
Privacy-Preserving Pattern Matching on
Encrypted Data

Anis Bkakria1, Nora Cuppens1,2, and Frédéric Cuppens1,2

1 IMT Atlantique, Rennes, France
2 Polytechnique Montréal, Montréal, Canada

Abstract. Pattern matching is one of the most fundamental and im-
portant paradigms in digital forensics and cyber threat intelligence ap-
proaches. While it is a straightforward operation when performed on
plaintext data, it becomes a challenging task when the privacy of both
the analyzed data and the analysis patterns must be preserved. In this
paper, we propose P3MED: a new provably correct, secure, and quite
efficient construction that allows arbitrary pattern matching over en-
crypted data while fully protecting both the data to be analyzed and
the patterns to be matched. That is, the entity that will perform pattern
matching will learn nothing about the patterns to be searched as well
as the data to be inspected, except the presence or the absence of a set
of ”unknown” patterns (the entity charged to perform pattern match-
ing will not have access to the analysis patterns plaintexts). Compared
to existing solutions, the construction we propose has some remarkable
properties: (1) the size of the ciphertext is linear to the size of plaintext
and independent of the sizes and the number of the analysis patterns;
(2) the sizes of the issued trapdoors are constant on the size of the data
to be analyzed; and (3) the search complexity is linear to the size of the
data to be inspected and is constant on the sizes of the analysis patterns.
The conducted evaluations show that P3MED drastically improves the
performance of the most efficient state of the art solution.

Keywords: Searchable encryption · Pattern Matching · Privacy-preserving
threat intelligence.

1 Introduction

In recent years, the cyber attacks on Sony in 2012, the German Parliament in
2015, the US Democratic National Committee and Bangladesh National Bank
in 2016, along with the repeated attacks on Ukraine’s ministries and infrastruc-
tures have strongly demonstrate that cybercrimes can severely compromise the
activities and reputations of any private and public sector entities in both the de-
veloping and developed world. These cyber attacks are sophisticated, large scale,
and multi-vector in the sense that they can target simultaneously, computers,
smartphones, connected objects, and even industrial systems. The number of
enterprises and organizations affected by cyber attacks is increasing exponen-
tially with a financial impacts of more and more cumbersome. This is due to the

2 F. Author et al.

fact that today, the speed of evolution of cyber attacks and their sophistication
exceeds by far the rate of evolution of cyber security solutions.

To cope effectively with these cybercrime threats, it is necessary to define new
cybersecurity techniques that rely mainly on the collaboration between different
involved entities. These entities include in one side companies, organizations,
and individuals that are targeted by cyber attacks, and in the other side, secu-
rity editors that are in charge of defining and providing strategies for effectively
detect and prevent cyber attacks. The overall objective is to build a threat intel-
ligence platform allowing the sharing and correlating Indicators of Compromise
of targeted attacks, financial fraud information, vulnerability information (e.g.,
the platform defined in [20]). To be useful, such platform should, in one side, be
fueled by data owners, i.e., companies, organizations, and individuals that agree
to share the traces (e.g., network and operating system traces) of the cyber at-
tacks that they have suffered. In the other side, the platform should allow the
security editors to analyze (e.g., search specific patterns) and correlate the traces
that are shared by the data owners. The considered threat intelligence platform
is often managed by non-fully trusted third-party service provider (SP) which
provides the required storage space and computation power with affordable cost.

Unfortunately, both data owners (i.e., attack traces owners) and security edi-
tors are still very reluctant for adopting such kind of threat intelligence platforms
because of two main reasons. First, the traces to be shared contain often highly
sensitive information that may raise serious security and/or business threats
when disclosed to non-fully trusted third parties (e.g, SP). Second, the shared
traces analysis rely mainly on techniques that use pattern matching for inspect-
ing and detecting malicious behaviors. Those analysis patterns are the result of
extensive threat intelligence conducted by security editors. They are often put
forward as a key competitive differentiator arguing that they can cover a wider
set of malicious behaviors. Thus, security editors are typically reluctant to share
their analysis patterns with non-fully trusted third-parties.

Existing solutions that may be used to overcome the previous two limitations
rely mainly on searchable encryption based techniques [7, 5, 3, 1, 4, 2, 6]. Unfor-
tunately, these techniques suffer from at least one of the following limitations.
First, the lack of support for pattern-matching with evolving patterns, such as
virus signatures which are updated frequently (case of symmetric searchable en-
cryption [5, 3, 4, 2]); second, the lack of support for variable pattern lengths (e.g.,
tokenization-based techniques such as BlindBox [6]); third, the incompleteness of
pattern detection methods which yield false negatives (case of BlindIDS [7]); and
fourth, the disclosure of detection patterns (case of searchable encryption with
shiftable trapdoors [1]). We provide a full comparison with related literature in
Section 2.

In this paper, we propose P3MED: a technically sound construction that sup-
ports pattern matching over encrypted data for adaptively chosen and variable
lengths patterns. P3MED is (1) market compliant meaning that the third-party
SP will learn nothing about the patterns that will be used by security editors for
analyzing the shared traces, and (2) privacy-friendly, signifying that the third-

Privacy-Preserving Pattern Matching on Encrypted Data 3

party SP will learn nothing about the shared traces except the presence or the
absence of a set of unknown analysis patterns (i.e., SP will not have access
to security editors’ analysis patterns plaintexts). From practical point of view,
P3MED has some remarkable properties. First, the size of the ciphertext depends
only on the size of the plaintext (it is independent of the sizes and the number
of analysis patterns). Second, the size of the issued trapdoors is independent of
the size of the data to be analyzed. Third, the search complexity depends only
on the size of the data to be analyzed and is constant on the size of the analy-
sis patterns. Our construction is – to our knowledge – the first construction to
provide all previously mentioned properties without using costly and complex
cryptographic scheme such as fully homomorphic encryption. Both theoretical
complexity and experimental evaluations demonstrate that our construction im-
proves drastically the performance of the most efficient state of the art solution
SEST [1].

The paper is organized as follows. Section 2 reviews related work and details
the main contributions of our work. Section 3 presents the architecture of our
solution and the main security and privacy requirements that it aims to achieve.
Section 4 introduces the construction we propose. In Section 5, we describe the
assumption used by our scheme to achieve provable security, and provide security
proofs. In Sections 6 and 7, we discuss the complexity of our construction and
provide an empirical evaluation. Finally, section 8 concludes.

2 Related Work

One possible solution for pattern matching over encrypted traffic is to use tech-
niques that allow functions evaluation over encrypted data. Generic approaches
such as fully homomorphic encryption (FHE) [8, 10] and functional encryption
(FE) [9] are currently impractical due to their very high complexities.

Several searchable encryption (SE) techniques have been proposed for key-
word searching over encrypted data [5, 3, 4, 2]. The main idea is to associate a
trapdoor with each keyword to allow searching for these keywords within a given
encrypted data. Ideally, some entity which does not have access to the plaintext
and encryption key should learn nothing about the plaintext except the pres-
ence or the absence of the keyword. For most existing SE techniques, searches
are performed on keywords that have been pre-chosen by the entity encrypting
the data. Such approaches are more suitable for specific types of searches, such
as database searches in which records are already indexed by keywords, or in the
case of emails filtering in which flags such as ”urgent” are used. Unfortunately,
SE techniques become useless when the set of keywords cannot be known be-
fore encryption. This is usually the case for messaging application and Internet
browsing traffic where keywords can include expressions that are not sequences
of words per se (e.g., /chamjavanv.inf?aapf/login.jsp?=). Our construction of-
fers better search flexibility as, even after the plaintext has been encrypted and
sent, it can allow arbitrarily-chosen keywords searching without re-encryption.

4 F. Author et al.

To overcome the previous limitations, tokenization-based approaches have
been proposed. In [6], the authors propose BlindBox, an approach that splits
the data to be encrypted into fragments of the same size l and encrypts each of
those fragments using a searchable encryption scheme where each fragment will
represent a keyword. Nevertheless, this solution suffers from two limitations: (1)
it is useful only if all the searchable keywords have the same length l. obviously
the previous condition is seldom satisfied in real-world threat intelligence appli-
cations. If we want to use this approach with keyword of different lengths L,
we should for each li ∈ L, split the data to be encrypted into fragments of size
li and encrypt them, which quickly becomes bulky. (2) The proposed approach
may easily cause false negatives since, even if the keyword is of size l (the size
of each fragment), it cannot be detected if it straddles two fragments. Recently,
In [7], Canard et al. proposed BlindIDS – a public key variant of the BlindBox
approach [6] that additionally ensures keywords indistinguishability. That is, the
entity that is going to search over the encrypted data will lean nothing about the
keywords. Unfortunately, BlindIDS suffers from the same limitations as Blind-
Box. Our construction addresses the main drawbacks of these tokenization-based
techniques since it allows for patterns of arbitrary (but bounded) sizes to be
matched against the encrypted data, without false negatives or false positives.

Several approaches [11–13] proposed solutions for substring search over en-
crypted data based on secure multi-party computation. Unfortunately, these
solutions require often several interactions between the searcher and the data
encrypter. In addition, a part of the computations required for performing the
pattern matching operations will be carried out by the data owner.

As pointed out in [1], anonymous predicate encryption (e.g., [14]) or hidden
vector encryption [15] may provide a convenient solution for pattern matching
over encrypted stream. However, in order to search a pattern p of length l on
a data of length n, the searcher should obtain n − l keys to be able to check
the presence of p on every possible offset of the data, which is clearly a problem
when dealing with large datasets.

One of the most interesting techniques for pattern matching over encrypted
traffic is the searchable encryption with shiftable trapdoor (SEST) [1]. The pro-
posed construction relies on public-key encryption and bilinear pairings to over-
come most of the limitations of previously mentioned techniques. It allows pat-
terns of arbitrary lengths to be matched against the encrypted data, without
false negatives or false positives. This improvement comes at the cost of the
practicability of the technique. In fact, the proposed schema requires a public
key of size linear to the size of the data to be encrypted (a public key of ' 8000
GB is required for analyzing 1GB of data). Moreover, the trapdoor generation
technique used by the SEST leaks many information (such as, the number of
different characters as well as the maximum number of occurrences of a char-
acter) about the patterns to be searched. Furthermore, the number of pairings
needed for testing the presence of a keyword in an offset of the data depends
on the maximum number of occurrences of the characters contained in the pat-
tern. This makes the proposed technique quite inefficient when used for bit level

Privacy-Preserving Pattern Matching on Encrypted Data 5

matching. By contrast, to test the presence of a pattern in an encrypted data,
P3MED requires a constant number of pairings in the size of the pattern (see
Section 6 for more details). This makes P3MED more efficient when matching
long pattern at bit level.

As we have seen, many different approaches can be used to address pattern
matching over encrypted data. To give better understanding of the benefits of
our approach compared to existing ones, we provide in Table 1 a comparative
overview of their asymptotic complexities, and their ability to ensure the secu-
rity properties we are aiming to provide. Note that we only consider BlindBox
(a symmetric searchable encryption-based solution), BlindIDS (an asymmetric
searchable encryption-based solution), Predicate Encryption/Hidden Vector En-
cryption and the SEST approach. Other approaches, as explained before, require
data re-encryption each time a new keyword is considered [5, 3, 4, 2], induce
higher complexity [9, 8, 10], require interactivity [11–13] or ensure weaker pri-
vacy level [5].

Primitives

BlindBox BlindIDS PE/HVE SEST P3MED

Number of Trapdoors O(s · q) O(q) O(n · q) O(q) O(q)

Public Parameters size O(1) O(1) O(n) O(n) O(li)

Ciphertext size O(n · L) O(n · L) O(n) O(n) O(n)

Trapdoors size O(q) O(q) O(n · q) O(q) O(q)

Search complexity
q · log(q) q q · n 2×

∏q
1 li · n 2 · q · n

comparisons pairings pairings pairings pairings

Arbitrary trapdoors 7 7 3 3 (3)

Trapdoor’s privacy 7 (3) 7 7 3

Correctness
7 7 3 3 3

(false positives)
Table 1. Complexity and ensured security properties comparison between related work
and P3MED. The scalars n, q, li, L, s denote respectively the length of the data to be
analyzed, the number of issued trapdoors, the length of each issued trapdoor, the
number of different lengths among the q trapdoors and the number of data encrypters.

