
Privacy-Preserving Pattern Matching on Encrypted Data

Anis Bkakria1, Nora Cuppens1,2, and Frédéric Cuppens1,2

1 IMT Atlantique, Rennes, France
2 Polytechnique Montréal, Montréal, Canada

Abstract. Pattern matching is one of the most fundamental and important paradigms in several
application domains such as digital forensics, cyber threat intelligence, or genomic and medical data
analysis. While it is a straightforward operation when performed on plaintext data, it becomes a chal-
lenging task when the privacy of both the analyzed data and the analysis patterns must be preserved.
In this paper, we propose new provably correct, secure, and relatively efficient (compared to similar
existing schemes) public and private key based constructions that allow arbitrary pattern matching
over encrypted data while protecting both the data to be analyzed and the patterns to be matched.
That is, except the pattern provider (resp. the data owner), all other involved parties in the proposed
constructions will learn nothing about the patterns to be searched (resp. the data to be inspected).
Compared to existing solutions, the constructions we propose has some interesting properties: (1) the
size of the ciphertext is linear to the size of plaintext and independent of the sizes and the number of
the analysis patterns; (2) the sizes of the issued trapdoors are constant on the size of the data to be
analyzed; and (3) the search complexity is linear on the size of the data to be inspected and is constant
on the sizes of the analysis patterns. The conducted evaluations show that our constructions drastically
improve the performance of the most efficient state of the art solution.

Keywords: Searchable encryption · Pattern Matching

1 Introduction

In several application domains such as deep-packet inspection and genomic data analysis, learning the pres-
ence of specific patterns as well as their positions in the data are essential. In the previous two use cases,
pattern searches are often performed by entities that are not fully trusted by data owners. For instance, in
the case of deep-packet inspection (DPI), a company that aims to outsource its network traces to a third
party forensic scientist to find indictors of compromise might not be comfortable revealing the full contents
of its traces to the forensic scientist. Similarly, in the case of genomic data analysis, a patient that wants
to check whether its genome contains particular patterns representing a genetic predisposition to specific
diseases might not be comfortable revealing the full contents of its genome to the laboratory that performs
the analysis.

Existing solutions that may be used to overcome the previous problem rely mainly on searchable en-
cryption based techniques [1–7, 21]. Unfortunately, these techniques suffer from at least one of the following
limitations. First, the lack of support for pattern-matching with evolving patterns, such as virus signatures
which are updated frequently (case of symmetric searchable encryption [2–5, 21]); second, the lack of support
for variable pattern lengths (e.g., tokenization-based techniques such as BlindBox [6]); third, the incom-
pleteness of pattern detection methods which yield false negatives (case of BlindIDS [7]); and fourth, the
disclosure of detection patterns (case of searchable encryption with shiftable trapdoors [1]). We provide a
full comparison with related literature in Section 2.

In this paper, we propose two technically sound constructions: S4E supporting pattern matching of
adaptively chosen and variable (upper bounded) lengths patterns on secret key encrypted streams, and
AS3E supporting pattern matching of adaptively chosen and variable (upper bounded) lengths patterns on
public key encrypted streams. Both S4E and AS3E ensure that (1) both the data owner and the third-party
entity performing pattern matching operations will learn nothing about the searched patterns except their
lengths, (2) both the pattern provider and the third-party entity that is going to perform pattern matching
will learn nothing about the data to be analyzed except the presence or the absence of the set of unknown
patterns (i.e., the third-party entity will not have access to patterns plaintexts), (3) the third-party entity
will be able to perform pattern matching correctly over the data to be analyzed. From a practical point of
view, our construction has some interesting properties. First, the size of the ciphertext depends only on the
size of the plaintext (it is independent of the sizes and the number of analysis patterns). Second, the size
of the issued trapdoors is independent of the size of the data to be analyzed. Third, the search complexity
depends only on the size of the data to be analyzed and is constant on the size of the analysis patterns.
The two constructions we propose in this paper are – to our knowledge – the first constructions to provide
all previously mentioned properties without using costly and complex cryptographic scheme such as fully
homomorphic encryption. The evaluations conducted in this paper show that the two proposed constructions
improve by up to four orders of magnitude the performance of the most efficient state of the art solution
SEST [1].

The paper is organized as follows. Section 2 reviews related work and details the main contributions
of our work. Section 3 presents the assumptions under which our schemes achieve provable security. The
intuition behind the proposed constructions is presented in Section 4. Section 5 and 6 formalize our S4E and
AS3E primitives and provide their security results. In Sections 7 and 8, we discuss the complexity of our
constructions and provide experimental results. Finally, section 9 concludes.

2 Related Work

One possible solution for pattern matching over encrypted traffic is to use techniques that allow evaluation
of functions over encrypted data. Generic approaches such as fully homomorphic encryption (FHE) [8, 10]
and functional encryption (FE) [9] are currently impractical due to their very high complexities.

Several searchable encryption (SE) techniques have been proposed for keyword searching over encrypted
data [5, 3, 4, 2, 21]. The main idea is to associate a trapdoor with each keyword to allow searching for these
keywords within a given encrypted data. Ideally, an entity which does not have access to the plaintext and
encryption key should learn nothing about the plaintext except the presence or the absence of the key-
word. For most existing SE techniques, searches are performed on keywords that have been pre-chosen by
the entity encrypting the data. Such approaches are more suitable for specific types of searches, such as
database searches in which records are already indexed by keywords, or in the case of emails filtering in
which flags such as ”urgent” are used. Unfortunately, SE techniques become useless when the set of key-
words cannot be known before encryption. This is usually the case for messaging application and Internet
browsing traffic where keywords can include expressions that are not sequences of words per se (e.g., /cham-
javanv.inf?aapf/login.jsp?=). The two constructions we propose in this paper offer better search flexibility
as, even after the plaintext has been encrypted, they can allow arbitrarily chosen keywords to be searched
without re-encryption.

To overcome the previous limitations, tokenization-based approaches have been proposed. In [6], the
authors propose BlindBox, an approach that splits the data to be encrypted into fragments of the same
size l and encrypts each of those fragments using a searchable encryption scheme where each fragment will
represent a keyword. Nevertheless, this solution suffers from two limitations: (1) it is useful only if all the
searchable keywords have the same length l. obviously the previous condition is seldom satisfied in real-world
applications that requires pattern matching (e.g., DPI). If we want to use this approach with keyword of
different lengths L, we should for each li ∈ L, split the data to be encrypted into fragments of size li and
encrypt them, which quickly becomes bulky. (2) The proposed approach may easily cause false negatives
since, even if the keyword is of size l (the size of each fragment), it cannot be detected if it straddles two
fragments. Recently, In [7], Canard et al. proposed BlindIDS – a public key variant of the BlindBox approach
[6] that additionally ensures keywords indistinguishability. That is, the entity that is going to search over
the encrypted data will lean nothing about the keywords. Unfortunately, BlindIDS suffers from the same
limitations as BlindBox. The two constructions we propose in this paper address the main drawbacks of these
tokenization-based techniques since they allow for arbitrary trapdoors to be matched against the encrypted
data, without false negatives or false positives.

Several approaches [11–13] proposed solutions for substring search over encrypted data based on secure
multi-party computation. Unfortunately, to offer pattern matching operation, these solutions require often
several interactions between the searcher and the data encrypter.

As pointed out in [1], anonymous predicate encryption (e.g., [14]) or hidden vector encryption [15] may
provide a convenient solution for pattern matching over encrypted data. However, in order to search a pattern
p of length l on a data of length n, the searcher should obtain n− l keys to be able to check the presence of
p on every possible offset of the data, which is clearly a problem when dealing with large datasets.

One of the most interesting techniques for pattern matching over encrypted traffic is the searchable
encryption with shiftable trapdoor (SEST) [1]. The proposed construction relies on public-key encryption
and bilinear pairings to overcome most of the limitations of previously mentioned techniques. It allows for
patterns of arbitrary lengths to be matched against the encrypted data, without false negatives or false
positives. This improvement comes at the cost of the practicability of the technique. In fact, the proposed
schema requires a public key of size linear to the size of the data to be encrypted (a public key of ≃ 8000
GB is required for encrypting 1GB of data). Moreover, the trapdoor generation technique used by the SEST
leaks many information (such as, the number of different characters, the maximum number of occurrences
of a character) about the patterns to be searched. Furthermore, the number of pairings needed for testing
the presence of a keyword in an offset of the data depends on the maximum number of occurrences of the
characters contained in the keyword. This makes the proposed technique quite inefficient when used for bit
level matching. By contrast, for testing the presence of a pattern in encrypted data, our constructions require
a constant number of pairings in the size of the pattern (see Section 7 for more details). This makes our
constructions more efficient when matching long keywords at bit level.

As we have seen, many different approaches can be used to address pattern matching over encrypted
data. To give better understanding of the benefits of the two approaches we propose in this paper compared
to existing ones, we provide in Table 1 a comparative overview of their asymptotic complexities, and their
ability to ensure the security properties we are aiming to provide. Note that we only consider BlindBox
(a symmetric searchable encryption-based solution), BlindIDS (an asymmetric searchable encryption-based
solution), Predicate Encryption/Hidden Vector Encryption and the SEST approach. Other approaches, as
explained before, require data re-encryption each time a new keyword is considered [5, 3, 4, 2, 21], induce
higher complexity [9, 8, 10], require interactivity [11–13] or ensure weaker privacy level [5].

According to the Table 1, the two constructions we propose in this paper (S4E and AS3E) are the only
primitives that simultaneously enable arbitrary trapdoors (with upper bounded keyword size), provides a
correct keyword detection, and ensures the privacy of the used trapdoors.

In Table 1, (3) is used to denote that a property is provided under specific conditions. AS3E ensures
trapdoor’s privacy for patterns of high-min entropy (see Section 6 for more details). In addition, both S4E
and AS3E support pattern matching of arbitrary but upper bounded lengths patterns. As we show in Section
7, we stress that in both S4E and AS3E, increasing the upper bound size of patterns affects only the size of
the trapdoor generated for each pattern. The size of later increases linearly with the increase of the size of
the former.

2

Primitives
BlindBox BlindIDS PE/HVE SEST S4E AS3E

Number of Trapdoors O(s · q) O(q) O(n · q) O(q) O(q) O(q)

Public Parameters size O(1) O(1) O(1) O(1) O(li) O(1)

encryption keys size O(1) O(1) O(n) O(n) O(li) O(li)

Ciphertext size O(n · L) O(n · L) O(n) O(n) O(n) O(n)

Number of trapdoors O(q) O(q) O(n · q) O(q) O(q) O(q)

Search complexity q · log(q) q q · n 2×
∏q

1 li · n 2 · q · n 2 · q · n
comparisons pairings pairings pairings pairings pairings

Arbitrary trapdoors 7 7 3 3 (3) (3)
Trapdoor’s privacy 7 (3) 7 7 3 (3)

Correctness
7 7 3 3 3 3

(no false positives)

Table 1: Complexity and ensured security properties comparison between related work and our primitive.
The scalars n, q, li, L, s denotes respectively the length of the traffic to encrypt, the number of pattern to be
searched, the length of each pattern, the number of different lengths among the q patterns to be searched
and the number of data encrypters. We used (3) to denote that the property is provided under specific
conditions.

The two constructions we propose do not require very large public parameters, secret key or very large
public keys as SEST and PE/HVE. Moreover, their search complexities is lower than SEST by a factor of li
(the length of the pattern wi to be searched), since they are constant in the size of the pattern to be searched.
Therefore, the proposed constructions are an interesting middle way which provides the best of PE/HVE
and SEST while ensuring patterns’ privacy. Their only limitation compared to PE/HVE and SEST is the
upper bounded size of patterns to be searched that should be fixed before the data encryption, which we
believe to be a reasonable price to pay to achieve all the other features.

3 Security Assumption

In this section, we describe the security assumptions under which our two constructions S4E and AS3E
achieve provable security.

Definition 1 (Bilinear Maps). Let G1,G2,GT be three finite cyclic groups of large prime order p. We
assume that there is an asymmetric bilinear map e : G1×G2 → GT such that, for all a, b ∈ Zp the following
conditions hold:

– For all g ∈ G1, g̃ ∈ G2, e(ga, g̃b) = e(g, g̃)a·b

– For all g ∈ G1, g̃ ∈ G2, e(ga, g̃b) = 1 iff a = 0 or b = 0
– e(·, ·) is efficiently computable

As in [1], the security of the proposed constructions hold as long as G1 ̸= G2 and no efficiently computable
homomorphism exists between G1 and G2 in either directions. In the sequel, the tuple (G1,G2,GT , p, e(·, · <))
is refereed to as a bilinear environment.

Some of the security proofs of the proposed constructions, given in Appendix A, rely partially on showing
that given a number of pattern trapdoors, the adversary will be unable to distinguish a new valid trapdoor
from a random element. Thus, the leakage can be bounded only by considering the adversary’s query to
the issuing oracle. Hence, either we considerably reduce the maximum length of the patterns to be searched
(≤ 30), which allow to define a GDH instance providing all public parameters, the trapdoors for all possible
patterns, and the challenge elements. Or we use an interactive variant of the GDH assumption to offer
flexibility to the simulator by allowing the elements gR

(i)(x1,··· ,xc), g̃S(i)(x1,··· ,xc), and e(g, g̃)T
(i)(x1,··· ,xc) of

the GDH assumption [20] to be queried to specific oracles.
So, we prove the security of the proposed constructions under an interactive assumption. That is, we use

a slightly modified General Diffie-Hellman (GDH) problem assumption [20] to allow the adversary to request
the set of values on which the reduction will break the GDH assumption. This interactive aspect of the GDH
instance we are considering reduces slightly the security of the construction we are proposing. However,
this interactive assumption makes possible the definition of quite efficient constructions with interesting
properties. First, the size of the ciphertext depends only on the size of the plaintext (it is independent of
the sizes and the number of the analysis patterns). Second, the size of the issued trapdoors is independent
of the size of the data to be searched. Third, the search complexity depends only on the size of the data and
is constant on the sizes of the patterns to be matched. Attaining all previously mentioned properties while
protecting both the data to be analyzed and the patterns to be matched and being able to handle arbitrary
analysis pattern query is not obvious and may justify the use of such an interactive assumption.

Definition 2 (independence [20]). Let p be some large prime, r, s, t, c, and k be five positive integers
and R ∈ Fp[X1, · · · , Xc]

r, S ∈ Fp[X1, · · · , Xc]
s, and T ∈ Fp[X1, · · · , Xc]

t be three tuples of multivariate
polynomials over Fp. Let R(i) , S(i) and T (i) denote respectively the i-th polynomial contained in R, S, and
T . For any polynomial f ∈ Fp[X1, · · · , Xc], we say that f is dependent on < R,S, T > if there exist constants
{ϑ(a)

j }sj=1, {ϑ(b)
i,j }

i=r,j=s
i=1,j=1, {ϑ(c)

k }tk=1 such that

f · (
∑
j

ϑ
(a)
j · S

(j)) =
∑
i,j

ϑ
(b)
i,j ·R

(i) · S(j) +
∑
k

ϑ
(c)
k T (k)

3

We say that f is independent of < R,S, T > if f is not dependent on < R,S, T >.
Definition 3 (i-GDH assumption). Let p be some large prime, r, s, t, c, and k be five positive integers
and R ∈ Fp[X1, · · · , Xc]

r, S ∈ Fp[X1, · · · , Xc]
s, and T ∈ Fp[X1, · · · , Xc]

t be three tuples of multivariate poly-
nomials over Fp. Let Or, (resp. Os and Ot) be oracle that, on input {{a(k)i1,··· ,ic}

dk
ij=0}k, adds the polynomials

{
∑

i1,·,ic a
(k)
i1,·,ic

∏
j X

ij
j }k to R (resp. S and T).

Let (x1, · · · , xc) be secret vector and qr (resp. qs) (resp. qt) be the number of queries to Or (resp.
Os) (resp. Ot). The i-GDH assumption states that, given {gR(i)(x1,··· ,xc)}r+k·qr

i=1 , {g̃S(i)(x1,··· ,xc)}s+k·qs
i=1 , and

{e(g, g̃)T (i)(x1,··· ,xc)}t+k·qt
i=1 , it is hard to decide whether (i) U = gf(x1,··· ,xc) or U is random and (ii) U ′ =

g̃f(x1,··· ,xc) or U ′ is random if f is independent of < R,S, T >.
As argued in [1], The hardness of the i-GDH problem depends on the same argument as the GDH

problem which has already been proven in the generic group model [20]. That is, as long as the challenge
polynomial that we denote f is independent of < R,S, T >, an adversary cannot distinguish gf(x1,··· ,xc)

(resp. g̃f(x1,··· ,xc)) from a random element of G1 (resp. G2). The definition method of the content of the sets
R,S, and T (by assumption or by the queries to oracles) does not fundamentally change the proof.

4 The intuition
The intuition behind the proposed constructions relies on two observations. First, the number of analysis
patterns is often very small compared to the quantity of data that are going to be analyzed, e.g., in a deep
packet inspection scenario, the number of patterns provided by the SNORT intrusion detection system is
3734 [22]. Second, the sizes of the detection patterns are also very small compared to the size of the traces
to be analyzed (e.g., the largest pattern size used by Snort is 364 Bytes).

For a data with alphabet Σ, the proposed constructions associate each element σ of Σ with a secret
encoding (α′

σ, ασ). They fragment the sequence of symbols that represents the data B as described in the
Figure 1 in which fs represents the number of symbols (i.e., the size) of each fragment and pmax represents
the largest number of symbols in a pattern. To allow the matching of patterns at any possible offset of the
data to be searched, in the proposed constructions, we require that fs ≥ 2 · (pmax − 1). In the rest of the
paper, we will use {xi}i=b

i=a to denote the set of elements xi, i ∈ [a, b] and |B| to denote the number of symbol
(i.e., the size) that compose |B|.

fs − 1 2fs-10

fs-pmax-2 fs+pmax-1 2fs-pmax-2 2fs+pmax-1

(nf-1)fs -1 nf · fs-1

(nf-1)fs + pmax − 1

F0

F 0

F1

F 0

Fnf−1

Fnf−2

Fig. 1: Fragmentation approach

As illustrated by the Figure 1, the sequence of symbols B is fragmented into 2 × nf − 1 fragments
{Fi, F j}i=nf−1,j=nf−2

i=0,j=0 where nf = |B|/fs (for simplicity we will suppose that |B| is a multiple of fs). Each
Fi, i ∈ [0, nf − 1], contains the symbols at indexes [i · fs, (i+ 1) · fs− 1], while F i, i ∈ [0, nf − 2], contains
the symbols at indexes [(i+ 1) · fs− pmax − 1, (i+ 1) · fs+ pmax − 1] of B.

