
Hybrid-BFT: Optimistically Responsive Synchronous Consensus

with Optimal Latency or Resilience

Atsuki Momose1, Jason Paul Cruz2, and Yuichi Kaji1

1Nagoya University, momose@sqlab.jp, kaji@icts.nagoya-u.ac.jp
2Osaka University, jpmcruz@ymail.com

April 19, 2020

Abstract

The breakthrough of blockchain in many decentralized cryptocurrencies has reactivated stud-
ies on consensus under network synchrony, which has better security than a consensus under
network asynchrony but has been considered to be impractical and only theoretical so far. One
of the biggest concerns is the speed of transaction processing. To solve this concern, transac-
tions can be processed responsively, i.e., without reliance on synchrony. Another approach is
to minimize reliance on synchrony to achieve optimal synchronous latency. In this paper, we
consider answering the question ”Can we achieve both responsiveness and optimal synchronous
latency?”. To do this, we first show some theoretical possibilities and impossibilities in achieving
both responsiveness and optimal synchronous latency, and then we present a practical blockchain
or state machine replication protocol we call Hybrid-BFT. Hybrid-BFT can process transactions
responsively under normal situation, i.e., small number of faults, while it can achieve optimal
synchronous latency even under worst situation. Furthermore, Hybrid-BFT achieves responsive
leader change, making it completely free from synchronous delay under normal situation.

1 Introduction

1.1 Consensus under Network Synchrony

A consensus protocol, specifically state machine replication [40, 37, 38], is a crucial component in
a fault-tolerant computer system. For the past three decades, it has been studied in the areas of
distributed algorithms and cryptographic protocols. The main application considered in these stud-
ies is a server/database replication service managed by one entity. In such a private environment,
performance is prioritized at the cost of resilience, which is the maximum number of faults allowed
denoted by f . In such situation, consensus under network synchrony has been considered to be only
theoretical and an impractical solution due to the following two concerns: (i) To be naturally con-
sidered, consensus relying on network synchrony makes latency dependent on the estimated network
delay bound ∆, which creates a trade-off between security and latency; (ii) The standard synchrony
model in which partitions are not allowed is unrealistic in a real-world network environment. To
make matters worse, to simplify its model, it has been discussed under lockstep execution where
each round is fully synchronized [20, 1], consequently making its latency longer and introducing an
additional trade-off.

1

Since the invention of blockchain following the Nakamoto Consensus [34, 36, 22] and its prac-
tical use in many decentralized cryptocurrency projects, high resilience has become an important
requirement in a public network environment where malicious behaviors occur frequently. Such
a consideration has reactivated studies on consensus under network synchrony to use its inherent
resilience. In a network with n replicas, consensus under network synchrony can tolerate < n/2
byzantine faults while consensus under asynchrony or partial synchrony can only tolerate < n/3
byzantine faults [21].

Several prior works have tackled the two concerns mentioned above. The first concern, i.e.,
the latency to process transactions, has been the biggest hindrance towards the practical use of
consensus under network synchrony. This latency problem can be tackled using two approaches.
The first approach is to process transactions responsively, i.e., with latency of O(δ), where δ is
the actual network delay which is generally δ � ∆. It has been shown that an assumption of
f ≥ n/3 does not always achieve responsiveness [2, 37]. Pass et al. showed that responsiveness can
be achieved when the number of actual faults fopt is substantially smaller (e.g., fopt < n/4) than
what is allowed in its worst case (e.g., f < n/2)– they call this property optimistic responsiveness
[39]. The second approach is to minimize reliance on network synchrony to achieve optimal latency
in terms of ∆. Abraham et al. first presented a near optimal 2∆ + O(δ) protocol [2] and achieved
optimal ∆ +O(δ) in their subsequent work [4]. To tackle the second concern, Guo et al. introduced
weak synchrony [24] which allows some honest replicas to be offline. In the real world, replicas being
offline is common and can be caused by a number of events, e.g., network failure or power failure.
Abraham et al. constructed state machine replication protocols under the weak synchrony model.

1.2 Our Contributions

In this paper, we answer the following natural question:

”Can we construct a state machine replication protocol that achieves both optimistic responsive-
ness and optimal synchronous latency?”

To do this, we first show some theoretical possibilities and impossibilities in achieving both op-
timistic responsiveness and optimal synchronous latency. Then, we present a practical blockchain
or state machine replication protocol we call Hybrid-BFT that can achieve both optimistic respon-
siveness and optimal/near optimal synchronous latency.

1.2.1 Theoretical Bounds on Latency/Resilience

To simplify the discussion on the theoretical possibilities and impossibilities mentioned above, we
first consider reliable broadcast, a single-shot consensus primitive, and formally define its latency
and optimistic responsiveness. On the negative side, we show that there is an inherent trade-off
between its synchronous latency, i.e., the latency under f faults, and its optimistic resilience fopt.
Assuming optimal optimistic resilience to achieve optimistic responsiveness, both optimal ∆ +O(δ)
synchronous latency and optimistic responsiveness cannot be achieved. On the positive side, we show
that both optimal ∆+O(δ) synchronous latency and optimistic responsiveness can be achieved when
the optimistic resilience is compromised. On the other hand, assuming optimal optimistic resilience,
we can achieve both near-optimal 2∆ + O(δ) synchronous latency and optimistic responsiveness.
We can consider these protocols as latency favoring or resilience favoring in the trade-off described

2

above.
Prior works that tried to achieve optimistic responsiveness have only one “mode” of commit-

ment. Put simply, only one of responsive or synchronous commitment is allowed at a time, and if
one fails, then switch to the other one. This “single mode” construction makes the synchronous la-
tency of previous protocols longer. In this paper, we introduce “hybrid commitment”, which allows
the execution of the two commitment modes simultaneously. By interactively committing between
two modes, our protocol achieves both optimistic responsiveness and optimal or near-optimal syn-
chronous latency without introducing any inconsistency.

Furthermore, all of these latency favoring or resilience favoring protocols are special cases of one
unified reliable broadcast protocol where differences are all absorbed into the protocol parameters.
Therefore, our protocol can be considered to be natural and reasonable with respect to theoretical
features.

1.2.2 Practical State Machine Replication

After the theoretical discussions, we extend the reliable broadcast protocols to introduce Hybrid-
BFT. Hybrid-BFT has a simple leader-full construction, where each predetermined leader is assigned
to each time frame of constant length called view. We also use the so-called locking mechanism
[33], which is used in many state machine replication protocols, to maintain consistency across
different views. Prior works only needed to care about one mode of commitment, while our proposed
protocol needs to care about two modes of commitment. Each commitment in two modes needs
to be properly handed over to the next view, which also has two modes. Therefore, we need to
care about four relations of locking. This “hybrid locking” is a critical component in extending the
single-shot reliable broadcast protocol with hybrid commitment into a state machine replication
protocol without introducing any inconsistency.

Furthermore, by combining the three-phase commitment technique first introduced by Hotstuff
[46, 47] with our hybrid locking mechanism, our protocol achieves responsive leader/view change
under the presence of a small number of faults. This is a strong and desired feature in a practical
implementation because the processing of transactions is completely free from synchronous delay ∆
at all times during protocol execution, while leaders continuously change in a democratic manner.

Finally, we extend Hybrid-BFT to be secure under weak synchrony, hereafter called mobile slug-
gish synchrony. The technique we use for synchronous commitment to be robust against offline
replicas is similar to the technique in prior works, but constructing a hybrid commitment/locking
mechanism and proving its security under mobile sluggish synchrony is not trivial.

1.3 Related Works

We introduce some recent works closely related to ours to compare and clarify our contributions.

1.3.1 Optimistic Responsiveness

Optimistic responsiveness was first introduced by Thunderella [39]. In Thunderella, transactions are
first processed responsively through a fast pass, and if this fast pass fails, transactions are processed
through a fallback pass with an underlying synchronous blockchain, e.g., Nakamoto Consensus. In
the fast pass, transactions are proposed by a predetermined leader and processed by a committee
when the number of faults is very small. When transactions fail to be processed responsively,

3

they are instead processed slowly under synchronous blockchain. This fallback mechanism can be
regarded as a mode switching mechanism, which makes the synchronous latency longer.

Sync Hotstuff [2] applies optimistic responsiveness to a classical state machine replication with
a bimodal construction, i.e., steady-state and view-change. Sync Hotstuff has synchronous and
responsive modes, and it starts with the synchronous mode. To switch to the responsive mode,
at least one block needs to be processed synchronously. If this block collects votes from > 3n/4
replicas, then it is processed responsively. Therefore, Sync Hotstuff cannot process transactions
responsively immediately after the start of each view. Furthermore, if faulty replicas pretend to be
honest at first and then stop voting after the switch to the responsive mode, the protocol cannot
progress. Therefore, Sync Hotstuff cannot ensure liveness under the worst situation where f replicas
are faulty.

1.3.2 Optimal Synchronous Latency

As mentioned above, prior works have achieved optimal synchronous latency without optimistic
responsiveness. Sync Hotstuff first achieved near-optimal 2∆ + O(δ) latency. It achieves safety by
interactively preventing conflicting transactions from being processed. In other words, Sync Hotstuff
is “symmetric”, i.e., when two replicas try to process conflicting transactions, both transactions are
rejected. It is also conjectured that 2∆ + O(δ) is the optimal synchronous latency because inter-
actions between honest replicas are required for symmetric commitment. However, Abraham et
al. achieved optimal ∆ +O(δ) latency in their subsequent work [4] by non-interactively preventing
conflicting transactions from being processed. Their work, in contrast to Sync Hotstuff, is “asym-
metric”, i.e., when two replicas try to process conflicting transactions, one of the transactions is
processed while the other one is rejected.

These works have contributed in making synchronous protocols practical. However, considering
today’s computer systems that are required to process requests extremely fast, a latency that
depends on the securely overestimated delay bound ∆ is not enough.

1.4 Paper Organization

In Section 2, we introduce the model under which our protocols are executed. In Section 3, we show
some theoretical possibilities and impossibilities to achieve optimistic responsiveness and optimal
synchronous latency. In Section 4, we present Hybrid-BFT. In Section 5, we extend Hybrid-BFT for
mobile sluggish synchrony. In Section 6, we review additional related works. Finally, in Section 7,
we conclude with a summary of our work.

2 Model

We define a protocol Π as an algorithm for a set of nodes or replicas. Each protocol execution
is directed by an environment Z, which captures all aspects of external actions, such as clients
requests, and proceeds in an atomic time step. At the start of protocol execution, Z spawns a set
of replicas denoted by N of size n. All replicas in a subset H ⊂ N are honest and faithfully follow
Π. The remaining replicas N \ H of size at most f are byzantine faulty, i.e., fully controlled by
an adversary A, and behave arbitrarily. We assume static adversary for simplicity. At the start
of protocol execution, after spawning all replicas, Z determines which replicas are honest or faulty
and cannot be changed throughout the protocol execution. A is in charge of all communications

4

between replicas. Here, we assume standard synchrony. If an honest replica r sends a message x
to another honest replica r′ at time t, then r′ receives x before t + δ. The delay parameter δ is
determined by Z at the start of protocol execution within the constraint that δ ≤ ∆. All replicas
are informed of ∆ but not δ, and thus δ can be regarded as an actual network delay that cannot
be observed in the real world. A can delay and reorder, but cannot rewrite, messages within the
constraint above. We will extend the standard synchrony to weaker synchrony model called mobile
sluggish synchrony later in this paper. We assume the use of authenticator and use 〈x〉r to denote a
message x signed by a replica r. We omit the signer r when it is clear from the context. We assume
the use of collision-resistant hash function H.

