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Abstract. The golden collision problem asks us to find a single, special
collision among the outputs of a pseudorandom function. This generalizes
meet-in-the-middle problems, and is thus applicable in many contexts,
such as cryptanalysis of the NIST post-quantum candidate SIKE.
The main quantum algorithms for this problem are memory-intensive,
and the costs of quantum memory may be very high. The quantum cir-
cuit model implies a linear cost for random access, which annihilates
the exponential advantage of the previous quantum collision-finding al-
gorithms over Grover’s algorithm or classical van Oorschot-Wiener.
Assuming that quantum memory is costly to access but free to maintain,
we provide new quantum algorithms for the golden collision problem with
high memory requirements but low gate costs. Under the assumption of
a two-dimensional connectivity layout, we provide better quantum par-
allelization methods for generic and golden collision finding. This low-
ers the quantum security of the golden collision and meet-in-the-middle
problems, including SIKE.

Keywords: Quantum cryptanalysis, golden collision search, quantum walks,
SIKE.

1 Introduction

Quantum computers have a significant advantage in attacking some widely-used
public-key cryptosytems. In light of the continuing progress on quantum archi-
tectures, the National Institute of Standards and Technology (NIST) launched
a standardization process for new primitives [NIS16], which is still ongoing.

The new cryptosytems proposed rely on generic problems that are believed
to be hard for quantum computers. That is, contrary to the discrete logarithm
problem in abelian groups, or to the factorization of integers, they should not
admit polynomial-time quantum algorithms. However, an exponential algorithm
could be relevant if the non-asymptotic cost is low enough, so these attacks still
require careful analysis.

In this paper, we study quantum algorithms for the golden collision search
problem. In the context of the NIST call, these algorithms can be applied in a
generic key-recovery of the NIST candidate SIKE (non-commutative supersingu-
lar isogeny based key encapsulation) [JAC+17,ACVCD+,CLN+]. They can also
be used in certain lattice attacks [APS15].



Golden Collision Search. We have access to a function h : X → X that has
collisions, i.e. pairs of inputs with the same output value. Collisions happen
randomly, but (at most) one of them is golden and we wish to retrieve it.

Classically, the most time-efficient method is to retrieve a whole lookup table
for h, sort by the output value and look at all collisions. However, this incurs
a massive cost in random-access memory. A study with limited memory was
done in [ACVCD+]. The authors concluded that the most efficient method was
van Oorschot-Wiener’s distinguished point technique [vOW99]. In the context
of SIKE, they noticed that the proposed parameters offered even more security
when accounting for memory limits.

Quantum Circuits. In this work, we study quantum algorithms written in the
quantum circuit model, which abstracts out the physical architecture. In a quan-
tum circuit, a variety of basic quantum gates are applied to (logical) qubits, i.e.
two-level quantum systems. The time complexity in this model is thought of as
the number of operations applied, that is, the number of quantum gates.

Then, the best quantum algorithm for golden collision search is Ambainis’
algorithm [Amb07], which would find the collision in time Õ(N2/3) if |X| = N ,
matching a query lower bound of O(N2/3) [AS04]. However, this algorithm suf-
fers from a heavy use of quantum random access to massive amounts of quantum
memory, and does not fare well under depth constraints.

In this paper, we consider that a memory access to R qubit registers requires
Θ(R) operations or quantum gates. This means simply going back to the baseline
circuit model, as done e.g. in [BBG+13] in the context of distributed quantum
algorithms, and previously in [JS19] for a study of known quantum algorithms
for golden collision search. This makes all memory accesses very costly. With
this restriction, we design new quantum algorithms for golden collision search.

Metrics. We consider the two metrics of gate count (G) and depth-width product
(DW ) emphasized in [JS19]. The first one assumes that the identity gate costs
0, meaning we can leave as many qubits idle for as long as we want. This hap-
pens e.g. if the decoherence time of individual qubits, when no gates are applied,
can be prolonged to arbitrary lengths at a fixed cost. The second one considers
instead that the identity gate costs 1. This happens e.g. if error-correction must
be performed at each time step, on all qubits. In addition, since we consider
quantum circuits at a large scale, we take into account locality constraints. In
particular, we consider the model of a two-dimensional grid with local interac-
tions only. We also give costs for non-local models, mainly for comparison.

Contributions. Our first objective is to obtain the best gate count for this prob-
lem. We do that in Section 3. We first rewrite van Oorschot-Wiener collision
search in the random walk framework, and obtain a quantum analogue in the
MNRS quantum walk framework, that uses iterates of the function h. If h is
a single gate evaluated in time 1, its gate and time complexity is of O(N6/7).
Next, we give another algorithm that does not iterate h but searches for distin-
guished points with Grover’s search. Surprisingly, these two different methods
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achieve the exact same complexity; we explain why this is the case. This requires
a more thorough analysis of the random functions that govern the run-time of
van Oorschot-Wiener collision search, which may be of independent interest.

In Section 4, we give a parallel version of our prefix-based walk, and a parallel
multi-Grover search algorithm that improves over [BBG+13]. This gives the G-
cost and DW -cost of our algorithms under depth constraints, improving on the
counts of [JS19].

NIST defined five security levels relative to the hardness of breaking sym-
metric cryptographic schemes, possibly with some depth limitation. Three of
these levels compare to a Grover search, which is well-understood. Two of them
compare to a collision search (this time, not golden). We extend our study of
SIKE parameters to these two security levels. For this purpose, we analyze the
collision search algorithm of [CNS17], which gives the lowest gate count and
depth-width product when memory accesses are of linear cost. In Section 5, we
provide its best parallelization to date. Finally, in Section 6, we show that the
SIKE parameters have lower quantum security than claimed in [JS19], but they
still meet the NIST security levels claimed in [JAC+17].

2 Preliminaries

2.1 Computational model

For classical computers, we imagine a parallel random access machine with a
shared memory. Costs are in RAM operations, with access to the memory having
unit cost.

We write quantum algorithms in the standard quantum circuit model (see
e.g. [NC02]). This abstract model of computation underlies most of the physical
architectures currently under study. In order to give meaningful cost estimates
of quantum circuits, we use the memory peripheral model of [JS19]. This means
we model the quantum computer as a peripheral of a classical parallel random
access machine, which acts on the quantum computer using the Clifford+T gate
set. We use then two cost metrics depending on physical assumptions:

– The G-cost of an algorithm is the number of gates, each of which costs
one RAM operation to the classical controller. Here, we assume that error
correction is passive, meaning that once a qubit is in a particular state, we
incur no cost to maintain that state indefinitely.

– TheDW -cost is the depth-width product of the circuit. Here, error correction
is active. At each time step, the classical controller must act on each qubit
of the circuit, even if the qubit was idle at this point.

Connectivity. The standard quantum circuit model assumes no connectivity
restriction on the qubits. Two-qubit gates can be applied on any pair of qubits
without overhead. In Section 3, we do not refer to the connectivity, and we
show in Section 3.6 that our best gate counts can be obtained with a two-
dimensional grid mesh with no increase in gate cost or depth. In Section 4, this
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layout plays a role, so we consider the two following alternatives: either the grid,
or no locality issues. It is shown in [BBG+13] that the general quantum circuit
model can be emulated by any network allowing sufficient connectivity, such as
a hypercube, with only polynomial overhead, but a two-dimensional grid does
not have sufficient connectivity for this.

Quantum Memory Models. Many quantum algorithms require the “qRAM” model,
in which the access in superposition to the elements in memory is a cheap op-
eration. But qRAM is not a feature of the quantum circuit model, and it must
come with a specific physical architecture whose realizability is unclear at the
moment3. This model can be restricted to quantum-accessible classical memory
(QRACM, see [Kup13, Section 2]), while the best time complexities for golden
collision search [Amb07,Tan09] require QRAQM, that is, the states in the mem-
ory accessed are also quantum.

Both QRAQM and QRACM can be constructed in the quantum circuit model
with Clifford+T gates with no special hardware assumptions. The caveat is that,
for R bits of memory, both will require Θ(R) gates for each memory access.
QRAQM will necessarily require R qubits, while QRACM could sequentially
simulate the access with poly(R) qubits, and R classical memory.

In this work we use only the standard quantum circuit model, so each memory
access incurs this large gate cost. In other words, we assume a world in which
quantum circuits are scalable, but qRAM is not cheap.

2.2 Problem Description

We focus on the golden collision problem (Problem 2.1). Below we recall that
an algorithm for golden collision search can easily be adapted to single colli-
sion search (Problem 2.2), element distinctness (Problem 2.3) and claw-finding
(Problem 2.4).

Problem 2.1 (Golden collision finding). Let h : X → X be a function and g :
X ×X → {0, 1} be a check. The function h has collisions: pairs x, y ∈ X such
that h(x) = h(y). The function g takes a collision as input, and outputs 1 for a
certain set of O(1) collisions, which we call the golden collisions. Find a golden
collision.

In many instances there will be a unique golden collision. We assume h is
a pseudo-random function. If not, we can pick a random function f : X → X
and compose it with h. If h is a permutation, the composition will be a random
function, but otherwise it will not. However, we assume that h is sufficiently
similar to a permutation that f ◦ h will be pseudo-random. Practically, this
means we assume that h does not have a serious restriction on its outputs.

