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Abstract

In this short note, we show that substantially weaker Low Order assumptions are sufficient to prove the
soundness of Pietrzak’s protocol for proof of exponentiation in groups of unknown order. This constitutes the
first step to a better understanding of the asymptotic computational complexity of breaking the soundness of
the protocol. Furthermore, we prove the equivalence of the (weaker) Low Order assumption(s) and the Factoring
assumption in RSA groups for a non-negligible portion of moduli. We argue that in practice our reduction applies
for a considerable amount of deployed moduli. Our results have cryptographic applications, most importantly in
the theory of recently proposed verifiable delay function constructions. Finally, we describe how to certify RSA
moduli free of low order elements.

1 Introduction

Verifiable delay functions (VDF) are powerful cryptographic tools [BBBF18] that opened up a plethora of applica-
tions, such as non-interactive timestamping [LSS19], proof of replication [FBGB19] or randomness beacons [BGB17].
A VDF is a function whose evaluation takes O(T ) sequential steps and cannot be sped up by parallelism. Addi-
tionally, a prover, or evaluator, can produce publicly verifiable and succinct proofs that the function evaluation was
correct. A crucial requirement for a VDF that there needs to be an exponential gap between function evaluation
and proof verification time, more precisely verification time should be in O(log T ). Naturally, we require correctness
and soundness from the applied proof systems. Specifically, an honest prover should always be able to convince the
verifier, while a malicious prover should only be able to produce correct proofs with negligible probability.

Recent VDF constructions [Pie18, Wes19] proposed by Pietrzak and Wesolowski instantiate VDFs in groups of
unknown order, i.e. groups for which the order cannot be computed efficiently [RSA78]. The existence of verifiable
delay functions in the random oracle model is ruled out [MSW], moreover, groups of unknown order are shown
to be mandatory for generic group delay functions [RSS]. Both constructions [Pie18, Wes19] rely on novel, non-
standard cryptographic assumptions. The soundness of these constructions can be proved by assuming the Low
Order (LO) or Adaptive Root (AR) assumptions in groups of unknown order. Therefore there is an emerging need
to understand better these new, non-standard cryptographic assumptions. In this note, we turn our attention to
the LO assumption as it is a potentially weaker assumption than the AR assumption [BBF18].
Our contributions. In this note, we provide the following contributions.

• We observe that for the soundness of Pietrzak’s proof of exponentiation succinct argument, one can assume
substantially weaker LO assumptions than as previously defined in [BBF18]. In other words, we show that
potentially it is harder to break soundness of Pietrzak’s argument than as it was argued in [BBF18].

• We prove the equivalence of the LO and Factoring assumptions in RSA groups for a non-negligible portion
of moduli. We argue that this result has practical consequences and that in practice one can deem the LO
assumption to be equivalent to Factoring for the majority of used RSA moduli.

• We show how one could certify RSA moduli being free of low order elements using a non-interactive honest-
verifier zero-knowledge proof system by Goldberg et al [GRSB19].

The rest of this note is organized as follows. In Section 2 we provide background on the recently introduced LO
and AR assumptions. We show the sufficiency of weaker LO assumptions in Section 3. In Section 4 we provide our
reduction from Factoring to LO assumption for non-negligible RSA moduli. We describe a method to certify RSA
moduli free of low order elements in Section 5. Finally, we point out open problems in Section 6.
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2 Preliminaries

2.1 Notations

Let G be a group of unknown order. As usual λ denotes the security parameter. Integers denoted as p, q are always
primes, while N is a semiprime, ie. N = pq, sometimes referred to as RSA-modulus. All logarithms have two as
their base, unless stated otherwise. The φ(·) denotes Euler’s totient function. Let ordm(a) denote the order of
element a in Z×m. In the following we assume, that the size of the moduli is bounded by polynomial of the security

parameter s(λ), such that p, q, φ(N), N ≈ O(2s(λ)). We mean by x
$←− S, that x is uniformly at random sampled

from set S.

