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Abstract. White-box cryptography attempts to protect cryptographic
secrets in pure software implementations. Due to its high utility, white-
box cryptosystems (WBC) are deployed even though their secure con-
struction is not well understood. A major breakthrough in generic crypt-
analysis of WBC was Differential Computation Analysis (DCA), which
requires minimal knowledge of the underlying white-box protection and
also thwarts many obfuscation methods. To avert DCA, classic masking
countermeasures originally intended to protect against highly related side
channel attacks have been proposed for use in WBC. However, due to the
controlled environment of WBCs, new algebraic attacks able to break all
classic masking schemes have quickly been found. These algebraic DCA
attacks break classic masking countermeasures efficiently, as they are
independent of the masking order.
In this work, we propose a novel generic masking scheme that can resist
both DCA and algebraic attacks. The proposed scheme extends the sem-
inal work by Ishai et al. which is probing secure and thus resists DCA,
to also resist algebraic attacks. To prove the security of our scheme, we
demonstrate the connection between two main security notions in white-
box cryptography: Side Channel Analysis (SCA) security and prediction
security. Resistance of our masking scheme to DCA is proven for an ar-
bitrary order of protection. Our masking scheme also resists algebraic
attacks, which we show concretely for first and second order algebraic
protection, and show how it can be generalized to any order. Moreover,
we present an extensive performance analysis and quantify the overhead
of our scheme, for a proof-of-concept protection of an AES implementa-
tion.

Keywords: White-box Cryptography · Boolean Masking · Non-linear
Masking · Probing Security · Prediction Security · Differential Compu-
tation Analysis · Algebraic Attacks

1 Introduction

Protecting secrets purely in software is a great challenge, especially if a full
system compromise is not simply declared out-of-scope of the security model.
With fully homomorphic encryption still complex and computationally expen-
sive [34] and secure enclaves being notoriously buggy at this time [12, 33, 44],



industry may opt for white-box cryptosystems (WBC). White-box cryptogra-
phy promises implementation security of cryptographic services in pure software
solutions, mainly by protecting keys and intermediate cipher states through lay-
ers of obfuscation. While white-box cryptography is successfully sold by several
companies as one ingredient of secure software solutions (e.g. [21]), analysis of
deployed solutions is lacking, as is a sound framework to analyze white-box im-
plementations. The white-box model assumes the cryptographic primitive to run
in an untrusted environment where the white-box adversary has full control over
the implementation. The adversary has full access to every memory access, can
read and modify intermediate states and can interrupt the implementation at
will. White-box cryptography was introduced in 2002 by Chow et al. [15, 16].
The main idea of their scheme is to represent a cryptographic algorithm as a
network of look-up tables and key-dependent tables. In order to protect the
key dependent tables, Chow et al. proposed to use input and output encodings.
Although the method provides provable security guarantees for individual ta-
bles, the combinations of protected tables still leaks information [3]. In fact,
all published academic proposals for WBC [11, 27, 31, 47] have been practically
broken [3, 19,30,46].

Cryptanalysis of WBCs usually requires a time-consuming reverse engineer-
ing step to overcome included obfuscation layers [24]. To overcome this, computa-
tional analysis of white-box cryptosystems have been proposed. Computational
analysis is inspired by physical grey box attacks, mainly side-channel attacks.
Computational analysis attacks, like side channel attacks, perform statistical
analysis of observable intermediate states of a cryptographic implementation, e.g.
via its physical side channel [20, 22, 28]; if the implementation is not protected
against this kind of attack, the side channel may reveal critical information,
usually the secret key material used. At CHES 2016, Bos et al. [9] proposed
Differential Computation Analysis (DCA) and showed that DCA can extract
keys from a wide range of different white-box implementations very efficiently,
without requiring a detailed reverse engineering of the implementation. Following
this work, further generic computational analysis techniques have been proposed
for white-box implementations, such as Zero Difference Enumeration [1], Colli-
sion Attacks, and Mutual Information Analysis [39]. Bock et al. [6] analyzed
the ineffectiveness of internal encodings and explain why DCA works so well
in the white-box setting. Even fault attacks [2, 8] have been shown to be an
effective method for state and key recovery attacks on white-box implementa-
tions [5,9]. Biryukov et al. [4] introduced two new types of fault attacks to reveal
the structure of a white-box implementation, an important step of overcoming
obfuscation in WBC.

To overcome the threat of DCA and other computational analysis, a natural
protection mechanism are masking schemes. Masking splits a sensitive variable
x into n shares, such that x can be recovered from d + 1 (n ≥ d + 1) shares,
while no information can be recovered from fewer than d + 1 shares [14]. It is
a popular and effective countermeasure in the SCA literature. Most important
examples are Boolean masking introduced by Ishai et al. [26] which has been
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generalized by Rivain and Prouff [37], Threshold Implementations defined by
Nikova et al. [35], and polynomial masking as defined in [40] based on Shamir’s
secret sharing [43]. And recently the idea of combined countermeasures to resist
both side-channel and fault attacks are introduced in the literature [36,41,42].

Unlike the attacks, countermeasures cannot be applied to white-box imple-
mentations directly. For example, a dedicated masked white-box implementa-
tion introduced in [29] and it is broken in [39]. In addition, for secure WBC,
other countermeasures such as fault protection and obfuscation layers need to
be added [4] and additional randomness should be included in the input [7], as
internal randomness generators could be disabled by the white-box adversary.
Furthermore, higher order variants of DCA have been shown to be effective when
applied to masked white-box implementations due to the adversary’s ability to
observe shares without noise [7]. Although the noise-free environment makes the
attack easier, techniques like control flow obfuscation, input/output encodings
and shuffling [45] create artificial noise in white-box environments [1, 7], effec-
tively increasing the complexity of higher order DCA significantly. More devas-
tatingly, a new class of generic algebraic DCA (or in short algebraic attacks) has
been proposed recently [4, 24]. Algebraic DCA is shown to break masked WBC
independently of the masking orders if the masking is linear. Yet all current
masking proposals are vulnerable to algebraic DCA.

To sum up, although there exist informal ideas on how to create a secure
white-box design that can resist both computational and algebraic DCA, formal
and generic constructions with their security analysis are missing.

Our contribution: In this paper, we provide the first generic and combined mask-
ing scheme that resists state-of-the-art white-box attacks: DCA and algebraic
attacks. Classic masking schemes can be applied to WBC, however none of them
can individually achieve security against both attacks. To fill this gap, we exam-
ine the ISW transformation introduced by Ishai et al. [26] and extend it to the
white-box context.

As explained earlier, a Boolean masking scheme provides protection against
DCA, however it is shown in [4] that they are vulnerable to algebraic attacks,
independently of the masking order. We improve the ISW transformation by
replacing a secret share with a multiplicative representation in order to gain
security against algebraic attacks. The secret sharing of our masking scheme
consists of two components: linear and non-linear shares. The main aim of this
separation can be summarized as follows:

1. Linear shares to resist DCA attacks (or computational attacks),
2. Non-linear shares to increase the degree of decoding and therefore prevent

the algebraic attacks.

Using the generic construction, we give a comprehensive performance analysis
and comparison of our scheme. The analysis includes the total number of bitwise
operations and randomness requirements of the masking scheme with various
degrees of protections.
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To analyze the security of our construction, we focus on two security no-
tions in cryptography: SCA security and prediction security that cover security
against computational attacks and security algebraic attacks respectively. The
first model that deals with passive adversaries at any order is introduced by Ishai
et al. [26] and it is called probing model. The idea is then revised by Rivain et
al. [37]. The new model is called nth SCA security and it states that every tuple
of n or less intermediate variables must be independent of any sensitive variable.
The attacker can observe any set of intermediate variables with n elements. It
is shown that an nth-order Boolean masking provides security against nth order
SCA. The complexity of computational attacks grows with the masking order.
Moreover, the model is also used in the white-box context. As stated in [7], an
nth-order masking provides security against nth-order SCA and nth-order DCA
attacks with additional obfuscation layers. However, security in the SCA model
is necessary but not sufficient, since the SCA model covers only computational
attacks (DCA).

Another approach is given by the prediction security model, in which an
attacker can observe every intermediate variable and can only use a dth order
function to combine them. For example, an nth-order Boolean masking that
is inherently protected against DCA is vulnerable against first order algebraic
attacks since the adversary can utilize a linear function (i.e. a first order function)
and combine a subset of intermediate variables to recover the secret value.

In this work, we further show that SCA security and prediction security
notions are incomparable. The models cover different aspects of white-box leak-
ages and both of them are required to achieve security in the white-box model.
However, security in either model can be achieved without achieving the other,
resulting in insecure schemes. Therefore, we prove the security of our construc-
tions using both notions. First, we prove that our masking scheme is indeed
secure against computational attacks by showing that it is secure in SCA model
with the given order. Moreover we prove the first and second order prediction
security of our scheme. Besides the formal proof, we update and use the tool
given in [4] to experimentally verify the first order prediction security of our
scheme. The updated version of the tool is available as open source1.

Although the masking scheme is generic, the prediction security depends
on the structure of the operations. We give a concrete construction for first
and second order prediction security and prove their security. Furthermore, the
presented methodology can be adapted to arbitrary orders of prediction security.

In the last part of the paper we introduce a proof-of-concept AES implemen-
tation to analyze the overhead and experimentally verify the security properties
of our scheme using a simple leakage test. The analysis includes the number of
needed gates and number of required randomness for different orders of protec-
tion. We show that our combined approach outperforms the previous approaches
which required to use the combination of two different masking schemes to resist
both attacks.

1 https://github.com/UzL-ITS/white-box-masking
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Outline of the Paper: Section 2 provides preliminaries. In Section 3, we present
the structure of generic masking that resists computational and algebraic at-
tacks for arbitrary orders of protection. In Section 4, we prove the security of
our scheme using the notions SCA security and prediction security. Finally, in
Section 5, we propose a proof-of-concept AES-128 implementation with the per-
formance analysis using various security parameters.

2 Preliminaries

In this section, we provide the notation and definitions used in this paper. Also
we identify the challenges that need to be addressed for secure white-box designs.

Firstly, we summarize the notation that is needed for the masked white-box
design. We denote the Boolean (or linear) masking order by n and multiplicative
(or non-linear) masking order as d. The letters x, y, z, . . . represent the sensitive
variables. Random variables are represented by letter r, with an index as ri or ri.
To denote a random selection of a variable from the field, we use ∈R. The sub-
scripts xi, yi, zi, . . . represent the ith linear share of a variables while x̃i, ỹi, z̃i, . . .
represent the ith non-linear share. A vector of shares (x̃0, . . . , x̃d, x1, . . . , xn) is
denoted by x. Bold numbers 0 and 1 are used to denote constant functions.

As usual, we model the white-box implementations as Boolean circuits rep-
resented by directed acyclic graphs. Each node in a circuit C, with k > 0 inputs,
corresponds to a k-ary Boolean function. Nodes with the indegree equal to zero
are called inputs of C and nodes with the outdegree equal to zero are called
outputs of C.

Let x = (x1, . . . , xN ) (resp. y = (y1, . . . , yM )) be a vector of input (resp.
output) nodes in some fixed order. For each node v in C, we say that it computes
a Boolean function fv : FN

2 → F2 defined as follows:

– for all 1 ≤ i ≤ N set fxi(z) = zi,
– for all non-input nodes v in C set fv(z) = g(fc1(z), . . . , fck(z)), where
c1, . . . , ck are nodes having an outgoing edge to v.

