
Mining for Privacy:
How to Bootstrap a Snarky Blockchain

Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss

The University of Edinburgh and IOHK
papers@tkerber.org akiayias@ed.ac.uk mkohlwei@ed.ac.uk

Abstract. Non-interactive zero-knowledge proofs, and more specifically
succinct non-interactive zero-knowledge arguments (zk-SNARKS), have
been proven to be the “swiss army knife” of the blockchain and dis-
tributed ledger space, with a variety of applications in privacy, interop-
erability and scalability. Many commonly used SNARK systems rely on a
structured reference string, the secure generation of which turns out to be
their Achilles heel: If the randomness used for the generation is known,
the soundness of the proof system can be broken with devastating conse-
quences for the underlying blockchain system that utilises them. In this
work we describe and analyse, for the first time, a blockchain mecha-
nism that produces a secure SRS with the characteristic that security
is shown for the exact same conditions under which the blockchain pro-
tocol is proven to be secure. Our mechanism makes use of the recent
discovery of updateable structure reference strings to perform this secure
generation in a fully distributed manner. In this way, the SRS emanates
from the normal operation of the blockchain protocol itself without the
need of additional security assumptions or off-chain computation and/or
verification. We provide concrete guidelines for the parameterisation of
this system which allows for the completion of a secure setup in a rea-
sonable period of time. We also provide an incentive scheme that, when
paired with the update mechanism, properly incentivises participants
into contributing to secure reference string generation.

1 Introduction

In the domain of distributed ledgers, non-interactive zero-knowledge proofs have
many interesting applications. In particular, they have been successfully used
to introduce privacy into these inherently public peer-to-peer systems. Most
notably, Zerocash [3] demonstrates their usefulness in the creation of private
currencies. Beyond this, there are numerous suggestions [21, 19, 26] to apply the
same technology to smart contracts for increased privacy. Beyond privacy, other
applications of such systems include blockchain interoperability, e.g., [14], and
scalability, e.g., [6].

For the practical efficiency of these designs, two things are paramount: The
succinctness of proofs, and the speed of verifying these proofs. The distributed

mailto:papers@tkerber.org
mailto:akiayias@ed.ac.uk
mailto:mkohlwei@ed.ac.uk

nature of these ledgers mandates that a large number of users store and ver-
ify each proof made, rendering many zero-knowledge proof systems not fit for
purpose.

Research into so-called zk-SNARKs [23, 16, 18, 17, 22] aims at optimising
exactly these features, with proof sizes typically under a kilobyte, and verifi-
cation times in the milliseconds. It is a well-known fact that non-interactive
zero-knowledge requires some shared randomness, or a common reference string.
For many succinct systems [23, 16, 18, 17, 22], a stronger property is necessary:
Not only is a shared random value needed, but it must adhere to a specific
structure. Such structured reference strings (or SRS) typically consist of related

group elements: gx
i

for all i ∈ Zn, for instance.

The obvious way of sampling such a reference string from public randomness
reveals the exponents used – and knowledge of these values breaks the sound-
ness of the proof system itself. To make matters worse, the security of these
systems typically relies (among others) on knowledge of exponent assumptions,
which state that to create group elements related in such a way requires knowing
the underlying exponents and hence any SRS sampler will have to “know” the
exponents used and be trusted to erase them, becoming effectively a single point
of failure for the underlying system. While secure multi-party computation can
be, and has been, used to reduce the trust placed on such a setup process (cf.
[28]), the selection of the participants for the secure computation and the veri-
fication of the generation of the SRS by the MPC protocol retain an element of
centralisation. Using an MPC setup remains a controversial element in the setup
of a decentralised system that requires SNARKs.

Recent work has found succinct zero-knowledge proof systems with updateable
reference strings [17, 22]. In these systems, given a reference string, it is possible
to produce an updated reference string, such that knowing the trapdoor of the
new string requires both knowing the trapdoor of the old string, and knowing
the randomness used in the update. [17] conjectured that a blockchain protocol
may be used to securely generate such a reference string. Nevertheless, the exact
blockchain mechanism that produces the SRS and the description of the security
guarantees it can offer has, so far, remained elusive.

1.1 Our Contributions

In this work we describe and analyse, for the first time, a blockchain mechanism
that produces a secure SRS with the characteristic that security is shown for
the same conditions under which the blockchain protocol is proven to be secure.
In this way, the SRS emanates from the normal operation of the blockchain
protocol itself without the need of additional security assumptions or off-chain
computation and/or verification.

We rely primarily on the chain quality property of “Nakamoto-style” ledgers
[11] – distributed ledgers in which a randomised process selects which user may
append a block to an already established chain. Such ledgers rely on an honest
majority of hashing power – and can be shown to guarantee a chain quality

2

property which suggests that any sufficiently long chain segment will have some
blocks created by an honest user, cf. [11, 24, 12].

Our construction integrates reference string updates into the block creation
process, but we face additional difficulties due to update calculation being a
computationally heavy and, contrary to brute-force hashing, useful operation.
The issues arising from this are two fold. Firstly, an adversarial party can take
shortcuts by supplying a low amount of entropy in their updates, and try to
utilise this additional mining power to subvert the reference string which poten-
tially has a large benefit for the adversary. Secondly, even non-colluding rational
block creators may be incentivised to use bad randomness which would reduce
or remove any security benefits of the updates. Our work addresses both of these
issues.

We prove formally that our mechanism produces a secure reference string
by providing an analysis in the universal composition framework [7]. Further-
more, we demonstrate via experimental analysis how to concretely parameterise
a proof-of-work ledger to ensure that an adversary which takes shortcuts (while
honest users do not) will still fail in subverting the reference string. The concrete
results provided in our experimental section can be used to inform the selection
of parameters in order to run our reference string generation mechanism in live
blockchain systems.

We further introduce an incentive scheme which ensures that rational par-
ticipants in the protocol, who intend to maximise their profits, will avoid low-
entropy attacks. In short, the incentive mechanism mandates that a random
fraction of update contributors in the final chain will be asked to reveal their
trapdoor, which will be verified to be the output of a random oracle by the
underlying ledger rules. Only if a user can demonstrate that their update is
indeed random do they receive a suitably determined reward for their effort.
Careful choice of the reward assignment enables us to demonstrate that rational
participants will utilise high entropy exponents, thus contributing to the SRS
computation.

1.2 Related Work

Beyond the obvious relation to the works introducing updateable reference strings
in [17, 22] (most notably Sonic [22], which we follow closely in our instantiation),
there have been attempts of practically answering the question of how to securely
generate reference strings. These have been in a setting where the string is not
updateable.

Notably [4] describes the mechanism used by Sprout, the first version of
Zcash, during the initial setup of the cryptocurrency’s SRS. It uses multi-party
computation to generate a reference string, with a root of trust on the ini-
tial group of people participating. Due to performance constraints on the MPC
protocol, the set of parties participating is relatively small, although only the
honesty of a single participating party is required.

For the Sapling version of Zcash, a different approach was used when their ref-
erence string was replaced (due to an upgrade of the zero-knowledge statement,

3

and proof system used). Their second CRS generation mechanism, described
in [5] uses a multiple-phase round-robin mechanism to generate a reference string
for Groth’s zk-SNARK [16]. They utilise a random beacon to ensure the uniform
distribution of the result, and a coordinator to perform deterministic auxiliary
computations.

2 Updateable Structured Reference Strings

While updateable structured reference strings (uSRSs) are modelled in the works
we are building on [22, Section 3.2], we model their security in the setting of
universal composability (UC) [7]. Here, a uSRS is a reference string with an
underlying trapdoor τ , which has had a structure function S imposed on it.
S(τ) is the reference string itself, while τ is not revealed to the adversary. In
Appendix A, we prove that Sonic [22] (with small modifications for extraction, as
described in Subsection 2.2), satisfies all the properties we require in this section.
Our main proof is independent of the Sonic protocol however, and applies to any
updateable reference string scheme satisfying the properties laid out in the rest
of this section. We assume a security parameter 1κ.

2.1 Standard Requirements

A uSRS scheme S consists of a trapdoor domain T , an initial trapdoor τ0, a
set P of permissible (and invertible) permutations over T (i.e. bijective func-
tions whose domain and codomain is T), and a structure function S with the
domain T . We require P to include the identity function id, and to be closed
under function composition: ∀p1, p2 ∈ P : p1 ◦ p2 ∈ P . An efficient permuta-
tion lifting † should exist, such that for any permutation p ∈ P and τ ∈ T ,
p†(S(τ)) = S(p(τ)). Finally, there must exist algorithms ρ← ProveUpd(S(τ), p)
and b ← VerifyUpd(S(τ), ρ, S(p(τ))) for creating and verifying update proofs
respectively. The format of these update proofs is not specified, however the
following constraints must be met:

1. Correctness. Applying an honestly generated update proof will verify: ∀p ∈
P, τ ∈ T : VerifyUpd(S(τ),ProveUpd(S(τ), p), S(p(τ))).

2. Structure preservation. Applying any valid update is equivalent to ap-
plying some permutation p ∈ P on the trapdoor: ∀ρ, τ, srs′ : VerifyUpd(S(τ),
ρ, srs′) =⇒ ∃p ∈ P : srs′ = S(p(τ)).

3. Update uniformity. Applying a random permutation is equivalent to se-
lecting a new random trapdoor: Let D be the uniform distribution over T ,
and for all τ ∈ T , let Dτ be the uniform distribution over the multiset
{ p(τ) | p ∈ P }. Then ∀τ ∈ T : D = Dτ .

4. Hardness. The structure function in not invertible: ∀A : τ
R←− T ; τ ′ ←

A(S(τ)); Pr(τ = τ ′) ≤ negl(1κ), where A is a PPT algorithm.

We define a corresponding UC functionality FuSRS, which provides a reference
string S(p(τH)), which the adversary can influence by providing the permutation

4

p ∈ P , given only S(τH) as input, for a randomly sampled τH ∈ T . Given
hardness, FuSRS ensures that the adversary can neither retrieve the trapdoor
τ of the final SRS, nor significantly constrain the resulting reference string’s
domain beyond rejection sampling.

Functionality FuSRS

The updateable structured reference string functionality FuSRS allows the ad-
versary to update a reference string by applying a permutation from a set of
permissible permutations P .

The functionality is parameterised by a trapdoor domain T , a structure func-
tion S, and a set of permissible permutations P over T .

