
Delayed Authentication
Replay and Relay Attacks on DP-3T

Krzysztof Pietrzak

IST Austria
pietrzak@ist.ac.at

April 13, 2020

Abstract

Decentralized Privacy-Preserving Proximity Tracing (DP-3T) is an
open protocol which aims to help fight the current pandemic. Their pro-
posal is an app for mobile phones which broadcasts frequently changing
pseudorandom identifiers via (low energy) Bluetooth, and at the same
time, the app stores IDs broadcast by phones in its proximity. Only if a
user is tested positive, their IDs of the last 14 days are published so other
users can check if they have stored them locally and thus were close to an
infected person.

Vaudenay [eprint 2020/399] observes that this basic scheme succumbs
to relay and even replay attacks, and proposes more complex interactive
schemes which prevent those attacks without giving up too many privacy
aspects. Unfortunately interaction is problematic for this application for
efficiency and security reasons.

In this note we suggest a very simple and efficient non-interactive
solution to prevent relay and replay attacks while preserving most of the
privacy guarantees. In a nutshell, we let the users broadcast their IDs
together with their current time (and if we want to prevent relay attacks,
also location). The time and location are authenticated using a concept
we term “delayed authentication”: We propose a message authentication
code, where one can first check that the message matches the tag without
knowing the key. The message and parts of the tag can then be deleted,
and this delayed tag is independent of the message, but it’s still possible
to finish verification of the tag later when the key become known.

This means a receiving party can first check if the time and location
match its own, but then delete those values, so this sensitive data is never
locally stored. Should the sender be tested positive and his keys get re-
leased, the receiving party still can authenticate the delayed tag to detect
a potential replay or relay attack.

1

1 Introduction

Proximity tracing aims to simplify and accelerate the process of identifying
people who have been in contact with the SARS-CoV-2 virus. A concrete pro-
posal is DP-3T [TPH+20], which stands for Decentralized Privacy-Preserving
Proximity Tracing.

Advertising app (basic DP-3T) Receiving app

// EphID is current ephemeral id EphID

locally store EphID

Figure 1: The basic DP-3T protocol. If at some point a user is reported
sick the app will get (the keys required to recompute) its EphID’s of the
last 14 days, and if it has locally stored one of those EphID’s it must
assume it was close to an infected user.

In the DP-3T proposal users are assumed to have a mobile phone or another
Bluetooth capable device with their application installed. At setup the app
samples a random key SK0. This key is updated every day as SKi = H(SKi−1)
using a cryptographic hash function H. Each key defines n Ephemeral IDentifiers
(EphID) derived from SKi using a pseudorandom generator and function as

EphID1‖EphID2‖ . . . ‖EphIDn := Prg(Prf(SKi, “broadcast key”))

Those EphID’s are used in a random order during the day, each for 24 · 60/n
minutes (say 30 minutes if we set n = 48). The current EphID is broadcast using
Bluetooth in regular intervals to potential users in its proximity.

Phones locally store the EphID’s they receive as well as their own SKi’s of
the last 14 days. If a user tests positive the health authority can upload the
user’s SKi keys of the last 14 days to a backend server, which will distribute
them to all users. The users will recompute the EphID’s from the received
keys and check if there’s a match with any of their stored EphID’s. If yes, it
means they’ve presumably been in proximity to an infected person in the last
two weeks and should self isolate (this description is oversimplifying several
aspects that are not relevant for this note). Important aspects of this protocol
are its simplicity, in particular the fact that the protocol is non-interactive as
illustrated in Figure 1, and its privacy properties. Users only need to locally
store pseudorandom EphID’s, but no time or location data.

2 Replay and Relay Attacks

Vaudeny [Vau20] discusses potential attacks on this scheme including replay and
relay attacks. As an illustration of a replay attack consider an adversary who

2

collects EphID’s in an environment where it’s likely infections will occur (like a
hospital), and then broadcast those EphID’s to users at another location, say
a competing company it wants to hurt. Later, when a user from the high risk
location gets tested positive, the people in the company will be instructed to
self isolate.

