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Abstract. The implementation of isogeny-based cryptography mainly
use Montgomery curves as they offer fast elliptic curve arithmetic and
isogeny compuation. However, although Montgomery curves have effi-
cient 3- and 4-isogenies, it becomes inefficient when recovering the co-
efficient of the image curve for large degree isogenies. This is the main
bottleneck of using a Montgomery curve for CSIDH as it requires odd-
degree isogenies up to at least 587 [4]. In this paper, we present a new
optimization method for faster CSIDH protocols entirely on Montgomery
curves. To this end, we present a new parameter for CSIDH in which the
rational 2-torsion points are defined over Fp. By using the proposed pa-
rameters the CSIDH moves around the surface. The curve coefficient of
the image curve can be recovered by a 2-torsion point. We also proved
that the CSIDH using the proposed parameter guarantees a free and
transitive group action. Additionally, we present the implementation re-
sult using our method. We demonstrated that our method is 8.6% faster
than the original CSIDH. Our works show that quite higher performance
of CSIDH is achieved using only Montgomery curves.

Keywords: Post-quantum cryptography, Isogeny, Montgomery curves,
2-torsion points, CSIDH.

1 Introduction

With the evolution of a quantum computing environment, currently used public
key cryptosystems based on factorization and discrete logarithm problems, such
as RSA and ECC, will not be able to guarantee their security in the near future.
This has led to the need for post-quantum cryptography (PQC) that is secure
even in quantum computing environments. The National Institute of Standards
and Technology (NIST) opened the PQC standardization project, which is now
in Round 2. Among the PQC categories, isogeny-based cryptography interests



many researchers as it offers smaller key sizes than any other PQC candidates.
The isogeny-based cryptography is based on the difficulty of finding a specific
isogeny between two elliptic curves defined on the same finite field and having
the same order. Despite having a fairly small key size, isogeny-based cryptog-
raphy has the disadvantage of being considerably slower than most of the PQC
candidates.

The isogeny-based cryptography was first proposed by Couveignes in 2006
[8]. This is a non-interactive key exchange protocol which uses a set of Fq-
isomorphism classes of ordinary elliptic curves defined on Fq. The endomorphism
ring between these curves is given by the order O in an imaginary quadratic
field. Then, the ideal class group cl(O) acts freely and transitively on this en-
domorphism ring through an isogeny operation. Couveignes designed the Diffie-
Hellman style key exchange protocol using the commutativity of cl(O). This
method was rediscovered by Rostovtsev and Stolbunov and called CRS-scheme.
On the other hand, the underlying problem of CRS-scheme can be classified as
an abelian hidden-shift problem. It is shown by Childs et al. that there is a
subexponential quantum attack algorithm with time complexity of Lq[1/2] [6].
Considering that RSA is widely used even in subexponential complexity in clas-
sical computers, this was not considered as a big problem. However, prolonged
execution time was pointed out as the biggest problem, as it took several minutes
for a single key exchange.

The isogeny-based cryptography was noticed again with a rapid speed im-
provement by De Feo et al. [11]. They proposed a new key exchange protocol
called SIDH using a supersingular curve. As Childs-Jao-Soukharev’s attack ex-
ploits the commutativity of cl(O) of an ordinary curve, their attack cannot be
applied to SIDH since it uses supersingular curves, which has non-commutative
full endomorphism ring. Until now, SIDH is known to have exponential time
complexity, even in quantum computing environments.

SIKE (Supersingular Isogeny Key Encapsulation), which is based on SIDH, is
currently on the NIST PQC standardization Round 2 [1]. On the other hand, in
the case of SIDH-based scheme, the key validation problem could not be solved
efficiently. To solve this problem, SIKE applied a transformation similar to the
Fujisaki-Okamoto transformation proposed in [10].

In CRS-scheme, efficient key validation is possible, so that CCA-secure en-
cryption can be achieved only by the basic algorithm itself, without the need of
applying FO-transformation. This allows a non-interactive key exchange, where
several of the previously proposed PQC algorithms do not provide this property
efficiently. With this in mind, De Feo et al. proposed a method to efficiently per-
form CRS-schemes on ordinary curves in [9]. However, there was still a problem
that it was difficult to select parameters satisfying a certain condition because of
the characteristics of ordinary curves. Independently, Castryck et al. proposed
CSIDH (Commutative Supersingular Isogeny Diffie-Hellman), an algorithm that
increases efficiency over conventional techniques by using the supersingular curve
defined over a prime field Fp in CRS-scheme [4]. By using supersingular curves,
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CSIDH solved the parameter selection problem of ordinary curves in the algo-
rithm proposed by De Feo et al.

CSIDH uses a subring consisting of Fp-rational endomorphisms instead of
using a full endomorphism ring, and uses the commutativity of cl(O) and has
the same protocol as CRS-scheme. The CSIDH-512 provides a key size of 64
bytes, which is smaller than SIKE for the same security level. Even considering
the subexponential time attack, the key size is expected to be relatively smaller
than SIKE. Recently, various papers related to CSIDH have been submitted
to PQCrypto 2019 and Eurocrypt 2019, and various researches such as digital
signature, efficient implementation techniques, various attack techniques, and
side-channel resistant implementations have been conducted [2, 5, 13,14].

