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Abstract LRBC is a new lightweight block cipher that has been proposed for
resource-constrained IoT devices. The cipher is claimed to be secure against
differential cryptanalysis and linear cryptanalysis. However, beside short state
length which is only 16-bits, the structures of the cipher only use the linear
operations, the its s-boxes, and this is a reason why the cipher is completely in-
secure against the mentioned attacks. we present a few examples to show that.
Also, we show that the round function of LRBC has some structural problem
and even if we fix them the cipher does not provide complete diffusion. Hence,
even with replacement of the cipher s-boxes with proper s-boxes, the problem
will not be fixed and it is possible to provide deterministic distinguisher for
any number of round of the cipher. In addition, we show that for any fixed
key, it is possible to create a full code book for the cipher with the complexity
of 2n/2, which should be compared with 2n for any secure n-bit block cipher.

Keywords Differential Cryptanalysis · Linear Cryptanalysis · Full-code-
book · LRBC

1 Introduction

Internet of Things (IoT) received a lot of attention during the last decade. In
an IoT system, multiple objects interact and cooperate to provide different
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services and provide accessibility at any time from many points. Examples of
the important application of IoT are Internet of Vehicles (IoV), Internet of
Energy (IoE), Internet of Sensors (IoS) and Machine to Machine Communica-
tions (M2M) [12]. It is expected the worldwide number of connected devices
to increase to 125 billion connected devices by 2030, while it was nearly 27
billion connected devices in 2017 [19,20] with a global market to reach US $
1,102.6 billion by 2026 [8].

However, advances in IoT architectures and protocols are still necessary to
make the vision of the IoT reality. More notably, designing a secure protocol
for many IoT applications is still a challenge, given the constrained devices in
the edge, e.g. RFID tags. To provide desired security, it is not always possi-
ble to use common solution based on conventional cryptographic primitives,
because those primitives such as AES [1] or SHA3 [22] do not meet the re-
source limitation of RFID tags. Hence, many lightweight primitives have been
proposed last decade, targeting such applications. To just name some of such
lightweight primitives, we can mention SKINNY [4], PRESENT [10], MIBS [17],
SIMON [3], SPECK [3], LS-Designs [15], ZORRO [14] and Fides [7], Quark [2]
and PHOTON [16]. In addition, recently NIST also initiated lightweight cryp-
tography competition, targeting standardization of hash function and AEAD
(authenticated encryption with associated data) for constrained environments
which received 57 submissions for the first round and it is in the second round
now [13].

In this direction, Biswas et al. recently proposed a lightweight block cipher
called LRBC [9]. Designers of this block cipher have investigated its security
against the well known attacks include linear and differential cryptanalysis [21,
6], impossible differential cryptanalysis [5,18], Zero-correlation linear crypt-
analysis [11], and etc. The goal of differential and linear cryptanalysis is to
find the high-probability features of the plaintexts propagate to the cipher-
texts, called distinguisher. If the probability of a distinguisher in the target
block cipher is obviously higher than that of a completely random permutation
operation, that block cipher can be distinguished from a random permutation.
Impossible differential attack is one of the most popular cryptanalytic tools
for block ciphers. Impossible differential cryptanalysis starts with finding an
input difference which results in an output difference with probability 0. Zero-
correlation cryptanalysis is also a novel cryptanalytic approach, proposed by
Bogdanov and Rijmen [11]. In contrast to conventional linear cryptanalysis
which uses linear approximations with high correlation, zero-correlation lin-
ear cryptanalysis is based on linear approximations with a correlation exactly
equal to zero for all keys.

LRBC is a lightweight block cipher proposed by Biswas et al. in 2020 [9]. The
design takes both Feistel and SPN structure. The LRBC has been implemented
using simple logical operations such as XOR operations (⊕), XNOR operations
(�), concatenation (||), transposition process. In this cipher, the long plaintext
has been split into 16-bit blocks of data. In this paper, we analyze the security
of this block cipher, which is its first third-party analysis to the best of our
knowledge.
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In the rest of the paper, in section 2 we describe LRBC briefly and also
provide required preliminaries. In section 3 we provide our analysis of this
cipher. Finally, the paper is concluded in section 4

2 Preliminaries

The encryption process of LRBC has been illustrated in Algorithm 1 and its
F-Function is described in Algorithm 2. In these algorithms, X [i] defines i-th
bit of string X .

Algorithm 1 LRBC Encryption [9]
Input: Plaintext (PT)

1. Read plaintext (PT) and extract the byte values.
2. PT = PT1‖ . . . ‖Ptn and PTi ∈ {0, 1}16, for 1 ≤ i ≤ n.
3. Initialize r with value 1.
4. Each PTi is further su-divided into 4 equal length parts PT k

i , 1 ≤ k ≤
4, 1 ≤ i ≤ n as,

PT 1
i = PTi[1] || PTi[2] || PTi[9] || PTi[10]

PT 2
i = PTi[3] || PTi[4] || PTi[11] || PTi[12]

PT 3
i = PTi[5] || PTi[6] || PTi[13] || PTi[14]

PT 4
i = PTi[7] || PTi[8] || PTi[15] || PTi[16]