2.2 Proof of exponentiation and Pietrzak’s succinct argument

In a proof of exponentiation protocol in G the prover wants to convince the verifier that h = g(2T ) holds in G. That
is, the protocol is an argument system for the relation

LEXP =
{(

G, g, h, T
)

: h = g(2T ) ∈ G
}

(1)

Pietrzak’s proof system works as follows [Pie18].

1. The verifier checks that g, h ∈ G and outputs reject if not,

2. If T = 1 the verifier checks that h = g2 in G, outputs accept or reject, and stops.

3. If T > 1 the prover and verifier do:

(a) The prover computes v ← g(2T/2) ∈ G and sends v to the verifier. The verifier checks that v ∈ G
and outputs reject and stops, if not.

Next, the prover needs to convince the verifier that h = v(2T/2) and v = g(2T/2), which proves that

h = g(2T/2). Since the same exponent is used in both equalities, they can be verified simultaneously
by checking a random linear combination, namely that

vrh = (grv)(2T/2), where r
$←− {1, . . . , 2λ}.

The verifier and prover do so as follows.

(b) The verifier sends the prover a random r
$←− {1, . . . , 2λ}.

(c) Both the prover and verifier compute g1 ← grv and h1 ← vrh ∈ G.

(d) The prover and verifier recursively engage in an interactive proof that (G, g1, h1, T/2) ∈ LEXP,

namely that h1 = g
(2T/2)
1 ∈ G.

Figure 1: Pietrzak’s succinct argument for the proof of exponentiation language LEXP, verbatim from [BBF18]

For simplicity, we assume that T is a power of two in which case the protocol takes log T rounds. The protocol
can be adjusted to handle arbitrary T , including a T that is not a power of two [Pie18].

Naturally, the protocol can be made non-interactive by using the Fiat-Shamir heuristic. The prover generates the
challenge r at every level of the recursion by hashing the quantities (G, g, h, T, v) at that level, and appends v to the
overall proof π. Hence, the overall proof π contains log T elements in G. Proof generation has a complexity of 2T

s
√
T

with s being the amount of processors. At every level of the recursion, the verifier does two small exponentiations
in G to compute gi and hi for the ith level of the recursion. Therefore, verifying the proof takes O(log T ) small
exponentiations in G.

An implementation study of Pietrzak’s and Wesolowski’s VDF construction showed that it is faster to verify
Pietrzak’s VDF than that of Wesolowski. However, Pietrzak’s VDF comes with larger proofs, hence demanding
slightly larger bandwidth [AVD].
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2.3 RSA assumptions

Informally, the LO assumption states that it is computationally infeasible to find a low order element in a random
RSA group. Let us recall the formal definition of the LO assumption [BBF18].

Definition 1. The Low Order assumption holds for GGen if there is no efficient adversary A finding any element
of low order:

Pr

 G $←− GGen(λ)
ul = 1, u /∈ {1,−1} : (u, l)←− A(G)

and l < 2poly(λ)

 ≤ negl(λ) (2)

We remark that the LO assumption unconditionally holds in QRN , the group of quadratic residues mod N ,
since it contains no elements of low order. In case of RSA groups, we model GGen(λ) as uniformly randomly
sampling primes from an appropriate domain with respect to λ.

Definition 2. The Factoring assumption states that for random primes p, q it is difficult to factor N = pq.

It is trivial to see, that if there was an adversary A breaking the Factoring assumption, then one could easily
calculate any roots mod N by applying the Chinese Remainder Theorem. Computing arbitrary roots enables an
adversary finding low order elements. Note that it is also true that technically, having a factoring algorithm that
works for a non-negligible portion of RSA moduli, does not imply that the LO assumption is broken. It could be
the case that factoring works if and only if the modulus is the product of two safe primes. For these moduli, we do
not have low order elements at all. Certainly, what one implicitly understands by saying that the LO assumption
is stronger than the factoring assumption is that a reduction exists for GGen that only outputs moduli with low
order elements.

Even though we did not introduce Wesolowski’s succinct argument for LEXP, for sake of self-containedness we
introduce the assumption needed to prove its soundness.