Given an i ∈ [0, |B|−1], in the rest of this paper, we will denote by iF the index of i inside the fragment F
where F ∈ {F0, · · · , Fnf−1, F 0, · · · , Fnf−2}. If i /∈ F , iF is not defined. Formally, assuming that F = [a, b]:

iF =

{
i mod a if i ∈ F

not defined otherwise

A trapdoor for a pattern w = σw,0·σw,l−1 will be associated with a set of polynomials {Vi = vi
∑l−1

k=0 α
′
σw,k
·

αk+i
σw,k
· zk}i=fs−l

i=0 where vi is a random secret scalar used to prevent new trapdoor forgeries and z a ran-
dom scalar belonging to the secret key Ks. The trapdoor generated for w consists then in the elements
{g̃Vi , g̃vi}i=fs−l

i=0 . Each of the previous elements will be used to check the presence of w at a specific index of
the previously constructed fragments.

Meanwhile, the encryption of each symbol σi is the tuple Ci = {Ci, C
′
i, Ci, C ′

i} that depends on the
fragment in which the index i of σi in B belongs. If it belongs to Fϵ (resp. F ϵ) then Ci and C ′

i (resp. Ci and
C ′

i) contain the encryption of σi regarding the index iFϵ
of i in Fϵ (resp. the index iF ϵ

of i in F ϵ).
Then, if we want to test the presence of w at the index i, if i belongs to Fϵ (resp. F ϵ), then we compare

the bilinear mapping results of the elements CiFϵ
, g̃viFϵ (resp. CiFϵ

, g̃
vi

Fϵ) and C ′
iFϵ

, g̃ViFϵ (resp. C ′
iFϵ

,
g̃
Vi

Fϵ). If w is not present, then the bilinear mapping results will be random-looking elements of GT which
will be useless to the adversary for learning any information about the plaintext and/or the content of the
tested pattern.

5 S4E Construction
In this section, we propose S4E, a construction that supports pattern matching of adaptively chosen and
variable (upper bounded) lengths patterns on secret key encrypted streams. Before formalizing S4E, we
present a use-case scenario on which S4E can be useful.

4

5.1 Usage Scenario

To cope with new and sophisticated cybercrime threats, new threat intelligence platforms such as [19] are
relying on the collaboration between different involved entities that include, on one side, companies, orga-
nizations, and individuals that are targeted by cyber attacks, and on the other, security editors that are in
charge of defining and providing strategies for effectively detect and prevent cyber attacks. To be useful,
such platforms should, on one hand, be fueled by data owners, i.e., companies, organizations, and individuals
that agree to share the traces (e.g., network and operating system traces) of the cyber attacks that they have
suffered. On the other hand, the platform should allow the security editors to analyze (e.g., search specific
patterns) and correlate the traces that are shared by the data owners. The considered threat intelligence
platform is often managed by non-fully trusted third-party service provider (SP) which provides the required
storage space and computation power with affordable cost.

Unfortunately, both data owners (i.e., attack traces owners) and security editors are still very reluctant
for adopting such kind of threat intelligence platforms because of two main reasons. First, the traces to be
shared contain often highly sensitive information that may raise serious security and/or business threats
when disclosed to non-fully trusted third parties (e.g, SP). Second, the shared traces analysis rely mainly
on techniques that use pattern matching for inspecting and detecting malicious behaviors. Those analysis
patterns are the result of extensive threat intelligence conducted by security editors. They are often put
forward as a key competitive differentiator arguing that they can cover a wider set of malicious behaviors.
Thus, security editors are typically reluctant to share their analysis patterns with non-fully trusted third-
parties.

The S4E construction can be used to overcome the previous two limitations by building a platform that
is (1) market compliant meaning that both the data owner and the third-party entity performing the pattern
matching operations will learn nothing about the patterns that will be used by security editors for analyzing
the shared traces (as proved by Theorem 4), and (2) privacy-friendly, signifying that (2.1) the third-party
entity performing pattern matching will learn nothing about the shared data except the presence or the
absence of a set of unknown analysis patterns, and (2.2) the pattern provider will learn no more than the
indexes on which the searched pattern exists (as proved by Theorem 2).

5.2 Considered Architecture

The architecture considered for the S4E construction involves three parties: the data owner (DO) representing
the entity that holds the data to be analyzed (e.g., the network traces in the case of DPI), the pattern provider
(PP) representing the entity that supplies the patterns that will be matched, and the service provider (SP)
are stakeholders that offer computation infrastructures that will be used to perform the pattern matching
operations on the data to be analyzed. To test the presence of a pattern on DO’s data, PP starts by generating
collaboratively with DO a trapdoor for the pattern to be matched. Then, PP sends the generated trapdoor
to SP who performs the matching operation and notifies the PP with the results (i.e., the presence of the
patterns as well as their corresponding positions in the DO’s data).

5.3 Security Requirements and Considered Hypothesis

PP, DO, and SP are considered in S4E as Honest-but-curious entities. First, we expect PP to provide valid
patterns allowing an effective analysis of DO’s shared data. This a fairly reasonable assumption since a
pattern provider (e.g., a security editor in the case of DPI or a laboratory in the case of genomic data
analysis) will not defile its reputation by issuing incorrect or misleading analysis patterns. Otherwise, this
will result in many false positives, which may considerably degrade the quality of the analyses that will be
provided to the DO. Nevertheless, we expect the PP to be curious: it may try to derive information about
the analyzed data by accessing the data analyzed by the SP and/or the pattern matching results returned
by the SP.

Second, we suppose that SP will perform the pattern matching operations honestly over the DO’s data
using the analysis patterns provided by PP. However, we suppose that SP may try to learn additional
information about either or both the DO’s outsourced data and the analysis patterns provided by PP. In
addition, we assume that the SP that may try to create values by analyzing other third-parties data using
the set of patterns provided by PP for the analysis of DO’s outsourced data.

Third, we suppose DO to follow honestly the S4E protocol. However, we expect that he/she may try to
learn additional information about the patterns provided by PP for analyze his/her data.

In addition, we suppose that (i) SP and PP will not collude to learn more information about the traffic,
and (ii) SP and DO will not collude to learn more information about the patterns to be searched. We believe
that these two last assumptions are fairly reasonable since, in a free market environment, an open dishonest
behavior will result in considerable damages for involved entities.

Finally, we require S4E to provide correct results. That is, (1) any part of DO’s data that matches one
of PP’s patterns when not encrypted must be matched by S4E (no false negatives), and (2) we require that
for any traffic that does not match any of the PP’s analysis patterns when not encrypted, the probability
that S4E returns a false positive is negligible.

5.4 Syntax of S4E

S4E is defined using five algorithms that we denote Setup, Keygen, Encrypt, Issue, and Test. The first
three algorithms are performed by DO, the Issue algorithm is performed collaboratively by DO and PP,
and the Test algorithm is performed by SP.

5

– Setup(1λ, fs, pmax) is a probabilistic algorithm that takes an input a security parameter λ, the frag-
mentation size to be used fs, and the maximum size of a pattern pmax. It returns the public parameters
params.

– Keygen(params,Σ) is a probabilistic key generation algorithm that takes as input the public parameters
params and a finite set Σ representing the alphabet to be used for representing the data to be searched
and the pattern to be matched. It outputs a secret key Ks and a trapdoor generation key Kt. The latter
will be sent to PP using a secure channel.

– Encrypt(params,Ks,B) is a probabilistic algorithm that takes as input the public parameters params,
the secret key Ks, and a finite sequence (string) of elements B of Σ of size n. it returns a ciphertext C.

– Issue(params,Ks,Kt, w) is a probabilistic algorithm executed interactively between PP and DO. It
takes as input the public parameters params, the secret key Ks, the trapdoor generation key Kt, and w
– a sequence of elements of Σ of length smaller of equal to pmax, and returns a trapdoor tdw.

– Test(params, C, tdw) is a deterministic algorithm that takes as input the public parameters params,
a ciphertext C encrypting a sequence of m elements B = σ0 · · ·σm−1 of Σ, and the trapdoor tdw for
the sequence of Σ’s elements of length l, w = σw,0 · · ·σw,l−1. This algorithm is executed interactively
between PP and SP. The former provides the trapdoor tpw and the latter executes the algorithm and
returns the set of indexes I ⊂ {0,m− l − 1} where for each i ∈ I, σi · · ·σi+l−1 = σw,0 · · ·σw,l−1 to PP.

We note that the sizes of the elements defined in the previous algorithms, i.e., the size of the data to
be analyzed B, the size of the pattern to be searched w, and the largest analysis pattern size pmax refer to
the number of symbols of Σ that compose each element. In addition, we note that S4E does not consider a
decryption algorithm since there is no need for decrypting the outsourced data. However, we stress that a
decryption feature can be straightforwardly performed by issuing a trapdoor for all characters σ ∈ Σ and
running the Test algorithm on the encrypted data for each of them.

5.5 S4E’s security requirements

As said in Section 5.3, there are mainly 4 security requirements that should be satisfied by our construction:
Trace indistinguishability for both PP and SP, pattern indistinguishability for both DO and SP, trapdoor
usefulness (i.e., the trapdoors are useful only to search DO’s data), and the correctness property.

In the following, we use the game-based security definition proposed in [1] for trace indistinguishability
by adapting the standard notion of IND-CPA which requires that no adversary A (e.g., PP or SP), even
with an access to an oracle Os that issues a trapdoor tdpi for any adaptively chosen pattern pi, can decide
whether an encrypted trace contains T0 or T1 as long as the trapdoors {tdpi

} issued by Os do not allow
trivial distinction of the traces T0 and T1. We note that we consider the quite standard selective security
notion [17]. This notion requires the adversary to choose and commit T0 and T1 at the beginning of the
experiment, before seeing params.

Definition 4 (Trace indistinguishability). Let λ be the security parameter, Σ be the alphabet to be used,
A be the adversary and C be the challenger. We consider the following game that we denote ExpS

4E_D_IND_CPA
A,β :

(1) Setup: C executes Setup(1λ, fs, pmax) to generate params and the algorithm Keygen(params,Σ) to
generate the keys Ks and Kt. Then it sends params to the adversary.

(2) Query: A can adaptively ask Os for the trapdoor tdwi
for any pattern wi = σi,0 · · ·σi,li−1 where σi,j ∈ Σ.

We denote W the set of patterns submitted by A to Os in this phase.
(3) Challenge: Once A decides that Phase (2) is over, it chooses two data streams T0 = σ∗

0,0 · · ·σ∗
0,m−1 and

T1 = σ∗
1,0 · · ·σ∗

1,m−1 and sends them to C.
(a) If ∃w = σ0 · · ·σli ∈ W, k ∈ {0, 1}, and j such that:

σ∗
k,j · · ·σ∗

k,j+li = σ0 · · ·σli ̸= σ∗
1−k,j · · ·σ∗

1−k,j+li then return 0.

(b) C chooses a random β ∈ {0, 1}, creates C = Encrypt(param,Ks, Tβ), and sends it to A.
(4) Guess. A outputs the guess β′.
(5) Return (β = β′).

We define A’s advantage by AdvExpS4E_D_IND_CPA
A,β (λ) = |Pr[β = β′]− 1/2|. S4E is said to be trace indistin-

guishable if AdvExpS4E_D_IND_CPA
A,β (λ) is negligible.

We note that in the previous definition, the restriction used in phase (3)(a) ensures that if one of the
data streams Tk contains a pattern wi ∈ W in the position j, then this is also the case for T1−k. If such a
restriction is not used, A will trivially win the game by running Test(params, C, tdwi).

We want to be able to evaluate the advantage of the SP for using the issued trapdoors to analyze
other third-parties’ data (i.e., data that are not provided and encrypted by DO). Since encrypted data and
trapdoors should be created using the same secret key Ks (the trapdoor generation key Kt is created using
Ks), such an advantage is equivalent to the ability of the SP to forge valid DO’s encrypted data.

Definition 5 (Encrypted Data Forgery). Let λ be a security parameter, Σ be the alphabet to be used, A
be the adversary, C be the challenger, Os be an oracle that issues a trapdoor for any adaptively chosen pattern,
and Or be an oracle that encrypts any adaptively chosen data. We consider the following ExpS

4E_EDF
A game:

(1) Setup: C executes Setup(1λ, fs, pmax) to generate params and the algorithm Keygen(params,Σ) to
generate the keys Ks and Kt. Then it sends params to the adversary.

(2) Query:

6

– A can ask Os for issuing the trapdoor tdwi for any adaptively chosen pattern wi = σi,1 · · ·σi,li where
σi,j ∈ Σ. We denote W the set of patterns submitted by A to Os in this phase.

– A can adaptively ask Or to create CT = Encrypt(params,Ks, T). We denote T the set of datasets
encrypted by the Or.

(3) Forgery: The adversary chooses the dataset T ∗ /∈ T such that T ∗ contains w (w ∈ W) at index i and
forges the encrypted dataset CT∗ of T ∗ .

We defineA’s advantage of winning the game ExpS
4E_EDF

A by AdvExpS4E_EDF
A (λ) = Pr[i ∈ Test(params,CT∗

,

tdw)]. S4E is said to be encrypted data forgery secure if AdvExpS4E_EDF
A (λ) is negl igible.

The following definition formalizes the patterns indistinguishability property for SP. That is, we evaluate
the advantage of the SP to decide whether a trapdoor encrypts the pattern w∗

0 or w∗
1 even with an access to

an oracle Os that issues a trapdoor for any adaptively chosen pattern.

Definition 6 (Pattern Indistinguishability to SP). Let λ be the security parameter, Σ be the alphabet
to be used, A be the adversary and C the challenger. We consider the following game that we denote
ExpS

4E_P_IND_CPA
ASP ,β :

(1) Setup: C executes Setup(1λ, fs, pmax) to generate params and the algorithm Keygen(params,Σ) to
generate the keys Ks and Kt. Then it sends params to the adversary.

(2) Observation: A may observe the ciphertext CTi of a set of (unknown) traces Ti ∈ T .
(3) Query: A can adaptively ask Os for the trapdoor tdwi

for any pattern wi = σi,1 · · ·σi,li where σi,j ∈ Σ.
We denote by W the set of patterns submitted by A to Os in this phase.

(4) Challenge: Once A decides that Phase (2) is over, it chooses two patterns w∗
0 = σ∗

0,0 · · ·σ∗
0,l and w∗

1 =
σ∗
1,0 · · ·σ∗

1,l such that w∗
0 , w

∗
1 /∈ W and sends them to C. If ∃T ∈ T such that w∗

0 ∈ T or w∗
1 ∈ T then

return 0. Otherwise, C chooses a random β ∈ {0, 1}, creates tdw∗
β
, and sends it to A.

(5) Guess:
– A may try to forge the ciphertext of chosen date and uses the Test algorithm to try to find out the

chosen value of β.
– A outputs the guess β′.

(6) Return (β = β′).

We define the advantage of the adversary A for winning ExpS
4E_P_IND_CPA

ASP ,β by Adv
ExpS4E_P_IND_CPA

ASP ,β (λ) =

|Pr[β′ = β]−1/2|. S4E is said to be pattern indistinguishable to SP if Adv
ExpS4E_P_IND_CPA

ASP ,β (λ) is negligible.

In addition, we aim to evaluate the advantage of DO for deciding whether a trapdoor encrypts the patterns
w∗

0 or w∗
1 even with an access to an oracle Os that plays the role of PP and perform the issue algorithm for

any adaptively chosen pattern. The following definition formalizes the pattern indistinguishably property for
DO.

Definition 7 (Pattern Indistinguishability to DO). Let λ be the security parameter, Σ be the alphabet
to be used, A be the adversary and C the challenger. We consider the following game that we denote
ExpS

4E_P_IND_CPA
ADO,β :

(1) Setup: C executes Setup(1λ, fs, pmax) to generate params and the algorithm Keygen(params,Σ) to
generate the keys Ks and Kt. Then it sends params to the adversary.

(2) Query: A can ask Os to play the role of PP in the issue algorithm for any adaptively chosen pattern
wi = σi,1 · · ·σi,li where σi,j ∈ Σ. We denote by W the set of patterns chosen by A in this phase.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two patterns w∗
0 = σ∗

0,0 · · ·σ∗
0,l and w∗

1 =
σ∗
1,0 · · ·σ∗

1,l such that w∗
0 , w

∗
1 /∈ W and sends them to C. The latter chooses a random β ∈ {0, 1}, and

plays the role of PP in the issue algorithm to generate a trapdoor for w∗
β.

(4) Guess: A outputs the guess β′.
(5) Return (β = β′).

We define the advantage of the adversary A for winning ExpS
4E_P_IND_CPA

ADO,β by Adv
ExpS4E_P_IND_CPA

ADO,β (λ) =

|Pr[β′ = β]−1/2|. S4E is said to be pattern indistinguishable to DO if Adv
ExpS4E_P_IND_CPA

ADO,β (λ) is negligible.

We say that S4E provides pattern indistinguishability if it is pattern indistinguishable to both DO and
SP.

Definition 8 (S4E Correctness). Let B = σ0, · · ·σm−1 and w = σw,0, · · ·σw,l−1 be respectively the data to
be analyzed and the pattern to be matched. S4E is correct iff the following conditions hold:

(i) Pr[i ∈ Test(params,Encrypt(params,B,Ks), Issue(params,Ks,Kt, w))] = 1 if B contains p at index
i.

(ii) Pr[i ∈ Test(params,Encrypt(params,B,Ks), Issue(params,Ks,Kt, w))] is negligible if B does not
contain w at index i.

