
Fixslicing: A New GIFT Representation
Fast Constant-Time Implementations of
GIFT and GIFT-COFB on ARM Cortex-M

Alexandre Adomnicai1,2, Zakaria Najm1,2,3 and Thomas Peyrin1,2

1 Nanyang Technological University, Singapore
2 Temasek Laboratories, Singapore

3 TU Delft, Netherlands
firstname.lastname@ntu.edu.sg

Abstract. The GIFT family of lightweight block ciphers, published at CHES 2017,
offers excellent hardware performance figures and has been used, in full or in part,
in several candidates of the ongoing NIST lightweight cryptography competition.
However, implementation of GIFT in software seems complex and not efficient due
to the bit permutation composing its linear layer (a feature shared with PRESENT
cipher).
In this article, we exhibit a new non-trivial representation of the GIFT family of
block ciphers over several rounds. This new representation, that we call fixslicing,
allows extremely efficient software bitsliced implementations of GIFT, using only a few
rotations, surprisingly placing GIFT as a very efficient candidate on micro-controllers.
Our constant time implementations show that, on ARM Cortex-M3, 128-bit data
can be ciphered with only about 800 cycles for GIFT-64 and about 1300 cycles for
GIFT-128 (assuming pre-computed round keys). In particular, this is much faster than
the impressive PRESENT implementation published at CHES 2017 that requires 2116
cycles in the same setting, or the current best AES constant time implementation
reported that requires 1617 cycles. This work impacts GIFT, but also improves
software implementations of all other cryptographic primitives directly based on it or
strongly related to it.
Keywords: GIFT · implementation · bitslice · lightweight cryptography

1 Introduction
In parallel to the rise of pervasive computing and IoT, lightweight cryptography has
naturally been a very hot topic in the past decade. Many new primitives have been
proposed, from block ciphers to hash functions and authenticated encryption schemes, for
various goals such as minimization of area, energy or power consumption, latency, etc.
One can remark that there is no single algorithm that is more efficient than all others
on every possible platform. Even though designers try to produce a primitive aiming at
a particular class of platforms while maintaining good performance otherwise, we can
generally observe that hardware-oriented ciphers tend to be less efficient on software and
vice-versa. For example, the NSA did not propose only a single lightweight block cipher,
but two of them [BSS+15]: one oriented for constrained hardware platforms (SIMON) and
one oriented for constrained software platforms (SPECK).

In hardware, it seems that the community is reaching a limit in terms of performances,
with recent schemes [BSS+15, BJK+16, BPP+17] that can be implemented efficiently using
a very small data-path (minimizing area and power), while allowing also efficient trade-offs
for fast and low-energy implementations. Yet, constrained software platforms such as small

mailto:firstname.lastname@ntu.edu.sg


2 Fixslicing: A New GIFT Representation

micro-controllers will play a very important role in the future. Even though hardware-
oriented designs use a very small total number of bitwise operations when compared to
classical designs such as AES, their situation in software is not so bright: many of these
ciphers use hardware-friendly diffusion layers and an important number of cycles will be
required to move these bits around, without much possibility to benefit from vectorization.
This is especially true for ciphers using bit permutation such as PRESENT [BKL+07] or
GIFT [BPP+17]. Since this bit permutation is basically free in hardware (it consists of
simple wirings), designers concentrated on how to maximize security when choosing this
permutation layer. For example, GIFT permutation layer has been chosen with security as
the only criterion (more precisely, maximizing its resistance against differential and linear
attacks).

When high parallelism can be achieved in the operating mode where the primitive
will be placed, one can always use highly bitsliced implementations (see performances of
SIMON, SKINNY and GIFT on recent Intel processors with AVX2 instructions [BPP+17])
that can lead to excellent performance: these ciphers again use a very small number of
bitwise operations and the high parallelism will allow to strongly reduce the cycles wasted
in moving bits around by unrolling the implementation. However, this strategy will not
be applicable in the case of constrained micro-controllers, as these devices will not offer
enough registers to perform such highly bitsliced implementations efficiently. These highly
bitsliced implementations will also not be possible for serial operating modes, which are
quite widespread in practice and are even more relevant for lightweight cryptography as it
can save some area.

It remains rather unexplored how efficient hardware-oriented ciphers can be in software.
Yet, this topic is quite important with the ongoing NIST LightWeight Cryptography
(NIST LWC) competition, that started in 2018, with the goal of selecting the future
authenticated encryption standard(s) for constrained environments. A first answer was
given at CHES 2017, with a new very efficient implementation of PRESENT cipher on
various micro-controllers [RAL17]. It is based on a decomposition of the permutation layer
over two consecutive rounds, resulting in a more software-friendly representation.

However, PRESENT has a rather low security margin with regards to linear cryptanalysis
and its advanced extensions. It also has the disadvantage to only come in a 64-bit block
version, which is to be avoided [BL16] unless a Beyond-Birthday-Bound (BBB) operating
mode can be used (generally much more costly). Actually, one can observe that none of
the NIST LWC candidates use PRESENT as internal primitive, even though it is widely
considered as one of the first lightweight ciphers. Recently, at CHES 2017, the GIFT family
of block ciphers was proposed to correct these two issues with PRESENT. GIFT has a 128-bit
version and provides a much stronger resistance against linear cryptanalysis than PRESENT,
thanks to a careful choice of its S-box, its diffusion layer and how they operate together.
It has actually been used as a basic block for several NIST LWC candidates, such as
ESTATE [CDJ+19a], GIFT-COFB [BCI+19], HYENA [CDJN19], LOTUS-AED [CDJ+19b],
LOCUS-AED [CDJ+19b], SIMPLE [GL19], SUNDAE-GIFT [BBP+19] and TGIF [IKM+19].
The problem is that software performance of GIFT is believed to be poor on micro-
controllers, because even using table-based implementations, moving the bits around for
the diffusion layer will cost many expensive rotations, shifts, masks, exclusive-ORs, etc.
To the best of our knowledge, no micro-controller implementation has been previously
reported for GIFT.
Our Contributions. In this article, we propose a new non-trivial representation of
both versions of the GIFT cipher over several rounds. More precisely, we show how the
seemingly-complex bit permutation of GIFT-64 can be rewritten over 4 consecutive rounds,
using only a few simple operations. This new very clean representation, that we named
fixslicing, allows an efficient bitsliced implementation of GIFT-64 on ARM Cortex-M3,
requiring only about 800 cycles to cipher two 64-bit input blocks. Our setting assumes



Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 3

that round keys are precomputed, but we also provide an efficient implementation of the
GIFT-64 key schedule.

The situation is more difficult for GIFT-128, as its bit permutation operates on twice
as many bits. Yet, a more systematic search approach led to a new representation of
GIFT-128 over 5 rounds, again using only a few simple operations. This new very clean
representation allows an efficient bitsliced implementation of GIFT-128 on ARM Cortex-M3,
requiring only about 1300 cycles to encrypt one single 128-bit input block.

Our implementations show that GIFT is very efficient in software, as they are much
faster than the impressive PRESENT implementation published at CHES 2017 that requires
2116 cycles in the same setting, or the current best AES constant time implementation
reported that requires 1617 cycles. This work impacts GIFT, but also all other cryptographic
primitives directly based on it or strongly related to it. In particular, we benchmarked
that GIFT-COFB runs at 79 cycles per byte on ARM Cortex-M3 for long messages, placing
this scheme as a very fast candidate.

2 The GIFT family of block ciphers
In this section, we will describe the GIFT family of block ciphers but refer to [BPP+17] for
the full specifications.

GIFT is a family of lightweight block ciphers, with two members: GIFT-64 and GIFT-
128 which have a block size of 64 and 128 bits respectively. They are composed of a
Substitution-Permutation Network (SPN) with a key length of 128-bit. They are 28-round
and 40-round iterative block ciphers respectively, with identical round function.

There are different ways to perceive GIFT-64 and GIFT-128. The classical one is to
represent it with an SPN view (see Section 2 of [BPP+17] for a graphical representation),
which looks like a PRESENT-like cipher with 16 (or 32) 4-bit S-boxes and a 64-bit (or
128-bit) bit permutation (see Figure 1 that illustrates 2 rounds of GIFT-64). Since we will
be proposing new bitsliced implementations, we will be using the bitsliced description
instead, which is similar to Appendix A of the GIFT paper.

Instead of collecting the input stream S-box per S-box, we can also consider that
the data arrives already in bitsliced ordering. This changes absolutely nothing to the
quality of the cipher, as a bit permutation is simply applied at the start (plaintext) and
at the end (ciphertext) of the encryption process (to compensate for the state bitslice
packing/unpacking). We note that such ciphers have been already used in some NIST
LWC candidates such as GIFT-COFB [BCI+19]. We will denote GIFTb-64 and GIFTb-128
the bitsliced-input versions of GIFT-64 and GIFT-128 respectively.

2.1 Round function
Each round of GIFT-64 (or GIFT-128) consists of 3 steps: SubCells, PermBits, and
AddRoundKey.

Initialization. The 64-bit (or 128-bit) plaintext is loaded into the cipher state S which will
be expressed as 4 16-bit (or 32-bit) segments. In the perspective of a 2-dimensional
array, the bit ordering is from top-down, then right to left. Namely, for GIFT-64, we
have:

S =


S0
S1
S2
S3

←


b60 · · · b8 b4 b0
b61 · · · b9 b5 b1
b62 · · · b10 b6 b2
b63 · · · b11 b7 b3

 .