Problem 2.2 (Single collision). Given access to a random function H : {0, 1}n →
{0, 1}m where m ≥ 2n, find a collision of H if it exists.
3 See [GLM08,AGJO+15] for the “bucket-brigade” architecture, which still requires
Θ(R) gates for a memory access to R bits of memory.
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We can choose a random function f : {0, 1}m → {0, 1}n, and then f ◦ H :
{0, 1}n → {0, 1}n acts like the function h in the golden collision finding problem.
Our choice of f is likely to produce many extra collisions, so we check each
collision under H to see if it collides in {0, 1}m; this acts as the check function
g.

Problem 2.3 (Element distinctness). Given h : {0, 1}n → {0, 1}n, determine if h
is a permutation or not.

This reduces to golden collision finding by composing with a random function;
the check function is to apply just h and check for the true collision.

Problem 2.4 (Claw-finding). Given f : {0, 1}n → {0, 1}m and g : {0, 1}n →
{0, 1}m, where we assume m ≥ 2n, find a claw : a pair x, y such that f(x) = g(y).

If we construct a random function from {0, 1}m to {0, 1} × {0, 1}n, then we
can act on {0, 1} × {0, 1}n with f and g by sending (0, x) to f(x) and (1, x)
to g(x). The claw becomes a golden collision for the concatenation of these
two functions, where we check collisions by checking if they are caused because
f(x) = g(y) or by our random function.

Notations. We define N = 2n, the size of the domain and range of h. We
denote the cost of evaluating h by H and the cost of g by G. In cases where we
need to distinguish between the gates, depth, or width of evaluating h, we will
use subscripts of G, D, and W , respectively. We will use a capital R to denote
memory size. Typically this will refer to words of memory, such as n-bit strings
that represent the inputs or outputs of h.

Previous algorithms. We assume that the functions h and g can be evaluated
in poly(n) time. Classically, the query complexity is Θ(N), since one must at
least query every element to find the golden collision. One algorithm to achieve
this is to construct a table for all x, h(x), sort the table by the value of h(x),
and check each collision.

The most prominent practical algorithm for golden collision finding is due
to van Oorschot and Wiener [vOW99]. Their method is simple and parallelizes
perfectly. With R elements of memory, it requires O(N3/2/R1/2) operations,
which is asymptotically optimal for R = N .

Quantum algorithms for the problem started with Buhrman et al. [BDH+05],
who give an algorithm in Õ(N3/4) quantum time and O(N1/2) memory for
claw-finding and element distinctness. Ambainis [Amb07] gives a quantum walk
algorithm with Õ(N2/3) quantum time, with a query complexity of O(N2/3),
which is optimal [AS04]. Tani provided a claw-finding version [Tan09].

However, Buhrman et al.’s, Ambainis’ and Tani’s algorithms require respec-
tively O(N1/2) and O(N2/3) qubits with cheap quantum random access. If ran-
dom access to a memory of size R requires Θ(R) gates, then the gate complexity
of these algorithms is actually Õ(N4/3), although they can be reparameterized
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to reach Õ(N). Grover’s algorithm also costs Õ(N) gates. A careful analysis
shows that, if evaluating the function h costs H gates, Tani’s algorithm provides
a O(

√
H) advantage over Grover’s algorithm [JS19].

Golden collision finding can be seen as a unique 2-XOR problem. For k = 2,
the optimization program given in [NS20] recovers the algorithm of [BDH+05].

Another approach based on a distributed computing model achieves a very
good time-memory tradeoff of TM = Õ(N) [BBG+13]. However, this is the
wall-clock time of a distributed algorithm, and the gate cost remains Õ(N) at
each point of the tradeoff curve. Further, there are locality issues; achieving this
time-memory tradeoff requires a network that can sort itself in poly-logarithmic
time.

The distributed algorithm for multi-target preimage search given in [BB18]
can also be reframed for golden collision search, in which case it becomes a variant
of [BBG+13] based on iterating a random function and computing “chain-ends”
(instead of using a parallel RAM emulation unitary). But it is an inherently
parallel algorithm and it does not reach a smaller gate cost than Õ(N).

Random Collision Search. When h : {0, 1}n → {0, 1}n is a random function,
a collision can be found in classical time O(2n/2). Brassard et al. [BHT98] give
a quantum algorithm with time Õ(N1/3), using a QRACM of size O(N1/3)
(classical memory with quantum random access). This requirement has later
been discussed by multiple authors [GR04,Ber09]. In the quantum circuit model,
the lowest gate-count to date is obtained with the algorithm of [CNS17]. The
algorithm has a gate complexity of O(N2/5) with O(N1/5) classical memory
without quantum random access, and makes a total of O(N1/5) accesses to the
memory.

3 Golden Collision Finding with Random Walks

In this section we briefly define random walk search, both classical and quantum.
We then reframe van Oorschot-Wiener parallel collision search [vOW99] as a
random walk, and provide a quantum analogue that is one of our gate-optimal
algorithms. The other gate-optimal algorithm is also a random walk, and we
compare the two.

3.1 Random Walk Search

Let G = (V,E) be an undirected, connected, regular graph. We suppose there is
some subset of vertices M , which we call “marked” vertices, and our task is to
output any vertex x ∈M . We assume we have circuits to perform the following
tasks:

Set-up: Returns a random vertex vi.
Update: Given a vertex v, returns a random vertex adjacent to v.
Check: Given a vertex v, returns 1 if v is marked and 0 otherwise.
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In practice we assume that the random selection is actually performed via a
random selection of a bitstring, and a map from bitstrings to the relevant com-
ponents of the graph; this ensures that the circuits work equally for classically
selecting elements at random or for constructing quantum superpositions.

Magniez, Nayak, Roland, and Santha (MNRS) present an algorithm and
unified framework to solve such tasks [MNRS11]. The cost depends on several
factors:

– The costs S, U, C of the set-up, update, and check circuits, respectively.
– The fraction of marked vertices, ε := |M |

|V | .
– The spectral gap of G, denoted δ, equal to the difference between the largest

and second-largest eigenvalues of the normalized adjacency matrix of G.

Classical Random Walk. We will describe a classical random walk. Not only
will this provide intuition for the quantum random walk, but we will later show
that vOW parallel collision search is equivalent to such a walk.

In a classical random walk, we begin by initializing a random vertex with
the set-up circuit. We then repeat the following: We take O( 1δ ) random steps
in the graph using the update circuit. We then check if the current vertex is
marked using the check circuit; if it is marked, we output it and stop, otherwise
we repeat the random steps-and-check process.

Taking O( 1δ ) random steps will reach the stationary distribution of the graph.
Because we assumed a regular graph, this is the uniform distribution. Hence,
sampling from this distribution has a 1

ε chance of returning a marked vertex.
Thus, the total cost is

O
(
S+

1

ε

(
1

δ
U+ C

))
. (1)

Quantum Random Walk. The quantum walk is almost entirely analogous to
the classical case, in the same way that Grover’s search algorithm [Gro96,BHMT02]
is analogous to a brute force search. The cost of the quantum random walk is

O
(
S+

1√
ε

(
1√
δ
U+ C

))
. (2)

If we use the Tolerant Recursive Amplitude Amplification technique from
MNRS [MNRS11], possibly using a qubit as control, then we can find the marked
vertex in O(1/

√
ε) iterations when ε is only a lower bound on the fraction of

marked vertices.

Johnson Graphs. We consider random walks on Johnson graphs. A Johnson
graph on a set X of size R is a graph whose vertices are all subsets of X of
size R, and two vertices are adjacent if they differ in exactly one element. The
spectral gap of a Johnson graph is δ = Ω( 1

R ). A random step is equivalent to
selecting a random element from the current vertex (which is a set) and deleting
it, then selecting a new random element and inserting it into the set.
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To efficiently represent these sets for a random walk, a classical computer can
use any sorted list structure that enables efficient insertion, deletion and search.
For a quantum data structure, we use the Johnson vertex data structure from
[JS19].

Errors in Random Walks. We will encounter two cases for the update pro-
cedure U . In Section 3.4, we will have false negatives; the update will sometimes
incorrectly miss a marked vertex, but it will never incorrectly identify an un-
marked vertex as marked. Furthermore, these errors are not history-dependent.
Thus, we can instead redefine the underlying set of marked vertices to be pre-
cisely the vertices that are correctly identified. This switches our perspective
from an imperfect circuit on a perfect graph, to a perfect circuit for an imper-
fect graph. Section A studies this in more detail (see Theorem A.1).

If the fraction of marked vertices changes from ε to ε′, then the total runtime
changes from

O
(
S+

1√
ε

(
1√
δ
U+ C

))
to O

(
S+

1√
ε′

(
1√
δ
U+ C

))
(3)

and thus the change in cost is at most a factor of O(
√
ε/ε′). This means we can

afford any Ω(1) reduction in the fraction of marked vertices and incur only a
O(1) increase in the cost of the walk.

In Section 3.5, the update will contain a Grover search, which is not exact.
This means the actual update circuit U ′ is close to U , but incurs some error
amplitude, which is independent of the vertex. But this error can be exponen-
tially reduced, so that after an exponential number of updates, the total error
amplitude (and the probability of success of the algorithm) remains constant.

