
Pointproofs:
Aggregating Proofs for Multiple Vector Commitments

Sergey Gorbunov1,2, Leonid Reyzin1,3, Hoeteck Wee4,5, and Zhenfei Zhang1

1Algorand
2University of Waterloo

3Boston University
4CNRS, ENS, PSL

5NTT Research

June 7, 2020

Abstract

Vector commitments enable a user to commit to a sequence of values and provably reveal one or
many values at speci�c positions at a later time. In this work, we construct Pointproofs— a new vector
commitment scheme that supports non-interactive aggregation of proofs across multiple commitments.
Our construction enables any third party to aggregate a collection of proofs with respect to di�erent,
independently computed commitments into a single proof represented by an elliptic curve point of
48-bytes. In addition, our scheme is hiding: a commitment and proofs for some values reveal no
information about the remaining values.

We build Pointproofs and demonstrate how to apply them to blockchain smart contracts. In our
example application, Pointproofs reduce bandwidth overheads for propagating a block of transactions
by at least 60% compared to prior state-of-art vector commitments.

Pointproofs are also e�cient: on a single-thread, it takes 0.08 seconds to generate a proof for 8
values with respect to one commitment, 0.25 seconds to aggregate 4000 such proofs across multiple
commitments into one proof, and 23 seconds (0.7 ms per value proven) to verify the aggregated proof.

1 Introduction

Vector commitments [LY10, CF13] allow a commi�er to commit to a vector ofN values and then selectively
reveal elements of the commi�ed vector, proving that they correspond to the original commitment. Vector
commitments are used to reduce storage costs in a variety of applications, described in more detail below:
instead of storing a vector of values, one can store only the commitment and receive the values together
with their proofs as needed. Vector commitments allow applications to trade o� storage (of all values) for
bandwidth (taken up by revealed values and proofs).

To make the tradeo� between storage and bandwidth more a�ractive, we need to reduce the proof size.
Because individual proofs need to be cryptographically hard to forge, their sizes cannot be reduced too far.
Instead, the savings come from having a single short proof for multiple revealed values. �e shortest such
proofs in the literature are provided by the so-called subvector commitments of Lai and Malavolta [LM19,

1

reference pp opening group Same-Commitment Cross-Commitment
Aggregatable Aggregatable

[LM19, Fig 1] O(N) 256 B class group
[LM19, Fig 2] O(N2) 48 B bilinear
[BBF19] O(1) 1312 B class group X
[CFG+20, 5.1] O(1) 1024 B class group X
[CFG+20, 5.2] O(1) 512 B class group X
[TAB+20] O(N) 48 B bilinear X
this work O(N) 48 B bilinear X X

Table 1: Summary of subvector commitments with constant-size commitments and openings to subvectors
at 128-bit security level. (See Table 3 for an explanation of the numbers.)

Section 5.2]: a proof takes up only 48 bytes (for typical parameter values at conjectured 128-bit security)
regardless of how many elements of the vector are being revealed.1

In many distributed applications, the commitments, values, and proofs come from multiple sources
that are not even aware of each other’s data. �is presents two problems that are not solved by subvector
commitments:

• there is no single entity that can produce a single proof for all the values;

• proofs need to be with respect to multiple di�erent commitments.

For instance, consider a blockchain that contains information on multiple accounts. Each account,
controlled by a di�erent user, is associated with a memory that consists of multiple variables. �e memory
may, for example, store the values of variables in a smart contract. To validate each block, participants
in the blockchain protocol (so-called “validators”) need to have access to the variables used during the
relevant transactions. One solutions is to have validators store all the variables locally. However, to save
on storage, we may instead apply commitments, and ask account holders to commit to the values of their
variables. During the relevant transaction, account holders would produce proofs for the relevant values.
Our goal is to save on bandwidth required for these proofs to reach validators, while enabling solutions
that do not rely on central parties or additional interaction.

We construct Pointproofs—an e�cient commitment scheme with small commitments and proofs.
Using Pointproofs, a user can independently commit to her variables and provide short proofs for any
subset of them. Moreover, any third party can non-interactively aggregate multiple proofs with respect to
di�erent commitments into a single short proof.

We note that dynamic aggregation for a single commitment gives, in particular, subvector commit-
ments. Such same-commitment aggregation was explored by Boneh, Bünz, and Fisch [BBF19] and (in work
independent of ours) by Tomescu et al. [TAB+20], who showed how to aggregate proofs for elements of a
vector into a single proof for a subvector. Aggregation of [BBF19] was extended to incremental aggregation
(which allows aggregation of already aggregated proofs) by Campanelli et al. [CFG+20]. To the best of
our knowledge, there have been no schemes that can aggregate proofs across multiple commitments; see
Table 1 for a summary of prior constructions.

1Observe that the length of 48 bytes is very close to the information-theoretic minimum of 32 bytes necessitated by the
birthday bound for 128-bit security.

2

1.1 Our Contributions

First, we formalize aggregatable vector commitments in the cross-commitment se�ing (Section 3). For
functionality, we require that proofs for individual elements of a single vector commitment can be
aggregated by any third party into a single proof for the subvector, and proofs for subvectors of multiple
commitments can be aggregated by any third party into a single proof for the multiple subvectors. We also
consider hiding while still supporting the aggregation property.

Next, we add same-commitment and cross-commitment aggregation to the vector commitments of
[LY10] to construct Pointproofs (Section 4). Our proof is a single point on a pairing-friendly curve (48
bytes at 128-bit security), whether for a single value, a subvector of values for a single commitment, or
a set of subvectors for multiple commitments. Our construction easily extends to support full hiding
of the commi�ed values at the cost of an additional exponentiation and no increase in commitment or
proof sizes. While the authors of [CF13, Section 3] point out that hiding in vector commitments can be
achieved generically by adding an inner layer of hiding commitments to individual values, this approach
does not automatically extend to aggregatable vector commitments, because proofs for the inner layer are
not automatically aggregatable.

We provide a design overview for applying Pointproofs to reduce storage requirements for blockchains
(Section 5). We speci�cally focus on smart contracts. Consider a smart contract with multiple variables.
�e current values (m1, . . . ,mN) of all the variables in a given contract are commi�ed to a single vector
commitmentC , one commitment per contract. To transact with the contract, one provides a 48-byte proof
π̂ of the current values of the variables needed for the transaction, which are then (optionally) updated
as a result of the transaction. When there are multiple smart contracts, cross-commitment aggregation
allows us to compress multiple proofs π̂1, . . . , π̂` into a single 48-byte proof π. �is essentially eliminates
the bandwidth overhead due to proofs in a proposed block, which, depending on the se�ing, can take up
more bandwidth than the values being proven.

When applied to smart contracts storage, Pointproofs can be used to reduce validators’ storage
requirements to 4.5 GB for 108 accounts while adding only 31 KB per block overhead for 1000 transactions
(assuming one open value per transaction). Alternative approaches to smart contracts require either (a)
extensive storage from validators (TBs), (b) a central entity to generate proofs for all users, or (c) introduce
at least an additional 60% bandwidth overhead per block. (See Section 5.2 for a more detailed comparison.)

We implement Pointproofs and show that Pointproofs are e�cient to produce, aggregate, verify, and
update for real-time use. We release our code to open source under the MIT license on GitHub [Alg20b].
In our benchmarks for a commitment for 1000 variables of a smart contract at 128-bit security level, a user
can produce a subvector proof for an arbitrary subset of variables (touched by a particular transaction) in
54-123ms; a block proposer can cross-commitment aggregate all these proofs, at the cost of about .07ms
per proof; a validator who stores commitments can verify the aggregated proofs in a block at the cost of
0.7–1.9ms per value veri�ed, and update commitments to re�ect new values of the variables (which change
in response to the transaction execution) at the cost of .0.2–0.3ms per variable updated (numerical ranges
are due to variations in the number of commitments and values proven per commitment).
Summary of Contributions. To summarize, our contributions are as follows:

• We formalize aggregatable vector commitments in the cross-commitment se�ing. We also formalize
the hiding property while also supporting aggregation.

• We construct Pointproofs based on bilinear groups and prove their security (in the algebraic group
and random oracle models).

3

• We show how to apply Pointproofs to smart-contract-based transactions on blockchains and
evaluate them compared to alternative solutions.

• We build Pointproofs and evaluate their performance for various parameters.

We envisage that there will be multiple possible applications for cross-commitment aggregation of
proofs. Just like signature aggregation can be bene�cial to compress multiple signatures produced by
di�erent users into a short signature—with applications ranging from sensor networks [AGH10] to internet
routing [BGR12] to consensus [DGNW20]—proof aggregation can help whenever multiple commi�ed
values produced by di�erent users are revealed. One can imagine many se�ings in which multiple
users or entities independently commit to their databases of records (e.g., public keys, healthcare records,
transactions, etc.) and concurrently produce proofs to reveal several commi�ed values. Cross-commitment
aggregation can be applied to save on bandwidth in such se�ings.

1.2 Related Work

�e idea of using commitments to trade storage for bandwidth in the context of blockchains has appeared
in multiple works in varying levels of detail, including [ST99, Mil12, Whi15, Tod16, But17, Dra17, RMCI17,
CPZ18, BBF19]. �e improvement of pu�ing multiple proofs together to save bandwidth in this context has
also appeared in a number of works, including [RMCI17, LM19, BBF19, CFG+20]. �ird-party aggregation
in blockchains has been explored more for signatures than for commitments [DGNW20]. Aggregating
commitment proofs is a natural counterpart to aggregating signatures.

�ere is a long line of work on authenticated data structures in general (going back at least to [Mer88])
and vector commitments speci�cally (�rst formalized in [LY10, CF13]). Constant-size proofs for a subvector
of values were also achieved in [KZG10, �a19]; unfortunately, the binding notion de�ned in [KZG10,
Section 3.4] is not strong enough to preclude openings to two inconsistent subvectors (this work was later
extended by [TAB+20] to achieve the necessary binding notion).

In Table 1, we compare our scheme to other subvector commitment commitments. Because of our
focus on constant-size proofs for multiple values, we omit vector commitment schemes that do not have
this feature [LY10, CF13, LRY16, CPZ18].2

�e starting point for our commitments is the scheme of Libert and Yung [LY10]. We simply augment
it with aggregation algorithms for proofs within the same commitment and across multiple commitments.
Our scheme, like the scheme of [LY10], requires public parameters whose size is linear in the size of the
commi�ed vector. Our public parameters are easy to keep short because of cross-commitment aggregation:
we can split up a long vector into shorter ones and simply aggregate the proofs (although this approach
increases the total size of the commitments, which cannot be aggregated).