4 Fixslicing: A New GIFT Representation

Figure 1: 2 rounds of GIFT-64 (from https://www.iacr.org/authors/tikz/).

while for GIFT-128 we have:

S =


S0
S1
S2
S3

←


b124 · · · b8 b4 b0
b125 · · · b9 b5 b1
b126 · · · b10 b6 b2
b127 · · · b11 b7 b3

 .

The 128-bit secret key is loaded into the key state KS partitioned into 8 16-bit
words. In the perspective of a 2-dimensional array, the bit ordering is from right to
left, then bottom-up.

KS =


W0 ‖ W1
W2 ‖ W3
W4 ‖ W5
W6 ‖ W7

←


b127 · · · b112 ‖ b111 · · · b98 b97 b96
b95 · · · b80 ‖ b79 · · · b66 b65 b64
b63 · · · b48 ‖ b47 · · · b34 b33 b32
b31 · · · b16 ‖ b15 · · · b2 b1 b0



SubCells. The substitution layer of 16 (or 32) identical 4-bit S-boxes can be applied in
parallel with the following operations.

S1 ← S1 ⊕ (S0 ∧ S2)
S0 ← S0 ⊕ (S1 ∧ S3)
S2 ← S2 ⊕ (S0 ∨ S1)
S3 ← S3 ⊕ S2

S1 ← S1 ⊕ S3

S3 ← ¬ S3

S2 ← S2 ⊕ (S0 ∧ S1)
{S0, S1, S2, S3} ← {S3, S1, S2, S0},

where ∧, ∨ and ¬ are logical AND, OR and NOT operation respectively.

PermBits. The bit permutation of GIFT has the special property that each bit located in
a slice i remains in the same slice through this permutation. Now, different 16-bit (or

https://www.iacr.org/authors/tikz/


Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 5

32-bit) permutations are applied to each Si independently. They map a bit located
at position j in slice i to position Pi(j) in the same slice i. We provide in Tables 1
and 2 the Pi(j) values for GIFT-64 and GIFT-128 respectively.

Table 1: Specifications of GIFT-64 bit permutation.
j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0(j) 0 12 8 4 1 13 9 5 2 14 10 6 3 15 11 7
P1(j) 4 0 12 8 5 1 13 9 6 2 14 10 7 3 15 11
P2(j) 8 4 0 12 9 5 1 13 10 6 2 14 11 7 3 15
P3(j) 12 8 4 0 13 9 5 1 14 10 6 2 15 11 7 3

Table 2: Specifications of GIFT-128 bit permutation.
j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P0(j) 0 24 16 8 1 25 17 9 2 26 18 10 3 27 19 11
P1(j) 8 0 24 16 9 1 25 17 10 2 26 18 11 3 27 19
P2(j) 16 8 0 24 17 9 1 25 18 10 2 26 19 11 3 27
P3(j) 24 16 8 0 25 17 9 1 26 18 10 2 27 19 11 3

j 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P0(j) 4 28 20 12 5 29 21 13 6 30 22 14 7 31 23 15
P1(j) 12 4 28 20 13 5 29 21 14 6 30 22 15 7 31 23
P2(j) 20 12 4 28 21 13 5 29 22 14 6 30 23 15 7 31
P3(j) 28 20 12 4 29 21 13 5 30 22 14 6 31 23 15 7

AddRoundKey. This step consists of adding the round key and round constant. Two
16-bit (or 32-bit) segments U, V are extracted from the key state as the round key:
RK = U‖V . Then, for the addition of round key, U and V are XORed to S1 and
S0 of the cipher state respectively for GIFT-64, or S2 and S1 of the cipher state
respectively for GIFT-128:

S1 ← S1 ⊕ U, S0 ← S0 ⊕ V for GIFT-64
S2 ← S2 ⊕ U, S1 ← S1 ⊕ V for GIFT-128.

For the addition of round constant, S3 is updated as follows:

S3 ←S3 ⊕ 0x80XY for GIFT-64
S3 ←S3 ⊕ 0x800000XY for GIFT-128

where the byte XY = 00c5c4c3c2c1c0.

2.2 Key schedule and round constants
The key schedule and round constants are the same for both versions of GIFT, the only
difference is the round key extraction. A round key is first extracted from the key state
before the key state update. For GIFT-64, two 16-bit words of the key state are extracted
as the round key RK = U‖V

U ←W6, V ←W7,



6 Fixslicing: A New GIFT Representation

while for GIFT-128, four 16-bit words of the key state are extracted as the round key
RK = U‖V .

U ←W2‖W3, V ←W6‖W7.

The key state is then updated as follows,
W0 ‖ W1
W2 ‖ W3
W4 ‖ W5
W6 ‖ W7

←


W6 ≫ 2 ‖ W7 ≫ 12
W0 ‖ W1
W2 ‖ W3
W4 ‖ W5

 ,

where ≫ i is an i bits right rotation within the 16-bit word.
The round constants are generated using a 6-bit affine LFSR, whose state is denoted

as c5c4c3c2c1c0. Its update function is defined as:

c5‖c4‖c3‖c2‖c1‖c0 ← c4‖c3‖c2‖c1‖c0‖c5 ⊕ c4 ⊕ 1 .

The six bits are initialized to zero, and updated before being used in a given round. The
values of the constants for each round are given in the table below, encoded to byte values
for each round, with c0 being the least significant bit.

Rounds Constants
1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E
17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38
33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

3 Naive bitsliced implementation of GIFT
Naive bitsliced implementations of the GIFT family of block ciphers can be achieved by
following straightforwardly the specifications. First, in the case of GIFT-64 and GIFT-128,
one has to rearrange the inputs in their bitsliced representation. This can be done using
the SWAPMOVE technique [MPC00]:

SWAPMOVE(A, B, M, n) :
T = (B ⊕ (A� n)) ∧ M

B = B ⊕ T

A = A⊕ (T � n)

which consists in swapping the bits in B masked by M with the bits in A masked by
(M � n). Regarding the substitution layer, the 4-bit S-boxes can be computed in parallel
in only 13 operations as described in Section 2. The main difficulty lies in the diffusion
layer as it refers to the least bitslice-friendly operation. For the sake of clarity, let us
consider the case of GIFT-64. In order to apply the 16-bit permutation P0 to S0, a basic
approach would be to move the bits using masks and shifts, resulting in the following
operations:

P0(S0) = (S0 ∧ 0x0401) ∨ ((S0 ∧ 0x0008)� 1) ∨
((S0 ∧ 0x2000)� 2) ∨ ((S0 ∧ 0x0040)� 3) ∨
((S0 ∧ 0x0200)� 5) ∨ ((S0 ∧ 0x0004)� 6) ∨
((S0 ∧ 0x0020)� 8) ∨ ((S0 ∧ 0x0002)� 11) ∨
((S0 ∧ 0x1000)� 9) ∨ ((S0 ∧ 0x8000)� 8) ∨
((S0 ∧ 0x0100)� 6) ∨ ((S0 ∧ 0x0800)� 5) ∨
((S0 ∧ 0x4010)� 3) ∨ ((S0 ∧ 0x0080)� 2)



Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 7

which requires about 27 cycles on ARM Cortex-M processors. In the same way, P1, P2 and
P3 can be implemented in approximately 14, 27 and 18 cycles, respectively. Therefore, the
diffusion layer requires about 100 cycles for a single round. This highlights why ciphers
using bit permutation are generally considered inappropriate for software implementations
on micro-controllers.

Still, it is possible to minimize the impact on performances by operating on several
blocks in parallel for 32-bit (and above) architectures. In order to give some insights on how
GIFT performs on ARM Cortex-M3 and M4 using the naive bitsliced implementation, we
benchmarked a code fully written in C language, compiled by arm-none-eabi-gcc 9.2.1
using the flag -O3 for optimized speed results, on the STM32L100C and STM32F407VG
development boards. Note that our benchmark simply measures the execution time to
expand the key and to encrypt 128-bit data, without any operating mode. Implementation
results are listed in Table 3. For encryption functions, the data in ROM refers to
precomputed round constants while under RAM usage, I/O refers to the amount of
memory needed to store the input and ouput plus the temporary variables (excluding the
round keys).

Table 3: Naive bitsliced implementation results on ARM Cortex-M3 and M4 for various
versions of GIFT.

Algorithm
Parallel Speed (cycles/block) ROM (bytes) RAM (bytes)
Blocks M3 M4 Code Data I/O Stack

GIFT-64 key exp. - 2 296 2 304 668 0 112 24
GIFTb-64 encryption 2 2 091 2 097 1 172 28 52 48
GIFT-64 encryption 2 2 141 2 138 1 608 28 52 48
GIFT-128 key exp. - 3 433 3 476 644 0 360 24

GIFTb-128 encryption 1 8 456 8 375 1 508 40 52 48
GIFT-128 encryption 1 8 644 8 573 1 996 40 52 48

As expected, the result is that GIFT is not well suited for software bitsliced implemen-
tations on micro-controllers. While our C implementation requires about 4 000 cycles to
encrypt 128-bit data using GIFT-64, twice as much are required when using GIFT-128.
This gap is due to the fact that, on top of having more rounds than GIFT-64, the slice
permutations P0, · · · , P3 of GIFT-128 operate on 32 bits instead of 16, increasing the
number of masks and shifts to compute. However, the next section introduces a new GIFT
representation which challenges this conclusion.