According to the Table 1, P3MED is the only primitive that simultaneously
enables arbitrary trapdoors (with upper bounded pattern size), provides a cor-
rect pattern detection, and ensures the privacy of the used trapdoors. Thanks to
the data fragmentation approach (Section 4) we use, our construction does not
require either very large public parameters or very large encryption key as SEST
and PE/HVE. Moreover, the search complexity of our construction is lower than
SEST by a factor of li (the length of the issued trapdoor), since it is constant
in the size of the trapdoors. Therefore, P3MED is an interesting middle way
which almost provides the best of PE/HVE and SEST while ensuring the trap-
doors privacy. Its only drawback compared to PE/HVE and SEST is the upper

6 F. Author et al.

bounded size of trapdoors that should be fixed before the data encryption which
we believe to be a reasonable price to pay to achieve all the other features.

3 Architecture and Security

3.1 Considered Architecture

In this section, we describe the main architecture of our approach. It involves
three main parties: the data owner (or data holder), the Security Editor, and
the Service Provider. The data owner (DO) represents the entities that hold
data containing cyber attack traces and want to outsource them to the threat
intelligence platform. The Security Editor (SE) is the entity that is supposed
to analyze the outsourced traces to define new attack detection signatures. SE’s
analysis queries will probably contain specific patterns used to detect malicious
behaviors. These analysis pattern are very valuable assets for the SE as they
require continuous and extensive threat intelligence processes to be expressed
and maintained. Finally, Service Provider (SP) is stakeholder that hosts the
threat intelligence platform and offers computation infrastructures that will be
used for executing different pattern matching queries performed by SE. SP is
often partner with SE in order to implement and perform the analysis logics.

3.2 Security Requirements and Considered Hypothesis

Before presenting the formal description of our construction, we first present the
hypothesis we are considered and the security properties that we aim to provide.

SE is considered in P3MED as an Honest-but-curious entity. That is we
expect SE to issue analysis queries that contain true malicious patterns that are
mainly designed to detect attacks. This is a fairly reasonable assumption since,
in our construction, the DO can check and authorize (by issuing a trapdoor)
the analysis patterns that will be searched over the his/her outsourced data.
Thus, SE will not defile its reputation by issuing incorrect or misleading analysis
patterns. Nevertheless, we expect the SE to be curious: it may try to derive
information about the analyzed data by accessing the (encrypted) data hosted by
the SP or/and by correlating the analyses results. Hypothesis 1 and Requirement
1 summarize the previous considerations.

Hypothesis 1 SE will perform queries that are only designed to analyze the
outsourced cyber attak traces.

Requirement 1 SE should learn nothing about the analyzed traces except the
parts that entirely match at least one of the used analysis patterns.

SP is also considered in our construction as an Honest-but-Curious entity.
That is, we suppose that it will honestly perform the pattern matching operations
required by the analysis query issued by the SE. However, we suppose that the
SP may try to learn additional information about either or both of the DO’s

Privacy-Preserving Pattern Matching on Encrypted Data 7

outsourced traces and the analysis patterns used by the SE. In addition, we
assume that the SP may try to create values by analyzing other third-parties
traces using the set of patterns used by the SE for the analysis of DO’s outsourced
traces. We then consider the following hypothesis and security requirements.

Hypothesis 2 SP will correctly perform the pattern matching operations re-
quired by the SE’s analysis queries and will correctly report analysis results to
the SE.

Requirement 2 SP should learn nothing about the analyzed traces except the
indexes in which the analysis patterns fully match the (a part of) traces.

Requirement 3 SP should learn nothing about the analysis patterns (queries)
performed by the SE except the indexes in which the patterns fully match (a part
of) the traces.

Requirement 4 The patterns used by the SE for the analysis of a DO’s traces
should be useless for analyzing any other third party’s traces.

In addition, we consider DO to be an honest entity. That is, DO will not
try to disclose the set of SE’s patterns used to analyze its data. Moreover, we
suppose that the SP and SE will not collude to learn more information about
the traffic. We believe that this last assumption is fairly reasonable since, in a
free market environment, an open dishonest behavior will result in considerable
damages for both entities.

Hypothesis 3 SP and SE will not collude to gain more information about the
DO’s outsourced traces.

Finally, we require our construction to provide a correct analysis results.
That is, (1) any malicious traces (the traffic that matches at least one of the SE’s
analysis patterns when not encrypted) must be detected by our construction (no
false negatives), and (2) we require that for any safe traffic (the traffic that does
not match any of the SE’s analysis patterns when not encrypted), the probability
that our construction returns a false positive is negligible.

Requirement 5 The proposed construction should provide a correct pattern
matching results.

3.3 Syntax of the proposed construction

P3MED is defined by five algorithms that we denote Setup, Keygen, Encrypt,
Issue, and Test. The first three algorithms are performed by the DO. The
Issue algorithm is performed collaboratively by the DO and the SE. The Test
algorithm is performed by the SP.

8 F. Author et al.

– Setup(1λ, pmax) is a probabilistic algorithm that takes as input a security
parameter λ as well as the largest analysis pattern size pmax (i.e., the size
of largest pattern that can be matched by our construction). It returns the
public parameters params which will be an implicit input to all following
algorithms.

– Keygen(Σ) is a probabilistic key generation algorithm that takes as input
a finite set of symbols Σ representing the alphabet to be used for encoding
the data to be analyzed as well as the analysis patterns to be searched. It
outputs a secret key K.

– Encrypt(K,B) is a probabilistic algorithm that takes as input a finite se-
quence (String) of symbols B of Σ and the secret key K. it returns a cipher-
text C.

– Issue(K,w) is a probabilistic algorithm that takes as input the secret key
K, and w – a finite sequence of elements of Σ – and returns a trapdoor tdw.

– Test(C, tdw) is a deterministic algorithm that takes as input a ciphertext C
encrypting a sequence of n elements B = σ0 · · ·σn−1 of Σ, and the trapdoor
tdw issued for the sequence of l Σ’s elements w = σw,0 · · ·σw,l−1 (l ≤ pmax).
The algorithm returns the set of indexes I ⊂ {0, n − l − 1} where for each
i ∈ I, σi · · ·σi+l−1 = σw,0 · · ·σw,l−1.

We note that the sizes of the elements defined in the previous algorithms, i.e.,
the size of the data to be analyzed B, the size of the pattern to be searched w, and
the largest analysis pattern size pmax refer to the number of symbols of Σ that
compose each element. In addition, we note that P3MED does not consider a
decryption algorithm since there is no need for decrypting the outsourced traces.
However, we stress that a decryption feature can be straightforwardly performed
by issuing a trapdoor for all characters σ ∈ Σ and running the Test algorithm
on the encrypted data for each of them.

3.4 Model for security requirements

As said in Section 3.2, there are mainly 4 security requirements that should be
satisfied by our construction; Trace indistinguishability (Requirements 1 and 2),
pattern indistinguishability (Requirement 3), pattern usefulness (Requirement
4), and the correctness property (Requirement 5).

In the following definition, we use the game-based security definition pro-
posed in [1] to define the trace indistinguishability requirement by adapting the
standard notion of IND-CPA which requires that no adversary A (e.g., the SE
or SP), even with an access to an oracle Oiss that issues a trapdoor tdpi for any
adaptively chosen pattern pi, can decide whether an encrypted trace encrypts
T0 or T1 as long as the trapdoors {tdpi} issued by Oiss do not allow trivial
distinction of the traces T0 and T1.

Definition 1 (Trace indistinguishability). Let λ be the security parameter,
Σ be the alphabet to be used, A be the adversary and C be the challenger. We
consider the following game that we denote ExpT IND CPA

A,β :

Privacy-Preserving Pattern Matching on Encrypted Data 9

1. Setup: C executes Setup(1λ, pmax) to generate params and the algorithm
Keygen(Σ) to generate the secret key K. Then it sends params to the ad-
versary.

2. Query: A can adaptively ask Oiss to issue a trapdoor tdpi for any pattern
pi = σi,0 · · ·σi,m−1 where σi,j ∈ Σ. We denote P the set of patterns submitted
by A to Oiss in this phase.

3. Challenge: Once A decides that Phase (2) is over, it chooses two traces
T0 = σ∗0,0 · · ·σ∗0,m−1 and T1 = σ∗1,0 · · ·σ∗1,m−1 and sends them to C.

(a) If ∃p = σ0 · · ·σl ∈ P, k ∈ {0, 1}, and j such that:

σ∗k,j · · ·σ∗k,j+l = σ0 · · ·σl 6= σ∗1−k,j · · ·σ∗1−k,j+l then return 0.

(b) C chooses a random β ∈ {0, 1}, creates C = Encrypt(K,Tβ), and sends
it to A.

4. Guess. A outputs the guess β′.
5. Return (β = β′).

We define A’s advantage by AdvExp
T IND CPA
A,β (λ) = |Pr[β = β′]− 1/2|. P3MED

is said to be trace indistinguishable if AdvExp
T IND CPA
A,β (λ) is negligible.

We note that in the previous definition, the restriction used in phase (3)(a)
ensures that if one of the traces Tk (k ∈ {0, 1}) contains a pattern pi ∈ P in
the position j, then this is also the case for T1−k. If such a restriction is not
considered, A will trivially win the game by running Test(C, tdpi).

We want to be able to evaluate the advantage of the SP for using the issued
trapdoors to analyze other third-parties’ traces (i.e., traces that are not provided
and encrypted by the DO). Since encrypted traces and trapdoors should be
created using the same secret key, such an advantage is equivalent to the ability
of the SP to forge valid DO’s encrypted traces.

Definition 2 (Encrypted Trace Unforgeability). Let λ be a security pa-
rameter, Σ be the alphabet to be used, A be the adversary, Oiss be an oracle that
issues a trapdoor for any adaptively chosen pattern, and OR be an oracle that
encrypts any adaptively chosen trace. We consider the following ExpETFA game:

1. Setup: C executes Setup(1λ, pmax) to generate params and the algorithm
Keygen(Σ) to generate the secret key K. Then it sends params to the ad-
versary.

2. Query:

– A can adaptively ask Oiss to issue a trapdoor tdpi for any chosen pat-
tern pi = σi,1 · · ·σi,m where σi,j ∈ Σ. We denote P the set of patterns
submitted by A to Oiss in this phase.

– A can adaptively ask OR to create CT = Encrypt(K,T). We denote T
the set of traces encrypted by the OR.

3. Forgery: The adversary chooses the trace T ∗ /∈ T such that T ∗ contains
pt (pt ∈ P) at index i and forges the encrypted traces C∗ of T ∗.

10 F. Author et al.

We define A’s advantage of winning the game ExpETFA by AdvExp
ETF
A (λ) =

Pr[i ∈ Test(C∗, tdpt)]. P3MED is said to be encrypted trace forgery secure if

AdvExp
ETF
A (λ) is negligible.

The following definition formalizes the patterns indistinguishability property.
That is, we evaluate the advantage of the SP to decide whether a trapdoor
encrypts the patterns w∗0 or w∗1 even with an access to an oracle Oiss that issues
a trapdoor for any adaptively chosen pattern.

Definition 3 (Pattern Indistinguishability). Let λ be the security parame-
ter, Σ be the alphabet to be used, A be the adversary and C the challenger. We
consider the following game that we denote ExpP IND CPA

A :

1. Setup: C executes Setup(1λ, pmax) to generate params and the algorithm
Keygen(Σ) to generate the secret key K. Then it sends params to the ad-
versary.