Definition 3. The Adaptive Root Assumption holds for GGen if there is no efficient adversary (A0,A1) that
succeeds in the following task. First, A0 outputs an element w ∈ G and some state st. Then, a random prime in
Primes(λ) is chosen and A1(w, l, st) outputs w1/l ∈ G. For all efficient (A0,A1):

Pr


G $←− GGen(λ)

(w, st)←− A0(G)

ul = w 6= 1 : l
$←− Πλ = Primes(λ)
u←− A1(w, l, st)

 ≤ negl(λ) (3)

We note that the number of primes in Πλ should be exponential in λ: it is possible to precompute w using 2|Πλ|

exponentiations. Then, an adversary with 2M memory can store intermediate exponents and compute adaptive
roots using 2|Πλ|−M exponentiations for each. Moreover, it was shown that the Adaptive Root Assumption holds
in the generic group model [BBF19].

2.4 Number theoretic tools

We recall the following lemma without proof.

Lemma 1. The map x −→ xe mod N is a permutation of Z∗N if and only if gcd(e, φ(N)) = 1.

Furthermore, let us define the language of RSA public keys (N, e), such that the map x −→ xe mod N is a
permutation over Z∗N .

LpermZ∗N = {(N, e)|N, e > 0 ∧ gcd(e, φ(N)) = 1} (4)

For this particular language, Goldberg et al. devised a public-coin protocol [GRSB19] with perfect completeness,
perfect honest-verifier zero-knowledge, and statistical soundness.

Later we will need to count the number of integers without factors from an interval. Therefore we introduce the
following function and notation.

Definition 4. Denote by Γ(x, y, z) the number of all positive integers less than x which are free of prime divisors
from the interval (z, y].
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Theorem 1. (Weingartner [Wei01]) Let u = log x
log y and v = log x

log z . Then uniformly for 3
2 ≤ z ≤ y, whenever x ≥ yz,

we have the following asymptotic relationship for Γ(x, y, z):

Γ(x, y, z) = xη(u, v)
(

1 +O
( 1

log z

))
, (5)

where 1 ≤ u ≤ v and η(u, v) ≥ u
2v .

We remark that a similar result and asymptotic was obtained by Warlimont [War90], however, he solely proved
his results for fixed z. We will crucially rely on the uniform convergence of the asymptotics in Equation 5.

3 Soundness of Pietrzak’s argument and weaker LO assumptions

Boneh et al. introduced the low order assumption as a sufficient and necessary assumption to prove the soundness
of Pietrzak’s argument [BBF18]. In this section, we show that the original definition of the LO assumption, cf.
Section 2.3, is not necessary for proving soundness. We will show that one needs to assume almost exponentially
weaker assumptions as a necessary and sufficient assumption for soundness of Pietrzak’s proof of exponentiation
protocol.

3.1 (Non)-necessity of the LO assumption and weaker LO assumptions

Let us assume that the LO assumption, cf. Definition 1, is broken. What is the probability that such a potent
adversary could break the soundness of Pietrzak’s argument system? As it turns out, it can still be negligible.

The main observation in the soundness analysis is that whenever a malicious prover finds (u, l), a low order
element u, with order l < 2poly(λ) can potentially break the soundness of the argument system. This is because if
(G, g, h, T ) ∈ LEXP, then (G, g, hu, T ) /∈ LEXP and will be incorrectly accepted by the verifier with probability 1/l.

Towards breaking soundness malicious prover sends v ← g(2T/2)u ∈ G. Soundness of the argument system does not
hold whenever r + 1 ≡ 2T/2 mod l, since (G, grv, vr(hu), T/2) ∈ LEXP.

However, there might be an adversary A breaking the LO assumption with non-negligible probability, even
though their success probability in breaking the soundness of the argument system is negligible. This can occur, if
A is only able to find low order elements with their order in 2Θ(poly(λ)). In this case the probability that A breaks
soundness is at most 1/2Θ(poly(λ)), hence negligible.

