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Abstract

Since its proposal in Asiacrypt 2018, the commutative isogeny-based key ex-
change protocol (CSIDH) has spurred considerable attention to improving its per-
formance and re-evaluating its classical and quantum security guarantees. In this
paper we discuss how the optimal strategies employed by the Supersingular Isogeny
Diffie-Hellman (SIDH) key agreement protocol can be naturally extended to CSIDH.
Furthermore, we report a software library that achieves moderate but noticeable
performance speedups when compared against state-of-the-art implementations of
CSIDH-512, which is the most popular CSIDH instantiation.

1 Introduction

In late 2018, Castryck, Lange, Martindale, Panny, and Renes presented the isogeny-based
key exchange protocol CSIDH [6]. CSIDH can be seen as a fast variant of Couveignes-
Rostovtsev-Stolbunov scheme [11, 23, 22], using the ideas presented in [13] but this time
operating on supersingular curves defined over prime fields.

One especially attractive feature of CSIDH is that it supports efficient public-key
validation, which implies that this scheme can be used as a non-interactive (static-
static) key exchange protocol. This is a unique feature that none of the post-quantum
cryptographic schemes in the NIST contest enjoys [20]. On the negative side, CSIDH is
one order of magnitude slower than its cousin, the SIKE protocol [1]. Indeed, running
on a high-end x64 Intel processor, a constant-time implementation of CSIDH requires
about 225M clock cycles to compute a shared secret (cf. Table 4). For comparison, the
SIKE protocol instantiated with a 434-bit prime, requires some 20M clock cycles [16].

The first constant-time implementation of CSIDH was reported by Bernstein, Lange,
Martindale, and Panny in [3]. The authors of [3] focused their analysis on assessing
the quantum security level provided by CSIDH, and for this purpose, they strove for
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producing not only a constant-time CSIDH instantiation but also a randomness-free im-
plementation of it. Shortly after, Jalali, Azarderakhsh, Kermani, and Jao in [15], and
Meyer, Campos, and Reith in [17] independently presented constant-time instantiations
of CSIDH. The authors of [17] introduced several ingenious algorithmic tricks, including
the adoption of the Elligator 2 map of [2], splitting isogeny computations into multi-
ple batches (SIMBA), and sampling the exponents ei using different interval bounds
depending on the prime factors `i.

More recently, the CSIDH implementation of [17] was improved by Onuki, Aikawa,
Yamazaki, and Takagi in [21]. Additionally, Moriya, Onuki and Takagi [19], and Cervantes-
Vázquez et al. in [7], performed more efficiently the CSIDH isogeny computations us-
ing the twisted Edwards model of elliptic curves. The authors of [7] proposed a more
computationally demanding dummy-free variant of CSIDH, which in exchange, is ar-
guably better suited to resist attacks from stronger adversaries. Moreover, Hutchinson,
LeGrow, Koziel and Azarderakhsh presented in [14] several improvements for achieving
faster constant-time implementations of CSIDH. The algorithmic improvements pro-
posed in [14] included a formal framework that permits to adapt to CSIDH, the SIDH
optimal strategies discussed in [12] by means of a stochastic procedure; a more efficient
re-ordering of the CSIDH small prime factors `i; and a framework to define the opti-
mal bounds for the CSIDH exponents. Unfortunately, we have so far not being able to
reproduce the computational timings of the software library reported in [14].

Our contributions: This is a follow-up paper of previous work presented in [7]. Here,
we present a detailed discussion of how to adapt SIDH strategies for the efficient group
action evaluation of CSIDH. The main difference of our procedure with the framework
presented in [14], is the deterministic nature of our approach and the fact that it works
with non-disjoint subsets of prime factors `i. In particular, the strategies proposed in this
paper do not rely on the SIMBA approach of [17], but rather, they are a intuitive gen-
eralization of how the SIDH strategies can be applied to CSIDH. Moreover, the CSIDH
optimal strategies proposed here comply with the same codification utilized by SIDH.
Additionally, we report constant-time C-code implementations of three instantiations of
the CSIDH protocol, namely, MCR [17], OAYT [21], and dummy-free [7] variants. Our
experimental results achieve performance speedups of 12.09%, 5.46% and 10.58% com-
pared with the MCR, OAYT and dummy-free styles as presented in [7]. Our software
library is freely available at,

https://github.com/JJChiDguez/csidh_withstrategies .

Note: Let E and E′ be two supersingular elliptic curves defined over Fp for which
there exists a separable degree-` isogeny φ : E → E′ defined over Fp. Quite recently
was presented in [4] a new approach for finding at a cost of only Õ(

√
`) operations,

the co-domain elliptic curve E′ and φ(Q) and the image of a point Q ∈ E(Fp) with
P /∈ Ker(φ). We note that the main contribution presented in [4] is largely orthogonal
to the contributions in this paper. Therefore, we leave as a future work to adopt the
findings of [4] to further reduce the computational costs of CSIDH reported here.
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Organization. In §2 several background algorithmic concepts related to the CSIDH
group action computation are given. In §3 an introduction to the efficient computation
of the CSIDH class group action is given. Additionally, the usage of optimal strategies
for CSIDH is also presented in this section. In §4 additional algorithmic tricks for the
computation of three CSIDH variants are given. In §5 we report our experimental results
and comparison with related works. Finally, in §6 concluding remarks are drawn.

Notation. M, S, and A denote the cost of computing a single multiplication, squar-
ing, and addition (or subtraction) in Fp, respectively. We assume that a constant-time
equality test isequal(X,Y ) is defined, returning 1 if X = Y and 0 otherwise. We
also assume that a constant-time conditional swap cswap(X,Y, b) is defined, exchanging
(X,Y ) if b = 1 (and not if b = 0).

2 Preliminaries

2.1 Differential addition chains for Montgomery ladders

In the CSIDH protocol, any given scalar k is the product of a subset of the collection
of the 74 small primes `i dividing p+1

4 . Hence, one can simply compute the scalar mul-
tiplication operation [k]P as the composition of the shortest differential addition chains
for each prime ` dividing k. Note that all those shortest additions chains can be pre-
computed off-line. Montgomery ladders using differential addition chains can compute
the scalar multiplication operation [k]P with an average length of about 1.5dlog2(k)e
steps [7]. Each Montgomery ladder step involves the computation of one differential
point addition and differential point doubling at a cost of 4M + 2S + 6A and 4M +
2S + 4A , respectively.

Table 1 reports the field arithmetic expenses associated with the computation of [`]P,
where ` = 2d+ 1.

2.2 Isogeny constructions and evaluations

Let p be an odd prime number and let ` be an odd number ` = 2d+ 1, with d ≥ 1. Let
E and E′ be two supersingular elliptic curves defined over Fp for which there exists a
separable degree-` isogeny φ : E → E′ defined over Fp. This implies that there must exist
an `-order point P ∈ E(Fp) such that Ker(φ) = {∞,±P,±[2]P, . . . ,±[d]P}. Given the
domain elliptic curve E and an `-order point P ∈ E(Fp), we are interested in the problem
of computing the co-domain elliptic curve E′. Furthermore, given a point Q ∈ E(Fp)
such that Q 6∈ Ker(φ), a closely related problem is that of finding φ(Q), i.e., the image
of the point Q over E′. In the remainder of this paper, these two tasks will be called
isogeny construction and isogeny evaluation computations, respectively.

It has become customary to perform these two tasks by using three main building
blocks, namely, KPS, CODOM and PEVAL. Let us define KPS as the task of computing the
first d multiples of the point P , namely, the set R = {P, [2]P, . . . , [d]P}. Using KPS as a
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Primitive M S
A

Montgomery[10] Edwards[7]
[`]P [7] 12λ 6λ 15λ −
KPS 4(d− 1) 2(d− 1) 6d− 2 6d− 2
PEVAL 4d 2 6d 2d+ 4
CODOM [9] `+ 2λ̄+ 1 2(λ+ 2) − 0

Table 1: Costs for computing prime degree-` isogenies with ` = 2d + 1 using the
KPS, PEVAL and CODOM building blocks. Field multiplication (M) and squaring (S) costs are
taken from [10, 7, 9]. The cost of performing one scalar multiplication [`]P using differential
addition chains as in [7], is also presented. The computational costs associated to the point
addition and point doubling operations is of 4M + 2S + 6A and 4M + 2S + 4A , respectively.