The set of fv for all nodes v in C is denoted F(C) and the set of fxi for all input
nodes xi is denoted X (C).

Differential Computational Analysis: The idea of using side-channel attacks to
recover critical secrets in WBC has been introduced by Bos et al. [9]. Differential
computational analysis utilizes internal states of the software execution (such as
memory accesses) to generate software traces. DCA is regarded as one of the most
efficient attacks against white-box implementations, since it does not require full
knowledge of white-box design and thus makes the time-consuming reverse engi-
neering process avoidable. The first part of DCA consists of collecting software
traces using memory addresses, intermediate values or written/read values by
the implementation. In the second part a statistical analysis is performed using
the software traces collected in the first part.

5



To resist against DCA, a natural approach is to use the well-known side-
channel analysis countermeasure masking [14]. The masking is carried out in two
steps as defined in the seminal work by Ishai, Sahai, and Wagner in 2003 [26].
First, input data is transformed by representing each input x by n+ 1 shares in
such a way that

x = x0 ⊕ · · · ⊕ xn,

where x ∈ F2 and n of the shares are distributed uniformly and independently.
Additionally, the circuit is adapted by replacing all AND and XOR gates with
gadgets processing the shares of the inputs. Throughout the paper, the two
stages of masking will be defined as ISW transformation.

Masking schemes rely on the availability of good randomness, which is usually
provided by secure RNGs, e.g. in the form of a secure and efficient Pseudorandom
Generator [18, 25]. Similarly, randomness generation for white-box implementa-
tions has been analyzed in the literature. Due to the adversarial ability to control
the execution environment in white-box model, the attacker can simply disable
an external randomness source. Therefore, white-box implementations have to
rely on internal randomness sources in combination with additional obfuscation
countermeasures [1, 4, 7]. Remark that the effectiveness of DCA comes from its
universality and its ability to avoid reverse-engineering, which can be extremely
costly [24]. By combining masking with an obfuscation layer, the adversary is
this forced to invest on a time-consuming reverse engineering step to bypass
the obfuscation which cannot be done by an automated tool, while the masking
prevents obfuscation-oblivious attacks such as DCA.

Algebraic Attacks: Algebraic attacks have been introduced during the WhibOx
contest of CHES2017 [17]. Although the majority of the implementations in the
contest were broken in less than one day, the strongest design (by means of
the surviving time: 28 days) was broken by algebraic analysis [4, 24]. Algebraic
attacks try to find a set of circuit nodes whose dth-order of combination equals to
a predictable vector. Observe that if an implementation is protected by a linear
masking, there exists a set of circuit nodes (corresponding to the secret shares)
such that the linear combination (i.e. the first order combination) is always equal
to a predictable secret value. This means that, linear maskings are inherently
vulnerable to first-order algebraic attacks independently of the masking order [4,
24]. Like DCA, Algebraic attacks do not require complex reverse engineering and
are thus a generic threat that any white-box implementation needs to address.

Thus, to thwart both of the above-mentioned generic attacks, secure masking
for white-box implementations needs to fulfill the following two requirements:

– The number of shares needs to be sufficiently high to prevent computation
attacks (DCA).

– There may be no low degree decoder in order to counteract algebraic attacks.

Another challenge of the secure white-box implementation is the adversaries
ability to collect noise-free measurements. Remark that the security of masking
schemes against side-channel attacks or DCA comes from the inherently noisy
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measurements [13]. To deal with this problem, artificial noise sources such as con-
trol flow obfuscation [1], shuffling [7] and input and output encodings [6] have
been analyzed in the literature. The artificial noise introduced by these methods
increases the complexity of higher order DCA dramatically. It has been shown
in [7] that the complexity of the attacks increases with the order of the masking
and the order of the obfuscation layers. Therefore, the SCA model is a valid
approach to analyze the security of masking schmes of white-box implementa-
tions against DCA. Due to the artificial noise sources, it becomes infeasible for
an attacker to combine the required number of shares to recover the sensitive
information. Throughout the paper we assume a reliable randomness source is
provided as part of the implementation, that is fed internally and protected by
obfuscation layers, as done in [1, 4, 39]. Therefore, the attacks on randomness
sources and the adversaries’ ability to disable randomness is out-of-scope of this
work. For a full white-box implementation, other problems (fault protection,
randomness generation, obscurity layers) need to be added [4, 7] in addition to
a secure masking scheme, which we introduce throughout this work.

In the next Section, we introduce our masking scheme to resist both computa-
tional and algebraic attacks using an adapted version of the ISW transformation.

3 Secure Masking Construction

The proposed masking scheme is based on two ideas: an ISW-like masking to
increase the number of shares required to eliminate the computation attacks and
using a multiplicative sharing to increase the degree of the decoding function. We
denote the first part as linear sharing of order n and the second part as non-linear
sharing of degree d. And the resulting construction is named as (n, d)-masking.
The summary and the security properties of the schemes are presented in Table 1.

d
n

0 1 2 n

0 # G# ISW Transformation [26]
1 H# H# [4]  Ex. 3  [n, 1]
2 H# H#  Ex. 4  [n, 2]
d H# H#   Sec. 3.1

Table 1. The security properties of masking schemes. The mark # (resp.  ) means
the scheme is vulnerable (resp. resistance against) both to computational and algebraic
attacks. Mark H# (resp. G# ) for vulnerability to computational but resistance against
algebraic attacks (resp. resistance against computational but vulnerability to algebraic
attacks). Remark that a masking scheme with (n, 0) is the ISW transformation [26]
while a masking scheme with (1, 1) is the scheme in [4]. The example structures for the
masking schemes with (2, 1) and (3, 1) can be found in Appendix B.
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We start with the data transformation and define our masking function:

Encode(x, x̃0, . . . , x̃d, x1, . . . , xn−1) = (x̃0, . . . , x̃d, x1, . . . , xn) ,

where x̃0, . . . , x̃d, x1, . . . , xn−1 ∈R F2 are chosen randomly and independently
from F2, and

xn = x⊕
∏d

j=0 x̃j ⊕
⊕n−1

i=1 xi .

Observe that our masking scheme is obtained from ISW transformation by
replacing the first share x0 in ISW by a non-linear sharing x0 =

∏d
j=0 x̃j . The

unmasking function is defined as follows:

Decode(x̃0, . . . , x̃d, x1, . . . , xn) =
∏d

j=0 x̃j ⊕
⊕n

i=1 xi.

The data transformation is followed by the transformations of each AND and
XOR gate. Throughout the paper, we define the transformed gates as And and
Xor (or And[n, d] and Xor[n, d]) gadgets respectively.

3.1 Gate Transformations

In this section the generic constructions for Xor, And are presented. Additionally,
we provide definition of the RefreshMask gadget, which is needed to protect
against algebraic attacks. The scheme can be used for an arbitrary order n
of linear masking and any degree d of the non-linear component. Though the
constructions are general, the algebraic security depends on the structure of
the nodes (the details can be found in Section 4). The intermediate variables
(which we called the bottlenecks) that needs a special structure depending the
non-linear degree d are the following:

– The intermediate variable U used in Xor and specified in Equation (1),
– The function F in Equation (2), used in And, outputs the variables V,
– The intermediate variables W and R used in RefreshMask, Equation (3).

Let x and y be two bits and consider an (n, d)-masking scheme, i.e. x and

y have been split into (n+ d+ 1) shares such that
∏d

j=0 x̃j ⊕
⊕n

i=1 xi = x and∏d
j=0 ỹj⊕

⊕n
i=1 yi = y. Below, we describe each gadget and simultaneously give a

corresponding algorithm in pseudocode and explicit structure of the bottlenecks
of the [n, 1] and [n, 2] gadgets.

Xor[n, d] Gadget: A masked representation of z = x ⊕ y with n + d + 1 shares

such that
∏d

j=0 z̃j ⊕
⊕n

i=1 zi = z can be calculated as follows:

Step-0: The input shares processed by RefreshMask gadgets;

x← RefreshMask(x) and y ← RefreshMask(y).

Step-1: The values of the non-linear shares are processed:

z̃i = x̃i ⊕ ỹi for 0 ≤ i ≤ d.
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Algorithm 1 Xor(x, y)

Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n]) and y = ((ỹj)j∈[0,d], (yi)i∈[1,n]).
Output: The shares of x⊕ y as z = ((z̃j)j∈[0,d], (zi)i∈[1,n]).
1: x← RefreshMask(x)
2: y ← RefreshMask(y)
3: for 0 ≤ j ≤ d do
4: z̃j ← x̃j ⊕ ỹj
5: for 1 ≤ i ≤ n do
6: zi ← xi ⊕ yi
7: zn ← xn ⊕ yn ⊕ U
8: return z̄ = ((z̃j)j∈[0,d], (zi)i∈[1,n])

Step-2: Computation of linear shares are operated:

zi =

{
xi ⊕ yi, for 1 ≤ i < n

xi ⊕ yi ⊕ U , for i = n.

where U can be defined as follows:

U =
⊕

I({0,...,d}
I 6=∅

∏
i∈I x̃i

∏
j 6∈I ỹj (1)

As the explicit constructions, we can introduce U as follows:
– Xor[n, 1]: U = x̃0ỹ1 ⊕ x̃1ỹ0
– Xor[n, 2]: U = x̃1(x̃2ỹ0 ⊕ ỹ2(x̃0 ⊕ ỹ0))⊕ ỹ1(x̃2ỹ0 ⊕ x̃0(x̃2 ⊕ ỹ2)
– Xor[n, d] for d ≥ 3, U can be calculated as in Equation (1). However

the circuit nodes should be constructed carefully in order not to create
vulnerabilities in algebraic security.

And[n, d] Gadget: A masked representation of z = xy with n+ d+ 1 shares such

that
∏d

j=0 z̃j ⊕
⊕n

i=1 zi = z can be calculated as follows:

Step-0: The input shares processed by RefreshMask gadgets;

x← RefreshMask(x) and y ← RefreshMask(y).

Step-1: The calculations of the values of multiplicative representation are pro-
cessed. Additional random bits ri,j are generated in order to attain algebraic
security in the second step.

z̃i = x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n for 0 ≤ i ≤ d where i′ = i+ 1 mod(d+ 1).

Step-2: The variables rj,i for 0 ≤ i < j ≤ n are generated as follows:

rj,i =

{
(ri,j ⊕ (x̃0 · · · x̃d)yj)⊕ xj(ỹ0 · · · ỹd), for i = 0 (a)

(ri,j ⊕ xiyj)⊕ xjyi, for 1 ≤ i ≤ n where ri,j ∈R F2 (b) ,

9



The calculations for 1 ≤ i ≤ n are processed as identical to the ISW-And
gadget. However, for i = 0 the calculations require special attention and we
need to define a function F as follows:

rj,0 = F(xj , yj) = [r0,j ⊕ (x̃0 · · · x̃d)yj ]⊕ xj(ỹ0 · · · ỹd) for 1 ≤ j ≤ n. (2)

Unlike to the Step-2(a), r0,j cannot be assigned as random. Instead, r0,j
should be defined in such a way that the following equation holds:

n⊕
j=1

r0,j =
⊕

I⊂{0,...,d}
I 6=∅

∏
i∈I x̃iỹi′

∏
j 6∈I(rj,1 ⊕ · · · ⊕ rj,n) where i′ = i+1 mod(d+1).

Throughout the paper we denote right hand side of the above equation as V.
Note that the above structure for F(xj , yj) (given on the right hand side of
Equation (2)) is not secure against algebraic attack even of the first order.
Below we provide secure construction for the case (n, 1) and (n, 2)-masking.

