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Abstract

Since the Lyubashevsky-Peikert-Regev Eurocrypt 2010 paper the
Ring-LWE has been the hard computational problem for lattice crypto-
graphic constructions. The fundamental problem is its hardness which
has been based on the conjectured hardness of approximating ideal-
SIVP or ideal-SVP. Though it is now widely conjectured both are hard
in classical and quantum computation model there have no sufficient
attacks proposed and considered. In this paper we propose sublattice
attacks on Ring-LWE over an arbitrary number field from sublattice
pairs. We give a sequence of number fields Kn of degree dn −→ ∞,
such that the decision Ring-LWE with very wide error distributions
over integer rings of Kn can be solved by a polynomial (in dn) time
algorithm from our sublattice attack. The widths of error distribution-
s in our attack is in the range of Peikert-Regev-Stephens-Davidowitz
hardness reduction results in their STOC 2017 paper. Hence we al-
so prove that approximating ideal-SIV Ppoly(d) with some polynomial
factor for ideal lattices in these number fields can be solved by a poly-
nomial time quantum algorithm.
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1 Introduction

1.1 Algebraic number fields

An algebraic number field is a finite degree d extension of the rational num-
ber field Q. Let K be an algebraic number field and RK be its ring of
integers in K. From the primitive element theorem there exists an element
θ ∈ K such that K = Q[x]/(f) = Q[θ], where f(x) ∈ Z[x] is an irre-
ducible monic polynomial of degree d satisfying f(θ) = 0 (see [13, 5]). It
is well-known there is a positive definite inner product on K ⊗ C defined
by < u, v >= Σd

i=1σi(u)
˜σi(v), where σi, i = 1, . . . , d, are d embedings of

K in C, and ṽ is complex conjugate (see [8, 16]). Sometimes we use ||u||tr
to represent the norm < u, u >1/2. This is the norm with respect to the
canonical embedding (see [26]). An ideal in RK is a subset of RK which
is closed under ring addition and multiplication by an arbitrary element
in RK. An ideal is a sub-lattice in RK of dimension deg(K/Q). For an
ideal I ⊂ RK, the (algebraic) norm of ideal I is defined by the cardinality
N(I) = |RK/I|, we have N(I · J) = N(I)N(J). For a principal ideal xRK

generated by an element x, then N(x) = N(xRK), we refer to [5, 12] for
the detail. The dual of a lattice L ⊂ K of rank deg(K/Q) is defined by
L∨ = {x ∈ K, trK/Q(ax) ∈ Z, ∀a ∈ L}. An order O ⊂ K in a number field
K is a subring of K which is a lattice with rank equal to deg(K/Q). We
refer to [12, 13, 5] for number theoretic properties of orders in number fields.

Let ξn be a primitive n-th root of unity, the n-th cyclotomic polynomial
Φn is defined as Φn(x) =

∏n
j=1,gcd(j,n)=1(x− ξjn). This is a monic irreducible

polynomial in Z[x] of degree ϕ(n), where ϕ is the Euler function. The n-th
cyclotomic field is Q(ξn) = Q[x]/(Φn(x)). When n = p is an odd prime
Φp(x) = xp−1+xp−2+ · · ·+x+1 and when n = pm, Φpm(x) = Φp(x

pm−1
) =

(xp
m−1

)p−1+ · · ·+xp
m−1

+1. The ring of integers in Q(ξn) is exactly Z[ξn] =
Z[x]/(Φn(x)) (see Theorem 2.6 in [47]). Hence the cyclotomic number field
Q[ξn] is a monogenic field. The discriminant of the cyclotomic field (also
the discriminant of the cyclotomic polynomial Φn) is

(−1)
ϕ(n)
2

nϕ(n)∏
p|n p

ϕ(n)
p−1

.

A polynomial f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ Z[X] satisfies

the condition of the Eisenstein criterion at a prime p, if p|ai for 0 ≤ i ≤ n−1
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and p2 not dividing a0. A polynomial satisfying this condition is irreducible
in Z[x] from the Eisenstein criterion (see [5, 13]).

1.2 Gaussian and discrete Gaussian

Set ρs,c(x) = e−π||x−c||2/s2 for any vector c in Rn and any s > 0, ρs = ρs,0,
ρ = ρ1. The Gaussian distribution around c with width s is defined by its

probability density function Ds,c =
ρs,c(x)

sn , ∀x ∈ Rn.

Discretization. For any discrete subset A ⊂ Rn we set ρs,c(A) =
Σx∈Aρs,c(x) and Ds,c(A) = Σx∈ADs,c(x). Let L ⊂ Rn be a dimension n
lattice, the discrete Gaussian distribution over L is the probability distribu-
tion over L defined by

∀x ∈ L, DL,s,c =
Ds,c(x)

Ds,c(L)
=

ρs,c(x)

ρs,c(L)
.

When c = 0, the discrete Gaussian distribution is denoted by DL,s. We
refer to [31] for the following properties of discrete Gaussian distributions.
1) If x is distributed according to Ds,c and conditioned on x ∈ L, the con-
ditional distribution of x is DL,s,c.
2) For any lattice L and any vector c ∈ Rn we have ρs,c(L) ≤ ρs(L).

3) Set C = c
√
2πee−πc2 < 1 for any c > 1√

2π
, and n dimensional lattice L

and v ∈ Rn, ρ(L − c
√
nBn) ≤ Cnρ(L), ρ((L + v) − c

√
nBn) ≤ Cnρ(L),

where Bn is the unit-ball centered at the origin.
4 If a e ∈ Rn is sampled according to a Gaussian distribution with width σ,
then the Euclid norm ||e|| of e satisfies ||e|| ≤

√
3nσ with an overwhelming

probability.