However, one disadvantage of CSIDH is that it has a slower execution speed
than the state-of-the-art implementation of SIKE. On the other hand, since the
key validation can be performed efficiently, a non-interactive key exchange can
be provided, and a smaller key size and a simpler algorithm can be designed. In
addition, considering more efficient digital signature scheme than SIDH can be
derived, it is possible to say that CSIDH has more potential for developing
various cryptographic applications. Hence, various studies are being actively
conducted to improve the speed of CSIDH [13,14].

The original implementation of CSIDH in [4] uses Montgomery curves, as
they were known to provide efficient isogeny computation. However, one draw-
back of using Montgomery curves is that the computational cost for recovering
the coefficient of the image curve is higher than Edwards curves for large degree
isogenies. Since CSIDH protocol uses large odd-degree isogenies, this can be an
obstacle for CSIDH to implement entirely on Montgomery curves.

In this paper, we apply an optimization technique proposed by Costello and
Hisil in CSIDH to obtain image curve coefficients during isogeny computations
[7]. The followings are the main contributions of this work.

– We present a new initial curve and a new prime of the form 8k + 7, which
enable to use the 2-torsion method by Costello and Hisil [7]. In the parameter
presented in the original CSIDH, Fp-rational 2-torsion points do not exist
except for (0, 0), so that this method cannot be used for recovering the
coefficient of the image curve in CSIDH. Compared to the Meyer’s method
[14], computing the coefficient of the image curve is the main bottleneck
for implementing faster CSIDH entirely on Montgomery curves. By using
our prime, Fp-rational 2-torsion points exist so that the coefficient can be
computed efficiently.

– We also prove that our algorithm assures one-to-one correspondence between
image curves and elliptic curve isomorphism classes. Given a Montgomery
curve MA : y2 = x3 + Ax2 + x on the surface with curve coefficient A and
base field prime p, we prove that the ideal-class group cl(O) acts freely and
transitively on the set S+

p,Z[(1+
√
−p)/2],i in [3]. Details of our proof are denoted

in Section 4.
– We present the implementation results of our proposed method. The group

action of our implementation is about 13.9% faster than the original CSIDH.
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The entire key exchange is about 8.6% faster than the original CSIDH. Al-
though the proposed CSIDH implementation is slower than [14], we stress
the fact that we provide the fastest performance using only Montgomery
curves. Details of our implementation and results are denoted in Sections 5.

This paper is organized as follows. In Section 2, we review on background of
elliptic curves and CSIDH key exchange. In Section 3, we introduce a various
way of odd-degree isogeny computations. In Section 4, we present a new param-
eter that makes the use of the 2-torsion point. Section 5 describes the specific
implementation process and the result of comparing the costs and speed. We
draw our conclusions and future work in Section 6.

2 Preliminary

In this section, we describe the background knowledge needed to develop this
paper. First, we review some properties of elliptic curves. Then, we introduce
the CSIDH protocol and odd-degree isogeny formula on Montgomery curves.

2.1 Elliptic curves and isogenies

Montgomery curves Let K be a field with the characteristic not equal to
2 or 3. The Montgomery elliptic curves over K are expressed by the following
equation:

Ma,b : by2 = x3 + ax2 + x, (1)

where b(a2 − 4) 6= 0. We shall write Ma when b = 1 throughout the paper. For
efficient implementation of isogeny operation, we use the projective coordinate
and projective curve coefficient to avoid inversions. Since Montgomery curve
arithmetic can be constructed only with the x-coordinate,XZ-coordinate system
is mainly used for implementing isogeny-based cryptography. Now, we write a
point P = (x, y) on Ma,b and coefficient a as P = (X : Z) and a = (A : C),
respectively, where x = X/Z and a = A/C.

Isogeny Let OE be a point at infinity of an elliptic curve E. Given two elliptic
curves E and E′, we define an isogeny φ between E and E′ by φ : E → E′

satisfying φ(OE) = OE′ , where φ is a morphism. Since φ is group homomorphism
between E and E′, ker(φ) is a subgroup of E. Given any finite subgroup K of
E, we use Velu’s formula to compute an isogeny φ : E → E′. Then we obtain an
isogeny φ : E → E′ satisfying ker(φ) = K and denote deg(φ) = |K|.

Supersingularity Given a prime p, let E be an elliptic curve defined over Fp.
Then E is a supersingular curve if and only if

#E(Fp) = p+ 1
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Otherwise, E is an ordinary curve. Let End(E) be a full endomorphism ring of
E and EndFp

(E) be an Fp-rational endomorphism ring defined over Fp. A full
endomorphism ring of an oridinary curve is an order in an imaginary quadratic
field. On the other hand, A full endomorphism ring End(E) of supersingular
curve E is an order in a quaternion algebra. Also, Fp-rational endomorphism
ring EndFp

(E) of supersingular curve E is an order in an imaginary quadratic
field Q(

√
−p). Now, denote an order O for EndFp

(E).