– And[n, 1] : F(xj , yj) = x̃1(x̃0yj ⊕ r0,j ỹ0)⊕ ỹ1(ỹ0xj ⊕ r1,j x̃0)⊕ r1,j(r0,1 ⊕
. . .⊕ r0,n).

– And[n, 2] : F(xj , yj) = x̃0
[
x̃2(x̃1yj ⊕ r0,j ỹ0)⊕ r1,jvỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2xj ⊕ r1,j x̃2)⊕ r0,jux̃2

]
⊕

x̃0ỹ1(r1,j x̃2ỹ0 ⊕ r2,j x̃1ỹ2)⊕ r0,j x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,j x̃0 ⊕ r1,j ỹ1)⊕ uvr0,j .

where u = r1,1 ⊕ · · · ⊕ r1,n and v = r2,1 ⊕ · · · ⊕ r2,n.
– And[n, d] for d ≥ 3 the circuit nodes that calculates F(xj , yj) should be

structured in such a way that algebraic security properties are satisfied.

Step-3: The final step can be performed identical to an ISW-And gadget: For
every 1 ≤ i ≤ n, compute zi = xiyi ⊕

⊕
i 6=j ri,j .

RefreshMask[n, d] Gadget: The operation has a crucial importance for generat-
ing an algebraically secure implementation. In fact, the gadget should be com-
bined with each Xor and And gadget in order to obtain a fully secure masking
scheme. The security details can be found in Section 4.

Step-1: For 0 ≤ i ≤ d, calculate x̃′i = x̃i ⊕ r̃i where r̃i ∈R F2.
Step-2: For 1 ≤ i < n, calculate x′i = xi ⊕ ri and xn = xn ⊕ ri where ri ∈R F2.
Step-3: In the last step we need to define two intermediate variables as follows:

W ′ =
⊕

I({0,...,d}

∏
i∈I x̃i

∏
j 6∈I r̃j and W =

⊕
I({0,...,d}

I 6=∅

∏
i∈I(x̃i ⊕ r0)

∏
j 6∈I r̃j ,
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Algorithm 2 And(x, y)

Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n]) and y = ((ỹj)j∈[0,d], (yi)i∈[1,n]).
Output: The vector of shares of xy as z = ((z̃j)j∈[0,d], (zi)i∈[1,n]).
1: x← RefreshMask(x)
2: y ← RefreshMask(y)
3: for 0 ≤ i ≤ d do
4: z̃i = x̃iỹi′ . i′ = i+ 1 mod(d+ 1)
5: for 1 ≤ j ≤ n do
6: ri,j ← rand(0, 1)
7: z̃i = z̃i ⊕ ri,j

8: for 0 ≤ i ≤ n do
9: for i < j ≤ n do

10: if i = 0 then rj,0 ← F(xi, yi) else
11: ri,j ← rand(0, 1)
12: rj,i ← (ri,j ⊕ xiyj)⊕ xjyi
13: for 1 ≤ i ≤ n do
14: zi ← zi ⊕ xiyi
15: for 0 ≤ j ≤ n and j 6= i do
16: zi ← zi ⊕ ri,j
17: return z = ((z̃j)j∈[0,d], (zi)i∈[1,n])

Here, as usually, a product over the empty set I is evaluated as 1. Using the
above equations, we can introduce the variables that need to be added the
share xn as:

x′n ← xn ⊕W ⊕R where W ⊕R =W ′ (3)

Remark that we cannot directly addW ′ to the final share xn due to algebraic
security properties. Therefore, the variables W with R should be added to the
final share in order to define an algebraically secure mask refreshing gadget. The
explicit structure of the circuit nodes to calculateW andR for RefreshMask[n, 1]
and RefreshMask[n, 2] can be found below.

– RefreshMask[n, 1] : W = r̃0(x̃1 ⊕ r0) ⊕ r̃1(x̃0 ⊕ r0) and R = (r̃0 ⊕ r0)(r̃1 ⊕
r0)⊕ r0.

– RefreshMask[n, 2] :W = r̃1r̃2(x̃0 ⊕ r0)⊕ r̃0r̃2(x̃1 ⊕ r0)⊕ r̃0r̃1(x̃2 ⊕ r0)⊕
r̃2(x̃0 ⊕ r0)(x̃1 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0)(x̃2 ⊕ r0)⊕
r̃0(x̃1 ⊕ r0)(x̃2 ⊕ r0),

R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)(r̃2 ⊕ r0)⊕
r̃2r0(x̃0 ⊕ x̃1)⊕ r̃1r0(x̃0 ⊕ x̃2)⊕ r̃0r0(x̃1 ⊕ x̃2).

– RefreshMask[n, d] for d ≥ 3 the circuit nodes that calculates W and R
should be structured in such a way that algebraic security properties are
satisfied.
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Algorithm 3 RefreshMask(x)

Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n])
Output: The shares x = ((x̃′j)j∈[0,d], (x

′
i)i∈[1,n])

1: for 0 ≤ j ≤ d do
2: r̃j ← rand(0, 1)
3: x̃′j ← x̃j ⊕ r̃j
4: for 1 ≤ i < n do
5: ri ← rand(0, 1)
6: x′i ← xi ⊕ ri
7: x′n ← xn ⊕ ri
8: r0 ← rand(0, 1) . r0 is used to compute W and R
9: x′n ← xn ⊕W ⊕R

10: return (((x̃′j)j∈[0,d], (x
′
i)i∈[1,n])

3.2 Correctness and Performance Analysis

Next we introduce the transformation T(n,d) to generate a Boolean circuit that
is protected by an (n, d)-masking scheme and uses the gadgets described in Sec-
tion 3.1. The following lemma summarizes the correctness of the transformation
T(n,d).

Lemma 1. Let us denote the Boolean circuit that initialized with data D by
C[D]. The transformation T(n,d) : C[D] 7→ C ′[D′] where C ′ uses And, Xor,
RefreshMask gadgets and Encoding, Decoding functions described in Section 3
with randomness gates is a functionality preserving transformation, i.e. C[D]
and C ′[D′] have the same input-output behaviour.

Proof of the lemma can be found in Appendix A. In conclusion the transforma-
tion T(n,d) can be used to transform any circuit to an (n, d)-masked circuit in
a functionality preserving manner. Although we are using an nth order linear
masking, the scheme only provides an (n − 1)th SCA security. Due to the non-
linear sharing, the masking loses one share to increase the decoding order. Also
the algebraic security depends on the structure of the Equations (1), (2), and (3)
in each gadget as underlined above. The details can be found in Section 4.2.

Performance Analysis: In order to compare our construction with the previous
schemes we analyze the performance of our scheme in terms of bitwise operations
and randomness requirements. An analytical comparison of different orders and
a comparison between ISW transformation and (n, d)-masking scheme can be
found in Table 2.

In the following analysis for the simplicity, we use the symbol vertical bar (|)
to separate the number of Xor, And operations respectively. And we exclude the
RefreshMask gadgets inside the Xor and And gadgets to analyze the construc-
tions straightforwardly. Since the structure of the bottleneck variables depends
on the non-linear degree d, we use a symbolic approach to analyze the perfor-
mance numbers for the higher orders (i.e. for d ≤ 3). We use the subscripts

12



Table 2. The number of bitwise operations in Masked Operations. Remark that (n, 0)-
masking scheme corresponds to ISW gadgets. The last part of the table corresponds to
the overhead of (n, d)-masking scheme compared to ISW transformation.

Xor And Randomness

Xor[n, 0] n+ 1 - -

And[n, 0] 2n(n+ 1) (n+ 1)2 n(n+ 1)/2

RefreshMask[n, 0] 2n - n

Xor[n, 1] n+ 4 2 -

And[n, 1] 2n2 + 5n− 1 n2 + 7n+ 2 n(n+ 3)/2

RefreshMask[n, 1] 2n+ 8 3 n+ 2

Xor[n, 2] n+ 9 6 -

And[n, 2] 2n2 + 15n− 2 n2 + 27n+ 3 (n+ 5)/2

RefreshMask[n, 2] 2n+ 25 20 n+ 3

Xor[n, d] n+ d+ 2 + Ux Ua -

And[n, d] n(2n+ d− 1) + Vx n2 + d+ 1 + Va n(n+ 2d+ 1)/2

RefreshMask[n, d] 2n+ d+ 1 +Wx +Rx Wa +Ra n+ d+ 1

Overhead

Xor[n, d] d+ 1 + Ux Ua -

And[n, d] n(2n+ d− 3) + Vx − 1 d+ Va − n nd

RefreshMask[n, d] d+ 1 +Wx +Rx Wa +Ra d+ 1

to denote the number of operations within U , V, W, and R, e.g., Ux and Ua
represent the number of bitwise Xor, And operations within U .

As seen in Table 2, the Xor gadget can be transformed efficiently. The cost
of the gadget in the ISW transformation is n + 1 bitwise Xor while an (n, d)-
masking requires n+ d+ 2 bitwise Xor and the additional cost of the variables
U . Therefore, the cost of the Xor gadget can be calculated as; (n+d+2+Ux)|Ua.

The cost of an And gadget can be analyzed easily by comparing the steps
with ISW transformation. As seen in the construction in Section 3, the gadget
can be divided into three stages.

– Step-1 requires n(d+1) random bits and the cost of processing these values
can be calculated as n(d+ 1)|d+ 1.

– Step-2(a) includes the calculations of rj,0 for 1 ≤ j ≤ n. For the (n, 1)
masking, Vx = 4n and Va = 7n. Additionally, the calculations of r0,1⊕ . . .⊕
r0,n require n − 1 Xor. Similarly, (n, 2) masking Vx = 12n and Va = 27n.
Also the intermediate variables u, v, and uv are calculated only once and
they require 2(n− 1)|1.

– Step-2(b) & Step-3 involve the calculations of rj,i for 1 ≤ i < j ≤ n,
i 6= 0 and Step-3. These parts can be processed as identical to the ISW

transformation and cost 2n(n− 1)|n2 while the required number of random
bits is n(n−1)/2. Observe that the cost of these parts equals to an ISW-AND

gadget with n shares.
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To sum up, we express the cost of And[n, d] gadget as (n(2n+d−1)+Vx)|(n2+
d+ 1 + Va), and the required randomness as n(n+ 2d+ 1)/2.

We analyze the performance of the RefreshMask gadget using a similar
methodology. The total number of required randomness and the number of re-
quired bitwise Xor operations can be calculated as n+d+1 and 2n+d+1 respec-
tively. As in the previous gadgets, the calculations ofW and R add more calcula-
tions to the structure. The numbers for RefreshMask[n, 1] and RefreshMask[n, 2]
can be seen in Table 2.

Using the performance analysis, we reveal the exact overhead of our scheme.
The numbers in the overhead section of Table 2 can be calculated by comparing
the cost of with nth-order ISW transformation by an (n, d)-masking scheme. As
seen in the table, the cost principally depends of the calculation on the values
U , V, W, and R while the randomness is affected by the masking degrees n and
d.

4 Security Against Computational and Algebraic Attacks

Security in the grey-box model is a well-established issue of cryptography. In this
paper, we use the definition for nth order SCA security (security against t-probes
for t ≤ n as proposed by Ishai et al. [26]) for white-box designs and security
against algebraic attacks of degree d as proposed in [4]. First we recall briefly
both security notions and then we prove that our construction is secure against
SCA of any order up to n− 1 and against algebraic attacks for d = 1 and d = 2.
Remark that the security against SCA follows the security against computational
attacks of the same order, since the underlying idea of computational attacks
relies on side-channel analysis.