Advertising app [Vau20] replay-secure Receiving app

// ki, EphIDi emphemeral key and id EphIDi

pick challenge challengeichallengei

tagi ← Mac(ki, challengei) tagi
locally store

(EphIDi, challengei, tagi)

Figure 2: Vaudenay’s protocol secure against replay attacks. When
later the user of the receiving app gets keys of infected users it will check
for every tuple (k,EphID) derived from those keys if it locally stores a
triple (EphID′, challenge, tag) with EphID = EphID′. If yes, it will check

whether tag
?
= Mac(k, challenge) and only if this check verifies, assume

he was close to an infected party.

Vaudenay suggest an extension of the basic DP-3T protocol, shown in Fig-
ure 2, which is secure against replay attacks, but it comes at the prize of using
interaction. For efficiency and security reasons, the current DP-3T proposal
uses Bluetooth low energy beacons, which makes interaction problematic (we
refer to [TPH+20] for more details).

A relay attack is a more sophisticated attack (than a replay attack). Here the
adversary relays the messages from one location (e.g. the hospital) to another
(e.g. the company it wants to hurt) in real time, the protocol from Figure 2 is not
secure against relay attacks. Vaudenay also suggests a protocol which thwarts
relay attacks assuming both devices know their location (using GPS) and with
an additional round of interactions. Our relay secure protocol also requires
location data, but achieves security against relay attacks without interaction.

3 Delayed Authentication

The main tool in our protocols is a message authentication code that allows for
a two step authentication process, where the first doesn’t require the key, and
the second is independent of the authenticated message. To construct it, apart
from a standard message authentication code Mac : K×X → T we’ll use a hash
function H : X ×R → Y with the following properties:

collision resistant: It must be difficult to find tuples (x, r) 6= (x′, r′) where
H(x, r) = H(x′, r′).

3

randomizing: For any x ∈ X and a uniformly random µ←$R the hashH(x, µ)
is close to uniform given x.

Even though randomizing is not a standard assumption, we can expect a well
designed cryptographic hash function to satisfy the condition when R is suffi-
ciently large. The property can actually be relaxed, we just need H(x, µ) to be
independent of x, not uniform, and even this weaker property must only hold
computationally, not information theoretically.

Consider the following randomized message authentication code

DelayMac(k, x)→ (H(x, µ) , µ , Mac(k, H(x, µ))) where µ←$R

We can verify such a message/tag pair x, (h, µ, tag) in two steps. First we check

that h
?
= H(x, µ) is the correct hash (providing h is not required as it can be

computed from other known values, it’s still convenient to do it), and if this
is the case can forget about µ and the message x. Note that this step does
not require k, we call (h, tag) the delayed tag. Later, should the key k become

known to us, we can authenticate the delayed tag checking tag
?
= Mac(k, h).

The security of DelayMac as a standard message authentication code follows
easily from the security of Mac and the collision resistance of H. Moreover the
randomizing property of H implies the delayed authentication tag (h, tag) is
almost independent of the message x.

4 Our Protocol

Let us illustrate how we use delayed authentication in our protocol which is
given if Figure 3. As in [Vau20], apart from the EphID’s,

EphID1‖EphID2‖ . . . ‖EphIDn := Prg(Prf(SKi, “broadcast key”))

the app additionally computes an ephemeral secret key ki with each EphIDi

k1‖k2‖ . . . ‖kn = Prg(Prf(SKi, “secret key”))

The replay secure protocol know works as follows

• (broadcast) The app regularly broadcasts its current EphID together with
the current time t1 and a delayed authenticator (h, µ, tag)← DelayMac(k, t1)
for t1 using the corresponding ephemeral key k.

• (receive) If the app receives a message (t1, (h, µ, tag),EphID) it checks if
its current time t2 is close enough to t1 (we’ll discuss what this means in

§4.1), and if the hash h
?
= H(t1, µ) matches. If this doesn’t hold it ignores

the message assuming it’s a replay attack or otherwise malformed. If the
check passes, the app will locally store (h, tag,EphID).