Ideal Class Group Given an order O, the ideal class group of O is defined by
a quotient group

cl(O) = I(O)/P (O)

Note that I(O) is the set of invertible fractional ideals and P (O) is the set of
principal fractional ideals.
Let π ∈ O be the Fp-Frobenius endomorphism of E and E``p(O, π) be the set of
elliptic curves E defined over Fp satisfying O = EndFp

(E). Then, the ideal-class
group cl(O) acts freely and transitively on E``p(O, π) by

cl(O)× E``p(O, π) −→ E``p(O, π)

([a], E) −→ E/a

2.2 CSIDH

CSIDH Protocol CSIDH is an isogeny-based Diffie-Hellman protocol proposed
by Castryck et al. [4] using supersingular curves defined over Fp and commutative
group action. The prime p of the base field is of the form p = 4

∏n
i=1 `i − 1,

where `i’s are odd primes. For an order O = EndFp
(E), it is well-known that

the class group cl(O) acts freely and transitively on E``p(O). This group action
is represented by [a]E, where E ∈ E``p(O) and an ideal class [a] ∈ cl(O). Since
E is a supersingular curve with #E(Fp) = p + 1 = 4 · `1 · · · `n, for each i,
there is Fp-rational subgroup of order `i. Also, let π =

√
−p be the Fp-Frobenius

endomorphism of E. Then, since p = −1 mod `i, for a prime `i, it is well-known
that `iO splits into two prime ideals li = (`i, π − 1) and l−1i = (`i, π + 1). Using
Velu’s formula, we compute [li]E through the isogeny φli defined over Fp and
compute [l−1i ]E through the isogeny φl−1

i
defined over Fp2 .

Assume that Alice and Bob execute a key exchange. Alice and Bob randomly
select each secet key [a] and [b] in cl(O), respectively. Next, Alice sends EA =
[a]E to Bob, Bob sends EB = [b]E to Alice. Upon the receipt of EB from
Bob, Alice computes [a]EB and obtains EAB = [a]EB . Similarly, Bob obtains
EBA = [b]EA. The EAB = EBA is the shared secret between Alice and Bob.

CSIDH group action An element of the ideal-class group cl(O) is of the form∏n
i=1 l

ei
i (li = (`i, π − 1)) for small ei ∈ [−m,m]. So, in CSIDH protocol, Alice

and Bob randomly select a vector (e1, e2, · · · , en) ∈ Zn and consider it as a secret
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key. Thus a group action [a]E can be computed by applying `i-isogeny operation
ei times for a =

∏n
i=1 l

ei
i ∈ cl(O).

If ei > 0, `i-isogeny is applied with the kernel generated by a point in E(Fp)
of order `i. If ei < 0, `i-isogeny is applied with the kernel generated by a point in
E(Fp2 \Fp) of order `i. As `is are all primes, this means that efficient odd-degree
isogeny formula at least up to 587 for CSIDH-512 is required for implementa-
tion. For Montgomery curves, Costello and Hisil proposed an efficient method
for computing odd-degree isogenies [7]. For twisted Edwards curves, Moody and
Shumow proposed generalized odd-degree isogeny formula [15]. In [12], they op-
timized Moody and Shumow formula by using the w-coordinate on Edwards
curves.

3 Odd-degree isogenies

Generally, an isogeny operation is divided into two parts – evaluation of an
isogeny and coefficients computation of an image curve. In this section, we shall
briefly introduce the formula in [7] for point evaluations. For coefficient compu-
tations, we introduce various methods that can be used to implement CSIDH.
From this section, the M, S, and a refers to a field multiplication, squaring, and
addition, respectively.

3.1 Point evaluation

In [7], Costello and Hisil proposed a simple formula for computing arbitrary
degree isogenies on Montgomery curves. Their formula can be summarized as
follows.

Theorem 1. For a field K, whose characteristic is not 2, let P be a point of
order ` = 2d + 1 on the Montgomery curve Ma,b/K : by2 = x3 + ax2 + x.

Writing σ =
∑d
i=1 x[i]P , σ̃ =

∑d
i=1 1/x[i]P and π =

∏d
i=1 x[i]P , let `-isogeny

φ : Ma,b → Ma′,b′ with ker(φ) = 〈P 〉, where Ma′,b′/K : b′y2 = x3 + a′x2 + x.
Then,

a′ = (6σ̃ − 6σ + a) · π2 and b′ = b · π2 (2)

φ : (x, y) 7→ (f(x), yf ′(x)), (3)

where f(x) = x
∏d
i=1(

x·x[i]P−1
x−x[i]P

)2 and f ′(x) is its derivative.

As mentioned earlier, since Montgomery curve arithmetic can be constructed
only with the x-coordinate, the function f(x) is of our main interest in the
equation (3).

Let P be a point on a Montgomery curve having order ` = 2d + 1. Then in
projective XZ-coordinate we express P as P = (X : Z), where x = X/Z. Let φ
be an isogeny `-isogeny, where kerφ = 〈P 〉. From the formula proposed in [7],
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P ′ = φ(P ) = (X ′ : Z ′) is computed as

X ′ = X ·

(
d∏
i=1

(X ·Xi − Zi · Z)

)2

,

Z ′ = Z ·

(
d∏
i=1

(X · Zi −Xi · Z)

)2

where xi = Xi/Zi is x-coordinate of [i]P for 1 ≤ i ≤ d. The computational cost
of (X ·Xi − Zi · Z) and (X · Zi −Xi · Z) is 2M + 6a by rewriting the equation
as below.