After this discussion, one can see that the 2poly(λ) upper bound for the order of the low order element needs to
be decreased to get the weakest necessary assumption for proving soundness of Pietrzak’s argument. Therefore, in
quest to define a sufficiently weak LO assumption with the lowest permissible bound on the order of the low order
element, we introduce the following smallest subexponential LO assumption.

Definition 5. The Subexponential Low Order assumption. For any probabilistic polynomial time adversary A,
and for any 0 < ε, finding any element of subexponentially low order is hard:

Pr

 G $←− GGen(λ)
ul = 1, u /∈ {1,−1} : (u, l)←− A(G)

and l < 2log1+ε(λ)

 ≤ negl(λ) (6)

We note, that the 2log1+ε(λ) upper bound cannot be lowered to a polynomial-bound as then the assumption would
not be sufficient, see next subsection. In a nutshell, for sufficiency to hold one needs to assume a superpolynomial
upper bound for the order of the low order element. Furthermore, we remark that even the weaker LO assumption
introduced in Definition 5 is not necessary, because there are non-negligible RSA-moduli with φ(N) having divisors

between any poly(λ) and 2log1+ε(λ) [BS13]. Again, there might be adversaries who are only able to find low order

elements with their order being between poly(λ) and 2log1+ε(λ), therefore their success probability in breaking
soundness of Pietrzak’s argument would be negligible.

3.2 Sufficiency of weaker LO assumptions for soundness of Pietrzak’s argument

Let f(λ) denote the function limiting the maximal order of the low order element in an LO assumption. We see that

in Definition 1, f(λ) = 2poly(λ), while in Definition 5, f(λ) = 2log1+ε(λ). We are interested in finding the minimal
f(λ) such that the LO assumption with that f(λ) is still sufficient for proving the soundness of Pietrzak’s argument
system for LEXP.
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Theorem 2. If the soundness of Pietrzak’s succinct argument for proof of exponentiation is broken, then so is the
subexponential LO assumption, cf. Definition 5.

Proof. Hereby we reuse the proof given by Boneh et al [BBF18] with modifications to our specific setting. Hence,
we recall their proof for the sufficiency of the LO assumption for breaking the soundness of Pietrzak’s argument.
Let A be an adversary who breaks the soundness of Pietrzak’s argument with non-negligible probability ε. We use
a forking argument to construct an adversary B that breaks the low order assumption using A.

Recall that 2t is an upper bound on the value T output by A. Let A(G, r0, . . . , rt−1;R) denote an execution of A
with random tape R, where r0, . . . , rt−1 are the verifier’s challenges at each level of the recursion. The adversary A
outputs (J, σ). The protocol transcript is denoted by σ which is a sequence of t+1 tuples: σ = (P0, v0), . . . , (Pt, vt),
where Pi = (G, gi, hi, T/2i) is the input to the recursion at level i, and vi is the prover’s message at level i. Adversary
A also outputs the smallest index J for which PJ /∈ LEXP but PJ+1 ∈ LEXP whenever P0 ∈ LEXP and Pt /∈ LEXP.
Otherwise J = −1 if such an index does not exist1. Recall that gi ←− gri−1

i−1 vi−1 and hi ←− vri−1

i−1 hi−1 for i = 1, . . . , t.
Here we assume T = 2t, but if T < 2t then we replicate the last pair (Plog T , vlog T ) to get a full transcript of t+ 1
tuples.

1. Let K = [1, 2log1+ε(λ)].

2. Input generator IG samples x = (x0, x1, . . . , xt−1)
$←− [0, 2λ−2log1+ε(λ)

].

3. We define algorithm A′ on random tape R and ki ∈ K for all i, as follows: A′(x, k0, k1, . . . , kt−1;R) invokes

A(G, r0, . . . , rt−1;R) with ri = xi · 2log1+ε(λ) + ki. Algorithm A′ returns the same output as A. Note that

whenever ki
$←− K and x

$←− IG, then ri is also sampled uniformly at random from [1, 2λ]. Hence, the success
probability of A′ equals that of A.