5. Compute intermediate round cipher blocks as (a 6= b 6= c 6= d),
IC1

i = PT 1
i �Ka

IC2
i = PT 2

i ⊕Kb

IC3
i = PT 3

i ⊕Kc

IC4
i = PT 4

i �Kd

6. Generate F-Function as,
F 1
i = F Function(IC1

i , IC
3
i )

F 2
i = F Function(IC2

i , IC
4
i )

7. Generate input for next round as,
PT 1

i = F 1
i [5 : 8];PT 2

i = F 2
i [5 : 8]

PT 3
i = F 1

i [1 : 4];PT 4
i = F 2

i [1 : 4]
r = r + 1

8. If (r < 24)
Go to step 5.

9. Else
Go to step 10.

10. ICT k
i = PT k

i , 1 ≤ k ≤ 4, 1 ≤ i ≤ n.
11. Generate Final Cipher as,

CT = ICT 1
i ||ICT 2

i ||ICT 3
i ||ICT 4

i .

Algorithm 2 F-Function [9]
Input: Intermediate cipher blocks IC1

i , IC
2
i , IC

3
i , IC

4
i .

Output: 16-bit ciphertext.

1. S-box computation,
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IS1
i = IC1

i � IC3
i

IS2
i = IC1

i ⊕ 1
IS3

i = IC2
i � IC4

i

IS4
i = IC2

i ⊕ 0
2. P-box computation,

P 1
i = IS1

i [1]||IS2
i [4]||IS1

i [2]||IS2
i [3]

P 2
i = IS1

i [3]||IS2
i [2]||IS1

i [4]||IS2
i [1]

P 3
i = IS3

i [1]||IS4
i [4]||IS3

i [2]||IS4
i [3]

P 4
i = IS3

i [3]||IS4
i [2]||IS3

i [4]||IS4
i [1]

3. L-box computation,
Ti[1] = (P 1

i [1]⊕ P 2
i [4]);Xi[1] = (P 1

i [1]� 0)
Ti[2] = (P 1

i [2]� P 2
i [3]);Xi[2] = (P 1

i [2]⊕ 1)
Ti[3] = (P 1

i [3]⊕ P 2
i [2]);Xi[3] = (P 1

i [3]� 0)
Ti[4] = (P 1

i [4]� P 2
i [1]);Xi[4] = (P 1

i [4]⊕ 1)
Ti[5] = (P 3

i [1]⊕ P 4
i [4]);Xi[5] = (P 2

i [1]� 0)
Ti[6] = (P 3

i [2]� P 4
i [3]);Xi[6] = (P 2

i [2]⊕ 1)
Ti[7] = (P 3

i [3]⊕ P 4
i [2]);Xi[7] = (P 2

i [3]� 0)
Ti[8] = (P 3

i [4]� P 4
i [1]);Xi[8] = (P 2

i [4]⊕ 1)
Li(1) = Ti[1]||Xi[4]||Ti[2]||Xi[3]||Ti[3]||Xi[2]||Ti[4]||Xi[1]
Li(2) = Ti[5]||Xi[8]||Ti[6]||Xi[7]||Ti[7]||Xi[6]||Ti[8]||Xi[5]
z = Li(1)||Li(2)

4. End.

The key schedule process of LRBC also can be presented as K1,K2,K3,K4

where Ki ∈ {0, 1}4, i = 1, · · · , 4. For encryption/decryption process of 24
rounds of LRBC, 24 number of possible combinations of keys can be used in
each round. The design of the key combinations has been shown in Table 1.

Table 1 The key combinations of all rounds of LRBC cipher as Ki,Kj ,Kk,Kl.

Round i j k l Round i j k l
1 1 2 3 4 13 3 2 1 4
2 1 2 4 3 14 3 2 4 1
3 1 3 2 4 15 3 1 2 4
4 1 3 4 2 16 3 1 4 2
5 1 4 3 2 17 3 4 1 2
6 1 4 2 3 18 3 4 2 1
7 2 1 3 4 19 4 2 1 3
8 2 1 4 3 20 4 2 3 1
9 2 3 1 4 21 4 3 2 1
10 2 3 4 1 22 4 3 1 2
11 2 4 3 1 23 4 1 3 2
12 2 4 1 3 24 4 1 2 3

3 Security analysis of LRBC

The designers of LRBC provided security analysis against differential and linear
cryptanalysis [9]. According to their analysis, the LRBC is safe against these
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attacks. However, based on the structure of the LRBC algorithm, all the opera-
tions used in this algorithm are linear, therefore this is the reason that shows
the LRBC is vulnerable against known attacks such as the differential, linear,
impossible differential, zero-correlation attacks and also other attacks. In the
following, we give a few examples to illustrate the vulnerability of the LRBC al-
gorithm to the attacks mentioned above. Before that we prove the F-Function
of LRBC cipher (see Algorithm 2) is not a permutation.

Remark 1 Based on the Algorithm 1, Step 6, F 1
i and F 2

i generates from
(IC1

i , IC
3
i ) and (IC2

i , IC
4
i ), respectively. It shows F 1

i and F 2
i are independent.

But according to Algorithm 2, F 2
i (= Li(2)) is dependent to (IC1

i , IC
2
i , IC

3
i , IC

4
i )

1 and so this shows that the F-Function of LRBC cipher can not be a permu-
tation and we prove it in the following property.

Property 1 Let F : {0, 1}16 → {0, 1}16 is F-Function of LRBC cipher. For any
P ∈ {0, 1}16, and M ∈ {0, 1}4, we have F (P) = F (P⊕ 0M00).