We define λ = dlog2 `e and λ̄ ≈ log2 (d `8 e)
3 .

building block, the module CODOM computes the per-field constants that define the co-
domain curve E′ over Fp. Also, using KPS as a building block, PEVAL computes the image
point φ(Q). Note that KPS becomes more expensive than PEVAL starting from ` ≥ 11.
When ` ≤ 7, the block KPS is considerably cheaper or even free of cost for the case ` = 3.

Observe also that since CODOM and PEVAL show no dependencies between them, once
that the kernel points have been computed, it is possible to compute CODOM and PEVAL in
parallel. Furthermore, when evaluating an arbitrary number of points in E that do not
belong to the Ker(φ) subgroup, KPS must be computed only once. This implies that the
computational cost associated to KPS gets amortized when computing the image of two
or more points.

Table 1 summarizes the field arithmetic costs associated to the KPS and PEVAL op-
erations. Note that KPS is a straightforward computation that can be performed at the
cost of one point doubling and k − 2 point additions. Efficient formulas for comput-
ing PEVAL can be found in [10] and [7] for Montgomery and twisted Edwards curves,
respectively.

As a numerical example consider the cost of computing isogeny evaluations and
constructions for the prime ` = 2 · 64 + 1 = 127.

Example 1 Let us consider the case for the prime ` = 2 · 64 + 1 = 127. Then, ac-
cording to Table 1 the computational expenses associated with the computation of the
KPS, PEVAL and CODOM primitives and the scalar multiplication [127]T, for some point
T ∈ E(Fp), is shown in Table 2. It can be seen that constructing and evaluating a
degree-127 isogeny is 4.34 and 5.03 times more expensive than computing the scalar
multiplication [127]T, respectively. Note that any extra isogeny evaluation can reuse
the KPS computation and therefore it is only two times more expensive than finding the
multiple [127]T.

In the remainder of this paper we assume that given a curve E specified in Mont-
gomery form, a point G in E(Fp) and an odd integer ` = 2d + 1, the procedure
QuotientIsogeny invoking both the KPS and CODOM primitives, computes the degree-`
quotient isogeny φ : E → E′ ∼= E/〈G〉, returning (E′, R), where R = {G, [2]G, . . . , [d]G}.
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Primitive M S
Total Cost

S = M S = 0.8M
[`]P 84 42 126 118
KPS 252 126 378 352
PEVAL 256 2 256 256
CODOM 151 18 169 166

Table 2: Approximately arithmetic costs for computing prime degree-` isogenies with ` = 2d+
12 · 64 + 1 = 127, using the KPS, PEVAL and CODOM primitives. The cost of computing the scalar
multiplication [127]T is also reported.

3 Computing the CSIDH class group action

In this section, an introduction to the efficient computation of the CSIDH class group
action is given. We start giving a simplified view of the CSIDH algorithm, which is
followed by several algorithmic refinements.

3.1 Setting

Let `1, . . . , `n ∈ Z be small odd prime numbers such that p = 4
∏n
i=1 `i−1 is also a prime

number. We work with the 511-bit prime proposed in [6], using the following labeling:
`74 = 3, `73 = 5, . . . , `2 = 373, given by the first 73 odd primes, and `1 = 587. Let E/Fp
be a supersingular elliptic curve given in Montgomery form as,

E/Fp : y2 = x3 +Ax2 + x; (1)

It follows that #E(Fp) = (p+1) = 4
∏n
i=1 `i. Additionally, let π : (x, y) 7→ (xp, yp) be the

Frobenius map and N ∈ Z be a positive integer. Then, E[N ] := {P ∈ E(Fp) : [N ]P = O}
denotes the N -torsion subgroup of E/Fp. Similarly, E[π−1] := {P ∈ E(Fp) : (π−1)P =
O} and E[π + 1] := {P ∈ E(Fp2) : (π + 1)P = O} denote the subgroups of Fp-rational
and zero-trace points, respectively. In particular, any point P ∈ E[π + 1] is of the form
(x, iy) where x, y ∈ Fp and i =

√
−1 so that ip = −1.

3.2 A simplified constant-time CSIDH group action evaluation

The most demanding computational task of CSIDH is the evaluation of the class group
action, which is dominated by the cost of performing a number of degree-`i isogeny
constructions. This action takes as input a secret integer vector e = (e1, . . . , en) such that
ei ∈ J0,mK, and then constructs isogenies with kernel generated by P ∈ EA[`i]∩E[π−1]
for exactly ei iterations.

For constant-time implementation of CSIDH, the group action evaluation starts by
constructing isogenies with kernel generated by P ∈ EA[`i] ∩ E[π − 1] for ei iterations,
and then it performs dummy isogeny constructions for (m− ei) iterations.

Algorithm 1 shows a simplified and idealized computation of the CSIDH group action
as explained next. The procedure consists of two main loops. At the beginning of the
procedure in Step 1, the constants of the input parameter EA are assigned to E0. At

5



Algorithm 1: Simplified constant-time CSIDH class group action for supersingular curves

over Fp, where p = 4
∏n
i=1 `i − 1. The ideals li = (`i, π − 1), where π maps to the p-th power

Frobenius endomorphism on each curve. This algorithm computes exactly m isogenies for

each ideal li.

Input: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with each
ei ∈ [0,m]), m a positive number.

Output: EB = le11 ∗ · · · ∗ lenn ∗ EA.
1 E0 ← EA;
2 // Outer loop: Each `i prime f. is processed m times

3 for i ∈ {1, . . . ,m} do
4 T ← ObtainFullTorsionPoint(E0) ; // T ∈ En[π − 1]
5 T ← [4]T ; // Now T ∈ En

[∏
i `i
]

6 // Inner loop: processing each prime factor `i|(p+ 1);
7 for j ∈ {0, 1, . . . , n− 1} do
8 Gj ← T ;
9 for k ∈ {1, . . . , n− 1− j} do

10 Gj ← [`k]Gj

11 if ej 6= 0 then
12 (E(j+1) mod n, R)← QuotientIsogeny(Ej , Gj , `n−j) ;
13 T ← PEVAL(T,R) ;
14 ej ← ej − 1 ;

15 else
16 QuotientIsogeny(Ej , Gj , `n−j); φ(T ) ; // Dummy operations

17 T ← [`n−j ]T ;
18 Ej+1 mod n ← Ej ;

19 return E0

Step 4 of the outer loop of Steps 3-18, a full order point T ∈ E0 (i.e., a point having
order p+1

4 ), is computed. For the sake of simplicity it has been assumed that the function
in Step 4 must always output a full torsion point belonging to En[π − 1].1

Thereafter, the inner loop of Steps 7-18 constructs and evaluates a degree-`i isogeny
for each one of the n prime factors `j dividing p + 1, using Gj as a subgroup kernel
generator. At each iteration, an isogenous elliptic curve Ej is computed. When the
inner loop completes its computation, the constants defining the elliptic curve E0 are
used in Step 4 to find a new full order point T ∈ E0. The outer loop of Steps 3-18 simply
repeat the execution of the inner loop in order to complete exactly m evaluations. At the
end of the procedure, the constants defining the curve E0 (corresponding to the m-th
evaluation of the inner loop) is returned. As long as the computations in Steps 11-14
and Steps 15-18 are carefully balanced, and the conditional statements are substitute
by conditional swaps (see Algorithm 2), this procedure computes the group action in
constant time. Hence, the running time of Algorithm 2 does not depend on the secret
key vector e.

1Note that in practice the time required for finding a full-torsion point is relatively expensive. Hence,
one normally relax this condition and works with points whose order does not necessarily include all the
prime factors of p+ 1.
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Algorithm 2: Simplified constant-time CSIDH class group action for supersingular curves

over Fp, where p = 4
∏n
i=1 `i − 1. The ideals li = (`i, π − 1), where π maps to the p-th power

Frobenius endomorphism on each curve. This algorithm computes exactly m isogenies for

each ideal li. (Low level version)

Input: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with each
ei ∈ [0,m]), m a positive number.

