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Abstract

Since the Lyubashevsky-Peikert-Regev Eurocrypt 2010 paper the
Ring-LWE has been the hard computational problem for lattice crypto-
graphic constructions. The fundamental problem is its hardness which
has been based on the conjectured hardness of approximating ideal-
SIVP or ideal-SVP. Though it is now widely conjectured both are
hard in classical and quantum computation model there is no suffi-
cient attacks proposed and considered. In this paper we propose sub-
set attacks on Ring-LWE over an arbitrary number field from feasible
subset quadruples for general wide error distributions. This subset at-
tack can be defined for learning with errors problems over any ring
with an inner product and an error distribution. From the view of
subset attacks, the error distributions of feasible non-negligible subset
quadruples should be calculated and checked to test the ”hardness” of
Ring-LWE. A lower bound for the Gaussian error distribution is proved
to construct suitable feasible non-negligible subsets. From this lower
bound an algebraic condition which is sufficient for the polynomial time
solvability of Ring-LWE with wide error distributions is presented. We
also prove that the decision Poly-LWE over Z[x]/(xn−pn) with certain
special inner products and arbitrary polynomially bounded widths of
Gaussian error distributions can be solved with the polynomial time
for the sufficiently large polynomially bounded modulus parameters pn.
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1 Introduction

1.1 Algebraic number fields

An algebraic number field is a finite degree d extension of the rational num-
ber field Q. Let K be an algebraic number field and RK be its ring of
integers in K. From the primitive element theorem there exists an element
θ ∈ K such that K = Q[x]/(f) = Q[θ], where f(x) ∈ Z[x] is an irre-
ducible monic polynomial of degree d satisfying f(θ) = 0 (see [15, 7]). It is
well-known there is a positive definite inner product on K ⊗ C defined by
< u, v >= Σd

i=1σi(u) ˜σi(v), where σi, i = 1, . . . , d, are d embedings of K in
C, and ṽ is complex conjugate. Sometimes we use ||u||tr to represent the
norm < u, u >1/2. This is the norm with respect to the canonical embed-
ding (see [28]). An ideal in RK is a subset of RK which is closed under ring
addition and multiplication by an arbitrary element in RK. An ideal is a
sub-lattice in RK of dimension deg(K/Q). For an ideal I ⊂ RK, the (alge-
braic) norm of ideal I is defined by the cardinality N(I) = |RK/I|, we have
N(I · J) = N(I)N(J). For a principal ideal xRK generated by an element
x, then N(x) = N(xRK), we refer to [7, 14] for the detail. The algebraic
number field has the nice symmetry property reflected in the following lower
bound for a fraction ideal I,

√
dN(I)1/d ≤ λ1(I).

The dual of a lattice L ⊂ K of rank deg(K/Q) is defined by L∨ = {x ∈
K, trK/Q(ax) ∈ Z, ∀a ∈ L}. An order O ⊂ K in a number field K is a
subring of K which is a lattice with rank equal to deg(K/Q). We refer to
[14, 15, 7] for number theoretic properties of orders in number fields.

Let ξn be a primitive n-th root of unity, the n-th cyclotomic polynomial
Φn is defined as Φn(x) =

∏n
j=1,gcd(j,n)=1(x− ξjn). This is a monic irreducible

polynomial in Z[x] of degree φ(n), where φ is the Euler function. The
n-th cyclotomic field is Q(ξn) = Q[x]/(Φn(x)). When n = p is an odd
prime Φp(x) = xp−1 + xp−2 + · · · + x + 1 and when n = pm, Φpm(x) =

Φp(x
pm−1

) = (xp
m−1

)p−1 + · · ·+ xp
m−1

+ 1. The ring of integers in Q(ξn) is
exactly Z[ξn] = Z[x]/(Φn(x)) (see Theorem 2.6 in [?]). Hence the cyclotomic
number field Q[ξn] is a monogenic field. The discriminant of the cyclotomic
field (also the discriminant of the cyclotomic polynomial Φn) is

(−1)
φ(n)
2

nφ(n)∏
p|n p

φ(n)
p−1

.
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A polynomial f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ Z[X] satisfies

the condition of the Eisenstein criterion at a prime p, if p|ai for 0 ≤ i ≤ n−1
and p2 not dividing a0. A polynomial satisfying this condition is irreducible
in Z[x] from the Eisenstein criterion (see [7, 15]).

1.2 Gaussian and discrete Gaussian

Set ρs,c(x) = e−π||x−c||
2/s2 for any vector c in Rn and any s > 0, ρs = ρs,0,

ρ = ρ1. The Gaussian distribution around c with width s is defined by its

probability density function Ds,c =
ρs,c(x)
sn , ∀x ∈ Rn.