Proof For simplicity, in this proof, we use the same notation of Algorithm 2.
We use the index i = 1, and i = 2 for the inputs P1 = P and P2 = P ⊕ 0M00,
respectively and show F (P1) = F (P2). Based on the notation of Algorithm 2,
P1 = IC1

1 ||IC2
1 ||IC3

1 ||IC4
1 , and P2 = IC1

2 ||IC2
2 ||IC3

2 ||IC4
2 = IC1

1 ||IC2
1 ⊕

M||IC3
1 ||IC4

1 . Since, the only difference in P1 and P2 is in the second nible,
so in the S-box computation phase the IS1

2 and IS2
2 for P2 will remain un-

changed and equal with IS1
1 and IS2

1 , respectively. But the nibles IS3
2 and

IS4
2 are changed as IS3

2 = IS3
1 ⊕ M, and IS4

2 = IS4
1 ⊕ M. In the P-box computa-

tion phase, only the P 3
2 and P 4

2 are affected by IS3
2 and IS4

2 and so we have
(M = (m1||m2||m3||m4)):

P 3
2 = IS3

1 [1]⊕m1||IS4
1 [4]⊕m4||IS3

1 [2]⊕m2||IS4
1 [3]⊕m3,

P 4
2 = IS3

1 [3]⊕m3||IS4
1 [2]⊕m2||IS3

1 [4]⊕m4||IS4
1 [1]⊕m1.

Since, in the P-box computation phase, the P 1
2 and P 2

2 did not change and are
the same with P 1

1 and P 2
1 , respectively, hence in the L-box computation phase,

the X2[1] to X2[8] and also, T2[1] to T2[4] will remain unchange and only the
T2[5] to T2[8] will change as

T2[5] = (P 3
2 [1]⊕ P 4

2 [4]) = (IS3
1 [1]⊕m1 ⊕ IS4

1 [1]⊕m1),

T2[6] = (P 3
2 [2]� P 4

2 [3]) = (IS4
1 [4]⊕m4 ⊕ IS3

1 [4]⊕m4),

T2[7] = (P 3
2 [3]⊕ P 4

2 [2]) = (IS3
1 [2]⊕m2 ⊕ IS4

1 [2]⊕m2),

T2[8] = (P 3
2 [4]� P 4

2 [1]) = (IS4
1 [3]⊕m3 ⊕ IS3

1 [3]⊕m3),

Based on the above equations, we have T2[5] = T1[5], T2[6] = T1[6], T2[7] =
T1[7], and T2[8] = T1[8]. Thus, L1(1)||L1(2) = L2(1)||L2(2), and hence F (P1) =
F (P2).

1 Hence, we have considered the step 6 of Algorithm 1 as (F 1
i , F

2
i ) =

F Function(IC1
i , IC

2
i , IC

3
i , IC

4
i ).
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Differential and Impossible Differential attack. Property 1 helps to creat
differential characteristics with non-zero differential inputs to zero differential
outputs with a probability of one for 24 rounds of LRBC algorithm. For a few
examples, we can have the following characteristics (∆in and ∆out shows the
input and output differential, respectively).

∆in = 0001→ ∆out = 0000,

∆in = 0002→ ∆out = 0000,

∆in = 0003→ ∆out = 0000,

∆in = 0021→ ∆out = 0000,

∆in = 3133→ ∆out = 0000,

and two examples in case of non-zero input to non-zero output are as follows:

∆in = 0009→ ∆out = b525,

∆in = d3fb→ ∆out = 4968.

Obviously, any differential characteristic that have the probability of one
can lead to many impossible differential characteristic. For example, all dif-
ferential characteristic as ∆in = 0001 → (∆out 6= 0) ∈ {0, 1}4 are impossible
differential characteristics for 24 rounds of LRBC and so on.
Linear and Zero correlation attack. We could not find a linear character-
istic with the probability except 1

2 and so all characteristics that we searched
have a bias equal to 0. Therefore, these characteristics can lead to a zero cor-
relation attack. The following is a few examples of this type of characteristics.

Γin = 0002→ Γout = 1000,

Γin = 105b→ Γout = 16ec,

Γin = 24a1→ Γout = 000f,

where Γin and Γout shows the input and output linear masks, respectively.

3.1 A discussion on LRBC structure

According to our analysis above, the design of this algorithm has obvious
bugs. One of the most important drawbacks besides being linear is having
a non-permutation function in its structure that this is due to the use of
depended functions F 1 and F 2. But, the designers also presented the graphical
representation of encryption process of LRBC as shown in Fig. 1 (we borrowed
this image from the original paper [9] intentionally). Based on this graphical
representation, the F 1 and F 2 functions must be independent of each other.
Hence, it shows there should be some typos in the Alg 2 of designers. In
fact we guess the P 2

i that is used to generate Xi[5] to Xi[8] in the L-box
computation phase of Algorithm 2, should be replace by P 3

i . Thus, Xi[5] to
Xi[8] will be as Xi[5] = (P 3

i [1]� 0), Xi[6] = (P 3
i [2]⊕ 1), Xi[7] = (P 3

i [3]� 0),
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Fig. 1 Graphical representation of encryption process of LRBC [9]

and Xi[8] = (P 3
i [4] ⊕ 1). By applying these changes, the F-Function of LRBC

cipher will be a permutation and the details of Algorithm 2 can be the same
as the graphical representation shown in Fig. 1.