3.2 Ambainis’ Algorithm

Ambainis’ element distinctness algorithm [Amb07] performs a random walk on a
Johnson graph of size R on the domain of the function h. This is a query-optimal
algorithm for Problem 2.1.

Classical Walk. We store elements as tuples (x, h(x)). The list is sorted ac-
cording to h(x) to make it easy to check, when inserting or deleting an element,
if there are any collisions.

We denote a vertex as marked if it contains both the elements xg and yg
which form the golden collision. Each vertex has a single flag indicating if is
marked. The fraction of marked vertices is the number of sets containing the 2
fixed elements xg and yg, which will be

ε =
R(R− 1)

N2
. (4)

It will cost O((H+ logR)R) to initialize the list, in sorted order.
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To take a single random step, we incur a cost of H+ logR to compute a new
element and insert it into the list; however, we will also check for collisions with
existing elements in the list and update the flag. The average number of collisions
with a new element will be R−1

N , since we assume h is a random function. If it
costs G to check if a collision is golden, then the total update cost is, on average,

U = H+ logR+
R− 1

N
G. (5)

Because we update the flag in the update step, the check step only needs to
check the flag, at cost O(1).

As a classical random walk, this gives a total cost of

O
(
R(H+ logR) +

N2

R(R− 1)

(
R

(
H+ logR+

R− 1

N
G

)
+ 1

))
. (6)

Assuming G is not much more expensive than H, the optimal occurs when
R = N2

R−1 , and we conclude that R = N is optimal, which produces a cost of
roughly O(NH).

Quantum Variant. Assuming cheap QRAQM (or a unit cost for the “qRAM
gate”, as formulated in [Amb07]) the costs and parameters from before are es-
sentially the same for the quantum case. This gives the following complexity:

O

(
R(H+ logR) +

N√
R(R− 1)

(√
R

(
H+ logR+

R− 1

N
G

)
+ 1

))
. (7)

We optimize this by taking R = N2/3, for a total cost of Õ(N2/3). There are
subtle issues ensuring that each subroutine is reversible and constant-time, but
we ignore those for now.

Costing Memory. With only one- and two-qubit gates, a single memory access
to R elements costs Θ(R) gates. We need a constant number of memory accesses
to insert into the list and to retrieve the collisions in the list to check if they are
golden. This changes the update cost to

U = H+R+
R(R− 1)

N
G, (8)

leading to a total cost of

O

(
R(H+R) +

N√
R(R− 1)

(√
R

(
H+R+

R(R− 1)

N
G

)
+ 1

))
. (9)

Here, the optimal occurs when R = H, for a total cost roughly O(N
√
R) =

O(N
√
H).

Previous work [JS19] noticed that Grover’s algorithm has gate cost ofO(NH),
so Tani’s algorithm [Tan09] and Ambainis’ algorithm [Amb07] provide, in gate
cost, an advantage of

√
H over Grover’s algorithm. This suggests that we should

push more of the costs into the function h if we want to beat Grover’s algorithm.
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3.3 Iteration-based Walk

Here we present van Oorschot-Wiener’s collision finding algorithm, but as a
random walk on a Johnson graph, which is equivalent to the original description.
This allows us to easily extend to the quantum version, one of our main results,
by simply taking square roots of the relevant terms.

The central idea of [vOW99] is to “lift” the function h via distinguished points.
We select a random subset XD and denote such points as “distinguished”. In
practice we choose bitstrings with a fixed prefix. We then lift the random function
h : {0, 1}n → {0, 1}n to a random function hD : {0, 1}n → XD. Then the
collisions of h map to collisions of hD.

To construct hD, we iterate h. Since h is a pseudo-random function, there
is some probability that h(x) ∈ XD for every x. If |XD| = θN , we expect to
require 1/θ iterations of h before the output is in XD.

Thus, we pick some u greater than 1/θ and define the following function:
hD(x) = hm(x), where m is the largest m ≤ u such that hm(x) ∈ XD; if such an
m does not exist, pick a random y ∈ XD and set hD(x) = y. If we choose u as a
large multiple of 1/θ, we expect the case where we do not reach a distinguished
point to be exceedingly rare (see Section A in Appendix). For now, we will simply
say that u ≈ 1/θ.

With hD constructed, we build the same random walk as Ambainis’ al-
gorithm. We use the same Johnson graph J(X,R), but we store elements as
(x, hD(x), ux), where ux is such that hD(x) = hux(x). We then mark vertices if
and only if they contain x and y that are on a “trail” leading to the golden colli-
sion. This means that there are integers i and j with 0 ≤ i ≤ ux and 0 ≤ j ≤ uy
such that hi(x) = xg and hj(y) = yg.

To perform a random walk, the update step costs uH = O(H/θ) to compute
hD(x) for a random insertion of x, and classically costs logR to insert that
element. To maintain the flag indicating if the list contains a trail that leads to
the golden collision, we must locate where the underlying collision of h occurs,
which takes uH steps for each collision. We calculate the average number of
collisions in the list as follows: There are u points on the trail leading to the
newly-inserted point, and for each of the R − 1 existing elements in the list, its
value under h has a u/N chance of ending up in the trail of the new point. Thus,
the total probability of a collision is u2/N for each point in the list, and so the
average number of collisions is (R− 1)u2/N = O(R/Nθ2).

Thus, the update cost becomes

U = O
(
H

θ
+ logR+

R

Nθ2
H

θ
+

R

Nθ2
G

)
. (10)

From here on we assume that G� uH, so we ignore the last term.
Section B gives a detailed analysis of the number of marked elements. Roughly

speaking, every random function will produce some number of predecessors to
each half of the golden collision. These are points z such that hk(z) = xg for
some k. In order for a vertex to be marked, we must select at least one prede-
cessor for each half of the golden collision when we select the R random starting
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points for elements of the vertex. Thus, more predecessors means a higher chance
of finding the golden collision, but selecting a random function that gives many
predecessors to the golden collision is unlikely.

To find a large number of predecessors, we can select a random function h′
and precompose h ◦ h′ and perform the search on this new function. This acts
like a new random function, but preserves the golden collision.

We show (Lemma B.2) that for a fixed t, the probability that a random
function will give at least t predecessors to both halves of the golden collision
is Θ(1/t). From here on, we assume that the golden collision has at least t
predecessors, and we will simply repeat the walk until it works, which will be
Θ(t) times.

Given such a well-behaved function, each random element has a roughly t/N
chance of being a predecessor of one half of the golden collision. We need pre-
decessors of both halves, and there are R vertices, so there are Ω(R

2t2

N2 ) marked
vertices (Theorem B.1).

We put this together to get the classical cost. Assume logR � H
ε , and that

H/θ dominates G, then the cost of a single walk is:

O
(
R (Hn+ logR) +

N2

R2t2

(
R

(
H

θ
+ logR+

(R− 1)n2

N

H

θ

)
+ 1

))
(11)

=O
(
RH

θ
+

N2

Rt2θ
H+

N

t2θ3
H

)
. (12)

We expect to repeat the walk Θ(t) times with different random functions before
we select one that gives the golden collision sufficiently long trails. Thus, the
total cost is

O
(
tRH

θ
+
N2

Rtθ
H+

N

tθ3
H

)
. (13)

The right two terms are largest, so we optimize those first. The optimal
will occur when the two sides are equal: N2

Rtθ = N
tθ3 , which implies θ =

√
R/N .

Substituting, we get

O
(
t
√
NRH+

N5/2

R3/2t
H

)
. (14)

This is balanced when t = N
R , giving a cost of O(HN3/2/R1/2), so long as R ≤ N .

This recaptures van Oorschot and Wiener’s result, including their heuristic value
of the number of function repetitions.

3.4 Quantum Variant

As with Ambainis’ algorithm, the costs will remain approximately the same in
the quantum case, except for three main differences: The cost to access memory
is now O(R), the 1/ε and 1/δ terms get square root speed-ups, and we perform a
Grover search among random functions. The random walk will act as the oracle
for the Grover search, which will thus need to repeat the oracle O(

√
t) times.

11



We will find that the optimal parameters would put t ≥ 1/θ2, which invali-
dates our arguments from before. If xg has t predecessors, they will form a tree,
which has height

√
2πt on average. Thus, many predecessors are useless because

a trail that starts too high will not reach the golden collision. However, with high
probability we can still expect Ω(1/θ2) predecessors p such that hk(p) = xg for
k ≤ 1/θ (Theorem B.2). Thus, the fraction of marked vertices will be Ω( R2

N2θ4 ).
This gives a total cost of

O
(
t
1
2

(
RH

θ
+
Nθ2

R

(
R

1
2

(
H

θ
+R+

(R− 1)H

Nθ3

)
+ 1

)))
(15)

=O

(
t
1
2RH

θ
+
Nt

1
2 θ

R
1
2

H+N(Rt)
1
2 θ2 +

(Rt)
1
2

θ
H

)
(16)

The cost increases with t so we want to take t = 1/θ2, the minimum before
the fraction of marked vertices increases. Optimizing the rest gives θ = H/R,
R = N2/7H4/7, and a total gate cost of:

O
(
N6/7H5/7

)
(17)

This result shows that even the most costly model of quantum memory access
brings an advantage in the G-cost.