Like the scheme of [LY10], our scheme relies on a q-type assumption. In order to prove security of
aggregation, we have to work in the algebraic group model and the random oracle model (see Section 2).
We can reduce these assumptions by lowering e�ciency and/or security requirements (see Appendices A
and B).

Following the work of Libert and Yung, there has been a long line of work on pairing-based vector
commitments, including [CF13, LRY16, LM19], and a parallel line of work on polynomial commitments
(starting with [KZG10]; see [BM+19] for an overview). None of these address aggregation. In Appendix C

2We note that Libert et al. [LRY16] describe an accumulator with a constant-size membership witnesses for multiple values;
in order to convert such an accumulator to a subvector commitment (using the conversion of [BBF19]), it would need to also
support constant-size nonmembership witnesses for multiple values.

4

we show that recent (independent of ours) construction of polynomial commitments with batch opening
by Boneh et al. [BDFG20] also gives vector commitments with aggregation, but with lower e�ciency than
our construction.

In a recent (and independent of ours) work, Campanelli et al. [CFG+20] introduced incremental
aggregation for proofs, which allows unbounded aggregation of already aggregated proofs (e�ectively
making aggregation an associative operation). �ey achieve it for same-commitment aggregation by
modifying hidden-order group constructions of [LM19, BBF19]. Our aggregation is not associative.3
In another recent (and independent of ours) work, Tomescu et al. [TAB+20] proposed pairing-based
commitments with same-commitment aggregation based on the work of [KZG10]; in their scheme, public
parameters needed to verify and update proofs are short.

1.3 Technical Overview of Our Scheme

Our starting point is a pairing-based vector commitment of Libert and Yung [LY10]; the novelty of our
work lies in the aggregation algorithms.

Let (G1,G2,GT) be a bilinear group of prime order p, along with a pairing e : G1 × G2 → GT and
generators g1, g2, gT = e(g1, g2) for G1,G2,GT respectively. Let α ∈ Zp be a secret value (known to no
one a�er the initial generation of public parameters). �e public parameters are given by 2N − 1 values
in G1, N values in G2, and one value in GT (which can be easily computed from the others):

gα1 , . . . , g
αN

1 , gα
N+2

1 , . . . , gα
2N

1 ; gα2 , . . . , g
αN

2 ; gα
N+1

T .

It is important that gαN+1

1 is missing in the public parameters.
A commitment to a vector m = (m1, . . . ,mN) ∈ ZNp is given by raising g1 to a polynomial with

coe�cients given by m (no constant term), evaluated at α:

C := g
∑N
i=1miα

i

1

To reveal mi, the commi�er computes a proof, which has a similar polynomial, but without mi, and with
a shi� so that mi, if it were present, would be the coe�cient of αN+1 instead of αi:

πi := g
∑
j 6=imjα

N+1−i+j

1 =
(
C/gmiα

i

1

)αN+1−i

�e proof can be veri�ed using

e(C, gα
N+1−i

2)
?
= e(πi, g2) · gα

N+1mi
T

Indeed, Libert and Yung [LY10] show that under a q-type assumption, the scheme is binding: namely,
it is hard to �nd a commitment C along with proofs (m0

i , π
0), (m1

i , π
1) with m0

i 6= m1
i satisfying the

above veri�cation equation. �e intuition for binding is quite simple. Note that the adversary does not get
gα

N+1

1 , and therefore the coe�cient of αN+1 in the exponent of π, even if adversarially produced, should
be 0. Comparing coe�cients of gαN+1

T on both sides of the veri�cation equation, we have that mi on the
right-hand-side of the veri�cation equation must match mi in C .

3It may be possible to augment our scheme to allow aggregation of already-aggregated proofs for both same-commitment and
cross-commitment cases, using the same hash-and-exponentiate approach as described below for aggregation (this would require
a careful choice of hash inputs and a new security proof). �is approach, even if secure, would not quite achieve associativity, as
the veri�er would need to know the sequence of aggregations.

5

Aggregation: �rst idea. Now, suppose the commi�er would like to reveal multiple values {mi : i ∈ S}
(where S ⊆ [N]) for a single commitment C via a very short proof πS . A natural idea is to take

πS =
∏
i∈S

πi

which can in turn be veri�ed using

e

(
C,
∏
i∈S

gα
N+1−i

2

)
?
= e(πS , g2) · g

αN+1
∑
i∈Smi

T

It is easy to see that this scheme is insecure, in that an adversary can commit to (m1,m2) = (1, 3) and then
provide a valid proof revealing (m1,m2) = (2, 2) for S = {1, 2}. Indeed, if we compare the coe�cients
of gαN+1

T on both sides of the veri�cation equation, it is easy to see that the adversary is only bound to∑
i∈Smi and not all of the values {mi : i ∈ S}. More generally, we need to prevent a�acks against

inconsistent reveals for possibly two di�erent sets, so that an adversary cannot, for example, “prove” that
(m1,m2) is (1, 3) and (m2,m3) is (2, 1).
Handling same-commitment aggregation. To get around these a�acks, we introduce additional
“random” scalars ti into the veri�cation equation:

e

(
C,
∏
i∈S

gα
N+1−iti

2

)
?
= e(πS , g2) · g

αN+1
∑
i∈Smiti

T

and compute the aggregate proof πS by πS =
∏
i∈S π

ti
i . �e scalars ti are computed by applying a hash

function H on some carefully chosen inputs depending on C, S, {mi : i ∈ S}. We note that a similar idea
appears in the context of aggregating signatures [BDN18].

To get an intuition for how introducing random scalars yields binding, let us once again look at the
coe�cient of gαN+1

T on both sides of the veri�cation equation. Now, the adversary is bound to
∑

i∈Smiti.
A standard argument tells us that for any {mi : i ∈ S} 6= {m′i : i ∈ S}, we have

Pr
[∑
i∈S

miti =
∑
i∈S

m′it
′
i

]
= 1/p

where the probability is over random ti ← Zp. �erefore, if the ti’s are indeed random, then the adversary
is also bound to {mi : i ∈ S}.

To formalize this intuition, we �rst need to model the hash function H as a random oracle [BR93] so
that we can carry out the above probabilistic argument. Furthermore, we need to restrict the adversary to
the so-called algebraic group model [FKL18] (see Section 2 for details), so that we can express adversarially
generated commitments C in terms of public parameters.
Handling cross-commitment aggregation. Now, suppose we have a collection of commitments Cj to
mj = (mj,1, . . . ,mj,N), along with proofs π̂j for mj [Sj], each satisfying

e

(
Cj , g

∑
i∈Sj

αN+1−itj,i

2

)
= e(π̂j , g2) · g

αN+1
∑
i∈Sj

mj,itj,i

T

We can again multiply these equations together to obtain:

∏
j

e

(
Cj , g

∑
i∈Sj

αN+1−itj,i

2

)
= e

∏
j

π̂j , g2

 · gαN+1
∑
j

∑
i∈Sj

mj,itj,i

T

6

For the same reason as before, this approach alone does not yield a secure scheme. Instead, we will
need to introduce additional random scalars t′j and use the following aggregate veri�cation equation:

∏
j

e

(
Cj , g

∑
i∈Sj

αN+1−itj,i

2

)t′j
?
= e(π, g2) · g

αN+1
∑
j

∑
i∈Sj

mj,itj,it
′
j

T

where the aggregated proof π :=
∏
j π̂

t′j
j .

2 Preliminaries

Notation Given a (column) vector v = (v1, . . . , vN), we use v[S] := (vi, i ∈ S) to denote the subvector
indexed by S, and v[−i] to denote v[[N] \ {i}], i.e., v with vi deleted. For a positive integer N , we denote
the set {1, . . . , N} by [N].
�eAlgebraic GroupModel (AGM) �e algebraic group model [FKL18] lies between the standard model
and the widely-used generic group model. In AGM, we consider only so-called algebraic adversaries. Such
adversaries have direct access to group elements and, in particular, can use their bit representation, like
in the standard model. However, these adversaries are assumed to output new group elements only
by applying the group operation to received group elements (like in the generic group model). �is
requirement is formalized as follows. Suppose an adversary is given group elements X1, . . . , XN ∈ G1.
�en, for every group element Z ∈ G1 that the adversary outputs, it must also output z1, . . . , zN ∈ Zp
such that Z =

∏N
i=1X

zi
i .

Security Assumption Let G1,G2,GT be multiplicative groups of prime order p with a nondegenerate
bilinear pairing e : G1 ×G2 → GT . Fix generators g1, g2, and gT := e(g1, g2) for the three groups.

We assume that the following variant of weak bilinear Di�e-Hellman exponent problem `-wBDHE∗ (see
[BBG05, BGW05, CKS09] for similar problems for symmetric pairings) is hard:

Input: gα1 , g
(α2)
1 , . . . , g

(α`)
1 ,

g
(α`+2)
1 , . . . , g

(α3`)
1 ,

gα2 , g
(α2)
2 , . . . , g

(α`)
2 ,

for α $← Zp

Compute: g(α
`+1)

1

�e advantage Adv`-wBDHE∗
G1×G2

(A) of an adversary A is de�ned as its probability in solving this problem.
As shown in [BBG05] (for a slight variant), the assumption holds in the generic bilinear group model.
Concretely, for the BLS12-381 pairing-friendly curve with ` = 32, the best a�ack has complexity 2112

[Che06] (more generally, roughly
√
p/`).

�e Random Oracle Model (ROM) Our security proofs are in the random oracle model, formalized in
[BR93]: we model a cryptographic hash function as a truly random function, accessible to all parties only
via oracle queries. We will use two random oracles H and H ′, both with output space Zp.

7

3 De�ning Vector Commitments with Aggregation

We de�ne aggregatable vector commitments in two steps: �rst, we consider aggregation of proofs for a
single commitment; then, we discuss aggregating such same-commitment aggregated proofs into a single
cross-commitment proof.

3.1 Same-Commitment Aggregation

A vector commitment with same-commitment aggregation for message spaceM consists of the following
polynomial-time algorithms Setup,Commit,UpdateCommit,Aggregate,Verify:

• pp ← Setup(1λ, 1N). Outputs public parameters that will be used by all parties to commit to
message vectors of length N (inputs are given in unary to allow for running time polynomial in
λ and N). �e public parameters will be provided as an implicit input to the remaining algorithms,
including the adversary in the security de�nition. Even though the parameters are public, their
generation may involve secret randomness that should not be known to the adversary. How
to generate parameters in a trustworthy manner (which is crucial for security) depends on the
application.