State variables and initialisation values:

Variable Description

τH := ⊥ The honest part of the trapdoor
τ := ⊥ The trapdoor

When receiving a message honest-srs from A:
if τH = ⊥ then let τH

R←− T
return S(τH)

When receiving a message srs from a party φ:

query A with (permute, φ) and receive the reply p
if τ = ⊥ then

assert p ∈ P ∧ τH 6= ⊥
let τ ← p(τH)

return S(τ)

2.2 Simulation Requirements

In addition to the basic properties of correctness, structure preservation, update
uniformity, and hardness, any simulator wishing to help realise FuSRS via updates
will need to have access to two additional properties:

1. Update proof simulation. From an initial SRS S(τ) the simulator knows
the trapdoor for, it can produce a valid update to any (correctly structured)
SRS: ∃Sρ∀τ1, τ2 ∈ T : VerifyUpd(S(τ1),Sρ(τ1, S(τ2)), S(τ2)), where Sρ is a
PPT algorithm.

2. Permutation extraction. The simulator must be capable of extracting the
permutation p underlying any valid adversarial update proof.

The most natural method to achieve permutation extraction would be using
white-box extractors, as the updates themselves typically rely on some form
of knowledge assumption, such as knowledge-of-exponent. As such white-box
extractors cannot be used in UC proofs, we will instead assume that the update
proof is proven to correspond to a specific trapdoor through a lower-level NIZK.

5

Specifically, we assume that the basic update proof ρ is a statement in a NIZK
relation R where the witness is an encoding of the corresponding permutation
p. Provided the NIZK relation can be well-defined, which we will discuss shortly,
a straightforward modification to the ProveUpd and VerifyUpd algorithms exists
which permits the extraction of the underlying permutations even in the UC
setting: ProveUpd also creates a NIZK proof π of (ρ, p), and returns (ρ, π), While
VerifyUpd returns true only if this newly embedded NIZK proof also verifies.

The addition of this NIZK trivially preserves all security properties except
correctness, which constraints R to contain honest updates. The other side is
constrained by the witness needing to encode a correct permutation: If the sim-
ulator extracts p, this should correspond to the relation between the reference
strings for which the update verifies.

We will embed this NIZK proof in our usage of the uSRS scheme, but require
the latter to satisfy the following to enable its proper usage:

Definition 1. A uSRS scheme is permutation extractable if there exists an NP
relation R, whose witnesses are in P , such that:

– ∀τ ∈ T, p ∈ P : (ProveUpd(S(τ), p), p) ∈ R
– ∀τ ∈ T, ρ, srs′ : VerifyUpd(S(τ), ρ, srs′) =⇒ (∃p ∈ P : srs′ = S(p(τ)) ∧

(ρ, p) ∈ R)

These correspond to strengthening correctness and structure preservation.

We show in Appendix A that the relation required for the case of Sonic [22]
can be efficiently constructed, and leave the question of how to achieve extraction
without the reliance on a further NIZK, to future work.

3 Building uSRS from Chain Quality

This section shows how to securely initialise a uSRS using a distributed ledger
by requiring block creators to perform updates on an evolving uSRS during
an initial setup period. After waiting for agreement on the final uSRS, it can
be safely used. To formally model this approach, we discuss the ideal and real
worlds used in our simulation proof. Both worlds have access to a ledger, however
the ideal world’s ledger is independent of the reference string (which is instead
provided by the independent FuSRS functionality), while the real world’s ledger
is programmed to generate it using updates.

3.1 High-Level Overview

This basic premise of this paper relies on Nakamoto-style ledgers basic means of
operation: Different users can extend a chain of blocks if they can satisfy some
condition, with this condition being associated with a type of hardness which
ensures attackers are limited in the number of extensions they can perform.
Given such a structure, we associate a uSRS update with each block prior to

6

a time δ1. This time is selected such that the security properties of the ledger
ensure at least one of the blocks is honest in each competitive chain at this point.

In our modelling, we construct this from a ledger functionality with an addi-
tional leadership state, which is derived from information miners embed in their
blocks. Specifically for our case, these encode uSRS updates. We leave this suf-
ficiently general to allow other uses as well. The basic idea is to show that a
ledger which performs uSRS updates in its leadership state is equivalent to one
which doesn’t, but is accompanied by the FuSRS functionality. They make up our
real and ideal worlds respectively. After δ1, users wait a further period δ2 until
common prefix ensures that all parties agree on the reference string.

While ledger functionalities are often treated as global, our approach effec-
tively constructs one ledger from another – the ledger is not a dependency of
our protocol, but a component. In this context, globality is irrelevant, as the
environment already has direct access to the functionality. We expect protocols
building on the ledger to use it in a global fashion, however. The same is not
true for the uSRS – most usages will likely rely on the simulator being able to
extract its trapdoor.

3.2 Our Ledger Abstraction

Our construction of the updateable structured reference string functionality re-
lies heavily on the properties of common prefix, chain quality, and chain growth
defined in the “Bitcoin backbone” analysis by Garay et al. [11], for Nakamoto-
style consensus algorithms. Despite our use in the section title, we make use of
all three properties, not just that of chain quality. We emphasise chain quality, as
it is the property central to ensuring an honest update has occurred. We briefly
and informally restate the three properties:

– Common prefix. Given the current chains Π1 and Π2 of two parties, and

removing k blocks from the first, it is a prefix of the second: Π
dk
1 ≺ Π2.

– Chain quality. For any party’s current chain Π, any consecutive l blocks
in this chain will include µ blocks created by an honest party.

– Chain growth. If a party’s chain is of length c, then s time slots later, it
will be at least of length c+ γ.

These parameters determine the length of the two phases of our protocol. In the
first phase, we construct the reference string itself from the liveness parameter
(assuming µ ≥ 1), and in the second phase, we wait until this reference string
has propagated to all users. The length of the first phase is at least δ1 ≥ dlγ−1es,
and that of the second at least δ2 ≥ dkγ−1es. Combined, they make up the total
uSRS generation delay δ ≥ (dlγ−1e+ dkγ−1e)s.

We assume a ledger which guarantees the backbone properties, formally
described in Appendix B.1. While we do not prove that any specific existing
proof-of-work ledger (or those based on a different leader-selection mechanism)
formally UC-realise this specific formalisation, we argue that all ledgers with
“Nakamoto-style” (as opposed to BFT-style) consensus do so in Appendix B.2.

7

Our functionality further depends on a global clock Gclock, defined in Appendix E.1.
For the purposes of this paper, it is sufficient that this is a beacon providing
monotonically increasing values representing the current time to any party re-
questing them.

In addition to this, we assume that each block created can contain additional
information, provided by its creator (the “miner”), which can be aggregated to
construct a “leader state”. Each created block is associated with an update a,
and the ledger is parameterised by two procedures, Gen, and Apply, which de-
scribe the honest selection of updates, and the semantics of updates respectively.
Looking forward, these utilise ProveUpd and VerifyUpd internally, although the
formalism is sufficiently general to allow usage of the leader state for other, par-
allel purposes. The exact parameters differ in our ideal and real world, with the
ideal world “hiding” the uSRS updates. Additionally, the real world adds time-
sensitivity: It does nothing to the SRS after the setup period. Gen is randomised,
takes a leader state σ and the current time t as inputs, and produces an update
a. Apply takes a leader state σ, an update a, and an update time t, and returns
a successor state σ′: σ′ = Apply(σ, (a, t)). For a chain, the leader state may be
computed by sequentially applying all updates in the chain, starting from an
initial state ∅.

The adversary controls when and which party creates a new block, as well as
the transactions each new block contains (provided it does not violate the back-
bone properties). For transactions created by a corrupted party, the adversary
can further control the block’s timestamp (within the reasonable limits of not
being in the future, and being after the previous block), and the desired update
a itself. For honest parties updates, Gen is used instead.

The UC interfaces our ledger provides are:

– submit. Submitting new transactions for the ledger.
– read. Reading the confirmed sequence of transactions.
– projection. Reading the currently chain’s sequence of (potentially uncon-

firmed) transactions.
– leader-state. Reading the confirmed leader state.
– advance. The adversary switches a party to a longer chain.
– extend. The adversary instructs a party to create a block.

3.3 The Ideal World

Our ideal world consists of two functionalities, composed in parallel (by which
we mean: the environment may address either, and they do not interact). The
first is a variant of FuSRS, with the modification that it cannot be addressed
by honest parties before δ time slots have passed. Formally, this modification is
made with a wrapper functionality Wdelay(F, δ), described in Appendix E.4.

The second is the Nakamoto-style ledger functionality, parameterised with
arbitrary leader-state generation and application procedures which are also par-
tially used in the hybrid world: Gen = GenIdeal and Apply = ApplyIdeal, and the
following ledger parameters:

8

1. A common prefix parameter k.
2. Chain quality parameters µ and l.
3. Chain growth parameters γ and s.

Formally then, our ideal world consists of the pair (Wdelay(δ,FuSRS),F ideal
nakLedger),

as well as the global functionality Gclock.

3.4 The Hybrid World

In our hybrid world, we use a uSRS scheme S, with algorithms ProveUpd,
VerifyUpd, the structure function S, permissible permutations P , permutation
lifting †, initial trapdoor τ0, and the associated NIZK relation R. The hybrid
world consists of a separate Nakamoto-style ledger F real

nakLedger, a NIZK function-

ality FRNIZK, and the global clock Gclock. The ledger is then parameterised by the
same chain parameters as those in the ideal world, and the following leader-state
procedures:

procedure Apply((srs, σideal), ((srs′, ρ, π, aideal), t))
if srs = ∅ then let srs← S(τ0)

if t ≤ δ1 ∧ VerifyUpd(srs, ρ, srs′) then
send (verify, ρ, π) to FRNIZK and receive the reply b
if b then

let srs← srs′

return (srs,ApplyIdeal(σideal, aideal, t))

procedure Gen((srs, σideal), t)
if t > δ1 then

return (ε, ε, ε,GenIdeal(σideal, t))
else

let p
R←− P ; ρ← ProveUpd(srs, p)

send (prove, ρ, p) to FRNIZK and receive the reply π
return (p†(srs), ρ, π,GenIdeal(σideal, t))

Note that these parameterising algorithms use FRNIZK, and are therefore the
reason the ledger depends on this hybrid functionality.