4.1 Security Models

Roughly speaking, in the setting of the nth order SCA security, an adversary
may invoke the (randomized) construction multiple times and adaptively choose
the inputs. Prior to each invocation, the adversary may fix an arbitrary set of
t ≤ n internal wires of the circuit values of which can be observed during that
invocation. We use in this paper the following common definition of the SCA
model (see e.g. [26, 37]).

Definition 1. A randomized secret key encryption algorithm is said to achieve
nth-order SCA security if every t-tuple, with t ≤ n, of its intermediate variables
is independent of any sensitive variable.

Here, by a sensitive variable of an encryption construction we mean any vari-
able, with the exception of the resulting ciphertext or any deterministic function
on it, that can be expressed as a deterministic function of the given plaintext
and the secret key. Additionally, we assume that the function is not constant
with respect to the secret key.
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In [26] Ishai et al. provide a general construction of circuits using mask-
ing shares of size n and they proved that the generic construction achieves the
(n/2)th-order SCA security. Rivain and Prouff [37] improved the analysis in [26]
showing that the ISW transformations achieves SCA security of order n.

Note that SCA security is a necessary but not a sufficient condition for a
secure white-box implementation. A white-box adversary can implement an alge-
braic attack to recover secret key from a masked white-box implementation. The
main idea of the algebraic attack is finding a dth order function of intermediate
variables2 such that the output of this function will be equal to a predictable
vector. To cover the algebraic attacks a new security notion called Prediction
Security is defined in [4]:

Definition 2 (Prediction Security (d-PS), [4]). Let C : FN ′

2 × FRC
2 → FM

2

be a Boolean circuit, E : FN
2 × FRE

2 → FN ′

2 an arbitrary function, d ≥ 1 an
integer, and A an adversary. Consider the following security experiment:

Algorithm 4 PSC,E,d(A, b)
1: (f̃ , x[0], x[1], ỹ)← A(C,E, d) where

f̃ ∈ F (d)(C), x[l] = (x
[l]
1 , . . . , x

[l]
Q ), x

[l]
i ∈ FN

2 , ỹ ∈ FQ
2

2: (r1, . . . , rQ)
$←− (FRE

2 )Q

3: (r̃1, . . . , r̃Q)
$←− (FRC

2 )Q

4: for f ∈ F (d)(C) do

5: y(f) = (f(E(x
[b]
1 , r1), r̃1), . . . , f(E(x

[b]
Q , rQ), r̃Q))

6: F ← {f ∈ F (d)(C) | y(f) = ỹ}
7: if F = {f̃} then return 1 else return 0

In the above experiment,
$←− means sampling uniformly at random. Define the

advantage of an adversary A as

AdvPS
C,E,d[A] =

∣∣∣Pr[PSC,E,d(A, 0) = 1]− Pr[PSC,E,d(A, 1) = 1]
∣∣∣

The pair (C,E) is said to be dth order prediction-secure (d-PS) if for any ad-
versary A the advantage is negligible.

Although it may seem that one definition covers the other one, in fact they
are incomparable. Therefore, both definitions are needed to analyze a secure
white-box implementation.

To illustrate the incomparability of two notions, let us consider two examples;
a white-box implementation protected with a nth-order Boolean masking and
minimalist quadratic masking defined in [4].

2 The attacker can observe all intermediate variables, therefore she can look for any
dth order combination of intermediate variables
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Fig. 1. A first-order leakage detection on a circuit that simulates AES-128 with the
masking defined in [4]. Clearly, the t-test value exceeds the threshold values shown by
red lines.

Example 1 (SCA Secure Masking Vulnerable to Algebraic Attacks). By defini-
tion, an ISW transformation to the circuit and the data results in an nth-order
SCA secure implementation. However, a first-order algebraic attack can exploit
a first-order (linear) combinations of intermediate values which equal to a pre-
dictable value. Therefore, an nth-order Boolean masking is secure in SCA model,
but not secure in prediction security as seen in [4].

Example 2 (Algebraically secure masking vulnerable to SCA). As the second ex-
ample, we use the encoding function Encode(x, x0, x1) = (x0, x1, x0x1 ⊕ x). As
given in [4] the masking scheme satisfies the first order algebraic security. How-
ever, it is not SCA secure, even with respect to the first order, due to its un-
balanced sharing which causes that intermediate variable x0x1⊕x encoding the
third share is dependent of the sensitive variable x. Indeed, for any value x we
have Prx0,x1∈RF2 [(x0x1⊕x) = x] = 3/4. Thus, there exists no first order function
that is equal to a predictable vector, but there exits one node (the last share)
that is highly correlated with a predictable vector.

In order to verify this, we implement a basic bitwise AES-128 circuit using
Sbox designed by Boyar and Peralta [10] and implement a basic leakage detection
test using 500 traces with 45000 nodes (N = 500 and M = 45000). As seen in
Figure 1, the test shows the intense leakage. The details of the experimental
setup regarding the leakage detection, trace collection and the variable selection
can be found Section 5.1.

As illustrated in Example 1, the prediction security is based on finding a
degree-d function whose output equals to a predictable value. However, in SCA
we only need to find a set of variables which depends on a predictable value as
seen in Example 2. As a main result, we prove the security of our scheme in two
steps:

– There exits no set of intermediate variables with t ≤ n elements such that
the set depends on a predictable value.

– There exists no dth order function such that the output equals to a pre-
dictable value.
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4.2 Security Against Computational Attacks in the SCA model

We start with providing some auxiliary notions which generalize the corre-
sponding definitions given in [37, 38]. A vector x = (x̃0, . . . , x̃d, x1, . . . , xn) of
n + d + 1 intermediate variables is called an (n, d)-family of shares if every
tuple of the form ((x̃i)i∈Ĩ , (xi)i∈I) such that |Ĩ| ≤ d + 1 and |I| ≤ n − 1 of
x̃0, . . . , x̃d, x1, . . . , xn is uniformly distributed and independent of any sensitive
variable and

∏d
j=0 x̃j ⊕

⊕n
i=1 xi is a sensitive variable. Two (n, d)-families of

shares x = (x̃0 . . . , x̃d, x1, . . . , xn) and y = (ỹ0 . . . , x̃d, y1, . . . , xn) are called to be
(n− 1)-independent of one another if every tuple composed of ((x̃i)i∈Ĩ , (xi)i∈I)

and ((ỹj)j∈J̃ , (yj)j∈J) with |Ĩ|, |J̃ | ≤ d + 1 and |I|, |J | ≤ n − 1 is uniformly
distributed and independent of any sensitive variable. Two (n, d)-families are
(n− 1)-dependent of one another if they are not (n− 1)-independent.

To prove the SCA security of an implementation C of an encryption scheme,
we decompose C into basic components, which we call randomized elementary
transformations. Such a component gets as input two (n−1)-independent (n, d)-
families of shares, resp. one (n, d)-family of shares, and it returns a (n, d)-family
of shares.

In this section we prove first that the randomized elementary transforma-
tions specified as Algorithm 1, 2, and 3 for computing Xor, And, respectively
RefrashMask gadgets are (n − 1)th SCA secure. In the proofs we will use the
following slight generalization of Lemma 1 given in the full version [38] of the
work [37]. Since the proof in [37] can be easily modified for our setting, we skip
it here.

Lemma 2 ( [37]). A randomized elementary transformation achieves (n−1)th-
order SCA security if and only if the distribution of every t ≤ n− 1-tuple of its
intermediate variables can be perfectly simulated from at most d + 1 non-linear
shares and at most n− 1 linear shares of each of its input families.

Now we are ready to prove SCA security of our basic constructions. We start
with RefreshMask gadget.

Proposition 1. Let x = (x̃0, . . . , x̃d, x1, . . . , xn) be an (n, d)-family of shares,
with n ≥ 2, in input of Algorithm 3 to refresh masking. Then the distribution of
every tuple of t ≤ n− 1 intermediate variables in Algorithm 3 is independent of
the distribution of values taken by x =

∏d
j=0 x̃j ⊕

⊕n
i=1 xi.

Proof. In order to prove the proposition, we use Lemma 2 and show that every
tuple of intermediate variables (v1, . . . , vt) with t ≤ n− 1 elements can be simu-
lated from two tuples of input shares (x̃i)i∈Ĩ and (xi)i∈I such that |Ĩ| ≤ d+1 and
|I| ≤ n−1. We denote the concatenation of these tuples as U = ((x̃i)i∈Ĩ , (xi)i∈I).

We first need to construct the sets of indices I and Ĩ depending on the
selected intermediate variables vk which can be divided as follows:

– For all selected ri, xi and xi ⊕ ri add i to I.
– For all selected r̃i, x̃i and x̃i ⊕ r̃i add i to Ĩ.
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– For all selected xn and xn ⊕ ri add n to I.

The above steps cover all the variables besides those used in line 11 in Algo-
rithm 3. In order to simulate the variables in line 11 we need to consider the
following (note that in the expression in line 11, only shares x̃i and random
variables are used):

– For all selected values of the form x̃i ⊕ r0 add i to Ĩ.
– If one of the variables of form

∏
i∈J(x̃i⊕ r0)

∏
i/∈J r̃i where J ( {0, . . . , d} is

selected, add all i ∈ [0, d] to Ĩ.

According to our selection, we add at most one index to I and in the worst
case we add d + 1 elements to Ĩ per selected internal variable vk. Next we will
show how to simulate a t-tuple of intermediate variables in Algorithm 3 using
the tuple U . First we need to consider the simulation of random values ri and
r̃i involved in the computation of vk.

– All ri (resp. r̃i) are assigned random values.

After assigning the random values we can consider the intermediate variables.

– Every value of the form xi, ri, or xi ⊕ ri (resp. x̃i, r̃i, or x̃i ⊕ r̃i) can be
perfectly simulated since i ∈ I (resp. i ∈ Ĩ) and the needed values of ri
(resp. r̃i) have already been assigned in the simulation as stated above.

– Thus the only remaining variables are of the form xn and xn ⊕ ri.
• if n /∈ I the values do not enter the computation of any selected value

and therefore the values can be left unassigned.
• if n ∈ I then the value xn can be simulated by the tuple U (since n ∈ I)

and xn ⊕ ri can be simulated by assigning ri a random value.

– We need to pay special attention to the values in W and R used in line 11.

• Every value of the form x̃i ⊕ r0 can be perfectly simulated since i ∈ Ĩ
and r0 is assigned a random value as stated above.
• Every value of the form

∏
i∈J(x̃i ⊕ r0)

∏
i/∈J r̃j where j ( {0, . . . , d} can

be simulated according to our selection. Either all i ∈ [0, d] is in Ĩ or the
value of the form is not selected at all. In both cases we can perfectly
simulate variables with the set U .
• Every value in R contains the non-linear input shares or random values.

Therefore we either have all i ∈ [0, d] in Ĩ or the values in R are not
selected at all. In both cases we can perfectly simulate variables with the
set U .

In conclusion, we show that any set of intermediate variables (v1, . . . , vt),
with t ≤ n − 1 elements, can be simulated by U = ((x̃i)i∈Ĩ , (xi)i∈I) such that

|Ĩ| ≤ d + 1 and |I| ≤ n − 1. By the definition of our masking U is uniformly
distributed and independent of any sensitive variable and hence RefreshMask

gadget seen in Algorithm 3 is an (n− 1)th SCA secure gadget.
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Proposition 2. Let x = (x̃0 . . . , x̃d, x1, . . . , xn) and y = (ỹ0 . . . , ỹd, y1, . . . , xn)
be two (n− 1)-independent (n, d)-families of shares, with n ≥ 2, inputs of Algo-
rithm 2 for And. Then the distribution of every tuple of t ≤ n − 1 intermediate
variables in Algorithm 2 is independent of the distribution of values taken by
x =

∏d
j=0 x̃j ⊕

⊕n
i=1 xi and y =

∏d
j=0 ỹj ⊕

⊕n
i=1 yi.