Output: EB = le11 ∗ · · · ∗ lenn ∗ EA.
1 E0 ← EA;
2 // Outer loop: Each `i prime f. is processed m times

3 for i ∈ {1, . . . ,m} do
4 T ← ObtainFullTorsionPoint(E0) ; // T ∈ En[π − 1]
5 T ← [4]T ; // Now T ∈ En

[∏
i `i
]

6 // Inner loop: processing each prime factor `i|(p+ 1);
7 for j ∈ {0, 1, . . . , n− 1} do
8 Gj ← T ;
9 for k ∈ {1, . . . , n− 1− j} do

10 Gj ← [`k]Gj

11 b← isequal(en−j , 0) ;
12 (E(j+1) mod n, R)← QuotientIsogeny(Ej , Gj , `n−j) ; // degree-`n−j isogeny

13 T ′ ← [`n−j ]T ;
14 T ← PEVAL(T,R); // Evaluate T on degree-`n−j isogeny

15 cswap(Ej , E(j+1) mod n, b) ; // undo if en−j = 0
16 cswap(T ′, T, b) ; // undo if en−j = 0
17 en−j ← en−j −

(
(b+ 1) mod 2

)
;

18 return E0

The computational cost of Algorithm 1 is dominated by the computation of n degree-
`i isogeny evaluations and constructions plus a total of n(n+1)

2 scalar multiplications by
the prime factors `i, for i = 1, . . . , n.

Remark 1 A natural instantiation of Algorithm 1 uses the 511-bit CSIDH prime with
74 prime factors dividing p+1. In order to guarantee a 128-bit classical security level, it
is required to choose m = 10, so that the private key space has a size of about 1174 ≈ 2256

different keys.

Algorithm 2 presents a low-level constant-time version of Algorithm 1, where all the
conditional statements have been implemented as conditional swaps statements.

Remark 2 Notice that the scalar multiplication required in Step 13 of algorithm 2, can
be performed by invoking the QuotientIsogeny() procedure using as input parameter the
point T, instead of the point Gj . Let R be the array of n−j points {T, [2]T, . . . , [dn−j ]T},
and

[ln−j ]T := [2dn−j + 1]T = [dn−j ]T + [dn−j + 1]T

= R[dn−j ] + [dn−j + 1]T = R[dn−j ] +
(
R[dn−j ] +R[1]

)
7



74 columns

74 rows

∆74

T ∈ EA

G0 =
[∏73

i=1 `i

]
T

...
...

...

. . .
[`1]

[`2]

[`3]

[`4]

[`72]

[`73]

φ`74
φ`73

φ`3
φ`2

G73

G72

G71

G2

G1

E0 E1 E2 E71 E72 E73

(a) The multiplicative strategy for computing
the CSIDH group action as given in Algorithm 1

[∏h
i `i

]
T

h

n− h

n− h degree-`i isogeny evaluations

∆n−h

∆h

∆n

(b) Optimal strategies à la SIDH for CSIDH

Figure 1: Subfigure 1a shows a discrete triangle used to compute the inner loop of the CSIDH
group action Algorithm 1. The main goal of this task is to find the field constants that define
the elliptic curve EB . As stated in Algorithm 1, the discrete triangle of Subfigure 1a must
be computed exactly m times. Using an optimal strategy as in [12], a discrete triangle ∆n is
processed by splitting it into two sub-triangles as shown in Subfigure 1b.

can be computed with two additions. Thus, the points T and Gj must be swapped before
the QuotientIsogeny() procedure is invoked.

3.3 A multiplicative-based Strategy for CSIDH

In order to efficiently compute the group action of Algorithm 1, one can adapt the
canonical strategies for traversing a weighted directed graph presented in[12], which is

represented as a discrete right triangle ∆n of side n having n(n+1)
2 vertices distributed

in n columns and rows (See Figure 1a).
The vertices of ∆n represent elliptic curve points and its vertical and horizontal

edges have as associated weight p`i and q`i , defined as the cost of performing one scalar
multiplication by `i and evaluating a degree-`i isogeny, respectively. The j-th column of
the triangle contains exactly n−j vertices representing elliptic curve points belonging to
the isogenous elliptic curve Ej , for j = 0, . . . , n−1. A leaf is defined as the most bottom
point in a given column of the triangle. The set of n leaves define the hypotenuse of
∆n. A ramification (or split) vertex is defined as a vertex having both horizontal and
vertical edges leaving from it. The weight of a split vertex is the number of vertices
between it and either the next split vertex in the column, or the leave in the column.
Each one of the n columns of ∆n corresponds to an isogenous supersingular elliptic curve
Ej , for j = n, 1, 2 . . . , n− 1.

8



Remark 3 As a mechanism to obtain a constant-time implementation of the group
action the procedure shown in Algorithm 1, as well as most constant-time implemen-
tations of CSIDH, use dummy computations. Hence, it may occur that Ek = El with
0 ≤ k < l ≤ n− 1.

At the beginning of the group action evaluation, only the base elliptic curve EA = E0

is known. Then, a point T ∈ EA (ideally) with order p+1
4 =

∏
i `i must be found. This

torsion point can be descended by performing a scalar multiplication with each one of
the n prime factors of p+ 1 (see the first column of Figure 1a).

The leaf of the first column represents the point G0 =
[∏

i `
n−1
i=1

]
T. If G0 is finite,

then it has to have order `n and can be used to generate the subgroup corresponding to
the kernel of the isogeny φ`n . The leaf G1 is defined as,

G1 =

{[∏
i `
n−2
i=1

]
φ`n(T ) if en 6= 0;[∏

i `
n−2
i=1

]
([`n]T ) if en = 0.

(2)

The point G1 is guaranteed to be finite and of order `n−1, provided that T is a full
order point. In general, if the exponents ej 6= 0 for j = n, n− 1, . . . , 3, 2. Then

Gn−(j−1) =

[∏
i

`j−2i=1

]
φ`j (. . . (φ`n(T )) . . .). (3)

If some ek = 0, then the corresponding isogeny evaluation φ`k of Eq. (3) must be
substituted by the scalar multiplication [`k]T.

The goal of the group action computation is thus seen as the task to obtain one by
one, all the leaves Gj ∈ ∆n for j = 1, 2, . . . , n, until the farthest right one, Gn−1, has
been calculated. Then, the elliptic curve EB determined by φ`n : En−1 → En can be
obtained by simply constructing a degree-`n isogeny with kernel Gn−1, which coincides
with the domain or image of φ`n depending if e1 = 0 or not, respectively.

The naive strategy followed by Algorithm 1 is depicted in Figure 1a, instantiated for
the CSIDH prime p512 with 74 prime factors `i such that `i|(p + 1). The computation
of the triangle ∆n shown in Figure 1a represents one full execution of the inner loop of
Steps 7-18. This computation should be repeated m = 10 times in order to complete the
CSIDH group action (cf. Remark 1). From Figure 1a, it can be seen that Algorithm 1

follows a pure multiplicative strategy, where n(n+1)
2 = 2775 scalar multiplications by the

scalars `i for i = 1, . . . , 74, are performed; plus the construction and evaluation of only
74 degree-`i isogenies.

Assuming that in average, one scalar multiplication computation [`]T is at least five
times less expensive than a degree-` isogeny construction or evaluation, one can see that
there is room for optimizing the multiplicative strategy followed by Algorithm 1.2 In
the following we briefly review optimal strategies as they were presented in [12].

2Another computational reason for considering other approaches is that a multiplicative strategy is
eminently sequential. Alternative strategies exploiting the inherent parallelism of the isogeny evaluation
computations can be much more attractive for multi-core platforms.
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3.4 Optimal strategies for CSIDH

Let L := [`1, `2, . . . , `n] be the list of small odd prime numbers such that p = 4·
∏n
i=1 `i−1

is a prime number. A CSIDH strategy is a weighted subgraph Sn(L) contained into a
discrete rectangular triangle ∆n of side n. Any strategy Sn(L) has an associated cost
which is defined as,

C(Sn) =
∑

x∈edges(Sn(L))

ω(x) +

n∑
j=0

ν((n− 1− j, j)), (4)

where ω(x) and ν((n− 1− j, j)) denote the weights of the edge x and leaf (n− 1− j, j),
respectively.

In addition Sn(L) is called optimal, if for any different strategy S′n(L) the inequality
Cn
(
Sn(L)

)
< Cn

(
S′n(L)

)
holds. Optimal strategies were defined in [12] within the

context of the SIDH protocol. In [12] the fact that a triangle ∆n can be optimally and
recursively decomposed into two sub-triangles ∆h and ∆n−h was exploited as shown in
Figure 1b. Let us denote as ∆h the design decision of splitting a triangle ∆n at row h.
The sequential cost of walking across the strategy Sn(L), which is a subgraph of ∆h

n, is
given as

C(Shn(L)) = C(Sh(Lh)) + C(Sn−h(Ln−h)) +

n−h∑
i=1

q ˜̀
i

+

h−1∑
i=0

p˜̀
n−i
,

where Lh = [˜̀n−h+1, . . . , ˜̀
n] and Ln−h = [˜̀1, . . . , ˜̀

n−h] are two disjoint sublists of L and

size h and n − h, respectively. We say that Sĥn(L) is optimal if C(Sĥn(L)) is minimal
among all Shn(L) for h ∈ [1, n−1]. Applying this strategy recursively leads to a procedure
that computes the CSIDH group action at an optimal cost. The associated number of
scalar multiplications is reduced at the price of increasing the total number of isogeny
evaluations and constructions.