3 Reliable Broadcast

In this section we show some theoretical lower/upper bounds on latency and resilience of opti-
mistically responsive consensus protocols. Although our final goal is to construct state machine
replication protocols, for simplicity we first deal with reliable broadcast [30, 8], a well-known single-
shot consensus primitive.

3.1 Definitions

In a reliable broadcast protocol, a designated sender in a set of replicas broadcasts a value in a
consistent manner. At the start of protocol execution, on spawning of replicas, Z selects a sender
rsend ∈ N , informs all replicas, and sends a value v as input to rsend. Each honest replica commits
v following the protocol. The security properties of reliable broadcast are defined as in Definition
1.

Definition 1 (Security of Reliable Broadcast). A reliable broadcast protocol must provide the fol-
lowing properties with some polynomials Ttot, Tval in protocol parameters.

1. Consistency. If any two honest replicas commit v and v′, respectively, then v = v′.

2. Ttot-Totality. If an honest replica commits a value at time t, then every honest replica commits
this value before t+ Ttot.

3. Tval-Validity. If the sender is honest, then every honest replica commits the sender’s value
before Tval.

To define the optimistic responsiveness of a reliable broadcast protocol, we first define a property
called optimistic validity as in Definition 2, which is an extension of the Validity property described
above. Here after we call synchronous latency as Tval and optimistic latency as Topt.

Definition 2 (Optimistic Validity). A reliable broadcast protocol has (Topt, fopt)-Optimistic Validity
if it satisfies the following: If the sender is honest and up to 0 < fopt < f (we call it optimistic
resilience) replicas are faulty, then every honest replica commits the sender’s value before Topt.

We now define the optimistic responsiveness of a reliable broadcast protocol as in Definition
3. In the definition of optimistic responsiveness in [39], the optimistic latency is described by a
polynomial for versatility. However, most responsive protocols have latency of some constant factor
of δ, and thus we follow this definition for simplicity and practicality.

Definition 3 (Optimistic Responsiveness). A reliable broadcast protocol has fopt-Optimistic Re-
sponsiveness if it has (O(δ), fopt)-Optimistic Validity.

5

3.2 Trade-off between Latency and Resilience

We first show the negative aspect, i.e., impossibility results, of the theoretical properties of op-
timistically responsive reliable broadcast protocols. We show that there is an inherent trade-off
between latency and resilience. First, we provide the tight upper bound on the optimistic resilience
to achieve optimistic responsiveness in Theorem 1. This upper bound is introduced in [39] for state
machine replication, and thus we easily extend the proof for reliable broadcast to be reviewed.

Theorem 1 (Resilience for Optimistic Responsiveness). Assuming fopt ≥ n−f
2 , there are no reliable

broadcast protocols that achieve fopt-Optimistic Responsiveness.

Proof. Suppose for the sake of contradiction that there exists a reliable broadcast protocol Π that
achieves (C0·δ, fopt)-Optimistic Validity for fopt ≥ n−f

2 and a constant C0. We lead to a contradiction
by showing a scenario where Π violates its consistency. In the scenario, we use a network delay
parameters δ0 that satisfies C0 · δ0 < ∆. We consider three worlds where each honest replica runs
Π to commit a value. In each world, there are three sets of replicas A,B,C, whose size is each
|A| = |C| = fopt, |B| = n− 2fopt ≤ f , and a sender rsend ∈ B.

In world 1, only A is crashed and δ = δ0. rsend receives a value v0 from Z and broadcasts it.
At time t = δ0, each replica receives v0. From the assumption, C commits v0 at time t = C0 · δ0

communicating with B and not communicating with A.
In world 2, only C is crashed and δ = δ0. rsend receives a value v1 from Z and broadcasts it.

At time t = δ0, each replica receives v1. From the assumption, A commits v1 at time t = C0 · δ0

communicating with B and not communicating with C.
In world 3, only B is faulty and δ = ∆. Additionally A transports messages with delay ∆

between A and C and with δ0 for other links. rsend receives a value from Z but ignores it and
sends v0 to C and v1 to A. Furthermore, B behaves like in world 1 for C and world 2 for A. From
the view of C, worlds 1 and 3 are indistinguishable before C0 · δ0 because the messages from A
cannot be reached before C0 · δ0 < ∆, thus C commits v0 at C0 · δ0. In the same way, A commits
v1 at C0 · δ0. As a result, A and C commit different values, violating the consistency, which is a
contradiction.

We now provide the upper bound on the optimistic resilience to achieve the optimal synchronous
latency, i.e., ∆ + O(δ)-Validity, in Theorem 2. In a latter section, we will show that this bound is
tight.

Theorem 2 (Resilience for Optimal Synchronous Latency). Assuming fopt ≥ n− 2f , there are no
reliable broadcast protocols that achieve ∆ +O(δ)-Validity and fopt-Optimistic Responsiveness.

Proof. Suppose for the sake of contradiction that there exists a reliable broadcast protocol Π that
achieves ∆ + C0 · δ-Validity and (C1 · δ, fopt)-Optimistic Validity for some constant C0, C1 and
fopt ≥ n−2f . We lead to a contradiction by showing a scenario where Π violates its consistency. We
illustrate the scenario chronologically in Figure 1. In the scenario, we use network delay parameters
δ0, δ1 that satisfy C0 · δ0 < δ1 < C1 · δ1 < ∆ < δ0 + ∆ < C0 · δ0 + ∆ < δ1 + ∆. We consider
three worlds where each honest replica runs Π to commit a value. In each world, there are three
sets of replicas A,B,C, whose size is each |A| = f, |B| = n− f − fopt ≤ f, |C| = fopt, and a sender
rsend ∈ B.

In world 1, only A is faulty and δ = δ0. rsend receives a value v0 from Z and broadcasts it. At
time t = δ0, each replica receives v0. However, A behaves as if it did not receive v0 by time δ1, and

6

Figure 1: The scenario where consistency is violated in world 3 described in the proof of Theorem
2. The faulty sender rsend sends different values v0 to C and v1 to A, and A transport them
with different delays. Finally, honest replicas in C and A commit v0 and v1, respectively, without
interacting with each other.

crashes after δ1. From the assumption, C commits v0 at time t = C0 · δ0 + ∆ communicating with
B and ignoring A.

In world 2, only C is crashed and δ = δ1. rsend receives a value v1 from Z and broadcasts it.
At time t = δ1, each replica receives v1. From the assumption, A commits v1 at time t = C1 · δ1

communicating with B and not communicating with A.
In world 3, only B is faulty and δ = ∆. Additionally A transports messages with delay δ0

between B and C, with δ1 between B and A, and with ∆ between A and C. rsend receives a value
from Z but ignores it and sends v0 to C and v1 to A. Furthermore, B behaves like in world 1 for
C and world 2 for A. From the view of C, worlds 1 and 3 are indistinguishable before C0 · δ0 + ∆
because the messages from A after the time when A receives v1 (i.e., t = δ1) cannot be reached
before C0 · δ0 + ∆ < δ1 + ∆, thus C commits v0 at ∆ + C0 · δ0. On the other hand, from the view
of A, worlds 2 and 3 are indistinguishable before C1 · δ1 because all messages from C cannot be
reached before C1 · δ1 < ∆, thus A commits v1 at C1 · δ1. Therefore, A and C commit different
value, violating the consistency, which is a contradiction.

Summarizing the theorems above, we can see, as in Figure 2, the inherent gap between the
optimal resilience to achieve optimistic responsiveness (the green line) and the optimal resilience to
achieve optimistic responsiveness and optimal synchronous latency (the yellow line). We can also
see as a corollary that we can achieve optimal synchronous latency and optimistic resilience only
when f = n

3 . Therefore, when we assume f > n
3 and optimal optimistic resilience, the optimal

synchronous latency is k ·∆ +O(δ) for k > 1. Furthermore, it can be seen that it is impossible to
achieve optimistic responsiveness and optimal synchronous latency when f ≥ n−1

2 .

3.3 Protocols with Optimal Latency/Resilience

We now show the positive aspect, i.e., the possibility results, of the theoretical properties of opti-
mistically responsive reliable broadcast protocols. In the previous section, we provided the upper
bound on the resilience to achieve optimal synchronous latency. We show that this bound is tight
as formally argued in Theorem 3.

7

Figure 2: The upper bound on each optimistic resilience fopt. The yellow line is the optimal resilience
to achieve optimistic responsiveness, the green one is the optimal resilience to achieve optimistic
responsiveness and optimal synchronous latency.

Theorem 3 (Reliable Broadcast with Optimal Synchronous Latency). Assuming n
3 ≤ f <

n−1
2 and

0 < fopt < n−2f , a reliable broadcast protocol can achieve both ∆+O(δ)-Validity and fopt-Optimistic
Responsiveness.

As shown in the previous section, when we assume f > n
3 and optimal optimistic resilience, the

optimal synchronous latency is k ·∆ +O(δ) for k > 1. We show that the near optimal synchronous
latency 2∆ +O(δ) is possible, as formally argued in Theorem 4.

Theorem 4 (Reliable Broadcast with Optimal Resilience). Assuming n
3 ≤ f < n

2 and 0 < fopt <
n−f

2 , a reliable broadcast protocol can achieve both 2∆ +O(δ)-Validity and fopt-Optimistic Respon-
siveness.

To prove these theorems, we construct two reliable broadcast protocols that favor latency and
resilience, respectively. Surprisingly, these two protocols are special cases of a unified protocol in
which the differences are all absorbed into the protocol parameters.

3.3.1 The Unified Protocol

We introduce the unified reliable broadcast protocol ΠRBC , parameterized by a constant k, opti-
mistic resilience fopt, and resilience f . The constant k directly determines the synchronous latency
of ΠRBC , i.e., ΠRBC has k ·∆ +O(δ) synchronous latency. In Figure 3 we describe ΠRBC in detail.
ΠRBC consists of three sub protocols, Πsync, Πrsp, and Πblame.

Πsync is the synchronous commitment protocol that commits a value even under the worst
situation where f replicas are faulty. Upon receiving a value b from a designated sender, a replica

8

ΠRBC(k, fopt, f)� �
Let rsend be the designated sender, and r be a replica. The sender rsend broadcast the value b input from Z in
the form of 〈propose, b〉rsend . Replica r concurrently executes the following sub protocols Πsync, Πrsp and Πblame.
Πsync:

1. Sync: Upon receiving 〈propose, b〉rsend , set timer to k ·∆ and start counting down.

2. Vote: When timer reaches 0, broadcast a vote in the form of 〈vote, b〉.
3. Commit: Upon receiving C(b), commit b.

Πrsp:

1. Vote: Upon receiving 〈propose, b〉rsend , broadcast a vote in the form of 〈vote, b〉.
2. Commit: Upon receiving S (b), commit b.

Πblame:

1. Blame: Upon receiving two different values sent from rsend, stop voting in Πsync and Πrsp.� �
Figure 3: Optimistically Responsive RBC with k ·∆ Synchronous Latency

waits for k · ∆ to synchronously check the absence of equivocation, i.e., conflicting values sent by
a faulty sender. After the synchronous waiting, the replica votes for b. Finally, upon receiving a
normal certificate for b denoted by C(b), which is a set of votes for b from at least n − f distinct
replicas, the replica commits b.