Width with the canonical embedding

The Gaussian distribution depends on coordinates and the norm. We
need to pay special attention to coordinates (or the basis with which co-
ordinates are obtained) and the norm used when we say the ”width” of a
Gaussian distribution. The ”canonical embedding’ was used to define the
Gaussian distribution on K ⊗ C (see [26, 27, 38, 7]). We refer the further
analysis to [7, 40].
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1.3 SVP and SIVP

A lattice L is a discrete subgroup in Rn generated by several linear in-
dependent vectors b1, . . . ,bm over the ring of integers, where m ≤ n,
L := {a1b1 + · · · + ambm : a1 ∈ Z, . . . , am ∈ Z}. The volume vol(L) of
this lattice is

√
det(B ·Bτ ), where B := (bij) is the m× n generator matrix

of this lattice, bi = (bi1, . . . , bin) ∈ Rn, i = 1, · · · ,m, are base vectors of
this lattice. The length of the shortest non-zero lattice vectors is denoted by
λ1(L). The well-known shortest vector problem (SVP) is defined as follows.
Given an arbitrary Z basis of an arbitrary lattice L to find a lattice vector
with length λ1(L) (see [32]). The approximating shortest vector problem
SV Pf(m) is to find some lattice vectors of length within f(m)λ1(L) where
f(m) is an approximating factor as a function of the lattice dimension m
(see [32]). The Shortest Independent Vectors Problem (SIV Pγ(m)) is de-
fined as follows. Given an arbitrary Z basis of an arbitrary lattice L of
dimension m, to find m independent lattice vectors such that the maximum
length of these m lattice vectors is upper bounded by γ(m)λm(L), where
λm(L) is the m-th Minkowski’s successive minima of lattice L (see [32]). A
breakthrough result of M. Ajtai [3] showed that SVP is NP-hard under the
randomized reduction. Another breakthrough proved by Micciancio asserts
that approximating SVP within a constant factor is NP-hard under the ran-
domized reduction (see [32]). For the latest development we refer to Khot
[20]. It was proved that approximating SVP within a quasi-polynomial fac-
tor is NP-hard under the randomized reduction. For the hardness results
about SV P and SIV P we refer to [20, 21, 44], we refer to [19] for Minkows-
ki’s first and second theorems on successive minima of lattices.

1.4 Plain LWE and Ring-LWE

Plain LWE

Plain LWE and its lattice-based cryptographic construction was originat-
ed from [42]. We refer to [43] for a survey. Let n be the security parameter,
q be an integer modulus and χ be an error distribution over Zq. Let s ∈ Zn

q

be a secret chosen uniformly at random. Given access to d samples of the
form

(a, [a · s+ e]q) ∈ Zn
q × Zq,

where a ∈ Zn
q are chosen uniformly at random and e are sampled from the

error distribution χ, the search LWE is to recover the secret s. In general χ
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is the discrete Gaussian distribution with the width σ. Here a · s = Σaisi is
the inner product of two vectors in Zn

q .

Write the d coefficient vectors a1, . . . ,ad as columns of a matrix A ∈
Zn×d
q , Then the search LWE problem LWEn,q,d,χ is to recover the secret

from Aτ · s + e = b mod q from public (A,b). Here τ is the transposition
of a matrix and (s, e) is an unknown vector.

Solving decision LWEn,q,d,χ is to distinguish with non-negligible proba-
bility whether (A,b) ∈ Zn×d

q × Zd
q is sampled uniformly at random, or if it

is of the form (A,Aτ · s+ e) where e is sampled from the distribution χ.

Here [a · s + e]q is the residue class in the interval (− q
2 ,

q
2 ]. We refer

to [43] for the detail and the background. When q is prime and polynomi-
al bounded by poly(n), there is a polynomial-time reduction between the
search and decision LWE (see [43]). For plain LWE without the ring struc-
ture the reduction results from approximating SVP to plain LWE were given
in [43, 35, 6].

Ring-LWE

The algebraic structure of ring was first introduced to the hardness of
computational problems of lattices in [29] (also in [24, 25]) for the consider-
ation of efficiency. This is Ring-SIS (Short Integer Solution over Ring, see
[29]) and it is the analogue of Ajtai’s SIS problem. The one-wayness of some
function was proved in [29] by assuming the hardness of some computational
problems of cyclic lattices (ideal lattices). Ring-LWE was originated from
2010 paper [26] and then extended in [27]. We refer to [37] for a survey
of the history of development, the theory and cryptographic constructions
based on Ring-LWE and Ring-SIS.

If the Zn
q in plain LWE is replaced by Pq = P/qP where P = Z[x]/(f),

f(x) is a monic irreducible polynomial of degree n in Z[x], this is the poly-
nomial learning with errors (PLWE). The inner product a · s = Σaisi is
replaced by the multiplication a · s in the ring Pq. The error distribution
χ is defined as the discrete Gaussian distributions with respect to the basis
1, x, x2, . . . , xn−1 (see [18, 7]). We refer to [45] for relations and reductions
between Ring-LWE and PLWE.

If the Zn
q is replaced by (RK)q = RK/qRK where RK is the ring
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of integers in an algebraic number field K of degree n, this is the Ring-
LWE, learning with errors over the ring RK. The secret s is in the dual
(RK

∨)q = RK
∨/qRK

∨ and a ∈ RKq is chosen uniformly at random. The
inner product a · s = Σaisi is replaced by the multiplication a · s in (RK

∨)q.
The error e is in (RK

∨)q = RK
∨/qRK

∨. In this case the width of error
distribution is defined by the trace norm on K ⊗ R via the canonical em-
bedding (see [26, 7]). This is called the dual form of Ring-LWE problem .
When s ∈ (RK)q and e ∈ (RK)q are assumed it is called the non-dual form
of Ring LWE problem. As indicated in [38] page 10 in monogenic case a
”tweak factor” f ′(θ) can be used to make two versions equivalent.

LWE over number field lattice

Learning with errors over a number field lattice was introduced in [39].
Let L ⊂ K be a rank deg(K) lattice and

OL = {x ∈ K : x · L ⊂ L}.

Then OL is an order. Set OL
q = OL/qOL, L∨

q = L∨/qL∨. The secret
vector s is in L∨

q and a is in OL
q. Here we notice that O · L∨ ⊂ L∨. Then

the error e ∈ L∨
q. For the detail and hardness reduction we refer to [39].

1.5 Hardness reduction

The reduction results from approximating ideal-SIV Ppoly(d) (or approxi-
mating ideal-SV Ppoly(d)) to Ring-LWE were first given in [26, 27] for search
version and then a general form to decision version was proved for arbitrary
number fields in [40]. We refer to [40] Theorem 6.2 and Corollary 6.3 for the
following hardness reduction result.

Hardness reduction for decision Ring-LWE. Let K be an arbi-
trary number field of degree n and R = RK. Let α = α(n) ∈ (0, 1), and let
q = q(n) be an integer such that αq ≥ 2ω(1). Then there exists a polynomial-
time quantum reduction from K − SIV Pγ to average-case, decision R −
LWEq,Υα, for any γ = max{ η(I)·2

α·ω(1) ,
√
2n

λ1(I)
} ≤ max{ω(

√
nlogn/α),

√
2n}.