Condition (i) of the previous definition ensures that the Test algorithm used by S4E produces no false
negatives. Condition (ii) ensures that false positives (i.e., the case in which Test algorithm returns i notwith-
standing the fact that σi · · ·σi+l−1 ̸= σw,0 · · ·σw,l−1) only occur with negligible probability.

7

5.6 A trivial Protocol

A trivial attempt for defining a construction that ensures all of the security requirements we defined in
Section 5.3 would consist of modifying the most efficient state of the art solution SEST [1] towards a secret
key based-construction as described in the following algorithms. The Setup, Keygen, and Encrypt algorithms
are to be performed by the DO. The Issue algorithm will be performed collaboratively by the DO and the
PP, while the Test algorithm will be performed by the SP.

– Setup(1λ, n): Let (G1,G2,GT , p, e(·, ·)) be a bilinear environment. This algorithm selects g
$←− G1, g̃

$←−
G2 and returns params← (G1,G2,GT , p, e(·, ·), g, g̃, n).

– Keygen(params,Σ): On input of the alphabet Σ, this algorithm selects z
$←− Zp and {ασ

$←− Zp}σ∈Σ ,
computes and adds {gzi}i=n−1

i=0 to params (required for proving the trace indistinguishability property).
It returns the secret key Ks = {z, {ασ}σ∈Σ}.

– Encrypt(params,B,Ks): To encrypt B = σ1 · · ·σn, this algorithm chooses a
$←− Zp and returns C =

{Ci, C
′
i}

n−1
i=0 where Ci = ga·z

i and C ′
i = ga·ασi

·zi .
– Issue(params,w,Ks) issues a trapdoor tdw for a pattern w = σw,0, · · · , σw,l−1 of length l ≤ n as

described in Algorithm 1. We denote by L the array that will be used to store random scalars that will
be used to encode each symbol of the pattern w, and by I the array of sets representing the indices of
symbols in w that are encoded using the same random scalar. Actually, a random scalars can be re-used
as long as it has not been used to encode the same symbol. That is, L[i] is the random scalar to use with
the (imperatively distinct) symbols at indices Ii of w.

Input: Ks, params,w = σw,0, · · ·σw,l−1

Output: tdw
tdw = ∅, V = 0, c = 0
L[i] = 0 for all i ∈ [0, l − 1]
Ind[σ] = 0 for all σ ∈ Σ
foreach i ∈ [0, l − 1] do

if L[Ind[σw,i]] = 0 then
L[c]

$←− Zp, Ic = {i}, c = c+ 1
else
IInd[σw,i] = IInd[σw,i] ∪ {i}

end
V = V + zi · ασw,i

· L[Ind[σw,i]]
Ind[σw,i] = Ind[σw,i] + 1

end
tdw = {c, {Ij}j=c−1

j=0 , {g̃L[j]}j=c−1
j=0 , g̃V }

Algorithm 1: Issue

– Test(params, C, tdw) checks whether the encrypted data C contains w by parsing tdw as {c, {Ij}j=c−1
j=0

, {g̃L[j]}j=c−1
j=0 , g̃V } and C as {Ci, C

′
i}

n−1
i=0 , and checking for all j ∈ [0, n− l] if the following equation holds:

c−1∏
t=0

e(
∏
i∈It

C ′
j+i, g̃

L[t]) = e(Cj , g̃
V)

We can prove the correctness, the data indistinguishability, and encrypted data unforgeability properties
by following the same strategies as in Appendices A.1, A.2, and A.3. Unfortunately, this construction inherits
the three main limitations of the SEST construction. First, the size of the public parameters params is linear
to the size of the data to be analyzed (which may be very large). Second, the pattern indistinguishability
requirement cannot be satisfied since the Issue algorithm (Algorithm 1) leaks many information (such as,
the number of different symbols and the maximum number of occurrences of a symbol) about the pattern to
be matched. Third, searching the presence of a pattern w is linear to the maximum number of occurrences
of each symbol in w, which makes this construction impractical for matching small alphabet based patterns
(e.g., bit, or hexadecimal patterns).

5.7 The S4E’s Protocol

– Setup(1λ, pmax): Let (G1,G2,GT , p, e(·, ·)) be a bilinear environment. This algorithm selects g
$←−

G1, g̃
$←− G2, chooses fs such that fs ≥ 2·(pmax−1), and returns params← (G1,G2,GT , p, e(·, ·), g, g̃, pmax,

fs).
– Keygen(params,Σ): On input of the alphabet Σ, this algorithm selects z

$←− Zp, {α′
σ

$←− Zp, ασ
$←−

Zp}σ∈Σ , r
$←− Zp, and computes and adds {gzi}i=fs−1

i=0 to params. It returns the secret key Ks =

{r, z, {α′
σ, ασ}σ∈Σ} and the trapdoor generation key Kt = {g̃r·α

′
σ·α

i+j
σ ·zi}i=fs−1,j=pmax−1

i=0,j=0,σ∈Σ which will be
sent to PP using a secure channel.

– Encrypt(params,B,Ks): it starts by fragmenting B = σ0, · · ·σm−1 into {Fi, F j}i=nf−1,j=nf−2
i=0,j=0 where

Fi = [i · fs, (i+1) · fs− 1] and F j = [(j +1) · fs− pmax − 2, (j +1) · fs+ pmax − 1]. It chooses ak
$←− Zp

for each k ∈ [0, nf − 1] and ak
$←− Zp for each k ∈ [0, nf − 2] and returns C = {Ci, Ci, C

′
i, C

′
i}m−1

i=0 as
described in the following algorithm.

8

Input: params,B = σ0, · · ·σm−1, Ks, {Fi, ai, F j , aj}i=nf−1,j=nf−2
i=0,j=0

Output: C = {Ci, Ci, C
′
i, C

′
i}m−1

i=0

C ← ∅
foreach i ∈ [0,m− 1] do

ϵ← i/fs #find the fragment Fϵ to which i belongs
Ci ← gaϵ·α′

σi
·(ασi

·z)iFϵ , C ′
i ← gaϵ·ziFϵ

if ϵ > 0 and i ∈ F ϵ−1 then
Ci ← gaϵ−1·α′

σi
·(ασi

·z)
i
Fϵ−1 , C ′

i ← gaϵ−1·z
i
Fϵ−1

else if ϵ < nf − 1 and i ∈ F ϵ then
Ci ← gaϵ·α′

σi
·(ασi

·z)iFϵ , C ′
i ← gaϵ·z

i
Fϵ

else
Ci ← Null, C ′

i ← Null
end
C ← C ∪ {Ci, C

′
i, Ci, C ′

i}
end

Algorithm 2: Encrypt
– Issue(params,Ks,Kt, w) issues a trapdoor tdw for the sequence of symbols w = σw,0, · · · , σw,l−1 of

length l < pmax as described in the following:
• PP generates {vi

$←− Zp}i=fs−l−1
i=0 , uses Kt to compute

l−1∏
j=0

g̃
r·α′

σw,j
·αi+j

σw,j
·zj

vi
fs−l−1

i=0

=

g̃
vi·r

l−1∑
j=0

α′
σw,j

·αi+j
σw,j

·zj

fs−l−1

i=0

and sends it to DO.
• DO computes

g̃
vi·r

l−1∑
j=0

α′
σw,j

·αi+j
σw,j

·zj

−r

fs−l−1

i=0

=

g̃
vi

l−1∑
j=0

α′
σw,j

·αi+j
σw,j

·zj

fs−l−1

i=0

and sends it to PP.
• PP computes tdw = {g̃Vi , g̃vi}fs−l−1

i=0 with Vi = vi
l−1∑
j=0

α′
σw,j
· αi+j

σw,j
· zj

– Test(params,C, tdw) tests whether the encrypted data C contains w using the following algorithm. It
returns the set I of indexes i in which w exists in C.

Input: C = {Ci, Ci, C
′
i, C

′
i}m−1

i=0 , tdw = {Vi, vi}i=fs−l−1
i=0

Output: I
I ← ∅
foreach i ∈ [0,m− 1] do

ϵ← i/fs #find the fragment Fϵ to which i belongs
if i ∈ Fϵ ∩ F ϵ then

if e(
∏l−1

j=0 Ci+j , g̃
vi

Fϵ) = e(C ′
i, g̃

Vi
Fϵ) then

I ← I ∪ i
end

else
if e(

∏l−1
j=0 Ci+j , g̃

viFϵ) = e(C ′
i, g̃

ViFϵ) then
I ← I ∪ i

end
end

end
Algorithm 3: Test

We note here that the size of the ciphertext produced by the Encrypt algorithm does not depend on the
set of patterns to be used but depends only on the size of data to be encrypted. In addition, our Issue and
Test algorithms allow to search an arbitrary (upper bounded size) and unforgeable (without the knowledge
of the secret key Ks) patterns. The sizes of those trapdoors do not depend on the size of the data to be
encrypted but only on the size of the data fragment (around the double of the maximum size of a pattern).
Finally, we underline that the elements {g̃vi}fs−l−1

i=0 of a trapdoor tpw will not be accessible to the DO, since
the trapdoor is to be used only between PP and SP in the Test algorithm to match the pattern w on the
encrypted data.

5.8 S4E’s Security Results
In this section, we prove that the S4E construction described in Section 5.7 provides the security requirements
we described in Section 5.3. Proofs of the following theorems are given in Appendix A.
Theorem 1. S4E is correct.
Theorem 2. S4E is trace indistinguishable under the i-GDH assumption.
Theorem 3. S4E is encrypted data forgery secure under the i-GDH assumption.
Theorem 4. S4E is pattern indistinguishable under the i-GDH assumption.

9

6 AS3E Construction

The S4E construction, introduced in Section 5, allows for pattern matching on symmetrically encrypted data.
In this section we show that the data fragmentation approach we propose in Section 4 can also be used to
build AS3E: a pattern matching of upper bounded length keywords on asymmetrically encrypted stream. In
particular, we show in Section 7 that considering the same system and threat model as the most efficient
state of the art solution SEST [1], AS3E is far more practical than SEST as it reduces (1) considerably the
size of public keys and (2) slightly the search complexity while increasing the size of ciphertext only by a
factor of 2.

6.1 Considered Architecture

AS3E involves four roles: Pattern Provider (PP), Service Provider (SP), a sender, and a receiver. PP and
SP are the same two entities we used in the S4E construction. That is, (PP) is the entity that supplies
the patterns that will be searched, and the Service Provider (SP) are stakeholders that offer computation
infrastructures that will be used to perform pattern matching operations on the data to be analyzed. The
role sender is used to represents the entities that are going to generate the data that is going to be analyzed
(e.g., a website that provides web contents). The role receiver represents the entities that will receive and
process the traffic sent by the sender. The receiver and the sender roles are interchangeable. That is, within
the same secure network connection session, each end-point may play both the sender and the receiver roles.
In this context, we suppose that the receiver want to analyze the data (e.g., to detect malicious contents)
to be sent by the sender before using it. In AS3E, we require that the sender and the receiver will not
collaborate together, otherwise, they could use a secure channel that is out of reach for the SP. This scenario
should not be considered as a limitation of AS3E since, in such scenario pattern matching cannot be provided
by SP even in the context of a plaintext traffic.

6.2 Security Requirements and Hypothesis

We consider the same hypothesis for the two entities PP and SP as in our S4E construction. That is, PP and
SP are considered to be honest-but-curious entities. Specifically, PP is supposed to provide valid patterns
that allow SP to effectively analyze the data generated by the sender while SP is supposed to perform
correctly the matching between the patterns provided by PP and the sender’s data. Nevertheless, we expect
PP and SP to be curious as the former may try to learn information about the sender’s data and the latter
may try to get additional information about both the patterns provided by PP and the sender’s data.

Moreover, we expect the receiver to be honest-but-curious. That is, he/she will correctly follow AS3E’s
protocol. However, he/she may try to learn more information about the patterns that are provided by PP.

In addition, we suppose that the receiver and SP will not collude to learn more information about the
patterns provided by PP. Otherwise, they could easily mount a dictionary attack. Again, we believe that this
last assumption is fairly reasonable since an open dishonest behavior will result in considerable damages for
both entities.

Finally, as in S4E, the pattern matching functionality provided by AS3E should be correct in a way that
(1) any traffic that matches a least one of the analysis patterns provided by PP when not encrypted must
be detected as malicious traffic by our construction, and (2) the probability that our construction returns
a false positive for any traffic that does not match any of the PP’s analysis patterns when not encrypted is
negligible.

6.3 Syntax

Similarly to the S4E construction, we used five algorithms to define our construction: Setup, Keygen,
Encrypt, Issue, and Test. The algorithms Setup and Keygen are performed by the entity playing receiver
role. The Issue algorithm is performed collaboratively by the receiver and the PP. The Encrypt algorithm is
performed by the sender while the Test algorithm is performed by SP.

– Setup(1λ, fs, pmax) is a probabilistic algorithm that takes as input a security parameter λ, the frag-
mentation size to be used fs, and the maximum size of a pattern pmax. It returns the public parameters
params which will be an implicit input to all other algorithms.

– Keygen(Σ) is a probabilistic algorithm that takes as input a finite set of symbols Σ representing the
alphabet (e.g., bit symbols, byte symbols) used to represent the data to be analyzed. It returns the keys
Ks, Kp, and Kt, where Ks is private and known only to the receiver, Kt is know only to PP, and Kp is
pubic.

– Encrypt(B,Kp) is a probabilistic algorithm that takes as input the data to be encrypted B along with
the public key Kp and returns a ciphertext C.

– Issue(Ks,Kt, w) is a probabilistic algorithm performed collaboratively by the receiver and the PP. It
takes as input the receiver’s private key Ks, the trapdoor generation key Kt, and a pattern w of length
l (l ≤ pmax) and returns a trapdoor tdw.

– Test(C, tdw) is a deterministic algorithm that takes as input a ciphertext C encrypting a data stream B
along with a trapdoor tdw for a pattern w and returns the set of indexes at which the pattern w occurs
in B.

Similarly to the S4E construction, we omit the decryption algorithm in the previous description since
we focus mainly on providing arbitrary universal 3 pattern matching over encrypted traffic. The decryption
functionality can be easily added by encrypting the data stream B under a conventional encryption scheme.
3 The trapdoor generated collaboratively by the receiver and PP can be used to analyze any sender’s data that is

sent to the receiver

10

6.4 Security Model

For the AS3E construction, there are mainly three security requirements that should be satisfied: the traffic
indistinguishability to SP and PP, the pattern indistinguishability to SP and the receiver, and the correct
detection requirements. We note that, similarly to our S4E construction, we consider the selective security
notion [17]. In the following, we denote by Os a trapdoor-issuing oracle that can be queried to create a
trapdoor for any pattern.

The following definition states that it is not feasible for the SP or PP to learn any information about the
content of the traffic more than the presence or the absence of the patterns to be matched.

Definition 9 (Data indistinguishability). Let λ be the security parameter, Σ be the alphabet to be used, A
be the adversary and C be the challenger. We consider the following game that we denote ExpAS3E_T_IND_CPA

A,β :

(1) Setup: C executes Setup(1λ, fs, pmax) to generate params and Keygen(Σ) to generate Ks, Kt, and Kp.
Then it sends params, Kp, and Kt to A.

(2) Query: A can adaptively query Os to create a trapdoor tdwi for any adaptively chosen pattern wi =
σi,0 · · ·σi,li−1 where σi,j ∈ Σ. We denote W the set of patterns submitted by A to Os in this phase.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two data streams T0 = σ∗
0,0 · · ·σ∗

0,m−1 and
T1 = σ∗

1,0 · · ·σ∗
1,m−1 and sends them to C.

(a) If ∃w = σ0 · · ·σl ∈ W, k ∈ {0, 1}, and j such that:

σ∗
k,j · · ·σ∗

k,j+l = σ0 · · ·σl ̸= σ∗
1−k,j · · ·σ∗

1−k,j+l then return 0.

(b) C chooses a random β ∈ {0, 1}, creates C = Encrypt(Tβ ,Kp), and sends it to A.
(4) Guess. A outputs the guess β′.
(5) Return (β = β′).

We define A’s advantage by AdvExpAS3E_T_IND_CPA
A,β (λ) = |Pr[β = β′]− 1/2|. AS3E is data indistinguishable

if AdvExpAS3E_T_IND_CPA
A,β (λ) is negligible.

The pattern indistinguishability property informally requires that it is not feasible for an adversary (the
SP or the receiver) to learn any information about the detection patterns. Since our construction is a public-
key based schema, we need to take into consideration the fact that an adversary can create any traffic
of its choice using the public key Kp. In this case, an adversary can mount a brute force attack on PP’s
patterns by adaptively creating as much traffic as needed to understand the logic behind them. However,
a pattern matching-based solution over plaintext or public-key encryption ciphertext cannot resist such an
attack, and therefore, it should not be considered in the security model of AS3E. Hence, for AS3E, the
pattern indistinguishability property requires that the adversary A will not learn more information than
what is provided as output to the Test algorithm. Formally, we use the high-min entropy property [18] which
informally states that A cannot obtain the patterns ”by chance”.

Definition 10 (min-entropy). Given a set of detection patterns W,and a random bit β ∈ {0, 1}. A
probabilistic adversary A = (Af ,Ag) has min-entropy µ if

∀λ ∈ N,∀w ∈ W,∀β : Pr[w′ ← A(λ, β) : w = w′] ≤ 2−µ(λ)

A is said to have high-min entropy if it has min-entropy µ with µ(λ) ∈ ω(log(λ)).

In the experiment ExpAS3E_P_IND
ASP=(Af ,Ag),β

(Definition 11), we define the security notion AS3E_P_IND for an
adversary ASP = (Af ,Ag) (Af and Ag are non colluding entities, as in e.g., [18, 7]) with high-min entropy,
that can create any traffic of its choice.

Definition 11 (Pattern indistinguishability to SP). Let λ be the security parameter, Σ be the alphabet
to be used, ASP = (Af ,Ag) be the adversary and C be the challenger. We consider the following game that
we denote ExpAS3E_P_IND

ASP=(Af ,Ag),β
:

(1) Setup: C executes Setup(1λ, fs, pmax) to generate params and Keygen(Σ) to generate Ks, Kt, and Kp.
Then it sends params and Kp to ASP .