Key here is that once a block is received after the initial chain quality period,
any reference string update it may declare is no longer carried out – at this point
the uSRS is not necessarily stable, as the chain may still be reorganised, but
should not change for this particular chain. Further, these procedures always
mimic the ideal-world behaviour, extending it rather than replacing it. This
demonstrates the composability of allowing block leaders to produce updates:
One system using updates for security does not impact other parallel uses of the
leadership state.

There is little additional work to be done to UC-emulate the ideal-world
behaviour, besides ensuring that queries are routed appropriately, especially how
the reference string is queried in the hybrid world. We describe this with a
small “adaptor” protocol in Appendix C, ledger-adaptor. This forwards most
queries, and treats uSRS queries as querying the appropriate part of the leader
state after time δ, and by ignoring them before. Formally, our real world consists
of the system ledger-adaptor(δ,F real

nakLedger(FRNIZK)), as well as the global Gclock.

9

3.5 Alternative Usage of Gclock

In both worlds, Gclock is used to determine the cutoff point after which the
reference string is deemed secure. A simple alternative to this usage of the clock
is to instead rely on the length of the chain for this purpose. We did not make
this choice as it complicates the ideal world: The delay wrapper would have to
communicate with the ideal world ledger, and query it for the length of parties’
chains. We do not regard a clock as a significant additional assumption, however
little of the remainder of this paper differs if chain lengths are used instead. Even
in this case, a clock is present to guarantee liveness, although it used only to
constrain the adversary.

4 Security Analysis

As for any UC proof, we require a simulator which ensures the ideal world
behaves indistinguishably from the real world. Our simulator, Sledger-adaptor, is
formally described in Appendix D. Intuitively, this simulator ensures that the
real and ideal world’s ledgers are equivalent, and that the real world uSRS is
equal to the uSRS produced in the ideal world.

In order to achieve this, the simulator ensures that the initial honest reference
string provided by FuSRS is the basis of the uSRS of a simulated execution of
the real-world protocol. Doing so relies primarily on three things: First, the
simulator’s ability to extract the permutation from any adversarial reference
string update. Second, the simulator’s ability to, given the adversarial trapdoors,
then produce a valid “honest” update which ensures the reference string is a
random permutation of the ideal-world honest string S(τH). And finally, the
simulator’s knowledge that the final reference string in its simulation will have
at least one honest update, in which it can apply this trick.

The simulator observes each of the competing chains in the ledger, and when
the first honest update occurs in each, instead coerces the chain into a permu-
tation of the ideal honest reference string. For each subsequent honest update,
the simulator instead performs the update, remembering the randomness used.
The result is that for each chain, the simulator either knows the entire trapdoor
of the reference string (if there was no honest update), or all except for the first
honest update. By the backbone properties enforced by FnakLedger, the simulator
knows that the first case will not apply, and that only one prefix of valid up-
dates will exist, after δ time has passed. As a result, the simulator knows exactly
which permutation to apply to the honest ideal reference string to match the
real world’s result.

As FuSRS only provides a single honest SRS, the simulator applies a random
permutation to this for each initial honest update, ensuring that the updates of
different chains remain unlinkable.

We will prove UC-emulation, and will therefore refer to the ideal and real
worlds frequently throughout the proof. Beyond this, the simulator locally sim-
ulates the NIZK functionality and the ledger functionality. To be clear which

10

functionality we are talking about at any point, we will use F ideal
nakLedger, F simul

nakLedger,

and F real
nakLedger to refer to the ideal, simulated, and real ledgers respectively. We

refer to the real-world NIZK functionality as FRNIZK, and the simulted NIZK as
Sledger-adaptor.FRNIZK. The notation F.x is used to mean “the variable x within
the functionality F” – it is also used to refer to the ideal trapdoor FuSRS.τH.

Our simulator, which we assume is provided with the update simulation algo-
rithm Sρ, and can extract permutations from adversarial updates via a simulated
NIZK, is equipped with a helper function Xp. Given a series of updates, Xp com-
putes the permutation applied to the reference string’s trapdoor as far back as
possible. It receives as inputs the sequence of updates ~a, and has access to a
mapping W from NIZK statements and proofs to corresponding witnesses (as
far as the simulator knows them), and a mapping A from honest updates to the
permutation applied to the honest SRS. It returns a permutation in P , which
can be applied either to the initial trapdoor τ0, or the initial honest trapdoor
τH, to create the same SRS as the sequence of updates. We prove this in the
following auxiliary lemma that will be used in the proof of our main theorem.

Lemma 1. In the ideal-world execution of Sledger-adaptor, Xp(~a) outputs a per-
mutation p ∈ P , such that its inverse, applied to the underlying trapdoor of the
SRS generated from the given sequence of updates ~a, is either the initial trapdoor
τ0, or the honest trapdoor τH.

Proof. The output of Xp is either id, a permutation in the mapping A, a permu-
tation recorded by the simulated NIZK, or a series of function compositions of
the above. As only permutations in P are stored in A, id ∈ P , and as P is closed
under composition, the returned permutation is in P . The permutation applied
corresponds directly to how the underlying trapdoor of the uSRS is updated by
longest suffix of updates in ~a for which the trapdoor is known – i.e. the trapdoor
permutation is recorded in FRNIZK.W , or a permutation of the honest trapdoor
is recorded in A. When this isn’t the case, the update is skipped, and the trap-
door reset, ensuring that any trapdoors preceeding a non-extractable value are
ignored. The case that the trapdoors are known for all of the updates is trivial;
as by definition inverting this permutation will result in the initial trapdoor τ0.

If, however, at any point the trapdoor is not recorded in FRNIZK.W (despite
VerifyUpd succeeding), at this point the trapdoor must be honestly generated.
The reasoning for this is straightforward: As this update was not skipped, the
NIZK proofs associated with it must verify. The only way for the proofs to verify,
and the NIZK functionality not to have recorded the corresponding witnesses,
however, is that the simulator added the proof manually to the NIZK’s set of
valid proofs. This may only happens at one point – when creating simulated
NIZK proofs to accompany simulated update proofs, which is used only for
random permutations applied to the honest reference strings. Further, only one
such instance may occur in each chain – this stems from the fact that witness-
less SRS updates are only carried out by the simulator if it can fully extract the
trapdoor of a series of updates. As this happening by accident – or the adversary
re-applying an honest update elsewhere – implies breaking the hardness of the

11

structure function, we can say with overwhelming probability that at most one
witness-less update is in each sequence of updates.

Finally, we note that for this witness-less update, the remaining trapdoor
defines a permutation of FuSRS.τH. Algorithm Xp extracts the trapdoors from all
subsequent updates to compute the permutation applied to this honest trapdoor
– ensuring precisely that inverting this permutation results in FuSRS.τH. ut

Theorem 1. For any updateable reference string scheme S, satisfying cor-
rectness, structure preservation, update uniformity, hardness, update simu-
lation with Sρ, and permutation extraction with R, ledger-adaptor (in
the (F real

nakLedger,FRNIZK)-hybrid world, parameterised as in Subsection 3.4) UC-

emulates the pair of functionalities (F ideal
nakLedger,Wdelay(δ,FuSRS)), parameterised

as in Subsection 3.3, in the presence of the global clock functionality Gclock, with
the simulator Sledger-adaptor.

Proof. If the environment can distinguish between these worlds, there must exist
a minimal series of interactions the environment, combined with its adversary,
can make to cause the other UC ITMs to behave sufficiently differently to allow
distinguishing. We will show that for any interaction the environment makes,
it will not learn enough information to distinguish the two worlds, and there-
fore that across all (polynomially many) interactions it also cannot distinguish.
First, we consider what actions the adversary/environment pair can take. The
interactions fall into the following categories:

1. Honest or adversarial submit, read, leader-state, or projection queries.
2. Interactions with FRNIZK, or Gclock.
3. advance queries.
4. extend queries.
5. srs queries.

We will establish the following invariants throughout the execution of the
UC security game:

– Gclock has the same internal state in both the real and ideal worlds.
– Sledger-adaptor.FRNIZK has the same internal state as the real-world FRNIZK,

except that it does not know the witnesses for honestly generated proofs or
their mauled variants.

– Sledger-adaptor.F simul
nakLedger has the same internal state as the real-world ledger

F real
nakLedger, and differs from the ideal-world ledger F ideal

nakLedger only in that all
state updates contain an addition SRS update term.

Ledger reads and submissions. Given these invariants, it is clear that the envi-
ronment cannot distinguish given the results of read and projection queries –
they must return the same value! Further, as the adaptor protocol strips the SRS
component from the leader state, and the ideal world’s leader state is precisely
defined as being without this component, it is clear that also leader-state
queries will be indistinguishable (even if made directly by the adversary, since

12

these are answered by F simul
nakLedger). For submit queries by either the environment

or the adversary, both worlds will add the transaction, with the current times-
tamp, to their ledger’s submitted transactions, and will notify the adversary
once, and return the transaction together with the timestamp. This does not
reveal any information to the environment which could be used to distinguish.

Queries to other functionalities. Likewise, FRNIZK queries clearly will not permit
the environment to distinguish, or invalidate the above mentioned invariants –
they do not go beyond the NIZK functionality, and this does not read – only
update – the witness map. Similarly for Gclock, as this exists in both worlds,
and is not manipulated by the simulator (or any other entity), beyond read-only
operations, it will behave identically.

advance queries. The simulator first simulates advancing a specified party’s
ledger state on F simul

nakLedger. If this succeeds, the simulator knows that the ad-
vancement will succeed in the ideal world as well, where the ledger state is less
constrained. It removes the SRS updates from the ledger state being switched to,
and issues a corresponding advance query to F ideal

nakLedger. If the simulated advance
does not succeed, it will also have failed in the real world execution, both of which
will abort. If the update succeeds, the invariant between the various ledger states
is preserved – up to the lack of SRS updates in the ideal world, they are the
same. If the update fails, both worlds terminate execution.

(extend, φ,B, t, a) queries. Let us first detail the function of extend queries.
Called by the adversary, if the party parameter φ represents an honest party,
the query runs Gen to generate a new update a to apply to this party’s view of
the leadership state. If the party is adversarial on the other hand, an adversary-
supplied update parameter a is used instead. With the timestamp t (or the
accurate time for honestly created blocks), block content B, state update a, and
a randomly sampled ID, a new block is created, and appended to φ’s projected
chain. Finally, it is asserted that the common prefix property still holds.