Discretization. For any discrete subset A ⊂ Rn we set ρs,c(A) =
Σx∈Aρs,c(x) and Ds,c(A) = Σx∈ADs,c(x). Let L ⊂ Rn be a dimension n
lattice, the discrete Gaussian distribution over L is the probability distribu-
tion over L defined by

∀x ∈ L, DL,s,c =
Ds,c(x)

Ds,c(L)
=
ρs,c(x)

ρs,c(L)
.

When c = 0, the discrete Gaussian distribution is denoted by DL,s. We
refer to [33] for the following properties of discrete Gaussian distributions.
1) If x is distributed according to Ds,c and conditioned on x ∈ L, the con-
ditional distribution of x is DL,s,c.
2) For any lattice L and any vector c ∈ Rn we have ρs,c(L) ≤ ρs(L).

3) Set C = c
√

2πee−πc
2
< 1 for any c > 1√

2π
, and n dimensional lattice L

and v ∈ Rn, ρ(L − c
√
nBn) ≤ Cnρ(L), ρ((L + v) − c

√
nBn) ≤ Cnρ(L),

where Bn is the unit-ball centered at the origin.
4 If a e ∈ Rn is sampled according to a Gaussian distribution with width σ,
then the Euclid norm ||e|| of e satisfies ||e|| ≤

√
3nσ with an overwhelming

probability.

Width with the canonical embedding

The Gaussian distribution depends on coordinates and the norm. We
need to pay special attention to coordinates (or the basis with which co-
ordinates are obtained) and the norm used when we say the ”width” of a
Gaussian distribution. The ”canonical embedding’ was used to define the
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Gaussian distribution on K ⊗ C (see [28, 29, 39, 9]). We refer the further
analysis to [9, 41].

1.3 SVP and SIVP

A lattice L is a discrete subgroup in Rn generated by several linear in-
dependent vectors b1, . . . ,bm over the ring of integers, where m ≤ n,
L := {a1b1 + · · · + ambm : a1 ∈ Z, . . . , am ∈ Z}. The volume vol(L) of
this lattice is

√
det(B ·Bτ ), where B := (bij) is the m× n generator matrix

of this lattice, bi = (bi1, . . . , bin) ∈ Rn, i = 1, · · · ,m, are base vectors of
this lattice. The length of the shortest non-zero lattice vectors is denoted by
λ1(L). The well-known shortest vector problem (SVP) is defined as follows.
Given an arbitrary Z basis of an arbitrary lattice L to find a lattice vector
with length λ1(L) (see [34]). The approximating shortest vector problem
SV Pf(m) is to find some lattice vectors of length within f(m)λ1(L) where
f(m) is an approximating factor as a function of the lattice dimension m
(see [34]). The Shortest Independent Vectors Problem (SIV Pγ(m)) is de-
fined as follows. Given an arbitrary Z basis of an arbitrary lattice L of
dimension m, to find m independent lattice vectors such that the maximum
length of these m lattice vectors is upper bounded by γ(m)λm(L), where
λm(L) is the m-th Minkowski’s successive minima of lattice L (see [34]).
A breakthrough result of M. Ajtai [5] showed that SVP is NP-hard under
the randomized reduction. Another breakthrough proved by Micciancio as-
serts that approximating SVP within a constant factor is NP-hard under
the randomized reduction (see [34]). For the latest development we refer to
Khot [22]. It was proved that approximating SVP within a quasi-polynomial
factor is NP-hard under the randomized reduction. For the hardness result-
s about SV P and SIV P we refer to [22, 23, 45, 2], we refer to [21] for
Minkowski’s first and second theorems on successive minima of lattices.

1.4 Plain LWE, Ring-LWE and LWE over number field lat-
tices

Plain LWE

Plain LWE and its lattice-based cryptographic construction was originat-
ed from [43]. We refer to [44] for a survey. Let n be the security parameter,
q be an integer modulus and χ be an error distribution over Zq. Let s ∈ Znq
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be a secret chosen uniformly at random. Given access to d samples of the
form

(a, [a · s + e]q) ∈ Znq × Zq,

where a ∈ Znq are chosen uniformly at random and e are sampled from the
error distribution χ, the search LWE is to recover the secret s. In general χ
is the discrete Gaussian distribution with the width σ. Here a · s = Σaisi is
the inner product of two vectors in Znq .

Write the d coefficient vectors a1, . . . ,ad as columns of a matrix A ∈
Zn×dq , Then the search LWE problem LWEn,q,d,χ is to recover the secret
from Aτ · s + e = b mod q from public (A,b). Here τ is the transposition
of a matrix and (s, e) is an unknown vector.

Solving decision LWEn,q,d,χ is to distinguish with non-negligible proba-
bility whether (A,b) ∈ Zn×dq × Zdq is sampled uniformly at random, or if it
is of the form (A,Aτ · s + e) where e is sampled from the distribution χ.