Here K−SIV Pγ is the Shortest Independent Vector Problems for any frac-
tional ideal lattice in K. I is any ideal lattice and η(I) is the smoothing
parameter of I.
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1.6 Known attacks

1.6.1 Attacks on LWE

The famous Blum-Kalai-Wasserman (BKW) algorithm in [4] was improved
in [1, 22]. E Stange presented its ring-based adaption in [46]. On the other
hand some provable weak instances of Ring-LWE was given in [17, 18, 11]
and analysed in [7, 38]. As showed in [38, 7] these instances of Ring-LWE
can be solved by polynomial time algorithms main because the widths of
Gaussian distributions of errors are too small or Gaussian distributions of
errors are too skew. In [8] these attacks were improved for these modulus
parameters which are factors of f(u), where f is the defining equation of
the number field and u is an arbitrary integer. However the Gaussian dis-
tribution is still required to be narrow such that this type of attack can be
succeed. We refer to [2] for the dual lattice attack to LWE with small secrets.

1.6.2 Approximating ideal-SVP

In [14] it was proved approximating SV P with factor 2O(
√

nlogn) for princi-
pal ideals in cyclotomic integer rings Z[ξn] with n = pm can be found from
an arbitrary generator within polynomial time by an efficient bounded dis-
tance decoding algorithm for the log-unit lattice. This work was extended
in [15] and [41] such that sub-exponential complexity algorithms with some
pre-processing for approx-SVP with some sub-exponential factor for ideal
lattices can been achieved. The analysis of the approximating factor was
recently published in [16]. For the recent developments we refer to [23, 34].

2 Our contribution

2.1 Sublattice pair attack

We consider the decision non-dual Ring-LWE over the integer ring RK of
a number field K of degree d. Let q be a modulus parameter. a and s are
chosen uniformly at random in (RK)q = RK/qRK. The error e is sampled
in (RK)q according to a discrete Gaussian distribution with the width σ.
We define sublattice pair (L1,L2) as follows.

Definition. Let c, c1, c2, c < c3 < c4, c4 + 3 < c5, c6 be given fixed
positive real numbers. For the Ring-LWE over RK with the modulus pa-
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rameter q satisfying d ≤ q ≤ dc1, (L1,L2) is called a sublattice pair with
q, c, c1, c2, c < c3 < c4, c5, c6 if the following conditions are satisfied.
1) L1 and L2 are rank d lattices satisfying qRK ⊂ Li ⊂ RK and indexes
satisfy |RK/L1| ≤ dc2 and dc3 ≤ |RK/L2| ≤ dc4;
2) The probability Pe that the error e ∈ L1 is lower bounded by 1

dc3−c ;
3) We assume that the probability of a uniformly chosen a ∈ RKq is in-
vertible is at least 1

2 . For arbitrary uniformly chosen invertible elements
a1, ....,adc5 in RKq, we can find aj1 , . . . ,ajdc4+2 within a O(dc6) time such

that a−1
ji

L1 ⊂ L2 for i = 1, . . . , dc4+2.

Here an element a in RK is invertible in (RK)q = RK/qRK if and only
if there is an element a−1 ∈ RK such that a · a−1 ≡ 1 mod q. The main
condition 2) is achieved by the property that there are sufficiently many very
short lattice vectors in L∨

1 , we refer to Theorem 3.1. The sublattice pair can
be defined for RK

∨ or more generally defined for LWE over an arbitrary
number field lattice.

Please notice that the condition 2)

Pe ≥ 1

dc3−c

and the condition 1)
1

|RK/L2|
≤ 1

dc3

implies

Pe ≥ dc

|RK/L2|
.

This is the main point that the samples from Ring-LWE equations can be
distinguished from uniformly ones within polynomial time. We refer to the
proof of Theorem 2.1.

The following result is to transform the LWE equation a · s + e ≡ b
mod q to a weaker equation a · s+ e ≡ b mod L2 when L2 has a sublattice
pair. In previous works [18, 7, 38] only the case L2 is an ideal was considered.

Theorem 2.1. Let K be a degree d extension field of Q with the integer
ring RK. We consider the decision non-dual Ring-LWE over RK for a poly-
nomially bounded modulus parameter q satisfying d ≤ q ≤ dc1. Suppose that
there exists a sublattice pair (L1,L2) with q, c, c1, c2, c < c3 < c4, c4 + 3 <
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c5, c6. Then the decision non-dual Ring-LWE over RK for the modulus pa-
rameter q can be solved in a O(dc6+8c1c4+c3) time complexity.

We consider the following sequence of irreducible polynomials fd =
xd − udx + ud(ud − 1) ∈ Z[x], where ud is a polynomially bounded pos-
itive integer which contain only prime factors of exponent 1. From the
Eisenstein criterion fd is an irreducible polynomial. Let Kd = Q[x]/(fd(x))
be a degree d extension field of Q with the integer ring RKd

. We will take
ud = 2pd where pd is a prime number such that 2pd−1 satisfies the following
property.
1)d− 1 is a prime number;
2)(d− 1)|2pd − 1;
3) All prime factors of 2pd − 1 is not smaller than d− 1.
pd is assumed polynomially bounded and satisfies other conditions we will
give explicitly in Section 5.

Theorem 2.2. There exist a sequence of polynomially bounded positive
integers ud = 2pd where pd is a suitable polynomially bounded prime number,
and a sequence of modulus parameters qd = pd(2pd − 1)2, such that if the

width of the error distributions satisfies
√
d

λ1(RKd
∨)

≤ σ ≤ ud(ud−1)dC+1

4 , where

C is an arbitrary large fixed positive integer, we can construct a sequence of
sublattice pairs (Ld

1,L
d
2) satisfying

1)|RKd
/Ld

2| is polynomially bounded and at least
u2
d(ud−1)3

8 ;
2)The probability e ∈ Ld

1 is lower bounded by 1
64d3C+1u2

d
(ud−1)2

.

The construction in Theorem 2.2 implies that for Ring-LWE over RKd
,

we can always have an effective sublattice attack if the upper bound on
widths (wider than the range in hardness reduction results in [40]) in The-
orem 2.2 is satisfied. We should notice that from the proof of Theorem 2.1
the partial information of the private key s mod L2 can be found within a
polynomial time when polynomially bounded many samples are given, we
refer to Section 5.

Corollary 2.1. We consider the non-dual Ring-LWE over RKd
as

above. There exist a sequence of polynomially bounded positive integers
ud = 2pd where pd is a suitable polynomially bounded prime number, and a
sequence of modulus parameters qd = pd(2pd − 1)2, such that if the width of

the error distributions satisfies
√
d

λ1(RKd
∨)

≤ σ ≤ ud(ud−1)dC+1

4 where C is an

arbitrary large fixed positive integer, the decision non-dual Ring-LWE with
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modulus parameter qd can be solved in polynomial time (in d).

We can consider the attack on the dual form of decision Ring-LWE from
Corollary 2.1 since we estimates the size |f ′(θ)| of ”tweak factors” in Corol-
lary 4.1. We have the following result.

Corollary 2.2. We consider the dual form of Ring-LWE over RK
∨ for

the modulus parameter qd = pd(2pd−1) where K is the number field as above.