Once the simulator intercepts such a query, it needs to ensure not only that
the same extends are carried out in the simulated and ideal ledgers, but also
that honest SRS updates are (when necessary) sourced from the FuSRS function-
ality. In the case that the party extending the chain is adversarial, this is simple
– split the adversarial real world update a into an SRS update and an ideal-world
update (it is worth noting that these need not be valid), and forward only the
ideal-world update in an extend query to F ideal

nakLedger. This already results in the
real and ideal ledgers satisfying the invariant, leaving the simulated ledger. For
this, the simulator manually inserts the ID returned from the ideal-world ledger,
inserts the new block, and asserts the same common prefix condition as the real
world does, ensuring these two ledgers are in the same state and – crucially –
abort under the same conditions. The returned value is identical to that returned
in the real world.

For honest updates, things are more complex. If current time is after when
honest SRS updates are performed, the honest SRS update is set to ε, as in

13

the real world. Otherwise, the SRS is reconstructed from the party’s current
projected ledger view, and the simulator attempts to extract the trapdoor per-
mutation from this SRS. If it succeeds in extracting the entire trapdoor, the
simulator ensures it is updated such that it can no longer do so: It updates the
uSRS to a permutation of the honest uSRS supplied by FuSRS, by first apply-
ing a fresh permutation to it, recording this in the map A, and creating the
corresponding update using Sρ.

By the update uniformity property, this is indistinguishable from the result
of Gen, which the environment expects. In case the full trapdoor cannot be ex-
tracted, Gen is used to generate the “honest” SRS update, ensuring the simulator
knows the trapdoor for this update as well (as it retains the NIZK witness used).
Finally, the ideal ledger is sent an extend query, with aideal set to ⊥. Execu-
tion proceeds as in the adversarial case, with the SRS part of the update being
distributed equally in the real and simulated ledgers, and the ideal-world com-
ponent being generated directly by the ideal world functionality (and therefore
also being distributed the same as in the real world, which sampled from the
same distribution).

srs queries. Finally, a user may query the SRS. If this happens before time δ,
both worlds return ⊥ – the delay wrapper does so in the ideal world, and the
adaptor protocol does so in the real world. Otherwise, the real world reconstructs
the leadership state, and returns only the SRS component, while the ideal world
queries the simulator for a trapdoor permutation, and, if the SRS is not yet
finalised, applies it to the honest SRS.

Recall that after every extension, FnakLedger ensures that the common prefix
property holds. Further, once a party’s projected ledger state has some common
prefix, this is only ever extended – either by extending the whole projection (in
extend), or by switching to a different one with the same prefix (in advance).
After time δ, if chain quality and liveness hold, we can split each party’s projected
chain into two parts: Blocks with a timestamp at or before the time δ1, and those
with a timestamp after it. As extend enforces timestamps to be monotonically
increasing, these concatenate to form the entire chain. By the chain growth
property, and as it is at least time δ, we know that the first part contains at
least l blocks, and the second at least k blocks. Chain quality ensures that the
first part contains at least µ honest blocks, while Apply ignores updates with a
timestamps after δ1. Combined, these facts imply that, for any party, the valid
SRS updates, taken from their stable chain, are identical.

After the first SRS query, both the ideal and real worlds will not change what
value they return, the former because it has then recorded the final trapdoor, and
the latter because the common prefix containing valid reference string updates
cannot change. The first query is therefore the most interesting.

From Lemma 1, we know that the permutation p extracted by the simulator
when it is queried for the SRS permutation will, inverted and applied to the
SRS’ underlying trapdoor, either result in τ0, or FuSRS.τH. From the above we
know that the SRS the simulator is extracting from matches that which honest
parties generate – containing at least one honest update (by chain quality). As

14

the first honest update in any chain is extracted from a FuSRS-provided reference
string, (and, by the correctness property, it is valid) it cannot be τ0. Therefore,
the simulator, by providing p to FuSRS, satisfies its requirements of a permissible
permutation in P , and ensures that once the permutation is applied, the same
SRS is returned: S(p(τH)) = S(p(p−1(τ))) = S(τ).

In the above we have brushed aside the issue of aborts, however these are
also simple to deal with. FuSRS aborts if given an invalid permutation, which the
simulator does not do. In the real world, if liveness or chain quality are violated,
FnakLedger aborts. In each query, the simulator ensures that the same query is
run against the simulated ledger, ensuring that both will abort under the same
conditions. This is the primary purpose for which FuSRS asks for a permutation
on each invocation, despite only using it on the first, as well as why it supplies
the identity of the calling party. ut

As it is possible to construct (non-succinct) non-interactive zero-knowledge
from a random oracle, we can remove the requirement on FRNIZK and instead
rely on a random oracle FRO (formally described in Appendix E.3). As almost
all constructions of Nakamoto-style ledgers are in the random oracle model, our
usage of a low-level NIZK is not a major additional assumption.

Corollary 1. For any updateable reference string scheme S, it is possi-
ble to realise the pair of functionalities (F ideal

nakLedger,Wdelay(δ,FuSRS)) in the

(F real
nakLedger,FRO)-hybrid world, and in the presence of Gclock.

5 Implementation and Parameter Selection

We have implemented [8] Sonic’s update mechanism (described in Appendix A),
and using this provide performance estimates for SRS generation in a live block-
chain network. Further, we simulate the optimal adversarial attack strategy,
and demonstrate how this may be used to select optimal parameters for the
secure generation of reference strings. We demonstrate that for currently typical
applications, these parameters are practical for real-world usage.

While we have not modified a full blockchain client to utilise this extended
consensus, we discuss the impact it would have on each of the following points:

– block verification
– block generation
– chain reorganisation
– network usage
– local storage

While the Bitcoin backbone paper [11] provides bounds on chain parameters
in given situations, these have three main drawbacks in the context of this paper:

1. The bounds are not tight.

15

2. The criteria for security is stricter than required: It asserts liveness and
persistence are never violated, while this paper only requires them in a few
select cases.

3. The analysis is in the synchronous model – while the generation and verifi-
cation of reference strings can take a significant amount of time.

To obtain sensible parameters to generate reference strings, we measure the
time taken for computing and verifying updates, and factor this processing over-
head into a simulation of the optimal adversarial strategy to subvert the SRS
generation procedure.

The implementation and numbers provided for execution time and storage
use the commonly used BLS12-381 curve pair. Circuits which have been practi-
cally deployed tend to require a depth of at most half a million, so we will often
assume a Sonic uSRS depth of 500,000. All data shown is available at [8], and
may be reproduced with the provided source code.

5.1 Execution Time of uSRS Operations

We tested our implementation of the uSRS generation mechanism on an AMD
Ryzen 7 2700X 8-core processor with hyper-threading enabled. This processor
is a standard consumer-grade CPU – in proof-of-work mining it is likely that
miners will have access to better hardware. All operations have been paral-
lelised, and the verification operation has been additionally optimised to use less
pairing operations. The workload, especially for uSRS generation, is also highly
parallelisable (consisting of primarily a large number of group exponentiations),
suggesting further improvements by utilising GPUs and clusters of machines are
possible. If such improvements are applied, the total time delay required for the
secure generation procedure, as well as the optimal intended block time could be
reduced proportionally to the increase in parallelisation; assuming paralellisation
across 10 machines could reduce both by an order of magnitude, for instance.

We measured the time taken for create and verify a uSRS update in relation
to the uSRS depth in Figure 1. For our NIZK, we use a UC-secure Fischlin
proof, described in Appendix A.3. We measure the overhead of these proofs to
be 23.956ms for proving and 1.567ms for verifying (a Fiat-Shamir proof of the
same type was measured to 0.921ms and 0.870ms respectively), using SHA-3 in
place of a random oracle. For larger dimensions of reference strings, neither have
much impact on the total runtime.

Finally, we implemented aggregate updates: The bulk of Sonic’s update ver-
ification procedure is concerned with verifying the structure of the reference
string, while a few parts of it verify that it is an exponentiation of the previous
string. By retaining only the latter parts, a series of updates can be verified
almost as quickly as a single update. The verification of aggregate proofs has an
overhead of 1.634ms per update included in the aggregate. The bulk of this cost
arises from the verification of the Fischlin proof. This allows for even large chain
reorganisations to be quickly verified.

16

20 24 28 212 216 220

10−1

100

101

102

103

d

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Generation

Verification

Fig. 1. The time taken to produce and verify uSRS updates.

5.2 Simulating the Optimal Attack Strategy

The mechanism we have presented in this paper operates in two phases. In the
first phase, the adversary has the chance to subvert the reference string, while in
the second phase it can carry out a denial of service attack, potentially convincing
users that an incorrect (but not subverted) reference string is the canonical one.

For the first phase, the adversary’s optimal strategy is to mine entirely in-
dependently from any honest activity. The reason for this is straight-forward:
the adversary cannot adopt any honest block – doing so would break the sub-
version of its reference string. Further, the adversary has no reason to share
any of its own blocks except if it reached the threshold of having a fully valid
subverted reference string – it only gives the honest network a chance to catch
up, in the case that the adversary is ahead. This allows for a straightforward
simulation of the consensus protocol: The probability of either honest parties,
or the adversary creating an individual block is exponentially distributed. In
addition to this, honest parties have a fixed processing overhead before they
may start mining: This may include a networking delay, but more crucially it
includes the time taken to verify a newly received block’s uSRS update, and to
produce the subsequent update. We assume that the adversary can bypass large
parts of this overhead, by virtue of network dominance, by skipping verification,
and by producing reference string updates with small (and therefore insecure)
exponents.

The overhead manifests as shifting the honest party’s exponential distribu-
tion for block generation by a fixed constant. More precisely, we parameterise
each experiment by:

– The intended time between blocks b

17

– The combined networking, and update overhead d

– The fraction of adversarial mining power α

Of these three, d can be seen as fixed, depending on the depth of the uSRS
being generated, and the corresponding speed of verification and update gener-
ation. For simplicity, we assume a uSRS depth of 500,000, which corresponds to
d being approximately 250 seconds on our single-CPU setup.

We draw the time of the next adversarial block from the exponential distribu-
tion with λ = α/b, and the next honest block from the exponential distribution
with λ = (1−α)/b, shifted to the right by d (i.e. the probability density is 0 for
x < d). The simulation is then advanced to the lesser of the two times, which
is resampled from the same distribution. The number of times the adversary or
the honest parties have extended their chain is counted, and the honest parties
win at any point if and only if the honest chain is longer than the adversarial
chain.