Here [a ·s+e]q is the residue class in the interval (− q
2 ,

q
2 ]. We refer to [44]

for the detail and the background. When q is prime and polynomial bound-
ed by poly(n), there is a polynomial-time reduction between the search and
decision LWE (see [44]). For plain LWE without the ring structure the reduc-
tion results from approximating SIVP to plain LWE were given in [44, 36, 8].

Ring-LWE

The algebraic structure of ring was first introduced to the hardness of
computational problems of lattices in [31] (also in [26, 27]) for the consider-
ation of efficiency. This is Ring-SIS (Short Integer Solution over Ring, see
[31]) and it is the analogue of Ajtai’s SIS problem. The one-wayness of some
function was proved in [31] by assuming the hardness of some computational
problems of cyclic lattices (ideal lattices). Ring-LWE was originated from
2010 paper [28] and then extended in [29]. We refer to [38] for a survey of the
history of development, the theory and cryptographic constructions based
on Ring-LWE and Ring-SIS. In particular suggested homomorphic encryp-
tion standard in [4] was based on Ring-LWE over two-to-power cyclotomic
integer rings.

If the Znq in plain LWE is replaced by Pq = P/qP where P = Z[x]/(f),
f(x) is a monic irreducible polynomial of degree n in Z[x], this is the poly-
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nomial learning with errors (PLWE). The inner product a · s = Σaisi is
replaced by the multiplication a · s in the ring Pq. The error distribution
χ is defined as the discrete Gaussian distributions with respect to the basis
1, x, x2, . . . , xn−1 (see [20, 9]). We refer to [46] for relations and reductions
between Ring-LWE and PLWE.

If the Znq is replaced by (RK)q = RK/qRK where RK is the ring
of integers in an algebraic number field K of degree n, this is the Ring-
LWE, learning with errors over the ring RK. The secret s is in the dual
(RK

∨)q = RK
∨/qRK

∨ and a ∈ RKq is chosen uniformly at random. The
inner product a · s = Σaisi is replaced by the multiplication a · s in (RK

∨)q.
The error e is in (RK

∨)q = RK
∨/qRK

∨. In this case the width of error
distribution is defined by the trace norm on K ⊗R via the canonical em-
bedding (see [28, 9]). This is called the dual form of Ring-LWE problem .
When s ∈ (RK)q and e ∈ (RK)q are assumed it is called the non-dual form
of Ring LWE problem. As indicated in [39] page 10 in monogenic case a
”tweak factor” f ′(θ) can be used to make two versions equivalent.

LWE over number field lattice

Learning with errors over a number field lattice was introduced in [40].
Let L ⊂ K be a rank deg(K) lattice and

OL = {x ∈ K : x · L ⊂ L}.

Then OL is an order. Set OL
q = OL/qOL, L∨q = L∨/qL∨. The secret

vector s is in L∨q and a is in OL
q. Here we notice that O · L∨ ⊂ L∨. Then

the error e ∈ L∨q. For the detail and hardness reduction we refer to [40].

1.5 Hardness reduction

The reduction results from approximating ideal-SIV Ppoly(d) (or approxi-
mating ideal-SV Ppoly(d)) to Ring-LWE were first given in [28, 29] for search
version and then a general form to decision version was proved for arbitrary
number fields in [41]. We refer to [41] Corollary 6.3 for the following hard-
ness reduction result.

Hardness reduction for decision Ring-LWE. Let K be an arbi-
trary number field of degree n and R = RK. Let α = α(n) ∈ (0, 1), and let
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q = q(n) be an integer such that αq ≥ 2ω(1). Then there exists a polynomial-
time quantum reduction from K − SIV Pγ to average-case, decision R −
LWEq,Υα, for any γ = max{ η(I)·2

α·ω(1) ,
√

2n
λ1(I)} ≤ max{ω(

√
nlogn/α),

√
2n}.

Here K−SIV Pγ is the Shortest Independent Vector Problems for any frac-
tional ideal lattice in K. I is any ideal lattice and η(I) is the smoothing
parameter of I.

1.6 Known attacks

1.6.1 Attacks on LWE

The famous Blum-Kalai-Wasserman (BKW) algorithm in [6] was improved
in [1, 24]. On the other hand some provable weak instances of Ring-LWE
was given in [19, 20, 13] and analysed in [9, 39]. As showed in [39, 9] these
instances of Ring-LWE can be solved by polynomial time algorithms main-
ly because the widths of Gaussian distributions of errors are too small or
Gaussian distributions of errors are too skew. In [10] these attacks were
improved for these modulus parameters which are factors of f(u), where f
is the defining equation of the number field and u is an arbitrary integer.
However the Gaussian distribution is still required to be narrow such that
this type of attack can be succeed. We refer to [3] for the dual lattice attack
to LWE with small secrets.