X ′ = X ·

(
d∏
i=1

[(X − Z)(Xi + Zi) + (X + Z)(Xi − Zi)]

)2

, (4)

Z ′ = Z ·

(
d∏
i=1

[(X − Z)(Xi + Zi)− (X + Z)(Xi − Zi)]

)2

(5)

For `-isogeny evaluaton, the computational cost is (4d)M + 2S + (6d)a.
As denoted in the equation (3), the computation of the image curve using

Theorem 1 in [7] is somewhat complicated. Therefore, an alternate way to recover
the coefficient of the image curve is presented in [7]. The first method is to use
a 2-torsion point of a Montgomery curve, and another is to use two points and
its differential of a Montgomery curve. We shall call the former method as a 2-
torsion method and the later as a differential method. As the 2-torsion method
is of our primary interest in this paper, we shall only describe the details of
the 2-torsion method in this paper. Additionally, we provide two other ways to
compute the coefficient of the image curve presented in [4, 14], in the following
subsection.

3.2 Coefficients computations

The 2-torsion method A point P in an elliptic curve is called a k-torsion
point if [k]P = O, where O is a point at infinity of an elliptic curve. In [7], the
main idea is to use 2-torsion points for coefficient computation, as pushing a 2-
torsion point through an odd-degree isogeny preserves their order on the image
curve.

For a Montgomery curve, it is well-known that the 2-torsion point has the
following form

(0, 0), (α, 0), (α−1, 0) where α ∈ F̄p

If we know α of the 2-torsion point on a Montgomery curve, then we can recover
the coefficient of a Montgomery curve. For a given elliptic curve Ma, since α3 +
aα2 + α = 0, we can calculate the coefficient a of Ma by

a = −(α2 + 1)/α (6)

7



Let φ : Ma → Ma′ be an isogeny of odd-degree ` = 2d + 1, and P = (α, 0) be
a 2-torsion point on Ma. Then it is clear that φ(P ) is 2-torsion point on Ma′ .
Using this, we can recover the coefficient of the image curve by first, evaluating
φ(P ) and obtain the coefficient by the equation (6). More precisely, assume that
φ(P ) = (α′, 0). Then we obtain a′ = −((α′)2 + 1)/α′. In projective coordinate,
let P = (Xα, Zα), where α = Xα/Zα. Then projective curve coefficient of the
image curve droven by the equation (6)

a′ = (A′ : C ′) = (X2
α′ + Z2

α′ : −Xα′Zα′),

where φ(P ) = (Xα′ : Zα′) and a′ = A′/C ′. This computation cost is 2S + 5a.
Using the 2-torsion method, the cost of calculating a coefficient of ` = 2d + 1-
isogeny image curve is (4d)M + 4S + (6d+ 5)a.

Remark 1. Recently, in [3], Castryck and Decru proposed CSURF algorithm
using tweaked Montgomery curve M t

a : y2 = x3 + ax2 − x and it is about
5.68% faster than the original CSIDH. CSURF can also use the 2-torsion method
because three 2-torsion points are on M t

a(Fp). If (α, 0) is a 2-torsion point on a
tweaked Montgomery curve M t

a for α 6= 0, then since α2 + aα − 1 = 0, we can
reconstruct tweaked Montgomery coefficient a by a = (A : C) = −(α2 − 1)/α =
(Z − X)(Z + X)/XZ, where α = X/Z. So, we can compute an image curve
coefficient by one additional point evaluation and 2M + 2a. Using the 2-torsion
method, CSURF will be more efficient in computing odd-degree isogeny parts.

Optimization by Castryck et al. [4] In [4] they optimize the equation (2) to
compute the coefficient of the image curve, as Fp-rational 2-torsion point does
not exist for the original parameters of CSIDH.

For a point P of order ` on E and k ∈ {1, · · · , ` − 1}, let (Xk : Zk) be the
projective x-coordinate of [k]P . Define ci ∈ Fp such that

`−1∏
i=1

(Ziw +Xi) =

`−1∑
i=0

ciw
i

as polynomials in w, and define τ , σ by

τ =

`−1∏
i=1

Xi

Zi
, σ =

`−1∑
i=1

(
Xi

Zi
− Zi
Xi

)
Then coefficient (a′ : 1) of image curve of `-isogeny with the kernel 〈P 〉 is com-
puted by

(a′ : 1) = (τ(a− 3σ) : 1)

= (ac0c`−1 − 3(c0c`−2 − c1c`−1) : c2`−1) (7)

Using this method, the cost of calculating curve coefficient is (6d−2)M+3S+4a
in implementation.
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Exploiting twisted Edwards curves In [14], Meyer proposed Montgomery-
Edwards hybrid method for implementing CSIDH. They exploited the fact that
recovering the coefficient of the image curve is more efficient on twisted Ed-
wards curves than Montgomery curves. By using the efficiency of the birational
map between Montgomery curves and twisted Edwards curves, they used Mont-
gomery curves for scalar multiplication and isogeny evaluation and used twisted
Edwards curves for recovering the coefficient of the image curve.