2. Observation: A may observe the ciphertext CTi of a set of (unknown) traces
Ti ∈ T .

3. Query: A can adaptively ask Oiss to issue a trapdoor tdwi for any chosen
pattern wi = σi,1 · · ·σi,l where σi,j ∈ Σ. We denote by P the set of patterns
submitted by A to Oiss in this phase.

4. Challenge: Once A decides that Phase (2) is over, it chooses two patterns
w∗0 = σ∗0,0 · · ·σ∗0,l and w∗1 = σ∗1,0 · · ·σ∗1,l such that w∗0 , w

∗
1 /∈ P and sends them

to C. If ∃T ∈ T such that w∗0 ∈ T or w∗1 ∈ T then return 0. Otherwise, C
chooses a random β ∈ {0, 1}, creates tdw∗β , and sends it to A.

5. Guess:
– A may try to forge the ciphertext of chosen traces and uses the Test

algorithm to figure out the chosen value of β.
– A outputs the guess β′.

6. Return (β = β′).

We define the advantage of the adversary A for winning the game ExpP IND CPA
A,β

by AdvExp
P IND CPA
A,β (λ) = |Pr[β′ = β] − 1/2|. P3MED is said to be pattern in-

distinguishable if AdvExp
P IND CPA
A,β (λ) is negligible.

Definition 4 (Correctness). Let B = σ0, · · ·σm−1 and p = σp,0, · · ·σp,lt−1 be
respectively the traces to be analyzed and the pattern to be searched. P3MED is
consistent iff the following conditions hold:

1. Pr[i ∈ Test(Encrypt(B,K), Issue(p,K))] = 1 if B contains p at index i.
2. Pr[i ∈ Test(Encrypt(B,K), Issue(p,K))] is negligible if B does not contain

p at index i.

Condition (1) of the previous definition ensures that the Test algorithm used in
our construction produces no false negatives. Condition (2) ensures that false
positives (i.e., the case in which Test algorithm returns i notwithstanding the
fact that σi · · ·σi+l−1 6= σw,0 · · ·σw,l−1) only occur with negligible probability.

Privacy-Preserving Pattern Matching on Encrypted Data 11

4 Construction

In this section, we give the intuition behind our construction. We briefly in-
troduce bilinear maps and describe the way we use our construction to enable
arbitrary pattern matching over encrypted traffic.

4.1 Bilinear Environment

Let G1,G2,GT be three finite cyclic groups of large prime order p. We assume
that there is an asymmetric bilinear map e : G1 × G2 → GT such that, for all
a, b ∈ Zp the following conditions hold:

– For all g ∈ G1, g̃ ∈ G2, e(ga, g̃b) = e(g, g̃)a·b

– For all g ∈ G1, g̃ ∈ G2, e(ga, g̃b) = 1 iff a = 0 or b = 0
– e(·, ·) is efficiently computable

In the sequel, the tuple (G1,G2,GT , p) is referred to as a bilinear environ-
ment. In addition, we will use {xi}i=bi=a to denote the set of elements xi, i ∈ [a, b]
and |B| to denote the number of symbols that compose (i.e., the size) B.

4.2 A Trivial Construction

A trivial attempt for defining a construction that ensures all of the security re-
quirements we defined in Section 3.2 would consist of modifying the most efficient
state of the art solution SEST towards a secret key based-construction as de-
scribed in the following algorithms. The Setup, Keygen, and Encrypt algorithms
are to be performed by the DO. The Issue algorithm will be performed collabo-
ratively by the DO and the SE, while the Test algorithm will be performed by
the SP.

fs − 1 2fs-10

fs-pmax-2 fs+pmax-1 2fs-pmax-2 2fs+pmax-1

(nf-1)fs -1 nf · fs-1

(nf-1)fs + pmax − 1

F0

F 0

F1

F 0

Fnf−1

Fnf−2

Fig. 1. Fragmentation approach

– Setup(1λ, n): Let (G1,G2,G3, p) be a bilinear environment. This algorithm

selects g
$←− G1, g̃

$←− G2 and returns params← (G1,G2,G3, p, g, g̃, n).

– Keygen(Σ): On input of the alphabet Σ, this algorithm selects z
$←− Zp

and {ασ
$←− Zp}σ∈Σ , computes and adds {gzi}i=n−1i=0 to params (required

for proving the trace indistinguishability property). It returns the secret key
K = {z, {ασ}σ∈Σ}.

12 F. Author et al.

– Encrypt(B,K): To encrypt B = σ1 · · ·σn, this algorithm chooses a
$←− Zp

and returns C = {Ci, C ′i}
n−1
i=0 where Ci = ga·z

i

and C ′i = ga·ασi ·z
i

.
– Issue(w,K) issues a trapdoor tdw for a pattern w = σw,0, · · · , σw,l−1 of

length l ≤ n as described in Algorithm 1.

Input: K, params,w = σw,0, · · ·σw,l−1

Output: tdw
tdw = ∅, V = 0, c = 0
L[i] = 0 for all i ∈ [0, l − 1]
Ind[σ] = 0 for all σ ∈ Σ
foreach i ∈ [0, l − 1] do

if L[Ind[σw,i]] = 0 then

L[c]
$←− Zp, Ic = {i}, c = c+ 1

else
IInd[σw,i] = IInd[σw,i] ∪ {i}

end

V = V + zi · σw,i · L[Ind[σw,i]]
Ind[σw,i] = Ind[σw,i] + 1

end

tdw = {c, {Ij}j=c−1
j=0 , {g̃L[j]}j=c−1

j=0 , g̃V }
Algorithm 1: Issue

– Test(C, tdw) tests whether the encrypted traces C contains w by parsing
tdw as {c, {Ij}j=c−1j=0 , {g̃L[j]}j=c−1j=0 , g̃V } and C as {Ci, C ′i}

n−1
i=0 , and checking

for all j ∈ [0, n− l] if the following equation holds:

c−1∏
t=0

e(
∏
i∈It

C ′j+i, g̃
L[t]) = e(Cj , g̃

V)

We can prove the correctness, the trace indistinguishability, and encrypted
trace unforgeability properties by following the same strategies as in Appen-
dices A.1, A.2, and A.3. Unfortunately, this construction suffers mainly from
three limitations. First, the size of the public parameters params is linear to the
size of the data to be analyzed (which may be very large). Second, the pattern
indistinguishability requirement cannot be satisfied since the Issue algorithm
(Algorithm 1) leaks many information (such as, the number of different symbols
and the maximum number of occurrences of a symbol) about the pattern to be
searched. Third, searching the presence of a pattern w is linear to the maxi-
mum number of occurrences of each symbol in w, which makes this construction
impractical for matching small alphabet based patterns (e.g., bit patterns).

4.3 P3MED Construction

Overview The intuition behind our construction relies mainly on two observa-
tions. First, the number of analysis patterns is often very small compared to the

Privacy-Preserving Pattern Matching on Encrypted Data 13

quantity of traces that are going to be analyzed (e.g., the number of patterns
provided by SNORT is 3734 [22]). Second, the sizes of the analysis patterns are
often very small compared to the size of the traces to be analyzed (e.g., the
largest pattern size used by Snort is 364 Bytes).

For a trace with alphabet Σ, our construction associates each element σ
of Σ with a secret encoding (α′σ, ασ). It fragments the sequence of symbols
that represents the traces B to be analyzed as described in Fig. 1 in which fs
represents the number of symbols (i.e., the size) of each fragment and pmax
represents the largest number of symbols in an analysis pattern. We require fs
to be greater than or equals to 2 · (pmax − 1) to ensure the correctness of the
pattern matching functionality provided by our construction.

As illustrated in Fig. 1, the sequence of symbols B is fragmented into 2 ×
nf − 1 fragments {Fi, F j}i=nf−1,j=nf−2i=0,j=0 where nf = |B|/fs (for simplicity we
will suppose that |B| is a multiple of fs). Each Fi, i ∈ [0, nf − 1] contains the
symbols at indexes [i · fs, (i+ 1) · fs− 1], while F i, i ∈ [0, nf − 2] contains the
symbols at indexes [(i+ 1) · fs− pmax − 1, (i+ 1) · fs+ pmax − 1] of B.

Given an i ∈ [0, |B| − 1], in the rest of this paper, we will denote by iF the
index of i inside the fragment F where F ∈ {F0, · · · , Fnf−1, F 0, · · · , Fnf−2}. If
i /∈ F , iF is not defined. Formally, assuming that F = [a, b]:

iF =

{
i mod a if i ∈ F
∅ otherwise

A trapdoor for a pattern w = σw,0 · · ·σw,l−1 will be associated with a set

of polynomials {Vi = vi ·
∑l−1
k=0 α

′
σw,k
· αk+iσw,k

· zk}i=fs−1i=0 where vi is a random
secret scalar used to prevent new trapdoor forgeries and z a random scalar
belonging to the secret key K. The trapdoor of w consists then in the elements
{g̃Vi , g̃vi}i=fs−1i=0 . Each couple (g̃Vi , g̃vi) of the previous set will be used to check
the presence of w at the index i of the previously constructed fragments.

Meanwhile, the encryption of each symbol σi of B is the tuple Ci = {Ci, C ′i, Ci, C ′i}
that depends on the fragment in which its index i in B belongs. If the index i
of σi belongs to Fε (resp. F ε) then Ci and C ′i (resp. Ci and C ′i) contain the
encryption of σi regarding the index iFε of i in Fε (resp. the index iF ε of i in

F ε).
Then, if we want to test the presence of w at the index i, if i belongs to Fε

(resp. F ε), then we compare the bilinear mapping results of the elements CiFε ,

g̃viFε (resp. CiFε , g̃
vi
Fε) and C ′iFε , g̃

ViFε (resp. C ′iFε , g̃
Vi
Fε). If w is not present,

then the results of the bilinear mapping will be random-looking polynomials
which will be useless to the adversary.

We note that the choice of the fragmentation size fs as well as the alphabet
Σ to be considered will determine the domain of the analysis patterns that
can be queried. That is, the bigger the value of fs is, the bigger the sizes of
the supported analysis patterns could be (since fs ≥ 2 × pmax). Moreover, the
choice of the alphabet Σ will decide the ”type” of search that can be performed
by our construction. For instance, an hexadecimal alphabet where each symbol
is represented in 4 bits will allow to perform hexadecimal searches over the

14 F. Author et al.

encrypted data, while an ASCII alphabet where each symbol is represented in 8
bits will allow to perform ASCII searches over the encrypted data. In Section 7,
we empirically analyze the effects of the variation of the values of fs and Σ on
the practicality of our construction.

In the remaining of this paper, for simplicity, we will suppose that |B| is a
multiple of fs.

The Protocol

– Setup(1λ, pmax): Let (G1,G2,G3, p) be a bilinear environment. This algo-

rithm selects g
$←− G1, g̃

$←− G2 and returns params← (G1,G2,G3, p, g, g̃, pmax).
– Keygen(Σ): On input of the alphabet Σ, this algorithm chooses fs such

that fs ≥ 2 · (pmax − 1), selects z
$←− Zp and {α′σ, ασ

$←− Zp}σ∈Σ , com-

putes and adds pp ← {gzi}i=fs−1i=0 to params. It returns the secret key
K = {z, {α′σ, ασ}σ∈Σ}.

– Encrypt(B,K): This algorithm starts by fragmenting B = σ0, · · ·σm−1 into

{Fi, F j}i=nf−1,j=nf−2i=0,j=0 where Fi (resp. F j) contains the symbols of B at
indices [i·fs, (i+1)·fs−1] (resp. [(j+1)·fs−pmax−2, (j+1)·fs+pmax−1]). It

chooses ak
$←− Zp for each k ∈ [0, nf−1] and ak

$←− Zp for each k ∈ [0, nf−2]
and returns C = {Ci, Ci, C ′i, C ′i}

m−1
i=0 as described in Algorithm 2.