• C ← Commit(m; r). Takes as input a vector m ∈ MN along with randomness r and outputs a
commitment C .

• C ′ ← UpdateCommit(C, S,m[S],m′[S]). Takes as input a commitment C and updates the
positions in S from m[S] to m′[S] to produce a new commitment C ′.

• πi ← Prove(i,m, r). Takes as input an index i ∈ [N] and (m, r) used in Commit and outputs a
proof πi.

• π̂ ← Aggregate(C, S,m[S], {πi : i ∈ S}). Takes as input a commitmentC , a set of indices S ⊆ [N]
with the corresponding proofs {πi : i ∈ S} (computed using Prove) and outputs an aggregated
proof π̂.

• b← Verify(C, S,m[S], π̂). Takes as input a commitment C , a set of indices S ⊆ [N] along with an
aggregated proof π̂, and outputs whether C is a commitment to a message vector consistent with
m[S].

For simplicity of presentation and without loss of generality, we assume that Verify always operates
on aggregated proofs, even for a set of size 1. It should be noted that there may be more e�cient ways to
compute an aggregated proof than via several invocations of Prove followed by a single Aggregate; these
e�ciency improvements, while helpful for performance, do not a�ect our de�nitions. Similarly, there may
be more e�cient ways than invoking Prove to update existing proofs when commitments are updated; we
do not formally de�ne proof updates as a separate algorithm here.
Correctness of opening. For all λ,N,m ∈MN , S ⊆ [N], we have

Pr

pp← Setup(1λ, 1N)
C ← Commit(m; r)
πi ← Prove(i,m, r), ∀i ∈ S
π ← Aggregate(C, S,m[S], {πi : i ∈ S})
Verify(C, S,m[S], π̂) = 1

 = 1

8

Correctness of updates. For all λ,N,m,m′ ∈ MN , S ⊆ [N], r such that m[[N] \ S] = m′[[N] \ S′],
we have:

UpdateCommit(Commit(m; r), S,m[S],m′[S]) = Commit(m′; r)

Note that in our de�nition, updates are deterministic. Other de�nitions are also possible. See
Section 3.3 for further discussion.
Binding. For every N and every adversary running in time polynomial in λ, the probability of �nding

C, (π̂0, S0,m0[S0]), (π̂1, S1,m1[S1])

such that

• Verify(C, Sb,mb[Sb], π̂b) = 1 for both b = 0 and b = 1;

• m0[S0 ∩ S1] 6= m1[S0 ∩ S1]

(assuming parameters generated by Setup(1λ, 1N)) is negligible in λ.
One can also consider a weaker notion of binding, in which the commitment C must be honestly

computed by Commit (on some, possibly adversarially chosen, messages) rather than chosen arbitrarily
by the adversary. �is notion o�en su�ces in blockchain applications. See Appendix B for details.

3.2 Cross-commitment aggregation

Cross-commitment aggregation adds two algorithms to aggregate proofs across ` commitments :

• π ← AggregateAcross({Cj , Sj ,mj [Sj], π̂j }j∈[`]) Takes as input a collection ({Cj , Sj ,mj [Sj] }j∈[`])
along with the corresponding same-commitment-aggregated proofs { π̂j }j∈[`] (computed using
Aggregate) and outputs an aggregated proof π.

• b ← VerifyAcross({Cj , Sj ,mj [Sj] }j∈[`], π). Takes as input a collection ({Cj , Sj ,mj [Sj] }j∈[`])
along with a cross-commitment-aggregated proof π, and checks that Cj is a commitment to a
message vector consistent with mj [Sj] for all j ∈ [`].

We require the same correctness of opening as before, extended to cross-commitment aggregation in
a natural way.

�e binding property also extends naturally: to win, the adversary now needs to �nd

{Cbj }j∈[`b] and (πb, {Sbj ,mb[Sbj] }j∈[`b]) for b = 0 and b = 1

such that

1. VerifyAcross({Cbj , Sbj ,mb
j [S

b
j] }j∈[`b], πb) = 1 for both b = 0 and b = 1

2. ∃j0 ∈ [`0], j1 ∈ [`1] : m0
j0 [S0

j0 ∩ S
1
j1] 6= m1

j1 [S0
j0 ∩ S

1
j1] and C0

j0 = C1
j1 .

As a sanity check, observe that for the special case `0 = `1 = 1, the winning condition stipulates that
j0 = j1 = 1 and C0

1 = C1
1 , matching same-commitment binding, except with VerifyAcross in place of

Verify.
As part of binding, we also need to make sure that a cross-commitment aggregated proof cannot be

used to prove an opening that is inconsistent with a same-commitment opening. Formally, this means this
that for the case of `0 = 1, we allow the adversary to win also if Verify(C0

1 , S
0
1 ,m

0
1[S

0
1], π0) = 1, even if

VerifyAcross({C0
1 , S

0
1 ,m

0
1[S

0
1]}, π0) = 0.

9

3.3 Hiding

Vector commitments optionally include the hiding property, which we now de�ne. For this paper, we
consider simulation-based statistical security, which stipulates that there exists an e�cient randomized
simulator (Setup∗,Commit∗,Prove∗) with the following properties. Setup∗ outputs pp and a trapdoor
td. Commit∗(; r) takes no inputs except randomness, and outputs a random fake commitment C . Prove∗,
given the trapdoor, an r used to produce a fake C , an index i, and a valuemi, produces a fake proof π. �e
main idea of the de�nition is that fake proofs are statistically indistinguishable from real ones, even given
the commitments, and even if the commi�ed messages are chosen adversarially. �is indistinguishability is
de�ned below. �e intuition is that since fake commi�ing and fake proving doesn’t involve any messages
but the one being proven, it follows that fake commitments and proofs leak no information about other
messages, and therefore, by indistinguishability, neither do real ones. �is intuition is formalized below
via a standard oracle-based de�nition.

Let a stateful real oracle O-real(pp) take two types of queries: a query mj chooses a random rj
and returns Commit(m;rj), while a query (j, i) returns Prove(i,mj , rj). Let a stateful simulated oracle
O-sim(pp, td) respond to the same types of queries as follows: a query mj chooses a random rj and runs
Commit∗(; rj) to get a random fake commitment, while a query (j, i) returns Prove∗(td, rj , i, (mj)i).
Crucially for the hiding property, Commit∗ gets no information about mj , while Prove∗ gets (mj)i but no
information about mj [−i].

�e hiding property states that for every stateful computationally unbounded adversary A, the
following two distributions are at most negligibly far:

[
pp← Setup(1λ, 1N);

output AO-real(pp)

]
,

[
(pp, td)← Setup∗(1λ, 1N);

output AO-sim(pp,td)

]
Note that even though the hiding de�nition does not explicitly refer to aggregated proofs as computed

using Aggregate, it does imply a meaningful security guarantee for aggregated proofs, because they are
results of public computations on existing proofs. For example, an adversary who sees m2,m3 along with
an aggregated proof π{2,3} learns nothing about m1,m4, because the inputs to the aggregation algorithm
include only π2, π3, m2, and m3.

Our updates are de�ned to be deterministic, and thus reveal the relationship between the pre- and post-
update commi�ed vectors. One can additionally de�ne a rerandomization algorithm that, when performed
a�er a deterministic update, will hide this relationship. Our scheme supports such rerandomization (see
Section 4.5). We do not formally address this hiding property.

4 Our Construction

Understanding intuition behind our scheme, described in Section 1.3, will help make sense of the formal
details presented in this section. We use the notation (including pairing groups of order p and random
oracles H,H ′) from Section 2.

Our message spaceM is Zp; we can handle general message spaces {0, 1}∗ by hashing to Zp using a
collision-resistant hash function.

10

4.1 Same-Commitment Aggregation

Here, both Commit and Prove are deterministic.

• Setup(1λ, 1N). Samples α← Zp and outputs

ga1 = (gα1 , . . . , g
αN

1),

g
αNa[−1]
1 = (gα

N+2

1 , . . . , gα
2N

1),

ga2 = (gα2 , . . . , g
αN

2)

where
a := (α, α2, . . . , αN)

In fact, it is su�cient for the prover to hold ga1 , g
αNa[−1]
1 and for the veri�er to hold ga2 , gα

N+1

T =

e(gα1 , g
αN
2).

Note that α must never be known to the adversary.

• Commit(m), for m ∈ ZNp . Outputs

C := gm
>a

1 = g

∑
i∈[N]miα

i

1

• UpdateCommit(C, S,m[S],m′[S]). Outputs

C ′ := C · g(m
′[S]−m[S])>a[S]

1 = C · g
∑
i∈S(m

′
i−mi)αi

1

• Prove(i,m). Outputs

πi := g
αN+1−im[−i]>a[−i]
1 = g

∑
j∈[N]−{i}mjα

N+1−i+j

1

Note that anyone can compute gα
N+1−ia[−i]

1 for all i ∈ [N] given pp. If a value mj at index j 6= i

changes m′j , a proof can be updated in a way similar to a commitment: π′ := π · g
(m′j−mj)αN+1−i+j

1 .
If mi changes, then the proof π need not be updated (but the commitment C does).

• Aggregate(C, S,m[S], {πi : i ∈ S}). Outputs

π̂ :=
∏
i∈S

πtii

where
ti = H(i, C, S,m[S])

• Verify(C, S,m[S], π̂). Checks that

e

(
C, g

∑
i∈S α

N+1−iti
2

)
?
= e(π̂, g2) · g

αN+1
∑
i∈Smiti

T

where ti is the same as in Aggregate.

11

Implementation and E�ciency. We now discuss a few implementation details. We summarize the
performance of our scheme (including algorithms from Section 4.2) in Table 2.

• Setup can be performed securely and e�ciently via a large-scale distributed computation, similar to
[BGM17], but simpler because of the structure of the parameters [Suh19]. �e �rst party chooses α1

and generates its own public parameters according to Setup; each subsequent party i, in sequence,
chooses a secret αi and raises each element of the public parameters generated so far to the
appropriate power ofαi; at the end, we will useαs generated by a public random beacon for one �nal
rerandomization, so that the �nal α = αs ·

∏
i αi. Furthermore, each party will prove knowledge

of αi, and each party will use the output of the previous party only if this proof of knowledge is
consistent with �rst elements of the ga1 and ga2 vectors, and if the appropriate pairing relationships
between the various group elements hold (to ensure the remaining elements of the parameters are
computed correctly).