In the context of SIDH, optimal strategies tend to balance the number of isogeny
evaluations and scalar multiplications to O(n log (n)). However, CSIDH optimal strate-
gies are expected to be largely multiplicative, i.e., optimal strategies will tend to favor
computing more scalar multiplications. This is due to the fact that these operations are
several times cheaper than isogeny evaluations for sufficiently large prime degree ` (cf.
Example 1).

As proposed in [12], optimal strategies can be obtained using dynamic programming
(see [1, 8] for concrete algorithms). A brief description of the process of finding optimal
strategies for CSIDH is given next.

3.4.1 Finding Optimal strategies for CSIDH

Notice that the computation of SIDH strategies are a very special case of CSIDH strate-
gies, where q`i and p`j are fixed, and the required number of different weighted sub-

triangles is given as
∑n−1

i=1 i = (n−1)n
2 .
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This is not the case for CSIDH, where each pair of sub-triangles ∆h and ∆n−h
requires different (and disjoint) sub-lists Lh and Ln−h chosen from L := [`1, `2, . . . , `n].
Additionally, since the ordering of each sub-list impacts on the cost of any strategy in
∆h and ∆n−h, the search space of different weighted sub-triangles to be considered is
exceedingly large, given as,

∑n−1
i=1 i! ·

(
n
i

)
� 2n. Therefore, searching for an optimal

ordering of the small prime factors in L and determining if a given strategy is optimal,
become infeasible.

Heuristically, one can expect that the optimal ordering of prime factors `i ∈ L, has
a computational cost quite close to the one associated to processing the isogenies from
the smallest to the the largest. Under this assumption, it is enough to compute optimal
strategies for each sub-list of ordered small odd primes (starting from the smallest). This
implies that the search space of different weighted sub-triangles gets reduced to a space
of cubic complexity since

n+
n−1∑
j=2

(n+ 1− j)(j − 1) = n+ n
n−1∑
j=2

(j − 1)−
n−1∑
j=2

(j − 1)2 = n+ n
n−2∑
j′=1

j′ −
n−2∑
j′=1

(
j′
)2

= n+ n

(
(n− 2)(n− 1)

2

)
−
(

(n− 2)(n− 1)(2n− 3)

6

)
= n+

(n− 2)(n− 1)

6

(
3n− (2n− 3)

)
= n+

(n− 2)(n− 1)(n+ 3)

6
.

Notice also that any CSIDH strategy can be coded following the linearized repre-
sentation used in [1]. In [1], a strategy is described as a list of exactly (n − 1) positive
integers smaller than n, such that each entry determines the number of vertical edges be-
fore a ramification or a leaf is reached. For example, the multiplicative-based strategy
of Algorithm 1, can be coded as Sn(L) := [n− 1, n− 2, . . . , 2, 1].

Based on the approach described in [1], the following cubic complexity procedure
outlines how to obtain a CSIDH optimal strategy. This procedure outputs a vector of
(n−1) positive integers smaller than n. For k, j positive integers, let us define a sub-list
of prime factors Nk,j := [`j+1, `j+2, . . . , `j+k] ∈ L. Then,

1. For each j := 0, 1 . . . , n−1, the optimal stragegy for each N1,n−1−j is S1(N1,n−1−j) =
[] and has a cost equals C1

(
S1(N1,n−1−j)

)
= ν

(
(n− 1− j, j)

)
.

2. For each k := 2, 3, . . . , n and j := 0, 1 . . . , n− k, the optimal strategy is

Sk(Nk,j) = [s] cat Sk−s(Nk−s,j+s) cat Ss(Ns,j)

and has a cost equals Ck(Sk
(
Nk,j)

)
= min

h
α, where s = arg min

h
α, and

α =
{

Ck−h
(
Sk−h(Nk−h,h+j)

)
+ Ch

(
Sh(Nh,j)

)
+

ω
(
[(0, 0), (h, 0)]

)
+ ω

(
[(0, 0), (0, k − h)]

)
: h = 1, 2, . . . , k − 1

}
.

11



Here, ω
(
[(0, 0), (0, h)]

)
and ω

(
[(0, 0), (k− h, 0)]

)
represent a vertical segment and a hor-

izontal segment of length h and k − h, respectively. It has been assumed that the root
vertex (0, 0) corresponds with the root of the sub-triangle ∆k, associated with the sub-list
of prime factors Nk,j . See Figure 1b for an illustration of the first level of this recursive
process with k = n.

The remaining task is how to evaluate a CSIDH optimal strategy Sn(L) as obtained
in the above procedure. We discuss this problem in the next section.

4 Additional algorithmic refinements for constant-time group
action evaluation

In this section, we focus our attention to the algorithmic tricks presented by three recent
CSIDH variants, namely, the Meyer–Campos–Reith constant-time algorithm of [17], the
Onuki–Aikawa–Yamazaki–Takagi constant-time algorithm of [21], and the dummy-free
algorithm of [7].

4.1 One torsion point with dummy isogeny constructions (MCR-style)

Meyer, Campos and Reith proposed in [17] several ingenious optimizations that com-
pared to Algorithm 1, lead to a much faster constant-time CSIDH group action compu-
tation.

One of the optimizations introduced in [17], was to sample a point using the Elligator
2 map of [2] and [3]. Typically, the Elligator 2 mapping does not return a full order
point. Let T ∈ E(Fp), with p = 4

∏n
i=1 `i − 1. As pointed out in [7], under reasonable

heuristics assumptions experimentally verified in [3], it is observed that

Pr

[[
p+ 1

`i

]
T = O

]
=

1

`i
, for i = 1, . . . , n.

In the event that the Elligator procedure outputs a point T that is not of full order,
then extra points must be sampled in order to repair the missing prime factors.

A second optimization in [17], dubbed SIMBA-σ-κ, consisted of splitting the pro-
cessing of the prime factors `i as defined above, into σ disjoint sets (batches) of size
n
σ . Afterwards, a multiplicative strategy is applied to each batch. Each multiplicative
strategy is evaluated κ times.

Finally as in [18], instead of using a fixed interval [0, 10] for all the isogeny compu-
tations, the authors of [17] proposed to define a customized interval per each entry in
the secret vector e. Thus, a vector m is defined such that 0 ≤ ei ≤ mi, for i = 1, . . . , n.
The missing prime factors are repaired using a multiplicative strategy, until all the mi

degree-`i isogeny constructions have been performed.
In this work, we adopted the Elligator 2 procedure for point sampling, plus the

definition of a vector m with a customized interval per each entry in the secret vector e.
However, we dismiss the usage of the SIMBA approach.
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In the remaining of this paper we will refer to this approach, which uses one torsion
point and dummy isogeny constructions, as the MCR-style CSIDH group action evalu-
ation. The details of how to execute an optimal strategy using this approach are given
in Appendix B.1.

4.2 Two torsion point with dummy isogeny constructions (OAYT-
style)

Onuki, Aikawa, Yamazaki and Takagi proposed a faster constant-time version of CSIDH
in [21]. Their key idea is to use two points to evaluate the action of an ideal, one in
ker(π − 1) (i.e., in E(Fp)) and one in ker(π + 1) (i.e., in E(Fp2) with the x-coordinate
in Fp). This allows them to avoid timing attacks, while keeping the same primes and
exponent range [−5, 5] as in the original CSIDH algorithm of [6]. Their algorithm also
employs dummy isogenies to mitigate some power analysis attacks, as in [17]. With
these improvements, the authors achieve a considerable speed-up compared to [17]. The
saving comes from the fact that the procedure proposed by [21] performs approximately
five isogeny constructions (as opposed to the ten constructions in [17]) and ten isogeny
evaluations per `i. Algorithm 3 of Appendix A summarizes the main idea proposed by
Onuki et al. [21].

In the remaining of this paper we will refer to this approach, which uses two torsion
points and dummy isogeny constructions, as the OAYT-style CSIDH group action evalu-
ation. We stress that OAYT-style considers both, the Elligator 2 procedure for sampling
points and a customized bound vector m, but does not make use of the SIMBA strategy
(cf. §4.1). The details of how to execute an optimal strategy using OAYT-style can be
found in Appendix B.2.