The outline of the process is summarized in the equation below. In the equa-
tion, φ denotes an isogeny on a twisted Edwards curve, ι denotes conversion
from Montgomery to twisted Edwards curves, and ι−1 denotes conversion from
twisted Edwards to Montgomery curves.

M
ι−→ E

ψ−→ E′
ι−1

−→M ′

By composing the functions φ = ι−1 ◦ ψ ◦ ι, one can obtain the coefficient of a
Montgomery curve. Using this method, the computational cost of recovering the
curve coefficient is (2d)M+ 6S+ 6a+ 2c(`), where c(`) is the cost for computing
r` for a constant r ∈ Fp. Details of this method can be found in [14].

degree Montgomery [4] Hybrid method [14] 2-torsion method [7]

3 6.4 M 8.8 M 7.2 M

5 12.4 M 10.8 M 11.2 M

7 18.4 M 12.8 M 15.2 M

11 30.4 M 16.8 M 23.2 M

13 36.4 M 18.8 M 27.2 M

Table 1: Computation costs of the coefficient of image curve in original CSIDH,
using Edwards curve, using 2-torsion

Remark 2. Given three points P, Q, and P − Q on a Montgomery curve, we can al-
ternatively compute the image curve coefficient with the cost 8M + 5S + 11a using
differential method [7]. However, unlike SIDH, as CSIDH does not require such three
points, additional point evaluation are required to use this method. Thus when differ-
ential method is used, CSIDH will have inefficient speed and large key size compared
to original method. Therefore, we exclude the use of differential method in this paper.

4 Proposed method

In this section, we present the optimized algorithms for CSIDH group action.
First, we briefly state our motivation for this paper. The idea is to use the 2-
torsion method to recover the coefficient of the image curve. To use the 2-torsion
method in [7], we adjust the prime so that the rational 2-torsion points exist on
Fp. The CSIDH using the proposed parameter is performed on the surface. We
provide two versions of our modified CSIDH, where one exchanges the 2-torsion
points, and the other calculates the 2-torsion point for a given elliptic curve.
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4.1 Motivation

As denoted in Section 2, although there is an efficient way for computing 3- and
4- isogenies on Montgomery curves, the original formula in [7] for computing the
coefficient of the image curve is inefficient for large degree isogenies. Therefore,
Costello and Hisil proposed alternate methods for computing the curve coefficient
of the image curve. However, these methods unfit in the CSIDH protocol, as there
is no rational 2-torsion points, nor they use the difference of two points as in
SIDH. Hence, Castryck et al. compute the coefficient of the image curve using
the equation (7).

On the other hand, Meyer et al. exploit twisted Edwards curve for computing
the coefficients of the image curve, as there is a simple formula for recovering the
coefficient proposed by Moody and Shomow in [15]. Combining Montgomery and
twisted Edwards curves, Meyer’s method led to speed up of CSIDH protocol.
In [12], using Edwards w-coordinate, Kim et al. proposed optimized isogeny
formula on Edwards curves, which can be used to implement CSIDH fully on
Edwards curves.

To summarize, unlike SIDH, using only Montgomery curves might be an inef-
ficient choice for implementing CSIDH protocol. However, associated in Table 1,
if the application of the 2-torsion method is possible, then we can implement
CSIDH entirely on Montgomery curves efficiently. Therefore, we provide the way
to use the 2-torsion method for computing the coefficients in CSIDH by tailoring
the primes used in the base field. The proposed parameter executes CSIDH on
the surface. We prove that our method also provides free and transitive group
action.

4.2 Proposed Method

In order to use the 2-torsion method, we define a new prime and a new base
curve in order to have rational 2-torsion point other than (0, 0). Since 2-isogeny is
available in our chosen parameter, we can construct more efficient Montgomery-
only CSIDH as in [3].

New parameters Let Ma be a Montgomery curve defined over finite field
Fp where p ≡ 3 mod 4. If E has a 2-torsion point on Fp except for (0, 0),
then the 2-torsion subgroup Ma(Fp)[2] satisfy |Ma(Fp)[2]| = 4. In this situation,
supersingular elliptic curve Ma/Fp is on the surface satisfying EndFp(Ma) =
Z [(1 +

√
−p)/2] [3]. Note that the original CSIDH uses p ≡ 3 mod 8, so that the

supersingular curve Ma/Fp exists on the floor satisfying EndFp
(Ma) = Z[

√
−p].

Thus, in order to have 2-torsion points on Fp, we must use a prime of the
form p ≡ 7 mod 8. Following the notation in [3], we define the set S+

p = {a ∈
Fp | y2 = x3 + ax2 + x is supersingular} and the set of an elliptic curves sat-
isfying EndFp(Ma) = Z [(1 +

√
−p)/2] is defined by S+

p,Z[(1+
√
−p)/2]

= {A ∈

S+
p | EndFp

(Ma) = Z [(1 +
√
−p)/2]}. This set splits into two partitions as fol-
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lows.