• Commit takes nz(m) G1-exponentiations and Prove takes one fewer, where nz(m) is the number of
non-zero entries in the vector m. We note that products of exponentiations are considerably more
e�cient than separate exponentiations—via, for example, Pippenger’s algorithm [Pip80].

• When producing a proof π̂ for m[S] where S is known in advance, it is faster to compute the proof
directly using the formula

π̂ =
N∏
k=2

gckα
k

1 ·
N−1∏
k=1

g
cN+1+kα

N+1+k

1

where

ck =
∑

i∈S,i≥N−k+2

mk+i−N−1ti

cN+1+k =
∑

i∈S,i≤N−k
mk+iti

instead of running Prove multiple times followed by Aggregate. �e cost of this computation
is a product of min(2N − 2, |S| · nz(m)) G1-exponentiations (to be more precise, the 2N − 2
term can be replaced with N + max(S) − min(S) − 1, because c2, . . . , cN+1−max(S), cN+1, and
c2N−min(S)+2, . . . , c2N are 0).

• For Verify, because operations in G1 are typically faster than in G2, which are faster than in GT , it
is more e�cient to compute r = (

∑
i∈Smiti)

−1 mod p (the special case when the inverse does not
exist needs to be handled separately) and check

e

(
C, g

r
∑
i∈S α

N+1−iti
2

)
· e
(
π̂−r, g2

) ?
= gα

N+1

T

Note that a product of two pairings can be computed considerably faster than two separate pairings
(because the time-consuming �nal exponentiation needs to be performed only once). Note also that
if |S| = 1 and we set ti = 1 for the sole i ∈ S, as discussed above, then it is more e�cient to move
exponentiation to G1 and compute the �rst term as (Cr, gα

N+1−i
2).

12

• For |S| = 1, we could set ti = 1 for the single i ∈ S (this le�ing π̂ = πi and eliminating the need
for Aggregate) to save work. All the proofs go through unchanged, because all ti values (except 0,
which occurs with probability 1/p) are functionally equivalent to ti = 1, via raising the veri�cation
equation to 1/ti. It may be worthwhile to create a special case for |S| = 1 in an implementation to
save on Aggregate, depending on how frequent this case is.

Operation Time
Commit nz(m)-exp1
Prove nz(m)-exp1
Aggregate |S|-exp1
Same-Aggr. Prove min(2N − 2, |S| · nz(m))-exp1
Verify 1-exp1+|S|-exp2 + 2-pp
AggregateAcross `-exp1
VerifyAcross 1-exp1 +

∑
j(|Sj |-exp2) + (`+1)-pp

Table 2: Concrete e�ciency of our scheme, ignoring costs of hashing and Zp operations. Here, nz(m)
denotes the number of non-zero entries in the vector m, k-expi denotes a product of k exponentiations in
Gi, and k-pp denotes a product of k parings.

Proof of correctness. First, we show that for all i ∈ [N], πi = Prove(i,m) = g
αN+1−im[−i]>a[−i]
1

satis�es:

e(C, gα
N+1−i

2) = e(πi, g2) · gα
N+1mi

T (1)

Observe that

m>a = m[−i]>a[−i] + αimi

Multiplying both sides by αN+1−i yields

(m>a)αN+1−i = αN+1−im[−i]>a[−i] + αN+1mi

and thus
e(gm

>a
1 , gα

N+1−i
2) = e(g

αN+1−im[−i]>a[−i]
1 , g2) · gα

N+1mi
T

and (1) holds. To show correctness of aggregated proofs, we �rst raise both sides of (1) to the power ti, to
get

e(C, gα
N+1−iti

2) = e(πtii , g2) · g
αN+1miti
T

Multiplying these equations for all i ∈ S yields

e

(
C, g

∑
i∈S α

N+1−iti
2

)
= e

(∏
i∈S

πtii , g2

)
· gα

N+1
∑
i∈Smiti

T

Correctness for updates follows readily from the equality:

m′
>
a = (m′[S]−m[S])>a[S] + m>a

13

4.2 Cross-Commitment Aggregation

We describe the following additional algorithms:

AggregateAcross({Cj , Sj ,mj [Sj], π̂j }j∈[`]). Outputs

π :=
∏̀
j=1

π̂
t′j
j

where
t′j = H ′(j, {Cj , Sj ,mj [Sj]}j∈[`])

VerifyAcross({Cj , Sj ,mj [Sj] }j∈[`], π). Checks that

∏̀
j=1

e

(
Cj , g

∑
i∈Sj

αN+1−itj,i

2

)t′j
?
= e(π, g2) · g

αN+1
∑
j∈[`],i∈Sj

mj,itj,it
′
j

T

where

tj,i = H(i, Cj , Sj ,mj [Sj]),

t′j = H ′(j, {Cj , Sj ,mj [Sj]}j∈[`]),
mj = (mj,1, . . . ,mj,N)

Implementation and E�ciency. Recall that a summary of computational costs is given in Table 2.

• Similarly toVerify, it is faster to implementVerifyAcross by computing r = (
∑

j∈[`],i∈Sj mj,itj,it
′
j)
−1

mod p (with a special case for the inverse does not exist) and checking that

e(π−r, g2) ·
∏̀
j=1

e

(
Cj , g

rt′j
∑
i∈Sj

αN+1−itj,i

2

)
?
= gα

N+1

T

• We note that when ` = 1, we could set t1 = 1, thus eliminating the need for AggregateAcross
and se�ing VerifyAcross = Verify. �is modi�cation is similar to the case of |S| = 1 for same-
commitment aggregation and works for the same reason.

Proof of correctness. By correctness of π̂j , each π̂j satis�es its veri�cation equation. Raising jth
veri�cation equation to t′j and multiplying over all j ∈ [`] yields the desired equality.

4.3 Proof of binding for same-commitment aggregation

Our scheme satis�es binding for same-commitment aggregation in the AGM+ROM model under the
`-wBDHE∗ assumption (as described in Section 2).
Proof intuition. Suppose the adversary computes C = gz

>a
1 and provides an accepting proof π̂ for

(S,m[S]) where m[S] 6= z[S]. Note that the adversary does not get gαN+1

1 , and so the coe�cient of αN+1

14

in logg1 π̂ should be 0. Comparing coe�cients of gαN+1

T on both sides of the veri�cation equation, we
therefore have

z[S]>t ≡p m[S]>t ,

where t = (H(i, C, S,m[S]), i ∈ S). Now, suppose t ← Z|S|p is chosen uniformly at random a�er
(S, z[S],m[S]) are �xed, in which case

Pr
t

[
z[S] 6≡p m[S] and z[S]>t ≡p m[S]>t

]
= 1/p .

To ensure the uniform choice of t for any �xed (S, z[S],m[S]), we note that C determines z in AGM and
that C , S, and m[S] are input to the random oracle H(i, ·, ·, ·), which produces ti.
On the necessity of inputting S andm[S] to H . �e a�acker wins if∑

i∈S
ziti ≡p

∑
i∈S

miti (2)

(as long as zi 6= mi for some i ∈ S). �us, if ti can be determined withoutmi, the a�acker could simply �x
all values but a single mi and solve for the remaining mi. Moreover, even if we hash the actual messages
�rst (and thus mi values are random, rather than under the a�acker’s control), Wagner’s a�ack [Wag02]
yields a 2

√
log p algorithm that given {ziti,miti}i∈[N], computes a set S of size 2

√
log p such that (2) holds.

�is yields a 2
√
log p a�ack if we set ti = H(i, C) instead of H(i, C, S,m[S]). At 128-bit security level

for the curve (i.e., log p ≈ 256), we have 2
√
log p ≈ 216, which makes for a very practical a�ack! It seems

plausible that the a�ack also extends to the se�ing of ti = H(i, C, S): it would su�ce to extend Wagner’s
algorithm to �nding values that sum to a given constant, because the values of the elements of S are not
commi�ed, and thus, although

∑
i∈S ziti is �xed, the a�acker can choose from a list of random mi for

each i ∈ S.
Analysis. �e formal analysis proceeds in two steps.
Step 1: bounding “lucky” queries. Consider any query (?, C, S,m[S]) that an algebraic adversary (on input
pp) makes to H . Since the adversary is algebraic, it must output z ∈ ZNp ,y ∈ ZN−1p such that

C = g
z>a+αNy>a[−1]
1 = g

∑
i∈[N] ziα

i+
∑
j∈[N−1] yjα

N+1+j

1

We say that the query is “H-lucky” if

m[S] 6≡p z[S] and (m[S]− z[S])>t) ≡p 0 ,

where t = (H(i, C, S,m[S]) : i ∈ S). Note that a query is H-lucky with probability at most 1/p. Here
we use the fact that the query to H �xes (S,m[S], z[S]).

By the union bound, the probability that an adversary makes anH-lucky query is at most qH/p, where
qH is the number of queries to H . Below, we assume this never happens.
Step 2: extracting gα

N+1

1 . Now, we will show that a winning algebraic adversary can be used to compute
gα

N+1

1 , contradicting `-wBDHE∗.
Consider the output of a winning algebraic adversary

C, {Sb,mb[Sb], π̂b}b=0,1

15

together with z,y such that C = g
z>a+αNy>a[−1]
1 . Since m0[S0 ∩S1] 6= m1[S0 ∩S1], it must be the case

that either m0[S0] 6= z[S0] or m1[S1] 6= z[S1]. Let (S∗,m∗, π̂∗) be such that

m∗[S∗] 6= z[S∗] and Verify(C, S∗,m∗[S∗], π̂∗) = 1

Since π̂∗ is an accepting proof, we have:

e(C, g
∑
i∈S∗ α

N+1−iti
2) = e(π̂∗, g2) · gα

N+1m∗[S∗]>t
T

where ti = H(i, C, S∗,m∗[S∗]). �is implies

C
∑
i∈S∗ α

N+1−iti = π̂∗ · gα
N+1m∗[S∗]>t

1

We can write the LHS as a product of terms that involve gαN+1

1 and terms that do not, namely(
g
αN+1z[S∗]>t
1

)
·
(

g
∑
i∈S∗ α

N+1−iz[−i]>a[−i]ti
1︸ ︷︷ ︸

depends on gα2

1 , . . . , gα
N

1 , gα
N+2

1 , . . . , gα
2N

1

)
·
(
g
αNy>a[−1]

∑
i∈S∗ α

N+1−iti
1︸ ︷︷ ︸
depends on gαN+3

1 , . . . , gα
3N

1

)

Moving the terms involving gαN+1

1 to the RHS, we obtain(
g
∑
i∈S∗ α

N+1−iz[−i]>a[−i]ti
1

)
·
(
g
αNy>a[−1]

∑
i∈S∗ α

N+1−iti
1

)
· (π̂∗)−1 = g

αN+1(m∗[S∗]−z[S∗])>t
1

Now, recall that m∗[S∗] 6= z[S∗] and that there are no H-lucky queries, so we must have (m∗[S∗] −
z[S∗])>t 6≡p 0, and therefore we can compute its inverse r modulo p and raise both sides of the preceding
equation to the power r to get gαN+1

1 on the RHS. Since the LHS is something we can compute given the
output of the adversary and ga1 , g

αNa[−1]
1 , gα

2Na
1 , we can compute gαN+1

1 .

