii) Alice
uses ad-hoc unilateral randomness to break her message to
subsections, keeping the attacker in the dark.

In summary, the unary cipher delivers the same
mathematical secrecy delivered by Vernam, but it comes
with distinct operational and security advantages.

II. OPERATION

The transmitter of a UNARY enciphered message
enjoys a great measure of control over the security of the
sent message. The transmitter decides how much to pay,
aware of how much security will be purchased. The price is
rated with computational burden. Some of this burden may
be alleviated through hardware, and some through
communication channels and memory.

UNARY security is based on a shared transposition
key and a single transposition round, on encoding variety,
and on decoy strategy. The larger the transposition list, the
better the security. This size, depending on implementation,
may be non pre-shared, namely unilaterally determined by
the transmitter on account of the desired security. Same for
the encoding scheme, and the decoy management, which are
also unilaterally determined and feed on ad-hoc randomness.
That means the transmitter who is in the best position to
appreciate the security needs for its transmission, is the right
agent to determine which encoding scheme to use and the
degree of decoy defense. This determination may be made
for each transmission. So that when a single key must be
used over and over again, it can each time, be used with
more protection through more elaborate encoding and more
extensive decoy management. This is an important
distinction relative to mainstay ciphers where security is
built in to the published algorithm and is threatened by
unpublished attack scheme. The UNARY user relies on ad-
hoc high quality randomness in desired quantities. Security
shifts from the algorithm designer to the message
transmitter; from well known cipher algorithm to unknown
on-demand randomness.

A. Unary Encoded Packaging
The figure abreast shows how the payload (the

ciphertext) is wrapped by a header and a trailer. The header
has 6 elements: (a). message start signal, (b) sender id, time
of transmission, open fields, (c) encoding data, (d)
transposition key indicators, (e) payload size, (f) header end

indicator. The trailer is
identified with four
elements: (p) trailer start
indicator, (q)
transmission history, (r).
signature (payload hash
/ header hash), (u). end
of trailer indicator.

B. Transposition Options

We consider two methods. One is based on US Patent
10608814, Equivoe-T, the other on hard-wired TSIC
(Transposition Specific Integrated Circuits). Equivoe-T
offers the advantage of having an integer as a key, which
applies to any size of transposed list. This gives the
UNARY user the advantage of choosing each time a
different size of bit string to transpose. TSIC is much faster,
but it is geared towards a fixed size bit string to be
transposed. We will focus on the TSIC fixed size option.

C. Fixed Size Transposition

The advantage of fixed
size transposition in hardware
implementation is that it
allows for hard wiring of the
transposition operation to
allow any permutation of n-
items list to any other
permutation of the same list.
The issue here is that this
transposition is fixed, and
applies to a fixed size list.

Size variety can still be
applied over a range from
some low threshold L, and high threshold H (bit count). Any
size value X: L ≤ X ≤ H can be used for the payload, with
the balance of H-X bits contributed through NULLs or
through header or trailers, such that the pre-transposition
size will always be H, which is the hard wired size.

It can be implemented over a fixed size input and
output, of n item, where some t fixed transposition wiring
units are listed in order: T1, T2,.... Tt. These t transposition
rounds are combined into a single device. The input to the
combined device includes a designation of which u
transposition units (among the available t transposition
operations) are to be applied over the input to generate the
respective output. This list of u items is the 'secondary
transposition key', K*t. The first key is expressed in the
hard-wired t units. This implies that a group can share the
hard-wired device with t transposition units, but bilateral

 6

confidential communication within the group will be carried
out via a secret shared secondary transposition key, which
has a key space of 2t.

Every processing round in the device may involve a
randomized selection of the next K*t key, to be used in the
next processing round in the device (the next application of
the TSIC). Say the first payload P1 is comprised of the first
message M1, and the secondary transposition key to be used
for the next message: K*t1: P1 = M1 - K*t2. P1 will be
transposed with the pre agreed first transposition key, K*1:

P1
T = TP ([M1-K*t2], K*t1)

and then:

P2
T = TP ([M2-K*t3], K*t2)

and so on for i=1,2,...

Pi
T = TP ([Mi-K*ti+1], K*ti)

There are 2t combinations to select active units among
the available t, so the key space for the secondary key is:
|K*t| = 2t.

The transposition can be hard wired to operate on
individual bits or on sub-strings of bits of equal size.