Input: K, params,B = σ0, · · ·σm−1, {Fi, ai, F j , aj}i=nf−1,j=nf−2
i=0,j=0

Output: C = {Ci, Ci, C′i, C′i}m−1
i=0

C ← ∅
foreach i ∈ [0,m− 1] do

ε← i/fs #find the fragment Fε to which i belongs

Ci ← g
aε·α′σi ·(ασi ·z)

iFε
, C′i ← gaε·z

iFε

if ε > 0 and i ∈ F ε−1 then

Ci ← g
aε−1·α′σi ·(ασi ·z)

i
Fε−1

C′i ← gaε−1·z
i
Fε−1

else if ε < nf − 1 and i ∈ F ε then

Ci ← g
aε·α′σi ·(ασi ·z)

i
Fε

, C′i ← gaε·z
i
Fε

else

Ci ← Null, C′i ← Null
end

C ← C ∪ {Ci, C′i, Ci, C′i}
end

Algorithm 2: Encrypt

– Issue(w,K) issues a trapdoor tdw for the sequence of symbols w = σw,0, · · · , σw,l−1
of Σ of length l < pmax as described in Algorithm 3.

Privacy-Preserving Pattern Matching on Encrypted Data 15

Input: K, params,w = σw,0, · · ·σw,l−1

Output: tdw = {Vi, vi}fs−li=0

tdw ← ∅
foreach i ∈ [0, fs− l] do

vi
$←− Zp

Vi = vi ·
∑l−1
k=0 α

′
σw,k · α

k+i
σw,k · z

k

tdw ← tdw ∪ {g̃Vi , g̃vi}
end

Algorithm 3: Issue

– Test(C, tdw) tests whether the encrypted traces C contains w using Algo-
rithm 4. It returns the set I of indexes i in which w exists in C.

Input: C = {Ci, Ci, C′i, C′i}m−1
i=0 , tdw = {Vi, vi}i=fs−li=0

Output: I
I ← ∅
foreach i ∈ [0,m− l] do

ε← i/fs #find the fragment Fε to which the index i belongs
if ε < nf − 1 and i ∈ Fε ∩ F ε then

if e(
∏l−1
j=0 Ci+j , g̃

vi
Fε) = e(C′i, g̃

Vi
Fε) then

I ← I ∪ i
end

else

if e(
∏l−1
j=0 Ci+j , g̃

viFε) = e(C′i, g̃
ViFε) then

I ← I ∪ i
end

end

end

Algorithm 4: Test

We note here that the size of the ciphertext produced by the Encrypt algorithm
does not depend on either the sizes or the number of the analysis patterns to
be used but depends only on the size of data to be encrypted. In addition, our
Issue and Test algorithms allow to search an arbitrary (upper bounded size) and
unforgeable (without the knowledge of the secret key K) patterns. Moreover,
the sizes of the issued trapdoors do not depend on the size of the data to be
encrypted but only on the size of the data fragment (around the double of the
maximum size of an analysis pattern).

16 F. Author et al.

5 Security

As in [1], the security of our construction holds as long as G1 6= G2 and no
efficiently computable homomorphism exists between G1 and G2 in either direc-
tions. We prove the security of our construction under an interactive assumption.
That is, we use a slightly modified General Diffie-Hellman (GDH) problem as-
sumption [21] to allow the adversary to request the set of values on which the
reduction will break the GDH assumption. This interactive aspect of the GDH
instance we are considering reduces slightly the security of the construction we
are proposing. However, this interactive assumption allowed as to define a quite
efficient construction with interesting properties. First, the size of the ciphertext
depends only on the size of the plaintext (it is independent of the sizes of the
analysis patterns). Second, the size of the issued trapdoors is independent of the
size of the trace to be analyzed. Third, the search complexity depends only on
the size of the trace and is constant on the size of the analysis patterns. Attaining
all previously mentioned properties while being able to handle arbitrary (upper
bounded size) analysis pattern query is not obvious and may justify the use of
such an interactive assumption.

5.1 Security Assumption

Following the security model described in Section 3.4, We prove the trace and
detection pattern indistinguishability under the i-GDH assumption introduced
in [1]. The complexity of the i-GDH assumption depends mainly on the inde-
pendance property we formalize in the following Definition.

Definition 5 (independence). Let p be some large prime, r, s, t, c, and k
be five positive integers and R ∈ Fp[X1, · · · , Xc]

r, S ∈ Fp[X1, · · · , Xc]
s, and

T ∈ Fp[X1, · · · , Xc]
t be three tuples of multivariate polynomials over Fp. Let

R(i) , S(i) and T (i) denote respectively the i-th polynomial contained in R, S,
and T . For any polynomial f ∈ Fp[X1, · · · , Xc], we say that f is dependent on

< R,S, T > if there exist constants {ϑ(a)j }sj=1, {ϑ(b)i,j }
i=r,j=s
i=1,j=1, {ϑ(c)k }tk=1 such that

f · (
∑
j

ϑ
(a)
j · S

(j)) =
∑
i,j

ϑ
(b)
i,j ·R

(i) · S(j) +
∑
k

ϑ
(c)
k T (k)

We say that f is independent of < R,S, T > if f is not dependent on < R,S, T >.

Definition 6 (i-GDH assumption). Let p be some large prime, r, s, t, c,
and k be five positive integers and R ∈ Fp[X1, · · · , Xc]

r, S ∈ Fp[X1, · · · , Xc]
s,

and T ∈ Fp[X1, · · · , Xc]
t be three tuples of multivariate polynomials over Fp.

Let OR, (resp. OS and OT) be oracle that, on input {{a(k)i1,··· ,ic}
dk
ij=0}k, adds the

polynomials {
∑
i1,·,ic a

(k)
i1,·,ic

∏
j X

ij
j }k to R (resp. S and T).

Let (x1, · · · , xc) be secret vector and qr (resp. qs) (resp. qt) be the number
of queries to OR (resp. OS) (resp. OT). The i-GDH assumption states that, given

the values {gR(i)(x1,··· ,xc)}r+k·qri=1 , {g̃S(i)(x1,··· ,xc)}s+k·qsi=1 , and {e(g, g̃)T
(i)(x1,··· ,xc)}t+k·qti=1 ,

Privacy-Preserving Pattern Matching on Encrypted Data 17

it is hard to decide whether U = gf(x1,··· ,xc) or U is random if f is independent
of < R,S, T >.

As argued in [1], The hardness of the i-GDH problem depends on the same
argument as the GDH problem which has already been proven in the generic
group model [21]. That is, as long as the challenge polynomial that we denote
f is independent of < R,S, T >, an adversary cannot distinguish gf(x1,··· ,xc)

from a random element of G1. The definition method of the content of the sets
R,S, and T (by assumption or by the queries to oracles) does not fundamentally
change the proof.

5.2 Security Results

In this section, we prove that the P3MED construction described in Section
4.3 provides the security requirements we described in Section 3.2. Proofs of
Theorems 2, 3, and 4 are given in Appendix A.

Theorem 1. P3MED is correct.

Theorem 2. P3MED is trace indistinguishable under the i-GDH assumption.

Theorem 3. P3MED is encrypted trace forgery secure under the i-GDH as-
sumption.

Theorem 4. P3MED is pattern indistinguishable under the i-GDH assumption.

6 The complexity

We evaluate the practicability of P3MED regarding several properties: the sizes
of the public parameters, the ciphertext, the trapdoor, and the encryption and
search complexities. Let fs be the size of a fragment, pmax be the maximum size
of a pattern, n be the total number of symbols in the data to be analyzed.

The size of the public parameters: The public parameters used in our
construction contains fs elements of G1 which represents 32 × fs bytes using
Barreto-Naehrig (BN) [16].

The size of the ciphertext: In the worst case (i.e., fs = 2× (pmax− 1)), each
symbol will be represented by 4 elements of G1. Therefore, encrypting n symbols
requires 128× n bytes using BN.

Trapdoor’s size: A trapdoor is composed of 2 × (fs − pmax) elements of G2

which represents 64× (fs− pmax) bytes using BN.

Trapdoor generation complexity. Generating a trapdoor for a pattern of
length l (l ≤ pmax), as described in the Issue algorithm (Algorithm 3), requires
(fs− l)× (2l + 2) exponentiations and 4l(fs− l) multiplications in G2.

Encryption complexity According to the Encrypt algorithm (Algorithm 2),

18 F. Author et al.

In the worst case (i.e., fs = 2× (pmax− 1)), encrypting a sequence of n symbols
requires 10 × n exponentiations in G1. In case in which the size of the data to
encrypt is large (i.e., the fragment size fs and the size of the considered al-
phabet Σ is negligible compared to the size of the data to be encrypted), the

previous complexity can be reduced by pre-computing {gα′σ·(ασ×z)i , gzi}i=fs−1i=0,σ∈Σ .
Then for each symbol to encrypt, the encryptor needs only to perform two ex-
ponentiations: (gα

′
σ·(ασ×z)

i

)aj and (gz
i

)aj which reduces the overall complexity
to fs× |Σ|+ 2× n exponentiations in G1.

Input: C = {Ci, Ci, C′i, C′i}m−1
i=0 , tdw = {Vi, vi}i=fs−li=0

Output: I
I ← ∅
CE = 0
foreach i ∈ [0,m− l] do

ε← i/fs #find the fragment Fε to which i belongs
if ε < nf − 1 and i ∈ Fε ∩ F ε then

if i = 0 then

CE =
∏l−1
j=0 Ci+j

else

CE = (CE
Ci−1

) ∗ Ci+j
end

if e(CE , g̃
vi
Fε) = e(C′i, g̃

Vi
Fε) then

I ← I ∪ i
end

else
if i = 0 then

CE =
∏l−1
j=0 Ci+j

else

CE = (CE
Ci−1

) ∗ Ci+j
end

if e(
∏l−1
j=0 Ci+j , g̃

viFε) = e(C′i, g̃
ViFε) then

I ← I ∪ i
end

end

end

Algorithm 5: Optimized Test Algorithm (Optimization instructions are
highlighted)

Search complexity: According to the Test algorithm (Algorithm 4), searching
a pattern of size l on a sequence of symbols of size n requires nl− l2 multiplica-
tions on the group G1 and 2×(n− l) pairings. In fact, the Test algorithm verifies
the presence of a pattern (using its associated trapdoor) in each possible offset

Privacy-Preserving Pattern Matching on Encrypted Data 19

in the sequence of symbols to be analyzed. Let us denote by Σ0 and Σ1 the two
sequences of symbols to be analyzed to check the presence of a pattern in offsets
0 and 1 respectively of the fragment Fi (resp. F i). Checking the presence of

the pattern in the offset 0 requires the computation of
∏l−1
i=0 Ci (resp.

∏l−1
i=0 Ci)

while checking the presence of the pattern in offset 1 requires the computation
of
∏l−1
i=0 Ci+1 (resp.

∏l−1
i=0 Ci+1). Obviously, for the offset 1, we can avoid the

recomputation of
∏l−1
i=1 Ci since it has already been computed for the offset 0.

Following the previous observation, we optimize the Test algorithm as illustrated
in Algorithm 5. Consequently, by using the new optimized algorithm, searching a
pattern of length l on a sequence of symbols of length n requires only n multipli-
cations and n divisions on the group G1, and 2×(n− l) pairings. Considering the
fact that the size l of pattern to be searched is pretty often negligible compared
to the size n of the sequence of symbols to be analyzed, we can upper bound
the search complexity by n multiplications, n divisions and 2n pairings.We note
that pairing operations can be implemented very efficiently [17] and that our
Test procedure (Algorithm 5) is highly parallelizable.