Proof. In order to prove the proposition, we use the Lemma 2 and show that
every set of intermediate variables (v1, . . . , vt) with t ≤ n − 1 elements can be
simulated by two sets of input shares (x̃i)i∈Ĩ and (xi)i∈I such that |Ĩ| ≤ d + 1

and |I| ≤ n− 1, resp. (ỹj)j∈J̃ and (yj)j∈J such that |J̃ | ≤ d+ 1 and |J | ≤ n− 1.
We denote the concatenations of these tuples by U = ((x̃i)i∈Ĩ , (xi)i∈I) and
V = ((ỹj)j∈J̃ , (yj)j∈J).

We first need to construct the sets of indices I and Ĩ corresponding to shares
of x, and J and J̃ corresponding to shares of y. The following two cases cover
every variable in Step-2(b) and Step-3:

– For all xi, yi, xiyi, ri,j or xor of these values add i to I and J .
– For all xiyj or ri,j ⊕ xiyj add i to I and j to J .

To cover Step-1 and Step-2(a) we need to follow the steps below:

– For all x̃i, ỹi, r
i,j and combination of these add i to Ĩ and J̃ .

– For all x̃iỹi′ add i to Ĩ and i′ to J̃ .
– For all x̃iyj (resp. ỹjxi) add i to Ĩ and j to J (resp. add i to I and j to J̃).
– For all values of the form

∏
i∈K x̃i

∏
j∈L ỹj where K,L ( {0, . . . , d} add all

i ∈ K to Ĩ and all j ∈ L to J .

According to our selection, we add at most one index to I (resp. J) and in
the worst case d + 1 elements to Ĩ (resp. J̃). Let us examine the simulation of
the random values:

– If i /∈ I (resp. i /∈ Ĩ) then ri (resp. r̃i) does not enter the computation of any
selected value and therefore can be left unassigned.

– If i ∈ I and j /∈ J then:
• if i < j then ri,j is assigned a random value,
• otherwise rj,i is not involved in the computation of any selected value;

therefore we can assign a random value to ri,j .
– If i, j ∈ I∩J then the values xi, xj , yi, yj can be simulated and ri,j (assigned

as random) and rj,i can be calculated as in Algorithm 2 i.e., the value rj,i
can be calculated as (ri,j ⊕ xiyj)⊕ xjyi.

– If i, j ∈ I and if i, j /∈ I ∩J then at least one of the ri,j or rj,i does not enter
the computation of the selected value, therefore the values can be assigned
a random value.

Note, that the above classification is based on the one given in [38]. In our
construction we need to examine the additional randomness used in Step-1.
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– If i /∈ Ĩ then ri,j for j ∈ [1, n] is not involved in any computation and
therefore it can be left unassigned.

– If i ∈ Ĩ then ri,j for j ∈ [1, n] should be assigned a random value.

Next we show how to simulate the variables using the tuples U and V .

– Every variable xi, yi, xiyi, ri,j or xor of these values can be simulated ac-
cording to our selection.

– xiyj or ri,j⊕xiyj can be perfectly simulated since i ∈ I, j ∈ J which enables
us to compute xiyj and ri,j have been assigned.

We note, that the above steps cover the variables in Step-2(b) and Step-3
and are based on [38]. In order to simulate the remaining variables we need to
examine the variables as follows:

– Every variable x̃i, ỹi, x̃iỹi′ , x̃iyj , ỹjxi r
i,j or xor of these values can be

simulated according to our selection.
– Every variable in Step-2(a) can be simulated since (even in the worst case)
Ĩ, J̃ can contain x̃i∈[0,d] and ỹj∈[0,d].

Hence, we show that any set of intermediate variables (v1, . . . , vt) with t ≤ n−
1 elements can be simulated by U = ((x̃i)i∈Ĩ , (xi)i∈I) and V = (ỹj)j∈J̃ , (yj)j∈J)

such that |Ĩ|, |J̃ | ≤ d + 1 and |I|, |J | ≤ n − 1. By the definition of our masking
U and V are uniformly distributed and independent of any sensitive variable
and hence the And gadget introduced in Algorithm 2 is an (n− 1)th SCA secure
elementary transformation.

Proposition 3. Let x = (x̃0, . . . , x̃d, x1, . . . , xn) and y = (ỹ0, . . . , ỹd, y1, . . . , xn)
be two (n − 1)-independent (n, d)-families of shares, with n ≥ 2, in input of
Algorithm 1 to compute Xor. Then the distribution of every tuple of t ≤ n − 1
intermediate variables in Algorithm 1 is independent of the distribution of values
taken by x =

∏d
j=0 x̃j ⊕

⊕n
i=1 xi and y =

∏d
j=0 ỹj ⊕

⊕n
i=1 yi.

The proof of Proposition 3 can be found in Appendix A. Thus we prove
the SCA security aspect of the individual gadgets introduced in Section 3. The
following theorem analyzes an arbitrary circuit C as a combination of our gadgets
and shows that C ′ (as defined below) is secure against (n−1)th-order SCA attacks
and therefore secure against (n− 1)th-order computational attacks.

Theorem 1. Assume a circuit C is transformed to C ′ using T(n,d), with n ≥ 2
and d ≥ 1, described in Section 3. Then C ′ is secure against (n − 1)th-order
computational attacks.

Proof. The randomized circuit C ′ is expressed as a combination of Xor[n, d],
And[n, d] and RefreshMask[n, d] gadgets and the gadgets take either an (n, d)-
family of shares or two (n, d)-family of shares. By the Propositions 1, 2, and 3
we know that the gadgets achieve (n − 1)th order SCA security and any set of
intermediate variables with ≤ n − 1 elements selected within the gadgets can
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be simulated by a set of inputs such that ((x̃i)i∈Ĩ , (xi)i∈I) with |Ĩ| ≤ d+ 1 and
|I| ≤ n − 1. By the definition of our masking, the set of input stated above
is uniformly distributed and independent of any sensitive variable. Any set of
intermediate variables in C ′ with ≤ n − 1 elements can be perfectly simulated
by a set of input shares which is uniformly distributed and independent of any
sensitive variable. Hence C ′ is an (n− 1)th SCA secure circuit.

4.3 Algebraic Security of the (n, 1)-Masking Scheme

In this section we analyze the algebraic security (Def. 2) of (n, 1)-masking scheme
using the gadgets in Section 3.1. We use the auxiliary (ε-1-AS) security definition
from [4].

Definition 3 (Circuit Algebraic Security (ε-1-AS), [4]). Let C(x, r) :
FN
2 × FRC

2 → FM
2 be a Boolean circuit. Then C is called first-order algebraically

ε-secure (ε-1-AS) if for any f ∈ F (1)(C) \ {0,1} one of the following conditions
holds:

1. f is an affine function of x,
2. for any x ∈ FN

2 , E(f(x, ·)) ≤ ε where f(x, ·) : FRC
2 → F2.

where E represents the bias of a Boolean function such that E(f) = |1/2 −
wt(f)/2N | and wt(f) is the weight function.

The methodology to prove the algebraic security in [4] can be divided into two
steps. The first part consists of showing E(f(x, r)) 6= 1/2 for all f ∈ F (1)(C) and
for all x ∈ FN

2 except the constant functions and affine functions of x. To solve
this, a verification algorithm is given in [4]. Briefly speaking, the algorithm gen-
erates a truth table by evaluating the circuit on all possible inputs and recording
each node in the circuit. Another truth table is formed by selecting the values
where the input is fixed x = c. That is, the second truth table corresponds to
the values of the circuit nodes where the input x is fixed to a value c while r
takes all possible values. Observe that, the latter truth table is a subset of the
former one. Finally, the algorithm compares the dimensions of the basis of the
truth tables for each restriction, to check if there is a constant function f when
the input is fixed to a value c.

The second part is processed by finding the maximum degree term (i.e. node
in the circuit) and calculating the corresponding bias bound. As proven in [32],
the degree of a Boolean function gives us a boundary for the weight of the func-
tion such that wt(f) ≤ 2N−deg(f) where N is the number of inputs of the function
f . Observe that, the maximum degree that f ∈ F (1)(C) can have is equal to
the maximum degree node in C since f contains only the linear combinations
of the nodes. That is for all f ∈ F (1)(C), deg(f) ≤ max(deg(ci)ci∈C) and thus
wt(f) ≥ 2N−max(deg(ci)ci∈C). Using this minimum weight value, the linear-bias
bound of the gadget can be calculated as:

ε =

∣∣∣∣12 − wt(f)

2N

∣∣∣∣ ≤ ∣∣∣∣12 − 2N−deg(f)

2N

∣∣∣∣ =

∣∣∣∣12 − 1

2deg(f)

∣∣∣∣ .
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Due to the first part of the proof, we know that there are no constant func-
tions and therefore bias cannot grow.

Using the discussion above we will prove the security of our gadgets by show-
ing that there exists no constant function f(c, ·) ∈ F (1)(C) for all c ∈ FN

2 and
by calculating the corresponding bias boundary of the gadgets. We start with
the first order algebraic security proof for an RefreshMask[n, 1] gadget that uses
the construction given in Section 3.1.

Proposition 4. Let C be the circuit representation of the RefreshMask gadget
using a masking scheme with an arbitrary order n and a fixed degree d = 1.
C takes as input n + 2 shares (x̃0, x̃1, (xi)1≤i≤n) and outputs n + 2 shares
(x̃0, x̃1, (xi)1≤i≤n). The gadget RefreshMask[n, 1] is ε-1-AS with ε ≤ 1/4.

The proof of Proposition 4 can be found in Appendix A. We proceed with first
order algebraic security proof for an And[n, 1] gadget that uses the construction
given in Section 3.1.

Proposition 5. Let C be the circuit representation of the And gadget using a
masking scheme with an arbitrary order n and a fixed degree d = 1. C takes as
input n + 2 shares (x̃0, x̃1, (xi)1≤i≤n) and (ỹ0, ỹ1, (yi)1≤i≤n) and outputs n + 2
shares (z̃0, z̃1, (zi)1≤i≤n). The gadget And[n, 1] is ε-1-AS with ε ≤ 7/16.

Proof. In the first part of the proof, we show that there exists no function f ∈
F (1)(C) such that f is constant when inputs are fixed.

First, let us the reformulate the circuit C as follows:

C : ((Fn+2
2 × Fn+2

2 ),FRC
2 )→ Fn+2

2

((x̃0, x̃1, (xi)1≤i≤n), (ỹ0, ỹ1, (yi)1≤i≤n), r̄) 7→ (z̃0, z̃1, (zi)1≤i≤n).

where r̄ denotes the set of randomness that is used in the circuit. Next, we
define three classes of edges within the circuit:

– R: The set of random bits,

– B: The set of linear shares i.e. xi and yj for all 1 ≤ i, j ≤ n,

– M: The set of non-linear shares i.e. x̃0, x̃1, ỹ0 and ỹ1.