Πrsp is the responsive commitment protocol that commits a value responsively under the opti-
mistic situation where up to fopt replicas are faulty. Upon receiving a value b from a designated
sender, the replica immediately votes for b. And then, upon receiving a strong certificate for b
denoted by S (b), which is a set of votes for b from at least n − fopt distinct replicas, the replica
commits the b. Hereafter, we refer to certificate without distinction between normal and strong.
The focal point of this construction is that Πrsp concurrently executes the synchronous commitment
and the responsive commitment. This removes any mode-switching mechanism that leads to an-
other synchronous waiting. However, if these two commitment protocols or also protocol instances
executed by different replicas arbitrarily vote for values, equivocating certificates, i.e., certificates
for equivocating values, are created, consequently breaking the consistency.

Πblame is the blame protocol that stops the creation of equivocating certificates. Upon receiving
equivocation, a replica stops voting for any values from then on, consequently preventing equiv-
ocating certificates from being created. This blame mechanism becomes effective if equivocations
can be detected properly. Therefore, to complete its security, we need to ensure equivocation de-
tection. Furthermore, we need to consider two concurrently executed protocol instances, which are
not considered in the single-mode protocols. This mechanism can be compressed into the param-
eter constraints. Later in this section, by introducing two types of parameter settings, we explain
how parameter constraints can be used to detect equivocation and how they affect the latency and
resilience of a protocol. It can easily be calculated that Πblame has synchronous latency of k ·∆ + 2δ
and optimistic latency of 2δ. The additional 2δ is for a value to be received by replicas and for a
vote to be received by replicas.

9

3.3.2 The Latency-Favoring Protocol

We instantiate a protocol from the unified protocol ΠRBC . We first introduce the protocol with
optimal synchronous latency ΠRBC(1, n − 2f − 1, f). The novel point of this parameter setting is
that we can ensure that at least one honest replica is in any intersection of two types of quorums.
Each type of certificate has two quorums with sizes of |C| = n − f and |S| > 2f . Therefore,
the minimum size of intersection is |C| + |S| − n > f . This technique prevents synchronous and
responsive commitment protocols from creating equivocating certificates without relying on the
network synchrony.

3.3.3 The Resilience-Favoring Protocol

We introduce a protocol that achieves optimal optimistic resilience ΠRBC(2, dn−f2 − 1e, f). In this
parameter setting, we cannot rely on the quorum intersection to prevent synchronous and responsive
commitment protocols from creating equivocating certificates. Instead, the additional synchronous
waiting prevents the creation of equivocating certificates. We explain how the synchronous waiting
for 2∆ prevents the creation of equivocating certificates by considering two cases. Suppose an
honest replica r receives a value v at time t and starts waiting for 2∆ in a synchronous commitment
protocol. If another honest replica r′ in a responsive commitment protocol votes for a different value
v′, we can consider two cases, i.e., r′ votes before or after t+ ∆. Considering the former case, v′ is
received by r before t + 2∆, preventing r from voting for v. The latter case cannot occur because
v should be received by r′ before t+ ∆, preventing r′ from voting for v′.

3.4 Proofs of Security

We provide formal proofs of security for each protocol.

3.4.1 The Latency-Favoring Protocol – ΠRBC(1, n− 2f − 1, f)

Assuming n
3 ≤ f <

n−1
2 , ∀0 < fopt < n−2f , the protocol ΠRBC(1, n−2f−1, f) satisfies consistency,

δ-Totality, ∆ + 2δ-Validity, and fopt-Optimistic Responsiveness. The last three properties can be
proven in straightforward manner, and thus we only show the proof of consistency in detail. Consider
that |S| > 2f ≥ n+f

2 under n
3 ≤ f .

Lemma 1 (Certified without Equivocation). If a value v is certified, then any value v′ 6= v is not
certified.

Proof. If a value v is certified, then we can consider the two cases, i.e., normally or strongly certified.
In the normally certified case, at least one honest replica r voted for v. Let t be the time when
r voted for v. Suppose a v′ is certified, then at least one of C(v′) or S (v′) is created. For C(v′)
to be created, at least an honest replica r′ must have voted for v′ after waiting for ∆. If r′ voted
before t, r′ must have received v′ before t −∆ and r must have received v′ before t, preventing r
from voting for v. For the same reason r′ could not have voted after t. Therefore, C(v′) cannot be
created. For both S (v′) and C(v) to be created, at least one honest replica needs to vote for v and
v′ because the minimum size of intersection of these two sets of replicas each voted for v and v′ is
|C|+ |S| − n > (n− f) + 2f − n > f . This event cannot occur.

In the strongly certified case, at least n − fopt replicas voted for v. Suppose a v′ is certified,
then at least one of C(v′) or S (v′) is created. We can exclude both of two cases by considering their

10

quorum intersection. We can adopt the previous argument regarding C(v). For both S (v′) and S (v)
to be created, at least one honest replica needs to vote for v and v′ because the minimum size of
intersection of these two sets of replicas each voted for v and v′ is 2|S| − n > f . This event cannot
occur.

Considering both cases above, v′ 6= v is not certified.

Theorem 5 (Consistency). If any two honest replicas commit v and v′, respectively, then v = v′.

Proof. If an honest replica commits v, then v must have been certified. By Lemma 1, if a value v′

is certified, then v = v′ must hold. Therefore, if v′ is committed, then v = v′.

3.4.2 The Resilience-Favoring Protocol – ΠRBC(2, dn−f2 − 1e, f)

Assuming n
3 ≤ f < n

2 , ∀0 < fopt <
n−f

2 , the protocol ΠRBC(1, dn−f2 − 1e, f) satisfies consistency,
δ-Totality, 2∆ + 2δ-Validity, and fopt-Optimistic Responsiveness. The last three properties can be
proven in a straightforward manner, and thus we only show the proof of consistency in detail.

Lemma 2 (Certified without Equivocation). If a value v is certified, then any value v′ 6= v is not
certified.

Proof. If a value v is certified, then we can consider two cases, i.e., normally or strongly certified.
In the normally certified case, at least one honest replica r voted for v. Let t be the time when r
voted for v. Suppose a v′ is certified, then at least one of C(v′) or S (v′) is created. We can prove
that the former case cannot occur based on the proof of Lemma 1. For S (v′) to be created, at least
one honest replica r′ needs to vote for v′. If r′ voted for v′ before t−∆, then r should have received
v′ before t, preventing r from voting for v. r′ could not vote for v′ after t−∆ because r received v
before t−∆. Therefore, S (v′) cannot be created.

In the strongly certified case, at least n−fopt replicas voted for v. Suppose a v′ is certified, then
at least one of C(v′) or S (v′) is created. Using the same discussion as in the normally certified case,
the strongly certified case cannot occur based on the proof of Lemma 1.

Considering both cases above, v′ 6= v is not certified.

Theorem 6 (Consistency). If any two honest replicas commit v and v′, respectively, then v = v′.

Proof. By Lemma 2, we can prove this in the same way as the proof of Theorem 5.

4 State Machine Replication under Standard Synchrony

In the previous section, we described a reliable broadcast protocol to show some theoretical possi-
bility and impossibility results for optimistically responsive consensus. In this section, we extend it
into a practical blockchain or state machine replication protocol called Hybrid-BFT.

4.1 Overview and Definitions

We first review state machine replication. In a state machine replication protocol, replicas jointly
commit an ever-growing history of requests from clients to build a fault-tolerant computer system.
State machine replication can be considered as an extension of a single-shot consensus, such as
reliable broadcast, to a sequential consensus. At each time, Z inputs a value or client request to

11

honest replicas. Each honest replica commits this input to a position in its log, which is a linearized
history of inputs. The security properties of state machine replication are defined as in Definition
4.

Definition 4 (Security of State Machine Replication). A state machine replication protocol must
provide the following properties:

1. Safety. If any two honest replicas commit v and v′, respectively, at the same log position, then
v = v′.

2. Liveness. All inputs received by honest replicas are eventually committed by all honest replicas.

The protocol proceeds in a time frame with fixed length called view and is identified by a
monotonically increasing number starting from 0. In each view, a replica designated as leader
proposes blocks, and replicas try to commit the proposals. In each view, replicas try to commit
blocks synchronously as well as responsively. The operation to commit one block is similar to that
in ΠRBC , but additionally it uses a mechanism that ensures consistency across different views.

The focal point of the protocol is that it achieves responsive view change, i.e., a block B in view
v and a block B′ in view v + 1 proposed by two leaders, respectively, can be committed with delay
of O(δ). This is a strong feature of the protocol because a client request can be processed without
synchronous delay at any time during protocol execution while changing leaders periodically. We
will explain how this can be achieved later in this section. We will first introduce some terms and
techniques to simplify the description of the protocol.

4.1.1 Blocking and Chaining

Blocking and chaining are the main features of a blockchain scheme. Blocking means batching of
client requests with predetermined order to efficiently commit them together in a subsequence of the
log. Blocking is adopted by many state machine replication protocols and is essential in a practical
implementation. For simplicity, we consider one client request for one block. Chaining means
constructing a hash chain with a block containing a hash reference of its predecessor. Chaining
is a strong feature that can be used to translate state machine replication into a simple problem
of selecting one path from an ever-growing tree of blocks. Chaining can also be used to handle
conflicts in the ordering of descendant/ascendant relations. Therefore, a commitment of a block
can be regarded as a commitment of all its ancestors, further simplifying the problem.

4.1.2 Block and its Rank

Each block includes (i) an input bk from Z and (ii) a hash hk−1 of its predecessor. A height of a
block is defined as the number of ascendants in the blockchain. Each block of height k is denoted
by Bk and formatted as Bk = (bk, hk−1). All blocks have a common ascendant called genesis block
denoted by B0 and formatted as B0 = (b0, 0). All replicas receive a common genesis block up front
along with other protocol parameters. We say a block Bk = (bk, hk−1) is valid if (i) there is a valid
block Bk−1 and hk−1 = H(Bk−1) or (ii) Bk is the genesis block.

We define a rank between blocks. All blocks in a tree are ranked first by view number, and then
by height. For example, a block Bk in view v is higher in rank than a block Bk+1 in view v − 1,
and a block Bk in view v is higher in rank than a block Bk−1 in view v.

12

4.1.3 Conflict and Equivocation

We say a block B extends B′ if B = B′ or B is a descendant of B′. We say blocks B and B′ are
conflicting with each other if they are not equal and do not extend one another. Additionally, if
blocks B and B′ are conflicting with each other and they are created by the same replica, we say
that B and B′ are equivocating each other. Note that even if a proposer of one of the two blocks is
honest, a conflict can occur but not an equivocation, and thus an equivocation is considered to be
a byzantine behavior.

4.1.4 Certificate

In the reliable broadcast protocol, we define a certificate for a value. This certificate also serves
as a proof that a block was voted for by a quorum of replicas. We use Cv(B) to denote a normal
certificate for a block B proposed in view v, and it contains a set of signed votes from at least n− f
distinct replicas for block B. This certificate is mainly used for synchronous commitment of blocks
just like in ΠRBC . On the other hand, for responsive commitment, we use Sv(B) to denote a strong
certificate for a block B proposed in view v, and it contains a set of signed votes from n − fopt
distinct replicas for block B. Additionally, we define a higher order certificate to be used as a proof
of repeated vote. We use Siv(B) to denote an i-th order strong certificate for a block B proposed
in view v, which is a set of signed votes from at least n − fopt distinct replicas for block Si−1

v (B).
Note that Sv(B) is equal to S1

v (B). We only use the higher order certificate to make our protocol
easier to understand. In a practical implementation, this higher order certificate can be realized as
a type of vote to compress communication complexity.