(2) Query: ASP can adaptively query Os to create a trapdoor tdwi
for any pattern wi = σi,1 · · ·σi,li where

σi,j ∈ Σ. We denote by W the set of patterns submitted by ASP to Os in this phase.
(3) Challenge: Once ASP decides that Phase (2) is over, Af chooses two patterns w∗

0 = σ∗
0,0 · · ·σ∗

0,l and
w∗

1 = σ∗
1,0 · · ·σ∗

1,l such that w∗
0 , w

∗
1 /∈ W and sends them to C. C chooses a random β ∈ {0, 1}, creates

tdw∗
β
, and sends it to Ag.

(4) Guess: Ag outputs the guess β′.
(5) Return (β = β′).

We define A’s advantage by Adv
ExpAS3E_P_IND

ASP =(Af ,Ag),β (λ) = |Pr[β = β′] − 1/2|. AS3E is said to be trace in-
distinguishable to SP if for any probabilistic polynomial-time ASP = (Af ,Ag) having high-min entropy,

Adv
ExpAS3E_P_IND

ASP =(Af ,Ag),β (λ) is negligible.

In addition, since the Issue algorithm is performed interactively between the receiver and PP, we aim to
evaluate the advantage of the receiver to decide whether a trapdoor encrypts w∗

0 or w∗
1 even with an access

to an oracle Os that plays the role of a PP and performs the Issue algorithm for any adaptively chosen
pattern. The following definition formalizes the pattern indistinguishability property for the receiver.

11

Definition 12 (Pattern Indistinguishability to the receiver). Let λ be the security parameter, Σ be
the alphabet to be used, A be the adversary and C the challenger. We consider the following game that we
denote ExpAS3E_P_IND_CPA

AR,β :

(1) Setup: C executes Setup(1λ, fs, pmax) to generate params and Keygen(Σ) to generate Ks, Kp, and Kt.
Then it sends params, Ks, Kp, and Kt to the adversary.

(2) Query: A can use Os as a PP in the Issue algorithm to create a trapdoor for any adaptively chosen
pattern wi = σi,1 · · ·σi,li where σi,j ∈ Σ. We denote by W the set of patterns chosen by A in this phase.

(3) Challenge: Once A decides that Phase (2) is over, it chooses two patterns w∗
0 = σ∗

0,0 · · ·σ∗
0,l and w∗

1 =
σ∗
1,0 · · ·σ∗

1,l such that w∗
0 , w

∗
1 /∈ W and sends them to C. C chooses a random β ∈ {0, 1}, and plays the

role of PP in the issue algorithm to generate collaboratively with A a trapdoor for w∗
β.

(4) Guess: A outputs the guess β′

(5) Return (β = β′).

We define the advantage of the adversaryA for winning ExpAS3E_P_IND_CPA
AR,β by Adv

ExpAS3E_P_IND_CPA
AR,β (λ) =

|Pr[β′ = β]− 1/2|. AS3E is said to be pattern indistinguishable for the receiver if Adv
ExpAS3E_P_IND_CPA

ARβ (λ)
is negligible.

Finally, the pattern matching correctness property is formally defined in the following Definition.

Definition 13 (Correctness). Given a data stream T and a pattern w. AS3E is correct iff the following
conditions hold:

(i) Pr[i ∈ Test(Encrypt(T,Kp), Issue(Ks,Kt, w))] = 1 if T contains w at index i.
(ii) Pr[i ∈ Test(Encrypt(T,Kp), Issue(Ks,Kt, w))] is negligible if T does not contain w at index i.

6.5 The protocol

– Setup(1λ, pmax): Let (G1,G2,GT , p, e(·, ·)) be a bilinear environment. This algorithm selects g
$←−

G1, g̃
$←− G2 and returns params← (G1,G2,GT , p, e(·, ·) , g, g̃, pmax).

– Keygen(Σ): On input of the alphabet Σ, this algorithm chooses fs such that fs ≥ 2 · (pmax − 1),
selects z

$←− Zp, {α′
σ

$←− Zp, ασ
$←− Zp}σ∈Σ , and r

$←− Zp, computes and sets the public key Kp =

{gzi

, gα
′
σ·(ασ·z)i}i=fs−1

i=0,σ∈Σ , the private key Ks = {r, ασ, α
′
σ, z}σ∈Σ , and the trapdoor generation key Kt =

{g̃r·α′
σ·α

i+j
σ ·zi}i=fs−1,j=pmax−1

i=0,j=0,σ∈Σ . It send Kt to PP.
– Encrypt(B,Kp) fragments B = σ1, · · ·σm into {Fi, F j}i=nf−1,j=nf−2

i=0,j=0 where Fi = [i · fs+ 1, (i+ 1) · fs]
and F j = [(j + 1) · fs − pmax − 1, (j + 1) · fs + pmax]. It chooses ak

$←− Zp for each k ∈ [0, nf − 1]

and ak
$←− Zp for each k ∈ [0, nf − 2] and returns C = {Ci, Ci, C

′
i, C

′
i}mi=1 as described in the following

algorithm.

Input: B = σ1, · · ·σm,Kp, {Fi, ai, F j , aj}i=nf−1,j=nf−2
i=0,j=0

Output: C = {Ci, Ci, C
′
i, C

′
i}mi=1

C ← ∅
foreach i ∈ [1,m] do

ϵ← i/fs #find the fragment Fϵ to which i belongs
Ci ← gaϵ·α′

σi
·(ασi

·z)iFϵ , C ′
i ← gaϵ·ziFϵ

gα
′
σi

·(ασi
·z)iFϵ and gz

iFϵ are retrived from Kp

if ϵ > 0 and i ∈ F ϵ−1 then
Ci ← gaϵ−1·α′

σi
·(ασi

·z)
i
Fϵ−1 , C ′

i ← gaϵ−1·z
i
Fϵ−1

else if ϵ < nf − 1 and i ∈ F ϵ then
Ci ← gaϵ·α′

σi
·(ασi

·z)iFϵ , C ′
i ← gaϵ·z

i
Fϵ

else
Ci ← Null, C ′

i ← Null
end
C ← C ∪ {Ci, C

′
i, Ci, C ′

i}
end

Algorithm 4: Encrypt

– Issue(Ks,Kt, w) issues a trapdoor tdw for the sequence of symbols w = σw,0, · · · , σw,l−1 of length
l < pmax. AS3E uses the same Issue algorithm as S4E except that DO will be replaced by the receiver.

– Test(C, tdw) tests whether the encrypted traces C contains the sequence of symbols w. It returns the set
I of indexes i in which w exists in C. The Test algorithm is the same as described for the S4E construction
(Algorithm 3).

6.6 AS3E Security Results

This section presents the security results of AS3E. The proofs of the following theorems are provided respec-
tively in appendices A.5, A.6, A.7, and A.8.

Theorem 5. AS3E is correct.

12

Theorem 6. AS3E is trace indistinguishable under the i-GDH assumption.

Theorem 7. AS3E is pattern-indistinguishable to SP for patterns of high min-entropy under the i-GDH
assumption.

Theorem 8. AS3E is pattern-indistinguishable to the receiver under the i-GDH assumption.

7 The complexity

We evaluate the practicability of S4E and AS3E regarding several properties: the sizes of the public pa-
rameters for S4E, public keys for AS3E, the trapdoor generation key, the ciphertext, the trapdoor, and the
encryption and search complexities. Let fs be the size of a fragment, pmax be the maximum size of a pat-
tern, n be the total number of symbols in the data to be analyzed. Note that S4E and AS3E share the same
sizes for the ciphertext, the trapdoor generation key, the trapdoors, and the same complexities for trapdoor
generation, encryption, and search operations.

The size of the public parameters used in S4E: The public parameters params used in the S4E con-
struction contain fs elements of G1 which represents 32× fs bytes using Barreto-Naehrig (BN) [16].

The size of the public keys used in AS3E: The public key Kp used in the S4E construction contains
2 × fs elements of G1 which represents 64 × fs bytes using Barreto-Naehrig (BN) [16]. We underline that
the size of the required public key is independent of the size of the data to be analyzed n and depends only
on the maximum size of a pattern pmax (n ≫ fs ≥ 2 × (pmax − 1)). Hence, compared to the most efficient
state of the art solution SEST, AS3E reduces considerably the size of the required public key. To illustrate,
if we suppose that 1G of data is to be analyzed using a set of patterns, each composed of at most 10000
bytes, SEST requires a public key of size 32× (1+256)× 109 bytes ≃ 8000 GB while AS3E requires a public
key of size 20000× 64 bytes ≃ 1.20 MB.

The size of the pattern generation key Kt: For both S4E and AS3E, Kt contains fs × pmax × |Σ|
elements of G2. A key allowing to generate trapdoors for a binary pattern of length l ≤ 1000 will have a size
equals to 128 MB.

The size of the ciphertext: In the worst case (i.e., fs = 2×(pmax−1)), each symbol will be represented by
4 elements of G1. Therefore, encrypting n symbols requires 128×n bytes, while SEST produces a ciphertext
of size 64× n bytes using BN.

Trapdoor’s size: A trapdoor is composed of 2×(fs−pmax) elements of G2 which represents 64×(fs−pmax)
bytes using BN.

Trapdoor generation complexity. Generating a trapdoor for a pattern of length l (l ≤ pmax), as de-
scribed in the Issue algorithm, requires (fs− l)× (2l + 2) exponentiations and 4l(fs− l) multiplications in
G2.

The upper bound size of patterns: The upper bound size pmax of the patterns that can be searched
by S4E and AS3E depends fs (p_max = fs/2− 1). Increasing p_max will increase linearly the trapdoor’s
sizes and generation complexity. However, it will not affect any of the other properties of S4E and AS3E.

Encryption complexity According to the Encrypt algorithm (Algorithm 2), in the worst case (i.e.,
fs = 2 × (pmax − 1)), encrypting a sequence of n symbols using S4E requires 10 × n exponentiations in
G1. In case in which n is large (i.e., n≫ fs and n≫ |Σ|), the previous complexity can be reduced by pre-
computing {gα′

σ·(ασ·z)i , gz
i}i=fs−1

i=0,σ∈Σ . Then for each symbol to encrypt, the encryptor needs only to perform
four exponentiations: (gα′

σ·(ασ×z)iFϵ)aϵ , (gziFϵ)aϵ , (gα′
σ·(ασ×z)

i
Fϵ)aϵ , and (gz

i
Fϵ)aϵwhich reduces the overall

complexity to fs × |Σ| + 4 × n exponentiations in G1. As for AS3E, encrypting a sequence of n symbols
requires 2× n exponentiations in G1.

Search complexity: According to the Test algorithm (Algorithm 3), searching a pattern of size l on a
sequence of symbols of size n requires nl− l2 multiplications on the group G1 and 2×(n− l) pairings. In fact,
the Test algorithm verifies the presence of a pattern (using its associated trapdoor) in each possible offset in
the data to be analyzed. Let us denote by s0 and s1 the two sequences of symbols of length l to be analyzed
to check the presence of a pattern in offsets 0 and 1 respectively of the fragment Fi (resp. F i). Checking the
presence of the pattern in the offset 0 requires the computation of

∏l−1
i=0 Ci (resp.

∏l−1
i=0 Ci) while checking

the presence of the pattern in offset 1 requires the computation of
∏l−1

i=0 Ci+1 (resp.
∏l−1

i=0 Ci+1). Obviously,
for the offset 1, we can avoid the recomputation of

∏l−1
i=1 Ci since it has already been computed for the offset

0. Following the previous observation, searching a pattern of length l on a sequence of symbols of length n
requires only n multiplications and n divisions on the group G1, and 2 × (n − l) pairings. Considering the
fact that l≪ n, we can upper bound the search complexity by n multiplications, n divisions and 2n pairings.
Finally, we note that pairing operations can be implemented very efficiently [23] and that our Test procedure
is highly parallelizable.

13

8 Empirical Evaluation

In this section, we experimentally evaluate the performance of S4E and AS3E 4. We implement the two
constructions using the RELIC cryptographic library [23] over the 254-bits Barreto-Naehrig curve. For all
conducted experiments, we used real network traces as the data to be encrypted and analyzed, and we
(pseudo) randomly generated the analysis patterns to be searched. In addition, since in both S4E and AS3E,
the encryption and the trapdoor generation algorithms are to be performed by entities (data owners in case of
S4E or data sender in case of AS3E) which may not have a large computation power, we run both the trapdoor
generation and the encryption algorithms tests on an Amazon EC2 instance (a1.2xlarge) running Linux with
an Intel Xeon E5-2680 v4 Processor with 8 vCPU and 16 GB of RAM. In contrast, as the search operations
are performed by SP which is supposed to have a large computation power, we run search experiments on
an Amazon EC2 instance (m5.24xlarge) running Linux with an Intel Xeon E5-2680 v4 Processor with 96
vCPU and 64 GB of RAM.

In our empirical evaluation, we aim to quantify the following characteristics of the proposed constructions:

– The time required to generate a trapdoor and its corresponding size as a function of the size of the
largest analysis pattern pmax that can be searched.

– The time taken to encrypt a data stream as a function of its size (i.e. the size of the sequence of symbols
that composed the data to be encrypted), the fragmentation size fs and the size of the considered
alphabet.

– The time needed to perform a pattern matching query as a function of the size of the data to be queried
and the size of the patterns to be searched.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pattern length

0

0.5

1

1.5

2

2.5

3

T
im

e
 i
n

 s
e

c
o

n
d

s

(a) as a function of the number
of symbols in the pattern to be
searched

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

fragment size (fs)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ti
m

e
 i
n

 s
e

c
o

n
d

s

(b) as a function of fs

Fig. 2: Trapdoor generation time

Trapdoor generation. Fig. 2 describes the time required for issuing a trapdoor for a pattern w as a
function of its length (Fig. 2 (a)) as well as the size fs of data a data fragment (Fig. 2 (b)). According to
our experiments, issuing a trapdoor for a pattern of 5000 symbols take 1.4 second. In addition, the sizes of
the generated trapdoors are relatively small (256 KB for a pattern of 4000 symbols and a fragmentation size
of 10000 symbols).

Encryption time. According to Section 7, the duration of an encryption operation depends mainly on
the number of symbols in the data to be encrypted n but also on the fragmentation size fs and the size
|Σ| of the considered alphabet Σ. Table 2 reports the time needed to encrypt a data stream fragmented in
chunks, each containing 1000 bits (fs = 1000 and Σ = {0, 1}), as a function of the data stream length n.5.

As we noted in Section 4, the fragmentation size fs and the considered alphabets are important param-
eters in our construction. The former directly influences the size of the largest analysis pattern that can
be searched over the encrypted data since the bigger the size of the fragments are, the bigger the size of
the supported analysis patterns could be. The latter parameter determines the type of search that can be
performed by our construction. In Fig. 3, we compute the time required for the encryption of a data stream
composed of 105 symbols as a function of the fragmentation size fs and the type of the considered symbols.
We consider three types of alphabets: binary, hexadecimal, and base 256 (i.e., ASCII alphabet) where each
symbol is represented respectively in 1, 4 and 8 bits. For fs, we consider 3 different fragment sizes: 103, 104,
and 105 symbols.

As illustrated in Fig. 3, the time required for encrypting a dataset composed of 105 symbols increases
only by a factor of 0.02 (from 3,04 to 3,2 seconds) when increasing the size of the fragments by a factor of
100 (from 103 to 105) and increasing the size of the considered alphabet by a factor of 128 (from a base 2
alphabet where Σ = {0, 1} to a base 256 alphabet where Σ = {0, 1, · · · , 255}). The previous results show
that the increase of the size of supported patterns and the size of the considered alphabet affects very little
the encryption time required by the proposed constructions.

Search time. As shown in Section 7, the complexity of the search operation depends mainly on the number
of encrypted symbols n that compose the data to be analyzed. Fig. 4 describes the time required for searching
a pattern as a function of the number of encrypted symbols in the data to be analyzed.
4 We note that the goals of this section is to (1) provide a more concrete estimations of the different operations used

by S4E and AS3E and (2) show that S4E and AS3E are more practical than SEST. Particularly, we do not claim
that S4E and AS3E are practical enough to perform pattern matching on very large data streams.

5 Encryption time would be roughly 8 times slower with a single-threaded execution.

14

data length Time
(bytes) (seconds)

1000 0.031
3000 0.097
5000 0.158
10000 0.371
30000 1.01
100000 3.0355

Table 2: Encrypting time as a
function of the size of the data
to be encrypted n

103 104 105

Fragment size (fs)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
im

e
 i
n

 s
e

c
o

n
d

s

Binary alpahbet

Hexadicimal alphabet

ASCII alphabet

Fig. 3: Time required for encrypting 105 symbols as
a function of fs and Σ

0 100 200 300 400 500 600 700 800 900 1000

Number of symbols (10
3
)

0

10

20

30

40

50

60

70

T
im

e
 i
n

 s
e

c
o

n
d

s

Fig. 4: Time required for searching a pattern as a function of the number of encrypted symbols in the data
to be analyzed

The conducted evaluations show that the average search throughput of our construction is 139078 symbols
per second with a multi-threaded implementation 6. Thus, if an ASCII (resp. binary) alphabet is considered,
the search throughput is 139 KB (resp. Kb) per second.

10 102 103 104

Number of bytes in the analysis pattern

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
 i
n
 s

e
c
o
n
d
s

S
4
E

AS
3
E

SEST

symmetric SEST (Section 5.6)

(a) byte-level search (Σ = {0, · · · , 255})

4 16 64 256

Number of bits in the analysis pattern

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
im

e
 i
n
 s

e
c
o
n
d
s

S
4
E

AS
3
E

SEST

Symmetric SEST (Section 5.6)

(b) bit-level search (Σ = {0, 1}})

Fig. 5: Timing comparison for testing the presence of a pattern in a string of 107 symbols as a function of
the pattern size

Fig. 5 (a) (resp. Fig. 5 (b)) compares the time needed for both our and the SEST (both its asymmetric
[1] and symmetric (Section 5.6) variants) constructions to test the presence of a pattern of bytes (resp. of
bits) in a 10 MB (resp. Mb) dataset as a function of the length of the pattern to be searched. In both bit
and byte searches, our construction drastically reduces the search time compared to SEST. This is because
that our Test algorithm is constant on the size and on the content of the searched pattern which is not the
case for SEST.