4.4 Proof of binding for cross-commitment aggregation

Our scheme satis�es binding for cross-commitment aggregation under the same models and assumptions
as for same-commitment aggregation.
Step 1: bounding “H-lucky” queries �is step is the same as for same-commitment aggregation.
Step 2: bounding “H ′-lucky” queries Consider any query (?, {Cj , Sj ,mj [Sj] }j∈[`]) that an algebraic
adversary makes to H ′. Since the adversary is algebraic, it must output { zj ,yj }j∈[`] such that

Cj = g
z>j a+αNy>j a[−1]
1

We say that the query is “H ′-lucky” if

∃j : (mj [Sj]− zj [Sj])
> tj 6≡p 0 and

∑̀
j=1

(mj [Sj]− zj [Sj])
> tjt

′
j ≡p 0

where tj = (H(i, Cj , Sj ,m[Sj]), i ∈ Sj). A query is H ′-lucky with probability at most 1/p. Here we
use the fact that the query to H ′ �xes { (Sj ,mj [Sj], zj [Sj]) }j∈[`].

16

Step 3: extracting gα
N+1

1 . Consider the output of a winning adversary. It contains {Cbj }j∈[`b] for b = 0, 1;

because the adversary is algebraic, it also contains zbj ,ybj such that Cbj = g
zbj
>
a+αNybj

>
a[−1]

1 . �e winning
conditions speci�es j0 and j1 such that C0

j0 = C1
j1 ; regardless of what the adversary outputs, we will set

z1j1 = z0j0 and y1
j1 = y0

j0 . �is allows to us to apply the same reasoning as in the same-commitment case
to argue that either m0

j0 or m1
j1 is distinct from z0j0 = z1j1 . �at is, for ∗ equal to either 0 or 1,

m∗j∗ [S
∗
j∗] 6= z∗j∗ [S

∗
j∗] and

(VerifyAcross({C∗j , S∗j ,m∗j [S∗j] }j∈[`∗], π∗) = 1

or (`∗ = 1 and Verify(C∗1 , S
∗
1 ,m

∗
1[S
∗
1], π∗) = 1)) .

If Verify(· · ·) = 1, we use the argument for same-commitment aggregation. If VerifyAcross(· · ·) = 1,
then via a similar calculation we deduce that

g

∑`∗
j=1

∑
i∈S∗

j
αN+1−iz∗j [−i]>a[−i]tj,it′j

1 ·
(
g
∑`∗
j=1 α

Ny>j a[−1]
∑
i∈S∗ α

N+1−itj,it′j
1

)
·(π∗)−1 = g

αN+1
∑`∗
j=1(m

∗
j [S
∗
j]−z∗j [S∗j])>tjt′j

1

�e LHS of the equation above does not depend on gαN+1

1 . Since there are no H-lucky queries, it must
be the case that

(m∗j∗ [S
∗
j∗]− z∗j∗ [S

∗
j∗])
>tj∗ 6≡p 0 .

Moreover, since there are no H ′-lucky queries, we have

`∗∑
j=1

(m∗j [S
∗
j]− z∗j [S

∗
j])>tjt

′
j 6≡p 0 .

We can then compute gαN+1

1 the same way as for the same-commitment case.

4.5 Adding hiding

�e technique is identical to the one of Libert and Yung [LY10]. We will introduce a random coordinate
into the exponent vector used by Commit, so that the commitment itself becomes uniformly distributed
and thus leaks no information about m. �is small change su�ces to get hiding, because proofs do not
leak additional information. Speci�cally, an accepting proof πi formi is uniquely determined given C,mi,
and therefore leaks no additional information about m apart from C,mi, thus providing information-
theoretic privacy for m[−i]. �e same holds for aggregated proofs, which use no information except for
the commitments, the proofs, and the messages being opened.
Scheme. Let (Setup0,Commit0,Prove0,Aggregate0,Verify0) denote our non-private scheme. Our private
scheme is as follows:

Setup(1λ, 1N−1). Run Setup0(1
λ, 1N).

Commit(m; r ← Zp). Run Commit0(m‖r).

Prove(i,m, r). Run Prove0(i,m‖r).

17

�e remaining algorithms Verify and Aggregate are exactly as before.
Proof of binding. Follows from binding of the underlying scheme.
Proof of privacy. We construct the simulator as follows:

Setup∗(1λ, 1N−1). Same as Setup with td = (α).

Commit∗(; r ← Zp). Outputs C ← gr1.

Prove∗(α, r, i,mi). Computes C ← gr1 and outputs

πi = Cα
N+1−i · g−α

N+1mi
1

�is simulator is perfect, in the sense that the real and the simulated distributions are identical, rather than
merely close, as can be seen by the following simple hybrid argument:

• First, we replace (Setup,Prove) with (Setup∗,Prove∗). Here, we think of Prove∗ as taking input the
commitmentC (as output by Commit) instead of r. �is follows from the fact that Setup,Setup∗ are
identically distributed, and the output of Prove∗ is identical to the output of Prove for every given
pp, C, i,mi (because it is the only input that will pass veri�cation).

• Next, we replace Commit with Commit∗. �is follows from the fact that the output of each Commit
is a uniformly random group element in G1; this extends readily to the se�ing with multiple
commitments.

Rerandomization Note that a commitment can be rerandomized via multiplication by (gα
N

1)r
′ . �is

procedure will allow us, in particular, to hide the fact that a pre- and a post-update commitment are related.

5 Pointproofs in Blockchains

In this section, we describe how Pointproofs can result in signi�cant e�ciency improvements in blockchain
applications and empirically evaluate their performance.
Background on Blockchains For our purposes, a blockchain is an append-only public ledger that
consists of blocks, with every block containing some number of transactions. �e fundamental problem
in blockchains is to agree on a new block. Regardless of how this problem is solved, this agreement
involves someone proposing a block, and then multiple parties, whom we will call validators, verifying
that the transactions included in the proposed block are valid. Who these validators are is not essential
for our purposes: they may be chosen by some selection method (as is o�en the case in the proof-
of-stake blockchains) or self-selected (as in the proof-of-work blockchains). Similarly, the underlying
consensus protocol may be randomized and select a commi�ee to certify each block of transactions (as
in Algorand [GHM+17], Ouroboros [DGKR18], Snow White [DPS19], �underella [PS18]) or mine based
on the heuristic longest-chain rule (as in Bitcoin [Nak09] and Ethereum [But14]).

Simple transactions send money from one account to another. More complex transactions may be
veri�ed by a complicated piece of code, known as a smart contract. Execution of the smart contract
may also depend on its memory. For example, a smart contract may implement the rules of a securities
exchange, and its memory may be used to store the holdings of various entities in the exchange. A
transaction may be valid or invalid depending on the values stored in some of the memory locations;
it may also modify memory locations upon successful execution.

18

�us, to validate transactions, validators need to know the current state of the account balances, or,
more generally, of the values stored in the memory of various smart contracts. Some participants (so-called
“archival nodes”) may choose to maintain the entire state of all balances and smart contracts and perhaps
even provide access to it as a service. However, maintaining this state increases the memory requirements
on transaction validators, making participation in the consensus protocol more costly. We would like to
permit participation by some validators who are not archival node and thus do not incur the high storage
cost.

To reduce the amount of storage required of validators, many authors (including [ST99, Mil12, Whi15,
Tod16, But17, Dra17, RMCI17, CPZ18, BBF19]) proposed that validators instead store commitments to
vectors of relevant values instead of the values themselves. (�ese proposals are sometimes referred to
as “stateless clients” or “stateless blockchains.”) Transactions would then include the values on which
they depend, together with the proofs of correctness of these values with respect to the commitments
stored by the validators (which the validators would update a�er successful transactions). �is approach
suggests a natural tradeo� between storage, bandwidth, and computation. Ideal commitment schemes for
this application would have small commitments and proof sizes and add li�le computation and bandwidth
overheads to the validators.

5.1 Accounts with large memory for smart contracts

We now focus on smart-contract-based transactions. We abstract the model of computation and describe
how to apply Pointproofs to save on storage and bandwidth requirements. Subsequently, in Section 5.2,
we compare our application of Pointproofs in smart contracts with alternative designs.
Modeling smart contracts We abstract smart contracts using the following model.

• �e system has multiple accounts. Each account a is associated with a smart contractPa (a predicate)
and account memory ma = (m1, . . . ,mN) (a sequence of values).

• A transaction T involves one or more accounts. If it involves account a, it may need to read and
perhaps modify ma at some locations S ⊆ [N], changing those entries from ma[S] to m′a[S]. �e
transaction T is valid only if Pa(T,ma[S]) = 1; if so, the transaction computes possibly new values
for m′a[S].

In a basic implementation without commitments, each validator would store account memory ma for
every account a in order to be able to validate the transactions; the validators would update this memory
whenever a transaction modi�es it.
Using Pointproofs in smart contracts. We can use Pointproofs to reduce validator storage as follows
(see Figure 1):

• �e public parameters are generated as discussed in Section 4.1 and either hard-coded into the
so�ware or posted on the blockchain.

• �e owner of account a holds (Pa,ma) and generates a commitment Ca to ma using Commit.

• Each validator stores (Pa, Ca) instead of (Pa,ma). Here we assume the predicatePa is small and can
be stored on-chain or hardcoded in the blockchain platform and called by “reference”. (Alternatively,
it may be included in the memory of the account ma.)