Using the above classification we can analyze the nodes ci1≤i≤M ∈ C with
respect to its input edges where M is the number of nodes in C. We define the
nodes as ci : (u1i , u

2
i ) 7→ vi where u1i , u

2
i ∈ F2 represent the input bits of the

node and vi ∈ F2 represents the output bit of the node. The classification of the
nodes can be listed as follows;

1. u1i ∈ R or u2i ∈ R,

2. u1i ∈ B or u2i ∈ B,

3. u1i ∈ M and u2i ∈ M.
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Assume that there exists a function f ∈ F (1)(C) such that f is constant when
the inputs x and y are fixed. We can represent the function as f =

⊕
i∈I vi where

I ⊆ [1,M ]. Remark that the input shares are randomized, since they are first
processed by RefreshMask gadgets. Therefore f should include a reconstructed
combination of the shares i.e., f should include a combination of nodes such that
x̃0x̃1 ⊕ x1 ⊕ · · · ⊕ xn (resp. ỹ0ỹ1 ⊕ y1 ⊕ · · · ⊕ yn) is formed.

Any linear combination of the nodes of 1 and 2 cannot be constant due to
RefreshMask gadgets, since either a node is random (non fixed by definition) or
the node corresponds to linear masking (non fixed by RefreshMask). Therefore
f should include at least one node from the 3rd class to form the reconstructed
multiplicative representation: x0 or y0. Clearly, the nodes from the 3rd class
can be found in Step-1 and Step-2(a) where the following computations are
processed:

– z̃0 and z̃1,
– x̃1(x̃0yj ⊕ r0,j ỹ0) = x̃1x̃0yj ⊕ r0,j x̃1ỹ0 for 1 ≤ j ≤ n,
– ỹ1(ỹ0xj ⊕ r1,j x̃0) = ỹ1ỹ0xj ⊕ r1,j ỹ1x̃0 for 1 ≤ j ≤ n.

The use of parenthesis indicates the order in which the nodes are used in
the above equations. Therefore the order of the nodes eliminates the generation
of an affine function of x0 or y0 (the shares represented by x̃0, x̃1 and ỹ0, ỹ1
respectively), although these nodes calculate the correct function (F(xj , yj) as
seen in Equation (2)). Any linear combination of these nodes cannot be constant
and thus there exists no constant function f ∈ F (1)(C) such that inputs are fixed.

In the second part, we examine the highest degree term in the gadget and find
the corresponding bias. For And[n, 1] the maximum degree term can be found
in line 18 of Algorithm 2. Specifically, xnyn which contains a node of the form
r̃x0 r̃

x
1 r̃

y
0 r̃

y
1 where r̃x0 , r̃

x
1 (resp. r̃y0 , r̃

y
1) are the randomness used in RefreshMask(x)

(resp. RefreshMask(y)). Clearly the corresponding bias and the bias bound of
the gadget can be calculated as 2−4 and ε ≤

∣∣1/2− 1/24
∣∣ = 7/16 respectively.

Thus And gadget is ε-1-AS with ε ≤ 7/16.

Although we are not giving a proof for the Xor gadget (however the experi-
mental verification of the Xor gadget can be found below), the same discussion
can be carried out. Since any combination of algebraically secure gadgets is also
algebraically secure by [4], we can use the gadgets in Section 3.1 to securely
calculate an arbitrary Boolean circuit.

Experimental Verification: To support the results, we provide the experimen-
tal verification of the first order gadgets; And[n, 1], Xor[n, 1] (and inherently
RefreshMask[n, 1]) for n = 1, 2 and 3 using the tool given in [4]3. First we adapt
our scheme to work with the tool, i.e. we implement our masking scheme (with
the given orders n and d ) as a class inside the tool. Next we run the verification
algorithm as explained above. The updated version of the tool including our
scheme is available as open source4.

3 https://github.com/cryptolu/whitebox
4 https://github.com/UzL-ITS/white-box-masking
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Table 3. First-order algebraic security verification of individual gadgets. Input corre-
sponds the number of shares for both inputs (i.e. 2(n+2)). Random states the number
of random values (RC) within the circuit and it is calculated by the randomness re-
quirement of two RefreshMask gadgets and additional randomness in the gadget. The
number of intermediate variables represents the number of nodes in the gadget.

Max degree Bias Bound Input Random Intermediate Time

Xor[1, 1] 2 1/4 6 6 8 3.5 sec.
And[1, 1] 4 7/16 6 6 12 4 sec.

Xor[2, 1] 2 1/4 8 8 8 45.7 sec.
And[2, 1] 4 7/16 8 13 24 ≈ 114min

Xor[3, 1] 2 1/4 10 10 8 ≈ 17min
And[3, 1] 4 7/16 10 19 36 ≈ 5 days

We confirm the first order algebraic security of our scheme for different orders
and the details can be seen in Table 3. The algorithm is run on an Intel Xeon
Silver 4114 CPU@2.20GHz and, as seen in the table, the time that algorithm
takes increases exponentially with the increasing number of nodes within the
gadgets. Observe that the bias bound does not depend on the linear degree n,
since the maximum degree term is found within the terms that depend on the
non-linear degree d.

4.4 Algebraic Security of the (n, 2)-Masking Scheme

In this section we use a similar strategy given in the Section 4.3 to prove the
second order algebraic security of our gadgets. As we highlighted in Section 3.1,
we can use the generic constructions for higher orders, however the sequence of
nodes should be defined carefully in order to satisfy the algebraic security given
in the previous sections. In order to prove the higher order algebraic security we
propose the following lemma to extend a circuit. The main idea is to reduce the
problem of the dth-order algebraic security of the original circuit to the first-order
algebraic security of the extended circuit.

Lemma 3. Let C be a Boolean circuit with M nodes i.e. |C| = M and let C(d)

be the dth order extension of the circuit C defined as follows:

C(d) = {vi1}1≤i1≤M ∪{vi1vi2}1≤i1,i2≤M ∪· · ·∪{vi1vi2 · · · vid}1≤i1,i2,...,id≤M . (4)

where vi denotes the output bit of the ith node. C is dth-order prediction secure
if and only if C(d) is first-order prediction secure.

Proof. By the definition, C(d) is generated by using all nodes and all up to
dth order combinations of the nodes of C. Thus the set of linear combinations
of C(d) is equal to the set of dth order combinations of the nodes of C, i.e.
F (d)(C) = F (1)(C(d)).

By Definition 2, we can define the connection between advantage of the ad-
versaries as follows:
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AdvPS
C,E,d[A] = AdvPS

C(d),E,1[A]

Therefore, the dth order prediction security aspect of C will be identical to
first order prediction security aspect of C(d) Hence C is dth order prediction
secure if and only if C(d)is first order prediction secure.

Using Lemma 3, we will prove the second order prediction security of our
(n, 2) construction by creating the second order extension of the circuit as shown
in Equation (4). Then we show that there exists no constant function f(c, ·) ∈
F (1)(C(2)) for all c ∈ FN

2 and calculate the corresponding second-order bias
bound of the gadget. We start with the ε-2-AS of the RefreshMash[n, 2] gadget.

Proposition 6. Let C be the circuit representation of the RefreshMask gadget
using a masking scheme with an arbitrary order n and a fixed degree d = 2.
C takes as input n + 3 shares (x̃0, x̃1, x̃2, (xi)1≤i≤n) and outputs n + 3 shares
(x̃0, x̃1, x̃2, (xi)1≤i≤n). The gadget RefreshMask[n, 2] is ε-2-AS with ε ≤ 31/64.

The proof of Proposition 6 can be found in Appendix A. Next we prove the
second order algebraic security of And[n, 2] gadget.

Proposition 7. Let C be the circuit representation of the And gadget using a
masking scheme with an arbitrary order n and a fixed degree d = 2. C takes
as input n + 3 shares (x̃0, x̃1, x̃2, (xi)1≤i≤n) , (ỹ0, ỹ1, ỹ2, (yi)1≤i≤n) and outputs
n+3 shares (z̃0, z̃1, z̃2, (zi)1≤i≤n). The gadget And[n, 2] is ε-2-AS with ε ≤ (1/2−
1/212).

Proof. Similar to the proof of Proposition 5, we reformulate the circuit C as
follows:

C : ((Fn+3
2 × Fn+3

2 ),FRC
2 )→ Fn+3

2

((x̃0, x̃1, x̃2, (xi)1≤i≤n), (ỹ0, ỹ1, ỹ2, (yi)1≤i≤n), r̄) 7→ (z̃0, z̃1, z̃2, (zi)1≤i≤n).

By the Lemma 3 we can define the second order extension of the circuit C
as follows:

C ′ = {vi}1≤i≤M ∪ {vivj}1≤i,j≤M where |C| = M.

Next we use the classification of the nodes that we used in the proof of
Proposition 5:

– R: The set of random bits,
– B: The set of linear shares i.e. xi and yj for all 1 ≤ i, j ≤ n,
– M: The set of non-linear shares i.e. x̃0, x̃1, x̃2, ỹ0, ỹ1 and ỹ2.

Using the above classification we can analyze the nodes ci ∈ C with respect
to its input edges. We define the nodes as ci : (u1i , u

2
i ) 7→ vi where u1i , u

2
i ∈ F2

represent the input bits of the node and vi ∈ F2 represents the output bit of the
node. The classification of the nodes depending be listed as follows;
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Table 4. The number of gadgets in one round of AES.

SubBytes MixColumns AddRoundKey ShiftRows

And 16 × 32 - - -
Xor 16 × 83 27 128 -

1. u1i ∈ R or u2i ∈ R,
2. u1i ∈ B or u2i ∈ B,
3. u1i ∈ M and u2i ∈ M.

Assume that there exists a second-order combination f ∈ F (2)(C) that is con-
stant when the inputs are fixed. It follows that there exists a linear combination
f ′ ∈ F (1)(C ′) such that f ′ is constant when the inputs are fixed.

Let us denote the linear combination as f ′ =
⊕

i∈I v
′
i where I ⊂ C ′. As

in Proposition 5, input shares are randomized, due to the initial RefreshMask
gadgets. Therefore f ′ should include a reconstructed combination of the shares
i.e., f ′ should include a combination of nodes such that x̃0x̃1x̃2 ⊕ x1 ⊕ · · · ⊕ xn
(resp. ỹ0ỹ1ỹ2 ⊕ y1 ⊕ · · · ⊕ yn) is formed. Using the same discussion we can see
that f should include a node from the third class which can be found in Step-1
and Step-2(a).

However, the nodes ci ∈ C contains at most one value from the each mul-
tiplicative representation, i.e. all nodes in ci are of the form x̃iỹj where i, j ∈
{0, 1, 2}. Therefore the nodes c′i ∈ C ′ can contain at most two non-linear share
from an input. And hence any linear combinations of the nodes of C ′ i.e. for all
f ′ ∈ F (1)(C ′) cannot be fixed.

Thus we can conclude that there exits no constant function f ′ ∈ F (1)(C ′)
when the inputs are fixed. This result is followed by there exits no constant
function f ∈ F (2)(C) when the inputs are fixed by the Lemma 3.

In the second part of the proof we examine the highest degree term in the
circuit. Similarly the maximum degree term can be found in line 18 of Algo-
rithm 2 for And[n, 2]. We can see that the maximum degree term for this case
is 6. Since we are looking into second-order combinations of the circuit i.e for
all f ′ ∈ F (1)(C ′), the maximum degree can be stated as 12. Therefore the bias
bound can be calculated as: ε ≤ |1/2 − 1/212|. Thus C ′ is ε-1-AS circuit with
ε ≤ |1/2−1/212| and C (the circuit representation of And[n, 2] gadget) is ε-2-AS
circuit with ε ≤ |1/2− 1/212|

Using the same idea we can prove that Xor[n, 2] gadget is ε-2-AS circuit with
ε ≤ |1/2− 1/26|.