9 Conclusion

In this work, we introduced two new provably correct and secure constructions S4E and AS3E. S4E (resp.
AS3E) supporting pattern matching of adaptively chosen and variable (upper bounded) lengths patterns
on secret key (resp. public key) encrypted streams. The proposed constructions have several interesting
properties. First, they ensure data and pattern indistinguishability meaning that the entity that is going to
perform pattern matching will learn nothing about the patterns to be searched as well as the data to be
6 search time would be roughly 96 times slower with a single-threaded execution.

15

inspected, except the presence or the absence of a set of ”unknown” patterns (since the entity charged to
perform pattern matching will not have access to the patterns plaintexts). Second, the size of the ciphertext is
linear to the size of the plaintext and is constant on the sizes and the number of analysis patterns. Third, the
size of the issued trapdoors is constant on the size of the data to be analyzed. Finally, the search complexity is
linear to the size of the trace and is constant on the size of the analysis patterns. The proposed constructions
can be useful for other application scenarios such as subtrees search and searching of structured data.

To prove the security of the two proposed schemes, we used a slightly modified GDH assumption where the
adversary is allowed to choose on which input to play the GDH instance. This relatively minor modification
of the GDH assumption allow to define constructions that offer an interesting compromise between the secure
and quite costly solutions and the fast and unsecure solution where the data has to be decrypted by the
third-party entity that performs the pattern matching.

References

1. Desmoulins, N., Fouque, P. A., Onete, C., & Sanders, O. (2018, December). Pattern Matching on Encrypted
Streams. In International Conference on the Theory and Application of Cryptology and Information Security (pp.
121-148). Springer, Cham.

2. Moataz, T., Justus, B., Ray, I., Cuppens-Boulahia, N., Cuppens, F., & Ray, I. (2014, July). Privacy-preserving
multiple keyword search on outsourced data in the clouds. In IFIP Annual Conference on Data and Applications
Security and Privacy (pp. 66-81). Springer, Berlin, Heidelberg.

3. Curtmola, R., Garay, J., Kamara, S., & Ostrovsky, R. (2011). Searchable symmetric encryption: improved defini-
tions and efficient constructions. Journal of Computer Security, 19(5), 895-934.

4. Kamara, S., Moataz, T., & Ohrimenko, O. (2018, August). Structured encryption and leakage suppression. In
Annual International Cryptology Conference (pp. 339-370). Springer, Cham.

5. Chase, M., & Shen, E. (2015). Substring-searchable symmetric encryption. Proceedings on Privacy Enhancing
Technologies, 2015(2), 263-281.

6. Sherry, J., Lan, C., Popa, R. A., & Ratnasamy, S. (2015). Blindbox: Deep packet inspection over encrypted traffic.
ACM SIGCOMM Computer communication review, 45(4), 213-226.

7. Canard, S., Diop, A., Kheir, N., Paindavoine, M., & Sabt, M. (2017, April). Blindids: Market-compliant and
privacy-friendly intrusion detection system over encrypted traffic. In Proceedings of the 2017 ACM on Asia Con-
ference on Computer and Communications Security (pp. 561-574). ACM.

8. Gentry, C., & Boneh, D. (2009). A fully homomorphic encryption scheme (Vol. 20, No. 09). Stanford: Stanford
University.

9. Boneh, D., Sahai, A., & Waters, B. (2011, March). Functional encryption: Definitions and challenges. In Theory
of Cryptography Conference (pp. 253-273). Springer, Berlin, Heidelberg.

10. Lauter, K., López-Alt, A., & Naehrig, M. (2014, September). Private computation on encrypted genomic data. In
International Conference on Cryptology and Information Security in Latin America (pp. 3-27). Springer, Cham.

11. Hazay, C., & Lindell, Y. (2010). Efficient protocols for set intersection and pattern matching with security against
malicious and covert adversaries. Journal of cryptology, 23(3), 422-456.

12. Gennaro, R., Hazay, C., & Sorensen, J. S. (2016). Automata evaluation and text search protocols with simulation-
based security. Journal of Cryptology, 29(2), 243-282.

13. Troncoso-Pastoriza, J. R., Katzenbeisser, S., & Celik, M. (2007, October). Privacy preserving error resilient DNA
searching through oblivious automata. In Proceedings of the 14th ACM conference on Computer and communi-
cations security (pp. 519-528). ACM.

14. Katz, J., Sahai, A., & Waters, B. (2013). Predicate encryption supporting disjunctions, polynomial equations,
and inner products. Journal of cryptology, 26(2), 191-224.

15. Boneh, D., & Waters, B. (2007, February). Conjunctive, subset, and range queries on encrypted data. In Theory
of Cryptography Conference (pp. 535-554). Springer, Berlin, Heidelberg.

16. Barreto, P. S., & Naehrig, M. (2005, August). Pairing-friendly elliptic curves of prime order. In International
Workshop on Selected Areas in Cryptography (pp. 319-331). Springer, Berlin, Heidelberg.

17. Canetti, R., Halevi, S., & Katz, J. (2003, May). A forward-secure public-key encryption scheme. In Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques (pp. 255-271). Springer, Berlin,
Heidelberg.

18. Bellare, M., Boldyreva, A., & O’Neill, A. (2007, August). Deterministic and efficiently searchable encryption. In
Annual International Cryptology Conference (pp. 535-552). Springer, Berlin, Heidelberg.

19. MISP - Open Source Threat Intelligence Platform & Open Standards For Threat Information Sharing,
https://www.misp-project.org/, 23 12 2011.

20. Xavier Boyen. The uber-assumption family. In International Conference on Pairing-Based Cryptography, pages
39–56. Springer, 2008.

21. Dawn Xiaoding Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted data. In
Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000, pages 44–55. IEEE, 2000.

22. Snort Rules. https://www.snort.org/, Accessed: 2019-08-35.
23. D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-

toolkit/relic.

A Appendix: Security Proofs

A.1 Proof of Theorem 1

Let us suppose that B = σ0 · · ·σm−1 contains w = σw,0 · · ·σw,l−1(l < pmax,l < m) at index i. Thus,
∀j ∈ [0, l − 1] : σi+j = σw,j . Let us suppose that i ∈ Fϵ(ϵ ∈ [0, nf − 1]). According to the Test algorithm
(Algorithm 3), 2 cases should be considered:

– Case 1: ϵ < nf − 1 and i ∈ Fϵ ∩ F ϵ

16

e(

l−1∏
j=0

Ci+j , g̃
vi

Fϵ) = e(

l−1∏
j=0

g
aϵ·α′

σi+j
·(ασi+j

·z)(iFϵ
+j)

, g̃
vi

Fϵ)

= e(g
aϵ·

∑l−1
j=0 α′

σi+j
·(ασi+j

·z)(iFϵ
+j)

, g̃
vi

Fϵ)

= e(gaϵ·z
i
Fϵ

, g̃
vi

Fϵ
·
∑l−1

j=0 α′
σi+j

·α
i
Fϵ

+j

σi+j
·zj

)

By replacing α′
σi+j

by α′
σw,j

and ασi+j
by ασw,j

we get:

e(

l−1∏
j=0

Ci+j , g̃
vi

Fϵ) = e(C ′
i, g̃

Vi
Fϵ)

– Case 2: i ∈ Fϵ\F ϵ

e(

l−1∏
j=0

Ci+j , g̃
viFϵ) = e(

l−1∏
j=0

g
aϵ·α′

σi+j
·(ασi+j

·z)(iFϵ
+j)

, g̃
viFϵ)

= e(g
aϵ·

∑l−1
j=0 α′

σi+j
·(ασi+j

·z)(iFϵ
+j)

, g̃
viFϵ)

= e(gaϵ·ziFϵ
, g̃

viFϵ
·
∑l−1

j=0 α′
σi+j

·α
iFϵ

+j
σi+j

·zj

)

Again, by replacing α′
σi+j

by α′
σw,j

and ασi+j
by ασw,j

we get:

e(

l−1∏
j=0

Ci+j , g̃
viFϵ) = e(C ′

i, g̃
ViFϵ)

As a result in both previous cases, the probability that the Test algorithm returns a set containing i is
1.

For the second part of the proof, we assume that the set of indexes returned by Test contains i despite
that σi · · ·σi+l−1 ̸= σw,0 · · ·σw,l−1. We should consider the following two cases:

– Case 1: ϵ < nf − 1 and i ∈ Fϵ ∩ F ϵ. Let us denote by K̸= the non-empty set of indexes k in which
σi+k ̸= σw,k (k ∈ [0, l − 1]). Since i has been returned by Test, then we have:

e(
l−1∏
j=0

Ci+j , g̃
vi

Fϵ) = e(C ′
i, g̃

Vi
Fϵ)

⇔ e(g
aϵ·

∑l−1
k=0 α′

σi+k
·(ασi+k

·z)(iFϵ
+k)

, g̃
vi

Fϵ)

= e(gaϵ·z
i
Fϵ , g̃

vi
Fϵ

·
∑l−1

k=0 α′
σi+k

·α
i
Fϵ

+k

σi+k
·zk

)

⇔ e(g, g̃)
aϵ·vi

Fϵ
·
∑l−1

k=0 α′
σi+k

·(ασi+k
·z)(iFϵ

+k)

= e(g, g̃)
aϵ·vi

Fϵ
·
∑l−1

k=0 α′
σw,k

·(ασw,k
·z)(iFϵ

+k)

⇔
l−1∑
k=0

α′
σi+k
· (ασi+k

· z)(iFϵ
+k) =

l−1∑
k=0

α′
σw,k
· (ασw,k

· z)(iFϵ
+k)

⇔
∑

k∈K̸=

(α′
σi+k
· αiF+k

σi+k − α′
σw,k
· αiF+k

σw,k) · ziF+k = 0

Since σw,k ̸= σi+k,∀k ∈ K ̸=, then the probability that the previous equation holds is equivalent to the
probability that a random scalar z is a root of a non-zero polynomial of degree at most l − 1. As a result,
the probability that Test returns a false positive is at most l−1

p which is negligible (since p is a large prime).

– Case 2: i ∈ Fϵ\F ϵ This can be proved using the same strategy as in the previous case. We need just to
replace Ci by Ci, C ′

i by C ′
i, and iF ϵ

by iFϵ
.

A.2 Proof of Theorem 2

To prove the trace indistinguishability property of our construction, we use the same strategy as in [1]. Let
Gβ

0 be the ExpS
4E_D_IND_CPA

A,β as define in Definition 4. We will use a sequence of games G(β)
j for j ∈ [1, n]

to show that the advantage of the adversary A for winning ExpS
4E_D_IND_CPA

A,β is negligible.
Let us suppose that T0 = σ∗

0,1 · · ·σ∗
0,m−1 and T1 = σ∗

1,1 · · ·σ∗
1,m−1 are the two traces chosen by A in

ExpS
4E_D_IND_CPA

A,β (Definition 4). We denote by I ̸= the set of indexes j in which σ∗
0,i ̸= σ∗

1,i and by I(j)̸=

the subset containing the first j indexes of I ̸= (if j < |I̸=|, then I(j)̸= = I ̸=). In this proof, we rely on a
standard hybrid argument in which an element of the challenge ciphertext is randomized at each game hop.
That is, for j ∈ [1, n], the game G

(β)
j modifies G(β)

0 by changing, for all i ∈ I(j)̸= , the elements Ci and Ci of the
challenge ciphertext to random elements of G1. This means that the last game Gβ

n, the challenge cipertext

17

does not contain any useful information about σβ,i∀i ∈ I ̸=. As a result, the adversary cannot distinguish
whether it plays G

(0)
n or G

(1)
n .

Following the same reasoning as in [1], We can bound AdvExpS4E_D_IND_CPA
A,β (λ) as following:

AdvExpS4E_D_IND_CPA
A,β (λ)

=
∣∣∣Pr[ExpS

4E_D_IND_CPA
A,0]− Pr[ExpS

4E_D_IND_CPA
A,1]

∣∣∣
=

∣∣∣G(0)
0 (λ)−G

(1)
0 (λ)

∣∣∣
≤

n−1∑
j=0

∣∣∣G(0)
j (λ)−G

(0)
j+1(λ)

∣∣∣+ n−1∑
j=0

∣∣∣G(1)
j+1(λ)−G

(1)
j (λ)

∣∣∣
+
∣∣∣G(0)

n (λ)−G(1)
n (λ)

∣∣∣
≤

n−1∑
j=1

|G(0)
j (λ)−G

(0)
j+1(λ)|+

n−1∑
j=1

|G(1)
j+1(λ)−G

(1)
j (λ)|

(1)

Therefore, in order to show that AdvExpS4E_D_IND_CPA
A,β (λ) is negligible, we need to show that for all j ∈

[0, n− 1], for all β ∈ {0, 1}, |Pr[Gβ
j (λ) = 1]− Pr[Gβ

j+1(λ) = 1]| is negligible.
To prove the previous, we consider the case in which j < |I̸=|, since otherwise, I(j)̸= = I(j+1)

̸= . This means
that Gβ

j = Gβ
j+1 are exactly the same and there is nothing to prove.

Let i∗ be the (j + 1)st index in I ̸=, ϵ ∈ [0,m/fs], gi,F = gak·zi , and gi,F = gak·zi . From the i-GDH
challenge containing {gzi

, gak·zi

, gak·zi} the simulator starts by defining gz
i

= gz
n−i∗+i and gi,F and gi,F

according to the following three cases:

– C1.1: i∗ ∈ F ϵ−1 and ϵ > 0: The simulator defines gi,F = gaϵ−1·z
n+i

Fϵ−1
−i∗

Fϵ−1

– C1.2: i∗ ∈ F ϵ: The simulator defines gi,F = gaϵ·z
n+i

Fϵ
−i∗

Fϵ

– C1.3: otherwise (i∗ ∈ Fϵ): The simulator defines gi,F = gaϵ·z
n+iFϵ

−i∗Fϵ

Once the simulator receives a query for issuing a trapdoor for the pattern w = σw,0, · · · , σw,lw−1, it
start by checking that w satisfies the condition defined in the step 3(a) of ExpS

4E_D_IND_CPA
A,β (Definition

4). Then, it uses the simulator Os to generate a valid trapdoor for w. One can easily check at this level
that ∀j ∈ [max(0, i∗ + lw − n),min(i∗, lw − 1)] : σw,0, · · · , σw,lw−1 ̸= σ∗

β,i∗−j · · ·σ∗
β,i∗−j+lw−1. If the previous

formula is not satisfied, we end up with

σ∗
1−β,i∗−j · · ·σ∗

1−β,i∗−j+lw−1 = σw,0, · · · , σw,lw−1 ̸=
σ∗
β,i∗−j · · ·σ∗

β,i∗−j+lw−1

which is in contradiction with i∗ ∈ I ̸=.
The simulator then creates the challenge C = {C ′

i, Ci, C ′
i, Ci}i=m−1

i=0 according to the following three
cases:

– C2.1: i ∈ Fϵ ∩ F ϵ−1:

• C ′
i = gaϵz

n+iFϵ
−i∗Fϵ and C ′

i = gaϵ−1z
n+i

Fϵ−1
−i∗

Fϵ−1

• ∀i ∈ I(j) : Ci, Ci
$←− G1

• ∀i /∈ I(j+1) the simulator uses the oracle Or to get valid Ci and Ci and sets U ∈ {Ci∗ , Ci∗}
– C2.2: i ∈ Fϵ ∩ F ϵ:
• C ′

i = gaϵz
n+iFϵ

−i∗Fϵ and C ′
i = gaϵz

n+i
Fϵ

−i∗
Fϵ

• ∀i ∈ I(j) : Ci, Ci
$←− G1

• ∀i /∈ I(j+1) the simulator uses the oracle Or to get valid Ci and Ci and sets U ∈ {Ci∗ , Ci∗}
– C2.3: i ∈ Fϵ\(F ϵ−1 ∪ F ϵ):
• C ′

i = gaϵz
n+iFϵ

−i∗Fϵ and C ′
i = ∅

• ∀i ∈ I(j) : Ci
$←− G1 and Ci = ∅

• ∀i /∈ I(j+1) the simulator uses the oracle Or to get valid Ci and sets U = Ci∗ (since Ci∗ is not
defined)

Then, by considering ϵ∗ = i∗/fs, if

U =

Ci∗ = g
aϵ∗−1·α′

σi∗
·α

i∗
Fϵ∗−1

σi∗ ·zn

or
Ci∗ = g

aϵ∗ ·α′
σi∗

·α
i∗Fϵ∗
σi∗ ·zn

 if C2.1

Ci∗ = g
aϵ∗ ·α′

σi∗
·α

i∗
Fϵ∗

σi∗ ·zn

or
Ci∗ = g

aϵ∗ ·α′
σi∗

α
i∗Fϵ∗
σi∗ ·zn

 if C2.2

Ci∗ = g
aϵ∗ ·α′

σi∗
·α

i∗Fϵ∗
σi∗ ·zn

if C2.3

18

then the simulator is playing the game G
(β)
j . Otherwise U is random and the simulator is playing G

(β)
j+1.

Then an adversary A able to distinguish G
(β)
j and G

(β)
j+1 will be able to win ExpS

4E_D_IND_CPA
A,β with

non negligible advantage. Hence, in order to prove that A cannot distinguish G
(β)
j and G

(β)
j+1, we need

to prove that no adversary can break the i-GDH assumption (Definition 3), meaning that for all f ∈
{aϵ∗−1 · α′

σ∗ · αi∗

σ∗ · zn, aϵ∗ · α′
σ∗ · αi∗

σ∗ · zn, aϵ∗ · α′
σ∗ · αi∗

σ∗ · zn}, f is independent of the sets R,S, and T
after q queries to Os and 1 query to Or which will be proved in Lemma 1.