3.5 Prefix-based Walk

We now present an alternative quantum walk that uses Grover search to directly
find distinguished points in XD. We assume that the golden collision happens
among distinguished points. To ensure this happens, we can compose with a
random function or choose different prefixes to form new arbitrary definitions of
XD. Each new definition of XD has a probability of θ of containing the golden
collision, thus after 1

θ trials (or 1√
θ
Grover iterates) we expect the golden collision

to be among the distinguished points.
Then, given a choice of XD, we perform a quantum walk similar to Ambainis’

algorithm, but only among XD.
A vertex in the walk contains R elements (x, h(x)) where h(x) ∈ XD, which

are sorted by output value h(x). A vertex contains a counter indicating the num-
ber of golden collisions it has found. We use the Johnson vertex structure [JS19]
again for fast insertion, search, and collision detection. The analysis is very simi-
lar to Ambainis’ algorithm, except that the setup and update procedures, instead
of creating a uniform superposition over X, create a superposition over XD using
a Grover search in time H/

√
θ.

A technical difficulty is that the precise size of XD cannot be estimated at
runtime with arbitrary precision. Instead, we assume a fixed size θN . Due to
this, there will be a negligible probability of error, depending on the difference
between |XD| and θN for the actual good choice of distinguished points.

12



Gate Complexity. The setup costs R H√
θ
+R logR, the update costs H√

θ
+R. The

checking is trivial. If we assume that XD is a good choice, the probability that
a vertex contains the golden collision is R2/(θ2N2). If this is not, the golden
collision will not be found. So after Nθ/R iterations of the quantum walk, we
check whether the current vertex is marked or not. The total cost for a single
walk is:

O
(
R

H√
θ
+R logR+

Nθ

R

(√
R

(
H√
θ
+R

)
+ 1

))
. (18)

Optimizing R and θ gives R = H/
√
θ. The walk is sound if Nθ/R ≥ 1 i.e.

Nθ3/2 ≥ H i.e. θ ≥ (H/N)2/3. The total gate cost, with the Grover search, is:

O
(

1√
θ︸︷︷︸

Search

(
H2

θ︸︷︷︸
Setup

+Nθ3/4
√
H︸ ︷︷ ︸

Walk

))
= O

(
H2θ−3/2 +Nθ1/4

√
H
)
. (19)

The minimal gate complexity with this method is reached when H2θ−3/2 =
Nθ1/4

√
H i.e. θ = N−4/7H6/7. At this point we obtain a total gate cost of

O(Nθ1/4
√
H) = O(N6/7H5/7) and corresponding memory R = N2/7H4/7. So

minimizing the gate cost gives exactly the same result as in Section 3.3.

3.6 Comparison

Both the prefix-based walk and the iteration-based walk use distinguished points
to improve the search. They differ in how they find distinguished points, whether
by a direct search for the prefix or by iterating. Classically, the two approaches
have the same asymptotic cost to find a single distinguished point, but the
iteration is appealing because the probability of a collision between two trails
is much higher than the probability of a collision between two randomly chosen
distinguished points. In contrast, a quantum computer can find preimages of
distinguished points faster using Grover search, but cannot iterate a function
faster than a classical computer.

Furthermore, both approaches must repeat the underlying random walk. The
iteration-based search must span many functions to ensure that the desired col-
lision has a large set of predecessors; the prefix-based search must redefine the
set of distinguished points to ensure that it will contain the golden collision.

In concrete terms, for the correct definition of distinguished points, a prefix-
based search walks on a graph with Ω( R2

N2θ2 ) marked vertices, while an iteration-
based search walks on a graph with Ω( R2

N2θ4 ) marked vertices. The extra powers
of θ reflect the higher chance of collision on trails. However, there are only 1/θ
possible prefixes to search through, while an iteration-based search must search
O(1/θ2) functions to find one that gives enough predecessors.

Classically, this gives advantage to iteration-based methods, with an overall
factor of O(θ2), rather than O(θ) for prefix-based search. The quantum iteration-
based method retains an advantage of O(

√
θ) in the number of walk steps, but

each step costs an extra factor of O(1/
√
θ). This advantage and disadvantage

13



cancel out, giving our result that both methods asymptotically costO(N6/7H5/7)
gates.

Time costs and locality. In our algorithms, we can assume that memory
access has an O(R1/2) time cost, reflecting either latency or locality in a two-
dimensional layout. Substituting this into Equation 16 or 19 does not change
the time, as we already pay a time R in the update procedure, in order to find
a new element to insert.

For prefix-based walks, Grover search is easily local, and the set-up step can
be done by initializing the elements in time O(RH/

√
θ), then sorting them in

time O(R3/2). Similar logic applies to the set-up of the iteration-based walk.
Section A describes how the iterations can also be local. Hence, both algorithms
achieve the same complexity with local connectivity.

4 Parallelization

In Section 3, we optimized only the gate cost and found algorithms which bene-
fited from leaving most of the qubits idle for most of the time. In other contexts,
we may try to apply more simultaneous gates at each step to reduce the total
depth, which may or may not increase gate complexity. For example, the memory
access circuit may use O(R) gates sequentially, or use a tree of depth O(logR),
and the gate cost is the same. In contrast, the depth of a Grover search can be
reduced by a factor

√
P , but this increases its gate cost by the same factor.

In this section we optimize the gate count under a depth limit. We find that
prefix-based walks can maintain an advantage in gate cost over Grover’s algo-
rithm. However, by combining prefix methods with the Multi-Grover algorithm
of [BBG+13], we provide a much better approach to parallelization under very
short depth limits. Even with local connectivity in a two-dimensional mesh, this
approach can parallelize to depths as low as O(N1/2) without increasing gate
cost over O(N), and to depths D ≤ N1/2 with gate cost O(N3/2/D).

4.1 Prefix-based Walk

In our computational model, we can apply gates freely to as many qubits as we
wish, but it is helpful to think of many parallel processors that can act on the
circuit all at once. We introduce a parameter P . For example, a Grover search
can be distributed on P processors with a reduction of a factor

√
P in depth

and an increase of a factor
√
P in gate cost. However, gates that can applied

simultaneously (e.g. in sorting networks) do not add more depth to the circuit.
We consider the algorithm of Section 3.5. We repeat for 1√

θ
iterations a walk

that searches for a golden collision with a given definition of distinguished points.
The setup can be perfectly parallelized. We do not parallelize the iterations of
the walk, and instead use our computing power to accelerate each update step.
The depth to find an element with a good prefix can be reduced to HD√

θ
√
P

by
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parallelizing the Grover search, as long as we have P ≤ R (otherwise we are
using too much memory). We also need P ≤ 1

θ . This increases the total gate
cost to

O
(

RHG
θ

+
SG√
θ
+
N
√
θ

R

(
√
R

(
HG
√
P√
θ

+R

)
+ 1

) )
(20)

where SG is the gate cost of sorting each vertex, which will depend on the
connectivity. Optimizing the gate cost gives R = HG

√
P√
θ

. The constraint P ≤ R

turns into
√
P ≤ HG/

√
θ which is implied by the condition Pθ ≤ 1. By replacing

R in this equation we find θ = N−4/7H
6/7
G P 1/7. This gives R = H

4/7
G N2/7P 3/7,

and the condition of Pθ ≤ 1 becomes P 8H6
G ≤ N4. The total gate cost becomes

O(N6/7H
5/7
G P 2/7). (21)

The total depth depends on our assumption about locality, because sorting
the vertex in the set-up and inserting into the vertex during an update will both
depend on the architecture. For both, the depth will be O(logR) in a non-local
setting but O(R1/2) in the local setting. If we denote this depth as SD, the total
depth of each walk is

O
(
HD√
θ
+ SD +

Nθ

R

√
R

(
HD√
θ
√
P

+ SD

))
. (22)

As long as HD/
√
θP ≥ SD, the depth does not depend on locality; finding dis-

tinguished points takes longer than insertion or sorting. In the non-local setting,
we can parallelize up to P = O(N1/2) and with a two-dimensional mesh we can
reach P = O(N4/11).

Beyond this maximum parallelization of the distinguished point search, we
can parallelize the search over possible prefixes. In this case the search for the
correct prefix is like a normal Grover search, where the oracle is a maximally-
parallelized random walk.

Grover’s algorithm under a depth limit D will cost O(N2/D) gates. Table 1
shows that prefix-based walks are exponentially cheaper than Grover’s algorithm,
even under restrictive depth limits, though the factor is small.

4.2 Iteration-based walk

Parallelizing the vOW search works well because different processors can inde-
pendently iterate the hash function. In the quantum analogue, after we insert
a new element into the list, we must uncompute another element; this uncom-
putation seems to need to be serial. Thus, the classical parallelization does not
apply.

However, if we simply task P processors to iterate the hash function for
O(1/Pθ) iterations, we expect one of them to produce a distinguished point. We
thus reduce the time to find a distinguished point, but the distinguished points
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Table 1: Asymptotic costs and parameters for prefix-based random walks. For
readability, terms of H and asymptotic notation are omitted. The results de-
pend whether locality is assumed or not. The line “Any” describes a tradeoff for
any D, until D = N1/2 in the non-local case and D = N8/11 in the local case
(2-dimensional grid with nearest-neighbor connectivity). “Inner” parallelism is
inside a walk. “Outer” parallelism is in the outer Grover iterations. “Memory” is
the width of a single walk.