4 A new GIFT representation
4.1 GIFT-64
Let us consider a bitsliced representation of the cipher state: for each nibble, bit 0 is placed
in the slice 0, bit 1 in slice 1, bit 2 in slice 2 and bit 3 in slice 3. For ease of description,
a slice can be placed in matrix form, as shown in the top row of Figure 3. During the
SubCells application, when each slice is stored in independent words, all the 16 S-boxes
are implemented in parallel in bitslice manner, as seen in Figure 2. Then, according to the
GIFT designers [BPP+17], the bit permutation can be implemented as follows:

• Take the transpose of each individual slice matrix

• Apply the following row swaps:



8 Fixslicing: A New GIFT Representation

– Slice 0 matrix: swap row 1 with 3
– Slice 1 matrix: swap row 0 with 1, and swap row 2 with 3
– Slice 2 matrix: swap row 0 with 2
– Slice 3 matrix: swap row 0 with 3, and swap row 1 with 2

We give a graphical representation of 4 rounds of this process in Figure 3.

Figure 2: Cubic representation of the main state of GIFT-64. Each color refer to a slice
matrix while the black cuboid is where an Sbox is applied.

As explained in Section 3, the diffusion layer requires bits to be moved around individ-
ually in the slice (and not entire chunks of the slice), resulting in a significant overhead. In
order to avoid these issues, we propose a new way to represent GIFT-64. The idea is to fix
the first slice matrix to never move and find the easiest operations that could keep the bits
of other slice matrices synchronised after application of the linear layer (so that the S-box
computation that comes after will indeed involve the proper bits). This representation is
given in Figure 4 and one can see that even though the bit positions are different, each
S-box will have exactly the same bits indexes involved when compared to the classical
representation given in Figure 3. For example, after one round, the classical representation
will have bits 16/21/26/31 in row 0 and column 1 and we can see that the exact same
quartet will appear as well in the new representation, but in row 1 and column 0 instead.
The fact that this quartet appears in a different row/column has no impact on the actual
computation of the Sbox right after, since the computation is bitsliced.

The very nice property of this new representation is that it requires very few operations:
each round, we only apply a row or column rotation to the three last slice matrices, while
the first slice matrix is never moved. More precisely, for a round i:

• if i%4=0, rotate slice j matrix by j columns to the left

• if i%4=1, rotate slice j matrix by j rows to the top

• if i%4=2, rotate slice j matrix by j columns to the right

• if i%4=3, rotate slice j matrix by j rows to the bottom

This entire process, which applies different functions for each 4 consecutive rounds, will
be much less costly in software than having to transpose and then swap rows around. Even
better: the new and the classical representations are naturally fully synchronised again
after applying these 4 rounds, which avoids any representation correction to be applied at
the end of the cipher (since GIFT-64 has 28 rounds, which is a multiple of 4). This is due
to the fact that P 4

i = Id for all i. Therefore, no matter which slice matrix is fixed, the
new and the classical representations will be fully synchronised after 4 rounds anyway.



Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 9

slice 0 slice 1 slice 2 slice 3

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

0

12

8

4

16

28

24

20

32

44

40

36

48

60

56

52

5

1

13

9

21

17

29

25

37

33

45

41

53

49

61

57

10

6

2

14

26

22

18

30

42

38

34

46

58

54

50

62

15

11

7

3

31

27

23

19

47

43

39

35

63

59

55

51

0

48

32

16

12

60

44

28

8

56

40

24

4

52

36

20

21

5

53

37

17

1

49

33

29

13

61

45

25

9

57

41

42

26

10

58

38

22

6

54

34

18

2

50

46

30

14

62

63

47

31

15

59

43

27

11

55

39

23

7

51

35

19

3

0

4

8

12

48

52

56

60

32

36

40

44

16

20

24

28

17

21

25

29

1

5

9

13

49

53

57

61

33

37

41

45

34

38

42

46

18

22

26

30

2

6

10

14

50

54

58

62

51

55

59

63

35

39

43

47

19

23

27

31

3

7

11

15

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

Figure 3: Classical representation of the GIFT-64 round function during 4 rounds. Each
cell represents a bit, and the numbers in the cells then denote the actual index of that
particular bit in the state. Slice 0 (resp. 1/2/3) depicted in red (resp. yellow/green/blue)
represents all the bits at position 0 (resp. 1/2/3) of the S-boxes of the cipher state.

We call this technique fixslicing. Note that it is close to the software optimization
of PRESENT in [RAL17] which consists in decomposing the permutation over 2 rounds,
as our new representation can be seen as a decomposition of P0, · · · , P3 over 4 rounds.
Actually, the fixslicing technique is a particular case for permutations which ensures that,
from a bitsliced perspective, all bits within a slice remains in the same one through the
permutation. Therefore, it can be applied to all permutations that verify this property,
and the number of rounds to consider for the decomposition equals min(order(Pi)) for all
i.



10 Fixslicing: A New GIFT Representation

slice 0 slice 1 slice 2 slice 3

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

← ←← ←←←

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

5

21

37

53

9

25

41

57

13

29

45

61

1

17

33

49

10

26

42

58

14

30

46

62

2

18

34

50

6

22

38

54

15

31

47

63

3

19

35

51

7

23

39

55

11

27

43

59

↑ ↑↑ ↑↑↑

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

21

37

53

5

25

41

57

9

29

45

61

13

17

33

49

1

42

58

10

26

46

62

14

30

34

50

2

18

38

54

6

22

63

15

31

47

51

3

19

35

55

7

23

39

59

11

27

43

→ →→ →→→

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

17

33

49

1

21

37

53

5

25

41

57

9

29

45

61

13

34

50

2

18

38

54

6

22

42

58

10

26

46

62

14

30

51

3

19

35

55

7

23

39

59

11

27

43

63

15

31

47

↓ ↓↓ ↓↓↓

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

Figure 4: New representation of the GIFT-64 round function during 4 rounds. Each cell
represents a bit, and the numbers in the cells then denote the actual index of that particular
bit in the state. Slice 0 (resp. 1/2/3) depicted in red (resp. yellow/green/blue) represents
all the bits at position 0 (resp. 1/2/3) of the S-boxes of the cipher state.

The other side of the coin of this new representation is that the round keys and round
constants have to be adapted to fit the new way the bits are positioned. While this is
not an issue for the round constants by using a precomputed look-up table, adapting the
key schedule might result in some computational overhead. The naive approach would
be to run the key schedule using the classical representation, before rearranging bits for
all round keys. However, one can take advantage of the fact that after 4 rounds all key



Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 11

words are back in the same position within the key state (yet the words themselves will be
rotated because of the rotation operations in the key schedule). In other terms, because
RKi = U i‖V i and RKi+4 = U i ≫ 2‖V i ≫ 12, each key word has to go through the
same bit reordering every 4 rounds. Therefore a more efficient approach is to rearrange bits
for the first 4 round keys only, and to adapt the key schedule accordingly. More details on
how to compute the key schedule in the fixsliced representation are given in Appendix A.1.

4.2 GIFT-128
As for GIFT-64, we consider a bitsliced representation of the cipher state. For ease of
description, a slice i can be represented as a pair of matrices iL and iR, as shown in the top
row of Figure 6. During the SubCells application, when each slice is stored in independent
words, all the 32 S-boxes are implemented in parallel in a bitsliced manner, as seen in
Figure 5.

Figure 5: Cubic representation of the main state of GIFT-128. The black cuboid is where
an S-box is applied for both matrices.

Then, according to the GIFT designers [BPP+17], the bit permutation can be implemented
as follows:

• Take the transpose of each individual slice matrix

• Shuffle the left and right matrices of each slice (i.e. shuffle iL and iR for all i).

• Apply the following row swaps:

– Slice 0: swap the 2 bottom halves
– Slice 1: swap the top and bottom halves of the slices independently
– Slice 2: swap the 2 top halves
– Slice 3: cross swap the top and bottom halves

We give a graphical representation of 5 rounds of this process in Figure 6.
As for GIFT-64, one can see that the process will be very costly in software, with lots of

transpositions, shuffle and swaps. We therefore propose a new way to represent GIFT-128,
thanks to the fixslicing technique. However, unlike GIFT-64, note that the classical and the
new representation will not be synchronised anymore after 4 rounds since P 4

i 6= Id for all i.
For GIFT-128 we have P 31

0 = P 10
1 = P 31

2 = P 5
3 = Id. In other terms, by fixing the fourth

slice to never move, we can define a routine so that the classical and new representation are
naturally synchronised after 5 rounds. Since GIFT-128 has 40 rounds (which is a multiple
of 5), it avoids any correction to be applied at the end of the cipher. This representation
is depicted in Figure 7.