Let us now focus on the content of the sets R, S, and T . Each pattern wt = σt,0, · · · , σt,lt−1 submitted
to Os will add the polynomials

∑fs−lt−1
s=0 vt,s ·

∑lt−1
k=0 α′

σt,k
(ασt,k

· z)k+s and
∑fs−lt−1

s=0 vt,s to S. In addition,
a query to the oracle Or will add ∀i ∈ [0,m− 1]\{i∗}

aϵ−1 · α′
σ∗
i
· α

iFϵ−1

σ∗
i
· zn−i∗+i if i ∈ Fϵ ∩ F ϵ−1

aϵ · α′
σ∗
i
· αiFϵ

σ∗
i
· zn−i∗+i if i ∈ Fϵ ∩ F ϵ

aϵ · α′
σ∗
i
· αiFϵ

σ∗
i
· zn−i∗+i if i ∈ Fϵ

(2)

to R.
With this new notations, R initially contains {zi, aϵ · zi, aϵ · zi}i=2n−1,k=nf

i=0,k=0 , S initially contains {r · α′
σ ·

αi+j
σ · zi}i=fs−1,j=pmax−1

i=0,j=0,σ∈Σ (the elements of Kt) , and T is empty.

Lemma 1. Let R,S, and T be the sets defines above after q queries to Os and 1 query to Or. If ∀t ∈ [1, q],
the pattern wt = σt,0, · · · , σt,lt−1 submitted to Os differs for all j ∈ [max(0, i∗ + lt−n),min(i∗, lt− 1)] form
σ∗
β,i∗−j · · ·σ∗

β,i∗−j+lt−1, then ∀f ∈ {aϵ∗−1 · α′
σ∗
i∗
· αi∗

σ∗
i∗
· zn, aϵ∗ · α′

σ∗
i∗
· αi∗

σ∗
i∗
· zn, aϵ∗ · α′

σ∗
i∗
· αi∗

σ∗
i∗
· zn}, f is

independent of < R,S, T >.

Proof. According to Definition 2, to prove that f is independent of < R,S, T >, we need to prove that
∀a ∈ {aϵ∗−1, aϵ∗ , aϵ∗}, there is no combination of polynomials from R,S, and T such that(

a · α′
σ∗
i∗
· αi∗

σ∗
i∗
· zn

)
(
∑
j

ua
j · S(j)) =

∑
i,j

ub
i,j ·R(i) · S(j) +

∑
k

u
(c)
k T (t)

(3)

First, we remark that the factor a appears only in the elements {aϵ · zi, aϵ · zi}i=2n−1,k=nf
i=0,k=0 of R and in

the output of the oracle Or (Formula 2). Thus, the elements of R that are not multiple of a cannot be
part of Equation (3). In addition, the last sum of Equation (3) can be omitted since T is empty. So, let
{ϑ(a)t,s , ϑ

(b)
t,s , ϑ

(c)
j , ϑ

(d)
t,s , ϑ

(e)
t,s , ϑ

(f)
i , ϑ

(g)
σ,s,k, ϑ

(h)
σ,s,k}

i=δ−1,j=2n−1,t=q,s=fs−1,j=pmax−1
i=0,j=0,t=1,s=0,σ∈Σ be constants such that

a · α′
σ∗
i∗
· αi∗

σ∗
i∗
· zn

(q∑
t=1

fs−lt−1∑
s=0

(ϑ
(a)
t,s · Vt,s + ϑ

(b)
t,s · vt,s)

+
∑
σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(g)
σ,s,k · r · α

′
σ · αk+s

σ · zk
)

=

2n−1∑
j=0

a · ϑ(c)
j · z

j
(q∑

t=1

fs−lt−1∑
s=0

(ϑ
(d)
t,s · Vt,s + ϑ

(e)
t,s · vt,s)

+
∑
σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(h)
σ,s,k · r · α

′
σ · αk+s

σ · zk
)

+
(δ−1∑

i=0,i̸=i∗

a · ϑ(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i ×

(q∑
t=1

fs−lt−1∑
s=0

(ϑ
(a)
t,s · Vt,s + ϑ

(b)
t,s · vt,s)

+
∑
σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(g)
σ,s,k · r · α

′
σ · αk+s

σ · zk
))

(4)

where δ = fs if a = aϵ∗ (i.e, there are at most fs elements in the fragments in which aϵ∗ is used) and
δ = 2pmax − 2 if a = aϵ∗ or a = aϵ∗−1 (i.e, there are at most 2pmax − 2 elements in the fragments in which
aϵ∗ is used).

To conclude the proof, we should show that ϑ
(a)
t,s = ϑ

(b)
t,s = ϑ

(g)
σ,s′,k = 0 for any s ∈ [0, fs− lt− 1], t ∈ [1, q],

σ ∈ Σ, s′ ∈ [0, fs− 1], and k ∈ [0, pmax − 1].
We start by showing that ϑ

(g)
σ,s,k = 0 for any σ ∈ Σ, s ∈ [0, fs− 1], and k ∈ [0, pmax − 1]. Let us consider

each member of Equation (4) as a polynomial in the variable r, we regroup the different monomials according
to their degree in r to get the following equations:

19

a · α′
σ∗
i∗
· αi∗

σ∗
i∗
· zn

(∑
σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(g)
σ,s,k · r · α

′
σ · αk+s

σ · zk
)
=

2n−1∑
j=0

a · ϑ(c)
j · z

j
(∑

σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(h)
σ,s,k · r · α

′
σ · αk+s

σ · zk
)
+

(

δ−1∑
i=0,i̸=i∗

a · ϑ(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i)×

(∑
σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(g)
σ,s,k · r · α

′
σ · αk+s

σ · zk
)

(5)

a · α′
σ∗
i∗
· αi∗

σ∗
i∗
· zn(

q∑
t=1

fs−lt−1∑
s=0

(ϑ
(a)
t,s · Vt,s + ϑ

(b)
t,s · vt,s))

=

2n−1∑
j=0

a · ϑ(c)
j · z

j(

q∑
t=1

fs−lt−1∑
s=0

(ϑ
(d)
t,s · Vt,s + ϑ

(e)
t,s · vt,s))

+ (

δ−1∑
i=0,i̸=i∗

a · ϑ(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i) ×

(

q∑
t=1

fs−lt−1∑
s=0

(ϑ
(a)
t,s · Vt,s + ϑ

(b)
t,s · vt,s))

(6)

Let us focus on Equation (5) and consider each member as a polynomial in the variable {α′
σ}σ∈Σ . We regroup

the different monomials according to their degree in {α′
σ}σ∈Σ to get the following Equations (7) and (8):

a · α′
σ∗
i∗
· αi∗

σ∗
i∗
· zn

(∑
σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(g)
σ,s,k · r · α

′
σ · αk+s

σ · zk
)
=

(

δ−1∑
i=0,i̸=i∗

a · ϑ(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i)×

(∑
σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(g)
σ,s,k · r · α

′
σ · αk+s

σ · zk
)

(7)

2n−1∑
j=0

a · ϑ(c)
j · z

j
(∑

σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(h)
σ,s,k · r · α

′
σ · αk+s

σ · zk
)
= 0 (8)

In Equation (7), by defining ϑ
(f)
i∗ = −1, we can merge the two sides of the equation as following:

(

δ−1∑
i=0

a · ϑ(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i)×

(∑
σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(g)
σ,s,k · r · α

′
σ · αk+s

σ · zk
)
= 0

(9)

The previous equation gives:

(a)
∑δ−1

i=0 a · ϑ(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i = 0 or

(b)
∑
σ∈Σ

fs−1∑
s=0

pmax−1∑
k=0

ϑ
(g)
σ,s,k · r · α′

σ · αk+s
σ · zk = 0

We now show that the probability that Equation (a) holds is negligible. Equation (a) holds if one of the
following condition hold:

– for all i ∈ [0, δ − 1]: ϑ(f)
i = 0. This condition does not hold since ϑ

(f)
i∗ = −1

– a = 0 which holds with a negligible probability of 1/p, since a
$←− Zp with p is a large prime

– α′
σ∗
i
= 0 which holds with a negligible probability of at most 1/p since α′

σ∗
i

$←− Zp

– ασ∗
i

is a root of non-zero polynomial of degree at most δ − 1 (δ ≤ fs) which holds with a negligible
probability of at most fs− 1/p since ασ∗

i

$←− Zp.
– z is a root of non-zero polynomial of of degree at most δ − 1 (δ ≤ fs) which holds with a negligible

probability of at most fs− 1/p since z
$←− Zp.

Therefore, Equation (9) implies (b) with overwhelming probability. Considering the fact that r $←− Zp, z $←− Zp,
α′
σ

$←− Zp, and ασ
$←− Zp for all σ ∈ Σ, then we can use similar reasoning as above to show that Equation (b)

implies that ∀σ ∈ Σ, ∀s ∈ [0, fs− 1],∀k ∈ [0, pmax − 1] : ϑ
(g)
σ,s,k = 0 with overwhelming probability.

To conclude the proof, it remains to show that ϑ(a)
t,s = ϑ

(b)
t,s = 0 for any s ∈ [0, fs− lt−1], t ∈ [1, q]. So, let

us focus on Equation (6) and consider each member as a polynomial in the variable {α′
σ}σ∈Σ . We regroup

the different monomials according to their degree and we divide each member by a:

20

(i)
∑2n−1

j=0 ϑ
(c)
j · zj(

∑q
t=1

∑fs−lt−1
s=0 ϑ

(e)
t,s · vt,s) = 0

(ii) α′
σ∗
i∗
·αi∗

σ∗
i∗
· zn(

∑q
t=1

∑fs−lt−1
s=0 ϑ

(b)
t,s · vt,s) =

∑2n−1
j=0 ϑ

(c)
j · zj(

∑q
t=1

∑fs−lt−1
s=0 ϑ

(d)
t,s ·Vt,s)+ (

∑δ−1
i=0,i̸=i∗ ϑ

(f)
i ·

α′
σ∗
i
· αi

σ∗
i
· zn−i∗+i)(

∑q
t=1

∑fs−lt−1
s=0 ϑ

(b)
t,s · vt,s)

(iii) α′
σ∗
i∗
·αi∗

σ∗
i∗
·zn(

∑q
t=1

∑fs−lt−1
s=0 ϑ

(a)
t,s ·Vt,s) = (

∑δ−1
i=0,i̸=i∗ ϑ

(f)
i ·α′

σ∗
i
·αi

σ∗
i
·zn−i∗+i)(

∑q
t=1

∑fs−lt−1
s=0 ϑ

(a)
t,s ·Vt,s)

In Equation (iii), since Vt,s = vt,s ·
∑lt−1

k=0 α′
σt,i

αs+k
σt,i
· zk and ∀t, t′ ∈ [1, q],∀s, s′ ∈ [0, fs− lt − 1] : vt,s ̸= vt′,s′

with overwhelming probability (in the Issue algorithm (Algorithm 2), vt,s is chosen randomly from Zp), we
have ∀t ∈ [1, q],∀s ∈ [0, fs− lt − 1] :

α′
σ∗
i∗
· αi∗

σ∗
i∗
· zn · ϑ(a)

t,s · Vt,s =

δ−1∑
i=0,i̸=i∗

ϑ
(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i · ϑ(a)

t,s · Vt,s

We can remove Vt,s in each member of the previous equation to get:

α′
σi∗
· αi∗

σi∗
· zn · ϑ(a)

t,s =

δ−1∑
i=0,i̸=i∗

ϑ
(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i · ϑ(a)

t,s

We note that we cannot get a monomial of degree n in z in the right member of the last equation which
means that ϑ

(a)
t,s = 0, ∀t ∈ [1, q] and ∀s ∈ [0, fs− lt − 1]. It then only remains to prove that ∀t ∈ [1, q],∀s ∈

[0, fs− lt − 1] : ϑ
(b)
t,s = 0.

In Equation (ii), let us define ϑ
(f)
i∗ = −1. Since ∀t, t′ ∈ [1, q],∀s, s′ ∈ [0, fs − lt − 1] : vt,s ̸= vt′,s′ with

overwhelming probability, we can merge the left member with the last sum of the right member to get
∀t ∈ [1, q],∀s ∈ [0, fs− lt − 1] :

2n−1∑
j=0

ϑ
(c)
j · z

j · ϑ(d)
t,s · Vt,s =

−(
δ−1∑
i=0

ϑ
(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i)(ϑ

(b)
t,s · vt,s)

Now, by replacing Vt,s by vt,s ·
∑lt−1

k=0 α′
σt,k

αs+k
σt,k
· zk we have:

2n−1∑
j=0

ϑ
(c)
j · z

j · ϑ(d)
t,s ·

lt−1∑
k=0

α′
σt,k

αs+k
σt,k
· zk =

−
δ−1∑
i=0

ϑ
(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i · ϑ(b)

t,s

By regrouping z elements in the left side we get:

2n+lt−2∑
j=0

zj
lt−1∑
k=0

ϑ
(c)
j−k · ϑ

(d)
t,s · α′

σt,k
· αs+k

σt,k
=

−
δ−1∑
i=0

ϑ
(f)
i · α′

σ∗
i
· αi

σ∗
i
· zn−i∗+i · ϑ(b)

t,s

(10)

where ϑ(c)
i−k = 0 if i ≥ 2n. So if we consider the monomial of degree n in z we get:

∑lt−1
k=0 ϑ

(c)
n−k·ϑ

(d)
t,s ·α′

σt,k
·αs+k

σt,k
=

ϑ
(f)
i∗ ·α′

σ∗
i∗
·αi∗

σ∗
i∗
·ϑ(b)

t,s . Since by definition ϑ
(f)
i∗ = −1, then to show that ϑ(b)

t,s , we will show that ϑ(c)
n−k ·ϑ

(d)
t,s = 0

for all k ∈ [0, lt − 1].
By definition, we have for all j ∈ [max(0, i∗+lt−n),min(i∗, lt−1)] : σt,0, · · · , σt,lt−1 ̸= σ∗

β,i∗−j · · ·σ∗
β,i∗−j+lt−1.

Thus, ∀i ∈ [max(0, i∗−lt+1),min(δ−lt, i∗)],∃i ∈ [0, lt−1] such that σ∗
i+i
̸= σi. Let us now consider the coef-

ficient associated with the monomial of degree n− i∗+ i+ i in z. Then ∀i ∈ [max(0, i∗− lt+1),min(δ− lt, i
∗)]

we have:
lt−1∑
k=0

ϑ
(c)

n−i∗+i+i−k
· ϑ(d)

t,s · α′
σt,k
· αs+k

σt,k
= ϑ

(f)

i+i
· α′

σ∗
i+i
· αi+i

σ∗
i+i

· ϑ(b)
t,s

Since σt,i ̸= σ∗
i+i
⇔ ασt,i

̸= ασ∗
i+i

, we have:

lt−1∑
k=0,σt,k=σt,i

ϑ
(c)

n−i∗+i+i−k
· ϑ(d)

t,s · α′
σt,k
· αs+k

σt,k
= 0

which means that ϑ
(c)

n−i∗+i+i−k
· ϑ(d)

t,s for all k such that σt,k = σt,i, and in particular k = i. This is means
that ϑ

(c)
n−i∗+i · ϑ

(d)
t,s = 0 for all i ∈ [max(0, i∗ − lt + 1),min(δ − lt, i

∗)], which implies that ϑ
(c)
n−k · ϑ

(d)
t,s = 0 for

all k ∈ [i∗ −min(δ − lt, i
∗), i∗ −max(0, i∗ − lt + 1)].

As a result, we have:

21

– If min(i∗, δ− lt) = i∗ and max(0, i∗− lt +1) = i∗− lt +1 then ϑ
(c)
n−k ·ϑ

(d)
t,s = 0 for all k ∈ [0, lt− 1] which

equivalent to ϑ
(b)
t,s = 0, and thus the independence of a · α′

σ∗
i∗
· αi∗

σ∗
i∗
· zn.

– If i∗ > δ − lt : In this case we must prove that ϑ
(c)
n−k · ϑ

(d)
t,s = 0 for any k ∈ [0, i∗ + lt − δ − 1]. Proof is

by contradiction. So, let us assume that there is k ∈ [0, i∗ + lt − δ − 1] such that ϑ
(c)

n−k
· ϑ(d)

t,s ̸= 0. So,
let us consider the monomials of degree n − k + lt − 1 in z of Equation (10). The coefficient of its left
member is

∑lt−1
k=0 ϑ

(c)

n−k+lt−1−k
· ϑ(d)

t,s · α′
σt,k
· αk

σt,k
and in the right member is 0, since the degree of the

right member is at most n+ δ − i∗ − 1. Or k ≤ i∗ + lt − δ − 1⇔ n− k + lt − 1 ≥ n− i∗ + δ. So,

lt−1∑
k=0

ϑ
(c)

n−k+lt−1−k
· ϑ(d)

t,s · α′
σt,k
· αs+k

σt,k
= 0.

which means that ϑ
(c)

n−k+lt−1−k
· ϑ(d)

t,s = 0 for all k ∈ [0, lt − 1] and in particular k = lt − 1. However, this
contradicts our assumption ϑ

(c)

n−k
· ϑ(d)

t,s ̸= 0. Thus, ϑ(c)
n−k · ϑ

(d)
t,s = 0 for any k ∈ [0, i∗ + lt − δ − 1].

– If i∗ < lt−1 : Here we must prove that ϑ(c)
n−k ·ϑ

(d)
t,s = 0 for any k ∈ [i∗+1, lt−1]. Proof is by contradiction.

We again assume that ∃k ∈ [i∗+1, lt−1] such that ϑ(c)

n−k
·ϑ(d)

t,s ̸= 0. Let us consider the monomials of degree
n−k in z of Equation (10). The coefficient of its left member is

∑lt−1
k=0 ϑ

(c)

n−k−k
·ϑ(d)

t,s ·α′
σt,k
·αk

σt,k
and in the

right member is 0, since the degree of the right member is at least n−i∗ and k > i∗+1⇔ n−k ≤ n−i∗−1.
Therefore we have:

lt−1∑
k=0

ϑ
(c)

n−k−k
· ϑ(d)

t,s · α′
σt,k
· αs+k

σt,k
= 0.

which means that ϑ(c)

n−k−k
·ϑ(d)

t,s = 0 for all k ∈ [0, lt−1] and in particular k = 0. However, this contradicts
our assumption ϑ

(c)

n−k
· ϑ(d)

t,s ̸= 0. Thus, ϑ(c)
n−k · ϑ

(d)
t,s = 0 for any k ∈ [i∗ + 1, lt − 1], which conclude the

proof.