19

tx1

S1

P1,m1

account 1

(m1[S1], π̂1)

tx2

S2

P2,m2

account 2

(m2[S2], π̂2)

tx3

S3

P3,m3

account 3

(m3[S3], π̂3)

π̂1, π̂2, π̂3 7→ π

block proposer

{ma[Sa]}a=1,2,3, π

stores {Pa, Ca}a=1,2,3

validator

Figure 1: Using Pointproofs for smart-contract-based transactions txa.

• A transaction T that reads and/or modi�es ma at locations S must be submi�ed with (S,ma[S])
and the proof π̂ for these values (computed using Prove and Aggregate). �is proof can be generated
by the owner of a (or the computation may be delegated to someone else).

• A block proposer generates a block B of ` transactions, and cross-commitment aggregates all `
proofs into a single proof π by running AggregateAcross algorithm. (If transactions need to be
veri�ed before being included in a block—for example, to protect against denial of service a�acks—
this is done by using Verify to check the correctness of ma[S], and then running P .) �e block
B includes {T, S, ma[S]} and the single aggregated proof π, but single-commitment proofs π̂ are
omi�ed. �e block is then passed to the validators speci�ed by the consensus.

• Each validator receives ({T, S, ma[S]}, π) and checks the correctness of all ma[S] values using the
aggregate proof π by calling VerifyAcross. Each validator then veri�es all individual transactions T
in the block using the relevant smart contracts Pa and the already veri�ed values ma[S].

• Once the block is agreed upon (whatever consensus mechanism is used), validators update the
commitments for all accounts a�ected by the transactions in the block, by running the transactions
to �gure out the new memory values m′a[S] and using UpdateCommit.

5.2 Alternative Approaches

We brie�y summarize how our design compares with two alternative designs for smart contracts.

• Naive Approach: all validators store cleartext data ma for all accounts. �e main advantage of this
approach is that there are zero bandwidth and computation overheads. In this design, the validators’
storage grows signi�cantly with the total number of accounts. In Table 4, we show an example with
the total storage for 108 accounts at almost 3 TB.

20

• One global commitment: in this design, all validators store a single commitment for all accounts
memories: C = Commit({ma}). Also, there is a single entity (or a collection of entities) that is
responsible for generating proofs for individual transactions. �at is, when a user of an account
a wants to submit a transaction T that depends on ma[S], the user requests a proof π from the
central entity and submits the tuple (T,ma[S], S, π) to the network. �e validators check the
transaction and update the global commitment. One could use a variety of commitment schemes,
such as Merkle Trees, [LM19] or [BBF19] commitments. �e advantage of this design is the minimal
storage requirements from the validators: they store one short commitment to the entire state of
the system. However, a major drawback of this design is that it relies on a central entity to generate
proofs for all users. In the solution we described above, where validators store one commitment per
account, we already reduce the validators’ storage to a few gigabytes (4.5 GB using Pointproofs for
108 accounts), which is small enough for most modern computers. We believe it is not justi�ed to
reduce this storage even further at the expense of introducing a central entity to the system that
must be trusted for data availability.

5.3 Evaluation

We implemented Pointproofs in Rust [Alg20b] and evaluated their performance. Our timing benchmarks
were on Ubuntu running on Intel(R) Xeon(R) CPU E5-2686 v4 at 2.30 GHz. Our implementation is single-
threaded, but all functions can easily be parallelized over multiple threads. For algebraic operations we
enhanced [Alg20a] the Rust pairing library [ZkC19]. More recent implementation of pairings (such as
[SL20]) are likely to provide a noticeable speed-up to our benchmarks.
Storage. We start by evaluating the storage savings introduced, applying Pointproofs to commit to
accounts memory as described in Section 5.1. In all experiments, we assume every account memory
holds N = 1000 variables. Each variable stores a 32 bytes value. We compare the schemes of
Lai and Malavolta [LM19] over pairing and class-groups (LM-CDH, LM-CG), scheme of Boneh, Bünz,
and Fisch [BBF19] based on RSA (BBF), and Pointproofs. For LM-CDH and Pointproofs, we place the
commitment and proofs in G1, since that results in smaller commitments and proof sizes. Table 3 shows
the sizes of commitments, openings, and public parameters of various schemes. For class groups, we use
a 2048-bit group. For pairing groups, we use BLS12-381.

Table 4 shows the storage requirements for storing all data in the clear vs. replacing it with a

Scheme Opening size Commitment size Public parameters
Merkle Tree 320 32 –
BBF [BBF19] 1312 256 2 · 256 = 512
LM-CG [LM19, Fig 1] 256 256 1002 · 256 ≈ 257× 103

LM-CDH [LM19, Fig 2] 48 48 10002 · 48 + 1000 · 96 ≈ 48× 106

Pointproofs (this work) 48 48 1999 · 48 + 1000 · 96 ≈ 192× 103

Table 3: Concrete lengths (in bytes) at 128-bit security for N = 1000 and 256-bit messages. For class
groups, we use a 2048-bit group. (A BBF proof consists of 5 group elements [BBF19, Section 1.1] and a
256-bit integer [BBF18, Section 3.3].) We omit eis from LM-CG parameters, as they can be reconstructed
by anyone. For pairing groups, we use BLS12-381. For Merkle Trees we assume paths of length 10 and
256-bit hashes.

21

Scheme 106 accounts 107 accounts 108 accounts savings
Plaintext 29.8 298.0 2980.2 –
BBF and LM-CG 0.2 2.4 23.8 99.2%
LM-CDH and Pointproofs 0.04 0.45 4.5 99.8%

Table 4: Storage requirements (in GB) for storing plaintext data vs. commitments for various number of
accounts in the system. Each account memory has N = 1000 locations storing 32-bytes values.

commitment per account. In a naive solution, users store

accounts · 1000 variables · 32 bytes.

With commitments, the storage requirements are reduced to

accounts · |C|,

where |C| is the size of a commitment. All commitment schemes reduce storage requirements signi�cantly
(over 99%).
Bandwidth. Figure 2 measures block bandwidth overheads for stateless blockchain model for subvector
openings of size 1 with respect to each commitment (i.e., |Sa| = 1). Assuming there are ` transactions in
a block, applying a commitment scheme that supports subvector openings (such as LM-CDH, LM-CG, or
BBF) results in overheads of

` · |π|+ ` · |ma[Sa]| · |Sa|.

Pointproofs result in the smallest overheads since ` proofs across transactions can be aggregated into a
single proof.

BBF
LM-CG

LM-CDH
Pointproofs

20

40

60

80

100

1,281 250

47

31 31 31 31

Ba
nd

w
id

th
O

ve
rh

ea
ds

(K
B)

1000 Txs

BBF
LM-CG

LM-CDH
Pointproofs

50

100

150

200

2,563 500

94

63 63 63 63

2000 Txs

BBF
LM-CG

LM-CDH
Pointproofs

100

150

200

250

300

3,844 750

141

94 94 94 94

3000 Txs

BBF
LM-CG

LM-CDH
Pointproofs

100

200

300

400

5,125 1,000

188

125 125 125 125

4000 Txs

Figure 2: Per block bandwidth overhead between a block proposer and validators in stateless blockchain
for retrieving ma[Sa] and corresponding proofs, assuming |Sa| = 1. �e four plots represent a di�erent
number of transactions in a block `. �e bo�om part of each graph (blue) corresponds to cleartext
overheads for transmi�ing ma[Sa], and the top part (red) corresponds to overheads for proofs. Pointproofs
add only 48 bytes to the cleartext data that must be transmi�ed (and hence are invisible on the plots).
Note that if |Sa| grows, the blue bar will grow proportionately as the amount of transmi�ed cleartext data
increases, while the red bar will remain the same, thus reducing the relative cost of proofs.

Computation. We now turn our a�ention to running times (as already mentioned, more recent
implementations of the underlying algebra, such as [SL20], will likely provide a noticeable speed-up).

22

20 21 22 23 24 25 26 27 28

23
25
27
29

211
213

Size of set S

ru
nt

im
e

(m
s)

Prove + Aggregate

One-shot aggregated proof given S
Verify

Figure 3: Total runtime for proving (separately
followed by aggregation, or all at once) and
veri�cation algorithms with respect to a single
commitment for various sizes of S. �e runtime
of the �rst and last algorithms grows roughly
linearly with |S|, while for all-at-once proving
it does not grow much.

1,000 2,000 3,000 4,000

26
27
28

211
212
213
214

of commitments

ru
nt

im
e

(m
s)

AggregateAcross |S| = 1

AggregateAcross |S| = 8

Verify |S| = 1

Verify |S| = 8

Figure 4: Total runtime of cross-commitment
aggregation AggregateAcross and Verify algo-
rithms for the various number of commitments
` (= # transactions in a block). �e plots for
AggregateAcross function for |S| = 1 and |S| =
8 overlap since its runtime is independent of the
size of S.

• �e initial Commit to 1000 values representing the memory m of a single account (done by the
account owner) runs in 54 ms.

• �e combined cost of Prove and Aggregate to produce π̂ for ma[S] for |S| = 1 (done during
submission of the transaction) is 54 ms. For |S| = 8, it goes up to 280 ms, which means the per-value
cost goes down to 35 ms. �e cost of computing a same-commitment aggregated proof all at once
(instead of separate invocations of Prove followed by Aggregate) is only 83ms for |S|=8. See Figure 3
for more details.

• If veri�cation of π̂ is desired before aggregation, it can be done in 4.7ms for |S| = 1 and 9.9 ms (1.2
ms per value proven) for |S| = 8 (Figure 3).

• �e block proposer can aggregate proofs across multiple commitment π̂1, . . . , π̂` into a single proof
π using AggregateAcross at the cost 0.06–0.07 ms per proof, with the per-proof cost decreasing as
the number of proofs in a block grows. Aggregation is highly parallelizable because the main cost
is one exponentiation per the commitment. See Figure 4 for more details.

• A validator can verify the aggregated proofπ usingVerifyAcross at the cost of 1.9ms per commitment
for |S| = 1 and 5.7ms per commitment (0.72ms per value proven) for |S| = 8. �e per commitment
cost does not change noticeably as the number of commitments grows from 1000 to 5000. Veri�cation
is highly parallelizable because the main cost is the per-commitment Miller loop of one pairing
operation. See Figure 4 for more details.
Applied in the Algorand blockchain, for instance, a 64-thread parallelized version of the Verify
algorithm would add 0.45 seconds (or 70%) to the block veri�cation time for 5000 transactions
(Figure 5, plot “5000 txs; Pixel” [DGNW20]).

