
A White-Box Masking Scheme Resisting
Computational and Algebraic Attacks

Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

University of Lübeck, Germany
{okan.seker,thomas.eisenbarth}@uni-luebeck.de,

liskiewi@tcs.uni-luebeck.de

Abstract. White-box cryptography attempts to protect cryptographic
secrets in pure software implementations. Due to their high utility, white-
box cryptosystems (WBC) are deployed by the industry even though the
security of these constructions is not well defined. A major breakthrough
in generic cryptanalysis of WBC was Differential Computation Analysis
(DCA), which requires minimal knowledge of the underlying white-box
protection and also thwarts many obfuscation methods. To avert DCA,
classic masking countermeasures originally intended to protect against
highly related side-channel attacks have been proposed for use in WBC.
However, due to the controlled environment of WBCs, new algebraic at-
tacks against classic masking schemes have quickly been found. These
algebraic DCA attacks break all classic masking countermeasures effi-
ciently, as they are independent of the masking order.
In this work, we propose a novel generic masking scheme that can resist
both DCA and algebraic DCA attacks. The proposed scheme extends the
seminal work by Ishai et al. which is probing secure and thus resists DCA,
to also resist algebraic attacks. To prove the security of our scheme, we
demonstrate the connection between two main security notions in white-
box cryptography: probing security and prediction security. Resistance
of our masking scheme to DCA is proven for an arbitrary order of pro-
tection, using the well-known strong non-interference notion by Barthe
et al. Our masking scheme also resists algebraic attacks, which we show
concretely for first and second order algebraic protection. Moreover, we
present an extensive performance analysis and quantify the overhead of
our scheme, for a proof-of-concept protection of an AES implementation.

Keywords: White-box Cryptography · Boolean Masking · Non-linear
Masking · Probing Security · Prediction Security · Differential Compu-
tation Analysis · Algebraic Attacks

1 Introduction

Protecting secrets purely in software is a great challenge, especially if a full
system compromise is not simply declared out-of-scope of the security model.
With fully homomorphic encryption still complex and computationally expen-
sive [MOO+14] and secure enclaves being notoriously buggy at this time [VBPS17,

2 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

MIE17, BMW+18], industry may opt for white-box cryptosystems (WBC) or
even be required to do so by industry standards like EMVCo [Pay, BBF+19].
White-box cryptography promises implementation security of cryptographic ser-
vices in pure software solutions, mainly by protecting keys and intermediate ci-
pher states through layers of obfuscation. While white-box cryptography is suc-
cessfully sold by several companies as one ingredient of secure software solutions
(e.g. [Gem]), analysis of deployed solutions is lacking, as is a sound framework to
analyze white-box implementations. The white-box model assumes the crypto-
graphic primitive to run in an untrusted environment where the white-box adver-
sary has complete control over the implementation. The adversary can read and
modify every memory access or intermediate state and can interrupt the imple-
mentation at will. White-box cryptography was introduced in 2002 by Chow et
al. [CEJVO03b,CEJvO03a]. The main idea of their scheme is to represent a cryp-
tographic algorithm as a network of look-up tables and key-dependent tables. In
order to protect the key dependent tables, Chow et al. proposed to use input and
output encodings. Although the method provides security guarantees for individ-
ual tables, the combinations of protected tables still leaks information [BGEC05].
In fact, all published academic proposals for WBC [Kar10,BCD06,LN05,XL09]
have been practically broken [BGEC05,DMWP10,LRDM+14,WMGP07].

Cryptanalysis of WBCs usually requires a time-consuming reverse engineer-
ing step to surpass included obfuscation layers [GPRW19]. To overcome this,
computational analysis of white-box cryptosystems has been proposed. Compu-
tational analysis is inspired by physical grey box attacks, mainly side-channel
attacks (SCA). Computational analysis attacks, like side-channel attacks, per-
form a statistical analysis of observable intermediate states of a cryptographic
implementation, e.g. via a physical side-channel [KJJ99,GST14,GMO01]; if the
implementation is not protected against this kind of attack, the side-channel
may reveal critical information, usually the secret key material used. At CHES
2016, Bos et al. [BHMT16] proposed Differential Computation Analysis (DCA)
and showed that DCA can extract keys from a wide range of different white-box
implementations very efficiently, without requiring a detailed reverse engineer-
ing of the implementation. Following this work, further generic computational
analysis techniques have been proposed for white-box implementations, such as
Zero Difference Enumeration [BBIJ17], Collision Attacks, and Mutual Informa-
tion Analysis [RW19]. Alpirez Bock et al. [BBMT18] analyzed the ineffectiveness
of internal encodings and explained why DCA works so well in the white-box
setting. Even fault attacks [BDL97, BECN+06] have been shown to be an ef-
fective method for state and key recovery attacks on white-box implementa-
tions [BHMT16, BBB+19]. Biryukov et al. [BU18] introduced two new types of
fault attacks to reveal the structure of a white-box implementation, an important
step of overcoming obfuscation in WBC.