A.3 Proof of Theorem 3

To prove Theorem 3, we need to show that the advantage of winning the game ExpS
4E_EDF

A (Definition 5) is
negligible. According to Theorem 2, despite the fact that an adversary A is able to adaptively query the oracle
Os to issue trapdoors for a finite set of patterns W, our construction is proved to be trace indistinguishable.
This means that, in ExpS

4E_EDF
A game, the adversary will not be able to get any information about the

ciphertext CT∗ of the trace T ∗ out of CT , T ∈ T (since T ∗ /∈ T).
So let us suppose that T ∗ = σT∗,0 · · ·σT∗,n−1, wt = σwt,0 · · ·σwt,l−1, and that A forges CT∗ using

the key K∗
s = {z∗, {α∗

σ, α
′∗
σ }σ∈Σ} in such a way that ∃i ∈ [0, |T | − 1] : i ∈ Test(CT∗

, tdwt
) and that

tdwt
= {Vj , vj}j=fs−l−2

j=0 . Again, two cases should be considered:

– Case 1: ϵ < nf − 1 and i ∈ Fϵ ∩ F ϵ

e(

l−1∏
j=0

CT∗
i+j , g̃

vi
Fϵ) = e(CT∗′

i, g̃
Vi

Fϵ)

By using the same transformation as in the proof of Theorem 1, we get

l−1∑
k=0

α′∗
σT∗,i+k

· (α∗
σT∗,i+k

· z∗)(iFϵ
+k) =

l−1∑
k=0

α′
σwt,k

· (ασwt,k
· z)(iFϵ

+k)

Since, T ∗ contains wt at index i, then ∀k ∈ [0, l − 1], σT∗,i+k = σwt,k The previous equation only holds
if z = z∗, α′∗

σwt,k
= α′

σwt,k
, and ασwt,k

= ασwt,k
. Since z

$←− Zp, ∀σ ∈ Σ : ασ
$←− Zp and α′

σ
$←− Zp, and

z, ασ, α
′
σ are not known to A, then the probability that the adversary A to win ExpS

4E_EDF
A is at most

1
p3 which is negligible.

– Case 2: i ∈ Fϵ\F ϵ: we use the same strategy as in case 1 to show that the advantage of A to win
ExpS

4E_EDF
A is at most 1

p3 which is negligible.

A.4 Proof of Theorem 4

Pattern indistinguishability to SP As defined in Definition 6, to show that S4E is pattern indistinguish-
able to SP, we need to show that the advantage of the adversaryA of winning the game ExpS

4E_P_IND_CPA
ASP ,β ,

is negligible. So, let T be the set of (unknown) trace ciphertexts observed in the step 2 of the game
ExpS

4E_P_IND_CPA
ASP ,β . Let us first note that since the adversary A will not have the ability to create valid

encrypted traces of his choice (as we showed in Theorem 3), A will not be able to brute force the trapdoors
by creating a lot of (random) traffics to guess the logic behind them. In addition, according to the Theorem
2, our construction is trace indistinguishable, this means that, since ∀T ∈ T , w∗

β /∈ T . A will not learn any

22

information out of the encrypted traces T , and therefore, the observation of T will not give A any advan-
tage in guessing β. As a result, the only solution left to A is to use the trapdoors provided by Os in the
query phase of ExpS

4E_P_IND_CPA
ASP ,β . In the following we will show that guessing the pattern w∗

β out of the
adaptively chosen patterns wi and their issued trapdoors tdwi

is hard under the i-GDH assumption.
Let fs be the size of fragment we will used in our construction. Suppose that the two challenge patterns

chosen by A are w∗
0 = σ∗

0,0 · · ·σ∗
0,l−1 and w∗

1 = σ∗
1,0 · · ·σ∗

1,l−1. Let G
(β)
0 denotes the ExpS

4E_P_IND_CPA
ASP ,β

game, we will use a sequence of games G(β)
j , j ∈ [0, fs−1] to show that A’s advantage is negligible. As in the

proof of Theorem 2, we rely on a standard hybrid argument in which an element of the challenge trapdoor is
randomized at each game hop. That is, for j ∈ [1, fs− 1], the game G

(β)
j modifies G

(β)
0 by changing, for all

i ∈ [0, j], the element Vi of the challenge trapdoor to a random element of G2. This means that the last game
Gβ

fs−1, the challenge trapdoor does not contain any useful information about w∗
β . As a result, the adversary

cannot distinguish whether it plays G
(0)
fs−1 or G

(1)
fs−1. As a result, similarly to Equation (1), we can bound

the advantage of A as following:

Adv
ExpS4E_P_IND_CPA

ASP ,β (λ) ≤
fs−1∑
j=1

|G(1)
j (λ)−G

(1)
j+1(λ)|+

fs−1∑
j=1

|G(0)
j+1(λ)−G

(0)
j (λ)|

According to the standard hybrid argument strategy we described before, in each Gβ
j+1, to answer A’s

challenge, the simulator uses the oracle Os to get a valid trapdoor tdw∗
β
= {g̃V ∗

s , g̃v
∗
s }fs−l−2

s=0 for w∗
β . It replaces

g̃V
∗
i , i ∈ [0, j] by random elements of G2 and sets g̃V

∗
j+1 as U . Then, if U = v∗j+1 ·

∑l−1
k=0 α

′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk

then the simulator is playing G
(β)
j+1. Otherwise, U is random and the simulator is playing the G

(β)
j . Then if

A is able to distinguish G
(β)
j and G

(β)
j+1 he/she will be able to win ExpS

4E_P_IND_CPA
ASP ,β with non negligible

advantage. According to Definition 3, in order to prove that A cannot distinguish G
(β)
j and G

(β)
j+1 under

i-GDH assumption, we need to prove that for f = v∗j+1 ·
∑l−1

k=0 α
′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk is independent of the sets
R,S, and T after q queries to Os.

First let us note that each query issued to Os and associated which the pattern wi = σi,0, · · ·σi,l−1, adds,
according to the Issue algorithm of our construction, {vt,s ·

∑l−1
k=0 α

′
σt,k
· αs+k

σt,k
· zk, vt,s}t=q,s=fs−1

t=1,s=0 to the set
S. Moreover, the challenge query adds {v∗s ·

∑l−1
k=0 α

′
σ∗
k
· αs+k

σ∗
k
· zk, v∗t,s′}

s=fs−1,s′=fs−1
s=0,s̸=j+1,s′=0 .

As we mentioned before, A will not be able to create a valid ciphertext for chosen trace, then the set R
will contain only the elements of G1 that are provided in params. Therefore R = {zi}i=fs−1

i=0 .
Consequently, S contains {vt,s ·

∑l−1
k=0 α

′
σt,k
·αs+k

σt,k
· zk, vt,s, v∗s ·

∑l−1
k=0 α

′
σ∗
k
·αs+k

σ∗
k
· zk, v∗s}

t=q,s′=s=fs−1
t=1,s=0,s′=0,s′ ̸=j+1,

R contains {zi}i=fs−1
i=0 , and T is empty.

Then to prove that Adv
ExpS4E_P_IND_CPA

ASP ,β (λ) is negligible, we should prove that A cannot distinguish
G

(β)
j and G

(β)
j+1 which is stated by the following Lemma.

Lemma 2. After performing q queries to Os, for j ∈ [0, fs − 1], β ∈ {0, 1}, |AdvG
(β)
j (λ) − AdvG

(β)
j+1(λ)| is

negligible under the i-GDH assumption where f = v∗j+1 ·
∑l−1

k=0 α
′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk, S = {vt,s ·
∑l−1

k=0 α
′
σt,k
·

αs+k
σt,k
· zk, vt,s, v∗s ·

∑l−1
k=0 α

′
σ∗
k
· αs+k

σ∗
k
· zk, v∗s}

t=q,s′=s=fs−1
t=1,s=0,s′=0,s′ ̸=j+1, R = {zi}i=fs−1

i=0 , and T = ∅.

Proof. According to Definition 2, the goal is to prove that one cannot find a combination of polynomials
from R,S and T such that

(v∗j+1 ·
l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk)(
∑
i

ua
i ·R(i)) =∑

i,j

ub
i,j ·R(i) · S(j) +

∑
t

u
(c)
t T (t)

(11)

First let us note that the factor v∗j+1 only appears in the last element of the set S. Since ∀t1, t2 ∈
[1, q],∀s1, s2, s3 ∈ [0, fs − 1], vt1,s1 ̸= vt2,s2 ̸= v∗s3 with overwhelming probability, then only the element
v∗j+1 of the last element of S will be involved in Equation 11. Moreover, since T is empty, the last sum of
the Equation 11 can be omitted. Let {ϑ(a)

i , ϑ
(b)
i }

i=fs−1
i=0 be constant scalars such that

(v∗j+1 ·
l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk)(
fs−1∑
i=0

ϑ
(a)
i · z

i) =

v∗j+1(

fs−1∑
i=0

ϑ
(b)
i · z

i)

(12)

So, in order to prove the independence of v∗j+1 ·
∑l−1

k=0 α
′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk we must prove that ∀i ∈ [0, fs −

1], ϑ
(a)
i = 0. For that reason, let us consider the monomial of degree j + 1 in ασ∗

β,k
. In the left member

of Equation 12, the coefficient is
∑l−1

k=0 α
′
σ∗
β,k
·
∑fs−1

i=0 ϑ
(a)
i · zi and in its right member the coefficient is 0.

Therefore, we have
l−1∑
k=0

α′
σ∗
β,k
·
fs−1∑
i=0

ϑ
(a)
i · z

i = 0

23

Since ∀σ ∈ Σ : α′
σ

$←− Zp and z
$←− Zp, then the last equation implies, with overwhelming probability, that

∀i ∈ [0, fs− 1], ϑ
(a)
i = 0 which concludes the proof.

Pattern indistinguishability to DO We use the same strategy as for showing S4E’s pattern indistin-
guishability to SP. So, let fs be the size of fragment we will used in our construction. Suppose that the
two challenge patterns chosen by A are w∗

0 = σ∗
0,0 · · ·σ∗

0,l−1 and w∗
1 = σ∗

1,0 · · ·σ∗
1,l−1. Let G

(β)
0 denotes the

ExpS
4E_P_IND_CPA

ADO,β game (Definition 7), we will use a sequence of games G
(β)
j , j ∈ [0, fs− 1] to show that

A’s advantage for winning ExpS
4E_P_IND_CPA

ADO,β is negligible. Again, we rely on a standard hybrid argument
in which an element of the challenge trapdoor is randomized at each game hop. That is, for j ∈ [1, fs− 1],
the game G

(β)
j modifies G

(β)
0 by changing, for all i ∈ [0, j], the element Vi of the challenge trapdoor to a

random element of G2.
This means that the last game Gβ

fs−1, the challenge trapdoor does not contain any useful information
about w∗

β . As a result, the adversary cannot distinguish whether it plays G
(0)
fs−1 or G

(1)
fs−1. As a result, we

can bound the advantage of A as following:

Adv
ExpS4E_P_IND_CPA

ADO,β (λ) ≤
fs−1∑
j=1

|G(1)
j (λ)−G

(1)
j+1(λ)|+

fs−1∑
j=1

|G(0)
j+1(λ)−G

(0)
j (λ)|

Then to prove that Adv
ExpS4E_P_IND_CPA

ADO,β (λ) is negligible, we should prove that A cannot distinguish G
(β)
j

and G
(β)
j+1.

According to the standard hybrid argument strategy, in each Gβ
j+1, to answer A’s challenge the simulator

uses the oracle Os to get a valid trapdoor tdw∗
β
= {g̃V ∗

s , g̃v
∗
s }fs−l−2

s=0 for w∗
β . It replaces g̃V

∗
i , i ∈ [0, j] by

random elements of G2 and sets g̃V ∗
j+1 as U . Then, if U = v∗j+1 ·

∑l−1
k=0 α

′
σ∗
β,k
·αj+k+1

σ∗
β,k

·zk then the simulator is

playing G
(β)
j+1. Otherwise, U is random and the simulator is playing the G

(β)
j . Then if A is able to distinguish

G
(β)
j and G

(β)
j+1 he/she will be able to win ExpS

4E_P_IND_CPA
ADO,β with non negligible advantage. According to

Definition 3, in order to prove that A cannot distinguish G
(β)
j and G

(β)
j+1 under i-GDH assumption, we need

to prove that for f = v∗j+1 ·
∑l−1

k=0 α
′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk is independent of the sets R,S, and T after q queries to
Os.

Let us now focus on the content of the sets R,S and T . Since the adversary is playing the role of
DO in the Issue algorithm, he will not have access to {g̃vs}fs−l−2

s=0 (The latter will be used only be-
tween PP and SP). Therefore, each issue query to Os associated with the pattern wi = σi,0, · · ·σi,l−1,
adds, according to the Issue algorithm of S4E, {vt,s ·

∑l−1
k=0 α

′
σt,k
· αs+k

σt,k
· zk}t=q,s=fs−1

t=1,s=0 to the set S. More-
over, the challenge query adds {v∗s ·

∑l−1
k=0 α

′
σ∗
β,k
· αs+k

σ∗
β,k
· zk}s=fs−1

s=0,s ̸=j+1. In addition, since A will have ac-
cess to z, ασ, and α′

σ (the elements of Ks), for all σ ∈ Σ, he/she can compute any element of the set
{gzi

, gα
′
σ·z

i

, gα
′
σ·α

i′
σ ·zi

, g̃z
i

, g̃α
′
σ·z

i

, g̃α
′
σ·α

i′
σ ·zi}i=fs−1,i′=fs−1

i=0,i′=0,σ∈Σ . Therefore, S contains {vt,s ·
∑l−1

k=0 α
′
σt,k
· αs+k

σt,k
·

zk, v∗s′ ·
∑l−1

k=0 α
′
σ∗
β,k
· αs′+k

σ∗
β,k
· zk, zs, α′

σ · zs, α′
σ · αi

σ · zs}
t=q,s′=s=fs−1,i=fs−1
t=1,s=0,s′=0,s′ ̸=j+1,i=0, R contains {zi, α′

σ · zi, α′
σ · αi′

σ ·

zi}i=i′=fs−1
i=i′=0 , and T is empty.

Lemma 3. After performing q queries to Os, for j ∈ [0, fs − 1], β ∈ {0, 1}, |AdvG
(β)
j (λ) − AdvG

(β)
j+1(λ)| is

negligible under the i-GDH assumption where f = v∗j+1 ·
∑l−1

k=0 α
′
σ∗
β,k
·αj+k+1

σ∗
β,k

·zk, S = {vt,s ·
∑l−1

k=0 α
′
σt,k
·αs+k

σt,k
·

zk, v∗s′ ·
∑l−1

k=0 α
′
σ∗
β,k
·αs′+k

σ∗
β,k
·zk, zs, α′

σ ·zs, α′
σ ·αi

σ ·zs}
t=q,s′=s=fs−1,i=fs−1
t=1,s=0,s′=0,s′ ̸=j+1,i=0, R = {zi, α′

σ ·zi, α′
σ ·αi′

σ ·zi}
i=i′=fs−1
i=i′=0 ,

and T = ∅.

Proof. To prove the previous Lemma, according to Definition 2, we should prove that no combination of
polynomials from R, S, and T can be found such that the following equation holds.

(v∗j+1 ·
l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk)(
∑
i

ua
i ·R(i)) =∑

i,j

ub
i,j ·R(i) · S(j) +

∑
t

u
(c)
t T (t)

(13)

Fist, since T is empty, the last sum of Equation 13 can be omitted. Second, since ∀s ∈ [0, fs],∀t ∈ [1, q] :

vt,s
$←− Zp, then ∀s ∈ [0, fs],∀t ∈ [1, q] : vt,s ̸= v∗j+1 with overwhelming probability. Therefore the factor v∗j+1

will not appear in any element of R and S. As a result the first sum of the right side of Equation (13) can
also be omitted. We then get

(v∗j+1 ·
l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk)(
∑
i

ua
i ·R(i)) = 0 (14)

24

Let {ϑ(a)
s , ϑ

(b)
s,σ, ϑ

(c)
s,σ,i}

s=i=fs−1
i=s=0,σ∈Σ be constants such that

(
v∗j+1 ·

l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk
)
×

(fs−1∑
s=0

ϑ(a)
s · zs +

fs−1∑
s=0

∑
σ∈Σ

ϑ(b)
s,σ · α′

σ · zs +
fs−1∑
s=0

fs−1∑
i=0

∑
σ∈Σ

ϑ
(c)
s,σ,i · α

′
σ · αi

σ · zs
)
= 0

To conclude the proof, we should show that ϑ
(a)
s = ϑ

(b)
s,σ = ϑ

(c)
s,σ,i for all s, i ∈ [0, fs− 1] and σ ∈ Σ.