We run one million experiments in parallel, either up to a fixed end time, or
until a large enough fraction of the experiments end in honest victory. We refer
to the probability of an adversarial success as the probability of subversion ε.
Figure 2 demonstrates that for a fixed d, a tradeoff exists between the target
time between blocks b, and the time until any given subversion threshold ε is
met.

0 20 40 60 80 100

10−1

100

101

102

Intended time between blocks b (min)

P
h
a
se

1
le

n
g
th
δ 1

(d
ay

s)

α = .45 ε = 10−5

α = .33 ε = 10−4

α = .1 ε = 10−3

Fig. 2. The time required to generate a secure uSRS, as a function of the intended
time between blocks. This depends on the proportion of adversarial mining power α,
and the bound ε on the probablity of subversion. Each data point represents the time
until at most a fraction of ε of one million parallel experiments ended in adversarial
victory. Values are given assuming d = 250s, and both axes scale linearly to d.

18

A practical limit of this simulation approach is that it cannot by itself de-
termine the length of time needed to wait until ε is negligible for most typical
security parameters. We can however observe that for fixed parameters, ε de-
creases approximately exponentially as time passes, as seen in Figure 3, outside
of a brief initial window.

0 100 200 300 400 500

2−6

2−5

2−4

2−3

2−2

2−1

20

Time (multiples of b)

P
ro

b
a
b
il
it

y
o
f

su
b
v
er

si
o
n
ε

α = .45
α = .33
α = .1

Fig. 3. The probability of the reference string being subverted ε, as a function of the
time passed, in multiples of the intended time between blocks b. This depends on the
proportion of adversarial mining power α, and the compound overhead d. b is selected
to be approximately at the minimum seen in Figure 2, with d = .15b, d = .4b, and
d = 2b for the α = .45, .33, and .1 respectively.

While the second phase – that where the adversary attempts to create dis-
agreement as to which reference string is the canonical one – may initially seem
different, its optimal strategy is identical, as it essentially wishes to create as
long as possible a fork, starting one block prior to the end of the first phase (to
select a different reference string). As creating the longest fork forking at this
point does not allow the adversary to accept honest blocks after it, nor gives
the adversary a reason to share its blocks, the adversarial strategy – and this
analysis – is the same.

5.3 Storage and Network Usage

A Sonic reference string consists of 4d+ 1 elements in G1 and 4d+ 2 elements in
G2. For the commonly used BLS12-381 curve pair, G1 elements have a storage
requirement of 48 bytes each, and G2 elements of 96 bytes each. An update by
itself includes an additional two G1 elements, and a Fischlin proof, which itself

19

consists of twelve iterations, each with 2 elements in F∗q (each of which requires
32 bytes to store), two elements of G1, and a 16-bit nonce. Each part of an
aggregate update has an additional two G2 elements.

As it is not necessary to retain intermediate reference strings, and aggregate
updates are sufficient, for a chain of length l, and with an uSRS depth of d, this
is a storage requirement of 576d+ 288 bytes for the uSRS itself, and l · (2 · 48 +
2 · 96 + 12 · (2 · 32 + 2 · 48 + 2)) = 2, 232l bytes for storing updates.

For 500,000 gates and chains of length 20,000, this corresponds to a total
storage requirement of 318MiB, with the reference string itself being the largest
part, at 275MiB. Although this is quite manageable as a storage requirement,
it must be considered that the SRS itself (and a single update of around 2KiB)
has to be re-transmitted with each block. While at the common home-internet
upload speed of 10Mb/s, a block would take slightly under 4 minutes to transmit,
it is reasonable to assume that miners would invest in high-grade connections to
offset the chance of their block being replaced with a competitors. Speeds up to
10Gb/s are commercially available, which would reduce the transmission time
to under a second.

One remaining issue is that of denial-of-service. The receipt and verification
of a reference string is costly, and should therefore only be done after a block’s
proof-of-work has been received, which should depend on a commitment to the
subsequently sent reference string – such as the update proof itself. An attacker
can still perform a limited denial of service attack with blocks they legitimately
mined – however this uses no more resources in verification than a legitimate
block would.

5.4 Conclusion

Figure 2 provides insight into the space of tradeoffs which can be made for the
secure generation of reference string. While the secure generation of a reference
string is possible even for a small honest majority, the time required to do so
is much higher than for a more relaxed setting, with δ1 being approximately
three months for α = .45, in contrast to around two days for α = .33. The full
setup is double this: six months for α = .45, and four days for α = .33. Perhaps
surprisingly, the desired probability of subversion ε has a more muted effect on
the required setup time.

The minima observed for δ1 suggest that simply deploying this system on
existing blockchain systems as they are currently parameterised is unwise: Most
blockchains emphasise small values of b to enable transactions to settle quickly,
with even notoriously slow chains such as Bitcoin having values on the lower end
of our scale. This is directly linked to the compound overhead of verification and
update generation – when b is small, the adversary can better use it’s advantage
of bypassing large parts of the verification and update procedure. As previously
noted, there is a lot of room for speedup by assuming miners use greater com-
putation power – if each miner used ten machines, even the α = .45 case would
be reduced to under a month in total.

20

6 Discussion

While the clean generation of a new reference string from a ledger protocol is
itself useful, real-world situations are likely to be more complex. In this section
we discuss practical adjustments that may be made.

6.1 Low-Entropy Update Mitigation

While our analysis indicates that in a Byzantine, honest majority setting, our
protocol produces a trustworthy reference string, it also asks participants to
dedicate computational resources to updates. It follows that in a rational setting,
players need to be properly incentivised to follow the protocol. We emphasise
that the rational setting is not the focus of this paper, and optimistically, in a
setting where the majority of miners are rational and a small fraction honest, the
few honest blocks are sufficient to eliminate the issue described in this section.

For Sonic, a protocol deviation exists that breaks the security of the reference
string: By choosing the exponent in a specific low-entropy fashion, (e.g., y = 2l)
the computation of the update, which primarily relies on repeated squaring, can
be done significantly faster. More generally, some permutations in P may be more
efficiently computable. In more detail, instead of using a random permutation p,
a specific choice is made that eases the computation of srs′ – in the most extreme
case, for any uSRS scheme, the update for p = id is trivial.

In order to facilitate a mitigation for this class of attacks, we will need to
assume an additional property of the underlying ledger, in particular it must pro-
vide a “resettable” randomness beacon: With each advance operation (where
adversary must be restricted in how often it may do such advance queries),
a random beacon value is sampled in a variable bcn and is associated with the
corresponding block. Prior work [9] demonstrates that such beacon values allow
for the adversary to bias them only by “resetting” it at most a certain number
of times, say t, before they are fixed by entering the ledger’s confirmed state,
with the exact value of t depending on the chain parameters.

We can then amend Gen to derive its random values from the random oracle,
by sending the query (bcn, nonce) to FRO, where nonce is a randomly selected
nonce, and bcn is the previous block’s beacon value. The response is used to
index the set of trapdoor permutations P , choosing the result p, and the nonce
is stored by miners locally, and kept private. We adapt the Phase 1 period δ1 so
that at least l′ := l(1− θ)−1 + c blocks will be produced, where θ and c are new
security parameters (to be discussed below). Next, after Phase 2 ends, we can
be sure that the beacon value associated with the end of Phase 1 has been reset
at most t times.

We extract from bcn l′ biased coins, each with probability θ (e.g., if a bcn is a
random hash value of length 256 we can obtain as many coins with no bias). For
each block, if the corresponding coin is 1, it is required to reveal its randomness
within a period of time at least as long as the liveness parameter. Specifically, a
party which created one of the selected blocks may reveal its nonce. If its update

21

matches this nonce, the party receives an additional reward of value R times the
standard block reward.

Choosing c to be sufficiently large, with overwhelming probability, at least
l blocks will be left unopened – one of which will be honestly produced even
against a minority Byzantine adversary. This does not reduce to the standard
chain-quality property, but rather a stronger (but equally plausible) variant:
for any subsequence of at least length l of some given chain, any randomly
sampled subset of at least l blocks must contain at least one honest block with
overwhelming probability. In a UC formalisation, this sampling process would
be exposed, allowing sampling with a specific block’s bcn value. The functionality
would abort in case no honest parties’ blocks were returned. The negation of the
sampled set is the set that will be asked to be opened.

Consider now a rational miner with hashing power α. We know that, at best,
using an underlying blockchain like Bitcoin, the relative rewards such a miner
may expect are at most α/(1− α) in expectation; this assumes a selfish mining
strategy that wins all network races against the other honest participants. Now
consider a miner who uses low entropy exponents to save on computational power
on created blocks and, as a result, boosts their hashing power α to an increased
relative hashing power of α′ > α. The attacker can further try to influence the
blockchain by forking and selectively disclosing blocks which has the effect of
resetting the bcn value to a preferred one. To see that the impact of this is
minimal, we prove the following lemma.

Lemma 2. Consider a mapping ρ 7→ {0, 1}l′ that generates l′ independent bi-
ased coin flips, each with probability θ, when ρ is uniformly selected. Consider
any fixed n ≤ l′ positions and suppose an adversary gets to choose any one out
of t independent draws of the mapping’s random input with the intention to in-
crease the number of successes in the n positions. The probability of obtaining
more than n(1 + ε)θ successes is exp(−Ω(ε2θn) + ln t).