Note that although correcting these typos causes to F-Function of LRBC be
a permutation, the LRBC cipher remains insecure against the attacks mentioned
above due to linearity of all operations that are used in the cipher. However,
in the following we show that even by considering a nonlinear operation in
the LRBC’s F-Function, the structure of cipher will not have the necessary
safety. The claim comes from that half the encrypted plaintext is encrypted
independently of the other half. As it can be seen in the Fig. 1, the path that
passes through the F 1 function is completely independent of the path that
the F 2 function uses. Therefore, the time complexity of creating a code-book
for LRBC is only 28 = 256 instead of 216. Hence, we can create a full code-
book only by query 256 chosen-ciphertext. For more details, it is enough to
choose 256 chosen-ciphertext as CT = ICT 1

i ||ICT 2
i ||ICT 3

i ||ICT 4
i = ∗|| ∗ || �
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||� to obtain 256 corresponding plaintext P∗� with a fixed key, where ∗, � ∈
{0, 1, · · · , f}. Now, for a given ciphertext as CT = k||l||m||n, the plaintext will
be as

(
< Pkm.f0f0 > ⊕ < Pln.0f0f >

)
, where < ., . > shows the inner

product.

4 Conclusion

In this work, we analyzed the security of LRBC block cipher and showed that
the design of this cipher have some structural problems and since it does not
use nonlinear operators, so it is insecure against the known attacks.It should be
noted the message/key length in this cipher is only 16- bits. Hence even doing
exhaustive search only costs 216. However, our analysis shows that the cipher
insecurity is structural and for example one can not fix it by using changing
the word length from 4 to 16 and replacing the 4-bit s-boxes by 16-bit perfect
s-boxes. Even in that case the complexity of creating a full-code-book for the
cipher will be 232 not 264. This study once again highlight the important of
proper security analysis of any new primitive to avoid trivial attacks.

It should be noted, the designers have not made their reference-implementations
publicly available. Hence, we put our implementation available at the end of
this paper for any possible use. In addition, we have an implementation avail-
able at this link: http://cpp.sh/6reup
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4 using namespace std ;
5 // the number o f rounds .
6 #define ROUNDS (24)
7

8 // The F−f unc t i on based on the Alg 2 . Page 6 in the LRBC paper .
9 void F Function ( int round , int IC1 [ ] [ 4 ] , int IC2 [ ] [ 4 ] , int IC3 [ ] [ 4 ] ,

10 int IC4 [ ] [ 4 ] , int F1 [ ] [ 8 ] , int F2 [ ] [ 8 ] ) ;
11

12 // St ruc ture o f LRBC keys based on Fig . 2 Page 5 in the LRBC paper .
13 void Key schedule ( int key , int key a [ ] [ 4 ] , int key b [ ] [ 4 ] ,
14 int key c [ ] [ 4 ] , int key d [ ] [ 4 ] ) ;
15 // Encryption proce s s func t i on
16 int Encrypt ion Process ( int pa l i n t ex t , int key ) ;
17 #define Xnor ( a , b ) ( a ˆ b ˆ 1) // Ex−NOR func t i on
18 #define Xor (a , b) ( a ˆ b) // Ex−OR func t i on
19

20 int main ( ) {
21 // read 16−b i t PLAINTEXT and KEY
22 int p a l i n t e x t = 0x0021 ;
23 int key = 0 x234f ;
24 int c i p h e r t e x t = { 0 } ;
25 c i p h e r t e x t = Encrypt ion Process ( pa l i n t ex t , key ) ;
26 // Pr int P la in t ex t
27 std : : cout << ” P la in t ex t :\ t ” ;
28 std : : cout << hex << p a l i n t e x t ;
29 std : : cout << ”\n” ;
30 // Pr int key
31 std : : cout << ”Key :\ t \ t ” ;
32 std : : cout << hex << key ;
33 std : : cout << ”\n” ;
34 // Pr int c i p h e r t e x t
35 std : : cout << ” Ciphertext :\ t ” ;
36 std : : cout << hex << c i p h e r t e x t ;
37 std : : cout << ”\n” ;
38 return 0 ;
39 }
40 // F−f unc t i on based on the Alg 2 . o f Page 6 in the LRBC paper .
41 void F Function ( int round , int IC1 [ ] [ 4 ] , int IC2 [ ] [ 4 ] , int IC3 [ ] [ 4 ] ,
42 int IC4 [ ] [ 4 ] , int L1 [ ] [ 8 ] , int L2 [ ] [ 8 ] ) {
43 //S−box computation
44 int IS1 [ 4 ] = { 0 } ;
45 int IS2 [ 4 ] = { 0 } ;
46 int IS3 [ 4 ] = { 0 } ;
47 int IS4 [ 4 ] = { 0 } ;
48

49 for ( int j = 0 ; j < 4 ; j++) {
50 IS1 [ j ] = Xnor ( IC1 [ round − 1 ] [ j ] , IC3 [ round − 1 ] [ j ] ) ;
51

52 i f ( j != 3)
53 IS2 [ j ] = IC1 [ round − 1 ] [ j ] ;
54 else
55 IS2 [ j ] = Xor ( IC1 [ round − 1 ] [ j ] , 1 ) ;
56