4

Advertising app our protocol Receiving app

// k, EphID current emph. key,id

`1 ← get GPS-coordinates
t1 ← get current time
// (h, µ, tag)← DelayMac(k, t1)

µ←$R
h = H(t1, `1, µ)
tag := Mac(k, h)

(h, µ, tag),EphID

t1, `1 (cf.§4.2)

`2 ← get GPS-coordinates
t2 ← get current time
if t1 is close to t2 and `1 close to `2
and if h = H(t1, `1, µ)// cf.§4.2
locally store
h, tag,EphID

Figure 3: Our non-interactive proximity tracing protocol that is secure
against relay attacks. By ignoring the blue text we get a protocol that
is only secure against replay attacks but doesn’t require location data,
which might not always be available or due to security reasons not de-
sired. If later a user gets sick and the app gets its (k,EphID′) pairs, it
will check if it has stored a triple (h, tag,EphID) with EphID = EphID′,

and if so, finish verification by checking the delayed tag tag
?
= Mac(k, h)

to detect potential replay or relay attacks.

• (verify) If the app learns ephemeral ID/key tuples (EphID′, k) of infected
parties from the backend server, it checks if it stored a tuple (h, tag,EphID)

where EphID = EphID′. For every such tuple it checks if Mac(k, h)
?
= tag,

and only if the check passes, it assumes it was close to an infected party.

To see how this approach prevents replay attacks, we note that for a successful
replay attack where the receiving party finally accepts EphID receiving a broad-
cast message claiming a later timepoint t′ > t1, one needs to break the security
of DelayMac, that is, either find a collision H(t′, µ′) = H(t1, µ) or forge a tag
for Mac.

If we additionally authenticate the location like this, as shown in blue in
Figure 3, we achieve security against relay attacks.

4.1 Closeness

What “close” means (for time and location) in the protocol must be formally
specified, and depends amongst other things on what synchrony we want to
assume from the clocks and what precision we can expect from the GPS. Some
minor replay and relay attacks, where the time is within the clock synchrony,
and the location within the GPS precision, are still possible with our protocols,
but don’t seem practically relevant.

5

4.2 Communication

The length of the broadcast messages in our protocol is larger than in the
basic DP-3T scheme, where one just broadcasts the EphID. We observe that by
making the broadcast timing and location data coarse enough, the advertizing
app doesn’t have to broadcast them at all as its time and location (t1, `1) will
likely match the (t2, `2) of the receiving party, and even if not (as the value is
right on the boundary), the receiver can check the few neighbouring values that
would be considered close enough. If t1, `1 are not sent, one must send h, which
is why we added h to the tag.

4.3 Privacy Issues with Malicious Apps

If the advertizing and receiving application are honest (i.e., run the specified
code) then our protocols prevent replay (or even relay) attacks while preserving
the privacy of both by jointly not storing any useful information beyond the fact
that the two parties have met and how many times. In particular, everything
they store is independent of any time or location data, apart from coarse timing
information one can already get from the EphID’s in CP3T (i.e., the days of the
encounters).

But a malicious receiver can produce digital evidence about the advertizing
user. This is also the case for Vaudenay’s protocols (and already mentioned
in [Vau20]). As a concrete example, the receiver can put a hash of the entire
transcript (for our protocol it’s just the broadcast message) on a blockchain
to timestamp it. Later, should the advertizer test positive and his keys being
released, this transcript will reveal the time (and for the relay secure protocol
also location) data. Timestamping is necessary here, as once the keys are public
everyone can produce arbitrary transcripts.

Finally, we stress that many of the issues discussed in [TPH+20] and [Vau20]
also apply to our schemes.

References

[TPH+20] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel
Salath, James Larus, Edouard Bugnion, Wouter Lueks, Theresa
Stadler, Apostolos Pyrgelis, Daniele Antonioli, Ludovic Barman,
Sylvain Chatel, Kenneth Paterson, Srdjan Capkun, David Basin,
Dennis Jackson, Bart Preneel, Nigel Smart, Dave Singelee, Aysajan
Abidin, Seda Guerses, Michael Veale, Cas Cremers, Reuben Binns,
and Thomas Wiegand. Dp3t: Decentralized privacy-preserving prox-
imity tracing, 2020. https://github.com/DP-3T.

[Vau20] Serge Vaudenay. Analysis of dp3t. Cryptology ePrint Archive, Re-
port 2020/399, 2020. https://eprint.iacr.org/2020/399.

6