Proof. In case t = 1, result follows from a Chernoff bound on the event E defined
as obtaining more than n(1 + ε)θ successes, and has probability exp(−Ω(ε2θn)).
Given that each reset is an independent draw of the same experiment, by apply-
ing a union bound we obtain the lemma’s statement. ut

The optimal strategy of a miner utilising low-entropy attacks is to minimise
the number of blocks of other miners are chosen, to increase its relative reward.
Lemma 2 demonstrates that at most a factor of (1− ε) damage can be done in
this way. Regardless of whether a miner utilises low-entropy attacks or not, their
optimal strategy beyond this is selfish mining, in the low-entropy attack mining
in expectation l′α′/(1 − α′) blocks [11]. A rational miner utilising low-entropy
attacks will not gain any additional rewards, while a miner not doing so will
gain at least l′α/(1− α)(1− ε)θR rewards from revealing their randomness, by
Lemma 2. It follows that for a rational miner, this strategy can be advantageous
to plain selfish mining only in case:

α′

1− α′
> (1 + θ(1− ε)R)

α

1− α

22

If we assume a miner can increase their effective hash rate by a factor of
c, using low-entropy exponents, then their advantage in the low entropy case is
α′ = αc/(αc + β), where β = 1 − α is the relative mining power of all other
miners. If follows that the miner benefits if and only if:

αc

αc+ β
· αc+ β

β
> (1 + θ(1− ε)R)

α

β

=⇒ c > 1 + θ(1− ε)R

If we adopt a sufficiently large intended time interval between blocks it is
possible to bound the relative savings of a selfish miner using low-entropy expo-
nents; following the parameterisation of Subsection 5.2, if a selfish miner using
such exponents can improve their hashing power by at most a multiplicative
factor c then we can mitigate such attack by setting R to (c− 1)/(θ(1− ε)).

6.2 Applications to Non-Updateable SNARKs

Updateable SNARK schemes have two distinct advantages which our protocol
makes use of: First, they can survive with a partially biased reference string, a
fact which we don’t use directly in this paper, however the functionality FuSRS

we provide permits rejection sampling, encoding it into the ideal world. Second,
they have an explicit update procedure which allows a party φ to replace a
reference string whose security depends on some assumption A, with one whose
security depends on A ∨ (φ is honest).

Prior work on the security generation of reference strings for non-updateable
schemes does permit similar properties, with extra assumptions or protocol
phases. Following the approach of [5], it is possible to use a random beacon
to create a “pure” reference string from the “impure” one presented so far. To
sketch the design: The random beacon would be queried after time δ, and the
randomness used to select a trapdoor permutation over the reference string.
This would then be applied by each party independently, arriving at the same –
randomly distributed – reference string.

As this is not required for updateable SRS schemes, we did not perform this
analysis in depth. However the approach to the simulation would be to perform
the SRS generation identically, and then program the random beacon to invert
all permutations applied to the honest reference string. Since this include the
one honest permutation applied on every honest update, this is indistinguishable
from a random value to the adversary.

It is worth noting that the requirement of a random beacon is on the stronger
side of requirements, especially as it should itself not allow adversarial influence
to provide the desired advantage. Approaches using block hashes for random-
ness introduce exactly the kind of limited influence which we are attempting to
remove!

The lack of an update algorithm can be resolved for some zk-SNARKs, such
as [16], by the existence of a weaker property: In two phases, the reference

23

string can be constructed with (potentially different) parties performing round-
robin updates (also group exponentiations) in each phase. This approach is also
detailed in [5], and it implies a natural translation to our protocol, in which the
first phase is replaced with two phases of the same length, performing the first
and second phase updates respectively.

6.3 Upgrading Reference Strings

As distributed ledgers are typically long-lived, and may well outlive any reference
string used within it – or have been running before a reference string was needed.
Indeed, the Zcash protocol has seen upgrades in its reference string. A reference
string being replaced with a new one is innocuous without further context, how-
ever it is important to consider how they are usually used in zero-knowledge
proofs. If the proof they are used in is stateless, upgrading from an insecure to a
secure reference string behaves as one may naively expect: It ensures that after
the upgrade, security properties hold.

In the example of Zcash, which runs a variant of the Zerocash [3] protocol,
the situation is more muddy. Zerocash makes stateful zero-knowledge proofs.
Suppose a user is sceptical of the security of the initial setup – and there is good
reason to be [27] – but is convinced the second reference string is secure. Is such
a user able to use Zcash with confidence in its security?

If Zcash had not had safeguards in place, the answer would be no. While the
protocol may operate as intended currently, and the user can be convinced of
that, due to the stateful nature of the proofs, the user cannot be convinced of
the correctness of this state. The Zcash cryptocurrency did employ safeguards,
similar to those we will outline below. We stress the importance of such here,
as it may not be obvious to all developers intending to improve the security of
reference strings they use.

Specifically, for a Zerocash-based system, an original reference string’s back-
door could have been used to create mismatched transactions, and to effectively
“mint” large coins illicitly. This process is undetectable at the time, and the
minted coins would persist across a reference string upgrade. Our fictitious user
may therefore be rightfully suspicious as to the value of any coins he is sold –
they may be a part of an almost infinite pool!

Such an attack, once carried out (especially against a currency) is hard to re-
cover from – it is impossible to identify “legitimate” owners of the currency, even
if the private transaction history were deanonymised, and the culprit identified.
The culprit may have traded whatever he created already. Simply invalidating
the transaction would therefore harm those he traded with, not himself. In an
extreme case, if he traded one-to-one with legitimate owners of the currency, he
would succeed in effectively stealing the honest users funds. If such an attack
is identified, the community has two unfortunate options: Annul the funds of
potentially legitimate users, or accept a potentially large amount of inflation.

We may assume a less grim scenario however: Suppose we are reasonably
confident in the security of our old reference string, but we are more confident of
the new one. Is it possible to convince users that we have genuinely upgraded our

24

security? We suggest the usage of a type of firewalling property. Such properties
are common in the domain of cross-chain transfers [15], and are designed to
prevent a catastrophic failure on one chain damaging another.

For monetary transfers, the firewall would guarantee an upper-bound of funds
was not exceeded. Proving that the firewall property is preserved is easily done
if a small loss of privacy is accepted – each private coin being re-minted before
it can be used after the upgrade, during which time its value must be declared.
Assuming everything operates fine, and the firewall property is not violated,
users interacting with the post-firewall state can be confident as to the upper
bound of funds available. Further, attacks on the system can be identified: If an
attacker mints too many coins, eventually the firewall property will be violated,
indicating that too many coins were in circulation – bringing the complex prob-
lem of how to handle this situation with it. We believe that a firewall property
does however give peace of mind to users of the system, and is a practical means
to assuage concerns about the security of a system which had – at some point –
a questionable reference string.

In Zcash, a soft form of such firewalling is available, in that funds are split
across several “pools”, each of which uses a different proving mechanism. The
total value of each pool can be observed, and values under zero would be consid-
ered a cause for alarm, and rejected. Zcash use the terminology “turnstiles” [29],
and no attacks have not been observed through them.

A further consideration for live systems is that as Subsection 5.2 shows, the
time required strongly depends on the frequency between blocks. This may con-
flict with other considerations for selecting the block time – a potential solution
for this is to only perform updates on “superblocks”: blocks which meet a higher
proof-of-work (or other selection mechanism) criteria than usual.

6.4 The Root of Trust

An important question for all protocols in the distributed ledger setting is
whether a user entering the system at some point during its runtime can be
convinced to trust in its security. Early proof-of-stake protocols, such as [20],
did poorly at this, and were subject to “stake-bleeding” attacks [13] for instance
– effectively meaning new users could not safely join the network.

For reference strings, if a newly joining user is prepared to accept that the
honest majority assumption holds, they may trust the security of the reference
string, as per Theorem 1. There is a curious difference to the security of the
consensus protocol however: to trust the consensus – at least for proof-of-work
based protocols – it is most important to trust a current honest majority, as
these protocols are assumed to be able to recover from dishonest majorities at
some point in their past. The security of the reference string on the other hand
only relies on assuming honest majority during the initial δ time units. This
may become an issue if a large period of time passes – why should someone trust
the intentions of users during a different age? In practice, it may make sense to
“refresh” a reference string regularly to renew faith in it.

25

Most subversion attacks are detectable – they require lengthy forks which
are unlikely to occur during a legitimate execution. In an optimistic case, where
no attack is attempted, this may provide an additional level of confirmation: if
there are no widespread claims of large forks during the initial setup, then the
reference string is likely secure (barring large-scale out-of-band censorship). A
flip side to this is that it may be a lot easier to sow doubt, however, as there is
no way to prove this: A malicious actor could create a fork long after the initial
setup, and claim that it is evidence of an attack to undermine the credibility of
the system.

7 Acknowledgements

The second and third author were partially supported by the EU Horizon 2020
project PRIVILEDGE #780477.

We thank Eduardo Morais for providing data on the required depth of refer-
ence strings for Zcash’s Sapling protocol.

Bibliography

[1] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and
Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake blockchains
with dynamic availability. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 913–930. ACM
Press, October 2018.

[2] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bit-
coin as a transaction ledger: A composable treatment. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 324–356. Springer, Heidelberg, August 2017.

[3] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474. IEEE Computer Society Press, May 2014.

[4] Sean Bowe, Ariel Gabizon, and Matthew D. Green. A multi-party protocol
for constructing the public parameters of the pinocchio zk-SNARK. In Aviv
Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Fed-
erico Pintore, and Massimiliano Sala, editors, FC 2018 Workshops, volume
10958 of LNCS, pages 64–77. Springer, Heidelberg, March 2019.

[5] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation
for zk-SNARK parameters in the random beacon model. Cryptology ePrint
Archive, Report 2017/1050, 2017. http://eprint.iacr.org/2017/1050.

[6] Vitalik Buterin. On-chain scaling to potentially 500 tx/sec through
mass tx validation. https://ethresear.ch/t/on-chain-scaling-to-

potentially-500-tx-sec-through-mass-tx-validation/3477.
[7] Ran Canetti. Universally composable security: A new paradigm for crypto-

graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

26

http://eprint.iacr.org/2017/1050
 https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
 https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477

[8] Optimal Confusion. Implementations to accompany ”mining for privacy”.
GitHub, 2020. https://github.com/optimalconfusion/pistis.

[9] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer, Hei-
delberg, April / May 2018.

[10] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 152–168. Springer, Heidelberg, August 2005.

[11] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-
bone protocol: Analysis and applications. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
281–310. Springer, Heidelberg, April 2015.

[12] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-
bone protocol with chains of variable difficulty. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 291–323. Springer, Heidelberg, August 2017.

[13] Peter Gaži, Aggelos Kiayias, and Alexander Russell. Stake-bleeding attacks
on proof-of-stake blockchains. Cryptology ePrint Archive, Report 2018/248,
2018. https://eprint.iacr.org/2018/248.

[14] Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake
sidechains. In 2019 IEEE Symposium on Security and Privacy, SP 2019,
San Francisco, CA, USA, May 19-23, 2019, pages 139–156. IEEE, 2019.