4. Next, define the following probabilistic experiment FA′(x): let P0 /∈ LEXP but Pt ∈ LEXP (i.e., the verifier
incorrectly accepts P0) then:

• choose a random tape R for A′.

• Sample ki
$←− K for i ∈ [0, t− 1].

• We obtain (I, σ)←− A′(x, k0, k1, . . . , kt−1;R).

• If I = −1 output fail.

• If I ≥ 0, then sample new k′i
$←− K for i = (I + 1, . . . , t− 1).

• We obtain (I ′, σ′)←− A′(x, k0, . . . , kI , k
′
I+1, . . . , k

′
t−1;R)

• If I = I ′ ∧ kI+1 6= k′I+1 then return (I, σ, σ′) and success.

• Else return fail.

Let E be the event that FA′(x) outputs success. By applying the general forking lemma by Bellare and

Neven [BN06] we have that E happens with probability (ε2/t) − (ε/2log1+ε(λ)). This probability is non-negligible,
whenever ε is non-negligible.

Now we establish why event E produces low order element for adversary B. When E happens we have PI /∈ LEXP

and PI+1, P
′
I+1 ∈ LEXP. Therefore, if FA′(x) outputs (I, σ, σ′) adversary B obtains the sextuple (g, h, T̂ , v, r, r′) with

the following properties.

h 6= h(22T ) and (grv)(2T̂ ) = vrh and (gr
′
v)(2T̂ ) = vr

′
h (7)

Re-arranging terms of the two equalities on the right we get

(g(2T̂ )/v)r = h/v(2T̂ ) and (g(2T̂ )/v)r
′

= h/v(2T̂ ) (8)

Dividing the left equality by the right we obtain

(g(2T̂ )/v)r−r
′

= 1 (9)

1Outputting J
$←− [−1, t− 1] only reduces adversary’s success probability with a factor of t+ 1.
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Let u := g(2T̂ )/v. Next we establish an upper bound on the order of u ∈ G. It is guaranteed that r 6= r′, since
kI+1 6= k′I+1. We observe that the order of u can be bounded by:

|r − r′| = |(xI+1 · 2log1+ε(λ) + kI+1)− (xI+1 · 2log1+ε(λ) + k′I+1)| = |kI+1 − k′I+1| ≤ 2log1+ε(λ) (10)

Hence, we conclude that (u, r − r′) is a pair which breaks the subexponential low order assumption in G.

We remark that one could replace f(λ) = 2log1+ε(λ) with any superpolynomial function of λ in Theorem 2.

4 A partial reduction of Factoring to the LO assumption

In this section we prove the equivalence of the LO and the Factoring assumption for non-negligible moduli. We
use the LO assumption introduced by Boneh et al [BBF18], cf. Section 2.3. However, the proof enclosed hereby
would equally work well for the weaker, subexponential variants of the LO assumption. Specifically, in the following
theorem we assume that the RSA-modulusN is generated in a way such that φ(N) has no prime factor in (B, 2poly(λ)]
for a constant B and gcd(p − 1, q − 1) = 2. In Section 4.1 we argue that in practice the majority of RSA moduli
satisfy these requirements in a typical parameter setting.

Theorem 3. Let B be a fixed integer. The Factoring assumption is reducible in polynomial time to the Low Order
assumption for RSA-moduli when φ(N) has no prime factor between B and 2poly(λ) and gcd(p− 1, q − 1) = 2.

Proof. Let’s assume there exists an efficient adversary A, who can break the LO assumption with non-negligible
probability. Express differently, there exists a polynomial q(λ), such that

Pr[A breaks LO ] ≥ 1

q(λ)
. (11)

We devise an efficient adversary B who can factor non-negligible fraction of random RSA moduli by using A as
a subroutine. Adversary B operates as follows. Upon receiving a random semiprime N it invokes A on Z∗N . By
our assumption, adversary A with non-negligible probability outputs a (u, l) pair such that ul ≡ 1 mod N and
2 ≤ l ≤ 2poly(λ) ∧ u 6= −1. Note that, the order l of u ∈ (Z/pqZ)× ∼= (Z/pZ)× × (Z/qZ)× is the least common
multiple of its (multiplicative) orders modulo p and modulo q, ie. l = lcm(ordp(u), ordq(u)).