12
Fixslicing:

A
N
ew

G
IFT

R
epresentation

slice 0L slice 0R slice 1L slice 1R slice 2L slice 2R slice 3L slice 3R

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

64

80

96

112

68

84

100

116

72

88

104

120

76

92

108

124

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

65

81

97

113

69

85

101

117

73

89

105

121

77

93

109

125

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

66

82

98

114

70

86

102

118

74

90

106

122

78

94

110

126

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

0

64

12

76

16

80

28

92

32

96

44

108

48

112

60

124

8

72

4

68

24

88

20

84

40

104

36

100

56

120

52

116

5

69

1

65

21

85

17

81

37

101

33

97

53

117

49

113

13

77

9

73

29

93

25

89

45

109

41

105

61

125

57

121

10

74

6

70

26

90

22

86

42

106

38

102

58

122

54

118

2

66

14

78

18

82

30

94

34

98

46

110

50

114

62

126

15

79

11

75

31

95

27

91

47

111

43

107

63

127

59

123

7

71

3

67

23

87

19

83

39

103

35

99

55

119

51

115

0

8

48

56

64

72

112

120

12

4

60

52

76

68

124

116

32

40

16

24

96

104

80

88

44

36

28

20

108

100

92

84

21

29

5

13

85

93

69

77

17

25

1

9

81

89

65

73

53

61

37

45

117

125

101

109

49

57

33

41

113

121

97

105

42

34

26

18

106

98

90

82

38

46

22

30

102

110

86

94

10

2

58

50

74

66

122

114

6

14

54

62

70

78

118

126

63

55

47

39

127

119

111

103

59

51

43

35

123

115

107

99

31

23

15

7

95

87

79

71

27

19

11

3

91

83

75

67

0

32

76

108

8

40

68

100

48

16

124

92

56

24

116

84

12

44

64

96

4

36

72

104

60

28

112

80

52

20

120

88

85

117

21

53

93

125

29

61

69

101

5

37

77

109

13

45

81

113

17

49

89

121

25

57

65

97

1

33

73

105

9

41

38

6

106

74

46

14

98

66

22

54

90

122

30

62

82

114

42

10

102

70

34

2

110

78

26

58

86

118

18

50

94

126

123

91

59

27

115

83

51

19

107

75

43

11

99

67

35

3

127

95

63

31

119

87

55

23

111

79

47

15

103

71

39

7

0

12

56

52

32

44

24

20

76

64

116

120

108

96

84

88

48

60

8

4

16

28

40

36

124

112

68

72

92

80

100

104

93

89

85

81

125

121

117

113

29

25

21

17

61

57

53

49

77

73

69

65

109

105

101

97

13

9

5

1

45

41

37

33

22

26

46

34

54

58

14

2

90

86

98

110

122

118

66

78

38

42

30

18

6

10

62

50

106

102

82

94

74

70

114

126

99

103

107

111

67

71

75

79

35

39

43

47

3

7

11

15

115

119

123

127

83

87

91

95

51

55

59

63

19

23

27

31

0

48

108

92

12

60

96

80

56

8

84

100

52

4

88

104

76

124

32

16

64

112

44

28

116

68

24

40

120

72

20

36

125

109

93

77

121

105

89

73

117

101

85

69

113

97

81

65

61

45

29

13

57

41

25

9

53

37

21

5

49

33

17

1

90

106

54

6

86

102

58

10

98

82

14

62

110

94

2

50

22

38

122

74

26

42

118

70

46

30

66

114

34

18

78

126

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

Figure 6: Classical representation of the GIFT-128 round function during 5 rounds. Each cell represents a bit, and the numbers in the cells then
denote the actual index of that particular bit in the state. Slice 0 (resp. 1/2/3) depicted in red (resp. yellow/green/blue) represents all the bits at
position 0 (resp. 1/2/3) of the S-boxes of the cipher state.



A
lexandre

A
dom

nicai,Zakaria
N
ajm

and
T
hom

as
Peyrin

13

slice 0L slice 0R slice 1L slice 1R slice 2L slice 2R slice 3L slice 3R

0

16

32

48

4

20

36

52

8

24

40

56

12

28

44

60

64

80

96

112

68

84

100

116

72

88

104

120

76

92

108

124

1

17

33

49

5

21

37

53

9

25

41

57

13

29

45

61

65

81

97

113

69

85

101

117

73

89

105

121

77

93

109

125

2

18

34

50

6

22

38

54

10

26

42

58

14

30

46

62

66

82

98

114

70

86

102

118

74

90

106

122

78

94

110

126

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

← ← ←← ←← ←←← ←←←
4

20

36

52

8

24

40

56

12

28

44

60

0

16

32

48

68

84

100

116

72

88

104

120

76

92

108

124

64

80

96

112

9

25

41

57

13

29

45

61

1

17

33

49

5

21

37

53

73

89

105

121

77

93

109

125

65

81

97

113

69

85

101

117

14

30

46

62

2

18

34

50

6

22

38

54

10

26

42

58

78

94

110

126

66

82

98

114

70

86

102

118

74

90

106

122

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

↑ ↑ ↑↑ ↑↑ ↑↑↑ ↑↑↑
20

36

52

4

24

40

56

8

28

44

60

12

16

32

48

0

84

100

116

68

88

104

120

72

92

108

124

76

80

96

112

64

41

57

9

25

45

61

13

29

33

49

1

17

37

53

5

21

105

121

73

89

109

125

77

93

97

113

65

81

101

117

69

85

62

14

30

46

50

2

18

34

54

6

22

38

58

10

26

42

126

78

94

110

114

66

82

98

118

70

86

102

122

74

90

106

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

↘↙ ↘↙
84

100

116

68

88

104

120

72

92

108

124

76

80

96

112

64

24

40

56

8

20

36

52

4

16

32

48

0

28

44

60

12

45

61

13

29

41

57

9

25

37

53

5

21

33

49

1

17

109

125

77

93

105

121

73

89

101

117

69

85

97

113

65

81

114

66

82

98

126

78

94

110

122

74

90

106

118

70

86

102

62

14

30

46

50

2

18

34

54

6

22

38

58

10

26

42

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

←← ←← ←← ←←
108

92

76

124

96

80

64

112

84

100

116

68

88

104

120

72

32

16

0

48

44

28

12

60

24

40

56

8

20

36

52

4

61

45

29

13

57

41

25

9

53

37

21

5

49

33

17

1

125

109

93

77

121

105

89

73

117

101

85

69

113

97

81

65

122

74

90

106

118

70

86

102

66

114

98

82

78

126

110

94

54

6

22

38

58

10

26

42

14

62

46

30

2

50

34

18

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

↘↙↑↑ ↑↑ ↑↑ ↑↑
0

48

108

92

12

60

96

80

56

8

84

100

52

4

88

104

76

124

32

16

64

112

44

28

116

68

24

40

120

72

20

36

125

109

93

77

121

105

89

73

117

101

85

69

113

97

81

65

61

45

29

13

57

41

25

9

53

37

21

5

49

33

17

1

90

106

54

6

86

102

58

10

98

82

14

62

110

94

2

50

22

38

122

74

26

42

118

70

46

30

66

114

34

18

78

126

3

19

35

51

7

23

39

55

11

27

43

59

15

31

47

63

67

83

99

115

71

87

103

119

75

91

107

123

79

95

111

127

Figure 7: New representation of the GIFT-128 round function during 5 rounds. Each cell represents a bit, and the numbers in the cells then denote
the actual index of that particular bit in the state. Slice 0 (resp. 1/2/3) depicted in red (resp. yellow/green/blue) represents all the bits at position
0 (resp. 1/2/3) of the S-boxes of the cipher state.



14 Fixslicing: A New GIFT Representation

One can again see that even though the bit positions are different, each S-box will have
exactly the same bit indexes involved when compared to the classical representation given
in Figure 6. We recall that this representation implies that the key schedule and constant
addition have to be adapted to fit the new way the bits are positioned.

The first 2 rounds are similar to the ones used for GIFT-64. Namely, in the first round,
we simply rotate each matrix of each slice i (thus iL and iR for all i) by i columns to
the left. In the second round, we simply rotate each matrix of each slice i (thus iL and
iR for all i) by i rows to the top. For the third round, we swap the matrices iL and iR

for i ∈ {0, 2} before swapping the first and third columns with the second and fourth
ones respectively, for matrixes 0R, 1L, 1R and 2L. During the fourth round, we swap the
first and third rows with the second and fourth ones respectively, for each matrix of slice
1. Then, for each matrix of slice 0 (resp. slice 2), we rotate by 2 columns to the left
before swapping rows of the left-half block (resp. right-half block). Finally, the fifth round
consists in swapping 1L with 1R, rotating iL and iR by 2 rows to the top for i ∈ {0, 2} and
swapping the first and second rows of each matrix for slice 0, while swapping the third
and fourth rows of each matrix for slice 2. All these operations are illustrated in Figure 7
for greater clarity.

The above mentioned method to adapt the key schedule for GIFT-64 cannot be straight-
forwardly applied to GIFT-128. Indeed, the new and the classical representations of the
state are synchronised after 5 rounds, but the key schedule part is almost synchronised after
4 rounds (the key word will return to its original position after 4 rounds, albeit rotated).
Thus, it looks like the synchronisation will happen only every 4× 5 = 20 rounds. However,
one can remark that twice as much subkey material is used for GIFT-128 compared to
GIFT-64, and there the key words used every two rounds are the same (albeit rotated, and
for different part of the internal state). Thus, we have an almost synchronisation that
will happen only every 2× 5 = 10 rounds instead. In other terms, each key word has to
match every new representation of the state at some point. Instead of applying the naive
approach for all round keys, which consists in running the key schedule using the classical
representation and then rearranging bits, we suggest to apply it only for the first 10 round
keys. At this stage, all key words will be expressed in each representation, allowing to
adapt the key schedule for each of them, without reordering bits. More details on how to
compute the key schedule in the fixsliced representation are given in Appendix A.2.