Locality
constraint

Depth
limit

G-cost Memory Parallelism Depth DW -cost
Inner Outer

Any No (Sec. 3) N
6
7 N

2
7 1 1 N

6
7 N

8
7

D N
6
5D− 2

5 N
4
5D− 3

5 N
6
5D− 7

5 1 D N
4
5D

2
5

Non-local D = N
1
2 N N

1
2 N

1
2 1 N

1
2 N

D ≤ N
1
2 N

3
2D−1 N

1
2 N

1
2 ND−2 D N

3
2D−1

2-dim.
neighbors

D = N
8
11 N

11
12 N

4
11 N

2
11 1 N

8
11 N

12
11

D ≤ N
8
11 N

18
11D−1 N

4
11 N

2
11 N

16
11D−2 D N

20
11D−1

we find have very short trails. Short trails are less likely to collide. We analyzed
this method and found that it is strictly worse than parallelizing the prefix-based
method.

A different method would be to stagger the iteration process, so each proces-
sor is 1/Pθ steps ahead of the next one. After 1/Pθ steps, one of the processors
has finished 1/θ total iterations and likely has a distinguished point ready to in-
sert into the list. The problem now is that once we have inserted an element, we
must uncompute the insertion operation for an element we will delete. Naively,
these operations do not commute, so we must perform the computation and un-
computation sequentially, preventing us from precomputing any of the function
iterations. If these operations commute, it would allow near-perfect paralleliza-
tion of the iteration-based walk.

4.3 Multi-grover Search

While random walks provide the lowest gate cost when depth is unlimited, prac-
tical constraints make parallelization more important. Our next algorithm is a
prefix-based adaptation from [BBG+13].

As in the prefix-based random walk of Section 3.5, we choose an arbitrary
prefix and define distinguished points XD to be those x where h(x) has the
fixed prefix. We will wrap the entire algorithm in a Grover search for the correct
prefix, which will require O(1/

√
θ) iterations.

Given P processors, we use each one to separately search for x such that h(x)
is a distinguished point. This has cost O(H/

√
θ) per processor, so the total cost

is O(HP/
√
θ).
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We then treat the processors as a sorting network, and sort based on the
value of h(x). We check each pair of colliding elements for the golden collision,
and propagate the result with a tree structure (such as an H-tree). Then we
unsort the list so we can uncompute the list.

If we have chosen the prefix correctly, then the golden collision will be two
of Nθ points. The Grover search will produce a random list of P points out of
those Nθ, so the probability of containing the golden collision is at least(

P
2

)
(Nθ)P−2

(Nθ)P
= Ω

(
P 2

N2θ2

)
. (23)

We then perform a Grover search over these lists. This leads to a total cost of

O
(

1

θ1/2
Nθ

P

(
HP

θ1/2
+ SG

))
= O

(
NH+

Nθ1/2SG
P

)
(24)

The sorting cost SG is the interesting factor here. If SG/P is small, then the
O(NH) term will be greatest and lead to a near-perfect parallelization. This is
the original result of [BBG+13]. Our improvement is that when SG/P is large,
we can adjust θ to compensate.

For example, on a two-dimensional mesh, SG = O(P 3/2). In this case we set
θ = H2/P .

For depth in this case, the depth to construct each list is O(H/θ1/2) and we
denote the depth to sort as SD, so the total depth is

O
(
Nθ1/2

P

(
H

θ1/2
+ SD

))
= O

(
NH

P
+
Nθ1/2SD

P

)
. (25)

In the two-dimensional mesh, SD = O(P 1/2), so with the same value of θ = H2/P
we find a total depth of O(NH/P ). Thus, this algorithm parallelizes perfectly,
even accounting for locality and communication costs.

The maximum parallelization we can achieve by this method is P = O(N1/2).
At this point, there are O(N1/2) elements where h(x) has the fixed prefix, and
our list has O(N1/2) elements, so there is a constant probability of containing the
golden collision. Beyond this point, the same parameterization would increase
the cost quadratically in P . For lower depths, we simply divide the search space.
Table 2 summarizes these results.

If we have some architecture where SD = o(P 1/2), then we can choose θ =
P/N and the asymptotic depth is O(NH/P ) even for very large P .

5 Quantum (Parallel) Collision Search

In this section, we study the algorithm of [CNS17] which, in the baseline quantum
circuit model, is the only one that achieves a lower gate count than classical for
the collision search problem. Here, we take a random function h : {0, 1}n →
{0, 1}n that has expectedly many collisions, and the goal is to output one. We
improve the parallelization given in [CNS17] in order to achieve the best gate
counts under a depth restriction. This will help us comparing the complexity of
our golden collision search algorithms to the desired security levels.
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Table 2: Prefix-based Multi-Grover on a local architecture. “P processors” gives
the cost with P ≤ N1/2 processors. “Depth limit D ≥ N

1
2 ’ gives the cost with

the minimum number of processors to fit a depth limit D. “Fastest single” gives
the minimum depth achievable with the Multi-Grover parallelization. Below this
depth, we divide the search space to parallelize, giving “Depth limit D ≤ N 1

2 ”.

Parameters G-cost Total hardware Depth DW -cost

P processors N P NP−1 N

Depth limit D ≥ N 1
2 N ND−1 D N

Fastest single N N
1
2 N

1
2 N

Depth limit D ≤ N 1
2 N

3
2D−1 N

3
2D−2 D N

3
2D−1

Algorithm. The algorithm of [CNS17] also relies on the definition of distinguished
points (d.p.) via arbitrary prefixes. It runs in two phases: first, M distinguished
points are found, using Grover’s algorithm (where the proportion of distinguished
points is θ). These elements are stored in a classical memory with sequential
access. Second, we look for a collision on the distinguished points, using quantum
search. An iteration of the search must build the superposition of distinguished
points and then test if they belong to the stored memory. This is done with a
sequential circuit. Hence, the memory is accessed only once per iteration of the
search, and it does not need to be random-access. The gate complexity is:

M
HG√
θ
+

√
Nθ

M

(
HG√
θ
+M

)
and the gate count is optimal when HG√

θ
=M and M2 =

√
Nθ
M M i.e. θ =M3/N

and M = H
2/5
G N1/5. Then we have a gate count of H4/5

G N2/5 [CNS17].

Parallelized Algorithm. The authors of [CNS17] considered a situation in which
the first phase is distributed on many quantum processors, the distinguished
points are then stored in a single classical memory, and the second phase is a
distributed Grover search. We can do better with the algorithm of [BBG+13],
similar to our Multi-Grover golden collision search. Each processor has a local
classical memory of exponential size, where it stores its distinguished points.
In the second step, we distribute the search on the P processors, and when
testing a new value of h for a collision in the stored data, we use the quantum
parallel RAM emulation unitary of [BBG+13, Theorem 5]. It emulates in total
gate count SG (and depth SD) P parallel calls to a RAM of size P . With each
call we compare against the first distinguished point stored by each processor,
then the second, etc. Assuming P ≤M , the gate count becomes:

O

(
M

HG√
θ
+ P

√
Nθ

MP

(
HG√
θ
+
M

P 2
SG

))
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and the total depth is:

O

(
M

P

HD√
θ
+

√
Nθ

MP

(
HD√
θ
+
M

P
SD

))
.

If SG = P logP , then by optimizing the gate count we get HG√
θ
= M

P and

M2/P =
√
NθM/P i.e. θ =M3/(NP ) i.e. M = H

2/5
G N1/5P 3/5, then we have a

gate count of H4/5
G N2/5P 1/5. In general, we set HG√

θ
= M

P 2SG and θ =M3/(NP )

still holds, i.e. M = H
2/5
G N1/5PS

−2/5
G . Then we have a gate count of M2

P 2 SG =

H
4/5
G N2/5S

1/5
G , which is directly related to the gate cost of sorting on the P

processors.
Assuming that SD = SG/P and writing that HD ≤ HG, the depth of the cir-

cuit is the previous gate count divided by P , i.e. H4/5
G N2/5S

1/5
G P−1. The paral-

lelization from [CNS17] occurs when SG = P 2, i.e. in the worst-case scenario for
communication costs. In general, this is valid as long as P ≤M and Nθ ≥MP ,
which also translates to M ≥ P ; hence S2/5

G ≤ H
2/5
G N1/5, since SG is a function

of P . For example, on a two-dimensional grid the limit is P ≤ H
2/3
G N1/3. Notice

that P is the number of qubits used here, while M is the amount of classical
memory, and M is bigger.

Depth Optimization. Let us keep a local 2-dimensional grid with SG = P 3/2

and a corresponding depth H
4/5
G N2/5P−7/10. If we optimize the gate count for a

given depth D, we get P = H
8/7
G N4/7D−10/7 and a gate count:

DP = O
(
H

8/7
G N4/7D−3/7

)
which is valid as long as P ≤ N1/3H

2/3
G i.e. N1/6H

1/3
G ≤ D, and as long as 1 ≤ P

i.e. D ≤ N2/5H
4/5
G .