Suppose that the width of the error distributions satisfies
√
d

λ1(RKd
∨)

≤ σ ≤ dC

where C is an arbitrary large fixed positive integer. Then the dual form of
the decision Ring-LWE with above modulus parameter qd can be solved in
polynomial time (in d).

From the hardness reduction result Theorem 6.2 and Corollary 6.3 in
[40] we have the following result. We refer to [9] for another proof of similar
result without using the reduction to Ring-LWE.

Corollary 2.3. Let Kd be a sequence of number field sequence with their
degrees d −→ ∞ as in Theorem 2.2. Then approximating SIV Pd18 with ap-
proximating factor d18 for ideal lattices in Kd can be solved by a polynomial
(in d) time quantum algorithm.

2.2 Sublattice attack is natural and necessary

For Ring-LWE over RK the equation is a · s + e ≡ b mod q, since the
modulus parameter is q, if we check each possibility there are huge expo-
nential qd possibilities. Therefore it is natural to check each possibility of
|RK/L| ≤ poly(d) possibilities of the weaker LWE equation a · s + e ≡ b
mod L for each sublattice L satisfying

qRK ⊂ L ⊂ RK

and

|RK/L| ≤ poly(d).

From this point of view it is not natural to require L to be an ideal. The
sublattice attack on LWE over arbitrary number lattices was initiated from
our previous paper [8] and extended in this paper.
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In previous attacks on Ring-LWE in [18] (then analysed in [7, 38]) the
Ring-LWE equation a·s+e ≡ bmod q was transformed to consider a·s+e ≡
b mod P, where P is a prime ideal factor of the modulus parameter q with
a polynomially bounded algebraic norm N(P). This kind of attack initiated
in [18] and then analysed in [7, 38] can be called ideal-attack on Ring-LWE.
In ideal-attack on Ring-LWE λ1(P

∨) satisfies

λ1(P
∨) ≥

√
dN(P∨)1/d ≥ d1/2−c/d 1

|∆K|1/d
.

Since P has a polynomially bounded algebraic norm, the width has a small
upper bound for solvable instances for some fixed positive integer c . In our
sublattice attack we propose to consider the equation a · s+ e ≡ b mod L,
where L is a sublattice with polynomially bounded index |RK/L| and satis-
fying qRK ⊂ L. Then we find subtle sublattice L such that λ1(L

∨) is very
small and there are many very short lattice vectors in L∨. From Theorem
3.1 the above equation can be solved for very large widths of error distribu-
tions. Our main results indicate that asymptotically our sublattice attack
on Ring-LWE is essentially much better than ideal-attack on Ring-LWE at
least for certain number fields.

2.3 Sublattice pairs are needed and number-field dependent

In previous ideal-attack in [18, 7] when cosets of s ∈ RK/P are checked,
since a ∈ OP = RK, the multiplication of a ∈ RK sends a coset to another
coset. However when L is only a sublattice, this is not true. If we want
both L and OL ∩

RK are polynomially bounded index in RK, as proved in
Theorem 4.2, λ1(L

∨) can not be very small. Hence the sublattice attack
with one sublattice as suggest in [8] do not work.

Explicit constructed sublattice pairs can be used for an efficient attack
on the Ring-LWE as proved in Theorem 2.1. However these subtle sublat-
tices depend on the number-field structures of sequences of number fields.
We refer to [10] for more number fields with sublattice pairs. Sublattice
pairs can be defined for LWE (learning from errors) over arbitrary number
field lattices and a similar result as Theorem 2.1 can be proved. An essential
problem to the Ring-LWE over number fields and the LWE over arbitrary
number field lattices is the explicit construction of these subtle sublattice
pairs.
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2.4 Cryptographic and algorithmic implications

From Corollary 2.1 the decision Ring-LWE over certain number fields can be
solved by a polynomial time algorithm in classical computation model even
for error distributions with the widths in recommended range of [40]. Now
it is absolutely necessary to prove that approximating ideal-SIV Ppoly(d) for
two-to-power cyclotomic fields is hard in quantum and classical computation
model, otherwise from our main results it would be possible that the cryp-
tographic constructions based on Ring-LWE over two-to-power cyclotomic
fields is not secure even in classical computation model.

For the complexity theory of computational problems for ideal lattices,
our main result Corollary 2.2 indicates that approximating ideal-SIVP with
a polynomial factor for certain number fields is easy in quantum computation
model. It is interesting to know for other number field sequences whether
the approximating ideal-SIV Ppoly(d) is easy or not in quantum computa-
tional model.

3 Probability computation

We need the following computation of probability in Theorem 2.2.

Theorem 3.1. Let L be a rank d number field lattice in a degree d
number field K. Let L1 be rank d sublattice of L∨ satisfying that qL∨ ⊂
L1 ⊂ L∨ and the cardinality |L∨/L1| is polynomially bounded. Suppose

that the width of the Gaussian distribution of errors e satisfying
√
d

λ1(L)
≤

σ ≤
√
c1√

πλ1(L∨
1 )

and moreover there are at least |L∨/L1|
qc2 lattice vectors in L∨

1

satisfying ||x||tr ≤
√
c1√
πσ

, where c1 and c2 are fixed positive real numbers.

Then the probability e ∈ L1 is

Pe =
Σx∈L1e

−π(
||x||tr

σ
)2

Σx∈L∨e−π(
||x||tr

σ
)2
.

It satisfies

Pe ≥ 1

ec1qc2

when q is sufficiently large.
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Proof. We calculate the probability Pe of the condition e ≡ 0 mod L1.
It is clear

Pe =
Σx∈L1e

−π(
||x||tr

σ
)2

Σx∈L∨e−π(
||x||tr

σ
)2
.

Set Y3(0) =
Σx∈L∨e−π(

||x||tr
σ )2

σn and Y4(0) =
Σx∈L1

e−π(
||x||tr

σ )2

σn . From the
Poisson summation formula (see [31]) we have

Y3(0) =
1

det(L∨)
Σx∈Le

−π(||x||trσ)2 .

and

Y4(0) =
1

det(L1)
Σx∈(L1)∨e

−π(||x||trσ)2 .

Since σ ≥
√
d

λ1(L)
then Σx∈L−0e

−π(||x||trσ)2 ≤ 1 + 1
2d

from Lemma 3.2 in [31].

For lattice vectors x ∈ L∨
1 satisfying

||x||tr ≤
√
c1√
πσ

we have
e−π(||x||trσ)2 ≥ e−c1 .

Hence Pe ≥ 1
|L∨/L1|(1 +

1
ec1 · |L∨/L1|

qc2 ). The conclusion follows directly.