4.3 Two torsion point without dummy isogeny constructions (Dummy-
free style)

A constant-time CSIDH group action computation that does not use dummy computa-
tions, thus making every computation essential for a correct final result was proposed
in [7]. This yields some natural resistance to fault attacks, at the cost of approximately
a twofold slowdown. For the approach in [7], the exponents ei are uniformly sampled
from sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},

i.e., centered intervals containing only even or only odd integers. The action of vectors
drawn from S(m)n can be computed by interpreting the coefficients ei as,

|ei| = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
ei times

+ (1− 1)− (1− 1) + (1− 1)− · · ·︸ ︷︷ ︸
mi−ei times

,

i.e., the algorithm starts by acting by l
sign(ei)
i for ei iterations, then alternates between

li and l−1i for mi − ei iterations. Algorithm 4 of of Appendix A describes the approach
presented in [7].
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In the remaining of this paper we will refer to this approach, which uses two torsion
points without dummy isogeny constructions, as the Dummy-free-style CSIDH group
action evaluation. We stress that Dummy-free-style considers both, the Elligator 2
procedure for sampling points and a customized bound vector m, but does not make
use of the SIMBA strategy (cf. §4.1). The details of how to execute an optimal strategy
using Dummy-free-style can be found in Appendix B.3.

4.4 Finding an optimal bound vector for the CSIDH group action

All three of the MCR-, OAYT- and Dummy-free styles previously described in this sec-
tion, use a bound vector m = (m1,m2, . . . ,mn). The bound vector m specifies the inter-
vals where each secret exponent ei associated to each degree-`i isogeny with i = 1, . . . , n,
must be sampled. Given a bound vector m, the computational cost of the CSIDH group
action is a complex function that must take into consideration not only the expenses as-
sociated to the number of isogeny constructions/evaluations and scalar multiplications,
but also the costs of repairing missing prime factors due to the probabilistic nature of
the Elligator 2 procedure (cf. 4.1). A heuristic solution to the optimization problem of
finding a vector m such that the computational cost of the group action evaluation is
minimized while its classical security level is preserved (cf. Remark 1), can be found by
means of a greedy algorithm.

Let us assume that an initial vector m = (m1,m2, . . . ,mn) that achieves λ-bits of
classical security is given, where all mi for i = 1, . . . , n are positive integers. Then, one
first proceeds by reducing one of the entries of the vector m by one, while increasing one
or more other entries, until the perturbed vector m provides a classical security of λ-bits,
but hopefully a lesser computational cost for the group action. If the modified vector
has an smaller cost than the initial one, then the vector m is updated accordingly. Let
us use δ = 2 if the group action evaluation is performed using OAYT-style, and δ = 1 if
MCR- or Dummy-free styles are chosen. Then, a greedy algorithm that finds an optimal
vector m achieving λ-bits of classical security can be summarized as follows:

0. Initial bound (m1,m2, . . . ,mn) that yields λ-bits of classical security for the group
action. In other words, b

∑n
i=1 log2(δ ·mi + 1)c = 2λ;

1. For each i := 1, 2, . . . , n:

(a) Set −→m = (m1,m2, . . . ,mn);

(b) Decrease the i-th coordinate of −→m by one unit;

(c) Compute

µi =

m̃ = −→m + ∆: ∆ ∈ (Z+ ∪ {0})n, ∆i = 0,

 n∑
j=1

log2(δ · m̃j + 1)

 = 2λ


(d) Select the local optimal element m̂ of µi that minimizes the cost;
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(e) If m̂ has a smaller cost than the initial bound (m1,m2, . . . ,mn), then replace
each mi by m̂i.

2. Output (m1,m2, . . . ,mn).

For our Python script experiments, we set the initial bound vector as (m1,m2, . . . ,mn)
with mi = 10

δ for each i := 1, 2, . . . , n. Additionally, in order to ensure that at least one
degree-`i isogeny construction will be performed for each small odd prime `i (i.e. that all
the entries in the bound vector are strictly greater than 0), the above greedy method was
applied iteratively

(
10
δ − 1

)
times. We heuristically found out that setting mn = 3

2 ·
10
δ ,

tends to obtain better bound vectors. A Python-script implementation of the above
greedy procedure found the following bounds,

−→mMCR = (3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6,
6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10,

10, 11, 11, 12, 13, 12, 14, 15, 16, 16, 16, 20, 23,
21, 23, 23, 23, 23, 23, 23, 23, 22, 20, 19, 22, 22,
22, 22, 22, 22, 21, 21, 20, 18, 15);

−→mOAY T = (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,
5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 11,
9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,

11, 10, 10, 10, 10, 10, 9, 9, 7);

−→mDummy−free = (3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 6,
6, 6, 6, 8, 7, 8, 8, 8, 8, 9, 9, 9, 9,

11, 11, 11, 12, 13, 12, 14, 15, 16, 16, 16, 19, 23,
23, 23, 23, 23, 23, 23, 23, 23, 22, 20, 19, 22, 22,
22, 22, 22, 22, 21, 21, 20, 18, 15); and

for MCR, OAYT, and dummy-free styles, respectively. Let us recall that each entry of
these bound vectors corresponds with the number of degree-(`i) isogeny constructions
to be performed, with `1 = 587 > `2 > · · · > `n = 3.

4.5 Number of optimal strategies required for a group action compu-
tation

Let γ and Γ be equal to the minimum and maximum entries in the integer bound vector
m, respectively. Once again, let L = [`1, `2, . . . , `n] be the list of small odd prime numbers
such that p = 4 ·

∏n
i=1 `i − 1 is a prime number. Then as discussed in 3.4, one can find

a strategy Sn(L) that performs an optimal number of isogeny constructions/evaluations
with degrees equal to each one of the n prime factors in L. The strategy Sn(L) must
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be executed γ times. At this point with high probability all the degree-`i isogenies
having entries mi = λ for i = 1, . . . , n, do not need to be considered any further.3

Additionally one still needs to process L′ isogenies, where L′ is a subset of L such that
its corresponding entries in the bound vector m are strictly greater than λ. To proceed
forward, all the entries of m must be subtracted by λ, disregarding the zero entries.
Then, a new minimum entry λ′ is computed and a new strategy Sn′(L

′) must be found
and executed λ′ times with n′ = #L′. This procedure is repeated until there are no
more isogenies to be processed. In fact, after Γ rounds, the estimated number of missing

degree-`i isogeny constructions is ≈
(
mi
`i

)
. A simple multiplicative strategy can be

executed to repair those missing isogeny constructions/evaluations. We formalize the
preceding discussion as follows.

We require to find and execute t strategies, where t ≤ n is the number of different
integer entries in the bound vector m. Let m(k) be a multiset of bound vector with
length nk for k = 1, . . . , t. Let γk = min m(k). By definition, m(1) = m, n1 = n and
γ1 = γ. Then, the k-th strategy must be executed γk times, where

m(1) = {m1,m2, . . . ,mn},

m(2) = {m(1)
1 − γ1, . . . ,m

(1)
n1
− γ1} \ {0},

m(3) = {m(2)
1 − γ2, . . . ,m

(2)
n2
− γ2} \ {0},

...

m(t) = {m(t−1)
1 − γt−1, . . . ,m(t−1)

nt−1
− γt−1} \ {0}.

The k-th strategy must be optimal with respect to the list Lk, defined as follows:

L1 = [`1, `2, . . . , `n],

L2 = [`i ∈ L1 : L
(1)
i > γ1],

L3 = [`i ∈ L2 : L
(2)
i > γ2],

...

Lt = [`i ∈ Lt−1 : L
(t−1)
i > γt−1].

The cost of the final multiplicative strategy to account for the missing isogenies can
be skipped or at least minimized, if the group action is evaluated by considering the
following adjusted bounds,

m′i :=

⌊
mi ·

(
`i

`i − 1

)⌉
for i = 1, . . . , n.

3In fact the probability of having completed all the degree-`i isogenies whose entries mi = λ for
i = 1, . . . , n, depend on the order of the points output by the Elligator 2 procedure as discussed in §4.1.
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In particular, using m′i instead of mi, the expected number of degree-`i isogeny construc-
tions to be performed is mi. To be more precise, we propose “to use” m′i times each `i
in order to reach all the mi degree-`i isogeny constructions.

Remark 4 Our analysis only depends on the cost of isogeny evaluations and scalar
multiplications, and thus it can be easily applied to the work of Castryck and Decru [5]
(CSURF).