5 Efficient software implementations of GIFT

This section shows how to take advantage of the fixslicing technique to achieve efficient
implementations of GIFT on ARM Cortex-M processors. We also briefly discuss the gap
for other platforms that do not come with an inline barrel shifter or rotate instruction.

5.1 GIFT-64

In the case of GIFT-64, thanks to our new fixsliced representation, the linear layer consists
in rotating either rows or columns depending on the round number. Depending on how the
bits are arranged within the slices (i.e. row-wise or column-wise bitsliced representation),
these operations refer to either half-word (16-bit) or nibble (4-bit) rotations. In the rest of
this section we consider a row-wise bitsliced representation. The ARM Cortex-M being a
32-bit architecture (and since we have 4 slices in GIFT-64), two 64-bit blocks B and B′

can be processed at a time. Instead of simply concatenating 16-bit slices of both blocks
within a 32-bit words, we suggest to interleave the nibbles as follows:



Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 15

S0 ←b60 b56 b52 b48 b′
60 b′

56 b′
52 b′

48 · · · b12 b8 b4 b0 b′
12 b′

8 b′
4 b′

0

S1 ←b61 b57 b53 b49 b′
61 b′

57 b′
53 b′

49 · · · b13 b9 b5 b1 b′
13 b′

9 b′
5 b′

1

S2 ←b62 b58 b54 b50 b′
62 b′

58 b′
54 b′

50 · · · b14 b10 b6 b2 b′
14 b′

10 b′
6 b′

2

S3 ←b63 b59 b55 b51 b′
63 b′

59 b′
55 b′

51 · · · b15 b11 b7 b3 b′
15 b′

11 b′
7 b′

3

so that 16-bit rotations are now 32-bit rotations, which can be implemented in a single
cycle using the ror instruction. Actually, it can be computed for free by taking advantage
of the inline barrel shifter, since instructions can shift or rotate one of their operands
without any additional cost. Therefore, the implementation cost of the linear layer is
now equivalent to 42 nibble rotations (3 have to be computed every 2 rounds). Such
rotations can be computed in 3 cycles on ARM Cortex-M processors assuming that the
required masks are already loaded in some general purpose registers, resulting in a total
of 42 × 3 = 126 cycles. The following calls to the SWAPMOVE routine lead to the above
mentioned row-wise nibble-interleaved bitsliced representation.

S0 ← b31 · · · b0 S1 ← b′
31 · · · b′

0 S2 ← b63 · · · b32 S3 ← b′
63 · · · b′

32

SWAPMOVE(S0, S0, 0x0a0a0a0a, 3); SWAPMOVE(S1, S1, 0x0a0a0a0a, 3);
SWAPMOVE(S2, S2, 0x0a0a0a0a, 3); SWAPMOVE(S3, S3, 0x0a0a0a0a, 3);
SWAPMOVE(S0, S0, 0x00cc00cc, 6); SWAPMOVE(S1, S1, 0x00cc00cc, 6);
SWAPMOVE(S2, S2, 0x00cc00cc, 6); SWAPMOVE(S3, S3, 0x00cc00cc, 6);
SWAPMOVE(S0, S0, 0x0000ff00, 8); SWAPMOVE(S1, S1, 0x0000ff00, 8);
SWAPMOVE(S2, S2, 0x0000ff00, 8); SWAPMOVE(S3, S3, 0x0000ff00, 8);
SWAPMOVE(S0, S1, 0x0f0f0f0f, 4); SWAPMOVE(S2, S3, 0x0f0f0f0f, 4);
SWAPMOVE(S0, S2, 0x0000ffff, 16); SWAPMOVE(S1, S3, 0x0000ffff, 16);

Although a bitsliced representation without interleaving the nibbles could be built for
12 SWAPMOVE instead of 16, each half-word rotation would require at least 3 cycles, therefore
doubling the cost of the linear layer to at least 252 cycles. Regarding the non-linear layer,
it is possible to save 1 instruction by omitting the NOT operation. Indeed, this operation
applies to a slice that will be then exclusive-ORed with the round key. Therefore, we
suggest to compute the NOT on the corresponding round keys. Moreover, because the key
schedule is completely linear, one can simply apply the logical negation to the right chunks
of the key:

k127 · · · k112 k111 · · · k96 k95 · · · k80 k79 · · · k64 k63 · · · k48 k47 · · · k32 k31 · · · k16 k15 · · · k0

before computing the key schedule. Note that this can be done once, when the encryption
key is being derived and/or stored on the device, therefore saving 28 cycles per 128-bit
data encryption.

On the other hand, a nibble-interleaved bitsliced representation requires twice as much
memory to store the round keys and constants in order to avoid extra computations on the
fly. It would still be possible to store these variable as 16-bit words but one would have to
pay extra cycles to expand them into 32-bit words, nibble-interleaved with theirselves. As
a matter of efficiency, we did not consider this option for our implementations. The round
keys and constants are stored in 32-bit words, leading to a memory requirement of 112
and 224 bytes for all the round constants and the round keys, respectively.

5.2 GIFT-128
Regarding GIFT-128, because only a single block can be processed at a time on 32-bit
processors, we consider a row-wise bitsliced representation without any interleaving. Unlike



16 Fixslicing: A New GIFT Representation

GIFT-64, it is not possible to distinguish only 2 but 5 kind of operation since each step
of the new representation requires different slice transformations. At steps 1, 2, 4 and
5, these transformations can be implemented by means of nibble, half-word, byte and
full-word rotations, respectively. The third step does not clearly refer to any n-bit rotation
but can be simply computed using the SWAPMOVE process. Again, full-word rotations
can be implemented for free on ARM thanks to the inline barrel shifter. Even though
the nibble, byte and half-word rotations can be implemented in at least 3 cycles, our
implementation requires 5 cycles as 2 additional cycles are spent in loading the appropriate
masks into registers. This is due to the fact that, unlike GIFT-64, it is not possible to
keep all the masks in registers during the entire encryption routine as 12 different ones are
needed. The same statement also applies to SWAPMOVE calculations, leading to a cost of 5
cycles per process. As a result, the linear layer of GIFT-128 can be implemented in about
12× 5× 8 = 480 cycles in total, according to our new representation.

Note that row ordering matters to match with this interpretation of the new represen-
tation. Our GIFT-128 implementations use a row ordering from top-down, which can be
achieved using the 14 following calls to the SWAPMOVE process:

S0 ← b79 · · · b64 b15 · · · b0 S1 ← b95 · · · b80 b31 · · · b16

S2 ← b111 · · · b96 b47 · · · b32 S3 ← b127 · · · b112 b63 · · · b48

SWAPMOVE(S0, S0, 0x0a0a0a0a, 3); SWAPMOVE(S1, S1, 0x0a0a0a0a, 3);
SWAPMOVE(S2, S2, 0x0a0a0a0a, 3); SWAPMOVE(S3, S3, 0x0a0a0a0a, 3);
SWAPMOVE(S0, S0, 0x00cc00cc, 6); SWAPMOVE(S1, S1, 0x00cc00cc, 6);
SWAPMOVE(S2, S2, 0x00cc00cc, 6); SWAPMOVE(S3, S3, 0x00cc00cc, 6);
SWAPMOVE(S0, S1, 0x000f000f, 4); SWAPMOVE(S0, S2, 0x000f000f, 8);
SWAPMOVE(S0, S3, 0x000f000f, 12); SWAPMOVE(S1, S2, 0x00f000f0, 4);
SWAPMOVE(S1, S3, 0x00f000f0, 8); SWAPMOVE(S2, S3, 0x0f000f00, 4);

Regarding the non-linear layer, contrary to GIFT-64, it is not possible to get rid of the
NOT operation within the S-box computation as the round keys are not exclusively-ORed
to S0. Therefore, our implementation of the non-linear layer follows straightforwardly the
specification and requires 13× 40 = 520 cycles in total.

5.3 Without rotate instruction
Thanks to the inline barrel shifter, our fixsliced implementations fit very well the ARM
architecture since the linear layer can be computed for free every 2 and 5 rounds for GIFTb-
64 and GIFTb-128, respectively. However, one could ask oneself how it would perform
on platforms that do not come with an inline barrel shifter and/or rotate instructions.
For instance, RISC-V has no rotate instruction without an appropriate extension (e.g.,
Bitmanip [Wol20]). In this case, one rotation can be computed by means of 2 shifts and
1 OR, resulting in at least 3 cycles. Therefore, instead of having the linear layer for free
every 2 and 5 rounds, it would require at least 4× 3 = 12 cycles, leading to a minimum
overhead of 12× 14 = 168 and 12× 8 = 96 cycles for GIFTb-64 and GIFTb-128, respectively.
Moreover, nibble, byte and half-word rotations on RISC-V cannot be computed in 3 but
5 cycles because the barrel shifter is not inlined, resulting in an additional overhead of
2× 4× 14 = 112 for GIFT-64. On the other hand, this should not affect GIFT-128 since
our implementation spends 5 cycles for all these rotations because 2 additional cycles are
spent to load the appropriate masks in registers. While ARM Cortex-M processors only
have 14 general purpose registers, RISC-V has 32 such registers, so all the masks can be
kept in registers during the entire encryption process. Finally, the SWAPMOVE process would
require 6 cycles instead of 4, increasing the cost to pack the input and unpack the output



Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 17

to 16× 4 = 64 and 14× 4 = 56 cycles for GIFT-64 and GIFT-128, respectively. Note that it
would also add (6− 5)× 3× 8 = 24 cycles to GIFTb-128 since it relies on 3 SWAPMOVE calls
in order to compute the linear layer every 5 rounds.