1.6.2 Approximating ideal-SVP

In [16] it was proved approximating SV P with factor 2O(
√
nlogn) for princi-

pal ideals in cyclotomic integer rings Z[ξn] with n = pm can be found from
an arbitrary generator within polynomial time by an efficient bounded dis-
tance decoding algorithm for the log-unit lattice. This work was extended
in [17] and [42] such that sub-exponential complexity algorithms with some
pre-processing for approx-SVP with some sub-exponential factor for ideal
lattices can been achieved. The analysis of the approximating factor was
recently published in [18]. For the recent developments we refer to [25, 35].

1.7 The ideal attack is very restricted

In previous attacks on Ring-LWE in [20] (then analysed in [9, 39]) the Ring-
LWE equation a · s + e ≡ b mod q was transformed to consider a · s + e ≡ b

7



mod P, where P is a prime ideal factor of the modulus parameter q with a
polynomially bounded algebraic norm N(P). This kind of attack initiated
in [20] and then analysed in [9, 39] can be called ideal attack on Ring-LWE.
In ideal attack on Ring-LWE λ1(P∨) satisfies

λ1(P∨) ≥
√
dN(P∨)1/d ≥ d1/2−c/d 1

|∆K|1/d
.

Since P has a polynomially bounded algebraic norm, the width has a small
upper bound for solvable instances for some fixed positive integer c .

When the modulus parameter q is a prime number such that qRK is a
prime ideal in RK, it is obvious we get nothing from the ideal attack. In
our sublattice attack and subset attack we propose to find subtle polynomi-
ally bounded index sublattices L or feasible non-negligible subsets B, then
to test the samples from the Ring-LWE equation in RK/L or the feasible
subset B. Sublattice attacks was proposed in [10]. In this paper we extend
it to subset attacks.

2 Subset attack

2.1 The motivation of subset attacks

In previous attacks on Ring-LWE, when polynomially bounded many sam-
ples (a,b) ∈ RK/qRK × RK/qRK are given, only the distributions of
these samples over RK/I for some ideals satisfying qRK ⊂ I ⊂ RK and
|RK/I| ≤ poly(d) have been checked. This is not natural and not sufficient.
We need to check the distributions of samples in A ⊂ RK/qRK where A
can be any feasible non-negligible subsets, that is, the condition

a ∈ A

can be computed within polynomial time and the size of A satisfies

|A|
|RK/qRK|

≥ 1

dc
,

where c is a fixed positive integer. In general when the learning with error
problems with algebraic structures are used to improve the efficiency, subset
attacks as above to analysis the distributions of samples over A ⊂ M/qM
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should be considered, where M is module over which the module-LWE is
defined and A takes over all feasible subsets of M/qM satisfying

|A|
|M/qM|

≥ 1

poly(d)
.

The previous attacks where A is restricted to ideals or sub-modules are not
natural, special and not sufficient to guarantee the security, we refer to our
next paper [12].

The basic point here is as follows. When we want to use the algebraic
structure to improve the efficiency of lattice-based cryptographic construc-
tions. The adversary is not restricted to only check the distributions of sam-
ples over algebraic-structured object, the adversary can attack the problem
by using feasible non-negligible subsets without any structure.

2.2 Subset quadruples are needed

We need to find three non-negligible subsets Ai, i = 1, 2, 3 satisfying that

|Ai|
|RK/qRK|

≥ 1

dc
,

and A1 and A3 are feasible, that is the condition a ∈ Ai, i = 1, 2, can be
checked within polynomial time. Here

A1 ·A2 = {as : a ∈ A1, s ∈ A2}.

For two subsets A and B in RK/qRK we define a subset A + B = {a + b :
a ∈ A,b ∈ B} in RK/qRK. A subset A4 ⊂ RK/qRK is needed to satisfy
that A1 ·A2 + A4 ⊂ A3 and

Prob(e ∈ proj−1(A4)) ≥ dC |A3|
|RK/qRK|

,

where C is a fixed positive integer and proj is the natural mapping

RK −→ RK/qRK.

Then the samples from the Ring-LWE equations can be distinguished from
uniformly distributed samples. Hence it is important to calculate the error
distributions over these feasible non-negligible subsets.
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In the case that A1 and A2 are additive, that is,

Ai + Ai ⊂ Ai,

we recover the sublattice pair attack in [10] and the previous versions of
this paper. We call (A1,A2,A3,A4) a sublattice quadruple. When Ai is
restricted an ideal, it is the very restricted case of ideal attack considered in
[20, 9] and analysed in [39]. The ”sublattice pair with ideal” construction for
the required sublattices proposed in the previous versions of the paper can
not work for number field case as indicated in [39]. However the comment in
[39] can not apply to the general sublattice attack or its extended version of
subset attack (for general structured LWE) considered in this version. The
only problem in previous versions is the usage of ideals in the construction
of the required sublattices (or feasible non-negligible subsets) for number
field case.