5 A Proof-of-Concept AES Implementation

In this section we introduce a white-box AES design based on the masking
scheme defined in Section 3. The AES block cipher consists of multiple rounds
of operations on its state. The operations include three linear layers: MixColumns,
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Fig. 2. Total number of bitwise operations and required randomness for one round
of AES-128 with different (n, 0), (n, 1) and (n, 2) masking schemes with and without
initial RefreshMask gadgets

ShiftRows, and AddRoundKey and one non-linear layer SubBytes. The bitwise
implementation for the linear operations can be defined straightforwardly. In
our construction we use the bitwise AES-Sbox design by Boyar and Peralta [10]
and the exact number of And and Xor gadgets within one round of AES-128 can
be seen in Table 4. The total number of bitwise operations5 can be calculated
using Table 4 and the performance analysis in Table 2. A visual representation of
AES-128 implementations with (n, 0) (i.e. ISW-transformation), (n, 1)-masking
scheme and (n, 2)-masking scheme is shown in Figure 2. Moreover the analysis
contains the algebraically secure gadgets where each input is associated with a
RefreshMask gadget, and the idea of using two different masking schemes (first
Minimalist quadratic Masking and second Boolean masking as in [4]).

As seen in Figure 2, our hybrid constriction outperforms the idea of using
a first order linear masking on top of a non-linear masking. As stated in [4]
using a combination of two masks even with the first order protections requires
roughly 200.000 gates per AES round. Since the foundation of our scheme is
ISW transformation, we can increase the SCA security aspect of our scheme
efficiently. However increasing the non-linear order is the bottleneck of our
scheme. When we compare the smallest possible implementations, we see that
one round of AES-128 with (2, 0), (2, 1) and (2, 2)-masking schemes requires
15201, 30808(90658) and 76358(270385) gates respectively where the values in
the parenthesis correspond to the gadgets associated with RefreshMask gadgets.
Clearly, RefreshMask gadgets impose a heavy overhead on our scheme. Therefore
a significant performance advantage can be achieved by further optimizing the
RefreshMask gadget. While the first order algebraically secure implementation
requires a small overhead over an unprotected implementation, the second-order
algebraically secure implementation comes with a substantial cost. One round
of AES-128 with (2, 1), (3, 1) and (4, 1)-masking schemes requires 30808(90658),
46115(113945) and 64494(140304) gates respectively. Therefore we can conclude

5 The bitwise SubBytes design by Boyar and Peralta [10] requires Not gates also.
Although we didn’t give the explicit description of a Not gadget in our masking
scheme, it can be easily defined as identical to the Not gadget in ISW transformation
i.e. by flipping the nth share.
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Fig. 3. A first-order leakage test on a circuit that simulates the AES-128 with (2, 1)-
masking defined in Section 3.1. Clearly, t-test value lie in threshold values as drawn by
red lines ([−4.5, 4.5]).

that, one can increase the security against computational attacks with small
overhead. Furthermore, the randomness requirements of our scheme increases
similarly to the ISW-transformation as seen in Figure 2.

5.1 Experimental Setup

To experimentally verify the security properties of our scheme we used the proof-
of-concept AES-128 implementation. The implementations using (n, 0), (n, 1)
and (n, 2) masking schemes including the analysis are available as open source6.

Software traces are simulated by encrypting N random plaintext and collect-
ing the output of each node. We denote ith trace (corresponds to the encryption
of ith plaintext) by ti = {vi1, . . . , viM} where vij denotes the output of jth node
and M denotes the number of the nodes in the circuit. Using the software traces
we demonstrate a simple leakage detection test by the test vector leakage as-
sessment (TVLA) as proposed by Gilbert et al. [23]. In the first part of the test,
two different sets of side-channel traces are collected by processing either a fixed
input or a random input under the same conditions in a random pattern. After
collecting the traces means (µf , µr) and standard deviations (σf , σr) for two
sets are calculated. Welch’s t-test is executed as in Equation (5) where nf and
nr denote the number of traces for fixed and random sets respectively.

t =
µf − µr√

(σ2
f/nf ) + (σ2

r/nr)
. (5)

Using the experimental setup we implement a first order leakage detection
test using 10000 traces (i.e. nf + nr = 10000) and M = 80000 (corresponds to
the two round of AES-128). As expected the test results in no observable leakage.
The illustration of the test can be seen in Figure 3.

6 Conclusion

White-box cryptography has become a popular method to protect cryptographic
keys in an insecure software realm potentially controlled by the adversary. All

6 https://github.com/UzL-ITS/white-box-masking
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white-box cryptosystems in the literature have been practically broken due to
differential computation analysis. Moreover algebraic attacks have shown the
inefficiency of classic side-channel countermeasures when they are applied in
the white-box setting. Therefore, the need for a secure and reliable white-box
implementation protected against both attacks has become evident.

We proposed the first masking scheme that combines linear and non-linear
components to achieve resistance against computational and algebraic attacks.
The new scheme extended the ISW transformation to resist algebraic attacks by
increasing the order of the decoding function. It has been defined generic and
can be applied to any orders of n and d, however the structure of the nodes
should satisfy the algebraic properties. We have examined the implementation
cost of our scheme for arbitrary orders of protection and compare it with the
ISW transformation.

We analyzed the two prevalent security notions in white-box model, side
channel analysis security and prediction security, and underlined the incompat-
ibility of the notions, which reveals that a scheme should satisfy both notions.
We used the well-known SCA security notion to prove the (n− 1)th order SCA
security of an (n, d)-masking scheme and thus we showed that our scheme can
resist (n − 1)th-order computation attacks. We proved first and second order
prediction security for the concrete construction of the (n, 1) and (n, 2) masking
scheme, respectively. Furthermore, the proposed methodology to prove the alge-
braic security can be extended to higher orders. We implemented our scheme to
the algebraic verification tool to support our results and the code has been made
publicly available. Finally, a proof-of-concept AES-128 bitwise implementation
was provided to perform leakage detection and extensive performance analysis.
The analysis showed that the new combined masking scheme outperforms the
previous approaches which requires to combine two different masking schemes
to resist both attacks.
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A Additional Proofs

In this Appendix, we give proofs for Lemma 1, proof of correctness of our scheme,
and Propositions that concern the security features of the gadgets whose proof
is not given in the paper.

Proof (Lemma 1: Correctness of Circuit Transformation T(n,d)).
For simplicity, let us denote Encode as:

Encode(x, x̃0, . . . , x̃d, x1, . . . , xn−1) = Encode(x).

Next we prove the functionality preserving property of each gadget.

– x = Decode(RefreshMask(Encode(x))

= Decode(RefreshMask((x̃0, . . . , x̃d, x1, . . . , xn))

= Decode(x̃0 ⊕ r̃0, . . . , x̃d ⊕ r̃d, x1 ⊕ r1, . . . , xn−1 ⊕ rn−1, xn ⊕
⊕n−1

i=1 ri ⊕W ⊕R)

= (x̃0 ⊕ r̃0) · · · (x̃d ⊕ r̃d)⊕ x1 ⊕ · · · ⊕ xn ⊕W ⊕R
= x̃0 · · · x̃d ⊕W ′ ⊕ x1 ⊕ · · · ⊕ xn ⊕W ⊕R
= x̃0 · · · x̃d ⊕ x1 ⊕ · · · ⊕ xn
= x
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– Decode(Xor(Encode(x), Encode(y)))

= Decode(x̃0 ⊕ ỹ0, . . . , x̃d ⊕ ỹd, x1 ⊕ y1, . . . , xn−1 ⊕ yn−1, xn ⊕ yn ⊕ U)

where (x̃0, . . . , x̃d, x1, . . . , xn) = RefreshMask(Encode(x)) and

(ỹ0, . . . , ỹd, y1, . . . , yn) = RefreshMask(Encode(y)).

= [(x̃0 ⊕ ỹ0) · · · (x̃d ⊕ ỹd)]⊕ [(x1 ⊕ y1)⊕ · · · ⊕ (xn−1 ⊕ yn−1)⊕ (xn ⊕ yn ⊕ U)]

= [x̃0 · · · x̃d ⊕ U ⊕ ỹ0 · · · ỹd]⊕ [(x1 ⊕ y1)⊕ · · · ⊕ (xn−1 ⊕ yn−1)⊕ (xn ⊕ yn ⊕ U)]

= (x̃0 · · · x̃d ⊕ x1 ⊕ · · ·xn)⊕ (ỹ0 · · · ỹd ⊕ y1 ⊕ · · · yn)

= x⊕ y.

– xy = Decode(And(Encode(x), Encode(y)))

= Decode(And((x̃0, . . . , x̃d, x1, . . . , xn), (ỹ0, . . . ỹd, y1, . . . , yn)))

where (x̃0, . . . , x̃d, x1, . . . , xn) = RefreshMask(Encode(x)) and

(ỹ0, . . . , ỹd, y1, . . . , yn) = RefreshMask(Encode(y)).

= Decode(z̃0, . . . , z̃d, z1, . . . , zn)

where the output shares can be listed as follows:

z̃i = x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n for 0 ≤ i ≤ d,

zi = xiyi ⊕
n⊕

j=1
j 6=i

ri,j for 1 ≤ i ≤ n.

Also, the values ri,j can be listed as:

r0,j = F(xj , yj) = [r0,j ⊕ (x̃0 . . . x̃d)yj ]⊕ xj(ỹ0 . . . ỹd) for 1 ≤ j ≤ n,
ri,j = (ri,j ⊕ xiyj)⊕ xjyi for 1 ≤ i < j ≤ n.
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Therefore,

Decode(z̄) = z̃0 · · · z̃d ⊕ z1 ⊕ . . .⊕ zn

=

d∏
i=0

[
x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n

]
⊕

n⊕
i=1

xiyi ⊕ n⊕
j=0
j 6=i

ri,j



= [(x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕ V]⊕

 n⊕
i=1

(xiyi ⊕
n⊕

j=1
j 6=i

ri,j)

⊕
 n⊕

j=1

((r0,j ⊕ (x̃0 . . . x̃d)yi)⊕ xi(ỹ0 . . . ỹd))


= [(x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕ V]⊕

 ⊕
1≤i,j≤n

xiyj

⊕
[
V ⊕

n⊕
i=1

(x̃0 . . . x̃d)yi ⊕ xi(ỹ0 . . . ỹd)

]

= (x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕
⊕

1≤i,j≤n

xiyj ⊕
n⊕

i=1

((x̃0 . . . x̃d)yi ⊕ xi(ỹ0 . . . ỹd))

= (x̃0 · · · x̃d ⊕ x1 ⊕ · · ·xn)(ỹ0 · · · ỹd ⊕ y1 ⊕ · · · yn)

= xy.

Hence we showed that the gadgets introduced in Section 3 are functionally
preserving gadgets. Therefore, the transformation that generate an (n, d)-masked
circuit is a functionally preserving transformation.

Proof (Proposition 3: (n−1)th order SCA Security of Xor[n, d] gadget). In order
to prove the proposition, we show that every set of intermediate variables with
≤ n − 1 elements can be simulated by two sets of input shares (x̃i)i∈Ĩ and

(xi)i∈I such that |Ĩ| ≤ d+1 and |I| ≤ n−1 (resp. (ỹj)j∈J̃ and (yj)j∈J such that

|J̃ | ≤ d + 1 and |J | ≤ n − 1). We denote the concatenations of these tuples by
U = ((x̃i)i∈Ĩ , (xi)i∈I) and V = ((ỹj)j∈J̃ , (yj)j∈J).