7 Empirical Evaluation

In this section, we experimentally evaluate the performance of P3MED. We
implement our construction using the optimal Ate library [17], over the 254-bits
Barreto-Naehrig curve. It consists of 1196 lines of code excluding 96 lines for
testing purposes. For all conducted experiments, we used real network traces as
the data to be encrypted and analyzed, and we (pseudo) randomly generated
the analysis patterns to be searched. In addition, since the encryption and the
trapdoor generation algorithms are to be performed by data owners which may
not have a large computation power, we run both the trapdoor generation and
the encryption algorithms tests on an Amazon EC2 instance (a1.2xlarge) running
Linux with an Intel Xeon E5-2680 v4 Processor with 8 vCPU and 16 GB of
RAM. In contrast, as the search operations (Algorithm 5) are performed by the
SP which is supposed to have a large computation power, we run our experiments
on an Amazon EC2 instance (m5.24xlarge) running Linux with an Intel Xeon
E5-2680 v4 Processor with 96 vCPU and 64 GB of RAM.

In our empirical evaluation, we aim to quantify the following characteristics
of our construction:

– The time required to generate a trapdoor and its corresponding size as a
function of the size of the largest analysis pattern pmax that can be searched.

– The time taken to encrypt a trace as a function of its size (i.e. the size
of the sequence of symbols that composed the data to be encrypted), the
fragmentation size fs and the size of the considered alphabet.

– The time needed to perform a pattern matching query (Algorithm 5) as a
function of the size of the data to be queried and the size of the analysis
pattern to be searched.

20 F. Author et al.

Trapdoor generation. Fig. 2 describes the time required for issuing a trap-
door for an analysis pattern w as a function of its length (i.e., the number of
symbols in w). According to our experiments, issuing a trapdoor for a pattern
of 4000 symbols take less than a second. In addition, the sizes of the generated
trapdoors are relatively small (256 KB for a pattern of 4000 symbols).

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of symbols in the analysis pattern

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

Fig. 2. Encryption time as a function of the number of symbols in the data to be
encrypted

Encryption time. According to Section 6, the duration of an encryption oper-
ation depends mainly on the number of symbols in the data to be encrypted n
but also on the fragmentation size fs and the size |Σ| of the considered alphabet
Σ. Fig. 3 describes the time needed to encrypt a network trace T fragmented
in chunks, each containing 1000 bits (fs = 1000 and Σ = {0, 1}), as a function
of n. The encryption of 1 Gb of data takes around 77 seconds with a multi-
threaded implementation 3, which shows that the encryption algorithm used by
our construction is quite efficient even for large datasets.

As we noted in Section 4.3, the fragmentation size fs and the considered
alphabets are important parameters in our construction. The first directly in-
fluences the size of the largest analysis pattern that can be searched over the
encrypted data since the bigger the size of the fragments are, the bigger the size
of the supported analysis patterns could be. The second parameter determines
the type of search that can be performed by our construction. In Fig. 4, we com-
pute the time required for the encryption of a dataset composed of 108 symbols

3 Encryption time would be roughly 8 times slower with a single-threaded execution.

Privacy-Preserving Pattern Matching on Encrypted Data 21

103 104 105 106 107 108 109

Number of symbols (n)

0

10

20

30

40

50

60

70

80

T
im

e
 i
n
 s

e
c
o
n
d
s

Fig. 3. Encryption time as a function of the number of symbols in the data to be
encrypted

as a function of the fragmentation size fs and the type of the considered sym-
bols. We consider three types of alphabets: binary, hexadecimal, and base 256
(i.e., ASCII alphabet) where each symbol is represented respectively in 1, 4 and
8 bits. For fs, we consider 3 different fragment sizes: 103, 104, and 105 symbols.

As illustrated in Fig. 4, the time required for encrypting a dataset composed
of 108 symbols increases only by a factor of 0.02 (from 7,04 to 7,2 seconds) when
increasing the size of the fragments by a factor of 100 (from 103 to 105) and
increasing the size of the considered alphabet by a factor of 128 (from a base 2
alphabet where Σ = {0, 1} to a base 256 alphabet where Σ = {0, 1, · · · , 255}).

Search time. As shown in Section 6, the complexity of the search operation
(Algorithm 5) depends mainly on the number of encrypted symbols n that com-
pose the data to be analyzed. Fig. 5 describes the time required for searching
a pattern as a function of the number of encrypted symbols in the data to be
analyzed.

The conducted evaluations show that the average search throughput of our
construction is 139078 symbols per second with a multi-threaded implementation
4. Thus, if an ASCII (resp. binary) alphabet is considered, the search throughput
is 139 KB (resp. Kb) per second. This remains a quite efficient throughput for
pattern matching over encrypted data compared to what can be performed by
the most efficient state of the art solution SEST which offers similar features
(i.e., correct analysis as well as trace indistinguishably). Fig. 6 (resp. Fig. 7)

4 search time would be roughly 100 times slower with a single-threaded execution.

22 F. Author et al.

103 104 105

Fragment size (fs)

0

1

2

3

4

5

6

7

8

9

10

T
im

e
 i
n
 s

e
c
o
n
d
s

Binary alpahbet

Hexadicimal alphabet

ASCII alphabet

Fig. 4. Time required for encrypting 108 symbols as a function of the fragmentation
size fs and the type of the considered alphabet

compares the time needed for both our and the SEST (both its asymmetric [1]
and symmetric (Section 4.2) variants) constructions to test the presence of a
pattern of bits (resp. of bytes) in a 10 MB (resp. Mb) dataset as a function
of the length of the pattern to be searched. In both bit and byte searches, our
construction drastically reduces the search time compared to SEST. This is
mainly due to the fact that our Test algorithm (Algorithm 5) is constant on the
size and on the content of the searched pattern which is not the case for SEST.

8 Conclusion

In this work, we introduced a new provably correct, secure, and quite efficient
construction that operates pattern matching directly over encrypted traffic. The
proposed construction has several remarkable properties. First, it ensures data
and pattern indistinguishability meaning that the entity that is going to perform
pattern matching will learn nothing about the patterns to be searched as well
as the data to be inspected, except the presence or the absence of a set of
”unknown” patterns (since the entity charged to perform pattern matching will
not have access to the patterns plaintexts). Second, the size of the ciphertext is
linear to the size of the plaintext and is constant on the sizes and the number of
analysis patterns. Third, the size of the issued trapdoors is constant on the size
of the data to be analyzed. Finally, the search complexity is linear to the size
of the trace and is constant on the size of the analysis patterns. The proposed

Privacy-Preserving Pattern Matching on Encrypted Data 23

0 100 200 300 400 500 600 700 800 900 1000

Number of symbols (10
3
)

0

10

20

30

40

50

60

70

T
im

e
 i
n
 s

e
c
o
n
d
s

Fig. 5. Time required for searching a pattern as a function of the number of encrypted
symbols in the data to be analyzed

construction can be useful for other application scenarios such as subtrees search
and searching of structured data.

References

1. Desmoulins, N., Fouque, P. A., Onete, C., & Sanders, O. (2018, December). Pattern
Matching on Encrypted Streams. In International Conference on the Theory and
Application of Cryptology and Information Security (pp. 121-148). Springer, Cham.

2. Moataz, T., Justus, B., Ray, I., Cuppens-Boulahia, N., Cuppens, F., & Ray, I. (2014,
July). Privacy-preserving multiple keyword search on outsourced data in the clouds.
In IFIP Annual Conference on Data and Applications Security and Privacy (pp. 66-
81). Springer, Berlin, Heidelberg.

3. Curtmola, R., Garay, J., Kamara, S., & Ostrovsky, R. (2011). Searchable symmetric
encryption: improved definitions and efficient constructions. Journal of Computer
Security, 19(5), 895-934.

4. Kamara, S., Moataz, T., & Ohrimenko, O. (2018, August). Structured encryption
and leakage suppression. In Annual International Cryptology Conference (pp. 339-
370). Springer, Cham.

5. Chase, M., & Shen, E. (2015). Substring-searchable symmetric encryption. Proceed-
ings on Privacy Enhancing Technologies, 2015(2), 263-281.

6. Sherry, J., Lan, C., Popa, R. A., & Ratnasamy, S. (2015). Blindbox: Deep packet in-
spection over encrypted traffic. ACM SIGCOMM Computer communication review,
45(4), 213-226.

7. Canard, S., Diop, A., Kheir, N., Paindavoine, M., & Sabt, M. (2017, April). Blindids:
Market-compliant and privacy-friendly intrusion detection system over encrypted

24 F. Author et al.

66 68 68 65 130 128 64

703 691

65

4276 4251

10 102 103 104

Number of bytes in the analysis pattern

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
 i
n
 s

e
c
o
n
d
s

Our construction

symmetric SEST

asymmetric SEST

Fig. 6. Timing comparison for testing the presence of a pattern in a string of 10 MB
as a function of the pattern size using the SEST schema and our construction.

traffic. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (pp. 561-574). ACM.

8. Gentry, C., & Boneh, D. (2009). A fully homomorphic encryption scheme (Vol. 20,
No. 09). Stanford: Stanford University.

9. Boneh, D., Sahai, A., & Waters, B. (2011, March). Functional encryption: Defini-
tions and challenges. In Theory of Cryptography Conference (pp. 253-273). Springer,
Berlin, Heidelberg.

10. Lauter, K., López-Alt, A., & Naehrig, M. (2014, September). Private computa-
tion on encrypted genomic data. In International Conference on Cryptology and
Information Security in Latin America (pp. 3-27). Springer, Cham.

11. Hazay, C., & Lindell, Y. (2010). Efficient protocols for set intersection and pat-
tern matching with security against malicious and covert adversaries. Journal of
cryptology, 23(3), 422-456.

12. Gennaro, R., Hazay, C., & Sorensen, J. S. (2016). Automata evaluation and text
search protocols with simulation-based security. Journal of Cryptology, 29(2), 243-
282.

13. Troncoso-Pastoriza, J. R., Katzenbeisser, S., & Celik, M. (2007, October). Privacy
preserving error resilient DNA searching through oblivious automata. In Proceed-
ings of the 14th ACM conference on Computer and communications security (pp.
519-528). ACM.

14. Katz, J., Sahai, A., & Waters, B. (2013). Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. Journal of cryptology, 26(2),
191-224.

15. Boneh, D., & Waters, B. (2007, February). Conjunctive, subset, and range queries
on encrypted data. In Theory of Cryptography Conference (pp. 535-554). Springer,
Berlin, Heidelberg.

Privacy-Preserving Pattern Matching on Encrypted Data 25

67 135 132 66

602 609

66

2265 2254

66

8944 8961

4 16 64 256

Number of bits in the analysis pattern

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
im

e
 i
n
 s

e
c
o
n
d
s

Our construction

symmetric SEST

asymmetric SEST

Fig. 7. Timing comparison for testing the presence of a pattern in a string of 10 MB
as a function of the pattern size using the SEST schema and our construction.

16. Barreto, P. S., & Naehrig, M. (2005, August). Pairing-friendly elliptic curves of
prime order. In International Workshop on Selected Areas in Cryptography (pp.
319-331). Springer, Berlin, Heidelberg.

17. Mitsunari, S. (2013). A Fast Implementation of the Optimal Ate Pairing over BN
curve on Intel Haswell Processor. IACR Cryptology ePrint Archive, 2013, 362.

18. Canetti, R., Halevi, S., & Katz, J. (2003, May). A forward-secure public-key en-
cryption scheme. In International Conference on the Theory and Applications of
Cryptographic Techniques (pp. 255-271). Springer, Berlin, Heidelberg.

19. Bellare, M., Boldyreva, A., & O’Neill, A. (2007, August). Deterministic and effi-
ciently searchable encryption. In Annual International Cryptology Conference (pp.
535-552). Springer, Berlin, Heidelberg.

20. MISP - Open Source Threat Intelligence Platform & Open Standards For Threat
Information Sharing, https://www.misp-project.org/, 23 12 2011.

21. Boyen, X. (2008, September). The uber-assumption family. In International Con-
ference on Pairing-Based Cryptography (pp. 39-56). Springer, Berlin, Heidelberg.