2.3 Subset attacks on general structured LWE

It is obvious that the subset quadruples can be defined for algebraically
structured learning with errors problems. When the addition, the multi-
plication, an positive-definite inner product and a probability of error dis-
tribution (defined according to the inner product) are endorsed on the set,
we need to check all feasible non-negligible subset quadruples to test the
hardness of the learning with errors problem over this set. For example
sublattice attacks were introduced in [10] for the LWE over general number
field lattices defined in [40].

Let us consider the inner product on the ring Z[x]/(xn−pn) with 1, x, . . . , xn−1

as the orthogonal norm 1 vectors. Here pn is a sequence of sufficiently large
polynomially bounded prime numbers when n goes to the infinity. From
Theorem 3.1 and Theorem 4.1 it can be proved the Poly-LWE for the mod-
ulus parameters pn can be solved within the polynomial time. The basic
point here is that for this inner products on Z[x]/(xn − pn) and an ideal
I we do not have the lower bound

√
nvol(I)1/n ≤ λ1(I) as for the canoni-

cal norm for the number field case. Hence the smoothing argument for the
polynomially bounded index ideals for number fields in [39] is not valid in
this case. Actually the dual lattice under this inner prodcut of the ideal
generated by x is spanned by 1

pn
, x, x2, . . . , xn−1, which has an very short

vector 1
pn

in the dual lattice.
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3 Our contribution

The feasible non-negligible subset quadruples can be defined for general
structured LWE, where the addition, multiplication, an inner product and
a related error probability distribution are given. In this paper we restrict
to the number filed case and consider the case of polynomial ring LWE in
Corollary 3.2.

Let K = Q[x]/(f(x)) = Q[θ] be a degree d extension field of the rational
field Q, where f is a monic irreducible polynomial in Z[x] and θ ∈ C is a
root of f . Let RK be its ring of integers. We consider the non-dual Ring-
LWE over RK with a modulus parameter q.

Definition 3.1. We assume that the modulus parameter q satisfies
dC1 ≤ q < dC2 where C1 and C2 are two fixed positive integers. Let
Ai ⊂ RK/qRK, i = 1, 2, 3, 4, be four subsets in RK/qRK satisfying the
following conditions.
1) |Ai|
|RK/qRK| ≥

1
dC3

for i = 1, 2, 3, where C3 is fixed positive integer;

2) A1 ·A2 + A4 ⊂ A3;
3) The set A1 and A3 are feasible, that is, the condition a ∈ A1 and the
condition b ∈ A3 for a ∈ RK/qRK and b ∈ RK/qRK can be checked within
polynomial time;

4) The probability Prob(e ∈ proj−1(A4)) > dC4 |A3|
|RK/qRK

| , where C4 is a fixed

positive integer.

In general if we can construct such subset quadruples for a Ring-LWE
over RK with the polynomially bounded modulus parameter q, then the
decision version of this Ring-LWE can be solved by a polynomial in d time
algorithm. Moreover we notice that the error distribution is only involved in
4), it is not assumed Gaussian. The property 4) is sufficient for a polynomial
time attack on the general Ring-LWE with an error distribution satisfying
the property 4). We do not require that A4 to be non-negligible in the uni-
form distribution.

Theorem 3.1. We consider the decision Ring-LWE over RK with a gen-
eral error distribution and a modulus parameter q satisfying dC1 ≤ q < dC2

where C1 and C2 are two fixed positive integers. Suppose that there exists a
subset quadruple as above. Then the decision Ring-LWE over RK with the
modulus parameter q can be solved within the polynomial (in d) time.
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We return to the case that A1 and A2 come from sublattice. We denote
the set of all elements of RK of the form

ΣC5
i=1mibi,

where C5 is a fixed positive integer when d goes to the infinity, ||bi|| ≤ dC6

for a fixed positive integer C6, by B.

Condition. Let Kd be a sequence of Galois extension fields of the
rational number field Q with degree d going to the infinity, and Bd be the
set described as above. For any given fixed positive integer C7 we assume
that there exists a sufficiently large polynomially bounded prime dC7 ≤ p(d)
satisfying gcd(p(d), d) = 1, such that

RKd
/p(d)RKd

= Fp(d)d ,

or the product of bounded (by a fixed positive integer C8) number of Fp(d)f(d) ,

RKd
/p(d)RKd

= Fp(d)f(d) × · · · × Fp(d)f(d) ,

(C8 copies of Fp(d)f(d) , C8f(d) = d), and there exist two Fp(d) linear sub-
spaces A1 and A2 in

RKd
/p(d)RKd

= Fp(d)f(d)

with dimensions
dim(Ai) ≥ d− C9

for i = 1, 2, where C9 is a fixed positive integer when d goes to the in-
finity, and an element b ∈ Bd, such that TrF

p(d)f(d)
/Fp(d)(b · x1x2) ≡ 0

mod pd satisfied for any xi ∈ Ai for i = 1, 2. Here TrF
p(d)f(d)

/Fp(d) =

x+xp(d) + · · ·+xp(d)f(d)−1
is the trace mapping from the finite field Fp(d)f(d)

to Fp(d).