S+

p,Z[(1+
√
−p)/2],1

= {a ∈ S+

p,Z[(1+
√
−p)/2]

| (0, 0) /∈ 2Ma(Fp)},

S+

p,Z[(1+
√
−p)/2],2

= {a ∈ S+

p,Z[(1+
√
−p)/2]

| (0, 0) ∈ 2Ma(Fp)},

Since S+

p,Z[(1+
√
−p)/2]

consists of two orbits, the group action

cl(O)× S+

p,Z[(1+
√
−p)/2]

→ S+

p,Z[(1+
√
−p)/2]

is free and not transitive group action on S+

p,Z[(1+
√
−p)/2]

. In order to have tran-

sitive group action, we refer to the following lemma.

Lemma 1. Let p ≡ 7 mod 8 and supersingular Montgomery curve Ma : y2 =
x3 + ax2 + x be on the surface. Then there exists P = (x, y) ∈Ma(Fp) such that
[2]P = (0, 0) if and only if a± 2 are both square in Fp.

Proof. Since Ma is on the surface, there exists a 2-torsion point (α, 0) 6= (0, 0)
in Ma(Fp). So, A2 − 4 must be square in Fp.

Then a ± 2 are both square or both not square in Fp. From [2]P = ((X +
Z)2(X − Z)2,−) where x = X/Z, [2]P = (0, 0) if and only if X = ±Z. i.e.,
P = (±1,−).

Since P is on the curve Ma, at least one of 13 + a · 12 + 1 = a + 2 and
(−1)3 + a · (−1)2 + (−1) = a− 2 must be square in Fp. Therefore, a± 2 are both
square in Fp.

Using this lemma, we can prove the following theorem.

Theorem 2. Let φ be an odd isogeny from Ma to Ma′ where a, a′ ∈ S+

p,Z[(1+
√
−p)/2]

.

Then

a, a′ ∈ S+

p,Z[(1+
√
−p)/2],1

or a, a′ ∈ S+

p,Z[(1+
√
−p)/2],2

Proof. Let P = (X : Z) be a 2-torsion point in Ma(Fp). Then P ′ = (X ′ :
Z ′) = φ(X : Z) is a 2-torsion point in Ma′ . Since 2-torsion point of Montgomery
curve is of the form (α, 0), a = −(X2 + Z2)/XZ, where α = X/Z. Hence,
a± 2 = (X ∓ Z)2/(−XZ).

Similarly, a′±2 = (X ′∓Z ′)2/(−X ′Z ′). Squareness of a±2 (resp. a′±2) and
−XZ (resp. −X ′Z ′) is the same. Also, by the equations (4) and (5), squareness
of −XZ and −X ′Z ′ is the same.

Following the proof of Lemma 1, a± 2 and a′± 2 are all squares in Fp or not
squares in Fp. Therefore, Theorem 1 holds by Lemma 1.

By Theorem 1, we consider free and transitive group action

cl(O)× S+

p,Z[(1+
√
−p)/2],i

→ S+

p,Z[(1+
√
−p)/2],i

(8)
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A 2-torsion point P on a Montgomery curve is always of the form (α, 0). Since
α2 + aα + 1 = 0, α ∈ Fp or α ∈ Fp2 . The initial curve of the original CSIDH is
y2 = x3 + x, whose x-coordinate of the 2-torsion point is on Fp2 , extension field
of Fp. So, we need new parameters that offer 2-torsion points in Ma(Fp) except
for (0, 0). The followings are those parameters.

p = 24 · 33 · 5 · . . . · 373− 1 ≈ 2510.1 (9)

a = 0x2C36E679F542D63441367BC57EFA26639

FA0EE9EA65967F55F9D9BAAE672F82BFB

429BD324D738568EF225AAA1E9F32F8056

B55B9833D048EE2D99131D655918 (10)

We use the prime p ≡ 7 mod 8 and the Montgomery curve Ma satisfying
|Ma(Fp)[2]| = 4. So, we can apply free and transitive group action in the equa-
tion (8). Note that using the above 73 consecutive odd primes starting at 3, this
parameter provides less security level than the parameters of CSIDH-512. Note
that the proposed parameter in this paper is just an example parameter to apply
2-torsion method on CSIDH.

Remark 3. Since ((a±2)/p) = −1, this parameters correspond to S+

p,Z[(1+
√
−p)/2],1

First method : Exchanging the 2-torsion The first method is to exchange
2-torsion points when exchanging a curve. Alice and Bob calculate curve coeffi-
cients of image curves using a 2-torsion point when computing the group action
and pass it along with the image curve to each other.

Alice computes her secret isogeny φA : E → EA with her secret key [a], and
compute the coefficient of EA through φA(T ). Upon receiving the Bob’s public
key EB , Alice also receives φB(T ) in order to compute the proceeding phase.
Likewise, Bob must also receive Alice’s public key EA and φA(T ). As they need
to send the image of 2-torsion point as well as the curve, the key size will be
2 · bp bits, where bp is the number of bits in P .

Summing up the whole process, a class group action by exchanging the 2-
torsion is presented in Algorithm 1

Second method : Computing the 2-torsion Note that when using the first
method, the key size is twice as much as bp bits, where bp bits is the key size of
the original CSIDH protocol. This is a huge loss compared to a little increase in
speed.

Since a 2-torsion point on a Montgomery curve is of the form (α, 0), we can
calculate α through solving a quadratic equation modulo p. Also, as TA = φA(T )
is a 2-torsion point in EA(Fp) and TB = φB(T ) is a 2-torsion point in EB(Fp),
Alice and Bob can directly calculate the 2-torsion point upon the receipt of the
image curve computed through each other’s secret isogeny.