Further Parallelization To reach depths below Õ(N1/6), we can parallelize by
splitting the Grover search. With P1 machines, each with M words of classical
memory and P processors, we will only need

√
Nθ/MPP1 Grover iterations for

each machine. The depth is then

O

(
M

P

HD√
θ
+

√
Nθ

MPP1

(
HD√
θ
+
M

P
SD

))
(26)

and the gate count is

O

(
P1

(
M

HG√
θ
+ P

√
Nθ

MPP1

(
HG√
θ
+
M

P 2
SG

)))
. (27)

In this setting, the parameters with the lowest gate count are M = P =

N1/3H
2/3
G P

−1/3
1 and θ = HG/P

1/2. This leads to approximately 1 Grover it-
eration, so in fact only the search for distinguished points needs to be quantum.
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To fit a depth limit D, we set P1 = N
D6 max{H6

D/H
4
G,H

2
G} for a total gate

count of

O
(
N

D3
max

{
H3
D

H2
G

,HG

})
. (28)

6 Security of SIKE

Supersingular Isogeny Key Encapsulation (SIKE) [JAC+17] is a candidate post-
quantum key encapsulation based on isogenies of elliptic curves. So far generic
meet-in-the-middle attacks outperform the best algebraic attacks, so its security
is based on the difficulty of these attacks. SIKE is parameterized by the bit-
length of a public prime parameter p (so SIKE-434 uses a 434-bit prime). The
meet-in-the-middle attack must search a space of size O(p1/4); thus, replacing
N with p1/4 in our algorithms gives the performance against SIKE.

NIST proposed security levels relative to the difficulty of attacks on sym-
metric cryptography, and separately imposed limitations on the total sequential
operations an algorithm may perform, the “Maxdepth”. SIKE-434, SIKE-503,
SIKE-610, and SIKE-751 target NIST’s security levels 1, 2, 3, and 5, respec-
tively.

Levels 1, 3, and 5 are defined relative to key search on the AES block cipher.
NIST used gate counts from Grassl et al. [GLRS16], but we use improved num-
bers from subsequent work [JNRV20]. They are given in Table 3. Levels 2 and 4
are based on collisions for the SHA family of hash functions. We use the collision
search of [CNS17] and the results of Section 5. Table 3 shows the resulting costs
when applied to SHA3 under NIST’s depth restrictions.

Table 3: Security thresholds from NIST. AES key search figures are from
[JNRV20]. The cost of evaluating SHA-3 is taken from [AMG+16].

AES key search SHA Collisions

Security Level Security Level
Metric Maxdepth 1 3 5 Metric Maxdepth 2 4

G-cost

∞ 83 116 148

G-cost

∞ 122 184
296 83 126 191 296 134 221
264 93 157 222 264 147 267∗

240 117 181 246∗ 240 161 339∗

DW -cost

∞ 87 119 152

DW -cost

∞ 134 201
296 87 130 194 296 145 239
264 97 161 225 264 159 286∗

240 121 185 249∗ 240 186 357∗

Classical 143 207 272 Classical 146 210

20



Resource restrictions. NIST restricts the total circuit depth available to an at-
tack because a real-world adversary will have some time limits. For example,
if a secret is only valuable for 10 years, then it does not matter how little an
algorithm costs if it takes longer than that.

Unlike many classical algorithms, most quantum algorithms parallelize very
poorly so a depth limit forces very large hardware requirements. NIST does not
give any fixed limit on the total hardware available. Providing a reasonable and
compelling upper bound on the number of qubits is beyond the scope of this
work. Instead we will choose 2200 as a loose guess, which is approximately the
number of baryons in the solar system. Any cost that requires more than 2200

qubits in this section is marked with a ∗.

Security estimates. Because of the depth restriction, we focus on the parallel
prefix-based walk and parallel Multi-Grover.

To find non-asymptotic estimates, we ignore many constant factors. For ex-
ample, the depth of a 2-dimensional mesh sorting network of R elements is likely
closer to 3R1/2 [Kun87]. We also need estimates of the cost of H, and we use
those from [JS19]. Overall our results are likely to underestimate the real cost
by constant or poly-logarithmic factors.

In the massively parallel parameterizations, once each processor has finished,
we must assemble the results. This is an easy check, but if the total hardware
is too large, the time for the signals to propagate exceeds the maximum depth.
We ignore this restriction, though this should be considered when interpreting
our results for extremely large hardware.

Table 4 shows the costs to attack various SIKE parameters under different
depth restrictions, and shows by how many bits the attacks exceed the cost
thresholds for the NIST security levels. The attacks are parallelized only as
much as necessary, using the methods from Section 4.

Overall, we find that our attacks lower the quantum security of SIKE com-
pared to the results of [JS19], but not enough to reduce the claimed security
levels. Because neither algorithm can parallelize well, both must resort to Grover-
like parallelizations and this leads to high costs.

The asymptotically improved gate cost of the prefix-based walk is barely
noticeable because of the depth restrictions. There is a stark difference between
the gate cost and the depth×width cost, but only with unrestricted depth. Multi-
Grover outperforms the prefix-based walk in nearly all contexts, even in gate cost,
because of its parallelization.

If we ignored locality issues, then the Multi-Grover algorithm could parallelize
almost perfectly. The lowest gate costs in Table 4 would apply at all maximum
depth values, complicating the security analysis: SIKE-610 would not reach level
3 security in G-cost under a depth limit of 240, but would reach level 3 at higher
depth limits or in DW -cost; SIKE-751 would only reach level 5 security with a
depth limit of 296. Thus, the security level of SIKE depends on one’s assumptions
about plausible physical layouts of quantum computers. However, the margins
are relatively close, and more pessimistic assumptions about the quantum costs
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of isogeny computations (the factor H) could easily bring SIKE-610 and SIKE-
751 back to their claimed security levels, even with a non-local architecture.

7 Conclusion

In this paper, we gave new algorithms for golden collision search in the quantum
circuit model. We improved over the gate counts and depth-width products of
previous algorithms when cheap “qRAM” operations are not available. This study
showed that, in this model, the NIST candidate SIKE offers less security than
claimed in [JS19], but still more than the initial levels given in [JAC+17].

Using two different techniques, we arrived at a gate complexity ofO(N6/7) for
golden collision search. The corresponding memory used is N2/7. Interestingly,
our algorithms actually achieve the same tradeoff between gate count T and
quantum memory R as the previous result of Ambainis [Amb07]: T 2 ×R = N2,
so we did not obtain an improvement in depth×width. However, our result can be
reformulated more positively: qRAM is not necessary if we use less than N2/7

memory. A similar situation occurred in the context of (non-golden) collision
search, where [BHT98] and [CNS17] achieve the same tradeoff curve T 2×R = N ,
although the second one only goes as far as T = N2/5.
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A Quantum Circuits for Iterations

In this section, we give details on quantum circuits used in the quantum iteration-
based walk of Section 3.4.

The MNRS framework describes the circuit for a quantum random walk,
given circuits for the set-up, update, and check subroutines. The set-up can be
accomplished by sequential insertion steps (which are part of the update), and we
will maintain a counter or flag for each list indicating whether it is marked, giving
unit cost to the check step. Thus, the main analysis is the update step. We use
the Johnson vertex data structure from [JS19]. This is sufficient to describe the
steps for the prefix-based walk, but the iteration-based walk is more complicated.

The update will need to do the following:

1. Select a new point in superposition, and iterate the function h until it finds
a distinguished point.

2. Find any collisions of the new distinguished point in the existing list.
3. Retrace the trails of any distinguished point collisions to find the underlying

collisions of h.

A.1 Iterating the function

Given a randomly selected point x, we define the trail of x to be the sequence
(x, h(x), h2(x), . . . , hnx(x)), where hnx(x) is distinguished. The goal of this sub-
circuit is to map states |x〉 to |x〉 |hnx(x)〉 |nx〉. Unlike classical distinguished-
point finding, the quantum circuit cannot stop when it reaches a distinguished
point. Rather, we must preselect a fixed number of iterations which will almost
certainly be guaranteed to reach a distinguished point.

The length of trails is geometrically distributed [vOW99], with a mean equal
to 1/θ if the fraction of distinguished points is θ. Let n be the number of iter-
ations we choose. The proportion of trails with length greater than n = c/θ is
approximately e−c [vOW99].

Pebbling. Since h is by definition non-injective, it cannot be applied in-place,
so we will need a pebbling strategy (see e.g. [Ben89,LS90]). The same issue is
described in [BB18]. We can choose a simple strategy with 2

√
u qubit registers

that we will call “baby-step giant-step”. We assume u is a perfect square for
ease of description. One iteration of h is a “baby step”, and a “giant step” is√
u iterations. To compute a giant step, we compute

√
u sequential baby steps

with no uncomputation, then uncompute all but the last. Thus, it takes 2
√
u

iterations and
√
u+ 1 registers to take one giant step.

It takes
√
u giant steps to reach hu(x), and we will keep each giant step until

the end before uncomputing. Thus, the total cost is 4u sequential iterations of
h, and we need 2

√
u registers.
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Output. We want to output the last distinguished point that h reaches. To do
this, we will have a list of k potential distinguished points, all initialized to |0〉.
At every iteration of h, we perform two operations, controlled on whether the
new output is distinguished. The first operation cycles the elements in the list:
the ith element is moved to the i+ 1 location, and the last element is moved to
the beginning. Then the output is copied to the first element in the list.