Note that, whenever ordp(u) 6= ordq(u), adversary B could factor N = pq if l was smooth enough. The reason
being that, adversary B raises u to the power of l

r for all prime factors r of l, until modulo one prime factor of N , but

not the other. The order of u divides l
r , which can be detected by 0 < gcd(u

l
r − 1 mod N,N) < N , hence factoring

the modulus N . In our reduction adversary B tries to find all prime factors of l in order to find a non-trivial factor
of N as described above. This will be the technique employed by adversary B. Hence, towards our goal one thing
that we need to show is that ordp(u) 6= ordq(u) with non-negligible probability.

First, let us assess the probability when ordp(u) = ordq(u) for randomly chosen primes p, q. This probability
needs to be established as in this case one cannot factor N with the aforementioned technique. We show that
gcd(p−1

2 , q−1
2 ) = 1 with constant probability. Since p and q were chosen uniformly random, also (p − 1)/2 and

(q− 1)/2 behave almost like random integers if we consider their divisibility by other primes (there is one excluded
residue class for each prime). The probability of coprimality of random integers is 1

ζ(2) = 6
π2 ≈ 0.61. In our case, we

have to adjust this value because of the excluded classes, but we still have that gcd(p− 1, q − 1) = 2 with constant
positive probability, therefore whenever ordp(u) = ordq(u), then this quantity is either 1 or 2. We examine these
two cases in more detail.

• ordp(u) = ordq(u) = 1. This is only possible if u = 1, which cannot be the case by the definition of the LO
assumption, see Definition 1.

• ordp(u) = ordq(u) = 2. In this case ordN (u) = lcm(ordp(u), ordq(u)) = 2. Since u /∈ {1,−1}, therefore
u is another non-trivial square root of 1. This also implies that one can factor N as pq = N |u2 − 1 =
(u− 1)(u+ 1) ∧ u /∈ {1,−1}. Therefore gcd(N, u− 1) = p ∨ gcd(N, u+ 1) = p.

Hence, we can conclude that for randomly chosen primes p, q with constant probability ordp(u) 6= ordq(u).
Second, the goal of adversary B is to obtain all the prime factors of l. For that end, adversary chooses a

constant bound B, say 210. Hence, the adversary would like l to be a B-smooth integer in order to be able to
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factor it efficiently. Whenever adversary receives order l (1 ≤ l ≤ 2poly(λ)) of u, then adversary would like to find
all of its prime factors in a brute force-manner, but still in polynomial-time in λ. Namely, adversary B wants to
find l’s smallest prime factor l1, which is smaller than B. Suppose a1 is the largest integer such that la11 |l. Then,
recursively we would like to find the smallest prime factor of l

l
a1
1

, denoted l2 which is smaller than B and so on.

This approach succeeds whenever B receives a pair (u, l) from A, where l is B-smooth. This can be guaranteed
if φ(N) has no prime factors between B and 2poly(λ). Therefore, we compute now the fraction of those primes
up to N , that do not have prime factors between B and 2poly(λ). We need to establish the fraction of primes up
to N = O(2s(λ)), that do not have prime factors in (B, 2poly(λ)]. Let us call these integers as low order smooth
integers, additionally let Plos be the probability that a randomly chosen integer is low order smooth. We obtain
the following asymptotic by applying Equation 5.

Plos(λ) =
Γ(2s(λ), 2poly(λ),B)

2s(λ)
≈ 2s(λ)η(s(λ)/poly(λ), s(λ)/B)

2s(λ)
≥ s(λ)/poly(λ)

2s(λ)/B
=

B

2poly(λ)
. (12)

Hence, we established that Plos is non-negligible in λ. It follows that the probability that the order of a random
RSA-modulus does not have a prime factor in (B, 2poly(λ)] is P2

los, i.e. non-negligible. We can establish now the
success probability of adversary B breaking the Factoring assumption.