We first need to construct the sets of indices I and Ĩ corresponding to shares
of x, and J and J̃ corresponding to shares of y.

– For all xi, yi, xi ⊕ yi (resp. x̃i, ỹi, x̃i ⊕ ỹi) add i to I and J (resp. Ĩ and J̃).

– For all x̃iỹj add i to Ĩ and j to J̃ .

– For all
∏

i∈K x̃i
∏

j /∈K ỹj where K ( {0, . . . , d} add all i ∈ K to Ĩ and add

all j /∈ K to J̃ .

34



According to our selection, we add at most one index to I (resp. J) and in the
worst case d+ 1 elements to Ĩ (resp. J̃).

Clearly, every variable of the form xi, yi, xi ⊕ yi (resp. x̃i, ỹi, x̃i ⊕ ỹi)
can be simulated by the sets U and V . Moreover every variable of the form∏

i∈K x̃i
∏

j /∈K ỹj where K ( {0, . . . , d} can be simulated according to our se-

lection since even in the worst case scenario |Ĩ| = |J̃ | = d+ 1.
Hence, we show that any set of intermediate variables with ≤ n− 1 elements

can be simulated by U = ((x̃i)i∈Ĩ , (xi)i∈I) and V = ((ỹj)j∈J̃ , (yj)j∈J) such that

|Ĩ|, |J̃ | ≤ d + 1 and |I|, |J | ≤ n − 1. By the definition of our masking, U and V
are uniformly distributed and independent of any sensitive variable and hence
the Xor gadget seen in Algorithm 1 is an (n− 1)th SCA secure gadget.

Proof (Proposition 4: ε-1-AS of RefreshMask[n, 1] Gadget). In the first part of
the proof, we show that there exists no function f ∈ F (1)(C) such that f is
constant when inputs are fixed. Assume that there exists a function f ∈ F (1)(C)
such that f is constant when the inputs (x̃0, x̃1, (xi)1≤i≤n) are fixed. As seen in
Algorithm 3 the only nodes that does not contain a random (i.e. not fixed) can
be found in line 11 where the valuesW and R are processed. By the definition of
W each input is accompanied by a random value. And R contains only random
values. Therefore each each node is accompanied by a random node and any
linear combination of these nodes cannot be constant. Hence there exists no
constant function f ∈ F (1)(C) such that inputs are fixed.

In the second part, we examine the highest degree term in the gadget. The
maximum degree term can be found in R with degree 2. Therefore the corre-
sponding bias and the bias bound of the gadget can be calculated as 2−2 and
ε ≤

∣∣1/2− 1/22
∣∣ = 1/4 respectively. Thus RefreshMask gadget is ε-1-AS with

ε ≤ 1/4.

Proof (Proposition 6: ε-2-AS of RefreshMask[n, 2] Gadget).
The first part of the proof follows the same structure of the proof of Propo-

sition 7, and the same circuit extension idea used in the proof of Proposition 7.
We reformulate the circuit C as follows:

C : ((Fn+3
2 × Fn+3

2 ),FRC
2 )→ Fn+3

2

((x̃0, x̃1, x̃2, (xi)1≤i≤n), (ỹ0, ỹ1, ỹ2, (yi)1≤i≤n), r̄) 7→ (z̃0, z̃1, z̃2, (zi)1≤i≤n).

By the Lemma 3 we can define the second order extension of the circuit C
as follows:

C ′ = {vi}1≤i≤M ∪ {vivj}1≤i,j≤M where |C| = M.

Assume that there exists a function f ∈ F (1)(C) such that f is constant
when the inputs (x̃0, x̃1, (xi)1≤i≤n) are fixed. As seen in Algorithm 3 the only
nodes that does not contain a random (i.e. not fixed) can be found in line 11
where the values W and R are processed. By the definition of W each input
is accompanied by a random value. And R contains only random values. Since
each each node is accompanied by a random node any linear combination of the
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nodes in C ′ cannot be constant. This is followed by there exists no constant
function f ∈ F (2)(C) by Lemma 3.

In the second part, we examine the highest degree term in the gadget. The
maximum degree term can be found in R with degree 3. Therefore the corre-
sponding second order-bias and the bias bound of the gadget can be calculated
as 2−6 and ε ≤

∣∣1/2− 1/26
∣∣ = 31/64 respectively. Thus RefreshMask gadget is

ε-2-AS with ε ≤ 31/64.

B Example Constructions

Example 3. n = 2, d = 1
Here is an example construction for (2, 1)-masking scheme:

– Encode(x, x1, x̃0, x̃1) = (x̃0, x̃1, x1, x2) where x2 = x̃0x̃1 ⊕ x1 ⊕ x.
– Decode(x) = x̃0x̃1 ⊕ x1 ⊕ x2.
– Xor(x, y) = (z̃0, z̃1, z1, z2) such that z = x⊕ y:
• z̃0 = x̃0 ⊕ ỹ0,
• z̃1 = x̃1 ⊕ ỹ1,
• z1 = x1 ⊕ y1,
• z2 = x2 ⊕ y2 ⊕ x̃1ỹ0 ⊕ x̃0ỹ1.

– And(x, y) = (z̃0, z̃1, z1, z2) such that z = xy;
Step-1: First, calculate the multiplicative representations of the output

share z0:
• z̃0 = x0y1 ⊕ r0,1 ⊕ r0,2,
• z̃1 = x1y0 ⊕ r1,1 ⊕ r1,2 where (r0,1, r0,2, r1,1, r1,2)← rand(0, 1)

Step-2(a): Calculate the intermediate values rj,0 which include the recon-
struction of the values x0 and y0:
• r1,0 = x̃1(x̃0y1 ⊕ r0,1ỹ0)⊕ ỹ1(ỹ0x1 ⊕ r1,1x̃0)⊕ r1,1(r0,1 ⊕ r0,2),
• r2,0 = x̃1(x̃0y2 ⊕ r0,2ỹ0)⊕ ỹ1(ỹ0x2 ⊕ r1,2x̃0)⊕ r1,2(r0,1 ⊕ r0,2).

Step-2(b): Calculate the intermediate values rj,0 which do not include the
reconstruction of the values x0 and y0:
• r1,2 ← rand(0, 1),
• r2,1 = (r1,2 ⊕ x1y2)⊕ x2y1.

Step-3: Finally, calculate the rest of the shares:
• z1 = x1y1 ⊕ r1,0 ⊕ r1,2,
• z2 = x2y2 ⊕ r2,0 ⊕ r2,1.

– RefreshMask(x) = (x̃0, x̃1, x1, x2)
1. First, calculate the non-linear components of the output share x0:
• x̃0 = x̃0 ⊕ r̃0,
• x̃1 = x̃1 ⊕ r̃1 where (r̃0, r̃1)← rand(0, 1)

2. Calculate the rest the linear masks:
• x1 = x1 ⊕ r1,
• x2 = x2 ⊕ r1 where r1 ← rand(0, 1)

3. Select a random bit r0 ← rand(0, 1) and calculate the intermediate vari-
able with W and R :
• W = r̃0(x̃1⊕ r0)⊕ r̃1(x̃0⊕ r0) and R = (r̃0⊕ r0)(r̃1⊕ r0)⊕ r0 where
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• x2 = x2 ⊕W ⊕R

Example 4. Example: n = 2, d = 2
Here is an example construction for (2, 2)-masking scheme:

– Encode(x, x1, x̃0, x̃1, x̃2) = (x̃0, x̃1, x̃2, x1, x2) where x2 = x̃0x̃1x̃2 ⊕ x1 ⊕ x.
– Decode(x) = x̃0x̃1x̃2 ⊕ x1 ⊕ x2.
– Xor(x, y) = (z̃0, z̃1, z̃2, z1, z2) such that z = x⊕ y
• z̃i = x̃i ⊕ ỹi for i = {0, 1, 2}
• z1 = x1 ⊕ y1
• z2 = x2 ⊕ y2 ⊕ x̃1(x̃2ỹ0 ⊕ ỹ2(x̃0 ⊕ ỹ0))⊕ ỹ1(x̃2ỹ0 ⊕ x̃0(x̃2 ⊕ ỹ2))

– And(x, y) = (z̃0, z̃1, z̃2, z1, z2) such that z = xy

Step-1: First, calculate the multiplicative representations of the output
share z0:
• z̃0 = x̃0ỹ1 ⊕ r0,1 ⊕ r0,2,
• z̃1 = x̃1ỹ2 ⊕ r1,1 ⊕ r1,2,
• z̃2 = x̃2ỹ0 ⊕ r2,1 ⊕ r2,2 where ri,j ← rand(0, 1) for i = {0, 1, 2} ,
j = {1, 2}.

Step-2(a): Calculate the intermediate values rj,0 where the combination of
random nodes are defined as; u = (r1,1 ⊕ r1,2) and v = (r2,1 ⊕ r2,2).
• r1,0 = F(x1, y1) = x̃0

[
x̃2(x̃1y1 ⊕ r0,1ỹ0)⊕ r1,1vỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2x1 ⊕ r1,1x̃2)⊕ r0,1ux̃2

]
⊕

x̃0ỹ1(r1,1x̃2ỹ0 ⊕ r2,1x̃1ỹ2)⊕ r0,1x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,1x̃0 ⊕ r1,1ỹ1)⊕ uvr0,1.

• r2,0 = F(x2, y2) = x̃0
[
x̃2(x̃1y2 ⊕ r0,2ỹ0)⊕ r1,2vỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2x2 ⊕ r1,2x̃2)⊕ r0,2ux̃2

]
⊕

x̃0ỹ1(r1,2x̃2ỹ0 ⊕ r2,2x̃1ỹ2)⊕ r0,2x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,2x̃0 ⊕ r1,2ỹ1)⊕ uvr0,2.

Step-2(b): Calculate the intermediate values rj,0 which do not include the
reconstruction of the values x0 and y0:
• r1,2 ← rand(0, 1),
• r2,1 = (r1,2 ⊕ x1y2)⊕ x2y1.

Step-3: Finally, calculate the rest of the shares:
• z1 = x1y1 ⊕ r1,0 ⊕ r1,2,
• z2 = x2y2 ⊕ r2,0 ⊕ r2,1.

– RefreshMask(x) = (x̃0, x̃1, x̃2, x1, x2)
1. First, calculate the multiplicative representations of the output share x0:
• x̃0 = x̃0 ⊕ r̃0,
• x̃1 = x̃1 ⊕ r̃1,
• x̃2 = x̃2 ⊕ r̃2, where (r̃0, r̃1, r̃2)← rand(0, 1)

2. Calculate the rest the linear shares:
• x1 = x1 ⊕ r1,
• x2 = x2 ⊕ r1 where r1 ← rand(0, 1)
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3. Select a random bit r0 ← rand(0, 1) and calculate the intermediate vari-
able with W and R :
• W = r̃1r̃2(x̃0 ⊕ r0)⊕ r̃0r̃2(x̃1 ⊕ r0)⊕ r̃0r̃1(x̃2 ⊕ r0)⊕

r̃2(x̃0 ⊕ r0)(x̃1 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0)(x̃2 ⊕ r0)⊕ r̃0(x̃1 ⊕ r0)(x̃2 ⊕ r0),

R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)(r̃2 ⊕ r0)

r̃2r0(x̃0 ⊕ x̃1)⊕ r̃1r0(x̃0 ⊕ x̃2)⊕ r̃0r0(x̃1 ⊕ x̃2).
• x2 = x2 ⊕W ⊕R
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