4.2 Protocol Description

Similar to the reliable broadcast protocol ΠRBC , we first construct a unified protocol ΠSMR(k, fopt, f)
and then instantiate some parameter settings. The protocol ΠSMR(k, fopt, f), which consists of four
subprotocols Πsync, Πrsp, Πblame, and Πleader, is described in Figure 7. The first three subprotocols
are similar to those in ΠRBC , while the last additional subprotocol has a role similar to the des-
ignated sender rsend. The protocol proceeds in view with length of 7∆. A prior known leader L
for the view v runs Πleader to propose blocks to extend the blockchain, and all replicas run Πsync

and Πrsp to jointly commit the proposed blocks synchronously and responsively. Πblame is used
to stop voting when L tries to propose equivocating blocks. These subprotocols perform the same
process as in ΠRBC to commit a block in one view, but an additional mechanism is used to maintain
consistency across different views.

4.2.1 Hybrid Locking

To maintain consistency of commitments across different views, we introduce a mechanism called
locking. Each honest replica has its own lock which points to a block in the blockchain, and the
replica can only vote for a block if that block is as high in rank as its lock. Each honest replica
sets its lock at the end of a view so that the lock is higher in rank than all blocks committed by
honest replicas in the view. This ensures that honest replicas are locked on a descendant of all
committed blocks if consistency in the same view is maintained. This mechanism prevents creation
of a certificate for a block conflicting with committed blocks after the subsequent views, therefore
ensuring the safety of the protocol. The locking mechanism should be carefully constructed such

13

Figure 4: Locking for safety. An honest replica must be locked on Bk+1 or its descendant block at
the end of view v to prevent it from voting for B′k+1 conflicting with a committed block Bk+1 after
view v + 1.

that it does not impair the liveness of the protocol. This mechanism also need to ensure that a
subsequent leader knows which blocks honest replicas are locked on so that its proposal can be
voted for and committed. We illustrate examples in Figures 4 and 5 to understand locking more
intuitively.

The locking mechanism is being used in many state machine replication protocols that only need
to consider a single instance for commitment. In our proposed protocol, we need to consider two
instances to interactively set their locks. An overview of our proposed “hybrid-locking” is shown
in Figure 6. We have two types of lock, sync-lock and rsp-lock, which are used for synchronous and
responsive commitments, respectively. Each lock is handed over to each protocol instance of the
next view v (gray arrows). To ensure safety, all committed blocks in each protocol instance of the
previous view v−1 should be set to each lock (red arrows labeled with S-(1–4)). To ensure liveness,
a next leader needs to be notified of each lock so that it can propose appropriate blocks (red arrows
labeled with N-(1,2)).

4.2.2 The leader protocol – Πleader

In this protocol, the selected leader L of a view proposes blocks to extend the blockchain. Upon
receiving an input bk from Z, L broadcasts a signed block Bk, which includes bk and a hash hk−1 of
the predecessor block it extends. To ensure liveness, the proposal needs to be voted for by honest
replicas to be committed. To do so, the leader proposes a block that extends a descendant of the
highest certified block it knows after (i) receiving status messages from at least |S| = n−fopt distinct
replicas or (ii) waiting for ∆ after the start of the view. This ensures that the block is as high in
rank as the rsp-lock of all honest replicas, which works for (N-2). We will explain why it works after
explaining the responsive commitment protocol in detail.

14

Figure 5: Locking for liveness. The leader of view v+ 1 can propose Bk+2 extending Bk+1, but not
B′k+1 to be voted for by honest replicas.

Figure 6: Overview of the hybrid-locking mechanism

15

4.2.3 The synchronous commitment protocol – Πsync

This protocol ensures that a block is committed synchronously even under the worst situation where
f replicas are faulty. The basic process of committing a block is almost the same as in ΠRBC . Upon
receiving a signed proposal from the leader, a replica waits for k ·∆ and votes for the block if the
block extends a descendant of a certified block as high as its sync-lock in the previous view. Finally,
upon receiving a normal certificate for the block, the replica commits the block and all its ancestors.

In addition to the basic process described above, three processes related to locking are used. (i)
At 5∆, i.e., 2∆ before the end of the view, the replica stops all voting and commitment, waits for
∆, and then sets the highest certified block to its sync-lock. This process ensures that the replica
receives all blocks synchronously committed by honest replicas and reflected to its sync-lock, as
shown in (S-1) of Figure 6. (ii) At 6∆, after setting its sync-lock, the replica sends its sync-lock to
the next leader, as shown in (N-1). (iii) Until ∆, the replica collects third-order strong certificates
S3
v−1(B) from the previous view v − 1. It helps to reflect all responsively committed blocks to

sync-lock, which works for (S-2). We will explain why it works after explaining the responsive
commitment protocol in detail.

4.2.4 The responsive commitment protocol – Πrsp

This protocol ensures that a block is committed responsively under the optimistic situation where
up to fopt replicas are faulty. Due to the locking mechanism, the commitment operation in a view
has a slightly different construction from that in ΠRBC . Upon receiving a signed proposal from the
leader, the replica votes for the block if the block extends a descendant of a certified block as high
as its rsp-lock in the previous view. Upon receiving a strong certificate Sv(B), the replica vote for
the block. The voting for higher order certificate is repeated until the replica receives a third-order
strong certificate S3

v (B) for the block, and then the replica commits the block. At the end of the
view (clockv = 7∆), the replica sends the highest certified block it knows to the next leader as
a status message and then sets a second-order strong certificate S2

v (B) or sync-lock, whichever is
higher, to its rsp-lock. All responsively committed blocks are third-order and strongly certified,
which ensures that at least |S| − f honest replicas are locked on the block. This prevents the
responsive commitment protocol in a subsequent view from creating a conflicting strong certificate,
which works for (S-4). Additionally, since sync-lock is also included a candidate for rsp-lock, it
ensures that synchronously committed blocks are also reflected on rsp-lock, as shown in (S-3).

4.2.5 Achieving responsive view change.

The responsive view change considering a single instance has already been achieved in Hotstuff.
However, our proposed protocol needs to achieve responsive view change considering two instances,
one of which is synchronously operated. (N-2), (S-2), and (N-1) are closely related with it.

An honest replica locked on a second-order strongly certified block indicates that at least |S|−f
honest replicas have strong certificate for the block. Therefore, collecting status messages from at
least |S| distinct replicas ensures that the leader knows their rsp-lock. Additionally, even under the
worst situation where f replicas are faulty (even if they pretended to be honest initially), waiting
for at most ∆ to collect status messages before proposal ensures that rsp-lock is properly handed
over to the leader.

All responsively committed blocks are received by all honest replicas before ∆ at the beginning
of the next view, so it is easy to understand that collecting third order strong certificate for ∆

16

ΠSMR(k, fopt, f)� �
At 7v ·∆ for all 0 ≤ v, replica r ends view v − 1 (except for initial view v = 0) and starts the view v. Replica
r concurrently executes subprotocols Πsync, Πrsp, and Πblame, and it initializes clockv to 0 and starts counting
up. A leader L of the view v executes Πleader.
Πleader:

1. First-Propose: Upon receiving an input bk from Z, if a block has not been proposed yet in the current
view, broadcast 〈propose, Bk, v〉L, where Bk = (bk, hk−1) and hk−1 is a hash of a descendant of the highest
certified block L knows, if at least one of the following conditions holds.

(a) It has received status messages from at least |S| distinct replicas.

(b) When clockv reaches ∆.

2. Propose Upon receiving an input bk from Z, if a block has already been proposed in the current view,
broadcast 〈propose, Bk, v〉L, where Bk = (bk, hk−1) and hk−1 is the hash of the previous proposal.

Πsync:
Collect S3

v−1(B) until ∆ and update sync-lockv−1,r with B if it is higher in rank than currently set sync-lockv−1,r,
then start the following processes.

1. Sync: Upon receiving 〈propose, Bk, v〉L, set timer to k ·∆ and start counting down.

2. Vote: When timer reaches 0, if Bk is a descendant of a certified block B ≥rank sync-lockv−1,r, broadcast
a vote in the form of 〈sync-vote, Bk, v〉.

3. Commit: Upon receiving Cv(Bk), commit Bk.

4. Status: When clockv reaches 5∆, stop voting and commitment.

5. Lock: When clockv reaches 6∆, set sync-lockv,r to the highest certified block and send it to the next
leader.

Πrsp:

1. Vote: Upon receiving 〈propose, Bk, v〉L, if Bk is a descendant of a certified block B ≥rank rsp-lockv−1,r,
broadcast a vote in the form of 〈rsp-vote, Bk, v〉.

2. Lock-Vote: Upon receiving Sv(Bk), broadcast a vote in the form of 〈rsp-vote,Sv(Bk), v〉.
3. Commit-Vote: Upon receiving S2

v (Bk), broadcast a vote in the form of 〈rsp-vote,S2
v (Bk), v〉.

4. Commit: Upon receiving S3
v (Bk), commit Bk.

5. Status & Lock: When clockv reaches 7∆, send the highest certified block Cv(B) or Sv(B) to the next
leader in the form of 〈status, Cv(B)/Sv(B), v〉. Set a highest S2

v (B) or sync-lockv,r, whichever is higher, to
rsp-lockv,r.

Πblame:

1. Blame: Upon receiving two equivocating blocks sent from L, stop voting in Πsync and Πrsp.� �
Figure 7: Hybrid-BFT- State Machine Replication under Standard Synchrony

and reflecting them on sync-lock at the start of synchronous commitment works for (S-2). However
the most importantly, we need to ensure that the sync-lock set after the beginning of the view also
properly handed over to the leader even though the leader can propose a block responsively without
waiting for ∆. We can also rely on the third-order certificate in this aspect. If a block is third-order
strongly certified, it ensure that at least |S| − f honest replicas are locked on it with rsp-lock, so if
rsp-lock is guaranteed to be handed over to the leader, sync-lock set after synchronous waiting also
properly handed over to the leader.

Summarizing the techniques above, hybrid-locking, which can be constructed by using higher
order certificates and synchrony under the worst situation, can be used to achieve responsive view
change without any inconsistencies.

17

4.3 Evaluation

4.3.1 Latency and Throughput

The latency to process client requests can fluctuate because of the periodical leader change. There-
fore, we show both the maximum latency and minimum latency. Note that we evaluate the good-case
latency [4], which is the latency when leaders are honest. Under the worst situation where f replicas
are faulty, client request are committed through Πsync, which typically has 2 rounds of communi-
cation including proposal and voting. Including synchronous timeout, the minimum latency is
k ·∆ + 2δ. A client request waiting for a leader change needs 3∆, including timeout in the Status
phase, Lock phase, and at the beginning of the next view. Therefore, the maximum latency is
(k + 3)∆ + 2δ. Under normal situation where up to fopt replicas are faulty, client requests are
committed through Πrsp, which typically has 4 rounds of communication including proposal and 3
rounds of voting. Thus, the minimum latency is 4δ. A client request waiting for a leader change
needs a round of communication for the next leader to collect status messages. Therefore, the
maximum latency is 5δ. As mentioned before, latency is still responsive even with leader change
and therefore it is practical.

Upon receiving client requests, the leader can propose blocks at any time without waiting for
commitments or certificate of its ascendants. Therefore, theoretically, there is no limit on through-
put even when the size of a block is fixed (the block size is often limited for estimated ∆ to be
secure [19, 42]).

4.3.2 Resilience

Resilience should be set as protocol parameters in a practical implementation. For a resilience-
favoring protocol, f < n/2 (i.e., 50%) and fopt < n/4 (i.e., 25%) can be set under the optimal
setting. On the other hand, for a latency-favoring protocol, f < 2n/5 (i.e., 40%) and fopt < n/5
(i.e., 20%), for example, can be set. A resilience-favoring protocol has higher resilience than a
latency-favoring protocol because of the trade-off discussed in Section 3.2. Nevertheless, it is still
reasonable and secure than inherent bound f < n/3 (i.e., about 33%) under asynchrony or partial
synchrony.