5 Experiments and comparisons

In this section we report the CSIDH-512 group action evaluation considering the three
strategies discussed in §4, namely, i) MCR-style, ii) OAYT-style, and ii) Dummy-free-
style, by adopting the bound vectors presented in §4.4. We present a comparison of our
results versus the SIMBA-based methods that use the exponent bounds m as reported
in [7, §5.2].4

All of our experiments were ran on a Intel(R) Core(TM) i7-6700K CPU 4.00GHz
machine with 16GB of RAM, with Turbo boost disabled and using gcc version 5.5. Our
software library is freely available from,

https://github.com/JJChiDguez/csidh_withstrategies .

Implementation Group action evaluation M S a Speedup (%)

Cervantes-Vázquez et al. [7]
MCR with SIMBA 0.900 0.310 0.964 —
OAYT with SIMBA 0.658 0.210 0.691 —

Dummy-free with SIMBA 1.319 0.423 1.389 —

Hutchinson et al. [14]
MCR with SIMBA 0.905 0.312 0.860 -0.58
OAYT with SIMBA 0.632 0.209 0.704 3.11

This work
MCR-style 0.856 0.241 0.816 9.34
OAYT-style 0.662 0.182 0.642 2.76

Dummy-free-style 1.266 0.333 1.195 8.21

Table 3: Field operation counts for constant-time CSIDH-512 group action evaluation.
Counts are given in millions of operations, averaged over 1024 random experiments. The
three speedups given in the last column are calculated with respect to the MCR, OAYT
and dummy-free using the SIMBA approach as they were reported in [7]. We considered
only multiplication and squaring operations and assumed M = S.

Tables 3 4 report the field arithmetic counting and clock cycles timings obtained
for the CSIDH-512 constant-time group action evaluation, averaged over 1024 random
experiments. The three speedup figures given in the last column are calculated with
respect to the MCR, OAYT and Dummy-free using the SIMBA approach as they were
reported in [7]. It can be seen that our approach produces noticeable savings compared

4The subsets of small odd primes and optimal strategies implmented can be easily obtained from our
library.
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Implementation Group action evaluation Mcycles Speedup (%)

Cervantes-Vázquez et al. [7]
MCR-style 339 —
OAYT-style 238 —
Dummy-free 482 —

This work
MCR-style 298 12.09
OAYT-style 225 5.46
Dummy-free 431 10.58

Table 4: Clock cycle timings for constant-time CSIDH-512 group action evaluation,
averaged over 1024 runs. The three speedups given in the last column are calculated
with respect to the MCR, OAYT and dummy-free using the SIMBA approach as they
were reported in [7].

against the MCR and Dummy-free SIMBA-based implementation of [7]. In the case
of our OAYT-style implementation, the savings are more modest. Concretely, optimal
strategies as applied to the MCR- OAYT- and Dummy-free- styles implementations yield
a 12.09%, 5.46% and 10.58% speedup over [7], respectively (See Table 4).

As shown in Table 3, the OAYT SIMBA-based field operation count reported in [14]
for the CSIDH group action stands as the smallest reported till date. Unfortunately, the
source code corresponding to the implementation in [14] was not freely available, making
a direct comparison with our implementation impossible. Moreover, the experiments
reported in [14] correspond to the average of 200 random samples, which appear to be
insufficient to eliminate experimental noise.5

For completeness, we give in Table 5, the expected field arithmetic counts for com-
puting the CSIDH-512 group action using several combinations of the SIMBA-based
method along with strategies. These estimates correspond to the output of a Python-
script that interprets the algorithms and code presented by Cervantes et al. in [7] as
they apply to the following settings:6

1. SIMBA-1-
(
10
δ

)
method with bounds −→m = (10δ , . . . ,

10
δ ) where δ = 1, 2. This set-

ting corresponds to the constant-time multiplicative-based strategy presented in
Algorithm 2.

2. SIMBA-σ-κ method with σ and κ as proposed in [17] and [21], and using as bounds
−→m = (10δ , . . . ,

10
δ ) with δ = 1, 2, respectively.

3. SIMBA-σ-κ method with strategies. This is a SIMBA-σ-κ method but using opti-
mal strategies on each batch. At each batch, an optimal strategy process isogenies

5The experimental noise is correlated to the number of rational elliptic curve points of torsion (p+1)
4`i

(after k random samples) which is ≈ k
`i

. Hence, the experiments of Hutchinson et al. in [14] do not
appear to account for the case when large values for `i > 200, are missing.

6Let us recall that the SIMBA-σ-κ method splits the set of n small odd primes `i into σ disjoint sets
(batches) of size n

σ
. Then it applies a multiplicative strategy on each batch. Each multiplicative strategy

is evaluated κ times. Finally, it performs a multiplicative strategy on the set of unprocessed small odd
primes until all the mi degree-`i isogeny construction have been performed (See §4.1 for more details).
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starting from the largest to the smallest.

4. A Python-code version of the C-code implementation presented in [7].

5. The improvements presented in this work with the following bound vectors:

(a) −→m = (10δ , . . . ,
10
δ ) where δ = 1, 2,

(b) The ones proposed in Meyer-Campos-Reith [17] and Onuki et al. [21], and

(c) The ones presented in section 4.4.

The last column in Table 5 gives the expected speedups for MCR- OAYT- and
Dummy-free- styles using as a baseline the field arithmetic counts for multiplicative-
based SIMBA-1-10 MCR style and multiplicative-based SIMBA-1-5 OAYT- and Dummy-
free- styles, respectively.7 The last three rows in Table 5 report the highest speedups.
Notice that hese three rows correspond with the last three rows in Table 3. Interestingly,
the usage of optimal strategies for the SIMBA-based approach cost approximately the
same as a multiplicative-based SIMBA method. A graphical view of several of these
CSIDH strategies can be found in Figures 2 and 3 of Appendix C.

6 Conclusions

The computational cost of the CSIDH group action evaluation directly depends on the
number and degree of isogenies to be processed, which are determined by the n prime
factors of p + 1. Another influential factor in the cost of this operation is given by the
bound vector, which specifies the number of times that each one of those isogenies must
be processed. In this work, we have given further evidence that the application of optimal
strategies to the CSIDH computation can provide a noticeable performance speedup.

In the context of CSIDH, optimal strategies can be used to speedup the SIMBA
method proposed in [17], which roughly speaking, corresponds to the framework reported
by Hutchinson et al. in [14]. In this work, we dismiss the usage of the SIMBA method by
employing optimal strategies as an intuitive generalization of the way that this technique
is applied to SIDH. When optimal strategies à la SIDH are applied to CSIDH, they tend
to exploit the cheap cost of isogeny evaluations with smaller degrees.

By following this approach, we proposed an efficient deterministic algorithm for com-
puting optimal strategies for CSIDH. We report constant-time C-code implementations
of three CSIDH variants: MCR-, OAYT-, and Dummy-free styles. As shown in Table 4,
our experimental results achieve performance speedups of 12.09%, 5.46% and 10.58%
compared with the MCR, OAYT and dummy-free SIMBA-based implementations re-
ported in [7]. As a future work, we would like to apply our framework to larger primes
that provide a larger quantum security than CSIDH-512.

7Notice that the cost of validating the public key was omitted from these estimates. However, as
shown in the last row of Table reftab:estimates, the computational cost of this task is negligible.
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Algorithm Strategy Bounds: −→m Group action
M S a Speedup (%)

evaluation

SIMBA-1-10

multiplicative

(10, . . . , 10)
MCR-style

1.635 0.638 1.943 —
optimal 1.122 0.271 0.993 38.72

multiplicative
dummy-free

1.933 0.660 2.132 —
optimal 1.744 0.336 1.425 19.78

SIMBA-1-5
multiplicative

(5, . . . , 5) OAYT-style
0.971 0.332 1.073 —

optimal 0.888 0.178 0.739 18.19

This work optimal
(10, . . . , 10)

MCR-style 1.037 0.257 0.926 43.07
dummy-free 1.523 0.345 1.334 27.96

(5, . . . , 5) OAYT-style 0.776 0.183 0.695 26.40

SIMBA-5-11

multiplicative

(10, . . . , 10)
MCR-style

0.981 0.311 1.000 43.16
optimal 0.981 0.311 1.000 43.16

multiplicative
dummy-free

1.411 0.399 1.382 30.20
optimal 1.412 0.399 1.382 30.16

SIMBA-3-8
multiplicative

(5, . . . , 5) OAYT-style
0.719 0.206 0.710 29.00

optimal 0.720 0.206 0.710 28.93

SIMBA-5-11

multiplicative

as given in [17]
MCR-style

0.900 0.297 0.939 47.34
optimal 0.900 0.296 0.939 47.38

multiplicative
dummy-free

1.309 0.392 1.324 34.40
optimal 1.308 0.392 1.322 34.44

SIMBA-3-8
multiplicative

as given in [21] OAYT-style
0.642 0.198 0.661 35.53

optimal 0.643 0.198 0.661 35.46

This work optimal
as given in [17]