Pr[B breaks Factoring] ≥ 6

π2
q(λ)P2

los(λ) (13)

Therefore, we conclude our proof that the success probability of the efficient adversary B is non-negligible.
We remark that in the reduction we could have allowed φ(N) to have a single prime factor in (B, 2poly(λ)]. Once

B factors out all the prime factors smaller than B from the low order l, adversary B can establish in probabilistic
polynomial time whether the resulting integer is a prime power. If yes, then also in those cases B can factor
efficiently the low order l.

4.1 Practical consequences of the reduction

Hereby, we give an estimate on the portion of RSA moduli used in practice, for which the reduction presented above
guarantees an equal level of security for the LO problem, as for the classical Factoring problem. Let ε = 5 and λ = 80,
consequently, the size of the moduli should be 1024 bits. OpenSSL is an open-source cryptographic library, which
is widely used and the most popular on the internet [ŠNS+16]. OpenSSL generates primes in a way that it ensures
that no prime from 3 to 17863 divides p−1. Let S denote the following set, S = {(p−1)/2|pi - p−1, 2 ≤ i ≤ 2048},
where pi is the ith prime. Hence, the probability of coprimality for two randomly sampled integers from S is
limn→∞

∏n
i≥2049(1 − 1/p2

i ) ≈ 0.7499. Hence we let B = 17863. The portion of integers having no prime factor

between B and log6(80) amounts to log(B)
6 log log(80) = 0.8848 that can be obtained by using Weingartner’s theorem, cf.

Equation 5. Overall we have that the probability that an RSA modulus randomly generated by OpenSSL provides
the same security guarantees for the LO assumption as for the Factoring is 0.8848 ∗ 0.7499 = 0.6635. Respectively,
for the majority of RSA moduli used in practice if one could find a low order element, then they would be able to
factor those moduli as well.

5 Certifying RSA moduli free of low order elements

In certain use cases, e.g. in a public key infrastructure setting or for a VDF, it might be useful if users could
prove that their RSA-modulus is free of low order elements. To that end, one could certify RSA moduli applying
techniques developed by Goldberg et al [GRSB19].

Specifically, we assume a user wants to prove in zero-knowledge that their RSA modulus N is free of low order
elements. Express differently, a user wants to show that φ(N) has no divisors smaller than a certain bound B.
Let pn denote the largest prime smaller than B. Then let e =

∏n
i=1 pi, where pi is odd prime, i.e. e is the nth

primorial divided by two. Consequently, there cannot be elements mod N with order smaller than B if and only
if gcd(e,N) = 1. Put differently, N has no low order elements if and only if x −→ xe mod N is a permutation.
Applying the zero-knowledge proof system for the language LpermZ∗N this can be proved efficiently [GRSB19].

In a typical parameter setting (1024-bit RSA moduli, 2−80 soundness error for the certification, B = 210) the
low order RSA public key certification would consist of 50 elements of ZN . Hence the size of the proof amounts
to 6, 4KB. Generating the certification costs roughly 50 full-length RSA exponentiations modulo N , hence it is
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also feasible to calculate the proof in a distributed RSA key generation scenario. Meanwhile, each verifier pays the
one-time cost of verifying the certification, which is also roughly equal to 50 full-length exponentiations. We note
that the number of elements consisting of the proof and number of exponentiations the verifier needs to compute
depends only on the admitted soundness error of the proof system and not the size of the moduli. More precisely,
both quantities are roughly ≈ λ/ log 3.

6 Open Problems

It is a fascinating open problem to explore more connections between novel and standard RSA assumptions2. For
instance, it would be fruitful to establish the relation of the Adaptive Root assumption [BBF18] and the (Strong)
RSA assumption. The Adaptive Root assumption underpins the security of Wesolowski’s VDF construction [Wes19]
and several batching techniques proposed for RSA accumulators [BBF19].
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