As a result, on platforms without inline barrel shifter or rotate instruction, we estimate
a total overhead of 168 + 112 = 280 (i.e. 140 per block) and 96 + 24 = 120 cycles for our
fixsliced implementations of GIFTb-64 and GIFTb-128, respectively. Taking into account
the overhead to pack/unpack the data would lead to a total overhead of and 280+64 = 344
(i.e. 172 per block) and 120 + 56 = 176 cycles for GIFT-64 and GIFT-128, respectively.
Overall, this means a penalty of around 40% cycles for GIFT-64 and 15% cycles for GIFT-
128. Therefore, fixslicing is still of interest on such platforms compared to the classical
representation, although the ARM architecture allows to boost its performance.

6 Results
6.1 The GIFT block ciphers
Our GIFT implementations, which are written in ARM assembly, are put into the public do-
main and available at https://github.com/aadomn/gift. Results for various lightweight
block ciphers including GIFT are provided in Table 4.

The implementations of RECTANGLE-64/128, SIMON-64/128 and SPECK-64/128 are
the ones from scenario 2 - Best execution time - of the FELICS framework [DCK+19]. In
this scenario, the key schedule is not taken into account as the round keys are assumed to be
precomputed and stored in RAM. The benchmark consists in measuring the time required
to encrypt 128-bit data using the CTR mode. We followed the same approach for our GIFT
implementations to ensure a fair comparison. The results for PRESENT-64/128 are taken
from [RAL17] and were obtained using the same methodology. Regarding the key schedule,
results from the FELICS framework were extracted from the scenario 0, which consists
in a simple benchmark of the key schedule and a block encryption/decryption. Except
for RECTANGLE, for which implementations are written in ARM assembly, note that the
results for the other above mentioned ciphers come from C codes. Therefore, better results
can be expected for these algorithms by considering assembly implementations. Table 4
also includes results for the current best AES constant-time implementation from [SS16].
Note that, as in Table 3, RAM usage for encryption functions does not take into account
the memory required for the round keys to be compliant with the results from the FELICS
framework.

As expected, our new GIFT fixsliced representation allows extremely efficient software
bitsliced implementations, requiring at best 766 and 838 cycles to encrypt 128-bit data for
GIFTb-64 and GIFT-64, respectively. Note that this is about 8 times more efficient than our
naive bitsliced implementations written in C reported in Table 3. On the other hand, the
amount of memory to store the round keys is increased by a factor 2. GIFT-64 outperforms
all other 64-bit ciphers listed in Table 4, except SPECK-64/128 which is well known for its
outstanding performances thanks to its ARX structure. Especially, our implementation of
the GIFT-64 key schedule according to the new representation outperforms all the other
ones. GIFT-64 key exp. refers to the key schedule including the rearrangement of the
encryption key to match the fixsliced representation, while GIFTb-64 key exp. assumes a
key already in the right representation as input. Note that rearranging the encryption key
can be done only once, when this latter is being derived and/or stored on the device, at
the same time that the S-box optimization described in Section 5.

Regarding GIFT-128, we observe a factor of 1.6 in terms of performance compared to
GIFT-64. Considering that the factor in terms of rounds is about 1.4, it is a remarkable

https://github.com/aadomn/gift


18 Fixslicing: A New GIFT Representation

Table 4: Constant-time implementation results on ARM Cortex-M3 and M4 for various
versions and representations of GIFT, as well as other lightweight block ciphers. For
encryption routines, speed is expressed in cycles per block. Emboldened (resp. italic)
results refer to speed (resp. code size) oriented implementations.

Algorithm Ref
Parallel Speed (cycles) ROM (bytes) RAM (bytes)
Blocks M3 M4 Code Data I/O Stack

64-bit ciphers with 128-bit key

339 338 972 0 224 52
GIFTb-64 key exp. -

381 383 226 0 224 56
383 383 2666 0 40 48

GIFTb-64 encryption 2
415 415 756 112 40 52
488 487 1575 0 224 52

GIFT-64 key exp. -
530 533 828 0 224 56
419 419 2962 0 40 48

GIFT-64 encryption

Ours

2
458 456 1058 112 40 52

PRESENT key exp.
[RAL17]

- 5043 3464 • • • •
PRESENT encryption 2 1058 800 2476 • • •

1106 157 232 44
RECTANGLE key exp. -

1106
•

157 232 44
854 800 76 24

RECTANGLE encryption
[DCK+19]

1
1185

•
440 52 24

1195 112 200 8
SIMON-64 key exp. -

1202
•

108 200 12
650 456 48 24

SIMON-64 encryption
[DCK+19]

1
1281

•
336 40 24

475 46 132 12
SPECK-64 key exp. -

484
•

46 132 12
285 628 36 24

SPECK-64 encryption
[DCK+19]

1
518

•
254 36 24

128-bit ciphers with 128-bit key

AES-128 key exp.
[SS16]

- 1028 1034 3384 1036 368 188
AES-128 encryption 2 1617 1618 12120 12 48 108

966 969 3510 0 320 48
GIFT-128 key exp. -

1813 1812 1100 0 320 56
1169 1172 4250 0 48 56

GIFTb-128 encryption 1
1297 1279 834 160 48 64
1316 1319 4868 0 48 56

GIFT-128 encryption

Ours

1
1444 1427 1332 160 48 64

result since its new representation is slightly more complex. However, the cost of the key
schedule is more than doubled due to the fact that the optimization for GIFT-64 does not
apply to GIFT-128 as stated in Section 5. Still, it allows a slightly better performance
than the AES key schedule. Note that, unlike for GIFT-64, we do not make a distinction
between GIFTb-128 key exp. and GIFT-128 key exp. as our adapted key schedule starts
from the key in its classical representation anyway. For encryption routines, it results that
our GIFT-128 implementations largely outperforms the current best AES one reported in



Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 19

the literature, with GIFTb-128 saving about 28% cycles on AES-128, for a code size 2.9
times smaller when loops are fully unrolled. It requires 1169 and 1316 cycles for GIFTb-128
and GIFT-128, respectively, which is about 8 times more efficient than our naive bitsliced
implementations reported in Table 3. Moreover, note that these AES results benefit from
being averaged over 4096 bytes encryption, versus 16 bytes for GIFT-128.

6.2 Adding first-order masking
On top of running in constant-time, secure embedded cryptographic implementations
should integrate countermeasures against power based side-channel analysis since they are
typical targets for these kind of attacks. A well-known approach to overcome such attacks
is the masking countermeasure [CJRR99], which consists in splitting intermediate values
in statistically independent shares by means of randomn masks. Thereafter, we report
implementation results when applying first-order masking (i.e. splitting all intermediate
values in two shares).

Table 5: Masked constant-time implementation results of GIFT and AES on ARM Cortex-
M4. For encryption routines, speed is expressed in cycles per block. Emboldened (resp.
italic) results refer to speed (resp. code size) oriented implementations.

Algorithm Ref
Parallel

Speed (cycles)
ROM (bytes) RAM (bytes)

Blocks Code Data I/O Stack

64-bit ciphers with 128-bit key

641 (+196) 1950 0 448 68
GIFTb-64 key exp. -

723 (+196) 360 0 448 68
911 (+98) 6646 0 40 64

GIFTb-64 encryption 2
1014 (+98) 1516 112 40 72
965 (+196) 3160 0 448 68

GIFT-64 key exp. -
993 (+196) 944 0 448 68
940 (+98) 6942 0 40 64

GIFT-64 encryption

Ours

2
1051 (+98) 1722 112 40 72

128-bit ciphers with 128-bit key

AES-128 encryption [SS16] 2 5290 (+2133) 39916 12 48 1588
1994 (+196) 6816 0 640 64

GIFT-128 key exp. -
2202 (+196) 2168 0 640 72
2815 (+196) 10266 0 48 64

GIFTb-128 encryption 1
3049 (+196) 1532 160 48 72
2972 (+196) 10906 0 48 64

GIFT-128 encryption

Ours

1
3203 (+196) 2172 160 48 72

While linear operations can be simply computed on both shares independently, nonlinear
operations are more challenging to compute securely. In the case of GIFT, the only nonlinear
gates are 1 OR and 3 AND during the S-box computation. Our masked implementations rely
on the secure AND and OR operations introduced in [BDLCU18], which run in 6 cycles on
ARM Cortex-M processors and do not require any additional randomness. Table 5 reports
implementation results for GIFT and AES on ARM Cortex-M4 as the STM32F407VG
incorporates a random number generator. Because the number of clock cyles required to
generate randomn numbers is platform dependent, it is enclosed in parentheses separately.



20 Fixslicing: A New GIFT Representation

Our GIFT implementations only require 4 32-bit random words to mask the internal state
at the beginning of the algorithm. Regarding the key schedules, the same amount of
randomness is required to mask the initial key. For both GIFT-64 and GIFT-128, the
internal state fits in 4 registers. Therefore, it is possible to handle the state and the masks
in 8 registers, avoiding any additional memory access during the encryption routine.