4 Number theory

The following proposition is useful in this paper. Please refer to [13, 5] for
the proof.

Proposition 4.1. Let K = Q[α] be a number field of degree n and
f(T ) ∈ Q[T ] = anT

n + an−1T
n−1 + · · ·+ aT + a0 be the minimal polynomial

of α. Write

f(T ) = (T − α)(cn−1T
n−1 + · · ·+ c1(α)T + c0(α))

where cj(α) = Σn
i=j+1aiα

i−j−1. The dual base of {1, α, α2, . . . , αn−1} relative
to the trace product is

{c0(α)
f ′(α)

,
c1(α)

f ′(α)
, . . . ,

cn−1(α)

f ′(α)
}

13



.
Let p be a positive integer and pRK = Pe1 · · ·Pet

t where Pi are prime
ideals and ei ≥ 1 are positive integers, is the factorization of the ideal pRK

to the product of prime ideals.

Proposition 4.2. If I ⊂ RK is an ideal containing the positive integer
p, then I is of the form

P
e′1
j1
· · ·P

e′
t′
j′t

where t′ ≤ t e′i ≤ eji.

Proof. Set I =
∏

j Qj the factorization of I to the product of prime
ideals. Then p ∈ Qj and Qj is a prime ideal over p. The conclusion follows
directly.

From Proposition 4.2 only few ideals I satisfy the condition qRK ⊂ I.
Hence in sublattice attack it is not natural to require a sublattice L satisfy-
ing qRK ⊂ L ⊂ RK to be an ideal.

We refer to [33] Theorem 1 for the following result, which is useful to
estimate the trace norm of an algebraic integer.

Proposition 4.3. For any positive integer n and 1 ≤ k ≤ n − 1, let
P (x) = xn + an−k−1x

n−k−1 + · · · + a0 be a complex polynomial such that
a0 ̸= 0. For any root α of P , we have

|α| ≤ (n− k)
1

k+1 max
1≤j≤n

|an−j |
1
j .

Here |α| is the absolute value of the complex number α.

Set fu = xn−ux+u(u−1) where u is an positive integer with only prime
factors of exponent 1. Then fu(x) ∈ Z[x] is an irreducible polynomial from
the Eisenstein criterion. Let θ ∈ C be a root of fu, we have the following
result from Proposition 4.3.

Corollary 4.1. Let u be a positive integer satisfying n < u ≤ nc for
some fixed positive integer c. Then 1 < |θ| ≤ 9

8 when n is sufficiently large.

We have ||θ||tr ≤
√
2n(u(u− 1))

1
n and then

||θn−1||tr ≤
√
2n(u(u− 1))

14



and
||θn−2||tr ≤

√
2n(u(u− 1)).

Moreover f ′
u(θ) = nθn−1 − u satisfies

nu(u− 1)

2
≤ |f ′

u(θ)| ≤
3nu(u− 1)

2
.

Proof. From Proposition 4.3 the inequality |θ| ≤ 9
8 holds when n is

sufficiently large. If |θ| < 1, |θn−1| = |u− u(u−1)
θ | > 8|u(u−1)|

9 − u ≥ |u(u−1)|
2 .

This is a contradiction. Hence 1 < |θ|. The other conclusions follows from
Proposition 4.3 directly.

The following Kummer lemma (see [12, 5]) is useful for the decomposi-
tion of prime numbers to the product of prime ideals in number fields.

Proposition 4.4. Let K = Q[θ] be a number field, where θ is an alge-
braic integer whose monic minimal polynomial is denoted by f(X). Then for
any prime p not dividing |RK/Z[θ]| one can obtain the prime decomposition
of pRK as follows. Let f(X) ≡

∏g
i=1 fi(X)ei mod p be the decomposition

of f(X) module p into irreducible factors in Fp[X] where fi are taken to be
monic. Then

pRK =
g∏

i=1

Pei
i ,

where
Pi = (p, fi(θ)) = pRK + fi(θ)RK.

Furthermore the residual index of Pi is equal to the degree of fi.

We refer to [12] Theorem 6.1.4 for the following Dedekind criterion which
is helpful to decide f = |RK/Z[θ]|.

Proposition 4.5 (Dedekind Criterion) Let K = Q[θ] be a number
field, T (x) ∈ Z[x] the monic minimal polynomial of θ and p be a prime
number. Denote by ā the reduction module p (in Z or Z[θ]). Let

¯T (x) =
k∏

i=1

t̄i
ei

15



be the factorization of T (x) module p in Fp[x], and set

g(x) =
k∏

i=1

ti(x),

where ti ∈ Z[x] are arbitrary lifts of t̄i. Let h(x) be a monic lift of
¯T (x)
¯g(x)

and

set f(x) = g(x)h(x)−T (x)
p . Then |RK/Z[θ]| is not divisible by p if and only if

gcd(f̄ , ḡ, h̄) = 1 in Fp[x].

Let fu = xn − ux + u(u − 1) where u is a positive integer which has
only prime factors of exponent 1. Let θ ∈ C be a root of fu, K = Q[θ] =
Q[x]/(fu) is the number field. LetRK is the ring of integers inK, Z[θ] ⊂ RK

is an order.

Theorem 4.1. Let u be a positive integer satisfying
1) u

p is not zero in Fp for any prime factor of u; and
2) n− 1 is a factor of p− 1 for any prime factor p of u− 1.
Let fu = xn − ux + u(u − 1) as above, p be a prime factor of u or u − 1.
Then |RK/Z[θ]| is not divisible by p.

Proof. First of all we have fu ≡ (x2 − ux + u2 − 2)(xn−2 + uxn−3 +
uxn−4+ · · ·+ux+u) mod W if W is a factor of u(u−1)2. When p is a factor

of u, we can take g(x) = x, h(x) = xn−1. Then f(x) = xn−(xn−ux+u(u−1))
p =

u
px− u

p (u− 1). It is easy to verify gcd(f̄ , ḡ, h̄) = 1 in Fp[x]. The conclusion
follows from the Dedekind criterion.

When p is a prime factor of u−1 we have f(x) ≡ x(x−1)(xn−2+xn−3+
xn−4 + · · · + x + 1) mod p. Since n − 1 is a factor of p − 1, then xn−1 − 1
has n− 1 distinct roots in Fp. We can take g(x) = x(x− 1)(xn−2 + · · ·+1),

h(x) = 1. Then f(x) = xn−x−(xn−ux+u(u−1))
p = u−1

p x − uu−1
p . It is easy to

verify that gcd(h̄, f̄ , ḡ) = 1 in Fp. The conclusion follows from the Dedekind
criterion.