22. Snort Rules. https://www.snort.org/, Accessed: 2019-08-35.

A Appendix: Security Proofs

A.1 Proof of Theorem 1

Let us suppose that B = σ0 · · ·σm−1 contains w = σw,0 · · ·σw,l−1(l < pmax,l <
m) at index i. Thus, ∀j ∈ [0, l− 1] : σi+j = σw,j . Let us suppose that i ∈ Fε(ε ∈
[0, nf − 1]). According to the Test algorithm (Algorithm 4), 2 cases should be
considered:

26 F. Author et al.

– Case 1: ε < nf − 1 and i ∈ Fε ∩ F ε

e(

l−1∏
j=0

Ci+j , g̃
vi
Fε) = e(

l−1∏
j=0

g
aε·α′σi+j ·(ασi+j ·z)

(i
Fε

+j)

, g̃
vi
Fε)

= e(g
aε·

∑l−1
j=0 α

′
σi+j

·(ασi+j ·z)
(i
Fε

+j)

, g̃
vi
Fε)

= e(gaε·z
i
Fε
, g̃
vi
Fε
·
∑l−1
j=0 α

′
σi+j

·α
i
Fε

+j

σi+j
·zj

)

By replacing α′σi+j by α′σw,j and ασi+j by ασw,j we get:

e(

l−1∏
j=0

Ci+j , g̃
vi
Fε) = e(C ′i, g̃

Vi
Fε)

– Case 2: i ∈ Fε\F ε

e(

l−1∏
j=0

Ci+j , g̃
viFε) = e(

l−1∏
j=0

g
aε·α′σi+j ·(ασi+j ·z)

(iFε
+j)

, g̃
viFε)

= e(g
aε·

∑l−1
j=0 α

′
σi+j

·(ασi+j ·z)
(iFε

+j)

, g̃
viFε)

= e(gaε·z
iFε

, g̃
viFε
·
∑l−1
j=0 α

′
σi+j

·α
iFε

+j
σi+j

·zj
)

Again, by replacing α′σi+j by α′σw,j and ασi+j by ασw,j we get:

e(

l−1∏
j=0

Ci+j , g̃
viFε) = e(C ′i, g̃

ViFε)

As a result in both previous cases, the probability that the Test algorithm
returns a set containing i is 1.

For the second part of the proof, we assume that the set of indexes returned
by Test contains i despite that σi · · ·σi+l−1 6= σw,i · · ·σw,l−1. We should consider
the following two cases:

– Case 1: ε < nf−1 and i ∈ Fε∩F ε. Let us denote by K6= the non-empty set
of indexes k in which σi+k 6= σw,k (k ∈ [0, l − 1]). Since i has been returned
by Test, then we have:

e(

l−1∏
j=0

Ci+j , g̃
vi
Fε) = e(C ′i, g̃

Vi
Fε)

⇔ e(g
aε·

∑l−1
k=0 α

′
σi+k

·(ασi+k ·z)
(i
Fε

+k)

, g̃
vi
Fε)

= e(gaε·z
i
Fε , g̃

vi
Fε
·
∑l−1
k=0 α

′
σi+k

·α
i
Fε

+k

σi+k
·zk

)

⇔ e(g, g̃)
aε·vi

Fε
·
∑l−1
k=0 α

′
σi+k

·(ασi+k ·z)
(i
Fε

+k)

= e(g, g̃)
aε·vi

Fε
·
∑l−1
k=0 α

′
σw,k

·(ασw,k ·z)
(i
Fε

+k)

(1)

Privacy-Preserving Pattern Matching on Encrypted Data 27

⇔
l−1∑
k=0

α′σi+k · (ασi+k · z)
(iFε+k) =

l−1∑
k=0

α′σw,k · (ασw,k · z)
(iFε+k)

⇔
∑
k∈K 6=

(α′σi+k · α
iF+k
σi+k − α′σw,k · α

iF+k
σw,k) · ziF+k = 0

Since σw,k 6= σi+k,∀k ∈ K6=, then the probability that the previous equation

holds is equivalent to the probability that a random scalar z (z
$←− Zp) is a root

of a non-zero polynomial of degree at most l − 1. As a result, the probability
that Test returns a false positive is at most l−1

p which is negligible (since p is a

large prime).

– Case 2: i ∈ Fε\F ε This can be proved using the same strategy as in the
previous case. One needs just to replace Ci by Ci, C ′i by C ′i, and iF ε by iFε .

A.2 Proof of Theorem 2

To prove the trace indistinguishability property of our construction, we use the
same strategy as in [1]. Let Gβ0 be the ExpT IND CPA

A,β as define in Definition 1.

We will use a sequence of games G
(β)
j for j ∈ [1, n] to show that the advantage

of the adversary A for winning ExpT IND CPA
A,β is negligible.

Let us suppose that T0 = σ∗0,1 · · ·σ∗0,m−1 and T1 = σ∗1,1 · · ·σ∗1,m−1 are the two

traces chosen by A in ExpT IND CPA
A,β (Definition 1). We denote by I 6= the set of

indexes j in which σ∗0,i 6= σ∗1,i and by I(j)6= the subset containing the first j indexes

of I 6= (if j < |I6=|, then I(j)6= = I6=). In this proof, we rely on a standard hybrid
argument in which an element of the challenge ciphertext is randomized at each

game hop. That is, for j ∈ [1, n], the game G
(β)
j modifies G

(β)
0 by changing, for

all i ∈ I(j)6= , the element Ci and Ci(if Ci 6= Null) of the challenge ciphertext

to random elements of G1. This means that the last game Gβn, the challenge
cipertext does not contain any useful information about σβ,i∀i ∈ I6=. As a result,

the adversary cannot distinguish whether it plays G
(0)
n or G

(1)
n .

In [1], authors showed that AdvExp
T IND CPA
A,β (λ) can be bounded as following:

AdvExp
T IND CPA
A,β (λ) ≤

n−1∑
j=1

|G(1)
j (λ)−G(1)

j+1(λ)|+

n−1∑
j=1

|G(0)
j+1(λ)−G(0)

j (λ)|

Therefore, in order to show that AdvExp
T IND CPA
A,β (λ) is negligible, we need to

show that for all j ∈ [0, n−1], for all β ∈ {0, 1}, |Pr[Gβj (λ) = 1]−Pr[Gβj+1(λ) =
1]| is negligible. This is stated by the following lemma.

28 F. Author et al.

Lemma 1. For all j ∈ [0, n−1], for all β ∈ {0, 1}, |Pr[Gβj (λ) = 1]−Pr[Gβj+1(λ) =

1]| is negligible under the i-GDH assumption for S = T = ∅, R = {zi, ak · zi, ak ·
zi}i=2n−1,k=nf

i=0,k=0 , and f ∈ {ak∗ · x′0 · xi
∗

0 · zn, ak∗ · x′0 · xi
∗

0 · zn, ak∗+1 · x′0 · xi
∗

0 · zn}.

Proof. In this proof, we are mainly considering the case in which j < |I6=|, since

otherwise, I(j)6= = I(j+1)
6= . This means that Gβj = Gβj+1 are exactly the same and

there is nothing to prove.
Let i∗ be the (j + 1)st index in I 6=, ε ∈ [0,m/fs], gi,F = gak·z

i

, and gi,F =

gak·z
i

. From the i-GDH challenge containing {gzi , gak·zi , gak·zi} the simulator

starts by defining gz
i

= gz
n−i∗+i

and gi,F and gi,F according to the following
three cases:

– C1.1: i∗ ∈ F ε−1: The simulator defines gi,F = gaε−1·z
n+i

Fε−1
−i∗
Fε−1

– C1.2: i∗ ∈ F ε: The simulator defines gi,F = gaε·z
n+i

Fε
−i∗
Fε

– C1.3: otherwise (i∗ ∈ Fε): The simulator defines gi,F = gaε·z
n+iFε

−i∗Fε

Once the simulator receive an issues query for the pattern p = σ
(p)
0 , · · · , σ(p)

lp−1,

it start by checking that p satisfies the condition defined in the step (3)(a) of
ExpT IND CPA

A,β (Definition 1). Then, it uses the simulator OS to generate a valid
trapdoor for p. One can easily check at this level that ∀j ∈ [max(0, i∗ + lp −
n),min(i∗, lp − 1)] : σ

(p)
0 , · · · , σ(p)

lp−1 6= σ∗β,i∗−j · · ·σ∗β,i∗−j+lp−1. If the previous
formula is not satisfied, we end up with

σ∗1−β,i∗−j · · ·σ∗1−β,i∗−j+lp−1 6= σ
(p)
0 , · · · , σ(p)

lp−1 6=

σ∗β,i∗−j · · ·σ∗β,i∗−j+lp−1

which is in contradiction with i∗ ∈ I6=.
The simulator then creates the challenge C = {C ′i, Ci, C ′i, Ci}

i=m−1
i=0 accord-

ing to the following three cases:

– C2.1: i ∈ Fε ∩ F ε−1:

• C ′i = gaεz
n+iFε

−i∗Fε and C ′i = gaε−1z
n+i

Fε−1
−i∗
Fε−1

• ∀i ∈ I(j) : Ci
$←− G1, Ci

$←− G1

• ∀i /∈ I(j+1) the simulator uses the oracle OR to get valid Ci and Ci and
sets U to be in {Ci∗ , Ci∗}

– C2.2: i ∈ Fε ∩ F ε:
• C ′i = gaεz

n+iFε
−i∗Fε and C ′i = gaεz

n+i
Fε
−i∗
Fε

• ∀i ∈ I(j) : Ci
$←− G1, Ci

$←− G1

• ∀i /∈ I(j+1) the simulator uses the oracle OR to get valid Ci and Ci and
sets U to be in {Ci∗ , Ci∗}

– C2.3: i ∈ Fε\(F ε−1 ∪ F ε):
• C ′i = gaεz

n+iFε
−i∗Fε and C ′i = ∅

Privacy-Preserving Pattern Matching on Encrypted Data 29

• ∀i ∈ I(j) : Ci
$←− G1 and Ci = ∅

• ∀i /∈ I(j+1) the simulator uses the oracle OR to get valid Ci and sets
U = Ci∗

Then if

U =



Ci∗ = g
aε−1·α′σi∗ ·α

i∗
σi∗
·zn

or
Ci∗ = g

aε·α′σi∗ ·α
i∗
σi∗
·zn

}
if C2.1

Ci∗ = g
aε·α′σi∗ ·α

i∗
σi∗
·zn

or
Ci∗ = g

aε·α′σi∗α
i∗
σi∗
·zn

}
if C2.2

Ci∗ = g
aε·α′σi∗ ·α

i∗
σi∗
·zn

if C2.3

then the simulator is playing the game G
(β)
j . Otherwise U is random and the

simulator is playing G
(β)
j+1. Then an adversary A able to distinguish G

(β)
j and

G
(β)
j+1 will be able to win ExpT IND CPA

A,β with non negligible advantage. By
replacing ασi∗ by x0 and α′σi∗ by x′0, in order to prove that A cannot distinguish

G
(β)
j and G

(β)
j+1, we need to prove that for all f ∈ {ak∗ · x′0 · xi

∗

0 · zn, ak∗ · x′0 · xi
∗

0 ·
zn, ak∗+1 · x′0 · xi

∗

0 · zn}, f is independent of the sets R,S, and T after q queries
to OS and 1 query to OR which will be proved in Lemma 2.

Each pattern pt = σt,0, · · · , σt,lt−1 submitted to OS will add the polynomials∑fs−lt
s=0 vt,s ·

∑lt−1
k=0 α

′
σt,k

(ασt,k · z)k+s and
∑fs−lt
s=0 vt,s to S. In addition, a query

to the oracle OR will add ∀i ∈ [0,m− 1]\{i∗}
aε−1 · α′σ∗i · α

i
σ∗i
· zn−i∗+i if i ∈ Fε ∩ F ε−1

aε · α′σ∗i · α
i
σ∗i
· zn−i∗+i if i ∈ Fε ∩ F ε

aε · α′σ∗i · ασ∗i · z
n−i∗+i if i ∈ Fε

(2)

to R.
With this new notations, R initially contains {zi, ak · zi, ak · zi}i=2n−1,k=nf

i=0,k=0

where T and S are initially empty.