When taking first-order masking into consideration, the advantage of GIFT-128 over
AES-128 is even more significant since the number of nonlinear operations to secure is
smaller. However, note that the reported results for AES do not take advantage of the
optimized AND gate from [BDLCU18] and therefore bear the cost of additional operations
and randomness generation. Compared to our unmasked implementation results reported
in Table 4, we observe a penalty factor about 2.5 in terms of execution time, showing
that GIFT is well suited for software masked implementations thanks to our fixsliced
representation.

6.3 The GIFT-COFB authenticated cipher
Since GIFTb-128 defines the underlying block cipher of GIFT-COFB, we can easily have
a look at the benefits of our fixsliced representation when applied to this authenticated
cipher. To do so, our GIFT-COFB implementation computes the COFB mode using C
code while calls to the GIFTb-128 primitive are handled by our assembly implementation.
Tables 6 and 7 summarize our implementation results for GIFT-COFB and Ascon [DEMS19],
another submission to the NIST LWC competition. For both versions of Ascon, namely
Ascon-128 and Ascon-128a, we consider the ARM optimized implementations bi32_arm,
available online at https://github.com/ascon. We believe this is a fair comparison since
the core function is written in assembly in a fully unrolled manner, while the rest of the
algorithm is handled by C code, just like our GIFT-COFB implementation.

Table 6: Constant-time implementation results on ARM Cortex-M3 and M4 for GIFT-
COFB and Ascon to secure 16 bytes of message along with 16 bytes of additional data.
Emboldened (resp. italic) results refer to speed (resp. code size) oriented implementations.

Algorithm Ref
Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

Without masking

4827 4893 10092 0 428 92
GIFT-COFB Ours

6028 6082 4240 160 428 100
Ascon-128 https://github.com/ascon 4203 4276 12348 0 124 36
Ascon-128a (Our measurements) 3862 3990 15200 0 140 36

With 1st-order masking (including randomness generation)

• 10978 (+579) 19808 0 732 108
GIFT-COFB Ours

• 11928 (+579) 5096 160 732 100

According to our benchmark, fixslicing makes GIFT-COFB a very efficient authenticated
cipher, running at 79 cycles per byte for long messages, versus 58 and 42 cycles per byte
under the same setting for Ascon-128 and Ascon-128a, respectively. However, because the
considered Ascon implementation are highly speed-optimized, their code size are bigger
than our fully unrolled implementation by a factor 1.2 and 1.5 for Ascon-128 and Ascon-
128a, respectively. We observe that our first-order masked implementation of GIFT-COFB
requires about thrice as much cycles as Ascon-128, taking into account the randomness
generation on the STM32F407VG micro-controller. Although it is unclear how Ascon-128
would perform compared to our fixsliced implementations when taking first-order masking

https://github.com/ascon
https://github.com/ascon


Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 21

into account, we expect it to be more efficient for messages composed of several blocks since
masking can be restricted to the initialization and finalization phases as done in [AFM18].

Table 7: Running time (cycles) of constant-time speed-oriented implementations of GIFT-
COFB and Ascon on ARM Cortex-M4 for different message sizes along with 16 bytes of
additional data.

Algorithm Ref
Message size (bytes)

16 64 256 1024 4096 16384

Without masking

GIFT-COFB Ours 4 893 8 725 23 929 84 701 327 581 1 299 101
Ascon-128 https://github.com/ascon 4 276 7 073 18 246 62 886 241 446 955 686
Ascon-128a (Our measurements) 3 990 6 028 14 171 46 715 176 891 697 595

With 1st-order masking (including randomness generation)

GIFT-COFB Ours 11 557 20 824 57 773 205 572 796 733 3 161 412

7 Conclusion
In this article, we proposed a new representation for the GIFT family of lightweight
block ciphers called fixslicing, and showed how it can be used to obtain extremely fast
implementations on micro-controllers, making GIFT a very efficient candidate on these
platforms. Especially, our fixsliced representation fits very well the ARM architecture
as the inline barrel shifter allows to compute the linear layer for free every 2 and 5
rounds for GIFT-64 and GIFT-128, respectively. Our implementations, available online at
https://github.com/aadomn/gift to validate our overall strategy, run in constant-time
since they are bitsliced in essence. This result directly provides efficient implementations
of GIFT-COFB, a submission to the NIST LWC competition, placing it as a very promising
candidate on micro-controllers.

We also report implementation results for GIFT and GIFT-COFB when adding first-order
masking and observe a penalty factor about 2.5 and 2.1, respectively. According to our
benchmark, GIFT-COFB masked at first-order requires about thrice as much cycles than
Ascon-128 without masking. Further work should be conducted to draw a clear picture
when comparing both algorithms regarding masked implementations.

More generally, we believe that the approach of not following the classical cipher
representation for a few rounds might be applicable to other designs. Especially, bitsliced
implementations can take advantage of the fixslicing technique as long as each bit located
in a slice remains in the same one through the linear layer, as is the case for GIFT. From
a design point of view, considering a permutation with a low order for the linear layer
might be of interest, since it allows to define a compact routine to resynchronize the slices.
Furthermore, the key schedule should be designed accordingly to avoid any additional
calculations due to round keys adjustment.

Acknowledgements
The authors would like to thank the anonymous reviewers for their helpful comments. The
authors are supported by a Temasek Labs grant (DSOCL16194) and a joint WASP/NTU
grant.

https://github.com/ascon
https://github.com/aadomn/gift


22 Fixslicing: A New GIFT Representation

References
[AFM18] Alexandre Adomnicai, Jacques J.A. Fournier, and Laurent Masson. Masking

the Lightweight Authenticated Ciphers ACORN and Ascon in Software.
Cryptology ePrint Archive, Report 2018/708, 2018.

[BBP+19] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, Elmar Tischhauser, and Yosuke Todo. SUNDAE-GIFT v1.0. Submission
to the NIST Lightweight Cryptography project, 2019.

[BCI+19] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke
Todo. GIFT-COFB v1.0. Submission to the NIST Lightweight Cryptography
project, 2019.

[BDLCU18] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko. Opti-
mal First-Order Boolean Masking for Embedded IoT Devices. In Thomas
Eisenbarth and Yannick Teglia, editors, Smart Card Research and Advanced
Applications, pages 22–41. Springer International Publishing, 2018.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In CRYPTO (2), volume 9815 of Lecture Notes in Computer Science, pages
123–153. Springer, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna,
Austria, September 10-13, 2007, Proceedings, pages 450–466, 2007.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. On the Practical (In-)Security
of 64-bit Block Ciphers. In ACM CCS 2016 - 23rd ACM Conference on
Computer and Communications Security, pages 456–467. ACM, 2016.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes
in Computer Science, pages 321–345. Springer, 2017.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK lightweight block
ciphers. In Proceedings of the 52nd Annual Design Automation Conference,
San Francisco, CA, USA, June 7-11, 2015, pages 175:1–175:6, 2015.

[CDJ+19a] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez,
Mridul Nandi, and Yu Sasaki. ESTATE. Submission to the NIST Lightweight
Cryptography project, 2019.

[CDJ+19b] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas Lopez,
Mridul Nandi, and Yu Sasaki. LOTUS-AEAD and LOCUS-AEAD. Submission
to the NIST Lightweight Cryptography project, 2019.



Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 23

[CDJN19] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, and Mridul Nandi. HYENA.
Submission to the NIST Lightweight Cryptography project, 2019.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards Sound Approaches to Counteract Power-Analysis Attacks. In Michael
Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 398–412,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[DCK+19] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann
Großschädl, and Alex Biryukov. Triathlon of lightweight block ciphers for
the Internet of things. J. Cryptographic Engineering, 9(3):283–302, 2019.

[DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to Round 1 of the NIST Lightweight Cryptography
project, 2019.

[GL19] Shay Gueron and Yehuda Lindell. Simple: a simple AEAD scheme. Submission
to the NIST Lightweight Cryptography project, 2019.

[IKM+19] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, Thomas Peyrin,
Yu Sasaki, Siang Meng Sim, and Ling Sun. Thank Goodness It’s Friday
(TGIF). Submission to the NIST Lightweight Cryptography project, 2019.

[MPC00] Lauren May, Lyta Penna, and Andrew Clark. An Implementation of Bitsliced
DES on the Pentium MMXT M Processor. In E. P. Dawson, A. Clark, and Colin
Boyd, editors, Information Security and Privacy, pages 112–122. Springer,
2000.

[RAL17] Tiago B. S. Reis, Diego F. Aranha, and Julio López. PRESENT runs fast -
efficient and secure implementation in software. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 644–664, 2017.

[SS16] Peter Schwabe and Ko Stoffelen. All the AES You Need on Cortex-M3 and
M4. In Selected Areas in Cryptography - SAC 2016, pages 180–194, 2016.

[Wol20] Claire Wolf. RISC-V Bitmanip Extension, 2020.

A Key schedule in the fixsliced representation

A.1 GIFT-64
The first step of our proposed key schedule is to rearrange the bits of the first 4 round
keys so that they match the fixsliced representation of the internal state for the first 4
rounds. We recall that it can be done only once, when the encryption key is being derived
and/or stored on the device. Afterwards, we adjust the key schedule according to the 4
new representations. Because there are 4 different representations depending on the round
number, there are 4 different ways to update the key. The new round key representations
from rounds 0 to 3 and the corresponding key update functions are depicted in Figure 8.
Note that our adjusted key update functions can basically be computed by means of
nibble-wise and word-wise rotations.