The main construction in Theorem 2.2 is as follows. There should be
many very short lattice vectors in the dual L∨

1 of the number field lat-
tice L1 satisfying qRKd

⊂ L1 ⊂ RKd
. For given x1, . . . ,xt, t elements

in RK
∨/qRK

∨, we define a number field lattice L(x1, . . . ,xt) by the e-
quations Tr(xiy) ≡ 0 mod q, where y ∈ RK, i = 1, . . . , t. It is obvious
qRK ⊂ L ⊂ RK. Moreover it is clear the definition of L(x1, . . . ,xt) only
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depends on the residue classes of xi’s in RK
∨/qRK

∨.

Proposition 4.6. The vectors x1
q , . . . , xt

q are in the dual lattice

L(x1, . . . ,xt)
∨ ⊂ RK

∨

q
.

If a ∈ RK is an invertible element in RK/qRK, then there is a Z/qZ
linear isomorphism from L(x1, . . . ,xt) to L(a−1x1, . . . ,a

−1xt) defined by
y −→ ay. In particular the cardinalities of

RK/L(x1, . . . ,xt)

and
RK/L(a−1x1, . . . ,a

−1xt)

are the same.

Proof. The first conclusion is direct from the definition. The second
conclusion is a simple computation.

The following result gives a restriction on the λ1(L
∨) of number field

lattice L if L containing the product of two number field lattices L1 and L2

satisfying |RK/Li| ≤ poly(n).

Theorem 4.2. Let L1,L2 and L3 be three polynomially bounded cardi-
nality sublattices of rank d in the integer ring RK of a degree d number field
K. That is |RK/Li| ≤ dc holds for a fixed positive integer c and i = 1, 2, 3.

We assume L2 · L3 ⊂ L1. Then λ1(L
∨
1 ) ≥ O( 1

|∆K|
1
d
d

2c
d ).

Proof. For x ∈ L∨
1 , let X be the matrix representation of the multipli-

cation of x with respect to a fixed Z-base of RK. For a number field lattice
L set B(L) to be the matrix representation of L∨ with respect to this fixed
base of RK. Then

| det(B(L∨
2 ))| = |∆K|−1 · |(det(B(L2)))

−1| ≥ 1

|∆K|dc

from the definition of dual lattice. Since x ∈ (L2 · L3)
∨, xy ∈ L∨

2 for each
y ∈ L3. Then

B(L3) ·X = M ·B(L∨
2 )

17



for some non-singular integer matrix M. We have

| det(X)| ≥ | det(M| · 1

|∆K|d2c
≥ 1

|∆K|d2c

since |det(M)| ≥ 1. It is clear

||x||tr = (Σi=1|σi(x)|2)1/2 ≥
√
d(

d∏
i=1

σi(x))
1/d =

√
d(N(xRK))1/d =

√
d|det(X)|1/d.

The conclusion follows directly.

From Theorem 4.2 if a sublattice L in RK contains the product of two
polynomially bounded cardinality sublattices, the λ1(L

∨) is very close to√
d

|∆K|1/d when d is sufficiently large. In particular if both L and OL are with

polynomially bounded cardinalities, λ1(L
∨) can not be very small. The sub-

lattice attack with non-negligible OL suggested in [8] has a strong restriction
on the bound of width as the attack when L1 is required to be an ideal as
in [18, 7, 38].

5 Proofs of main results

Proof of Theorem 2.1. For any fixed secret s ∈ RKq, a sublattice pair
(L1,L2) and uniformly chosen polynomially many invertible element ai in
RK, we use the property 3) to find aj1 , . . . ,ajdc4+2

satisfying

a−1
ji

L1 ⊂ L2

within complexity O(dc6). Since we assumed the probability that a uniform-
ly chosen a ∈ RKq is not invertible is at most 1

2 . For given uniformly chosen
polynomially many samples we can use the property 3) directly.

For these dc4+2 samples (aji ,bi) we check polynomially many conditions
a−1
ji

bi in each coset RK/L2. If these samples are from Ring-LWE equations,

we have s+a−1
ji

e ≡ a−1
ji

bi mod q. The probability that a−1
ji

bi is in the fixed

coset of RK/L2 leading by the secret s is at least 1
dc3−c ≥ 2

dc3 ≥ 2
|RK/L2|

when d is sufficiently large. Actually from the property 2) of sublattice pair
the probability that e ∈ L1 is lower bounded by 1

dc3−c and a−1
ji

e ∈ L2 for
these error e ∈ L1 from the property 3) of the sublattice pair. Though we
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do not know which coset of RK/L2 has this property since the secret vector
s is not known, we can find such a coset by checking all polynomially many
cosets of RK/L2. Then we can find at least 2dc4+2

|RK/L2| samples (aji ,bi) is in a

fixed coset of RK/L2 if samples are from Ring-LWE equations. Otherwise

there are exactly dc4+2

|RK/L2| such a−1
ji

bi is each coset. Hence we can distin-
guish samples from Ring-LWE equations from uniformly chosen ones within
a complexity O(dc6+8c1c4+c3).

Proof of Theorem 2.2. First of all xn − udx + ud(ud − 1) ≡ (x2 −
udx+ u2d − ud)(x

n−2 + udx
n−3 + udx

n−4 + · · ·+ udx+ ud) mod W if W is a
factor of ud(ud − 1)2. From Theorem 4.1 we have

RKd
/WRKd

= Z[θ]/WZ[θ],

when W is a factor of ud(ud−1)2 and ud satisfies the conditions of Theorem
4.1. Hence

RKd

∨/WRKd

∨ = Z[θ]∨/WZ[θ]∨

when W is a factor of ud(ud−1)2 and ud satisfies the conditions of Theorem
4.1. As mentioned before Theorem 2.2 we can set ud = 2pd where pd is a
prime number such that d− 1 and 2pd − 1 satisfies the following property.
1)d− 1 is a prime number;
2)(d− 1)|2pd − 1;
3) All prime factors of 2pd − 1 is not smaller than d− 1.

The conditions in Theorem 4.1 are always satisfied. The modulus pa-
rameter is W = pd(2pd−1)2. Since we will take pd a sufficiently large prime
number then the probability that a uniformly chosen a ∈ RKdq is invertible
is at least a fixed positive real number. Without loss of generality we assume
that these a’s are invertible module W = pd(2pd − 1)2.

For any uniformly chosen invertible elements a1, . . . , adc5 , we consider
their images in the residue ring (Z/WZ)[θ]/(x2 − udx + u2d − ud). It is
obvious that aj1 , . . . ,ajdc4+2 elements among them can be found within a

O(dc6) time, such that the images of these dc4+2 elements aj1 , . . . ,ajdc4+2

in the residue ring (Z/WZ)[θ]/(x2 − udx + u2d − ud) are the same a. The
complexity to find such dc4+2 elements is at most W 2dc5 .