Since v∗j+1
$←− Zp, z

$←− Zp and α′
σ

$←− Zp, ασ
$←− Zp for all σ ∈ Σ, v∗j+1 ·

∑l−1
k=0 α

′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk ̸= 0 with
overwhelming probability which means that

fs−1∑
s=0

ϑ(a)
s · zs +

fs−1∑
s=0

∑
σ∈Σ

ϑ(b)
s,σ · α′

σ · zs +
fs−1∑
s=0

fs−1∑
i=0

∑
σ∈Σ

ϑ
(c)
s,σ,i · α

′
σ · αi

σ · zs = 0

We now consider each member of the previous equation as a polynomial in α′
σ and regroup the different

monomials according to their degree in α′
σ to get

(i)
fs−1∑
s=0

ϑ
(a)
s · zs = 0

(ii)
fs−1∑
s=0

∑
σ∈Σ

ϑ
(b)
s,σ · α′

σ · zs +
fs−1∑
s=0

fs−1∑
i=0

∑
σ∈Σ

ϑ
(c)
s,σ,i · α′

σ · αi
σ · zs = 0

From Equation (i), and based on the fact that z
$←− Zp, we can deduce that ∀s ∈ [0, fs − 1] : ϑ

(a)
s = 0 with

overwhelming probability.
Now let as consider Equation (ii) as a polynomial in ασ. We regroup the different monomials according

to their degree in ασ to get

(a)
fs−1∑
s=0

∑
σ∈Σ

ϑ
(b)
s,σ · α′

σ · zs = 0

(b)
fs−1∑
s=0

fs−1∑
i=0

∑
σ∈Σ

ϑ
(c)
s,σ,i · α′

σ · αi
σ · zs = 0

Since z $←− Zp and ∀σ ∈ Σ : α′
σ

$←− Zp and ασ
$←− Zp, then with overwhelming probability, Equation (a) implies

that ∀s ∈ [0, fs− 1],∀σ ∈ Σ : ϑ
(b)
s,σ = 0 while Equation (b) implies that ∀s, i ∈ [0, fs− 1],∀σ ∈ Σ : ϑ

(c)
s,σ,i = 0

which conclude the proof.

A.5 Proof of Theorem 5

We can use the same strategy as in the proof of Theorem 1 (Section A.1) to prove that the AS3E construction
is correct.

A.6 Proof of Theorem 6

To prove the previous theorem, we use the same strategy as in the proof of Theorem 2. That is, we use a
sequence of games G

(β)
j for j ∈ [1, n] where Gβ

0 represents the game ExpAS3E_D_IND_CPA
A,β as defined in

Definition 9. The idea is to show that the advantage of the adversary A for winning ExpAS3E_D_IND_CPA
A,β

(i.e., Gβ
0) is negligible.

By supposing that T0 = σ∗
0,1 · · ·σ∗

0,m−1 and T1 = σ∗
1,1 · · ·σ∗

1,m−1 are the two traces chosen by A in
ExpAS3E_D_IND_CPA

A,β (Definition 9) and by following the same reasoning as in the proof of Theorem 2, we
prove in the following Lemma that for all j ∈ [0, n− 1], for all β ∈ {0, 1}, |Pr[Gβ

j (λ) = 1]−Pr[Gβ
j+1(λ) = 1]|

is negligible, which prove that AdvExpAS3E_D_IND_CPA
A,β (λ) is negligible.

we are mainly considering the case in which j < |I̸=|, since otherwise, I(j)̸= = I(j+1)
̸= . This means that

Gβ
j = Gβ

j+1 are exactly the same and there is nothing to prove.
Let i∗ be the (j + 1)st index in I ̸=, ϵ ∈ [0,m/fs], gi,F = gak·zi , and gi,F = gak·zi . From the s-GDH

challenge containing {gzi

, gα
′
σ·(ασ·z)i , gak·zi

, gak·zi}i=2n−1
i=0,σ∈Σ the simulator starts by generating the public key

pk by defining gz
i

= gz
n−i∗+i (i.e., gzi∗

= gz
n), gα′

σ·(ασ·z)i = gα
′
σ·(ασ·z)n−i∗+i . Then it defines gi,F and gi,F

according to the following three cases:

– C1.1: i∗ ∈ F ϵ−1: The simulator defines gi,F = gaϵ−1·z
n+i

Fϵ−1
−i∗

Fϵ−1

– C1.2: i∗ ∈ F ϵ: The simulator defines gi,F = gaϵ·z
n+i

Fϵ
−i∗

Fϵ

– C1.3: otherwise (i∗ ∈ Fϵ): The simulator defines gi,F = gaϵ·z
n+iFϵ

−i∗Fϵ

Once the simulator receive an issue query for the pattern w = σw,0, · · · , σw,lw−1, it start by checking
that w satisfies the condition defined in the step 3a of ExpAS3E_D_IND_CPA

A,β (Definition 9). Then, it
uses the simulator Os to generate a valid trapdoor for w. One can easily check at this level that ∀j ∈

25

[max(0, i∗ + lp − n),min(i∗, lp − 1)] : σw,0, · · · , σw, lw − 1 ̸= σ∗
β,i∗−j · · ·σ∗

β,i∗−j+lp−1. If the previous formula
is not satisfied, we end up with

σ∗
1−β,i∗−j · · ·σ∗

1−β,i∗−j+lp−1 = σw,0, · · · , σw,lw−1 ̸= σ∗
β,i∗−j · · ·σ∗

β,i∗−j+lp−1

which is in contradiction with i∗ ∈ I ̸=.
The simulator then creates the challenge C = {C ′

i, Ci, C ′
i, Ci}i=m−1

i=0 according to the following three
cases:

– C2.1: i ∈ Fϵ ∩ F ϵ−1:
• C ′

i = gaϵz
n+iFϵ

−i∗Fϵ and C ′
i = gaϵ−1z

n+i
Fϵ−1

−i∗
Fϵ−1

• ∀i ∈ I(j) : Ci, Ci
$←− G1

• ∀i /∈ I(j+1) the simulator uses the oracle Or to get valid Ci and Ci and sets U to be in {Ci∗ , Ci∗}
– C2.2: i ∈ Fϵ ∩ F ϵ:
• C ′

i = gaϵz
n+iFϵ

−i∗Fϵ and C ′
i = gaϵz

n+i
Fϵ

−i∗
Fϵ

• ∀i ∈ I(j) : Ci, Ci
$←− G1

• ∀i /∈ I(j+1) the simulator uses the oracle Or to get valid Ci and Ci and sets U to be in {Ci∗ , Ci∗}
– C2.3: i ∈ Fϵ\(F ϵ−1 ∪ F ϵ):
• C ′

i = gaϵz
n+iFϵ

−i∗Fϵ and C ′
i = ∅

• ∀i ∈ I(j) : Ci
$←− G1 and Ci = ∅

• ∀i /∈ I(j+1) the simulator uses the oracle Or to get valid Ci and sets U = Ci∗

Then, by considering ϵ∗ = i∗/fs if

U =

Ci∗ = g
aϵ∗−1·α′

σi∗
·α

i∗
Fϵ∗−1

σi∗ ·zn

or
Ci∗ = g

aϵ∗ ·α′
σi∗

·α
i∗Fϵ∗
σi∗ ·zn

 if C2.1

Ci∗ = g
aϵ∗ ·α′

σi∗
·α

i∗
Fϵ∗

σi∗ ·zn

or
Ci∗ = g

aϵ∗ ·α′
σi∗

α
i∗Fϵ∗
σi∗ ·zn

 if C2.2

Ci∗ = g
aϵ∗ ·α′

σi∗
·α

i∗Fϵ∗
σi∗ ·zn

if C2.3

then the simulator is playing the game G
(β)
j+1. Otherwise U is random and the simulator is playing G

(β)
j .

Then an adversary A able to distinguish G
(β)
j and G

(β)
j+1 will be able to win ExpAS3E_D_IND_CPA

A,β with non
negligible advantage.

Let us now focus on the content of the sets R, S, and T . Each pattern wt = σt,0, · · · , σt,lt−1 submitted
to Os will add the polynomials

∑fs−lt−1
s=0 vt,s ·

∑lt−1
k=0 α′

σt,k
(ασt,k

· z)k+s and
∑fs−lt−1

s=0 vt,s to S. In addition,
a query to the oracle Or will add ∀i ∈ [0,m− 1]\{i∗}

aϵ−1 · α′
σ∗
i
· α

iFϵ−1

σ∗
i
· zn−i∗+i if i ∈ Fϵ ∩ F ϵ−1

aϵ · α′
σ∗
i
· αiFϵ

σ∗
i
· zn−i∗+i if i ∈ Fϵ ∩ F ϵ

aϵ · α′
σ∗
i
· αiFϵ

σ∗
i
· zn−i∗+i if i ∈ Fϵ

(15)

to R.
Therefore, initially, R contains {zi, aϵ · zi, aϵ · zi}i=2n−1,k=nf

i=0,k=0 , S contains {r ·α′
σ ·αi+j

σ · zi}i=fs−1,j=pmax−1
i=0,j=0,σ∈Σ

(the elements of Kt) , and T is empty.
Then an adversary A able to distinguish G

(β)
j and G

(β)
j+1 will be able to win ExpAS3E_D_IND_CPA

A,β with
non negligible advantage. Hence, in order to prove that A cannot distinguish G

(β)
j and G

(β)
j+1, we need to

prove that for all f ∈ {aϵ∗−1 · α′
σ∗ · αi∗

σ∗ · zn, aϵ∗ · α′
σ∗ · αi∗

σ∗ · zn, aϵ∗ · α′
σ∗ · αi∗

σ∗ · zn}, f is independent of the
sets R,S, and T after q queries to Os and 1 query to Or which has already been proved by Lemma 1.

A.7 Proof of Theorem 7

According to Definition 11, ASP = (Af ,Ag) is supposed to have access to the public parameters params and
the public key pk = {gzi

, gα
′
σ·(ασ·z)i}i=fs−1

i=0,σ∈Σ . Following a high min-entropy distribution (Definition 10), the
part Af of the adversary ASP chooses two patterns w∗

0 and w∗
1 . The challenger choose randomly β ∈ {0, 1}

and creates tdw∗
β
= {g̃vi , g̃Vi}i=fs−l−2

i=0 with Vi = vi ·
∑l−1

k=0 α
′
σw∗

β
,k
· αk+i

σw∗
β
,k
· zk and k is number of symbols in

w∗
β . The trapdoor tdw∗

β
is given to Ag. We require Af and Ag not to collude, since that would allow them

to trivially break the rule indistinguishability property.
Ag is allowed to create any arbitrary chosen encrypted traffic using any pattern w. If the encrypted

traffic contains w∗
i , then Ag can use the bilinear map e to easily determine whether β = 1 or β = 0, however,

this can happen only with negligible probability equal to 2−µ(λ), with µ(λ) ∈ ω(log(λ)), since the pattern
set has high-min entropy. Moreover, according to Theorem 6, AS3E is trace indistinguishable meaning that
since ∀T ∈ T , w∗

β /∈ T , A will not learn any information out of the encrypted traces T , and therefore, the
observation of T will not give ASP any advantage in guessing β. Thus, the adversary Ag has to distinguish
between tdw∗

β
, β ∈ {0, 1} based on the content of the public key pk, the issued trapdoors tdw, w ∈ P (Query

phase of Definition 11). We show in the following that its hard under i-GDH assumption for Ag to distinguish
tdw∗

0
and tdw∗

1
.

26

We use the same strategy as in the proof of Theorem 4. Let G
(β)
0 denotes the ExpAS3E_P_IND

ASP=(Af ,Ag),β
game

(Definition 11), we will use a sequence of games G(β)
j , j ∈ [0, fs−1] to show that Ag’s advantage fro winning

ExpAS3E_P_IND
ASP=(Af ,Ag),β

is negligible. As in the proof of Theorem 4, we rely on a standard hybrid argument in
which an element of the challenge trapdoor is randomized at each game hop. That is, for j ∈ [1, fs− 1], the
game G

(β)
j modifies G

(β)
0 by changing, for all i ∈ [0, j], the element Vi of the challenge trapdoor to a random

element of G2. This means that the last game Gβ
fs−1, the challenge trapdoor does not contain any useful

information about w∗
β . As a result, the adversary cannot distinguish whether it plays G

(0)
fs−1 or G

(1)
fs−1. As a

result, we can bound the advantage of Ag as following:

Adv
ExpAS3E_P_IND

ASP =(Af ,Ag),β (λ) ≤
fs−1∑
j=1

|G(1)
j (λ)−G

(1)
j+1(λ)|+

fs−1∑
j=1

|G(0)
j+1(λ)−G

(0)
j (λ)|

Then to prove that Adv
ExpAS3E_P_IND

ASP =(Af ,Ag),β (λ) is negligible, we should prove that A cannot distinguish G
(β)
j

and G
(β)
j+1.

Let us consider fs to be the size of the fragment used by the AS3E construction, and R, S, and T to be
the three polynomial sets that are used in Definition 2. Let us suppose that the set of patterns W issued by
ASP to Os contains nw patterns, and that the set T contains nt traffics. According to the Issue algorithm of
AS3E, each issue query for the pattern wi = σi,0 · · ·σi,l−1 adds {vi,s ·

∑li−1
k=0 α′

σi,k
·αs+k

σi,k
·zk, vi,s}i=q,s=fs−li−1

i=0,s=0

to the set S while the challenge query adds {v∗s ·
∑l−1

k=0 α
′
σ∗
k
· αs+k

σ∗
k
· zk, v∗s′}

s=fs−1,s′=fs−1
s=0,s ̸=j+1,s′=0 . The set R will

contain the elements of G1 that are provided in the public key pk. Thus R = {zi, α′
σ · (ασ · z)i}i=fs−1

i=0,σ∈Σ .
Therefore, to prove that |AdvG

(β)
j (λ)−AdvG

(β)
j+1(λ)| is negligible under the i-GDH assumption, we should

prove that one cannot find a combination of polynomials from R,S and T such that

(v∗j+1 ·
l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk)(
∑
i

ϑa
i ·R(i)) =∑

i,j

ϑb
i,j ·R(i) · S(j) +

∑
t

ϑ
(c)
t T (t)

(16)

with constants ϑa
i and ϑa

i,j are constants.
First, we remark that the last sum in equation 16 can be remove since T is empty. Let {ϑ(a), ϑ(b), ϑ(c), ϑ(d), ϑ(e), ϑ(f), ϑ(g), ϑ(h)}

v∗j+1

l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk
(fs−1∑

s=0

(ϑ(a)
s · zs +

∑
σ∈Σ

ϑ(b)
s,σ α′

σ · (ασ · z)s)
)
=

(q∑
t=0

fs−1∑
s=0

(ϑ
(c)
t,s · vt,s

li−1∑
k=0

α′
σt,s+k

· αs+k
σt,s+k

· zk) + ϑ
(d)
t,s · vt,s

)
·

(fs−1∑
i=0

ϑ
(e)
i · z

i +
∑
σ∈Σ

ϑ
(f)
i,σ · α

′
σ · (ασ · z)i

)
+

(fs−1∑
s=0,s̸=j+1

(ϑ(g)
s · v∗s

li−1∑
k=0

α′
σ∗
s+k
· αs+k

σ∗
s+k
· zk) +

fs−1∑
s=0

ϑ(h)
s · v∗s

)
·

(fs−1∑
i=0

ϑ
(a)
s,i · z

i +
∑
σ∈Σ

ϑ
(b)
s,i,σ · α

′
σ · (ασ · z)i

)
our goal is then to show that (i) ∀s ∈ [0, fs− 1] : ϑ

(a)
s = 0 and (ii) ∀s ∈ [0, fs− 1],∀σ ∈ Σ : ϑ

(b)
s,σ = 0

Now, let us consider the previous each member of the previous equation as a polynomial in the variable
v∗j+1. we group the different monomials according to their degree in v∗j+1.

v∗j+1

l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk(
fs−1∑
s=0

(ϑ(a)
s · zs +

∑
σ∈Σ

ϑ(b)
s,σ α′

σ · (ασ · z)s)) =

ϑ
(h)
j+1 · v

∗
j+1 · (

fs−1∑
i=0

ϑ
(a)
i · z

i +
∑
σ∈Σ

ϑ
(b)
i,σ · α

′
σ · (ασ · z)i)

We now consider each member in the previous equation as a polynomial in the variable α′. Then, we
group the different monomials according to their degree in α′.

1. ϑ
(h)
j+1 · v∗j+1 ·

fs−1∑
i=0

ϑ
(a)
i · zi = 0

2. v∗j+1

l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk ·
fs−1∑
s=0

ϑ
(a)
s · zs = ϑ

(h)
j+1 · v∗j+1 ·

fs−1∑
i=0

∑
σ∈Σ

ϑ
(b)
i,σ · α′

σ · (ασ · z)i

3. v∗j+1

l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk ·
fs−1∑
s=0

∑
σ∈Σ

ϑ
(b)
s,σ α′

σ · (ασ · z)s = 0

27

From Equation (3.), since α′
σ, ασ, z, v

∗
j+1 are random scalars (∀σ ∈ Σ), then v∗j+1

l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk ̸= 0

and
fs−1∑
s=0

∑
σ∈Σ

ϑ
(b)
s,σ α′

σ · (ασ · z)s = 0 with overwhelming probability. From the latter we can deduce that

∀σ ∈ Σ, ∀s ∈ [0, fs− 1], ϑ
(b)
s,σ = 0 which proved (ii).

Now, let us focus on Equation (2.). Since we already proved (ii), The right size of equation (2.) is equal
to 0 which gives

v∗j+1

l−1∑
k=0

α′
σ∗
β,k
· αj+k+1

σ∗
β,k

· zk ·
fs−1∑
s=0

ϑ(a)
s · zs = 0

again, since α′
σ, ασ, z, v

∗
j+1 are random scalars (∀σ ∈ Σ), then v∗j+1

l−1∑
k=0

α′
σ∗
β,k
·αj+k+1

σ∗
β,k

·zk ̸= 0 and
fs−1∑
s=0

ϑ
(a)
s ·zs =

0 with overwhelming probability. From the latter, we can deduce that ∀s ∈ [0, fs − 1] : ϑ
(a)
s = 0 with

overwhelming probability which prove (i) and conclude the proof.

A.8 Proof of Theorem 8

First, let us note that the two games ExpS
4E_P_IND_CPA

ADO,β (Definition 7) and ExpAS3E_P_IND_CPA
AR,β (Def-

inition 12) are the very similar 7. Second, the adversaries in ExpS
4E_P_IND_CPA

ADO,β (i.e, DO in S4E) and in
ExpAS3E_P_IND_CPA

AR,β (i.e., the receiver entity in AS3E) have access to the same information (the elements
of Ks, Kp, and Kt)8. Therefore, we can use the same proof (Section A.4) to prove Theorem 8.

7 Except that in step 1 of ExpAS3E_P_IND_CPA
AR,β , the challenger additionally generates Kp

8 The DO can compute all elements of Kp

28