23

• Anyone storing the commitments can update them with the new values in m′a[S] at the cost of 0.3
ms per proof for |S| = 1 and 0.2 ms per proof for |S| = 8. One-time precomputation on the public
parameters (storing 256 values per parameter) can speed this up by a factor of 3–5.

Acknowledgments.

We thank Derek Leung and Nickolai Zeldovich for numerous insightful discussions on using vector
commitments on the blockchain; Shai Halevi, Craig Gentry, and Ariel Gabizon for conversations on
polynomial commitments; Adam Suhl for insights into parameter generation; and Dario Fiore for help
understanding the parameters of prior work. �is work was done while HW was at Algorand.

References

[AGH10] Jae Hyun Ahn, Ma�hew Green, and Susan Hohenberger. Synchronized aggregate signatures:
new de�nitions, constructions and applications. In Ehab Al-Shaer, Angelos D. Keromytis, and
Vitaly Shmatikov, editors, ACM CCS 2010, pages 473–484. ACM Press, October 2010.

[Alg20a] Algorand. Pairing plus library, 2020. https://github.com/algorand/
pairing-plus.

[Alg20b] Algorand. Source code for pointproofs, 2020. https://github.com/algorand/
pointproofs.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two veri�able delay functions.
Cryptology ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/
2018/712.

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with
applications to IOPs and stateless blockchains. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 561–586. Springer,
Heidelberg, August 2019.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 440–456. Springer, Heidelberg, May 2005.

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. E�cient polynomial commitment
schemes for multiple points and polynomials. Cryptology ePrint Archive, Report 2020/081,
2020.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In �omas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 435–464. Springer, Heidelberg, December 2018.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050, 2017.
http://eprint.iacr.org/2017/1050.

24

https://github.com/algorand/pairing-plus
https://github.com/algorand/pairing-plus
https://github.com/algorand/pointproofs
https://github.com/algorand/pointproofs
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
http://eprint.iacr.org/2017/1050

[BGR12] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate signatures with lazy
veri�cation from trapdoor permutations - (extended abstract). In Xiaoyun Wang and Kazue
Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 644–662. Springer, Heidelberg,
December 2012.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of
LNCS, pages 258–275. Springer, Heidelberg, August 2005.

[BM+19] Benedikt Bünz, Mary Maller, , Pratyush Mishra, and Noah Vesely. Proofs for inner pairing
products and applications. Cryptology ePrint Archive, Report 2019/1177, 2019. https:
//eprint.iacr.org/2019/1177.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
e�cient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[But14] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized application
platform, 2014.

[But17] Vitalik Buterin. �e stateless client concept. Ethereum Blog, 2017. https://
ethresear.ch/t/the-stateless-client-concept/172.

[CF13] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 55–72.
Springer, Heidelberg, February / March 2013.

[CFG+20] Ma�eo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Nizzardo. Vector
commitment techniques and applications to veri�able decentralized storage. Cryptology
ePrint Archive, Report 2020/149, 2020. https://eprint.iacr.org/2020/149.

[Che06] Jung Hee Cheon. Security analysis of the strong Di�e-Hellman problem. In Serge Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 1–11. Springer, Heidelberg, May / June
2006.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear
maps and e�cient revocation for anonymous credentials. In Stanislaw Jarecki and Gene
Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 481–500. Springer, Heidelberg, March
2009.

[CPZ18] Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang. Edrax: A
cryptocurrency with stateless transaction validation. Cryptology ePrint Archive, Report
2018/968, 2018. https://eprint.iacr.org/2018/968.

[DGKR18] Bernardo Machado David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake protocol. 2018.

[DGNW20] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. Pixel: Multi-signatures
for consensus. In USENIX Security, 2020. https://eprint.iacr.org/2019/514.

25

https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
https://eprint.iacr.org/2020/149
https://eprint.iacr.org/2018/968
https://eprint.iacr.org/2019/514

[DPS19] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly recon�gurable consensus and
applications to provably secure proof of stake. 2019.

[Dra17] Justin Drake. History, state, and asynchronous accumulators in the
stateless model. Ethereum Blog, 2017. https://ethresear.ch/t/
history-state-and-asynchronous-accumulators-in-the-stateless-model/
287.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. �e algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of
LNCS, pages 33–62. Springer, Heidelberg, August 2018.

[Gab20] Ariel Gabizon. Private communication, April 2020.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, 2017.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/953.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to
polynomials and their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477
of LNCS, pages 177–194. Springer, Heidelberg, December 2010.

[LM19] Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct
arguments. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 530–560. Springer, Heidelberg, August 2019.

[LRY16] Benoı̂t Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions. In Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP
2016, volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, July 2016.

[LY10] Benoı̂t Libert and Moti Yung. Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In Daniele Micciancio, editor, TCC 2010, volume 5978 of
LNCS, pages 499–517. Springer, Heidelberg, February 2010.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,ACMCCS 2019, pages
2111–2128. ACM Press, November 2019.

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl
Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer, Heidelberg,
August 1988.

[Mil12] Andrew Miller. Storing UTXOs in a balanced Merkle tree (zero-trust nodes with O(1)-
storage), 2012. https://bitcointalk.org/index.php?topic=101734.
msg1117428.

26

https://ethresear.ch/t/history-state-and-asynchronous-accumulators-in-the-stateless-model/287
https://ethresear.ch/t/history-state-and-asynchronous-accumulators-in-the-stateless-model/287
https://ethresear.ch/t/history-state-and-asynchronous-accumulators-in-the-stateless-model/287
https://eprint.iacr.org/2019/953
https://bitcointalk.org/index.php?topic=101734.msg1117428
https://bitcointalk.org/index.php?topic=101734.msg1117428

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[Pip80] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM J. Comput., 9(2):230–
250, 1980.

[PS18] Rafael Pass and Elaine Shi. �underella: Blockchains with optimistic instant con�rmation.
2018.

[RMCI17] Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy, and Sasha Ivanov. Improving
authenticated dynamic dictionaries, with applications to cryptocurrencies. In Aggelos
Kiayias, editor, FC 2017, volume 10322 of LNCS, pages 376–392. Springer, Heidelberg, April
2017.

[SL20] SCIPR-Lab. Zexe, 2020. https://github.com/scipr-lab/zexe.

[ST99] Tomas Sander and Amnon Ta-Shma. Auditable, anonymous electronic cash. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 555–572. Springer, Heidelberg,
August 1999.

[Suh19] Adam Suhl. Private communication, 2019. https://github.com/algorand/
pointproofs-paramgen/blob/master/consistencycheck.pdf.

[TAB+20] Alin Tomescu, I�ai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and Dmitry
Khovratovich. Aggregatable subvector commitments for stateless cryptocurrencies.
Cryptology ePrint Archive, Report 2020/527, 2020. https://eprint.iacr.org/
2020/527.

[�a19] Steve �akur. Batching non-membership proofs with bilinear accumulators. Cryptology
ePrint Archive, Report 2019/1147, 2019. https://eprint.iacr.org/2019/1147.

[Tod16] Peter Todd. Making UTXO set growth irrelevant with low-latency delayed TXO commitments,
2016. https://petertodd.org/2016/delayed-txo-commitments.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 288–303. Springer, Heidelberg, August 2002.

[Whi15] Bill White. A theory for lightweight cryptocurrency ledgers. Available at http://
qeditas.org/lightcrypto.pdf, 2015.

[ZkC19] ZkCrypto. Pairing library, 2019. https://github.com/zkcrypto/pairing.

A Same-Commitment Aggregation from CDH-like Assumption

We sketch a same-commitment aggregation scheme withO(N2)-size public parameters from the following
CDH-like static assumption: given gu1 , gv1 , gv2 , it is hard to compute guv2T . �e e�ciency and underlying
hardness assumption of this scheme matches that of LM-CDH ([LM19, Fig 2]), while additionally
supporting aggregation.
�e scheme. Here, both Commit and Prove are deterministic.

27

https://github.com/scipr-lab/zexe
https://github.com/algorand/pointproofs-paramgen/blob/master/consistencycheck.pdf
https://github.com/algorand/pointproofs-paramgen/blob/master/consistencycheck.pdf
https://eprint.iacr.org/2020/527
https://eprint.iacr.org/2020/527
https://eprint.iacr.org/2019/1147
https://petertodd.org/2016/delayed-txo-commitments
http://qeditas.org/lightcrypto.pdf
http://qeditas.org/lightcrypto.pdf
https://github.com/zkcrypto/pairing

• Setup(1λ, 1N). Samples ui, vi ← Zp for i = 1, . . . , N and outputs

{gui1 , g
vi
2 }i∈[N], {g

ujvi
1 }i 6=j

• Commit(m). Outputs
C := g

∑
i∈[N]miui

1

• UpdateCommit(C, S,m[S],m′[S]). Outputs

C ′ := C · g
∑
i∈S(m

′
i−mi)ui

1

• Prove(i,m). Outputs

πi := g
∑
j 6=imjujvi

1

• Aggregate(C, S,m[S], {πi : i ∈ S}). Outputs

π̂ :=
∏
i∈S

πi

• Verify(C, S,m[S], π̂). Checks that

e(C, g
∑
i∈S vi

2)
?
= e(π̂, g2) · g

∑
i∈Smiuivi

T

Comparison with LM-CDH We do not know how to support aggregation in LM-CDH (which corre-
sponds to the special case ui = vi) [LM19, Fig 2]. In particular, the veri�cation equation there is given
by:

e(C, g
∑
i∈S vi

2)
?
= e(π̂, g2) · g

(
∑
i∈Smiui)(

∑
i∈S vi)

T

An earlier version of [LM19] claims security from CDH, but we found a mistake in the proof of binding,
where they incorrectly assume that e(C, g

∑
i∈S0 vi

2) = e(C, g
∑
i∈S1 vi

2). �e mistake has since been �xed.
Proof of correctness. Follows readily from

(
∑
j∈[N]

mjuj) · vi = miuivi +
∑
j 6=i

mjujvi

and then summing over i ∈ S.
Proof of binding. Now, consider the output of a winning adversary

C, {Sb,mb[Sb], π̂b}b=0,1

along with i∗ such thatm0
i∗ 6= m1

i∗ . �e reduction proceeds as follows: embeds u, v from the computational
problem into ui∗ , vi∗ , and samples ui, vi ← Zp, i 6= i∗ (formally, the reduction picks a random i∗ ← ZN
and aborts if m0

i∗ = m1
i∗). Simulating pp is straight-forward since we know g

ui∗
1 , g

vi∗
1 .