As long as the total number of distinguished points reached is less than k, this
will put the last distinguished point at the front of the list, where we can copy
it out. If there are more than k points reached, the copy operation, consisting
of CNOT gates, will produce the bitwise XOR of the new and old distinguished
points in the list. This will not cause issues in the random walk, but it is highly
unlikely to detect a collision. Thus, we can regard this as a reduction in the
number of marked vertices.

Error Analysis. There are two sources of error: trails that do not find any
distinguished point in n collisions, and trails that find more than k distinguished
points. For u = c/θ, the probability of the first error is e−c and the probability
of the second is at most c

k , by Markov’s inequality. Thus, we can take u =
O(1/θ) and k = O(1). If we further assume that the number of distinguished
points in a trail follows a binomial distribution, then the probability of too many
distinguished points is much smaller.

The only points we need to operate correctly are those leading to the golden
collision. Starting from a vertex that would be marked if we had a perfect it-
eration circuit, it contains two elements that lead to the golden collision (see
Section B). If either element produces an incorrect iteration output, the circuit
will incorrectly conclude that the vertex is not marked4. Suppose that some
number of points t will produce trails that meet at the golden collision. In the
worst case, the probabilities of failure for each point are dependent (say, some
point on the trail just before the golden collision causes the error). Then there
will be a probability of roughly p that the entire algorithm fails, and a probabil-
ity roughly 1− p that it works exactly as expected. In this case, we will need to
repeat the walk with another random function.

For p ∈ Ω(1), such imperfections add only an O(1) cost to the entire algo-
rithm. Thus, we can choose u to be a small, constant multiple of 1/θ, and choose
k to be a constant as well.

Locality. The iteration can be done locally in many ways. For our baby-step
giant-step pebbling, we can arrange the memory into two loops so that the giant
steps are stored in one loop and baby steps in the other. We can then sequentially
and locally compute all the baby steps, and ensure that the final register is close
to the starting register. Then we can copy the output – which is a giant step –
into the loop for giant steps. Then we cyclically shift all the giant steps, which
is again local.
4 If both produce incorrect outputs we may find the marked vertex if they produce
the same incorrect value, but the probability of this is vanishingly small.
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These loops do not change the time complexity at all, and it easy to create
such a loop in a two-dimensional nearest-neighbour architecture.

Thus, our algorithms retain their gate complexity in a two-dimensional nearest-
neighbour architecture, and have a time complexity asymptotically equal to their
gate complexity in this model.

A.2 Finding Collisions

According the optimizations in Section 3.4, the average number of collisions per
inserted point is (R−1)n2

N and we choose R ≈ 1
θ ≈ N

2/7; thus, we have a vanishing
expected number of collisions.

This makes our collision-finding circuit substantially simpler. We can slightly
modify the search circuit on a Johnson vertex [JS19] to do this. That search
circuit assumes a single match to the search string, and so it uses a tree of
CNOT gates to copy out the result. With multiple matches, it would return the
XOR of all matches. To fix this, we use a constant number t of parallel trees,
ordered from 1 to t, and add a flag bit to every node.

Our circuit will first fan out the search string to all data in the Johnson
vertex, copy out any that match to the leaf layer of the first tree, and flip the
flag bit on all matches. Then it will copy the elements up in a tree; however,
it will use the flag bit to control the copying. When copying from two adjacent
elements in tree i, one can be identified as the “first” element (perhaps by physical
arrangement). If both flag bits are 1, we copy the second element to the first tree
where the flag bit for that node is 0, then copy the first element to the higher
layer. In any other case, we CNOT each node to its parent.

The root nodes of all the trees will be in some designated location, and we
can process them from there.

Such a circuit with t trees will correctly copy out any number of collisions
up to t. If there are more collisions, it will miss some: they will not be copied
out to another tree, and so they will be lost.

A.3 Finding Underlying Collisions

Here we describe how to detect, given two elements (x, nx) and (y, ny) with
hnx(x) = hny (y), whether they reach the golden collision.

We initialize a new register rn containing n, the maximum path length from
the iteration step. We then iterate h simultaneously for x and y, using the
same pebbling strategy as before. We make one small change: At each step we
compare rn to nx and ny. If rn ≤ nx, then we apply h to the current x output,
and otherwise we simply copy the current x output. We do the same for y. This
ensures that at the ith step, both trails are n− i steps away from the common
distinguished point, so they will reach the collision at the same time.

After each iteration, we apply the circuit to test if a collision is golden,
controlled on whether the current output values for x and y are equal. If the
collision is golden, we flip an output bit.
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A.4 Detecting Marked Vertices

After the circuit in Section A.2, we have a newly-inserted point x, its output
hnx(x) and nx, as well as (up to) t candidate collisions y1, . . . , yt and their
associated numbers nyi . Our goal is to decide whether the vertex is now marked
or not.

A naive search for the golden collision among each candidate collision will
introduce a history dependence. For example, if we insert the golden collision
with no extraneous collisions, we will detect it and flip a flag for the vertex. If
we then insert more than t predecessors of one half of the golden collision, then
we might remove the other half of the golden collision but not detect it, because
it might not appear in the list of t candidate collisions.

To avoid this, we modify the circuit based on the number of candidate colli-
sions. If there is exactly one candidate collision, we check for a golden collision
with the new point and the candidate collision. If there are are more than two
candidate collisions then we do not do any check at all. If it has exactly two
candidate collisions, we check for the golden collision between the two candidate
collisions (i.e. those already in the list).

Theorem A.1 shows that this ensures that if we only have one predecessor
from each half of the golden collision, the vertex will be marked, and that the
only marked vertices will be those with exactly one predecessor from each half of
the golden collision. In Section B we find that this has negligible impact on the
cost. Ultimately, the probability of choosing a predecessor of the golden collision
is so small that there are only a tiny handful of vertices which have more than
2 predecessors, and so we can safely ignore them.

Theorem A.1. Using the circuit above with t ≥ 3 ensures that a vertex is
marked if and only if it contains exactly 1 predecessor for each half of the golden
collision.

Proof. Suppose every vertex is correctly marked in this way. We will show that
one update maintains this property.

If the vertex has no predecessors of the golden collision, then a newly inserted
element will not create a collision, and the vertex will not become marked.

If the vertex has exactly one predecessor of the golden collision, then it will
not be marked. If a newly inserted element forms a collision with this predecessor,
then we run the golden collision detection circuit. If the new point is a predecessor
of the same half, the vertex remains unmarked; if it is a predecessor of the other
half, the new vertex becomes marked.

If the vertex has two predecessors of one half of the golden collision, then
when a new element is inserted that collides with these, we run a circuit that
only checks for a golden collision among the existing two predecessors. It will
not find the golden collision, so it will not flip the “marked” flag for the vertex,
so the vertex remains unmarked. This is correct, since the updated vertex will
have more than 1 predecessor for one half of the golden collision.

If the vertex has exactly 1 predecessor for each half, it starts marked. When a
new element is inserted, we run a circuit that looks for the golden collision among

29



the existing collisions. This circuit will find a collision, and flip the “marked” flag,
which un-marks the vertex. The vertex now contains 2 predecessors for one half
of the golden collision, so this is correct.

The vertex will have more than two predecessors of the golden collision if
and only if the circuit detects more than two collisions. In this case, the vertex
will not be marked, and we will not run either detection circuit, so it remains
unmarked. ut

Multiple golden collisions. If there are multiple golden collisions, the previous
method functions almost correctly. If a vertex contains more than one golden
collision, there may be some history dependence if one is a predecessor of the
other. We can regard this as an imperfect update. The error is at most ε2, and
since we only iterate 1/

√
εδ walk steps, this causes no problems.

A.5 Constant Savings

Note that there are many points here where we could reduce the cost by not
uncomputing intermediate iterations of h applied to the new point. We ignore
such optimizations, since they only give a constant factor improvement.

B Probability Analysis

The analysis of van Oorschot and Wiener [vOW99] rests on several heuristic
assumptions and numerical evidence for those assumptions. Since we analyze
their algorithm as a random walk, these heuristics do not help our analysis.
Thus, we must explicitly prove several results about random functions for our
algorithm (see [FO90] for other standard results).

We define the set of predecessors of x as

Px = {y ∈ X |hn(y) = x, n ≥ 0} . (29)

We then let Px = |Px|. Our goal is to provide distributions of both the
number of predecessors, the total height of the tree of predecessors, and the
joint distribution among both halves of a particular collision.

Lemma B.1. The probability that a random function h : X → X is chosen such
that Px = t is given by

Pr[Px = t] =
tt−1

ett!

(
1 +O( 1

N )
)

(30)

for t = o(N). In particular, Pr[Px ≥ t] = Θ(1/
√
t).

Proof. We count the number of such functions. We select t − 1 elements out of
the N − 1 elements which are not x to be x’s predecessors. These form a tree
with x as the root. There are tt−2 undirected trees (Cayley’s formula), which
then uniquely defines a direction for each edge to put x at the root. Then the
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remaining N−t points must map only to themselves. There are (N−t)N−t ways
to do this. Then we have N choices for the value of h(x). There are NN random
functions total, giving a probability of(

N−1
t−1
)
tt−2N(N − t)N−t

NN
=
tt−1

t!

N !

NN

(N − t)N−t

(N − t)!
. (31)

Stirling’s formula, applied to terms with N , gives an approximation of

tt−1e−t

t!