57 IS3 [ j ] = Xnor ( IC2 [ round − 1 ] [ j ] , IC4 [ round − 1 ] [ j ] ) ;
58 IS4 [ j ] = IC2 [ round − 1 ] [ j ] ;
59 }
60 // P−box computation
61 int P1 [ 4 ] = { 0 } ;
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62 int P2 [ 4 ] = { 0 } ;
63 int P3 [ 4 ] = { 0 } ;
64 int P4 [ 4 ] = { 0 } ;
65 P1 [ 0 ] = IS1 [ 0 ] ;
66 P1 [ 1 ] = IS2 [ 3 ] ;
67 P1 [ 2 ] = IS1 [ 1 ] ;
68 P1 [ 3 ] = IS2 [ 2 ] ;
69 P2 [ 0 ] = IS1 [ 2 ] ;
70 P2 [ 1 ] = IS2 [ 1 ] ;
71 P2 [ 2 ] = IS1 [ 3 ] ;
72 P2 [ 3 ] = IS2 [ 0 ] ;
73 P3 [ 0 ] = IS3 [ 0 ] ;
74 P3 [ 1 ] = IS4 [ 3 ] ;
75 P3 [ 2 ] = IS3 [ 1 ] ;
76 P3 [ 3 ] = IS4 [ 2 ] ;
77 P4 [ 0 ] = IS3 [ 2 ] ;
78 P4 [ 1 ] = IS4 [ 1 ] ;
79 P4 [ 2 ] = IS3 [ 3 ] ;
80 P4 [ 3 ] = IS4 [ 0 ] ;
81 // l−box computation
82 int T[ 8 ] = { 0 } ;
83 int X[ 8 ] = { 0 } ;
84 T[ 0 ] = Xor (P1 [ 0 ] , P2 [ 3 ] ) ;
85 T[ 1 ] = Xnor (P1 [ 1 ] , P2 [ 2 ] ) ;
86 T[ 2 ] = Xor (P1 [ 2 ] , P2 [ 1 ] ) ;
87 T[ 3 ] = Xnor (P1 [ 3 ] , P2 [ 0 ] ) ;
88 T[ 4 ] = Xor (P3 [ 0 ] , P4 [ 3 ] ) ;
89 T[ 5 ] = Xnor (P3 [ 1 ] , P4 [ 2 ] ) ;
90 T[ 6 ] = Xor (P3 [ 2 ] , P4 [ 1 ] ) ;
91 T[ 7 ] = Xnor (P3 [ 3 ] , P4 [ 0 ] ) ;
92 X[ 0 ] = Xnor (P1 [ 0 ] , 0 ) ;
93 X[ 1 ] = Xor (P1 [ 1 ] , 1 ) ;
94 X[ 2 ] = Xnor (P1 [ 2 ] , 0 ) ;
95 X[ 3 ] = Xor (P1 [ 3 ] , 1 ) ;
96 X[ 4 ] = Xnor (P2 [ 0 ] , 0 ) ;
97 X[ 5 ] = Xor (P2 [ 1 ] , 1 ) ;
98 X[ 6 ] = Xnor (P2 [ 2 ] , 0 ) ;
99 X[ 7 ] = Xor (P2 [ 3 ] , 1 ) ;