28

Next, let us write vS :=
∑

i∈S vi. Raising the veri�cation equations to vS0 , vS1 respectively and using
e(C, g

vS0
2)vS1 = e(C, g

vS1
2)vS0 , we have:

e(π̂0, g
vS1
2) · gvS1

∑
i∈S0 m

0
i uivi

T = e(π̂1, g
vS0
2) · gvS0

∑
i∈S1 m

1
i uivi

T

Rearranging the terms so that gui∗v
2
i∗

T appears on the RHS,

e(π̂0, g
vS1
2) · e(π̂1, gvS02)−1

· g
vi∗

∑
i∈S0\{i∗}m

0
i uivi

T · g
−vi∗

∑
i∈S1\{i∗}m

1
i uivi

T

· g(vS1−vi∗)
∑
i∈S0 m

0
i uivi

T · g−(vS0−vi∗)
∑
i∈S1 m

1
i uivi

T

= g
(m1

i∗−m
0
i∗)ui∗v

2
i∗

T

We can now extract gui∗v
2
i∗

T using the fact thatm1
i∗−m0

i∗ 6= 0, since we can compute the terms on the LHS
given π̂0, π̂1, gui∗1 , g

vi∗
2 and {ui, vi}i 6=i∗ .

B Weak binding

In this section, we describe a weaker notion of binding, in which the commitment C must be honestly
computed by Commit (on some, possibly adversarially chosen, messages) rather than chosen arbitrarily
by the adversary. �is notion o�en su�ces in blockchain applications. We then sketch how our scheme
achieves this notion without the restriction to algebraic adversaries.
Weak binding. For every N and every adversary running in time polynomial in λ, the probability of
�nding

C,m, r, (π̂, S,m∗[S])

such that

• C = Commit(m; r);

• Verify(C, S,m∗[S], π̂) = 1;

• m[S] 6= m∗[S]

(assuming parameters generated by Setup(1λ, 1N)) is negligible in λ.
Realizing weak binding. To establish weak binding, it su�ces to show that any e�cient adversary wins
the following game with negligible probability:

1. challenger sends gα, . . . , gαN ∈ G

2. adversary sends C ∈ G, S, {m∗i }i∈S

3. challenger sends t1, . . . , tN ← Zp

4. adversary sends m1, . . . ,mN

29

Adversary wins if

C = g
∑
αimi

∧ ∑
i∈S

(mi −m∗i)ti = 0
∧
∃i∗ ∈ S,mi∗ 6= m∗i∗

If adversary wins game with probability ε, then it breaks strong DH with probability ε2/4− 1/p.
Proof sketch. By an averaging argument, w.p. ε/2 over steps 1,2, the adversary wins with probability ε/2
over steps 3,4 (conditioned on steps 1,2). We run the adversary on steps 1,2,3,4 to get some winning ti,mi

and then rewind steps 3,4 to get another winning t′i,m′i. We proceed via a case analysis:

• if (m′1, . . . ,m
′
N) = (m1, . . . ,mN), then we have as before

Pr
t′1,...,t

′
N

[∑
mit
′
i = 0

]
≤ 1/p

this step uses the fact that t′1, . . . , t′N are independent of m1, . . . ,mN .

• if (m′1, . . . ,m
′
N) 6= (m1, . . . ,mN), then we have

g
∑
αi(m′i−mi) = 1

�is yields a non-trivial univariate polynomial equation in α, which we can use to solve for α.

C Cross-Commitment Aggregation from Polynomial Commitments

We sketch how the recent and independent work of Boneh, Drake, Fisch, and Gabizon [BDFG20] on
polynomial commitments (building upon [KZG10, MBKM19]) also yields a vector commitment that
supports cross-commitment aggregation. �e scheme we present below is the same as the scheme
in [BDFG20, Section 3] with the Fiat-Shamir transform and the following additional changes applied.
First, a commitment to a polynomial P of degree N − 1 can be thought of as commitment to the
vector (P (1), . . . , P (N)). Second, we explicitly show both a same-commitment and a cross-commitment
aggregation mechanism; that is, we show how to decompose the batch opening algorithm of [BDFG20]
into single openings followed by aggregation. �ird, we modify the veri�cation equation in the cross-
commitment case to use independent random tj values rather than powers of a single random value γ, for
consistency with our scheme (note that we could, instead, have used powers of a single random value in
our scheme, too, with slight changes to the proof and exact security bounds; see [GWC19, footnote 5]).

Although polynomial commitments were not initially designed for e�cient updates, as pointed out
to us by Gabizon [Gab20], updates can made as e�cient as in our scheme with a bit of precomputation
(see the Setup and UpdateCommit algorithms below). Other e�ciency parameters are comparable (up to
constant factors), except VerifyAcross, which can take up to Θ(`N) more exponentiations depending on
the exact subsets being aggregated.

Unfortunately, the more e�cient scheme presented in [BDFG20, Section 4] does not seem to support
cross-commitment aggregation, because the second element of the proof (denoted W ′ in [BDFG20])
depends on a random value that itself depends on the �rst element of the aggregated proof (denote π
the description of AggregateAcross below and W in [BDFG20]).
Overview. Given m = (m1, . . . ,mN) and a subset S ⊆ [N], let φS is the unique polynomial of degree at
most |S| − 1 such that φS(i) = mi for all i ∈ [S]. Let φ = φ[N]. Observe that the polynomial

φ(X)− φS(X)

30

evaluates to 0 at all i ∈ [S], and is therefore divisible by zS(X) :=
∏
j∈S(X − j). We will let φ(α) (in the

exponent) be the commitment and the fraction

φ(α)− φS(α)

zS(α)

(again, in the exponent) be the proof for S.
Same-commitment aggregation.

• Setup(1λ, 1N). Samples α← {N + 1, . . . , p} and outputs

(g1, g
α
1 , . . . , g

αN−1

1), (g2, g
α
2 , . . . , g

αN−1

2)

In addition, if desired to enable fast UpdateCommit, precomputes and outputs values ui = g
φi(α)
1

for i ∈ [N], where φi is the unique degree N − 1 polynomial such that φi(i) = 1 and φ(j) = 0 for
all j ∈ [N] − {i}. �is one-time precomputation can be done easily in time O(N2); it can also be
done in time O(N logN) using Fast Fourier Transform (FFT). It is faster if α is available, but can be
done with just pp.

• Commit(m). Outputs
C := g

φ(α)
1

where φ is the unique degree N − 1 polynomial such that φ(i) = mi for all i ∈ [N].

• UpdateCommit(C, S,m[S],m′[S]). Outputs

C ′ := C ·
∏
i∈S

u
m′i−mi
i

• Prove(i,m). Outputs

πi := g
φ(α)−mi
α−i

1

where φ is the same as for Commit.

• Aggregate(C, S,m[S], {πi : i ∈ S}). Outputs

π̂ :=
∏
i∈S

πλii

where
λi :=

∏
j∈S\{i}

1

i− j

are the Langrangian coe�cients (see Proof of Correctness, below, for an explanation).

• Verify(C, S,m[S], π̂). Checks that

e
(
C · g−φS(α)1 , g2

)
?
= e

(
π̂, g

∏
i∈S(α−i)

2

)
31

Cross-commitment aggregation. We describe the following additional algorithms:

AggregateAcross({Cj , Sj ,mj [Sj], π̂j }j∈[`]). Outputs

π :=
∏̀
j=1

π̂
tj
j ,

where
tj = H(j, {Cj , Sj ,mj [Sj]}j∈[`]) .

VerifyAcross({Cj , Sj ,mj [Sj] }j∈[`], π). Checks that∏
j

e

(
Cj · g

−φj,Sj (α)
1 , g

tj ·zT\Sj (α)
2

)
?
= e

(
π, g

zT (α)
2

)
where T = ∪jSj and φj,S is the unique degree |S| − 1 polynomial such that φj,S(i) = mj,i for all
i ∈ [S].

Proof of correctness. Recall the de�nition zS(X) =
∏
j∈S(X − j) and observe that λi = 1/zS\{i}(i).

We claim that π̂ output by Aggregate is equal to

g
φ(α)−φS(α)

zS(α)

1

�is claim immediately shows the correctness of Verify, because both sides, by bilinearity, are equal to
g
φ(α)−φS(α)
T .

�e claim follows from the following relation:∑
i∈S

λi ·
φ(X)−mi

X − i
=
φ(X)− φS(X)

zS(X)
.

�e relation can be shown by the following two steps. First,∑
i∈S

λi ·
1

X − i
=

1

zS(X)
,

which is true because, when we bring the fractions to a common denominator, we obtain∑
i∈S

λi ·
1

X − i
=

∑
i∈S λi · zS\{i}(X)

zS(X)
,

and the numerator of the right-hand side is a polynomial of degree at most |S| − 1 that evaluates to 1 at
all i ∈ S and therefore must be the constant 1. Second,∑

i∈S
λi ·

mi

X − i
=
φS(X)

zS(X)
,

which is true because ∑
i∈S

λi ·
mi

X − i
=

∑
i λi ·mi · zS\{i}(X)

zS(X)
,

32

and the numerator of the right-hand side is a polynomial of degree at most |S| − 1 that evaluates to mi at
all i ∈ S and therefore must be the constant φS(X).

For the correctness of VerifyAcross, observe that we can obtain the veri�cation equation by (1) raising
the G2 element on both sides of the jth-commitment veri�cation equation to the power zT\Sj (α); (2)
raising the G2 element on the le�-hand side and the G1 element on the right-hand side of each resulting
equation to the power tj ; (3) multiplying all ` resulting equations together.
Proof of binding. Binding holds under a q-type assumption in the AGM+ROM model as shown in
[BDFG20, Section 3].

33

	Introduction
	Our Contributions
	Related Work
	Technical Overview of Our Scheme

	Preliminaries
	Defining Vector Commitments with Aggregation
	Same-Commitment Aggregation
	Cross-commitment aggregation
	Hiding

	Our Construction
	Same-Commitment Aggregation
	Cross-Commitment Aggregation
	Proof of binding for same-commitment aggregation
	Proof of binding for cross-commitment aggregation
	Adding hiding

	Pointproofs in Blockchains
	Accounts with large memory for smart contracts
	Alternative Approaches
	Evaluation

	Same-Commitment Aggregation from CDH-like Assumption
	Weak binding
	Cross-Commitment Aggregation from Polynomial Commitments