24 Fixslicing: A New GIFT Representation

V U

0

1

2

3

12

13

14

15

8

9

10

11

4

5

6

7

R
ou

nd
0

16

17

18

19

28

29

30

31

24

25

26

27

20

21

22

23

← ↑↑

R
ou

nd
4

12

13

14

15

8

9

10

11

4

5

6

7

0

1

2

3

18

19

20

21

30

31

16

17

26

27

28

29

22

23

24

25

(a) i mod 4 = 0

V U

32

44

40

36

35

47

43

39

34

46

42

38

33

45

41

37

R
ou

nd
1

48

60

56

52

51

63

59

55

50

62

58

54

49

61

57

53

↑ ←←

R
ou

nd
5

44

40

36

32

47

43

39

35

46

42

38

34

45

41

37

33

50

62

58

54

53

49

61

57

52

48

60

56

51

63

59

55

(b) i mod 4 = 1

V U

64

67

66

65

68

71

70

69

72

75

74

73

76

79

78

77

R
ou

nd
2

80

83

82

81

84

87

86

85

88

91

90

89

92

95

94

93

→ ↑↑

R
ou

nd
6

76

79

78

77

64

67

66

65

68

71

70

69

72

75

74

73

82

85

84

83

86

89

88

87

90

93

92

91

94

81

80

95

(c) i mod 4 = 2

V U

96

100

104

108

97

101

105

109

98

102

106

110

99

103

107

111

R
ou

nd
3

112

116

120

124

113

117

121

125

114

118

122

126

115

119

123

127

↓

R
ou

nd
7

108

96

100

104

109

97

101

105

110

98

102

106

111

99

103

107

114

118

122

126

115

119

123

127

116

120

124

112

117

121

125

113

(d) i mod 4 = 3

Figure 8: GIFT-64 key update functions from round i to i + 4, according to the different
fixsliced representations over 4 rounds. Each cell represents a bit, and the numbers in the
cells then denote the actual index of that particular bit in the 16-bit key word. Note that
i mod 4 = 3 refers to the classical representation. The cell colors match the corresponding
slice for the add round key operation.

A.2 GIFT-128

In the case of GIFT-128, adjusting the key schedule according to fixslicing is more tricky
since the new and the classical representations of the state are synchronised after 5 rounds,
while the key words will return to their original positions after 4 rounds. We suggest
to compute the key schedule in the classical representation for the first 10 round before
rearranging them in order to match the fixsliced representation of the state. At this stage,
all key words will be expressed in each representation, allowing to adapt the key schedule
for each of them, without reordering bits. As stated in Section 4.2, each key word will be
exclusive-ORed to the state in the same representation every 10 rounds. After 10 rounds,
2 out of 4 key words will have been updated thrice while the two others will have been



Alexandre Adomnicai, Zakaria Najm and Thomas Peyrin 25

updated twice, as detailed in Table 8. Therefore, our adapted key schedule relies on double
and triple update functions for each representation, which are illustrated in Figure 9.

Table 8: Round keys’ representations depending on the round number. Exponents refer
to the number of times the key words have been updated. Blue and red arrows refer to
double and triple key updates, respectively.

Representation # Round #
Round key

U V

0 0 W2‖W3 W6‖W7

1 1 W0‖W1 W4‖W5

2 2 (W6‖W7)1 W2‖W3

3 3 (W4‖W5)1 W0‖W1

4 4 (W2‖W3)1 (W6‖W7)1

0 5 (W0‖W1)1 (W4‖W5)1

1 6 (W6‖W7)2 (W2‖W3)1

2 7 (W4‖W5)2 (W0‖W1)1

3 8 (W2‖W3)2 (W6‖W7)2

4 9 (W0‖W1)2 (W4‖W5)2

0 10 (W6‖W7)3 (W2‖W3)2

1 11 (W4‖W5)3 (W0‖W1)2

2 12 (W2‖W3)3 (W6‖W7)3

3 13 (W0‖W1)3 (W4‖W5)3

4 14 (W6‖W7)4 (W2‖W3)3

0 15 (W4‖W5)4 (W0‖W1)3

1 16 (W2‖W3)4 (W6‖W7)4

2 17 (W0‖W1)4 (W4‖W5)4

3 18 (W6‖W7)5 (W2‖W3)4

4 19 (W4‖W5)5 (W0‖W1)4

0 20 (W2‖W3)5 (W6‖W7)5

...
...

...
...



26
Fixslicing:

A
N
ew

G
IFT

R
epresentation

W6 W7 W2 W3

R
ou

nd
0 24

25

26

27

16

17

18

19

8

9

10

11

0

1

2

3

28

29

30

31

20

21

22

23

12

13

14

15

4

5

6

7

88

89

90

91

80

81

82

83

72

73

74

75

64

65

66

67

92

93

94

95

84

85

86

87

76

77

78

79

68

69

70

71

↑↑ ↑↑↘↙ ↘↙

R
ou

nd
10 30

31

16

17

22

23

24

25

12

13

14

15

4

5

6

7

18

19

20

21

26

27

28

29

0

1

2

3

8

9

10

11

92

93

94

95

84

85

86

87

64

65

66

67

72

73

74

75

80

81

82

83

88

89

90

91

68

69

70

71

76

77

78

79

(a) i mod 5 = 0

W4 W5 W0 W1

R
ou

nd
1 62

54

46

38

60

52

44

36

58

50

42

34

56

48

40

32

63

55

47

39

61

53

45

37

59

51

43

35

57

49

41

33

126

118

110

102

124

116

108

100

122

114

106

98

120

112

104

96

127

119

111

103

125

117

109

101

123

115

107

99

121

113

105

97

R
ou

nd
11

↘↙
52

60

34

42

50

58

32

40

48

56

46

38

62

54

44

36

53

61

35

43

51

59

33

41

49

57

47

39

63

55

45

37

114

122

102

110

112

120

100

108

126

118

98

106

124

116

96

104

115

123

103

111

113

121

101

109

127

119

99

107

125

117

97

105

(b) i mod 5 = 1

W6 W7 W2 W3

R
ou

nd
2 79

77

75

73

95

93

91

89

78

76

74

72

94

92

90

88

71

69

67

65

87

85

83

81

70

68

66

64

86

84

82

80

11

9

7

5

17

31

29

27

10

8

6

4

16

30

28

26

3

1

15

13

25

23

21

19

2

0

14

12

24

22

20

18

R
ou

nd
12 67

65

79

77

85

83

81

95

66

64

78

76

84

82

80

94

75

73

71

69

93

91

89

87

74

72

70

68

92

90

88

86

3

1

15

13

21

19

17

31

2

0

14

12

20

18

16

30

11

9

7

5

29

27

25

23

10

8

6

4

28

26

24

22

(c) i mod 5 = 2

W4 W5 W0 W1

R
ou

nd
3 99

115

98

114

103

119

102

118

107

123

106

122

111

127

110

126

97

113

96

112

101

117

100

116

105

121

104

120

109

125

108

124

39

57

38

56

43

61

42

60

47

49

46

48

35

53

34

52

37

55

36

54

41

59

40

58

45

63

44

62

33

51

32

50

←

R
ou

nd
13 103

121

102

120

107

125

106

124

111

113

110

112

99

117

98

116

101

119

100

118

105

123

104

122

109

127

108

126

97

115

96

114

47

53

46

52

35

57

34

56

39

61

38

60

43

49

42

48

45

51

44

50

33

55

32

54

37

59

36

58

41

63

40

62

(d) i mod 5 = 3

W6 W7 W2 W3

R
ou

nd
4 12

0

4

8

13

1

5

9

14

2

6

10

15

3

7

11

18

22

26

30

19

23

27

31

20

24

28

16

21

25

29

17

76

64

68

72

77

65

69

73

78

66

70

74

79

67

71

75

82

86

90

94

83

87

91

95

84

88

92

80

85

89

93

81

↑ ↑ ↑↑ ↑

R
ou

nd
14 0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

24

28

16

20

25

29

17

21

26

30

18

22

27

31

19

23

68

72

76

64

69

73

77

65

70

74

78

66

71

75

79

67

86

90

94

82

87

91

95

83

88

92

80

84

89

93

81

85

(e) i mod 5 = 4

Figure 9: GIFT-128 double/triple key update functions from
round i to i + 10, according to the different fixsliced repre-
sentations over 5 rounds. Each cell represents a bit, and the
numbers in the cells then denote the actual index of that
particular bit in the 16-bit key word. Note that i mod 5 = 4
refers to the classical representation. The cell colors match
the corresponding slice for the add round key operation.

Figure 9


	Introduction
	The GIFT family of block ciphers
	Round function
	Key schedule and round constants

	Naive bitsliced implementation of GIFT
	A new GIFT representation
	GIFT-64
	GIFT-128

	Efficient software implementations of GIFT
	GIFT-64
	GIFT-128
	Without rotate instruction

	Results
	The GIFT block ciphers
	Adding first-order masking
	The GIFT-COFB authenticated cipher

	Conclusion
	Key schedule in the fixsliced representation
	GIFT-64
	GIFT-128