For p ≡ 3 mod 4, if a is a quadratic residue modulo p, then the square root
of a modulo p is computed by x = a(p+1)/4 mod p. Using this equation, finding

12



Algorithm 1 Evaluating the class group action using the first method – Ex-
changing the 2-torsion

Require: a ∈ Fp such that Ma : y2 = x3 +ax2 +x is supersingular curve over Fp and
an integer vector (e1, e2, · · · , en) for ei ∈ [−m,m], a 2-torsion point T in Ma(Fp)

Ensure: a′ such that Ma′ : y2 = x3+a′x2+x where Ma′ = [le11 le22 · · · lenn ]Ma, 2-torsion
point φ(T ) in Ma′(Fp) where φ is an isogeny from Ma to Ma′

1: while some ei 6= 0 do
2: Sample a random point P = (x : 1) where x ∈ Fp

3: Set s← +1 if there exist y ∈ Fp satisfying y2 = x3 + ax2 + x
4: Otherwise, s← −1
5: Let S = {i | ei 6= 0, sign(ei) = s}
6: if S = ∅ then
7: go to line 2
8: else
9: k ←

∏
i∈S `i

10: Q← [(p+ 1)/k]P
11: for i ∈ S do
12: R← [k/`i]Q
13: if R 6=∞ then
14: Compute an isogeny φ : Ma →Ma′ with kerφ = R
15: a← a′, T ← φ(T ), Q← φ(Q), k ← k/`i, ei ← ei − s
16: end if
17: end for
18: end if
19: end while
20: return a′, T

a 2-torsion point for a given elliptic curve E is presented in Algorithm 2. By
precomputing 2−1 mod p, we can get a 2-torsion point with less computation.
Note that the cost of Step 4 in Algorithm 2 is very small compared to the total
CSIDH algorithm. Also, Algorithm 2 is used only 2 times throughout the total
protocol – i.e., Alice computes EA = [a]E using Algorithm 1 with precomputed
2-torsion point. Upon receiving EB , Alice compute [a]EB using Algorithm 3.

Algorithm 2 Compute a 2-torsion point in E(Fp)

Require: a ∈ Fp such th at Ma : y2 = x3 + ax2 + x is supersingular curve
Ensure: A 2-torsion point T = (α, 0) in Ma(Fp)
1: t← a/2 // 1M (with precomputed 2−1 mod p)
2: α← t2 // 1S
3: α← α− 1
4: α← α(p+1)/4

5: α← α− t // α = −a/2 + (a2/4− 1)(p+1)/4

6: return T = (α, 0)

13



Algorithm 3 Evaluating the class group action using the second method –
Computing the 2-torsion

Require: a ∈ Fp such that Ma : y2 = x3 +ax2 +x is supersingular curve over Fp and
an integer vector (e1, e2, · · · , en) for ei ∈ [−m,m]

Ensure: a′ such that Ma′ : y2 = x3 + a′x2 + x where Ma′ = [le11 le22 · · · lenn ]Ma

1: Compute a 2-torsion point T in Ma(Fp)
// Algorithm 2

2: while some ei 6= 0 do
3: Sample a random point P = (x : 1) where x ∈ Fp

4: Set s← +1 if there exist y ∈ Fp satisfying y2 = x3 + ax2 + x
5: Otherwise, s← −1
6: Let S = {i | ei 6= 0, sign(ei) = s}
7: if S = ∅ then
8: go to line 2
9: else

10: k ←
∏

i∈S `i
11: Q← [(p+ 1)/k]P
12: for i ∈ S do
13: R← [k/`i]Q
14: if R 6=∞ then
15: Compute an isogeny φ : Ma →Ma′ with kerφ = R
16: a← a′, T ← φ(T ), Q← φ(Q), k ← k/`i, ei ← ei − s
17: end if
18: end for
19: end if
20: end while
21: return a′

When Algorithm 2 is used, the key size decreases to bp bits again, so we can
preserve the key size and improve speed. Summing up the whole process, a class
group action by computing the 2-torsion point is presented in Algorithm 3. The
public key validation can also be performed as in [4] for both methods.

5 Implementation

In this section, we provide the implementation results and analysis. First, we
count the number of multiplications and squarings for group action of each
algorithm and analyze the results. Then, we compare the performance of the
original CSIDH and ours. For clear expression, we shall denote the first method
as Ours Exchange and the second method as Ours Compute.

5.1 Parameter and Implementation setup

Parameter setting For implementation, we used the finite field Fp, where p
is the prime in the equation (9), and we used the Montgomery coefficient of the
initial curve in the equation (10) for both CSIDH and our methods. To make
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an exact comparison, we use the field operations implemented in [4] for both
CSIDH and our methods. Also, we changed the base prime in [4] to our prime.
Note that we assume that 1M ≈ 1S, since squaring in [4] is directly implemented
by using multiplication.