4.3.3 Leader Election

A practical implementation of either a public or private network needs to carefully consider a leader
election mechanism. Example mechanisms include a round-robin election and a random election
using an unbiasable randomeness source [44, 25]. Leader election mechanisms depend on the target
application of a network, and thus we do not discuss them in detail here.

4.4 Proofs of Security

First, we define notations. Let view(B) denote the view where a block B is proposed, >rank denote
the order of block in rank, and A >rank B denote that A is higher in rank than B. Global time is
sometimes described as (v, t), where v is the view number and t is a local time that clockv indicates.
We use this notation to denote a state of each variable change over time, e.g, rsp-lockv,r(v,∆)
denotes a value of rsp-lockv,r at (v,∆). Let → denote a descendant/ascendant relation, i.e., A→ B
denotes that A extends B. This notation is also used for describing conflict/equivocation. A 6↔ B

18

denotes that A and B are conflicting with each other, and if A and B have the same view number,
it denotes that A and B equivocate each other.

4.4.1 Latency-Favoring Protocol – ΠSMR(1, n− 2f − 1, f)

In this subsection, we assume n
3 ≤ f <

n−1
2 .

Lemma 3 (Certified without Equivocation). If a block B in view v is certified, then any block B′

equivocating B is not certified.

Proof. We can prove it in the same way as in the proof of Lemma 1.

Lemma 4. If an honest replica directly and responsively commits a block Bk in view v, ∀v′ ≥ v,
(i) ∃R ⊆ H (|R| ≥ |S| − f), ∀r ∈ R, rsp-lockv′,r → Bk, (ii) ∀r ∈ H, sync-lockv′,r → Bk, and (iii)
∀B (view(B) = v′), if B is certified and B ≥rank Bk, then B → Bk.

Proof. We prove it by induction on the view number. We first prove for the base case v′ = v. (iii) is
easily shown from Lemma 3. Suppose an honest replica directly and responsively commits a block
Bk in view v, then it observes S3

v (Bk) in view v. This ensures that ∃R ⊆ H (|R| ≥ |S|− f), ∀r ∈ R,
r observes S2

v (Bk), and thus r sets its rsp-lockr,v to Bk or a block B which is certified and higher
in rank than Bk. By (iii) which was already proven, block B extends Bk, and therefore rsp-lockr,v
extends Bk, which proves (i). Furthermore, all honest replicas observe S3

v (Bk) before ∆ in the next
view, thus all honest replicas set their sync-lockr,v to Bk or a block B which is certified and higher
in rank than Bk. By (iii) which was already proven, block B extends Bk, and therefore sync-lockr,v
extends Bk, which proves (ii).

Next, we prove for the inductive step. We first prove (iii). Suppose for the sake of contradiction
that ∃B (view(B) = v′ + 1), where B is certified and B ≥rank Bk and B 6→ Bk. Then, there
exists a certified block Bmin with lowest rank in all certified blocks which satisfy B → Bmin

and view(Bmin) = v′ + 1. We can consider the two cases where Bmin is normally and strongly
certified. If Bmin is normally certified, then ∃r ∈ H, r sync-vote for Bmin. This ensures that
∃B−1

min, ∀r ∈ H, sync-lockr,v′ ≤rank B−1
min and Bmin → B−1

min and view(B−1
min) ≤ v′ and B−1

min is

certified. If B−1
min ≥rank Bk, then by the inductive hypothesis of (iii), B−1

min → Bk, which contradicts
that B 6→ Bk. If B−1

min <rank Bk, then by the inductive hypothesis of (ii), B−1
min <rank sync-lockr,v,

which is a contradiction. If Bmin is strongly certified, then ∃R ⊆ H (|R| ≥ |S| − f),∀r ∈ R, r
rsp-vote for Bmin. This ensures that ∃B−1

min,∀r ∈ R, rsp-lockr,v′ ≤rank B
−1
min and Bmin → B−1

min

and view(B−1
min) ≤ v′ and B−1

min is certified. If B−1
min ≥rank Bk, then by the inductive hypothesis

of (iii), B−1
min → Bk, which contradicts that B 6→ Bk. If B−1

min <rank Bk, then by the inductive
hypothesis of (i), ∃R′ ⊆ H (|R| ≥ |S|− f),∀r′ ∈ R′, rsp-lockr′,v′ >rank B

−1
min. Since R∩R′ 6= ∅, then

∃r′′ ∈ R, rsp-lockr′′,v′ >rank B
−1
min, which is a contradiction.

We now prove (i). Suppose for the sake of contradiction, for R which is guaranteed to exist
for view v′ by the inductive hypothesis of (i), that ∃r ∈ R, rsp-lockv′+1,r 6→ Bk. Let B0 be this
rsp-lockv′+1,r. By (iii) which was already proven, B0 <rank Bk. Since rsp-lockv′,r → Bk, then
rsp-lockv′,r >rank B0. Since rsp-lock cannot be updated with a block with lower rank, B0 cannot
be rsp-lockv′+1,r, which is a contradiction.

Finally, we prove (ii). Suppose for the sake of contradiction that ∃r ∈ H, sync-lockv′+1,r 6→ Bk.
LetB0 be this sync-lockv′+1,r. By (iii) which was already proven, B0 <rank Bk. Since sync-lockv′,r →
Bk, then sync-lockv′,r >rank B0. Since rsp-lock cannot be updated with a block with lower rank,
B0 cannot be sync-lockv′+1,r, which is a contradiction.

19

Lemma 5. If an honest replica directly and synchronously commits a block Bk in view v, ∀v′ ≥ v,
(i) ∀r ∈ H, sync-lockv′,r → Bk and rsp-lockv′,r → Bk, and (ii) ∀B (view(B) = v′), if B is certified
and B ≥rank Bk, then B → Bk.

Proof. We prove it by induction on the view number. We first prove for the base case v′ = v. (ii) is
easily shown from Lemma 3. Suppose an honest replica directly and synchronously commits a block
Bk in view v, then it observes Cv(Bk) before 5∆ in view v. This ensures that ∀r ∈ H, r observes
Cv(Bk) before 6∆ in view v, and thus r sets its rsp-lockr,v and sync-lockr,v to Bk or a block B which
is certified and higher in rank than Bk. By (ii) which was already proven, the block B extends Bk,
and therefore rsp-lockr,v and sync-lockr,v extend Bk, which proves (i).

Next, we prove for the inductive step. We first prove (ii). Suppose for the sake of contradiction
that ∃B (view(B) = v′+1), B is certified and B ≥rank Bk andB 6→ Bk. Then, there exists a certified
block Bmin with lowest rank in all certified blocks which satisfies B → Bmin and view(Bmin) = v′+1.
We can consider the two cases when Bmin is normally and strongly certified. If Bmin is normally
certified, then ∃r ∈ H, r sync-vote for Bmin. This ensures that ∃B−1

min, ∀r ∈ H, sync-lockr,v′ ≤rank

B−1
min and Bmin → B−1

min and view(B−1
min) ≤ v′ and B−1

min is certified. If B−1
min ≥rank Bk, then by

the inductive hypothesis of (ii), B−1
min → Bk, which contradicts that B 6→ Bk. If B−1

min <rank Bk,
then by the inductive hypothesis of (i), B−1

min <rank sync-lockv,r, which is a contradiction. If Bmin

is strongly certified, then ∃R ⊆ H (|R| ≥ |S| − f), ∀r ∈ R, r rsp-vote for Bmin. This ensure
that ∃B−1

min,∀r ∈ R, rsp-lockr,v′ ≤rank B
−1
min and Bmin → B−1

min and view(B−1
min) ≤ v′ and B−1

min is

certified. If B−1
min ≥rank Bk, then by the inductive hypothesis of (ii), B−1

min → Bk, which contradicts
that B 6→ Bk. If B−1

min <rank Bk, then by the inductive hypothesis of (i), ∃R′ ⊆ H (|R| ≥
|S|−f), ∀r′ ∈ R′, rsp-lockr′,v′ >rank B

−1
min. Since R∩R′ 6= ∅, then ∃r′′ ∈ R, rsp-lockr′′,v′ >rank B

−1
min,

which is a contradiction.
Finally, we prove (i). Suppose for the sake of contradiction that ∃r ∈ H, sync-lockv′+1,r 6→ Bk

or rsp-lockv′+1,r 6→ Bk. Let B0 be this sync-lockv′+1,r or rsp-lockv′+1,r. By (ii) which was already
proven, B0 <rank Bk. Since sync-lockv′,r → Bk and sync-lockv′+1,r → Bk, then sync-lockv′,r >rank

B0 and rsp-lockv′,r >rank B0. Since sync-lock and rsp-lock cannot be updated with a block with
lower rank, B0 cannot be sync-lockv′+1,r or rsp-lockv′+1,r, which is a contradiction.

Lemma 6 (Unique Extensibility). If an honest replica commit directly commits a block Bk in view
v, then (i) there does not exist a certificate for block B′k 6= Bk in the same view, and (ii) all certified
blocks with higher rank extend Bk.

Proof. These are proven in (iii) of Lemmas 4 and 5 where Bk is responsively and synchronously
committed, respectively.

Theorem 7 (Safety). If an honest replica commits a block Bk, then all honest replicas do not
commit a different block B′k for the height k.

Proof. Suppose two blocks Bk and B′k are committed at height k. Suppose each commitment is
a result of a direct commitment of Bl and Bl′ , and every directly committed block is certified.
Therefore, by Lemma 6, Bl ↔ Bl′ , thus Bk = Bk′ .

Lemma 7 (Leader observes rsp-lock). If an honest leader L of view v proposes a block B, then
there exits a block B−1 which is certified and ∀r ∈ H, B−1 ≥rank rsp-lockv−1,r.

20

Proof. An honest replica r sets a highest second-order strong certificate S2
v−1(B′) for a block B′ or

sync-lockv−1,r(v − 1, 6∆), whichever is higher, to rsp-lockv−1,r. If the latter one is selected, then L
already observed sync-lockv−1,r(v−1, 6∆) before proposal since L receives it from all honest replicas
by (v − 1, 7∆). If the former one is selected, then ∃R ⊂ H (|R| ≥ |S| − f), ∀r′ ∈ R, r′ observes
Sv−1(B′). If L proposes B before (v,∆), L receives status messages from at least |S| − f honest
replicas (say R′). Since R ∩ R′ 6= ∅, L observes Sv−1(B′). If L proposes B after (v,∆), L receives
status messages from all honest replicas, thus L observes Sv−1(B′) through the status messages.
Therefore, since L observes all certified blocks which are set to rsp-lock in some honest replicas
before proposal and L proposes a block extending a highest certified block B−1 it knows, then B−1

is as high as all rsp-lock in honest replicas.

Lemma 8 (Leader observes sync-lock). If an honest leader L of view v proposes a block B, then
there exits a block B−1 which is certified and ∀r ∈ H, B−1 ≥rank sync-lockv−1,r(v,∆).

Proof. An honest replica r sets a highest S3
v−1(B′) at (v,∆) or a highest certified block at (v −

1, 6∆), whichever is higher, to sync-lockv−1,r. If the latter one is selected, then L already observed
sync-lockv−1,r(v − 1, 6∆) before proposal since L receives it from all honest replicas by (v − 1, 7∆).
If the former one is selected, then ∃R ⊆ H (|R| ≥ |S| − f),∀r′ ∈ R, r observes S2

v−1(B′). If L
propose B before (v,∆), L receives status messages from at least |S| − f honest replicas (say R′).
Since R ∩ R′ 6= ∅, L observes Sv−1(B′). If L proposes B after (v,∆), L receives status messages
from all honest replicas, thus L observes Sv−1(B′) through the status messages. Therefore, since L
observes all certified blocks which are set to sync-lock in some honest replicas before proposal and
L proposes a block extending a highest certified block B−1 it knows, then B−1 is as high as all
sync-lock in honest replicas.