The device input string S0 will enter the first hard
wired transposition unit, T1, and come out transposed, S1.
This output string, S1, will then encounter a decision node.
If T2 is listed in K*t as a unit to be activated then S1 will be
fed into T2 for another round of transposition. If T2 is not
listed in K*t then S1 will by pass the 2nd transposition unit
and be routed to a similar decision before node T3. Every
transposition unit will be preceded by a routing decision
junction based on the value of K*t.

The device will be built to allow for reverse
transposition by simply reversing the input/output ports,
using the same K*t.

TSIC may feature, say, n=106 register bits, and t=1000
transposition units, which will allow this device to be used
in 21000 different ways: |K*t| = 21000 = 1.07 * 10301.

D. Latchable UNARY cipher

The transposition operation is the security hub of the
UNARY operation. One may then implement it in a
latchable device, to be bio-activated, and be latchable to a
computer to provide specifically transposition and reverse
transposition services only.

E. Decryption

The recipient of the ciphertext (the transposed
encoded message, B*T), will first reverse-transpose it, then
decode it to extract the original message:

B*T → B* → B

F. UNARY hash

Any bit string can be parceled out to substrings, such
that each substring is comprised only of same identity bits.
And if the number of such substrings divides by 4 then this
string can be interpreted as UNARY-encoded off a smaller
string. If the total number of such substrings does not divide
by four then one could concatenate to it Q, QQ, or QQQ as
required: " where Q is a bit of identity opposite the identity
of the last bit in the string to which it is concatenated (or a
similar solution). Hence if a string B is comprised of 37
strings and the last string is 111, then QQQ is needed to
make the count of subsections divide by 4, namely QQQ =
010. This arbitrary string comprised of 4k same identity
substrings (k=1,2,...) can be compressed to its UNARY-
decoded version. The compressed encoding can be further
compressed iteratively. This 'decoding' process is not
reversible because the corresponding encoding involves an
arbitrary division of the decoded string to substrings.

Let B0 be the original string, of size |B0|l bits. It can be
compresses (as stated above, in a lossy way) to B1, which in
turn can be compressed (decoded) to B2, and so on, string Bi
may be compressed to string Bi+1 . This process may
continue until a terminal string Bt comprised on NULLs.
Unlike the typical hashing procedures, the UNARY hash
does not end at a preset size, but it can be continued until the
hash equals or is less than a threshold size. The resultant
hash may be applied like the more common hash
procedures.

We designate dB as the UNARY-decoded version of
string B. And so we can write: Bi = dBi-1 = djBi-j = diB0.

Illustration: Let B0 = 11100110010001. B0 is
comprised of 7 same-bit-identity strings: 111 00 11 00 1 000
1. We need therefore to concatenate it with Q=0:

B'0 = 111 00 11 00 1 000 1 0

So dB' = b1 || b2 || b3 || b4, where:

b1 = (v1 = 2, r1 = 0) = 10
b2 = (v2 = 1, r2 = 2) = 001
b3 = (v3 = 1, r3 = 0) = 1
b4 = (v4 = 1, r4 = 0) = 1

 7

Thus:

dB' = b1 || b2 || b3 || b4 = 10 001 1 1

The original string is comprised of 14 bits, and the
decoded one is comprised of 7 bits.

Decoding again: dB' = 1 000 111 is comprised of 3
same-bit-identity subsections, so Q=0 will have to be added
to create a number of subsections that divides by 4:

d(dB')' = d(1 000 111 0) = b1 || b2

b1 = (v1 = 0, r1 = 2) = 00
b2 = (v2 = 2, r2 = 0) = 10

And hence:

d(dB')' = d(1 000 111 0) = b1 || b2 = 0010

To continue we need to add '1', and end up with a
string with four subsections

d(d(dB')')' = d(00 1 0 1) = b1 || b2

b1 = (v1 = 1, r1 = 0) = 1
b2 = (v2 = 0, r2 = 0) = NULL

and hence:

d(d(dB')')' = d(00 1 0 1) = b1 || b2 = 1

To continue, we must add QQQ = 010

d(d(d(dB')')')''' = d(1010) = b1 || b2

b1 = (v1 = 0, r1 = 0) = NULL
b2 = (v2 = 0, r2 = 0) = NULL

G. Transposed HASH

Any string in the series B0, B1, may be transposed
before it is decoded. When these transpositions are carried
out with a secret key, they create a secret hash.

We write: Bi = H(Bi-1, Kt) = HBi-1 for i=1,2,..