Lemma 2. Let R,S, and T be the sets defines above after q queries to OS and
1 query to OR. If ∀t ∈ [1, q], the pattern pt = σt,0, · · · , σt,lt−1 submitted to Oiss
differs for all j ∈ [max(0, i∗+lt−n),min(i∗, lt−1)] from σ∗β,i∗−j · · ·σ∗β,i∗−j+lt−1,

then ∀f ∈ {ak∗ · α′σ∗
i∗
· αi∗σ∗

i∗
· zn, ak∗ · α′σ∗

i∗
· αi∗σ∗

i∗
· zn, ak∗+1 · α′σ∗

i∗
· αi∗σ∗

i∗
· zn}, f is

independent of < R,S, T >.

Proof. According to Definition 5, to prove that f is independent of < R,S, T >,
we need to prove that ∀a ∈ {ak∗ , ak∗ , ak∗+1}, there is no combination of poly-
nomials from R,S, and T such that(

a · α′σ∗
i∗
· αi

∗

σ∗
i∗
· zn
)

(
∑
j

uaj · S(j)) =

∑
i,j

ubi,j ·R(i) · S(j) +
∑
k

u
(c)
k T (t)

(3)

30 F. Author et al.

First, we remark that the factor a appears only in the elements {ak · zi, ak ·
zi}i=2n−1,k=nf

i=0,k=0 of R and in the output of the oracle OR (Formula 2). Thus, the
elements of R that are not multiple of a cannot be part of Equation (3). In
addition, the last sum of Equation (3) can be removed since T is empty. So, let

{ϑ(a)i,t,s, ϑ
(b)
i,t,s, ϑ

(c)
j , ϑ

(d)
j,t,s, ϑ

(e)
j,t,s, ϑ

(f)
i }

i=δ−1,j=2n−1,t=q,s=fs−lt
i=0,j=0,t=1,s=0 be constants such that

a · α′σ∗
i∗
· αi

∗

σ∗
i∗
· zn(

q∑
t=1

fs−lt∑
s=0

(ϑ
(a)
i∗,t,s · Vt,s + ϑ

(b)
i∗,t,s · vt,s))

=

2n−1∑
j=0

a · ϑ(c)j · z
j(

q∑
t=1

fs−lt∑
s=0

(ϑ
(d)
j,t,s · Vt,s + ϑ

(e)
j,t,s · vt,s))

+ (

δ−1∑
i=0,i6=i∗

a · ϑ(f)i · α
′
σ∗i
· αiσ∗i · z

n−i∗+i)·

(

q∑
t=1

fs−lt∑
s=0

(ϑ
(a)
i,t,s · Vt,s + ϑ

(b)
i,t,s · vt,s))

where δ = fs if a = ak∗ (i.e, there are at most fs elements in the fragments in
which ak∗ is used) and δ = 2pmax − 2 if a = ak∗ or a = ak∗+1 (i.e, there are at
most 2pmax − 2 elements in the fragments in which ak∗ is used).

Our goal is then to show that ϑ
(a)
i∗,t,s = ϑ

(b)
i∗,t,s = 0 for any s ∈ [0, fs− lt] and

t ∈ [1, q]. Let us consider each member of the previous equation as a polynomial
in the variable {α′σ}σ∈Σ . We regroup the different monomials according to their
degree and we divide each member by a:

1.
∑2n−1
j=0 ϑ

(c)
j · zj(

∑q
t=1

∑fs−lt
s=0 ϑ

(e)
j,t,s · vt,s) = 0

2. α′σ∗
i∗
·αi∗σ∗

i∗
·zn(

∑q
t=1

∑fs−lt
s=0 ϑ

(b)
i∗,t,s ·vt,s) =

∑2n−1
j=0 ϑ

(c)
j ·zj(

∑q
t=1

∑fs−lt
s=0 ϑ

(d)
j,t,s ·

Vt,s) + (
∑δ−1
i=0,i6=i∗ ϑ

(f)
i · α′σ∗i · α

i
σ∗i
· zn−i∗+i)(

∑q
t=1

∑fs−lt
s=0 ϑ

(b)
i,t,s · vt,s)

3. α′σ∗
i∗
· αi∗σ∗

i∗
· zn(

∑q
t=1

∑fs−lt
s=0 ϑ

(a)
i∗,t,s · Vt,s) = (

∑δ−1
i=0,i6=i∗ ϑ

(f)i · α′σ∗i · α
i
σ∗i
·

zn−i
∗+i)(

∑q
t=1

∑fs−lt
s=0 ϑ

(a)
i,t,s · Vt,s)

In Equation (3), since Vt,s = vt,s ·
∑lt−1
k=0 α

′
σt,iα

s+k
σt,i · z

k and ∀t, t′ ∈ [1, q],∀s, s′ ∈
[0, fs − lt] : vt,s 6= vt′,s′ with overwhelming probability (in the Issues algorithm
(Algorithm 2), vt,s is chosen randomly from Zp), we have ∀t ∈ [1, q],∀s ∈ [0, fs−
lt] :

α′σ∗
i∗
· αi

∗

σ∗
i∗
· zn · ϑ(a)i∗,t,s · Vt,s =

δ−1∑
i=0,i6=i∗

ϑ(f)i · α′σ∗i · α
i
σ∗i
· zn−i

∗+i · ϑ(a)i,t,s · Vt,s

We can remove Vt,s in each member of the last equation to get:

α′σi∗ · α
i∗

σi∗
· zn · ϑ(a)i∗,t,s =

δ−1∑
i=0,i6=i∗

ϑ(f)i · α′σ∗i · α
i
σ∗i
· zn−i

∗+i · ϑ(a)i,t,s

Privacy-Preserving Pattern Matching on Encrypted Data 31

We note that we cannot get a monomial of degree n in z in the right member of

the last equation which means that ϑ
(a)
i∗,t,s = 0, ∀t ∈ [1, q] and ∀s ∈ [0, fs − lt].

It then only remains to prove that ∀t ∈ [1, q],∀s ∈ [0, fs− lt] : ϑ
(b)
i∗,t,s = 0.

In Equation (2), let us define ϑ
(f)
i∗ = −1. Since ∀t, t′ ∈ [1, q],∀s, s′ ∈ [0, fs−

lt] : vt,s 6= vt′,s′ with overwhelming probability, we can merge the left member
with the last sum of the right member to get ∀t ∈ [1, q],∀s ∈ [0, fs− lt] :

2n−1∑
j=0

ϑ
(c)
j · z

j · ϑ(d)j,t,s · Vt,s =

−(

δ−1∑
i=0

ϑ
(f)
i · α

′
σ∗i
· αiσ∗i · z

n−i∗+i)(ϑ
(b)
i,t,s · vt,s)

Now, by replacing Vt,s by vt,s ·
∑lt−1
k=0 α

′
σt,k

αs+kσt,k
· zk we have:

2n−1∑
j=0

ϑ
(c)
j · z

j · ϑ(d)j,t,s ·
lt−1∑
k=0

α′σt,kα
s+k
σt,k
· zk =

−
δ−1∑
i=0

ϑ
(f)
i · α

′
σ∗i
· αiσ∗i · z

n−i∗+i · ϑ(b)i,t,s

By regrouping z elements in the left side we get:

2n+lt−2∑
j=0

zj
lt−1∑
k=0

ϑ
(c)
j−k · ϑ

(d)
j−k,t,s · α

′
σt,k
· αs+kσt,k

=

−
δ−1∑
i=0

ϑ
(f)
i · α

′
σ∗i
· αiσ∗i · z

n−i∗+i · ϑ(b)i,t,s

(4)

where ϑ
(c)
i−k = ϑ

(d)
i,t,s = 0 if i ≥ 2n. So if we consider the monomial of degree

n in z we get:
∑lt−1
k=0 ϑ

(c)
n−k · ϑ

(d)
n−k,t,s · α′σt,k · α

s+k
σt,k

= ϑ
(f)
i∗ · α′σ∗

i∗
· αi∗σ∗

i∗
· ϑ(b)i∗,t,s.

Since by definition ϑ
(f)
i∗ = −1, then to show that ϑ

(b)
i∗,t,s, we will show that

ϑ
(c)
n−k · ϑ

(d)
n−k,t,s = 0 for all k ∈ [0, lt − 1].

By definition, we have for all j ∈ [max(0, i∗ + lt − n),min(i∗, lt − 1)] :
σt,0, · · · , σt,lt−1 6= σ∗β,i∗−j · · ·σ∗β,i∗−j+lt−1. Thus, ∀i ∈ [max(0, i∗−lt+1),min(δ−
lt, i
∗)],∃i ∈ [0, lt − 1] such that σ∗

i+i
6= σi. Let us now consider the coeffi-

cient associated with the monomial of degree n − i∗ + i + i in z. Then ∀i ∈
[max(0, i∗ − lt + 1),min(δ − lt, i∗)] we have:

lt−1∑
k=0

ϑ
(c)

n−i∗+i+i−k · ϑ
(d)

n−i∗+i+i−k,t,s · α
′
σt,k
· αs+kσt,k

=

ϑ
(f)

i+i
· α′σ∗

i+i
· αi+iσ∗

i+i

· ϑ(b)
i+i,t,s

32 F. Author et al.

Since σt,i 6= σ∗
i+i
⇔ ασt,i 6= ασ∗

i+i
, we have:

lt−1∑
k=0,σt,k=σt,i

ϑ
(c)

n−i∗+i+i−k · ϑ
(d)

n−i∗+i+i−k,t,s · α
′
σt,k
· αs+kσt,k

= 0

which means that ϑ
(c)

n−i∗+i+i−k · ϑ
(d)

n−i∗+i+i−k,t,s for all k such that σt,k = σt,i,

and in particular k = i. This means that ϑ
(c)
n−i∗+i · ϑ

(d)
n−i∗+i,t,s = 0 for all i ∈

[max(0, i∗− lt + 1),min(δ− lt, i∗)], which implies that ϑ
(c)
n−k ·ϑ

(d)
n−k,t,s = 0 for all

k ∈ [i∗ −min(δ − lt, i∗), i∗ −max(0, i∗ − lt + 1)].
As a result, we have:

– Ifmin(i∗, δ−lt) = i∗ andmax(0, i∗−lt+1) = i∗−lt+1 then ϑ
(c)
n−k·ϑ

(d)
n−k,t,s = 0

for all k ∈ [0, lt−1] which equivalent to ϑ
(b)
i∗,t,s = 0, and thus the independence

of a · α′σ∗
i∗
· αi∗σ∗

i∗
· zn.

– If i∗ > δ − lt : In this case we must prove that ϑ
(c)
n−k · ϑ

(d)
n−k,t,s = 0 for any

k ∈ [0, i∗ + lt − δ − 1]. Proof is contradiction. So, let us assume that there

is k ∈ [0, i∗ + lt − δ − 1] such that ϑ
(c)

n−k · ϑ
(d)

n−k,t,s 6= 0. So, let us consider

the monomials of degree n− k + lt − 1 in z of Equation (4). The coefficient

of its left member is
∑lt−1
k=0 ϑ

(c)

n−k+lt−1−k
· ϑ(d)

n−k+lt−1−k,t,s
· α′σt,k · α

k
σt,k

and

in the right member is 0, since the degree of the right member is at most
n+ δ − i∗ − 1. Or k ≤ i∗ + lt − δ − 1⇔ n− k + lt − 1 ≥ n− i∗ + δ. So,

lt−1∑
k=0

ϑ
(c)

n−k+lt−1−k
· ϑ(d)

n−k+lt−1−k,t,s
· α′σt,k · α

s+k
σt,k

= 0.

which means that ϑ
(c)

n−k+lt−1−k
·ϑ(d)
n−k+lt−1−k,t,s

= 0 for all k ∈ [0, lt−1] and

in particular k = lt − 1. However, this contradicts our assumption ϑ
(c)

n−k ·
ϑ
(d)

n−k,t,s 6= 0. Thus, ϑ
(c)
n−k · ϑ

(d)
n−k,t,s = 0 for any k ∈ [0, i∗ + lt − δ − 1].