Further modification Let Ma be a Montgomery curve. In [7], the coefficient
of the Montgomery curve is presented as (Â : Ĉ) = (a + 2 : 4) instead of
(A : C) = (a : 1) for accelerating the doubling (DBL) and differential addition
(DBL&ADD) computation. The cost of DBL&ADD decreases from 8M + 4S +
11a to 8M + 4S + 8a and the cost of DBL decreases from 4M + 2S + 7a to
4M + 2S + 4a, when we used the transformed coefficient. Also, the cost of
recovering the coefficient from a 2-torsion point decreases from 2S+5a to 2S+3a.

The original CSIDH implementation in [4] does not use this transformed co-
efficient. Although there is an additional cost for converting the form of the coef-
ficients, we can save the cost of scalar multiplication in all `i-isogeny operation.
As this optimization also holds in our proposed method, we applied this tech-

nique for both CSIDH and our method. The transformations (A : C)↔ (Â : Ĉ)
occurs before and after the group action, where elliptic curve arithmetic are
used.

Additionally, we noticed that the optimized point evaluation in the equations
(4) and (5) are not used in the implementation of the original CSIDH. For
a reasonable comparison, we apply the equations (4) and (5) to the original
CSIDH. To summarize, by using the transformed curve coefficient and additional
optimization of the point evaluation in CSIDH, the difference in the performance
lies purely in the computation of recovering the curve coefficient.

Implementation setup To evaluate the performance of each algorithms, the
algorithms are implemented in C language. All cycle counts were obtained on
one core of an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz, running Ubuntu
18.04.3 LTS. For compilation, we used GNU GCC version 7.5.0 with compile
option -O3 using the benchmark provided by [4].

5.2 Computational cost

To examine the effect of our proposed method, we first compare the computa-
tional cost. Unlike SIDH, since the number of isogeny computation depends on
a secret key in CSIDH protocol, we compared the computational cost of the pro-
tocol by averaging the number of isogenies used in the protocol. In CSIDH-512,
the `i-isogeny operation occurs on average 2.5 times for each prime `i, where
ei ∈ [−5, 5]. We set ei = 1 because our goal is to calculate the ratio.

Now, suppose ei = 1 for all i. Then, the number of Fp-multiplication of
isogeny operation (xISOG) for the original implementation in [4] is 98690M +
12341S ≈ 111031M, where the number of multiplication reduce to 86354M +
12341S ≈ 98695M, when the equations (4) and (5) are used.

15



If we use Ours Exchange, then the number of Fp-multiplication cost of isogeny
operation with ei = 1 decreases from 98695M to 74016M + 12342S ≈ 86358M,
and it can be seen that there is approximately 14.3% cost reduction. This mo-
tivates us to implement our methods and the implementation results are in the
next section.

5.3 Implementation result

The running time and clock cycles of the group action (resp. the entire key
exchange) performed by original CSIDH, Ours Exchange, and Ours Compute

are as in Table 2 (resp. Table 3).

Wall-clock time Clock cycles Stack memory

CSIDH [4] 42.57 ms 89.2 · 106 cc 3184 bytes

Ours Exchange 34.45 ms 72.2 · 106 cc 2784 bytes

Ours Compute 37.38 ms 78.3 · 106 cc 4368 bytes

Table 2: Wall-clock time and clock cycles of group action

Wall-clock time Clock cycles Key size

CSIDH [4] 193.74 ms 405.9 · 106 cc 64 bytes

Ours Exchange 152.66 ms 319.9 · 106 cc 128 bytes

Ours Compute 178.32 ms 373.6 · 106 cc 64 bytes

Table 3: Wall-clock time and clock cycles of full key exchange, public key size

Since each algorithm is implemented with a non-constant time, we report
the average of 1 million runs. As shown in Table 2 and 3, the group action
using Ours Compute is about 13.9% faster than the original algorithm, and the
entire key exchange is about 8.6% faster than the original CSIDH. In the actual
implementation environment, since algorithms include computing kernel points
and many point multiplications, the running time of the group action and key
exchange is less efficient, compared to that the theoretical cost of point evaluation
and curve coefficient.

Meanwhile, optimized CSIDH using twisted Edwards curves is proposed
in [12,14], and using the Edwards curve is more efficient than using the 2-torsion
method to computing the coefficient of the image curve for higher odd-degree
isogenies. However, by using the 2-torsion method, we can simplify the imple-
mentation as transformations between Montgomery curves and Edwards curves
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are not required. Moreover, by using our method, we provide the fastest perfor-
mance among the CSIDH implementation, using only Montgomery curves.

6 Conclusion

In this paper, we proposed the optimized method for improving the performance
of CSIDH and provided a new parameter to use our method. We set the param-
eters so that the three 2-torsion points on Montgomery curve are all in E(Fp).
Therefore, by using a 2-torsion point, we optimized the cost of computing the
coefficient of the image curve of odd-degree isogeny required in the group ac-
tion. When our algorithm is used, the group action is about 13.9% faster than
the original CSIDH and the entire key exchange is about 8.6% faster than the
original CSIDH.

To apply this method, the prime of the base field and the initial elliptic curve
must be well-selected for a target security level. If we choose the parameter which
enables applying the 2-torsion method, then CSIDH will be optimized further
by studying the application of 2-isogeny as in [3].
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alternate models of elliptic curves. Mathematics of Computation, 85(300):1929–
1951, 2016.

18