√
N

N − t
(
1 +O( 1

N )
)
. (32)

Since N
N−t = 1 + t

N−t = 1 +O(1/N), we get the first result. For the second,
we use Stirling’s approximation again to show that Pr[Px = t] ∼ 1√

2πt3
. An

integral approximation gives the asymptotics. ut

Lemma B.2. Fix x, y ∈ X. Let h be a random function under the restriction
that h(x) = h(y). Then for t, s = o(N),

Pr[Px = t, Py = s] =
tt−1ss−1

ett!ess!

(
1 +O( 1

N )
)

(33)

and in particular the probability that x and y both have at least t predecessors is
Θ(1/t).

Proof. We assume s ≥ t without loss of generality.
First note that x and y can only have the same set of predecessors if they

are in the same cycle, but they cannot be in the same cycle because h(x) =
h(y). Then either their sets of predecessors are disjoint, or x is a predecessor
of y (meaning h(x) is a predecessor of y). We cannot have y as a predecessor
of x, because then x would have more predessors than y, contradicting our
assumption.

When the sets of predecessors are disjoint, we select t − 1 elements to be
predecessors of x from the N − 2 elements that are neither x nor y, then s −
1 elements out of the remainder to be predecessors of y. Then we map the
remaining elements to themselves, then pick one of the N − t− s elements that
are not predecessors of x or y to be the element h(x). The probablity of such a
function is (

N−2
t−1
)
tt−2

(
N−t−1
s−1

)
ss−2(N − t− s)N−t−s(N − t− s)

NN−1 . (34)

This can be simplified and then approximated to

tt−1

t!

ss−1

s!

N !

NN

(N − t− s)N−t−s

(N − t− s)!
N − t− s
N − 1

=
tt−1

ett!

ss−1

ess!
(1 +O( 1

N )). (35)

Our goal is now to show that the remaining term, where x is a predecessor
of y, is of order O(1/N).
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If x is a predecessor of y, we choose s − 2 predecessors of y (one will be
x), and of those, we choose t − 1 to be predecessors of x. Then we form a tree
behind x, then we form a tree of the remaining s − t elements. Then we must
attach the two trees: There are s − t choices for where to attach x, i.e., s − t
choices for h(x). This forces h(y) to a specific value. From there, the remaining
N − s non-predecessor elements map to themselves. The probability of this type
of function is (

N−2
s−2
)(
s−2
t−1
)
tt−2(s− t)s−t−2(s− t)(N − s)N−s

NN−1 . (36)

This can be simplified to

tt−1

t!

(s− t)s−t

(s− t)!
N !

NN

(N − s)N−s

(N − s)!
1

N − 1
(37)

which, up to errors of order O(1/N), equals

1

N

(
tt−1

ett!

(s− t)s−t

es−t(s− t)!

)
(38)

which fits within the error term of Equation 35, since s− t ≤ s. ut

Lemma B.3. Let nx be the height of the predecessors of x: the largest integer
such that there is some p ∈ X with hnx(p) = x. Define ny similarly. Suppose
x has t predecessors and y has s predecessors. For c > 0, the probability that
nx > c

√
2πt or ny > c

√
2πs is at most

2(π − 3)

3(c− 1)2
(
1 +O( sN )

)
. (39)

Proof. The probability that a tree on n vertices has maximum height h will
decrease with n [RS67], so we can assume that x and y have disjoint trees of
predecessors and this will overestimate the probability of tall predecessor trees.

By [RS67], the height of a random tree on t vertices has expected value
√
2πt

with variance 2π(π−3)t
3 . Chebyshev’s equality implies that the probability that

nx > c
√
2πt is at most π−3

3(c−1)2 , and this is the same probability that ny > c
√
2πs.

The union bound gives the main term of the result.
If x is part of a cycle, then nx is infinite. This can only occur if h(x) is a

predecessor of x, which occurs with probability t/N , hence the error term, which
also accounts for infinite ny. ut

We now conclude how many vertices will be marked, assuming that x and y
have precessors with small height. Recall that a vertex is marked if and only if
it contains exactly one predecessor of x and one predecessor of y.

Theorem B.1. Let h be a function such that h(x) = h(y), x has t predecessors
and the largest trail leading to x has nx ≤ u points, y has s predecessors and the
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largest trail leading to y has ny ≤ u points, then the fraction of marked vertices
in the graph defined in Section 3.3 (with u iterations of h for each point) is

Θ

(
R2ts

N2

)
. (40)

Proof. Define the u-predecessors of x by

Pu(x) = {p ∈ X |hm(p) = x, u ≥ m ≥ 0} . (41)

A vertex is defined by R random distinct points from X. It will be marked
if and only if it contains exactly one point from Pu(x) and exactly one from
Pu(y). Since nx, ny ≤ u, the sizes of these sets are just t and s. This acts as a
multinomial distribution, and thus the probability of one element from each set
is (

R

2

)
t

N

s

N

(
1− t+ s

N

)R−2
= Θ

(
R2ts

N2

)
. (42)

ut

This covers the case where h has given the golden collision few predecessors,
but we may also wish to analyze functions that give more predecessors. We
expect this to increase the odds of detecting the golden collision, since there will
probably be more close predecessors, even though the height of the predecessors
will be large. However, it is sufficient for us to prove that, with high probability,
increasing the height will not decrease the number of close predecessors.

Lemma B.4. Let h be a random function such that x has t predecessors, for
t ≥ u2

c2π . Then the probability that x has at least u2

c2π predecessors of length at
most u is at least

π − 3

3(c− 1)2
. (43)

Proof. Consider a subset of t elements of X, and consider the subset of random
functions such that these t elements are the predecessors of x. Consider choosing
a random subset of m of these predecessors. If we form these elements into a
tree, then regardless of the shape of this tree, there are exactly the same number
of ways to attach the remaining t−m elements to form a larger tree. To see this,
once we select the m labelled elements and arrange them into a tree, we can view
them as m isolated points to which we attach trees formed from the remaining
t−m points. As long as we do not connect any two of the m points, we will not
form a tree. Any such arrangement of trees and connections produces a valid and
distinct tree out of the t points, and any such tree with the m selected points
forming a subtree can be constructed in this way.

Thus, among trees where these m elements form a connected subtree rooted
at x, the number of trees where these particular m elements form any particular
tree shape is the same as any other tree shape.

Take any function h with a tree of t predecessors of x. Choose any m-element
subset of these elements that form a connected tree rooted at x, with m such
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that c
√
2πm = u. By [RS67], the probability of this tree having height greater

than u is at most
(π − 3)

3(c− 1)2
. (44)

If these elements have a height less than this, then they are all at most u-
predecessors of x.

Since this reasoning would work for any set of t predecessors, this gives the
result. ut

Lemma B.4 is somewhat conservative. It’s possible that the number of close
predecessors grows as the tree size increases. This remains an interesting open
question.

This gives us the result we need for the fraction of marked vertices in a
function that we know gives many predecessors to the golden collision.

Theorem B.2. Suppose h is a random function such that x has at least t pre-
decessors and y has at least s predecessors. Then with probability at least

2(π − 3)

2(c− 1)2
(
1 +O( sN )

)
(45)

the fraction of marked vertices, when iterating h at least u times, is

Ω

(
R2 min{u2, t}min{u2, s}

N2

)
(46)

Proof. Suppose h is such that x has exactly kx ≥ t predecessors. If kx ≤ u2,
then by Lemma B.3, with the probability given, all kx predecessors will be at
a distance of at most u. Thus, every predecessor is sufficient and we have a
kx/N ≥ t/N probability of choosing such an element.

If kx > u2, i.e., kx = u2

c2π for some c, then by Lemma B.4, with at least the
same probability, we have at least u2

c2π predecessors of distance at most u, and
hence we have a probability of u2

c2π of choosing such an element.
The same reasoning holds for y. Thus, by the same reasoning as Theorem B.1,

we have the result. Since the number of predecessors was arbitrary in this rea-
soning, this holds for any random function where x and y have at least t and s
predecessors. ut

Our only remaining issue is ensuring that the predecessors leading to x and
y are detected. If we retain the last distinguished point, we will only detect them
if we reach a distinguished point after the golden collision. This is a property of
the function h; if the next distinguished point is too far, then all predecessors
of x and y will fail to detect the collision.

Thus, suppose that we iterate h for u1 + u2 times. We choose u1 to optimize
the bounds in the previous theorems, assuming that after roughly u1 steps we
reach the golden collision. We choose u2 to reach a distinguished point.
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Each iteration after the golden collision has a θ chance of being a distin-
guished point. Thus, the probability of missing a distinguished point is

(1− θ)u2 < e−θu2 (47)

and thus u2 = Ω(1/θ) will give at least a constant probability that a particular
function will reach a distinguished point within n2 steps after the golden collision.

Ultimately, this leads to our main theorem:

Theorem B.3. Let 1 ≤ t be in O(1/θ). Then with probability Ω( 1t ), the fraction
of marked vertices is Ω(R

2 min{u4,t2}
N2 ).

Proof. From Lemma B.1, the probability is Θ( 1t ) that both halves of the golden
collision will have at least t predecessors. Theorem B.2 shows that a constant
proportion of these functions will have at least Ω(R

2 min{u4,t2}
N2 ) marked vertices.

ut
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