Theorem 8 (Liveness). If the leader L of view v is honest, then all honest replicas (i) commit
responsively at least one block if up to fopt replicas are faulty, and (ii) always commit synchronously
at least one block.

Proof. If L is honest, then L proposes a block B by (v,∆) and all honest replicas receive the block
by (v, 2∆). By Lemmas 7 and 8, all honest replicas rsp-vote for B by (v, 2∆) and sync-vote for
B by (v, 3∆). Therefore, if up to fopt replicas are faulty, then all honest replicas receive S3

v (B) by
(v, 5∆) and responsively commit B. On the other hand, all honest replicas always receive Cv(B) by
(v, 4∆) and synchronously commit B.

4.4.2 Resilience-Favoring Protocol – ΠSMR(2, dn−f2 − 1e, f)

We assume n
3 ≤ f < n

2 . We can prove its safety and liveness in the same way as for ΠSMR(1, n −
2f − 1, f), so we omit the details of the proof.

5 State Machine Replication under Mobile Sluggish Synchrony

In this section, we extend Hybrid-BFT to be secure under the weaker synchrony model called mobile
sluggish synchrony.

21

5.1 Definitions

5.1.1 Mobile Sluggish Synchrony

We first extend the standard synchrony into mobile sluggish synchrony. In the standard synchrony,
up to f replicas are faulty and fully controlled by A. On the other hand, in the mobile sluggish
synchrony, up to b ≤ f replicas are faulty. Instead, A can control communications of up to f − b
honest replicas without synchrony, i.e., up to f − b replicas are honest but under asynchrony. The
remaining n−f replicas are honest and under synchrony. Furthermore, the honest but asynchronous
replicas are mobile, i.e., they change over time among all honest replicas. Formally, at each time t,
there is a set of replicas Pt ⊆ H (|Pt| ≥ n−f), and if r ∈ Pt sends a message x to a replica r′ ∈ Pt′ ,
r′ receives the message x by t′ if t′ ≥ t+ ∆. We say a replica r is prompt if r ∈ Pt at t, and a r is
sluggish if r ∈ H \ Pt at t.

5.1.2 Qualification and Certificate

We define a qualification for a data. Qualification is a proof for a data to be recognized by at least
one prompt replica. A replica can create a qualify message for a data to acknowledge its recognition
of the data. The qualification for a data is a set of signed qualify messages for the data created by
at least n− f distinct replicas. A qualification for a data x is denoted by Q(x). Assuming f < n/2,
a qualification ensures that at least one of the replicas qualifying a data is prompt at that time
since n− f > f . Therefore, the data is assured to be recognized by all prompt replicas by ∆ after
that. The normal certificate has almost the same role because its size is the same, i.e., |Q| = |C|.
However, we distinguish them from each other to clarify the differences between Π∗SMR and ΠSMR.

5.2 Protocol Description

The protocol Π∗SMR is described in detail in Figure 8. Its construction is similar to that of ΠSMR

but with small differences. For clarity, the modified parts are black colored and the gray colored
parts are exactly the same as in ΠSMR. The two main modifications include (i) the qualification
for a proposal to be voted for Πsync, and (ii) the qualification for a certificate to be committed for
both Πsync and Πrsp. Both modifications ensure consistency, with the former within the same view
and the latter across different views and related to the locking.

5.2.1 Qualification for Proposal

Upon receiving a proposal, a replica broadcasts a qualify messages for the block and set its timer
after receiving a qualification to the block. This modification prevents equivocating certificates from
being created.

We first explain how two equivocating normal certificates are prevented from being created.
As explained in Section 5.1, a qualification for a block indicates that at least one prompt replica
recognizes the block. This ensures that all prompt replicas recognize the block ∆ after that. When
two equivocating blocks are qualified, all prompt replicas receive both blocks but do not vote for
the latter one. If all prompt replicas do not vote for a block, then the block cannot be certified.
Therefore, the certification for the latter qualified block cannot be created.

We now explain how a normal certificate and a strong certificate equivocating each other are
prevented from being created. In this case, we consider Π∗SMR(2, dn−f2 − 1e, f) because we can rely
on the quorum intersection for Π∗SMR(1, n−2f−1, f), as explained in the previous section. Suppose

22

a block B is qualified at t, then all prompt replicas recognize B at t + ∆ and do not vote for an
equivocating block B′ after that. On the other hand, when a prompt replica recognizes B′ before
t+ ∆, B′ is received by all prompt replicas before t+ 2∆. Both normal and strong certificates need
at least one vote from a prompt replica, and thus both of them cannot be created.

5.2.2 Qualification for Normal Certificate

Upon receiving a normal certificate for a block, a replica broadcasts a qualify message for the
certificate and commits the block after receiving a qualification for the certificate. This ensures
that a synchronously committed block can be properly handed over to the next view through the
lock, which works for (S-1) and (S-3) in Figure 6.

A qualified certificate for a block indicates that at least one prompt replica recognizes the
certificate. This ensures that all prompt replicas will receive the certificate in the Status process
and will be locked on it at the end of the view. As mentioned above, both normal and strong
certificates need at least one vote from a prompt replica, and thus the lock prevents any conflicting
blocks with the committed block from being certified after the next view.

5.2.3 Qualification for Third-Order Strong Certificate

As in the synchronous commitment, we also need to ensure that all prompt replicas are locked on all
responsively committed blocks by some honest replicas. For rsp-lock, i.e., (S-4) in Figure 6, we can
guard in the same way as in ΠSMR. On the other hand, we need to ensure that all committed blocks
are reflected on sync-lock, which works for (S-2) in Figure 6. To do this, similar to the synchronous
commitment, upon receiving a third-order strong certificate, a replica broadcasts a qualify message
for the certificate and commits the block after receiving a qualification.

5.3 Evaluation

The latency to process client requests in Π∗SMR is longer than that in ΠSMR because of the additional
communication rounds for two qualifications. The latency under the normal and worst situations
can be calculated in the same way as in ΠSMR. Under the worst situation where f replicas are
faulty, the minimum latency is k ·∆ + 4δ and the maximum latency is (k + 3)∆ + 4δ. Under the
normal situation where up to fopt replicas are faulty, the minimum latency is 5δ and the maximum
latency is 6δ. Under δ � ∆, the latency is not so different from that in ΠSMR.

5.4 Proofs of Security

5.4.1 Latency-Favoring Protocol – Π∗SMR(1, n− 2f − 1, f)

In this subsection, we assume n
3 ≤ f <

n−1
2 .

Lemma 9 (Certified without Equivocation). If a block B in view v is certified, then any block B′

equivocating B is not certified.

Proof. Suppose for the sake of contradiction that two blocks B and B′ equivocating each other are
both certified in view v. We can consider three cases: (i) B and B′ are both normally certified, (ii)
B and B′ are both strongly certified, and (iii) B is normally certified and B′ is strongly certified.

23

Π∗SMR(k, f<
opt, f

<)� �
At 9v ·∆ for all 0 ≤ v, replica r ends view v − 1 (except for initial view v = 0) and starts the view v. Replica
r concurrently executes subprotocols Πsync, Πrsp and Πblame, and initializes clockv to 0 and starts counting up.
A leader L of the view v executes Πleader.
Πleader:

1. First-Propose: Upon receiving an input bk from Z, if a block has not been proposed yet in the current
view, broadcast 〈propose, Bk, v〉L, where Bk = (bk, hk−1), and hk−1 is a hash of a descendant of the highest
certified block L knows, if at least one of the following conditions holds.

(a) It has received status messages from at least |S| distinct replicas.

(b) When clockv reaches ∆.

2. Propose Upon receiving an input bk from Z, if a block has already been proposed in the current view,
broadcast 〈propose, Bk, v〉L, where Bk = (bk, hk−1), and hk−1 is the hash of its previous proposal.

Πsync:
Collect S3

v−1(B) until ∆ and update sync-lockv−1,r with B if it is higher in rank than currently set sync-lockv−1,r,
then start the following processes.

1. Qualify: Upon receiving 〈propose, Bk, v〉L, broadcast a qualify message in the form of 〈qualify, Bk, v〉.
2. Sync: Upon receiving Q(Bk), set timer to k ·∆ and start counting down.

3. Vote: When timer reaches 0, if Bk is a descendant of a certified block B ≥rank sync-lockv−1,r, broadcast
a vote in the form of 〈sync-vote, Bk, v〉.

4. Qualify: Upon receiving Cv(Bk), broadcast a qualify message in the form of 〈qualify, Cv(Bk), v〉.
5. Commit: Upon receiving Q(Cv(Bk)), commit Bk.

6. Status: When clockv reaches 7∆, stop voting and commitment.

7. Lock: When clockv reaches 8∆, set sync-lockv,r to the highest certified block, and send it to the next
leader.

Πrsp:

1. Vote: Upon receiving 〈propose, Bk, v〉L, if Bk is a descendant of a certified block B ≥rank rsp-lockv−1,r,
broadcast a vote in the form of 〈rsp-vote, Bk, v〉.

2. Lock-Vote: Upon receiving Sv(Bk), broadcast a vote in the form of 〈rsp-vote,Sv(Bk), v〉.
3. Commit-Vote: Upon receiving S2

v (Bk), broadcast a vote in the form of 〈rsp-vote,S2
v (Bk), v〉.

4. Qualify: Upon receiving S3
v (Bk), broadcast a qualify message in the form of 〈qualify,S3

v (Bk), v〉.
5. Commit: Upon receiving Q(S3

v (Bk)), commit Bk.

6. Status & Lock: When clockv reaches 9∆ , send the highest certified block Cv(B) or Sv(B) to the next
leader in the form of 〈status, Cv(B)/Sv(B), v〉. Set a highest S2

v (B) or sync-lockv,r, whichever is higher, to
rsp-lockv,r.

Πblame:

1. Blame: Upon receiving two equivocating blocks sent from L, stop voting in Πsync and Πrsp.� �
Figure 8: Hybrid-BFT– State Machine Replication under Mobile Sluggish Synchrony

The latter two cases can be proven in the same way as in ΠSMR by the quorum intersection. Thus,
we only prove (i) by contradiction.

Let t be the time when B is certified, then ∃R ⊆ H(|R| ≥ |C| − b), ∀r ∈ R,∃t0, t1(t0 ≤ t1 ≤ t),
(a) r sync-vote for B at t1, and (b) B is qualified before t0−∆. Since R∩Pt0 6= ∅ is held, (c) ∀B−1,
if B−1 equivocates B, then B−1 is not qualified before t0 −∆. Since otherwise, one of the prompt
replicas p ∈ R ∩ Pt0 would not sync-vote for B after t0. In the same way, let t′ be the time when
B′ is certified, then ∃R′ ⊆ H(|R′| ≥ |C| − b),∀r′ ∈ R′,∃t′0, t′1(t′0 ≤ t′1 ≤ t′), (a’) r′ sync-vote for B′

24

at t′1, and (b’) B′ is qualified before t′0 −∆. Here, without loss of generality, let t0 ≥ t′0, then (c)
and (b’) contradict each other.