Corollary 3.1. If Kd is a sequence of Galois number fields with degree
d going to the infinity and the above condition is satisfied. Let σd be the
sequence of the widths of Gaussian error distributions over RKd

. Suppose

that
√
d

λ1(RKd
∨)
≤ σd ≤ dC9, where C9 is a fixed positive integer when d goes

to the infinity. Then the decision non-dual Ring-LWE over RKd
for certain

polynomially bounded prime modulus parameters can be solved within the
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polynomial (in d) time.

Notice that the above condition depends on the number fields only with
the element b ∈ Bd. Hence we believe that if we can prove the existence of
such an element, it should work for many number field sequences. The above
condition will be analysed in [12]. In the above case that p(d)RK is a prime
ideal in RK or there are bounded number of prime ideals containing p(d),
no ideal factor of p(d) has polynomially bounded index when d goes to the
infinity, then the analysis in [39] does not work in this situation. However
this is not the only approach to construct sublattices for sublattice attacks
or feasible non-negligible subset quadruples for subset attacks.

Let pn be a sequence of sufficiently large polynomially bounded prime
numbers when n goes to the infinity. The polynomial xn − pn is irreducible
from the Eisenstein criterion. We use the inner product on Z[x]/(xn−pn) by
defining < xi, xj >= 1 when i = j and 0 when i 6= j, i, j ∈ {0, 1, . . . , n− 1}.
The Gaussian error distribution is defined according to this inner product
and we have the decision Poly-LWE problem as in the number filed case.
From Theorem 3.1 we can prove the following result.

Corollary 3.2. Let C10 be an arbitrary fixed positive integer. Let σn be
the sequence of the widths of Gaussian error distributions over Z[x]/(xn−pn)
with respect to the above inner product. Suppose that

√
n ≤ σn ≤ nC10. Then

there exists a sequcence of sufficeintly large polynomially bounded prime
numbers pn (detemined by C10 and n), such that the decision Poly-LWE
over Z[x]/(xn − pn) for modulus parameters pn can be solved within the
polynomial time.

The basic point here is that for this inner products on Z[x]/(xn − pn)
and an ideal I we do not have the lower bound

√
nvol(I)1/n ≤ λ1(I) as for

the canonical norm of the number field case. Hence the smoothing argument
for the polynomially bounded index ideals in number field case is not valid
in this case. The comment in [39] only works for the number field case, not
other learning with errors problems over other rings without the property√
nvol(I)1/n ≤ λ1(I). For general inner products on rings we get nothing

about the λ1(I) even for a polynomially bounded index ideal I. Therefore
the sublattice pairs with ideals approach in previous versions works for this
case without the symmetric property

√
nvol(I)1/n ≤ λ1(I).
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4 Probability computation and number theory

We need the following computation of probability in Theorem 3.2.

Theorem 4.1. Let L be a rank d number field lattice in a degree d
number field K. Let L1 be rank d sublattice of L∨ satisfying that qL∨ ⊂
L1 ⊂ L∨ and the cardinality |L∨/L1| is polynomially bounded. Suppose
that the width of the Gaussian distribution (with respect to the canonical

embedding) of errors e satisfying
√
d

λ1(L) ≤ σ ≤
√
c1√

πλ1(L∨1 )
and moreover there

are at least |L
∨/L1|
qc2 lattice vectors in L∨1 satisfying ||x||tr ≤

√
c1√
πσ

, where c1

and c2 are fixed positive real numbers. Then the probability e ∈ L1 is

PL1 =
Σx∈L1e

−π(
||x||tr
σ

)2

Σx∈L∨e
−π(

||x||tr
σ

)2
.

It satisfies

PL1 ≥
1

ec1qc2

when q is sufficiently large.

Proof. We calculate the probability PL1 of the condition e ≡ 0 mod
L1. It is clear

PL1 =
Σx∈L1e

−π(
||x||tr
σ

)2

Σx∈L∨e
−π(

||x||tr
σ

)2
.

Set Y3(0) =
Σx∈L∨e

−π( ||x||trσ )2

σn and Y4(0) =
Σx∈L1

e−π(
||x||tr
σ )2

σn . From the
Poisson summation formula (see [33]) we have

Y3(0) =
1

det(L∨)
Σx∈Le

−π(||x||trσ)2 .

and

Y4(0) =
1

det(L1)
Σx∈(L1)∨e

−π(||x||trσ)2 .

Since σ ≥
√
d

λ1(L) then Σx∈L−0e
−π(||x||trσ)2 ≤ 1 + 1

2d
from Lemma 3.2 in [33].