100 // Output −−> L1 [ ] [ ] i s L(1 ) and L2 [ ] [ ] i s L(2 ) in in the LRBC paper .
101 L1 [ round − 1 ] [ 0 ] = T [ 0 ] ;
102 L1 [ round − 1 ] [ 1 ] = X [ 3 ] ;
103 L1 [ round − 1 ] [ 2 ] = T [ 1 ] ;
104 L1 [ round − 1 ] [ 3 ] = X [ 2 ] ;
105 L1 [ round − 1 ] [ 4 ] = T [ 2 ] ;
106 L1 [ round − 1 ] [ 5 ] = X [ 1 ] ;
107 L1 [ round − 1 ] [ 6 ] = T [ 3 ] ;
108 L1 [ round − 1 ] [ 7 ] = X [ 0 ] ;
109 L2 [ round − 1 ] [ 0 ] = T [ 4 ] ;
110 L2 [ round − 1 ] [ 1 ] = X [ 7 ] ;
111 L2 [ round − 1 ] [ 2 ] = T [ 5 ] ;
112 L2 [ round − 1 ] [ 3 ] = X [ 6 ] ;
113 L2 [ round − 1 ] [ 4 ] = T [ 6 ] ;
114 L2 [ round − 1 ] [ 5 ] = X [ 5 ] ;
115 L2 [ round − 1 ] [ 6 ] = T [ 7 ] ;
116 L2 [ round − 1 ] [ 7 ] = X [ 4 ] ;
117 }
118 /∗ Struc ture o f LRBC key based on the Fig . 2 o f Page 5
119 in the LRBC paper . ∗/
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120 void Key schedule ( int key , int key a [ ] [ 4 ] , int key b [ ] [ 4 ] ,
121 int key c [ ] [ 4 ] , int key d [ ] [ 4 ] ) {
122 int K[ 1 6 ] ;
123 for ( int j = 0 ; j < 16 ; j++) {
124 K[ ( 1 5 − j ) ] = b i t s e t <16>(key ) [ j ] ;
125 }
126 int k1 [ 4 ] , k2 [ 4 ] , k3 [ 4 ] , k4 [ 4 ] ;
127 for ( int j = 0 ; j < 16 ; j++) {
128 i f ( j < 4)
129 k1 [ j ] = K[ j ] ;
130 else i f (4 <= j && j < 8)
131 k2 [ j − 4 ] = K[ j ] ;
132 else i f (8 <= j && j < 12)
133 k3 [ j − 8 ] = K[ j ] ;
134 else i f (12 <= j && j < 16)
135 k4 [ j − 12 ] = K[ j ] ;
136 }
137 for ( int j = 0 ; j < 4 ; j++) {
138 key a [ 0 ] [ j ] = k1 [ j ] ;
139 key b [ 0 ] [ j ] = k2 [ j ] ;
140 key c [ 0 ] [ j ] = k3 [ j ] ;
141 key d [ 0 ] [ j ] = k4 [ j ] ; // round 1
142 key a [ 1 ] [ j ] = k1 [ j ] ;
143 key b [ 1 ] [ j ] = k2 [ j ] ;
144 key c [ 1 ] [ j ] = k4 [ j ] ;
145 key d [ 1 ] [ j ] = k3 [ j ] ; // round 2
146 key a [ 2 ] [ j ] = k1 [ j ] ;
147 key b [ 2 ] [ j ] = k3 [ j ] ;
148 key c [ 2 ] [ j ] = k2 [ j ] ;
149 key d [ 2 ] [ j ] = k4 [ j ] ; // round 3
150 key a [ 3 ] [ j ] = k1 [ j ] ;
151 key b [ 3 ] [ j ] = k3 [ j ] ;
152 key c [ 3 ] [ j ] = k4 [ j ] ;
153 key d [ 3 ] [ j ] = k2 [ j ] ; // round 4
154 key a [ 4 ] [ j ] = k1 [ j ] ;
155 key b [ 4 ] [ j ] = k4 [ j ] ;
156 key c [ 4 ] [ j ] = k3 [ j ] ;
157 key d [ 4 ] [ j ] = k2 [ j ] ; // round 5
158 key a [ 5 ] [ j ] = k1 [ j ] ;
159 key b [ 5 ] [ j ] = k4 [ j ] ;
160 key c [ 5 ] [ j ] = k2 [ j ] ;
161 key d [ 5 ] [ j ] = k3 [ j ] ; // round 6
162 key a [ 6 ] [ j ] = k2 [ j ] ;
163 key b [ 6 ] [ j ] = k1 [ j ] ;
164 key c [ 6 ] [ j ] = k3 [ j ] ;
165 key d [ 6 ] [ j ] = k4 [ j ] ; // round 7
166 key a [ 7 ] [ j ] = k2 [ j ] ;
167 key b [ 7 ] [ j ] = k1 [ j ] ;
168 key c [ 7 ] [ j ] = k4 [ j ] ;
169 key d [ 7 ] [ j ] = k3 [ j ] ; // round 8
170 key a [ 8 ] [ j ] = k2 [ j ] ;
171 key b [ 8 ] [ j ] = k3 [ j ] ;
172 key c [ 8 ] [ j ] = k1 [ j ] ;
173 key d [ 8 ] [ j ] = k4 [ j ] ; // round 9
174 key a [ 9 ] [ j ] = k2 [ j ] ;
175 key b [ 9 ] [ j ] = k3 [ j ] ;
176 key c [ 9 ] [ j ] = k4 [ j ] ;
177 key d [ 9 ] [ j ] = k1 [ j ] ; // round 10
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178 key a [ 1 0 ] [ j ] = k2 [ j ] ;
179 key b [ 1 0 ] [ j ] = k4 [ j ] ;
180 key c [ 1 0 ] [ j ] = k3 [ j ] ;
181 key d [ 1 0 ] [ j ] = k1 [ j ] ; // round 11