– If i∗ < lt − 1 : Here we must prove that ϑ
(c)
n−k · ϑ

(d)
n−k,t,s = 0 for any k ∈

[i∗ + 1, lt − 1]. Proof is by contradiction. We again assume that ∃k ∈ [i∗ +

1, lt − 1] such that ϑ
(c)

n−k · ϑ
(d)

n−k,t,s 6= 0. Let us consider the monomials of

degree n − k in z of Equation (4). The coefficient of its left member is∑lt−1
k=0 ϑ

(c)

n−k−k ·ϑ
(d)

n−k−k,t,s ·α
′
σt,k
·αkσt,k and in the right member is 0, since the

degree of the right member is at least n−i∗ and k > i∗+1⇔ n−k ≤ n−i∗−1.
Therefore we have:

lt−1∑
k=0

ϑ
(c)

n−k−k · ϑ
(d)

n−k−k,t,s · α
′
σt,k
· αs+kσt,k

= 0.

which means that ϑ
(c)

n−k−k · ϑ
(d)

n−k−k,t,s = 0 for all k ∈ [0, lt − 1] and in

particular k = 0. However, this contradicts our assumption ϑ
(c)

n−k ·ϑ
(d)

n−k,t,s 6=

Privacy-Preserving Pattern Matching on Encrypted Data 33

0. Thus, ϑ
(c)
n−k · ϑ

(d)
n−k,t,s = 0 for any k ∈ [i∗ + 1, lt − 1], which conclude the

proof.

A.3 Proof of Theorem 3

According to Theorem 2, despite the fact that the adversary A is able to adap-
tively query the OS to issue trapdoors for a finite set of patterns P, our con-
struction is proved to be trace indistinguishable. This means that, in ExpETFA
game, the adversary will not be able to get any information about the ciphertext
C∗ of the trace T ∗ out of CT , T ∈ T (since T ∗ /∈ T).

So let us suppose that T ∗ = σT∗,0 · · ·σT∗,n−1, wt = σwt,0 · · ·σwt,l−1, and
that A forges C∗ using the key K∗ = {z∗, {α∗σ, α′∗σ }σ∈Σ} in such a way that

∃i ∈ [0, |T | − 1] : i ∈ Test(C∗, tdwt) and that tdwt = {Vj , vj}j=fs−lj=0 . Again, two
cases should be considered:

– Case 1: ε < nf − 1 and i ∈ Fε ∩ F ε

e(

l−1∏
j=0

C∗i+j , g̃
vi
Fε) = e(C∗′ i, g̃

Vi
Fε)

By using the same transformation as in the proof of Theorem 1, we get

l−1∑
k=0

α′∗σT∗,i+k · (α
∗
σT∗,i+k

· z∗)(iFε+k) =

l−1∑
k=0

α′σwt,k · (ασwt,k · z)
(iFε+k)

Since, T ∗ contains wt at index i, then ∀k ∈ [0, l − 1], σT∗,i+k = σwt,k The
previous equation only holds if z = z∗, α′∗σwt,k = α′σwt,k , and ασwt,k = ασwt,k .

Since z
$←− Zp, ∀σ ∈ Σ : ασ

$←− Zp and α′σ
$←− Zp, and z, ασ, α

′
σ are not

known to A, then the probability that the adversary A to win ExpETFA is
at most 1

p3 which is negligible.

– Case 2: i ∈ Fε\F ε: we use the same strategy as in case 1 to show that the
advantage of A to win ExpETFA is at most 1

p3 which is negligible.

A.4 Proof of Theorem 4

As defined in Definition 3, to show that our construction is pattern indistin-
guishable, we need to show that the advantage of the adversary A of winning
the game ExpP IND CPA

A,β , is negligible. So, let T be the set of (unknown) trace

ciphertexts observed in the step 2 of the game ExpP IND CPA
A,β . Let us first note

that since the adversary A will not have the ability to create valid encrypted
traces of his choice (as we showed in Theorem 3), A will not be able to brute

34 F. Author et al.

force the trapdoors by creating a lot of (random) traffics to guess the logic be-
hind them. In addition, according to the Theorem 2, our construction is trace
indistinguishable, this means that, since ∀T ∈ T , w∗β /∈ T . A will not learn any
information out of the encrypted traces T , and therefore, the observation of T
will not give A any advantage in guessing β. As a result, the only solution left to
A is to use the trapdoors provided by OS in the query phase of ExpP IND CPA

A,β .
In the following we will show that guessing the pattern w∗β out of the adaptively
chosen patterns wi and their issued trapdoors tdwi is hard under the i-GDH
assumption.

Let fs be the size of fragment we will used in our construction. Suppose
that the two challenge patterns chosen by A are w∗0 = σ∗0,0 · · ·σ∗0,l−1 and w∗1 =

σ∗1,0 · · ·σ∗1,l−1. Let G
(β)
0 denotes the ExpP IND CPA

A,β game, we will use a sequence

of games G
(β)
j , j ∈ [0, fs − 1] to show that A’s advantage is negligible. As in

the proof of Theorem 2, we rely on a standard hybrid argument in which an
element of the challenge trapdoor is randomized at each game hop. That is, for

j ∈ [1, fs − 1], the game G
(β)
j modifies G

(β)
0 by changing, for all i ∈ [0, j], the

element Vi of the challenge trapdoor to a random element of G2. This means
that the last game Gβfs−1, the challenge trapdoor does not contain any useful
information about w∗β . As a result, the adversary cannot distinguish whether it

plays G
(0)
fs−1 or G

(1)
fs−1. As a result, we can bound the advantage of A as following:

AdvExp
P IND CPA
A,β (λ) ≤

fs−1∑
j=1

|G(1)
j (λ)−G(1)

j+1(λ)|+
fs−1∑
j=1

|G(0)
j+1(λ)−G(0)

j (λ)|

Then to prove that AdvExp
P IND CPA
A,β (λ) is negligible, we should prove that A

cannot distinguish G
(β)
j and G

(β)
j+1 which is stated by the following Lemma. As-

suming the following lemma is proved, each term above is negligible under the
i-GDH assumption, which concludes the proof.

Lemma 3. After performing q queries to OS, for j ∈ [0, fs − 1], β ∈ {0, 1},
|AdvG

(β)
j (λ)−AdvG

(β)
j+1(λ)| is negligible under the i-GDH assumption where f =

v∗j+1 ·
∑l−1
k=0 α

′
σ∗β,k
·αj+k+1
σ∗β,k

·zk, R = {vt,s ·
∑l−1
k=0 α

′
σt,k
·αs+kσt,k

·zk, vt,s, v∗s ·
∑l−1
k=0 α

′
σ∗k
·

αs+kσ∗k
· zk, v∗s}

t=q,s′=s=fs−l
t=1,s=0,s′=0,s′ 6=j+1, S = {zi}i=fs−1i=0 , and T = ∅.

Proof. According to the standard hybrid argument strategy we described before,
in each Gβj+1, to answer A’s challenge the simulator uses the oracle OS to get a

valid trapdoor tdw∗β = {g̃V ∗s , g̃v∗s }fs−ls=0 for w∗β . It replaces g̃V
∗
i , i ∈ [0, j] by random

elements of G2 and sets g̃V
∗
j+1 as U . Then, if U = v∗j+1 ·

∑l−1
k=0 α

′
σ∗β,k
· αj+k+1

σ∗β,k
· zk

then the simulator is playing G
(β)
j . Otherwise, U is random and the simulator

is playing the G
(β)
j+1. Then if A is able to distinguish G

(β)
j and G

(β)
j+1 he/she

will be able to win ExpP IND CPA
A,β with non negligible advantage. According to

Privacy-Preserving Pattern Matching on Encrypted Data 35

Definition 6, in order to prove that A cannot distinguish G
(β)
j and G

(β)
j+1 under

i-GDH assumption, we need to prove that for f = v∗j+1 ·
∑l−1
k=0 α

′
σ∗β,k
·αj+k+1

σ∗β,k
· zk

is independent of the sets R,S, and T after q queries to OS .
First let us note that each query issued to OS and associated which the

pattern wi = σi,0, · · ·σi,l−1, adds, according to the Issue algorithm of our con-

struction, {vt,s ·
∑l−1
k=0 α

′
σt,k
·αs+kσt,k

·zk, vt,s}t=q,s=fs−lt=1,s=0 to the set R. Moreover, the

challenge query adds {v∗t,s ·
∑l−1
k=0 α

′
σ∗t,k
· αs+kσ∗t,k

· zk, v∗t,s′}
t=q,s=fs−l,s′=fs−l
t=1,s=0,s6=j+1,s′=0 .

As we mentioned before, A will not be able to create a valid ciphertext
for chosen trace, then the set S will contain only the elements of G1 that are
provided in params. Therefore S = {zi}i=fs−1i=0 .

Consequently, R contains {vt,s ·
∑l−1
k=0 α

′
σt,k
· αs+kσt,k

· zk, vt,s, v∗s ·
∑l−1
k=0 α

′
σ∗k
·

αs+kσ∗k
· zk, v∗s}

t=q,s′=s=fs−l
t=1,s=0,s′=0,s′ 6=j+1, S contains {zi}i=fs−1i=0 , and T is empty.

So, according to Definition 5, the goal is to prove that one cannot find a
combination of polynomials from R,S and T such that:

(v∗j+1 ·
l−1∑
k=0

α′σ∗β,k · α
j+k+1
σ∗β,k

· zk)(
∑
j

uaj · S(j)) =

∑
i,j

ubi,j ·R(i) · S(j) +
∑
k

u
(c)
k T (t)

(5)

First let us note that the factor v∗j+1 only appears in the last element of the set R.
Since ∀t1, t2 ∈ [1, q],∀s1, s2 ∈ [0, fs− 1], vt1,s1 6= vt2,s2 6= v∗s1 with overwhelming
probability, then only the element v∗j+1 of the last element of R will be involved
in Equation 5. Moreover, since T is empty, the last sum of the Equation 5 can

be omitted. Let {ϑ(a)i , ϑ
(a)
i }

i=fs−1
i=0 be constant scalars such that

(v∗j+1 ·
l−1∑
k=0

α′σ∗β,k · α
j+k+1
σ∗β,k

· zk)(

fs−1∑
i=0

ϑ
(a)
i · z

i) =

v∗j+1(

fs−1∑
i=0

ϑ
(b)
i · z

i)

(6)

So, in order to prove the independence of v∗j+1 ·
∑l−1
k=0 α

′
σ∗β,k
· αj+k+1

σ∗β,k
· zk we

must prove that ∀i ∈ [0, fs − 1], ϑ
(a)
i = 0. For that reason, let us consider

the monomial of degree j + 1 in ασ∗β,k . In the left member of Equation 6, the

coefficient is
∑l−1
k=0 α

′
σ∗β,k
·
∑fs−1
i=0 ϑ

(a)
i · zi and in its right member the coefficient

is 0. Therefore, we have

l−1∑
k=0

α′σ∗β,k ·
fs−1∑
i=0

ϑ
(a)
i · z

i = 0

which means that ∀i ∈ [0, fs − 1], ϑ
(a)
i = 0 and therefore the independence of

v∗j+1 ·
∑l−1
k=0 α

′
σ∗β,k
· αj+k+1

σ∗β,k
· zk which concludes the proof.