The sublattice pair (Ld
1,L

d
2) is defined by six vectors in

RKd

∨/WRKd

∨ = Z[θ]∨/WZ[θ]∨
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as follows. We set

x1 =
θn−1

f ′
d(θ)

,

x2 =
θn−2

f ′
d(θ)

,

and

x3 =
1

f ′
d(θ)

.

We consider the following three elements in

RKd

∨/WRKd

∨ = Z[θ]∨/WZ[θ]∨,

x4 =
(θ − 1)(θn−2 + ud(θ

n−3 + · · ·+ θ + 1))

f ′
d(θ)

=
θn−1 + (ud − 1)θn−2 − ud

f ′
d(θ)

,

and

x5 =
(ud − 1)(θ − ud)(θ

n−2 + ud(θ
n−3 + · · ·+ θ + 1))

f ′
d(θ)

=
(ud − 1)(θn−1 − ud)

f ′
d(θ)

,

x6 =
θn−1 + (3ud − u2d + 2)θn−2 − ud(u

2
d − 2ud − 2)

f ′
d(θ)

.

Here

(θ−ud)(θ
n−2+ud(θ

n−3+ · · ·+θ+1)) = θn−1−(ud−u2d)(θ
n−3+ · · ·+θ)−u2d,

then we have
(ud − 1)(θ − ud)(θ

n−2 + ud(θ
n−3 + · · ·+ θ + 1)) ≡ (ud − 1)(θn−1 − ud) mod

W . We notice

(θ−(ud−2ud−2))(θn−2−ud(θ
n−3+· · ·+θ+1)) = θn−1+(3ud−u2d+2)θn−2−ud(u

2
d−2ud−2).

Because x4,x5 and x6 are linear combinations of x1,x2,x3 then

L(x1,x2,x3) ⊂ L(x4,x5,x6).

Then a−1
ji

L(x1,x2,x3) ⊂ L(ax4,ax5,ax6). Actually x4,x5 and x6 are in the
fractional ideal generated by

θn−2 + ud(θ
n−3 + · · ·+ θ + 1)

f ′
d(θ)

,
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then aji ·
θn−2+ud(θ

n−3+···+θ+1)
f ′
d
(θ) is completely determined by the image of aji

in the residue ring (Z/WZ)[θ]/(x2 − udx+ u2d − ud).

Set
Ld
1 = L(x1,x2,x3)

and
Ld
2 = L(ax4,ax5,ax6),

we need to prove the conclusions 1) and 2) in Theorem 2.2.

First of all it is easy to verify the cardinality |RKd
/Ld

1| = W 3 from
Theorem 4.1 and Proposition 4.1. We have

||x1||tr ≤
2||θn−1||tr

n(ud(ud − 1)
≤

√
8

n

and

||x2||tr ≤
2||θn−2||tr

n(ud(ud − 1)
≤

√
8

n

from Corollary 4.1 It is obvious

||x3||tr ≤
2√

nud(ud − 1)
.

Then the probability that e ∈ L(x1,x2,x3) is at least

1

64d3C+1u2d(ud − 1)2

by counting the number of lattice vectors m1x1 + m2x2 + m3x3 ≤ W
σ for

m1,m2,m3 ∈ Z and Theorem 3.1. Actually the number of integers ofmi sat-
isfying ||mixi||tr ≤ W

3σ is at least W
4σ||xi||tr , when

W
σ is sufficiently large. Here

we can always chose a polynomially bounded ud satisfying W
σ ≥ d10. Hence

there are at least W 3

64σ3||x1||tr||x2||tr||x1||tr lattice vectors in the dual lattice

L(x1,x2,x3)
∨. The lower bound 2) in Theorem 2.2 follows from Theorem

3.1.

We now prove the conclusion 1) of Theorem 2.2. Since the cardinality

RKd
/L(ax4,ax5,ax6)
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is the same as the cardinality of

RKd
/L(x4,x5,x6)

from Proposition 4.6, we only need to calculate RKd
/L(x4,x5,x6).

From Proposition 4.1 for a base { 1
f ′
d
(θ) ,

θ
f ′
d
(θ) , . . . ,

θn−1

f ′
d
(θ)} of Z[θ]∨ we have

their dual base {e0, . . . , en−1} of Z[θ]. For a lattice vector y in Z[θ], set
yn−1, yn−2, y0 to be the coefficients of en−1, en−2, e0 in the expansion of y
with the dual base e0, . . . , en−1. From the condition Tr(x5 · y) ≡ 0 mod
W , we have (ud − 1)(yn−1 − udy0) ≡ 0 mod W . Hence yn−1 = pdy

′
n−1 and

y′n−1 − y0 ≡ 0 mod ud − 1. From the condition Tr(x4 · y) ≡ 0 mod W ,
yn−2 = pdy

′
n−2 and y′n−1 − y0 + (ud − 1)y′n−2 ≡ 0 mod (ud − 1)2. Hence

the two conditions Tr(x4 · y) ≡ 0 mod W and Tr(x5 · y) ≡ 0 mod W are
equivalent to yn−1 = pdy

′
n−1, yn−2 = pdy

′
n−2 and y′n−1−y0+(ud−1)y′n−2 ≡ 0

mod (ud − 1)2.

On the other hand the condition Tr(x6 · y) ≡ 0 mod W is equivalent
to pd(y

′
n−1 + (3ud − u2d + 2)y′n−2 − (u2d − 2ud − 2)y0) ≡ 0 mod W . This is

equivalent to the condition y′n−1 + (ud + 3)y′n−2 + 3y0 ≡ 0 mod (ud − 1)2.
Hence the three conditions Tr(xi ·y) ≡ 0mod W for i = 4, 5, 6 are equivalent
to

yn−1 = pdy
′
n−1,

yn−2 = pdy
′
n−2,

y′n−1 − y0 + (ud − 1)y′n−2 ≡ 0 mod (ud − 1)2,
and y′n−1 + (ud + 3)y′n−2 + 3y0 ≡ 0 mod (ud − 1)2.

It is easy to verify RKd
/L(x4,x5,x6)| is at least

p2d(ud−1)3

2 . The conclu-
sion is proved.

Proof of Corollary 2.1. We can take polynomially bounded pd ≥
d3C+2 then the constructed sublattices Ld

1 and Ld
2 are indeed a sublattice pair

for qd = ud(ud − 1)2, c, c1, c2, c < c3 < c4, c5, c6, where c, c1, c2, c3, c4, c5, c6
are suitably chosen positive real numbers only depending on the constant C.