182 key a [ 1 1 ] [ j ] = k2 [ j ] ;
183 key b [ 1 1 ] [ j ] = k4 [ j ] ;
184 key c [ 1 1 ] [ j ] = k1 [ j ] ;
185 key d [ 1 1 ] [ j ] = k3 [ j ] ; // round 12
186 key a [ 1 2 ] [ j ] = k3 [ j ] ;
187 key b [ 1 2 ] [ j ] = k2 [ j ] ;
188 key c [ 1 2 ] [ j ] = k1 [ j ] ;
189 key d [ 1 2 ] [ j ] = k4 [ j ] ; // round 13
190 key a [ 1 3 ] [ j ] = k3 [ j ] ;
191 key b [ 1 3 ] [ j ] = k2 [ j ] ;
192 key c [ 1 3 ] [ j ] = k4 [ j ] ;
193 key d [ 1 3 ] [ j ] = k1 [ j ] ; // round 14
194 key a [ 1 4 ] [ j ] = k3 [ j ] ;
195 key b [ 1 4 ] [ j ] = k1 [ j ] ;
196 key c [ 1 4 ] [ j ] = k2 [ j ] ;
197 key d [ 1 4 ] [ j ] = k4 [ j ] ; // round 15
198 key a [ 1 5 ] [ j ] = k3 [ j ] ;
199 key b [ 1 5 ] [ j ] = k1 [ j ] ;
200 key c [ 1 5 ] [ j ] = k4 [ j ] ;
201 key d [ 1 5 ] [ j ] = k2 [ j ] ; // round 16
202 key a [ 1 6 ] [ j ] = k3 [ j ] ;
203 key b [ 1 6 ] [ j ] = k4 [ j ] ;
204 key c [ 1 6 ] [ j ] = k1 [ j ] ;
205 key d [ 1 6 ] [ j ] = k2 [ j ] ; // round 17
206 key a [ 1 7 ] [ j ] = k3 [ j ] ;
207 key b [ 1 7 ] [ j ] = k4 [ j ] ;
208 key c [ 1 7 ] [ j ] = k2 [ j ] ;
209 key d [ 1 7 ] [ j ] = k1 [ j ] ; // round 18
210 key a [ 1 8 ] [ j ] = k4 [ j ] ;
211 key b [ 1 8 ] [ j ] = k2 [ j ] ;
212 key c [ 1 8 ] [ j ] = k1 [ j ] ;
213 key d [ 1 8 ] [ j ] = k3 [ j ] ; // round 19
214 key a [ 1 9 ] [ j ] = k4 [ j ] ;
215 key b [ 1 9 ] [ j ] = k2 [ j ] ;
216 key c [ 1 9 ] [ j ] = k3 [ j ] ;
217 key d [ 1 9 ] [ j ] = k1 [ j ] ; // round 20
218 key a [ 2 0 ] [ j ] = k4 [ j ] ;
219 key b [ 2 0 ] [ j ] = k3 [ j ] ;
220 key c [ 2 0 ] [ j ] = k2 [ j ] ;
221 key d [ 2 0 ] [ j ] = k1 [ j ] ; // round 21
222 key a [ 2 1 ] [ j ] = k4 [ j ] ;
223 key b [ 2 1 ] [ j ] = k3 [ j ] ;
224 key c [ 2 1 ] [ j ] = k1 [ j ] ;
225 key d [ 2 1 ] [ j ] = k2 [ j ] ; // round 22
226 key a [ 2 2 ] [ j ] = k4 [ j ] ;
227 key b [ 2 2 ] [ j ] = k1 [ j ] ;
228 key c [ 2 2 ] [ j ] = k3 [ j ] ;
229 key d [ 2 2 ] [ j ] = k2 [ j ] ; // round 23
230 key a [ 2 3 ] [ j ] = k4 [ j ] ;
231 key b [ 2 3 ] [ j ] = k1 [ j ] ;
232 key c [ 2 3 ] [ j ] = k2 [ j ] ;
233 key d [ 2 3 ] [ j ] = k3 [ j ] ; // round 24
234 }
235 }
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236 int Encrypt ion Process ( int pa l i n t ex t , int key )
237 {
238 int START ROUNDS( 0 ) ;
239 // Converting p l a i n t e x t to the PT as array
240 int PT[ 1 6 ] = { 0 } ;
241 for ( int j = 0 ; j < 16 ; j++) {
242 PT[ ( 1 5 − j ) ] = b i t s e t <16>( p a l i n t e x t ) [ j ] ;
243 }
244 // Def inr Var i ab l e s
245 int PT1 [ROUNDS + 1 ] [ 4 ] = { 0 } ;
246 int PT2 [ROUNDS + 1 ] [ 4 ] = { 0 } ;
247 int PT3 [ROUNDS + 1 ] [ 4 ] = { 0 } ;
248 int PT4 [ROUNDS + 1 ] [ 4 ] = { 0 } ;
249 int IC1 [ROUNDS] [ 4 ] = { 0 } ;
250 int IC2 [ROUNDS] [ 4 ] = { 0 } ;
251 int IC3 [ROUNDS] [ 4 ] = { 0 } ;
252 int IC4 [ROUNDS] [ 4 ] = { 0 } ;
253 int F1 [ROUNDS] [ 8 ] = { 0 } ;
254 int F2 [ROUNDS] [ 8 ] = { 0 } ;
255 int key a [ 2 4 ] [ 4 ] = { 0 } ;
256 int key b [ 2 4 ] [ 4 ] = { 0 } ;
257 int key c [ 2 4 ] [ 4 ] = { 0 } ;
258 int key d [ 2 4 ] [ 4 ] = { 0 } ;
259 // Def ine the Key schedule func t i on
260 Key schedule ( key , key a , key b , key c , key d ) ;
261 /∗Converting PT to the PTi ( i =1 ,2 ,3 ,4) based on Step 4