[15] Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake
sidechains. In 2019 IEEE Symposium on Security and Privacy, pages 139–
156. IEEE Computer Society Press, May 2019.

[16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

[17] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applica-
tions to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018.

[18] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 581–612. Springer, Heidelberg, August 2017.

[19] Ari Juels, Ahmed E. Kosba, and Elaine Shi. The ring of Gyges: Investi-
gating the future of criminal smart contracts. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 283–295. ACM Press, October 2016.

[20] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain proto-

27

https://github.com/optimalconfusion/pistis
https://eprint.iacr.org/2018/248

col. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 357–388. Springer, Heidelberg, August 2017.

[21] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and
Privacy, pages 839–858. IEEE Computer Society Press, May 2016.

[22] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM
Press, November 2019.

[23] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In 2013 IEEE Symposium on
Security and Privacy, pages 238–252. IEEE Computer Society Press, May
2013.

[24] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain pro-
tocol in asynchronous networks. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
643–673. Springer, Heidelberg, April / May 2017.

[25] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252. Springer, Heidelberg, August 1990.

[26] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar
Tsankov, and Martin T. Vechev. zkay: Specifying and enforcing data privacy
in smart contracts. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019, pages 1759–1776. ACM Press,
November 2019.

[27] Josh Swihart, Benjamin Winston, and Sean Bowe. Zcash coun-
terfeiting vulnerability successfully remediated. ECC Blog, Febru-
ary 2019. https://electriccoin.co/blog/zcash-counterfeiting-

vulnerability-successfully-remediated/.
[28] Zcash. Parameter generation. https://z.cash/technology/paramgen/,

2018.
[29] Zcash. Address and value pools in Zcash. https://zcash.readthedocs.

io/en/latest/rtd_pages/addresses.html#turnstiles, 2019.

A The Sonic uSRS

Sonic’s uSRS [22, Section 4.3] consists of a series of exponentiations of group
elements in pairing groups G1 and G2 of prime order q, where a bilinear pairing
e : G1 × G2 → GT exists. Specifically, given generators g ∈ G1, h ∈ G2 and a
depth parameter d ∈ Zq, the SRS has a trapdoor of (α, x) ∈ F∗2q (with τ0 =
(1, 1)).

The corresponding structure function is defined through:

S((α, x)) =

({
gx

i

, hx
i

, hαx
i
}d
i=−d

,
{
gαx

i
}d
i=−d,i6=0

)

28

https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://z.cash/technology/paramgen/
https://zcash.readthedocs.io/en/latest/rtd_pages/addresses.html##turnstiles
https://zcash.readthedocs.io/en/latest/rtd_pages/addresses.html##turnstiles

A.1 Specification of Sonic Updates

We omit the e(g, hα) term presented in Sonic, as this can be computed from
the rest of the SRS, and is therefore immaterial to the update procedure. The
permitted trapdoor permutations are field multiplications: P := { (α, x) 7→
(αβ, xy) | (β, y) ∈ F∗2q }. Correspondingly, † exponentiates group elements: If

p = (α, x) 7→ (αβ, xy), then p† = ({Gi, Hi, H
′
i}di=−d, {G′i}di=−d,i6=0) 7→ {Gy

i

i , H
yi

i ,

H ′βy
i

i }di=−d, {G
′βyi
i }di=−d,i6=0}. Observe that field multiplications over α or x can

efficiently be applied to the corresponding structure through exponentiation:
g(αx

i)βyi = (gαx
i

)βy
i

. The full update proof procedure is as follows:

procedure ProveUpd(srs, p)
let (β, y)← p((1, 1))
return (gy, gβy, π)

The verification procedure ensures correct computation by checking the con-
sistency of various pairing computations:

procedure VerifyUpd(srs, ρ, srs′)
let ({Gi, Hi, H ′i}di=−d, {G′i}di=−d,i6=0)← srs

let (({Ii, Ji, J ′i}di=−d, {I ′i}i=−d,i6=0)← srs′

let (A,B, π)← ρ
if e(I ′1, h) 6= e(B,H ′1) ∨ e(g, J ′1) 6= e(B,H ′1) ∨ e(I1, h) 6= e(A,H1) ∨ e(g, J1) 6=
e(A,H1) ∨ I0 6= g ∨ J0 6= h then
return 0

for i = −d to d do
if ¬(i = d ∨ e(Ii, J1) = e(I1, Ji) = e(Ii+1, h) =
e(g, Ji+1)) ∨ ¬(e(Ii, J

′
0) = e(g, J ′i)) ∨

(i 6= 0 ∧ ¬e(Ii, J ′0) = e(I ′i, h)) then
return 0

return 1

A.2 Satisfaction of Security Properties

Theorem 2. Sonic, as described in Appendix A.1, is an updatable reference
string scheme, satisfying correctness, structure preservation, update uniformity,
hardness, update extraction, permutation extraction, and permutation lifting.

Proof. We prove each property individually.

Correctness. Follows from all pairing checks being satisfied. ut

Structure preservation. Suppose a structured input S(τ), and an updateproof ρ,
and a new SRS srs′, where:

S(τ) =

({
gx

i

, hx
i

, hαx
i
}d
i=−d

,
{
gαx

i
}d
i=−d,i6=0

)
srs′ =

({
gki , hmi , hni

}d
i=−d ,

{
gli
}d
i=−d,i6=0

)
29

ρ = (gy, gβy)

If VerifySRS returns 1, we know all of the following hold, due to the conditions
checked:

– e(gl1 , h) = e(g, hn1) = e(gβy, hαx)
– e(gk1 , h) = e(g, hm1) = e(gy, hx)
– ∀i ∈ [−d, d) : e(gki , hm1) = e(gk1 , hmi) = e(gki+1 , h) = e(g, hmi+1)
– ∀i ∈ [−d, d] : e(gki , hn0) = e(g, hni)
– ∀i ∈ [−d, d] \ {0} : e(gki , hn0) = e(gli , h)

As e(g, h) is a generator over GT , and each of the above can be expressed as
an equality of exponentiations of the form e(g, h)a = e(g, h)b, this we simplify
these to equalities within F∗q of their exponents:

– l1 = n1 = αβxy
– k1 = m1 = xy
– ∀i ∈ [−d, d) : kim1 = k1mi = ki+1 = mi+1

– ∀i ∈ [−d, d] : kin0 = ni
– ∀i ∈ [−d, d] \ {0} : kin0 = li

From the above follows directly that n0 = αβ, ki = mi = (xy)i, and li =
ni = αβ(xy)i. As a result, srs′ matches exactly the structured reference string
S((αβ, xy)) = p†(S(τ)). The update has preserved structure. ut

Update uniformity. Let τ = (α, x). p
R←− P is defined by a multiplication with two

randomly sampled field elements in Fq, β and y, such that the trapdoor p(τ) =
(αβ, xy). Due to multiplication in prime fields with a fixed element (here α and
x) being a bijective functions, the result (αβ, xy) is also distributed uniformly at
random in F∗2q , therefore being indistinguishable from a new, randomly sampled
trapdoor. ut

Hardness. Follows immediately from DLOG. ut

Update proof simulation. We present the following extraction algorithm:

procedure Sρ((α, x), srs)
({Gi, Hi, H ′i}di=−d, {G′i}di=−d,i6=0)← srs

return (Gx
−1

1 , G′x
−1α−1

1)

This utilises only a small number of efficient group operations, and is there-
fore PPT. Further, the returned update will verify, as all pairing check will
succeed. ut

Permutation Extraction. We present the following NP relation:

R((A,B), p) ⇐⇒ let (a, b) = p((1, 1)) in A = ga ∧B = gb

Note that a straightforward encoding of p is the pair of field elements (a, b).
Both the strengthening of correctness and structure preservation hold, the

former as the update proofs produced by ProveUpd satisfy this relation, and
the latter as every valid update proof has precisely one valid corresponding
permutation. ut

30

A.3 Instantiating FR
NIZK

We can employ Fischlin’s transform [10] in combination with a simple sigma
protocol to prove knowledge of pairs of exponents. A simple option for this proof
is a parallel composition of two Schnorr proofs of knowledge of exponent [25].
It is important that these are a single proof, and not two separate proofs of
knowledge of exponent, as the latter would enable the adversary to create proofs
which are only partially extractable. We posit that these would still allow for
simulation, however the simulator would be tasked with a more difficult, and
implementation specific book-keeping.

B The Nakamoto Ledger

The basic functionality of this ledger allows the submission of transactions, and
retrieving each of the following:

– A confirmed prefix of the ledger state.
– A “projection” of the ledger state – i.e. what the local state will approach,

if there is no chain reorganisation.
– The confirmed “leader state”, which models the mechanism used for the SRS

generation.

When any of these values is queried, the functionality ensures that liveness
and chain quality properties still hold. The adversary further has the power to
instruct the creation of a new block, on behalf of any party, and to instruct any
party to adopt a different chain. In both cases, the functionality ensures that
the common prefix property is preserved. The adversary has full control over the
contents of both honest and adversarial blocks, as well as their order.

B.1 Functionality Definition

Functionality FnakLedger

A ledger following a Nakamoto-style consensus, with each party having a projected
chain, a prefix of which is common to all parties. Common prefix, chain quality
and chain growth are guaranteed.