MCR-style 0.930 0.242 0.851 48.44
dummy-free 1.378 0.335 1.249 33.94

as given in [21] OAYT-style 0.670 0.173 0.626 35.30

This work optimal as given in section 4.4
MCR-style 0.835 0.231 0.784 53.10
dummy-free 1.244 0.322 1.158 39.61
OAYT-style 0.642 0.172 0.610 37.53

Public key validation — 0.021 0.010 0.030 —

Table 5: Expected number of field operation for the constant-time CSIDH-512 group
action evaluation. Counts are given in millions of operations, averaged over 1024 random
experiments. The Speedup is computed using the multiplicative version of SIMBA-1-(
10
δ

)
(with δ = 1, 2) as a baseline, by only considering multiplication and squaring

operations, and by assuming M = S. The last three rows in this table report the highest
speedups. These three rows correspond with the last three rows in Table 3. Public key
validation was separately measured, and presented in the last row of the table.
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A Constant-time Algorithms for computing the CSIDH
group action

Algorithm 3: OAYT style from [21]. Simplified constant-time CSIDH class group action

for supersingular curves over Fp, where p = 4
∏n
i=1 `i − 1. The ideals li = (`i, π − 1) and

l−1
i = (`i, π + 1) , where π maps to the p-th power Frobenius endomorphism on each curve.

This algorithm computes exactly m isogenies for each ideal li (or l−1
i ).

Input: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with each
ei ∈ [−m,m]), m a positive number.

Output: EB = le11 ∗ · · · ∗ lenn ∗ EA.
1 E0 ← EA;
2 // Outer loop: Each `i prime f. is processed m times

3 for i ∈ {1, . . . ,m} do
4 T+, T− ← ObtainFullTorsionPoint(E0) ; // T± ∈ En[π ∓ 1]
5 T+, T− ← [4]T+, [4]T− ; // Now T+, T− ∈ En

[∏
i `i
]

6 // Inner loop: processing each prime factor `i|(p+ 1);
7 for j ∈ {0, 1, . . . , n− 1} do
8 s← isequal(sign(ej),−1) ;

9 cswap(T+, T−, s) ; // swap ideals ln−j and l−1
n−j

10 Gj ← T+ ;
11 for k ∈ {1, . . . , n− 1− j} do
12 Gj ← [`k]Gj

13 b← isequal(en−j , 0) ;
14 (E(j+1) mod n, R)← QuotientIsogeny(Ej , Gj , `n−j) ; // degree-`n−j isogeny

15 T ′+ ← [`n−j ]T+ ;
16 T+ ← PEVAL(T+, R); // Evaluate T+ on degree-`n−j isogeny

17 T− ← PEVAL(T−, R); // Evaluate T− on degree-`n−j isogeny

18 cswap(Ej , E(j+1) mod n, b) ; // undo if en−j = 0
19 cswap(T ′+, T+, b) ; // undo if en−j = 0
20 cswap(T ′−, T−, b) ; // undo if en−j = 0
21 T− ← [`n−j ]T− ;

22 cswap(T+, T−, s) ; // swap ideals ln−j and l−1
n−j

23 en−j ← en−j −
(
(b+ 1) mod 2

)
;

24 return E0

B Executing optimal strategies for CSIDH

In this appendix, we give explicit details of how an optimal strategy can be executed
in constant-time using the MCR, OAYT and Dummy-free approaches as described
in §§4.1 4.3.
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Algorithm 4: Dummy-free Style from [7]. Simplified constant-time CSIDH class group

action for supersingular curves over Fp, where p = 4
∏n
i=1 `i−1. The ideals li = (`i, π−1) and

l−1
i = (`i, π + 1) , where π maps to the p-th power Frobenius endomorphism on each curve.

This algorithm computes exactly m isogenies for each ideal li (or l−1
i ).

Input: A supersingular curve EA over Fp, and an exponent vector (e1, . . . , en) with each
ei ∈ S(m)), m a positive number.

Output: EB = le11 ∗ · · · ∗ lenn ∗ EA.
1 E0 ← EA;
2 // Outer loop: Each `i prime f. is processed m times

3 for i ∈ {1, . . . ,m} do
4 T+, T− ← ObtainFullTorsionPoint(E0) ; // T± ∈ En[π ∓ 1]
5 T+, T− ← [4]T+, [4]T− ; // Now T+, T− ∈ En

[∏
i `i
]

6 // Inner loop: processing each prime factor `i|(p+ 1);
7 for j ∈ {0, 1, . . . , n− 1} do
8 s← isequal(sign(ej),−1) ;

9 cswap(T+, T−, s) ; // swap ideals ln−j and l−1
n−j

10 Gj ← T+ ;
11 for k ∈ {1, . . . , n− 1− j} do
12 Gj ← [`k]Gj

13 (E(j+1) mod n, R)← QuotientIsogeny(Ej , Gj , `n−j) ; // degree-`n−j isogeny

14 T+ ← PEVAL(T+, R); // Evaluate T+ on degree-`n−j isogeny

15 T− ← PEVAL(T−, R); // Evaluate T− on degree-`n−j isogeny

16 T− ← [`n−j ]T− ;

17 cswap(T+, T−, s) ; // swap ideals ln−j and l−1
n−j

18 en−j ← en−j − 1 ;

19 return E0

B.1 Using one torsion point and dummy isogeny constructions (MCR-
style)

The vertices of Sn(L) are labeled as the pair of integers (i, j), where 0 ≤ j < n and 0 ≤
i < (n− j). The vertex (i, j) determines a single torsion-

(∏n−j
k=i `k

)
point Ti,j ∈ Ej(Fp).

The root of Sn(L) is (0, 0), its leaves are the vertices of the form (n− 1− j, j), and two
vertices of the form (i, j) and (k, j) determines rational elliptic curve points on the same
curve Ej . Now, for each `i let us define

bn−j−1 :=

{
1 if a dummy degree-`n−j isogeny construction is required,
0 otherwise.

The navigation rules to walk across ∆n are described as follows:

1. There are two types of edges: horizontal and vertical edges. Any horizontal edge[
(i, j), (i, j + 1)

]
can be computed if and only if the leaf (n − 1 − j, j) has been

reached. Additionally, vertical edges of the form
[
(i, j), (i + 1, j)

]
are allowed for

0 ≤ i < n− 1− j.

2. A ramification is a vertex having both horizontal and vertical edges.
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3. At leaf (n − 1 − j, j), the following computations and constant-time swaps take
place:

T0,j , Tn−1−j,j ← cswap(T0,j , Tn−1−j,j , bn−1−j),

Ej+1, R← QuotientIsogeny(Ej , Tn−1−j,j , `n−j),

Ej , Ej+1 ← cswap(Ej , Ej+1, bn−1−j), and

T0,j , Tn−1−j,j ← cswap(T0,j , Tn−1−j,j , bn−1−j).

Here, QuotientIsogeny(Ej , Tn−1−j,j,`n−j ) is performed by assuming that Tn−1−j,j
has order-(`n−j), and its second output is a list of the multiples Rk := [k]Tn−1−j,j ,
for k = 1, . . . , dn−j with `n−j = 2dn−j + 1 (cf. §2.2).

4. A horizontal edge corresponds to a decrement in the order of the current point by
a factor `j . To be more precise, the edge

[
(i, j), (i, j+1)

]
means that the following

computations must be performed:

(a) If i = 0: R(dn−j+1) ← Rdn−j +R1 and Ti,j ← Rdn−j +R(dn−j+1) = [`n−j ]R1.

(b) Otherwise: Ti,j ← [`n−j ]Ti,j .

In both cases, the following evaluation and constant-time swap have also been
performed

Ti,j+1 ← EvaluateIsogeny(Ti,j , R), and

Ti,j , Ti,j+1 ← cswap(Ti,j , Ti,j+1, bn−j−1).

5. A vertical edge corresponds to a decrease in the order of the current point by a
scalar multiplication. In othe words, the edge

[
(i, j), (i+1, j)

]
means that Ti+1,j ←

[`i]Ti,j has been performed.