262 o f the Alg 1 . in page 6 in the LRBC paper ∗/
263 PT1 [START ROUNDS] [ 0 ] = PT [ 0 ] ;
264 PT1 [START ROUNDS] [ 1 ] = PT [ 1 ] ;
265 PT1 [START ROUNDS] [ 2 ] = PT [ 8 ] ;
266 PT1 [START ROUNDS] [ 3 ] = PT [ 9 ] ;
267 PT2 [START ROUNDS] [ 0 ] = PT [ 2 ] ;
268 PT2 [START ROUNDS] [ 1 ] = PT [ 3 ] ;
269 PT2 [START ROUNDS] [ 2 ] = PT[ 1 0 ] ;
270 PT2 [START ROUNDS] [ 3 ] = PT[ 1 1 ] ;
271 PT3 [START ROUNDS] [ 0 ] = PT [ 4 ] ;
272 PT3 [START ROUNDS] [ 1 ] = PT [ 5 ] ;
273 PT3 [START ROUNDS] [ 2 ] = PT[ 1 2 ] ;
274 PT3 [START ROUNDS] [ 3 ] = PT[ 1 3 ] ;
275 PT4 [START ROUNDS] [ 0 ] = PT [ 6 ] ;
276 PT4 [START ROUNDS] [ 1 ] = PT [ 7 ] ;
277 PT4 [START ROUNDS] [ 2 ] = PT[ 1 4 ] ;
278 PT4 [START ROUNDS] [ 3 ] = PT[ 1 5 ] ;
279 // s t a r t rounds
280 for ( int r = 1 ; r <= ROUNDS; r++) {
281 // Step 5 o f Alg 1 . in page 6 in the LRBC paper
282 IC1 [ r − 1 ] [ 0 ] = Xnor (PT1 [ r −1 ] [ 0 ] , key a [ r − 1 ] [ 0 ] ) ;
283 IC1 [ r − 1 ] [ 1 ] = Xnor (PT1 [ r −1 ] [ 1 ] , key a [ r − 1 ] [ 1 ] ) ;
284 IC1 [ r − 1 ] [ 2 ] = Xnor (PT1 [ r −1 ] [ 2 ] , key a [ r − 1 ] [ 2 ] ) ;
285 IC1 [ r − 1 ] [ 3 ] = Xnor (PT1 [ r −1 ] [ 3 ] , key a [ r − 1 ] [ 3 ] ) ;
286 IC2 [ r − 1 ] [ 0 ] = Xor (PT2 [ r −1 ] [ 0 ] , key b [ r − 1 ] [ 0 ] ) ;
287 IC2 [ r − 1 ] [ 1 ] = Xor (PT2 [ r −1 ] [ 1 ] , key b [ r − 1 ] [ 1 ] ) ;
288 IC2 [ r − 1 ] [ 2 ] = Xor (PT2 [ r −1 ] [ 2 ] , key b [ r − 1 ] [ 2 ] ) ;
289 IC2 [ r − 1 ] [ 3 ] = Xor (PT2 [ r −1 ] [ 3 ] , key b [ r − 1 ] [ 3 ] ) ;
290 IC3 [ r − 1 ] [ 0 ] = Xor (PT3 [ r −1 ] [ 0 ] , key c [ r − 1 ] [ 0 ] ) ;
291 IC3 [ r − 1 ] [ 1 ] = Xor (PT3 [ r −1 ] [ 1 ] , key c [ r − 1 ] [ 1 ] ) ;
292 IC3 [ r − 1 ] [ 2 ] = Xor (PT3 [ r −1 ] [ 2 ] , key c [ r − 1 ] [ 2 ] ) ;
293 IC3 [ r − 1 ] [ 3 ] = Xor (PT3 [ r −1 ] [ 3 ] , key c [ r − 1 ] [ 3 ] ) ;
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294 IC4 [ r − 1 ] [ 0 ] = Xnor (PT4 [ r −1 ] [ 0 ] , key d [ r − 1 ] [ 0 ] ) ;
295 IC4 [ r − 1 ] [ 1 ] = Xnor (PT4 [ r −1 ] [ 1 ] , key d [ r − 1 ] [ 1 ] ) ;
296 IC4 [ r − 1 ] [ 2 ] = Xnor (PT4 [ r −1 ] [ 2 ] , key d [ r − 1 ] [ 2 ] ) ;
297 IC4 [ r − 1 ] [ 3 ] = Xnor (PT4 [ r −1 ] [ 3 ] , key d [ r − 1 ] [ 3 ] ) ;
298 // Def ine F−f unc t i on ( Step 6 o f the Alg 1 . in page 6 in the LRBC paper )
299 F Function ( r , IC1 , IC2 , IC3 , IC4 , F1 , F2 ) ;
300 // Step 7 o f the Alg 1 . in page 6 in the LRBC paper
301 for ( int j = 0 ; j < 4 ; j++) {
302 PT1 [ r ] [ j ] = F1 [ r − 1 ] [ j + 4 ] ;
303 PT2 [ r ] [ j ] = F2 [ r − 1 ] [ j + 4 ] ;
304 PT3 [ r ] [ j ] = F1 [ r − 1 ] [ j ] ;
305 PT4 [ r ] [ j ] = F2 [ r − 1 ] [ j ] ;
306 }
307 }
308 // Step 10 o f the Alg 1 . in page 6 in the LRBC paper
309 int ICT [ 1 6 ] = { 0 } ;
310 for ( int j = 0 ; j < 4 ; j++) {
311 ICT [ j ] = PT1 [ROUNDS] [ j ] ;
312 ICT [ j + 4 ] = PT2 [ROUNDS] [ j ] ;
313 ICT [ j + 8 ] = PT3 [ROUNDS] [ j ] ;
314 ICT [ j + 12 ] = PT4 [ROUNDS] [ j ] ;
315 }
316 /∗ Converting ICT array to Ciphertext as Hex format
317 and return Ciphertext ∗/
318 int c i p h e r t e x t = 0 ;
319 for ( int i = 0 ; i < 16 ; i++)
320 i f (ICT [ i ] ) c i p h e r t e x t |= (1 << (15 − i ) ) ;
321 return c i p h e r t e x t ;
322 }
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