Lemma 10. If an honest replica directly and responsively commits a block Bk in view v, ∀v′ ≥ v,
(i) ∃R ⊆ H (|R| ≥ |C|), ∀r ∈ R, sync-lockv′,r → Bk, (ii) ∃R ⊆ H (|R| ≥ |S| − b),∀r ∈ R,
rsp-lockv′,r → Bk, and (iii) ∀B (view(B) = v′), if B is certified and B ≥rank Bk, then B → Bk.

Proof. We prove it by induction on the view number. We first prove it for the base case (v′ = v). (iii)
is clear from Lemma 9. We prove the (ii). Suppose the honest replica commits Bk at time t, then it
observes Q(S3

v (Bk)) at t ≤ 9∆. Then, ∃R ⊆ H (|R| ≥ |S| − b),∀r ∈ R, r observes S2
v (Bk) before t,

thus rsp-lockv,r ≥rank Bk. Combining it together with Lemma 9, rsp-lockv,r → Bk, which proves (ii).
Here, the existence ofQ(S3

v (Bk)) means that at least one prompt replica observes S3
v (Bk). Therefore,

∀p ∈ P(v+1,∆), p observes S3
v (Bk) before (v+1,∆). This ensures that sync-lockv,p(v+1,∆) ≥rank Bk.

Combining it together with Lemma 9, sync-lockv,p(v+1,∆)→ Bk, and thus |P| ≥ |C|, which proves
(i).

Then, we prove for the inductive step. We first prove (iii) by contradiction. Suppose for the sake
of contradiction that ∃B, view(B) = v′ + 1, B is certified, B ≥rank Bk, and B 6→ Bk. Let Bmin be
a block with lowest rank in a set of blocks which satisfies B → Bmin, and view(Bmin) = v′+ 1, and
Bmin is certified. Here, we can consider the two cases when Bmin is normally and strongly certified.

If Bmin is normally certified, then ∃R′ ⊆ H (|R′| ≥ |C| − b), ∀r′ ∈ R′, r′ sync-vote for Bmin.
Then ∃B−1

min, ∀r′ ∈ R′, sync-lockr′,v′ ≤rank B−1
min, and B−1

min is certified, and Bmin → B−1
min, and

view(B−1
min) ≤ v′. If B−1

min ≥rank Bk, then by the inductive hypothesis of (iii), B−1
min → Bk, which

contradicts with B → Bk. If B−1
min <rank Bk, then by the inductive hypothesis of (i), ∃R ⊆ H (|R| ≥

|C|),∀r′′ ∈ R, sync-lockv′,r′′ >rank B
−1
min. Since |R|+ |R′| − |H| ≥ (n− f) + (n− f − b)− (n− b) > 0,

thus R ∩R′ 6= ∅. Therefore ∃r0 ∈ R′, sync-lockv′,r0 >rank B
−1
min, which is a contradiction.

If Bmin is strongly certified, then ∃R′ ⊆ H (|R′| ≥ |S| − b),∀r′ ∈ R′, r′ rsp-vote for Bmin.
Then ∃B−1

min,∀r′ ∈ R′, rsp-lockr′,v′ ≤rank B−1
min, and B−1

min is certified, and Bmin → B−1
min, and

view(B−1
min) ≤ v′. If B−1

min ≥rank Bk, then by the inductive hypothesis of (iii), B−1
min → Bk, which

contradicts with B → Bk. If B−1
min <rank Bk, then by the inductive hypothesis of (ii), ∃R ⊆ H (|R| ≥

|S| − b),∀r′′ ∈ R, rsp-lockv′,r′′ >rank B
−1
min. Since |R|+ |R′| − |H| ≥ 2 · (|S| − b)− (n− b) > 0, thus

R ∩R′ 6= ∅. Therefore ∃r0 ∈ R′, rsp-lockv′,r0 >rank B
−1
min, which is a contradiction.

We prove the (i) by contradiction. Suppose for the sake of contradiction, for R which is guaran-
teed to exist for view v′ by the inductive hypothesis of (i), that ∃r ∈ R, sync-lockv′+1,r 6→ Bk. Let
B0 be this sync-lockv′+1,r. By (iii) which was already proven, B0 <rank Bk. Combining it together
with the inductive hypothesis of (i), sync-lockv′,r >rank B0. Since lock cannot be updated with any
lower ranked blocks, it contradicts that B0 is sync-lockv′+1,r. (ii) is also proven in the same way.

Lemma 11. If an honest replica directly and synchronously commits a block Bk in view v, ∀v′ ≥ v,
(i) ∃R ⊆ H (|R| ≥ |C|), ∀r ∈ R, sync-lockv′,r → Bk and rsp-lockv′,r → Bk, and (ii) ∀B (view(B) =
v′), if B is certified and B ≥rank Bk, then B → Bk.

Proof. We prove it by induction on the view number. We first prove it for the base case (v′ = v).
(ii) is clear from Lemma 9. We prove (i). Suppose the honest replica commits Bk at time t, then
it observes Q(Cv(Bk)) at t ≤ 7∆. Then, ∀p ∈ P(v,8∆), p observes Cv(Bk) before (v, 8∆). Since
sync-lock is set at least after 8∆ and rsp-lock is set at least after 9∆ in each view, ∀p ∈ P(v,8∆),

25

sync-lockv,p ≥rank Bk and rsp-lockv,p ≥rank Bk. Combining it together with Lemma 9, ∀p ∈ P(v,8∆),
sync-lockv,p → Bk and rsp-lockv,p → Bk. Since |P| ≥ |C|, it proves (i).

Then, we prove for the inductive step. We first prove (ii) by contradiction. Suppose for the sake
of contradiction that ∃B, view(B) = v′ + 1, B is certified, B ≥rank Bk, and B 6→ Bk. Let Bmin be
a block with lowest rank in a set of blocks which satisfies B → Bmin, and view(Bmin) = v′+ 1, and
Bmin is certified. Here, we can consider the two cases when Bmin is normally or strongly certified.

If Bmin is normally certified, then ∃R′ ⊆ H (|R′| ≥ |C| − b),∀r′ ∈ R′, r′ sync-vote for Bmin.
Then ∃B−1

min, ∀r′ ∈ R′, sync-lockr′,v′ ≤rank B−1
min, and B−1

min is certified, and Bmin → B−1
min, and

view(B−1
min) ≤ v′. If B−1

min ≥rank Bk, then by the inductive hypothesis of (ii), B−1
min → Bk, this

contradicts with B → Bk. If B−1
min <rank Bk, then by the inductive hypothesis of (iii), ∃R ⊆

H (|R| ≥ |C|),∀r′′ ∈ R, sync-lockv′,r′′ >rank B
−1
min. Since |R|+ |R′| − |H| ≥ (n− f) + (n− f − b)−

(n−b) > 0, thus R∩R′ 6= ∅. Therefore ∃r0 ∈ R′, sync-lockv′,r0 >rank B
−1
min, which is a contradiction.

If Bmin is strongly certified, then ∃R′ (|R′| ≥ |S| − b),∀r′ ∈ R′, r′ rsp-vote for Bmin. Then
∃B−1

min, ∀r′ ∈ R′, rsp-lockr′,v′ ≤rank B
−1
min, andB−1

min is certified, andBmin → B−1
min, and view(B−1

min) ≤
v′. If B−1

min ≥rank Bk, then by the inductive hypothesis of (ii), B−1
min → Bk, this contradicts with

B → Bk. If B−1
min <rank Bk, then by the inductive hypothesis (i), ∃R ⊆ H (|R| ≥ |C|),∀r′′ ∈ R,

rsp-lockv′,r′′ >rank B
−1
min. Since |R|+ |R′| − |H| ≥ (n− f) + (|S| − b)− (n− b) > 0, thus R∩R′ 6= ∅.

Therefore ∃r0 ∈ R′, rsp-lockv′,r0 >rank B
−1
min, which is a contradiction.

We prove (i) by contradiction. Suppose for the sake of contradiction, for R which is guaranteed
to exist for view v′ by the inductive hypothesis of (i), that ∃r ∈ R, sync-lockv′+1,r 6→ Bk or
rsp-lockv′+1,r 6→ Bk. Let B0 be this sync-lockv′+1,r. By (ii) which is already proved, B0 <rank Bk.
Combining it together with the inductive hypothesis of (i), sync-lockv′,r >rank B0. Since lock cannot
be updated with any lower ranked blocks, it contradicts that B0 is sync-lockv′+1,r. For rsp-lockv′+1,r,
we can lead to a contradiction in the same way.

Lemma 12 (Unique Extensibility). If an honest replica directly commits a block Bk in view v, then
(i) there does not exist a certificate for block B′k 6= Bk in the same view, and (ii) all certified blocks
with higher rank extend Bk.

Proof. These are proven in (iii) of Lemmas 10 and 11 where Bk is responsively and synchronously
committed, respectively.

Theorem 9 (Safety). If an honest replica commits a block Bk, then all honest replicas do not
commit a different block B′k for the height k.

Proof. By using Lemma 12, we can prove this in the same way as in the proof of Theorem 7.

Liveness is proven in the case where all honest replicas are prompt. It can be proven in a
straightforward manner as in ΠSMR (Theorem 8), and thus we omit the details of the proof.

5.4.2 Resilience-Favoring Protocol – Π∗SMR(2, dn−f2 − 1e, f)

We assume n
3 ≤ f < n

2 . We can prove its safety and liveness in the same way as for Π∗SMR(1, n −
2f −1, f), and thus we do not show all details of the proof. However, the proof of Certified without
Equivocation Lemma is slightly different, and thus we show the proof in detail.

Lemma 13 (Certified without Equivocation). If a block B in view v is certified, then any block B′

equivocating B is not certified.

26

Proof. Suppose for the sake of contradiction that two blocks B and B′ equivocating each other are
both certified in view v. We can consider three cases: (i) B and B′ are both normally certified, (ii)
B and B′ are both strongly certified, (iii) B is normally certified and B′ is strongly certified. (i) can
be proven in the same way as in the proof of Lemma 13 and (ii) can be proven using the quorum
intersection. We lead to a contradiction for (iii).

Let t be the time when B is certified, then ∃R ⊆ H(|R| ≥ |C| − b), ∀r ∈ R,∃t0, t1(t0 ≤ t1 ≤ t),
(a) r sync-vote for B at t1, and (b) B is qualified before t0 −∆. Thus, ∀p ∈ Pt0−∆, ∀B−1, if B−1

equivocates B, then p does not vote for B−1 after t0 − ∆ since p observes B after t0 − ∆. Since
R∩Pt0 6= ∅ is held, ∀B−1, if B−1 equivocate B, then B−1 is not qualified before t0−∆. Therefore,
(c) ∀p ∈ Pt0−∆, ∀B−1, if B−1 equivocates B, then p does not vote for B−1. Let t′ be the time when
B′ is certified, then ∃R′ ⊆ H(|R′| ≥ |S| − b),∀r′ ∈ R′, ∃t′0 ≤ t′, r′ sync-vote for B′ at t′0. Since
R′ ∩ Pt0−∆ 6= ∅ is held, it contradicts with (c).

6 Additional Related Works

6.1 Blockchain and Permissioned Consensus

In this paper, we discussed consensus protocols for private networks where membership in the
network is known beforehand and fixed. We call it permissioned consensus. The consensus protocols
studied before the invention of well-known Nakamoto Consensus can be classified as permissioned
consensus [12, 29]. The Nakamoto Consensus was created to manage a blockchain in a public
network where membership changes and even unknown during protocol execution. This protocol
created a jointly served publicly accessible decentralized applications [45, 16, 15]. The Nakamoto
Consensus uses a proof-of-work (PoW) mechanism which is a difficult computational puzzle to
sporadically create a “member”, i.e., a virtual node with a unit of power to contribute. However,
the PoW inherently introduces a couple of problems, including (i) a wasteful and significant power
consumption, and (ii) a trade-off between security and scalability.