H. Implementation

The Unary cipher can be used generically wherever
symmetric encryption is used. But it would be prominent for
applications based on a latchable gadget fitted into a
computer, and holding the TSIC chip. A similar chip will be
useful for medical devices that are body implanted and are
fine-tuned remotely. It is important to insure that these
devices will not be mal-controlled. Alas, same devices use
tiny battery and can't spare the energy to compute AES or
alike.

I. UNARY Security

While common ciphertexts commit to their generating
plaintext, and given enough cryptanalysis will yield their
secret, a UNARY cipher will challenge its attacker with
irreducible equivocation, the extent of which is determined
by its user. This is a strong security statement.

CONTEXTUAL MATHEMATICAL SECRECY

Contextually an
adversary aware of the fact
that his opponent sent a
ciphertext c of size |c| at a
given moment of time, will be
able to list some t candidates
for the identity of the message
encrypted into c: M = {m1,
m2,.... mt}. The adversary,
again contextually, will
appraise a probability pi for
message mi (i=1,2,...t) to be the one encrypted into c, where
P = {p1, p2, pt}. We now define Contextual Mathematical
Secrecy as the case where knowledge of the content of c
(not just its size) does not change the probability distribution
over M: P|c| = Pc.

We propose to assume that the transmitter of a secret
message m* ∈ M will share the adversary's list, M (although
not the probability distribution P), and hence will be able to
encrypt m* inflated enough (with NULLs, a header and a
trailer) to insure that all members mi ∈ M will be associated
with an equally likely reverse-transposition key ki that will
decrypt c to mi. Thereby the transmitter unilaterally --
without pre coordination with the recipient -- will insure

contextual mathematical secrecy for their transmission.

We have seen that given a plaintext P, the transmitter
thereto will be able to render an arbitrary different plaintext,
P' ≠ P to be an equally likely candidate for the generating
plaintext. To do so, the transmitter may have to inflate the
number of transposable zeros (0c) and the number of
transposable 1 bits (1c) to a sufficient level. From a practical

 8

point of view this feature is equivalent to mathematical
secrecy as defined by Claude Shannon.

UNARY cipher equivocation security may be
extended to repeat use of the same transposition key. Let a
transmitter use the same transposition key, Kt, over q
plaintext messages P1, P2, Pq. For each transmission i (
i=1,2,...q) let an attacker have a list Li of plausible plaintexts
for that transmission, where this list is compiled before the
respective ciphertext is released. So a-priori the number of
possible sets of q messages is: EQV = π |Li|. Since the
transmitter can inflate the size of the pre-transposed string to
any desired size, they can assure that given the q released
ciphertext, there are likely to remain some desired number s,
of transposition keys that will reduce the equivocation lists
L1, L2, Lq to L'1, L'2,.....Lq, respectively where while for
every i=l,2,...q there exists L'i < Li, the residual equivocation
EQV'(s) = π |L'i| will be above a preset security threshold, S:
EQV'(s) < S. In practice this implies that the user can
control the security projection of their transmitted data.

J. Outlook

In the post-Coronavirus universe we expect to
experience a proliferation of work-from-home practice.
Bankers and confidential workers of all sorts will find it
necessary to routinely communicate highly confidential data
among distributed locations. This will pose new challenges
before cyber technology. Security responsibility will have to
shift to the transmitters of sensitive information. Not only
content, but pattern will have to be concealed to enable the
emerging, lasting work configurations. The new wave of
Trans Vernam ciphers is well prepared to meet that
challenge, and the UNARY cipher fits right in.

III. REFERENCE
1. US Patent 10,608,814 Equivoe-T: Transposition

Equivocation Cryptography
2. US Patent 10,523,642 Skeleton Network
3. Samid “Randomness Rising The Decisive Resource in

the Emerging Cyber Reality” 14th International
Conference on Foundations of Computer Science
(FCS'2018, Las Vegas, USA)

4. Samid “Shannon’s Proof of Vernam Unbreakability”
https://www.youtube.com/watch?v=cVsLW1WddVI

5. Shannon 1949: “Communication Theory of Secrecy
Systems”
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

6. Smart: “Cryptography Made Simple” , Springer. �
7. Vernam, US Patent 1310719, 13 September 1918.
8. Williams 2002: “Introduction to Cryptography” Stallings

Williams, http://williamstallings.com/Extras/Security-
Notes/lectures/classical.html