For lattice vectors x ∈ L∨1 satisfying

||x||tr ≤
√
c1√
πσ

14



we have
e−π(||x||trσ)2 ≥ e−c1 .

Hence PL1 ≥ 1
|L∨/L1|(1 + 1

ec1 ·
|L∨/L1|
qc2 ). The conclusion follows directly.

The following proposition is useful in this paper. Please refer to [15, 7]
for the proof.

Proposition 4.1. Let K = Q[θ] be a number field of degree n and
f(T ) ∈ Q[T ] = anT

n + an−1T
n−1 + · · ·+ aT + a0 be the minimal polynomial

of θ. Write

f(T ) = (T − θ)(cn−1(θ)Tn−1 + · · ·+ c1(θ)T + c0(θ))

where cj(θ) = Σn
i=j+1aiθ

i−j−1. The dual base of {1, θ, θ2, . . . , θn−1} relative
to the trace product is

{c0(θ)

f ′(θ)
,
c1(θ)

f ′(θ)
, . . . ,

cn−1(θ)

f ′(θ)
}

.
Let p be a positive integer and pRK = Pe1 · · ·Pet

t where Pi are prime
ideals and ei ≥ 1 are positive integers, is the factorization of the ideal pRK

to the product of prime ideals.

Proposition 4.2. If I ⊂ RK is an ideal containing the positive integer
p, then I is of the form

P
e′1
j1
· · ·P

e′
t′
j′t

where t′ ≤ t e′i ≤ eji.

Proof. Set I =
∏
j Qj the factorization of I to the product of prime

ideals. Then p ∈ Qj and Qj is a prime ideal over p. The conclusion follows
directly.

From Proposition 4.2 only few ideals I satisfy the condition qRK ⊂ I
and |RK/I| ≤ poly(d). When pRK is a prime ideal, it is obvious that there
is no ideal satisfy the above two conditions. Hence in sublattice attack or
subset attack it is not natural to require a sublattice L or the feasible non-
negligible subsets to be an ideal.
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The following Kummer Lemma (see [14, 7]) is useful for the decomposi-
tion of prime numbers to the product of prime ideals in number fields.

Proposition 4.3. Let K = Q[θ] be a number field, where θ is an alge-
braic integer whose monic minimal polynomial is denoted by f(X). Then for
any prime p not dividing |RK/Z[θ]| one can obtain the prime decomposition
of pRK as follows. Let f(X) ≡

∏g
i=1 fi(X)ei mod p be the decomposition

of f(X) module p into irreducible factors in Fp[X] where fi are taken to be
monic. Then

pRK =
g∏
i=1

Pei
i ,

where
Pi = (p, fi(θ)) = pRK + fi(θ)RK.

Furthermore the residual index of Pi is equal to the degree of fi.

The main construction in Theorem 3.2 is as follows. There should be
many very short lattice vectors in the dual L∨1 of the number field lat-
tice L1 satisfying qRKd

⊂ L1 ⊂ RKd
. For given x1, . . . ,xt, t elements

in RK
∨/qRK

∨, we define a number field lattice L(x1, . . . ,xt) by the e-
quations Tr(xiy) ≡ 0 mod q, where y ∈ RK, i = 1, . . . , t. It is obvious
qRK ⊂ L ⊂ RK. Moreover it is clear the definition of L(x1, . . . ,xt) only
depends on the residue classes of xi’s in RK

∨/qRK
∨.

Proposition 4.4. The vectors x1
q , . . . ,

xt
q are in the dual lattice

L(x1, . . . ,xt)
∨ ⊂ RK

∨

q
.

If a ∈ RK is an invertible element in RK/qRK, then there is a Z/qZ
linear isomorphism from L(x1, . . . ,xt) to L(a−1x1, . . . ,a

−1xt) defined by
y −→ ay. In particular the cardinalities of

RK/L(x1, . . . ,xt)

and
RK/L(a−1x1, . . . ,a

−1xt)

are the same.
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Proof. The first conclusion is direct from the definition. The second
conclusion is a simple computation.

The following result gives a restriction on the λ1(L∨) of number field
lattice L if L containing the product of two number field lattices L1 and L2

satisfying |RK/Li| ≤ poly(n).

Theorem 4.2. Let L1,L2 and L3 be three polynomially bounded index
sublattices of rank d in the integer ring RK of a degree d number field K.
That is |RK/Li| ≤ dc holds for a fixed positive integer c and i = 1, 2, 3. We
assume L2 · L3 ⊂ L1. Then λ1(L∨1 ) ≥ Ω( 1

|∆K|
3
2d d

2c
d

).