To solve the first problem, proof-of-stake (PoS), is considered to be one of the most practical
solution. Many blockchain-based networks have implemented a PoS-based consensus [7, 26, 17]. In
such networks, the membership is defined by a stake distribution that changes over time, making
permissioned consensus practical in public networks by using it together with a dynamic membership
reconfiguration mechanism. Indeed, many PoS-based protocols [10, 9, 23] have a quorum-based
commitment mechanism similar to the permissioned consensus.

The second problem has been the focus of many studies and research in the past decade. To solve
this problem, an approach is to extend a chain into a more general tree or directed acyclic graph
[43, 41, 31, 42, 6], to scale its throughput. Another approach is using the Nakamoto Consensus
to determine a committee in which a permissioned consensus is executed to process transactions
fast [37, 18, 27]. However, these approaches are not considered to be practical because they cannot
scale in/out. For this reason, sharding is much favored lately [28, 48, 32]. In sharding protocols,
the whole network is randomly separated into committees called shards to process disjointed sets
of transactions. Here, permissioned consensus is required for intra-shard consensus.

As summary, PoS and sharding are currently considered to be the most practical alternatives
to the Nakamoto Consensus. In fact, a combination of both is being considered by Ethereum
[11, 35, 50, 49], which is one of the biggest cryptocurrency projects. Futhermore, blockchain for
consortium deployment where membership is predetermined is also attracting significant attention
lately [5, 14]. In each case, permissioned consensus is regarded as an important component and

27

research topic.

6.2 Blockchain under Network Synchrony

Other prior works have proposed a practical blockchain under network synchrony. Dfinity [25, 3]
achieved latency of small constant factor of ∆, but it is not optimal and is still connected to
synchronous delay. PiLi [13] also achieved optimistic responsiveness and applied mobile sluggish
synchrony, but it is not optimal and need long fallback period when it fails to progress respon-
sively on the way. Compared to these works and other works introduced before, Hybrid-BFT fully
removes dependency on synchronous delay under normal situation but still progresses with optimal
synchronous latency even under the worst situation or when it fails to progress responsively on the
way. In this sense, Hybrid-BFT can be considered to be most practical.

7 Conclusion

In this paper, we were able to show that consensus under network synchrony can achieve both
optimistic responsiveness and optimal synchronous latency. Through discussions on reliable broad-
cast, we showed that there is an inherent trade-off between the optimistic resilience and optimal
synchronous latency by presenting some lower and upper bounds. Extending the theoretical dis-
cussion, we presented a state machine replication protocol called Hybrid-BFT. Hybrid-BFT can be
flexibly set its parameters to get required latency and resilience within the trade-off. When the
optimistic resilience is compromised, Hybrid-BFT achieves optimal ∆ + O(δ) synchronous latency,
while even under optimal optimistic resilience, it achieves near-optimal 2∆ + O(δ) synchronous
latency. Furthermore, Hybrid-BFT achieves responsive leader change under normal situation where
the number of faulty replicas is small. This makes Hybrid-BFTś latency to be completely free from
synchronous delay, which is a greatly desired feature in a practical implementation. Finally, we
extended Hybrid-BFT to be secure under weaker synchrony model called mobile sluggish synchrony,
which allows network partitions and is more realistic than standard synchrony. Therefore, applying
this model is also a desired direction today.

References

[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
byzantine agreement with expected o(1) rounds, expected o(n2) communication, and optimal
resilience. In Financial Cryptography and Data Security (FC), pages 320–334. Springer, 2019.

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ren Ling, and Yin Maofan. Sync hotstuff:
Simple and practical synchronous state machine replication. IACR Cryptology ePrint Archive,
Report 2019/270, 2019. https://eprint.iacr.org/2019/270.

[3] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Dfinity consensus, explored. IACR
Cryptology ePrint Archive, Report 2018/1153, 2018. https://eprint.iacr.org/2018/1153.

[4] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Optimal good-case latency for
byzantine broadcast and state machine replication. arXiv preprint arXiv:2003.13155, 2020.

28

https://eprint.iacr.org/2019/270
https://eprint.iacr.org/2018/1153

[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In
Thirteenth EuroSys Conference, page 30. ACM, 2018.

[6] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:
Deconstructing the blockchain to approach physical limits. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 585–602. ACM, 2019.

[7] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work. In
Financial Cryptography and Data Security (FC), pages 142–157. Springer, 2016.

[8] Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

[9] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis,
2016.

[10] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus. arXiv
preprint arXiv:1807.04938, 2018.

[11] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437, 2017.

[12] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In 3rd Symposium
on Operating Systems Design and Implementation (OSDI), pages 173–186. USENIX, 1999.

[13] T-H Hubert Chan, Rafael Pass, and Elaine Shi. Pili: An extremely simple synchronous
blockchain. IACR Cryptology ePrint Archive, Report 2018/980, 2018. https://eprint.iacr.
org/2018/980.

[14] J.P.Morgan Chase. Quorum whitepaper. 2018. https://github.com/jpmorganchase/

quorum/blob/master/docs/QuorumWhitepaperv0.2.pdf.

[15] Jason Paul Cruz and Yuichi Kaji. The bitcoin network as platform for trans-organizational
attribute authentication. In Third International Conference on Building and Exploring Web
Based Environments, pages 29–36. IARIA, 2015.

[16] Jason Paul Cruz, Yuichi Kaji, and Naoto Yanai. Rbac-sc: Role-based access control using
smart contract. IEEE Access, 6:12240–12251, 2018.

[17] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Financial Cryptography and Data Security
(FC), pages 23–41. Springer, 2019.

[18] Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consistency. In
17th International Conference on Distributed Computing and Networking (ICDCN), page 13.
ACM, 2016.

[19] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In
The IEEE International Conference on Peer-to-Peer Computing, pages 1–10. IEEE, 2013.

29

https://eprint.iacr.org/2018/980
https://eprint.iacr.org/2018/980
https://github.com/jpmorganchase/quorum/blob/master/docs/Quorum Whitepaper v0.2.pdf
https://github.com/jpmorganchase/quorum/blob/master/docs/Quorum Whitepaper v0.2.pdf

[20] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[21] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, 1988.

[22] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analy-
sis and applications. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 281–310. Springer, 2015.

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In 26th Symposium on Operating Systems
Principles (SOSP), pages 51–68. ACM, 2017.

[24] Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance. In
Annual International Cryptology Conference (CRYPTO), pages 499–529. Springer, 2019.

[25] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series,
consensus system. arXiv preprint arXiv:1805.04548, 2018.

[26] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Annual International Cryptology Con-
ference (CRYPTO), pages 357–388. Springer, 2017.

[27] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and performance with strong consistency via collective
signing. In 25th USENIX Security Symposium, pages 279–296. USENIX, 2016.

[28] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. In IEEE
Symposium on Security and Privacy (S&P), pages 583–598. IEEE, 2018.

[29] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[30] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[31] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols. In
Financial Cryptography and Data Security (FC), pages 528–547. Springer, 2015.

[32] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 17–30. ACM, 2016.

[33] Atsuki Momose and Jason Paul Cruz. Force-locking attack on sync hotstuff. IACR Cryptology
ePrint Archive, Report 2019/1484, 2019. https://eprint.iacr.org/2019/1484.

[34] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.

[35] Ryuya Nakamura, Takayuki Jimba, and Dominik Harz. Refinement and verification of cbc
casper. In 2019 Crypto Valley Conference on Blockchain Technology (CVCBT), pages 26–38.
IEEE, 2019.

30

https://eprint.iacr.org/2019/1484

[36] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 643–673. Springer, 2017.

[37] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
In 31st International Symposium on Distributed Computing (DISC). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[38] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Annual International Conference
on the Theory and Application of Cryptology and Information Security (ASIACRYPT), pages
380–409. Springer, 2017.

[39] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 3–33. Springer, 2018.

[40] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[41] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable cryp-
tocurrency protocol. IACR Cryptology ePrint Archive, Report 2016/1159, 2016. https:

//eprint.iacr.org/2016/1159.

[42] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In
Financial Cryptography and Data Security (FC), pages 507–527. Springer, 2015.

[43] Yonatan Sompolinsky and Aviv Zohar. Phantom: A scalable blockdag protocol. IACR Cryp-
tology ePrint Archive, Report 2018/104, 2018. https://eprint.iacr.org/2018/104.

[44] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser, Ismail
Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In
IEEE Symposium on Security and Privacy (S&P), pages 444–460. IEEE, 2017.

[45] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

[46] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus in the lens of blockchain. arXiv preprint arXiv:1803.05069, 2018.

[47] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hot-
stuff: Bft consensus with linearity and responsiveness. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 347–356. ACM, 2019.

[48] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling blockchain
via full sharding. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), pages 931–948. ACM, 2018.

[49] Vlad Zamfir. Casper the friendly ghost: A correct by construction blockchain consensus pro-
tocol. 2017. https://github.com/ethereum/research/blob/master/papers/CasperTFG/

CasperTFG.pdf.

31

https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2016/1159
https://eprint.iacr.org/2018/104
https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf
https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf

[50] Vlad Zamfir, Nate Rush, Aditya Asgaonkar, and Georgios Piliouras. Introducing the ”min-
imal cbc casper” family of consensus protocols. 2018. https://github.com/cbc-casper/

cbc-casper-paper/blob/master/cbc-casper-paper-draft.pdf.

32

https://github.com/cbc-casper/cbc-casper-paper/blob/master/cbc-casper-paper-draft.pdf
https://github.com/cbc-casper/cbc-casper-paper/blob/master/cbc-casper-paper-draft.pdf

	Introduction
	Consensus under Network Synchrony
	Our Contributions
	Theoretical Bounds on Latency/Resilience
	Practical State Machine Replication

	Related Works
	Optimistic Responsiveness
	Optimal Synchronous Latency

	Paper Organization

	Model
	Reliable Broadcast
	Definitions
	Trade-off between Latency and Resilience
	Protocols with Optimal Latency/Resilience
	The Unified Protocol
	The Latency-Favoring Protocol
	The Resilience-Favoring Protocol

	Proofs of Security
	The Latency-Favoring Protocol – RBC(1,n-2f-1,f)
	The Resilience-Favoring Protocol – RBC(2,n-f2-1,f)

	State Machine Replication under Standard Synchrony
	Overview and Definitions
	Blocking and Chaining
	Block and its Rank
	Conflict and Equivocation
	Certificate

	Protocol Description
	Hybrid Locking
	The leader protocol – leader
	The synchronous commitment protocol – sync
	The responsive commitment protocol – rsp
	Achieving responsive view change.

	Evaluation
	Latency and Throughput
	Resilience
	Leader Election

	Proofs of Security
	Latency-Favoring Protocol – SMR(1,n-2f-1,f)
	Resilience-Favoring Protocol – SMR(2,n-f2-1 ,f)

	State Machine Replication under Mobile Sluggish Synchrony
	Definitions
	Mobile Sluggish Synchrony
	Qualification and Certificate

	Protocol Description
	Qualification for Proposal
	Qualification for Normal Certificate
	Qualification for Third-Order Strong Certificate

	Evaluation
	Proofs of Security
	Latency-Favoring Protocol – SMR*(1,n-2f-1,f)
	Resilience-Favoring Protocol – SMR*(2,n-f2-1 ,f)

	Additional Related Works
	Blockchain and Permissioned Consensus
	Blockchain under Network Synchrony

	Conclusion