State variables and initialisation values:

Variable Description

Π := φ 7→ ε Mapping of parties to projected ledger states
T := ∅ Multiset of submitted transactions

hon := ∅ Mapping of block ids 1 if they are honest, or 0

When receiving a message (submit, tx) from a party φ:

send read to Gclock and receive the reply t
let T ← T ∪ {(tx, t)}

31

query A with (transaction, tx, t)

When receiving a message read from a party φ:

assert liveness(φ) ∧ chainQuality(φ)
return map(proj1, txs(Π(φ)dk))

When receiving a message projection from a party φ:

assert liveness(φ) ∧ chainQuality(φ)
return map(proj1, txs(Π(φ)))

When receiving a message leader-state from a party φ:

assert liveness(φ) ∧ chainQuality(φ)
let ~a← map(λ(·, a, ·, t) : (a, t),Π(φ)dk)
return foldl(Apply,∅,~a)

When receiving a message (extend, φ, B, t, a) from A:
send read to Gclock and receive the reply t′

let id
R←− {0, 1}κ

if φ ∈ H then
let ~a← map(λ(·, a, ·, t) : (a, t),Π(φ))
let σ ← foldl(Apply,∅,~a)

let a
R←− Gen(σ, t′)

let t← t′ let hon(id)← 1
else

let hon(id)← 0
if t′ < t then let t← t′

else if ∃t′′ : (·, ·, ·, t′′) = last(Π(φ)) ∧ t′′ > t then let t← t′′

let Π(φ)← Π(φ) ‖ (B, a, id, t)
assert ∀φ′ ∈ P : Π(φ)dk ≺ Π(φ′)
return (B, a, id, t)

When receiving a message (advance, φ,Σ′) from A:
assert ∃φ′ ∈ P : Σ′ ≺ Π(φ′)
assert ∀φ′ ∈ P : Σ′dk ≺ Π(φ′) ∧Π(φ′)dk ≺ Σ′

let Π(φ)← Σ′

Helper procedures:

function txs(Πφ)
let ~B ← map(proj1,Πφ)
return concat(~B)

procedure liveness(φ)
send read to Gclock and receive the reply t
if ∃t0 < t : |[tb | (·, ·, ·, tb) ∈ Π(φ), t0 − s ≤ tb < t0]|
< γ ∧ t0 − s ≥ 0 then
return ⊥

return ∀(tx, t′) ∈ T : t′ + d(l + k)γ−1es > t ∨ (tx, t′) ∈ txs(Π(φ)dk)

procedure chainQuality(φ)

let ~id← map(proj3,Π(φ)dk)

return ∀i ∈ Z|~a|−l :
(∑

j∈Zl
ids(~idi+j)

)
≥ µl

32

In order to judge chain growth, this functionality needs access to a simple
global clock, given in Appendix E.1.

B.2 Relation to Existing Protocols

Existing UC treatments of Nakamoto-style ledgers, such as [1, 2] already provide
functionalities which provide persistence and liveness guarantees. Moreover, the
protocols used in their implementation have been independently shown to satisfy
the properties of common prefix, chain quality, and chain growth.

Given similar assumptions, such as a limited random oracle, and a syn-
chronous or semi-synchronous network, these protocols will also fit the FnakLedger

functionality presented above. Notably the UC-proof of these ledgers relies on
first proving these three chain properties, then proving persistence and liveness,
and finally concluding that these satisfy their ledger functionality.
FnakLedger exposes more of the internals of the protocol – the fact that there is

a chain selection process, and that this is subject to the constraints of common
prefix, chain quality, and chain growth – but otherwise does not greatly change
the ideal world behaviour.

Due to this strengthened functionality being designed to merely expose more
of the well-understood protocol properties, we conjecture that UC implementa-
tions which have a proof relying on the three Nakamoto chain properties can be
used to realise FnakLedger, with a large part of the proof applying directly.

C The Adaptor Protocol

We provide a small protocol which adapts the honest interface of the Nakamoto
ledger to match that of the ideal world – specifically ensuring the leadership
state seen matches the ideal world’s, and that and SRS is read only if sufficient
time has passed.

Protocol ledger-adaptor

The protocol adaptor fits the interface of F real
nakLedger to match those of FuSRS and

F ideal
nakLedger. It operates in the (F real

nakLedger,Gclock)-hybrid world.

When receiving a message (submit, tx) from a party φ:

send (submit, tx) to F real
nakLedger

When receiving a message read from a party φ:

send read to F real
nakLedger and receive the reply txs

return txs

When receiving a message projection from a party φ:

send projection to F real
nakLedger and receive the reply txs

return txs

When receiving a message leader-state from a party φ:

33

send leader-state to F real
nakLedger and receive the reply (·, σideal)

return σideal

When receiving a message srs from a party φ:

send read to Gclock and receive the reply t
if t < δ then return ⊥
else

send leader-state to F real
nakLedger and

receive the reply (srs, ·)
return srs

Forward submit, read, and projection queries to F real
nakLedger

D The Simulator

Simulator Sledger-adaptor

The simulator between the protocol adaptor over F real
nakLedger, and F ideal

nakLedger and
FuSRS. It operates in the Gclock-hybrid world.

State variables and initialisation values:

Variable Description

F simul
nakLedger A simulation of the hybrid-world ledger
FRNIZK A simulation of the low-level NIZK functionality

A := ∅ Map from honest updates to the applied permutation

When receiving a message (transaction, tx, t) from F ideal
nakLedger:

simulate sending (submit, tx) to F simul
nakLedger

When receiving a message (submit, tx) from A for F real
nakLedger:

send (submit, tx) to F ideal
nakLedger

When receiving a message (permute, φ) from FuSRS:

simulate sending leader-state to F simul
nakLedger

through φ and
receive the reply (srs, ·)

let ~a← map(proj2,F simul
nakLedger.Π(φ))

return Xp(~a)

When receiving a message (extend, φ, B, t, a) from A for F real
nakLedger:

send read to Gclock and receive the reply t′

if φ ∈ H ∧ t′ ≤ dlγ−1es then
let ~a← map(proj2,F simul

nakLedger.Π(φ))
let (srs, ·)← foldl(Apply,∅,~a)
let p← Xp(~a)
if p−1†(srs) 6= S(τ0) then

// We cannot extract a trapdoor;

// the SRS is already secure

34

let p′
R←− P ; ρ← ProveUpd(srs, p′)

let srs′ ← p′†(srs)
simulate sending (prove, ρ, p′) to FRNIZK and

receive the reply π
else

// We produce an update to match a

// random "initial" SRS

let τ ← p(τ0)

let p′
R←− P

send honest-srs to FuSRS and
receive the reply srsH

let srs′ ← p′†(srsH)
let ρ← Sρ(p(τ), srs′)
query A with (prove, ρ) and receive the reply π,

satisfying π 6= ⊥∧(ρ, π) /∈ FRNIZK.Π∧(·, π) /∈ FRNIZK.Π, else sampling
from {0, 1}κ

let FRNIZK.Π← FRNIZK.Π ∪ {(ρ, π)}
let A(ρ)← p

let aideal ← ⊥
else if φ ∈ H then

let srs′, ρ, π ← ε
let aideal ← ⊥

else let (srs′, ρ, π, aideal)← a

send (extend, φ, B, t, aideal) to F ideal
nakLedger and

receive the reply (B, aideal, id, t)
if φ ∈ H then

let F simul
nakLedger.hon(id)← 1

else
let F simul

nakLedger.hon(id)← 0

let F simul
nakLedger.Π(φ)← F simul

nakLedger.Π(φ) ‖ (B, (srs′, ρ, π, aideal), id, t)

assert ∀φ′ ∈ P : F simul
nakLedger.Π(φ)dk ≺ F simul

nakLedger.Π(φ′)

return (B, (srs′, ρ, π, aideal), id, t)

When receiving a message (advance, φ,Σ′) from A for F real
nakLedger:

simulate sending (advance, φ,Σ′) to F simul
nakLedger

// Remove SRS updates from Σ′

let Σ′ ← map(λ(B, (·, ·, ·, aideal), t) : (B, aideal, t),Σ)
send (advance, φ,Σ′) to F ideal

nakLedger

Forward requests to FRNIZK, and all other adversarial messages for F real
nakLedger to

F simul
nakLedger.

Helper procedures:

procedure Xp(~a)
let p← id
let srs = S(τ0)
for (srs′, ρ, π, ·) in ~a do

// Skip invalid updates

35

if ¬VerifyUpd(srs, ρ, srs′) ∨ (ρ, π) /∈ FRNIZK.Π then continue

let srs← srs′

if (ρ, π) ∈ FRNIZK.W then
let p← FRNIZK.W ((ρ, π)) ◦ p

else if ρ ∈ A then
// The update is honest.

// Start with its permutation.

let p← A(ρ)
else

// A witness-less adversarial update

// was encountered.

abort
return p

E Minor UC Functionalities

E.1 The Global Clock

Functionality Gclock

The global clock allows parties to agree on some discrete notion of time.

State variables and initialisation values:

Variable Description

t := 0 Current time
T := ∅ Timekeepers
A := ∅ Agreements to advance

When receiving a message register from a party φ:

let T ← T ∪ {φ}
When receiving a message deregister from a party φ:

let T ← T \ {φ}
When receiving a message update from a party φ:

let A(φ)← >
if ∀φ ∈ T : A(φ) then

let t← t+ 1;A← λφ : ⊥
query A with tick-tock

When receiving a message read from a party φ:

return t

E.2 Non-Interactive Zero-Knowledge

36

Functionality FRNIZK

The (malleable) non-interactive zero-knowledge functionality FRNIZK allows prov-
ing of statements in an NP relation R.

State variables and initialisation values:

Variable Description

W := ∅ Mapping of statement/proof pairs to witnesses
Π := ∅ Set of statement/proof pairs

Π := ∅ Set of known invalid statement/proof pairs

When receiving a message (prove, x, w) from a party φ:

if ¬xRw then
return ⊥

query A with (prove, x) and receive the reply π,
satisfying π 6= ⊥ ∧ (x, π) /∈ Π ∧ (·, π) /∈ Π, else sampling from {0, 1}κ

let Π← Π ∪ {(x, π)};W (x, π)← w
return π

When receiving a message (maul, x, π, π′) from A:
if (x, π) ∈ Π then

let Π← Π ∪ {(x, π′)}
let W (x, π′)←W (x, π)

When receiving a message (verify, x, π) from a party φ:

if (x, π) /∈ Π ∪Π ∧ π 6= ⊥ then
query A with (verify, x, π)
// The adversary has been given a chance to

// prove the statement. It didn’t take it.

if (x, π) /∈ Π ∪Π then
let Π← Π ∪ (x, π)

return (x, π) ∈ Π

E.3 Random Oracle

Functionality FRO

The random oracle functionality FRO returns a uniform random value in {0, 1}κ
for each input.

State variables and initialisation values:

Variable Description

H := ∅ A map from inputs to (fixed) outputs

When receiving a message (query, x) from a party φ:

37

if x /∈ H then let H(x)
R←− {0, 1}κ

return H(x)

E.4 Delay Wrapper

Functionality Wdelay(δ,F)

The wrapper functionality Wdelay(δ,F) of F accepts honest inputs only after δ
time slots.

When receiving a message M from a party φ:

send read to Gclock and receive the reply t
if t < δ ∧ φ ∈ H then return ⊥
else

send M to F and receive the reply y
return y

38

	Mining for Privacy:How to Bootstrap a Snarky Blockchain