Another proof of Theorem 2.2 and Corollary 2.1. In this case we
take the modulus parameter Wd = ud(ud − 1)2. The six vectors x1, . . . ,x6

are defined as in the proof of Theorem 2.2. We can take samples a,b)’s with
a ∈ I, where I is the ideal generated by the polynomial x2 − udx+ u2d − ud.
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Actually this ideal I has index in RK at most W 2
d . Then a·s is automatically

in the sublattice Ld
3 = L(x4,x5,x6) since x4,x5,x6 are in the ideal generated

by the polynomial

xn−2 + udx
n−3 + udx

n−4 + · · ·+ udx+ ud.

It is obvious Ld
1 = L(x1,x2,x3) ⊂ Ld

3. The probability b ∈ Ld
3 is bigger

than or equal to the probability Pe of e ∈ Ld
1 for these samples (a,b)’s with

a ∈ I. The index |RK/Ld
3| can be calculated as in the proof of Theorem 2.2

for the modulus parameter Wd = ud(ud − 1)2, which is at least u2d(ud − 1)3.
Actually the three conditions Tr(xi · y) ≡ 0 mod Wd for i = 4, 5, 6 are
equivalent to

yn−1 = udy
′
n−1,

yn−2 = udy
′
n−2,

y′n−1 − y0 + (ud − 1)y′n−2 ≡ 0 mod (ud − 1)2,
and y′n−1+(ud+3)y′n−2+3y0 ≡ 0 mod (ud−1)2. Hence |RK/Ld

3| is at least
u2d(ud − 1)3.

Since Pe ≥ ud/d
3C+1

|RK/Ld
3|

from the proof of Theorem 2.2, when ud ≥ d3C+2 we

can distinguish these samples from the Ring-LWE within time complexity
O(W 8

d ).

In this proof we need not to take a−1 mod q. Hence we need not to take
ud = 2pd where pd is an odd prime such that 2pd − 1 is a prime. We only
need to take suitable ud satisfying the conditions in Theorem 4.1.

Proof of Corollary 2.2. Since we have

RKd

∨/WRKd

∨ = Z[θ]∨/WZ[θ]∨

when W is a factor of ud(ud−1)2 and ud satisfies the conditions of Theorem
4.1. Then

RKd

∨/qdRKd

∨ = Z[θ]∨/qdZ[θ]
∨.

The size |f ′(θ)| was estimated in Corollary 4.1 the conclusion follows from
the conversion of dual form Ring-LWE to non-dual form Ring-LWE by by
”tweak factors” on the widths.

Proof of Corollary 2.4. We take an arbitrary large positive integer
C in Corollary 2.3 then we get a polynomial factor d9C from the Hardness
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reduction result in Subsection 1.5. To satisfy the main condition in the
Hardness reduction result we take C = 2 then an approximation factor d18

can be achieved.

6 Algorithms

1st algorithm

In this section we summarize the polynomial time algorithms in Theo-
rem 2.1 and 2.2. to solve the decision non-dula Ring-LWE over RKd

where
Kd = Q[x]/(fd), fd = xd − udx+ ud(ud − 1). We take ud = 2pd, where pd is
a prime number such that 2pd − 1 satisfies the following conditions.
1)d− 1 is a prime number;
2)(d− 1)|2pd − 1;
3) All prime factors of 2pd − 1 is not smaller than d− 1;
4) pd is polynomially bounded and pd ≥ d3C+2.
The conditions in Theorem 4.1 are always satisfied.

Then we set the modulus parameter Wd = pd(2pd − 1)2.

Step 1. For given polynomially bounded many samples (a1,bi), i =
1, . . . ,W 6

d , we find at least half ai’s are invertible elements in RKd
/WdRKd

,
where Wd = ud(ud − 1)2. This step is within the polynomial time O(W 8

d ).

Step 2. Find the images of ai’s in

(Z/Wd)[θ]/(θ
2 − udθ + ud(ud − 1))

and pick up dc4+2 samples (aji ,bi)’s whose aji ’s have the same image a.
This step is completed within complexity O(W 6

d ).

Step 3. Write down the three conditions
Tr(ax4, ·y) ≡ 0 mod Wd;
Tr(ax5, ·y) ≡ 0 mod Wd;
Tr(ax6, ·y) ≡ 0 mod Wd.
This is the lattice L2 in the sublattice pair. This step is completed within
complexity O(d3).
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Step 4. Check a−1
ji

bi mod Ld
2, classify them in different cosets of

RKd
/Ld

2. It will be found that there exists at least one coset with at least
dc4+2 2

|RKd
/Ld

2|
such a−1

ji
bi’s if samples are from the Ring-LWE equation, oth-

erwise there are exactly dc4+2 1
|RKd

/Ld
2|

such such a−1
ji

bi’s in each coset. This

step is completed within complexity O(dc4+5).

2nd algorithm

In this algorithm we take Wd = ud(ud − 1)2 and ud ≥ d3C+2.

Step 1. For given polynomially bounded many samples (a1,bi), i =

1, . . . ,W 6
d , we find at least

W 6
d

W 2
d
samples ai’s which are in the ideal I gener-

ated by the polynomial x2 − udx+ u2d − ud. It is within the time O(W 8
d ).

Step 2. For samples (a,b)’s with the first component a ∈ I we check the
probability b ∈ Ld

3. If these samples are not from the Ring-LWE equation
this probability is 1

|RK/Ld
3|
. If it is from the Ring-LWE equation, this prob-

ability is bigger than the probability Pe that e ∈ Ld
1. Since Pe ≥ 2

|RK/Ld
3|
,

we can distinguish within time complexity O(W 8
d ).

In this algorithm a−1 is not checked as in 1st algorithm , we only need
to check b mod Ld

3 for these samples (a,b)’s with a ∈ I.

7 Conclusion

The essence of sublattice attack on Ring-LWE is that the error distributions
of sublattices inRK should be checked for these polynomially bounded index
sublattices L. This gives new large bounds on widths of solvable instances of
Ring-LWE, which are closely related to the λ1(L

∨) and the number of very
short lattice vectors in L∨. In this paper we construct a sequence of number
fields such that that decision Ring-LWE can be solved within a polynomi-
al time complexity for error distributions with the widths in the range of
hardness reduction results in [40]. This is the first sequence of number fields
with degrees going to the infinity such that Ring-LWE with large width er-
ror distributions can be solved by a polynomial time algorithm. From the
hardness reduction results in [40] the approximating SIV Ppoly(d) for ideal
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lattices in these number fields can be solved within quantum polynomial
time. This is also the first sequence of number fields with degrees going to
the infinity such that their approximating ideal-SIV Ppoly(d) can be solved
by a polynomial time quantum algorithm. The sublattice attack on Ring-
LWE over cyclotomic integer rings will be presented in [10].
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