Proof. For x ∈ L∨1 , let X be the matrix representation of the multipli-
cation of x with respect to a fixed Z-base of RK. For a number field lattice
L set B(L) to be the matrix representation of L∨ with respect to this fixed
base of RK. Then

| det(B(L∨2 ))| = |∆K|−1 · |(det(B(L2)))−1| ≥ 1

|∆K|3/2dc

from the definition of dual lattice. Since x ∈ (L2 · L3)∨, xy ∈ L∨2 for each
y ∈ L3. Then

B(L3) ·X = M ·B(L∨2 )

for some non-singular integer matrix M. We have

|det(X)| ≥ | det(M)| · 1

|∆K|3/2d2c
≥ 1

|∆K|3/2d2c

since |det(M)| ≥ 1. It is clear

||x||tr = (Σi=1|σi(x)|2)1/2 ≥
√
d(

d∏
i=1

σi(x))1/d =
√
d(N(xRK))1/d =

√
d|det(X)|1/d.

The conclusion follows directly.

From Theorem 4.2 if a sublattice L in RK contains the product of two
polynomially bounded cardinality sublattices, the λ1(L∨) is lower bounded
by Ω( 1

|∆K|
3
2d d

2c
d

) when d is sufficiently large. In particular if both L and OL

are with polynomially bounded cardinalities, λ1(L∨) can not be very small.
The sublattice attack with non-negligible OL suggested in [10] has a strong
restriction on the bound of width as the attack when L1 is required to be
an ideal as in [20, 9, 39].
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5 Proofs of main results

Proof of Theorem 3.1. First of all the probability that uniformly chosen
a ∈ RK/qRK is in the subset A1 is at least 1

dC3
, the probability s ∈ A2 is at

least 1
dC3

for uniformly distributed s ∈ RK/qRK. We check the probability

(a,b) ∈ (A1,A3) for dC11 samples (a,b)’s where C10 is a fixed sufficiently
large positive integer. Since both A1 and A3 are feasible, this can be done
within a polynomial time. When these samples are uniformly distributed,
the probability that

(a,b) ∈ (A1,A3)

is exactly
|A1|

|RK/qRK|
· |A3|
|RK/qRK|

.

Since a · s ∈ A1 · A2 for the fixed unknown secret s ∈ A2, when a ∈
A1. Then the probability b ∈ A3 is bigger than or equal to Prob(e ∈
proj−1(A4)) from the condition 2)

A1 ·A2 + A4 ⊂ A3

in the definition of subset quadruples. Then we have

Prob((a,b) ∈ (A1,A3)) ≥ |A1|
|RK/qRK|

· Prob(e ∈ proj−1(A4)).

From the condition 4) of the subset quadruple we have

Prob((a,b) ∈ (A1,A3)) >
|A1|

|RK/qRK|
· 2|A3|
|RK/qRK|

,

when samples are from the Ring-LWE equations. Hence for non-negligible
secrets s ∈ A2, the dC11 samples (a,b)’s from the Ring-LWE equation are
not uniformly distributed and can be tested within a polynomial time.

Proof of Corollary 3.1. First of all from the theory of Galois ex-
tension, the Trace function of RKd

module p(d) is the sum of eg terms
TrF

p(d)f(d)
/Fp(d) , where e is the ramification index 1 and g = C8 is the num-

ber of prime ideals containing p(d). Here we have egf(d) = C8f(d) = d. In
the case described in the Condition there are C8 terms of TrF

p(d)f(d)
/Fp(d) in

this Trace function module p(d). We take A4 the subspace in RKd
/p(d)RKd

defined by Tr(b · x) ≡ 0 mod p(d). Then A3 is the sum A1 ·A2 is in A4.
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From Theorem 4.1 the condition 4) of subset quadruple is satisfied. The
conclusion follows directly.

Proof of Corollary 3.2. Set A1 = Z[x]/(xn − pn) and A2 = A3 = A4

the image in Z/pnZ[x]/(xn) of the ideal generated by the element x. From
Theorem 3.1 and Theorem 4.1 it can be proved this Poly-LWE for the mod-
ulus parameters pn can be solved within the polynomial time. Actually the
dual lattice under this inner prodcut of the ideal generated by x is spanned
by 1

pn
, x, x2, . . . , xn−1, which has an very short vector 1

pn
in the dual lattice.

6 Conclusion

In this paper we propose a general theory of subset attacks on the Ring-LWE
to test its hardness. From the point view of subset attacks on the learning
with errors problems, the error distributions over feasible non-negligible sub-
sets in RK/qRK should be calculated and checked. In the sublattice attack
case we give an algebraic condition which is sufficient for the polynomial-
time solvability of the Ring-LWE with wide error distributions. From the
sublattice pair with ideal construction we prove that the decision Poly-LWE
over Z[x]/(xn − pn) with certain special inner products and arbitrary poly-
nomially bounded widths can be solved within the polynomial time for the
sufficiently large polynomially bounded modulus parameters pn. The further
constructive results of feasible non-negligible subset quadruples for two-to-
power cyclotomic number fields will be presented in [12].
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