B.2 Using two torsion points and dummy isogeny constructions (OAYT-
style)

The vertices of Sn(L) are labeled by a integer pair (i, j) where 0 ≤ j < n and 0 ≤ i <
(n− j). The vertex (i, j) determines a pair of torsion-

(∏n−j
k=i `k

)
points T+,i,j ∈ Ei[π−1]

and T−,i,j ∈ Ei[π + 1]. The root of Sn(L) is (0, 0), its leaves are the vertices of the form
(n − 1 − j, j), and two vertices of the form (i, j) and (k, j) determines rational elliptic
curve points on the same curve Ej . Now, for each `i let us define,

bn−1−j :=

{
1 if dummy degree-`n−j isogeny construction is required,
0 otherwise;

and

sn−1−j :=

{
1 if T−,i,j is required,
0 if T+,i,j is required.

Then, the navigation rules to walk across ∆n are described as follows:
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1. There are two types of edges: horizontal and vertical edges. Any horizontal edge[
(i, j), (i, j + 1)

]
can be computed if and only if the leaf (n − 1 − j, j) has been

reached. Additionally, vertical edges
[
(i, j), (k, j)

]
are only allowed when i < k.

2. A ramification is a vertex having both horizontal and vertical edges.

3. At leaf (n − 1 − j, j), the following computations and constant-time swaps are
perform:

T+,0,j , T−,0,j ← cswap(T+,0,j , T−,0,j , sn−1−j),

T+,n−1−j,j , T−,n−1−j,j ← cswap(T+,n−1−j,j , T−,n−1−j,j , sn−1−j),

T+,0,j , Tn−1−j,j ← cswap(T+,0,j , T+,n−1−j,j , bn−1−j),

Ej+1, R← QuotientIsogeny(Ej , T+,n−1−j,j),

Ej , Ej+1 ← cswap(Ej , Ej+1, bn−1−j),

T+,0,j , Tn−1−j,j ← cswap(T+,0,j , T+,n−1−j,j , bn−1−j),

T+,n−1−j,j , T−,n−1−j,j ← cswap(T+,n−1−j,j , T−,n−1−j,j , sn−1−j), and

T+,0,j , T−,0,j ← cswap(T+,0,j , T−,0,j , sn−1−j).

Here, QuotientIsogeny(Ej , T+,n−1−j,j) is performed by assuming that T+,n−1−j,j
has order-(`n−j), and its second output is a list of the multiples Rk := [k]T+,n−1−j,j
for k = 1, . . . , dn−j with `n−j = 2dn−j + 1 (cf. §2.2).

4. A horizontal edge corresponds to a decrease in the order of the current point by
a factor of `n−j . To be more precise, the edge

[
(i, j), (i, j + 1)

]
means that the

following computations have been performed:

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j), and

(a) If i = 0: R(dn−j+1) ← Rdn−j +R1 and T+,i,j ← Rdn−j +R(dn−j+1) = [2dn−j +
1]R1.

(b) Otherwise: T+,i,j ← [`n−j ]T+,i,j .

In both cases, the following evaluation and constant-time swap have also been
performed

T−,i,j ← [`n−j ]T−,i,j ,

T+,i,j+1 ← EvaluateIsogeny(T+,i,j , R),

T−,i,j+1 ← EvaluateIsogeny(T−,i,j , R),

T+,i,j , T+,i,j+1 ← cswap(T+,i,j , T+,i,j+1, bn−1−j),

T−,i,j , T−,i,j+1 ← cswap(T−,i,j , T−,i,j+1, bn−1−j), and

T+,i,j+1, T−,i,j+1 ← cswap(T+,i,j+1, T−,i,j+1, sn−1−j)

5. A vertical edge corresponds to a decrease in the order of the current point by a
scalar multiplication. In othe words, the edge

[
(i, j), (i + 1, j)

]
means that the

following operations has been performed:
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(a) If there are no ramifications between the vertices (i, j) and (n− 1− j, j):

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j),

T+,i+1,j ← [`i]T+,i,j ,

T+,i+1,j , T−,i+1,j ← cswap(T+,i+1,j , T−,i+1,j , sn−1−j), and

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j).

(b) Otherwise:

T+,i+1,j ← [`i]T+,i,j , and

T−,i+1,j ← [`i]T−,i,j .

B.3 Using two torsion point without dummy isogeny constructions
(Dummy-free style)

The vertices of Sn(L) are labeled by a integer pair (i, j) where 0 ≤ j < n and 0 ≤ i <
(n− j). The vertex (i, j) determines a pair of torsion-

(∏n−j
k=i `k

)
points T+,i,j ∈ Ei[π−1]

and T−,i,j ∈ Ei[π + 1]. The root of Sn(L) is (0, 0), its leaves are the vertices of the form
(n − 1 − j, j), and two vertices of the form (i, j) and (k, j) determines rational elliptic
curve points on the same curve Ej . Now, for each `i let’s define

sn−1−j :=

{
1 if T−,i,j is required,
0 if T+,i,j is required;

then, the navigation rules to walk across ∆n are described as follows:

1. There are two types of edges: horizontal and vertical edges. Any horizontal edge[
(i, j), (i, j + 1)

]
can be computed if and only if the leaf (n − 1 − j, j) has been

reached. Additionally, vertical edges
[
(i, j), (k, j)

]
are only allowed when i < k.

2. A ramification is a vertex having both horizontal and vertical edges.

3. At leaf (n − 1 − j, j), the following computations and constant-time swaps are
perform:

T+,n−1−j,j , T−,n−1−j,j ← cswap(T+,n−1−j,j , T−,n−1−j,j , sn−1−j),

Ej+1, R← QuotientIsogeny(Ej , T+,n−1−j,j),

Ej , Ej+1 ← cswap(Ej , Ej+1, bn−1−j), and

T+,n−1−j,j , T−,n−1−j,j ← cswap(T+,n−1−j,j , T−,n−1−j,j , sn−1−j).

Here, QuotientIsogeny(Ej , T+,n−1−j,j) is performed by assuming that T+,n−1−j,j
has order-(`n−j), and its second output is a list of the multiples Rk := [k]T+,n−1−j,j
for k = 1, . . . , dn−j with `n−j = 2dn−j + 1 (cf. §2.2).
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4. A horizontal edge corresponds to a decrease in the order of the current point by
a factor of `n−j . To be more precise, the edge

[
(i, j), (i, j + 1)

]
means that the

following computations and constnat-time swaps have been performed:

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j),

T−,i,j ← [`n−j ]T−,i,j ,

T+,i,j+1 ← EvaluateIsogeny(T+,i,j , R),

T−,i,j+1 ← EvaluateIsogeny(T−,i,j , R), and

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j).

5. A vertical edge corresponds to a decrease in the order of the current point by a
scalar multiplication. In othe words, the edge

[
(i, j), (i + 1, j)

]
means that the

following operations has been performed:

(a) If there are no ramifications between the vertices (i, j) and (n− 1− j, j):

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j),

T+,i+1,j ← [`i]T+,i,j ,

T+,i+1,j , T−,i+1,j ← cswap(T+,i+1,j , T−,i+1,j , sn−1−j), and

T+,i,j , T−,i,j ← cswap(T+,i,j , T−,i,j , sn−1−j).

(b) Otherwise:

T+,i+1,j ← [`i]T+,i,j , and

T−,i+1,j ← [`i]T−,i,j .

C A graphical view of CSIDH strategies
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(a) Simplified MCR-style: requires 10 rounds. (b) Simplified OAYT-style: requires 5 rounds.

(c) Simplified Dummy-free style: requires 10
rounds.

Figure 2: A graphical view of the strategies followed by three variants of the CSIDH
group action evaluation: MCR style as presented in [17], OAYT style as proposed in [21]
and dummy-free style as presented in [7]. Horizontal edges (in red) and vertical edges
(in blue) represent isogeny evaluations q`i , and scalar multiplications p`i , respectively.
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SIMBA-5-11: MCR style SIMBA-3-8: OAYT style

Figure 3: Two variants of the CSIDH group action evaluation: MCR style as proposed
in [17] and OAYT style as proposed in [21]. Each one of the two aproaches depicted in this
figure, computes a group action using the SIMBA-σ-κ method, constructing isogenies of
prime degree grouped in σ batches. Each round must be repeated κ times. A final repair
round applies a multiplicative strategy to process the prime factors not covered during
the κ rounds. Horizontal edges (in red) and vertical edges (in blue) represent isogeny
evaluations q`i , and scalar multiplications p`i , respectively.
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