To meet the threat of DCA and other computational analysis, masking schemes
provide a natural protection mechanism. Masking splits a sensitive variable x
into n shares, such that x can be recovered from d+ 1 (n ≥ d+ 1) shares, while
no information can be recovered from fewer than d + 1 shares [CJRR99b]. It

A White-Box Masking Scheme 3

is a popular and effective countermeasure in the SCA literature. Most impor-
tant examples are Boolean masking introduced by Ishai et al. [ISW03] which
has been generalized by Rivain and Prouff [RP10], Threshold Implementations
defined by Nikova et al. [NRS09], and polynomial masking as defined in [RP12]
based on Shamir’s secret sharing [Sha79]. Recently the idea of combined coun-
termeasures to resist both side-channel and fault attacks were introduced in the
literature [SMG16,RMB+17,SFRES18].

As an example for this methodology, we can consider the dedicated masked
white-box implementation introduced in [LKK18]. However, the implementa-
tion was broken in [RW19]. In addition, for secure WBC, other countermeasures
such as fault protection and obfuscation layers need to be added [BU18] and
additional randomness should be included in the input [BRVW19], as internal
randomness generators could be disabled by the white-box adversary. Further-
more, higher order variants of DCA have been shown to be effective when ap-
plied to masked white-box implementations due to the adversary’s ability to
observe shares without noise [BRVW19]. Although the noise-free environment
makes the attack easier, techniques like control flow obfuscation, input/output
encodings and shuffling [VCMKS12] create artificial noise in white-box environ-
ments [BBIJ17, BRVW19], effectively increasing the complexity of higher order
DCA significantly. More devastatingly, a new class of generic algebraic DCA (or
in short algebraic attacks) has been proposed recently [BU18, GPRW19]. Alge-
braic DCA are able to break masked WBC independently of the masking orders
if the masking is linear. Yet all current masking proposals are vulnerable to al-
gebraic DCA. Mark that the scheme defined by [BU18] indeed resists first order
algebraic attacks due to its non-linear structure.

To sum up, although there exist informal ideas on how to create a secure
white-box design that can resist both computational and algebraic DCA, formal
and generic constructions with a security analysis are missing.

Our contribution: In this paper, we provide the first generic and combined mask-
ing scheme that resists state-of-the-art white-box attacks: DCA and algebraic
attacks. Classic masking schemes can be applied to WBC, however none of them
can individually achieve security against both attacks. To fill this gap, we exam-
ine the ISW transformation introduced by Ishai et al. [ISW03] and extend it to
the white-box context.

We improve the ISW transformation by adding a multiplicatively shared non-
linear share. This additional nonlinear share provides security against algebraic
attacks. The secret sharing of our masking scheme then consists of two compo-
nents: linear and non-linear shares: Linear shares to resist DCA attacks (or com-
putational attacks) and non-linear shares to increase the degree of the decoding
function and therefore to prevent algebraic attacks. We present the structure of
generic masking that resists an arbitrary order computational and first or second
order algebraic attacks in Section 3. To analyze the security of our construction
in Section 4, we focus on two security notions in cryptography: probing secu-
rity and prediction security that cover security against computational attacks
and security against algebraic attacks respectively. Probing model was intro-

4 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

duced by Ishai et al. [ISW03]. Later it was revised by Rivain et al. [RP10] to a
new model called SCA security was emerged. The model states that every tuple
of n or less intermediate variables must be independent of any sensitive vari-
able. It was shown that an nth-order Boolean masking scheme provides security
against nth-order SCA. The complexity of computational attacks grows with the
masking order. However, the notion is not sufficient to secure a complete block
cipher, as stated in [CPRR14], thus a new and stronger notion called t-strong
non-interference (t-SNI) was defined by [BBD+16]. The stronger t-SNI notion
enables the composability of the small secure gadgets to generate a complete
constructions. As stated in [BRVW19], an nth-order masking provides security
against nth-order probing attacks and nth-order DCA attacks with additional
obfuscation layers.

To cover algebraic attacks a new security notion called Prediction Security
was defined in [BU18]. The prediction security of a circuit C (with an encoding
function E), is based on the probability of an adversary (A) to accurately predict
values of any single function (of dth order) over intermediate values computed
in the circuit C (composed with encoding E). The aim of such a prediction is to
distinguish two sequences of plaintexts (chosen by the adversary) by analyzing
the corresponding software trace. For example, an nth-order Boolean masking
that is inherently protected against DCA is vulnerable against first order alge-
braic attacks, since the adversary can utilize a linear function (i.e. a first order
function) and combine a subset of intermediate variables to recover the secret
value.

In this work, we further show that the probing security and prediction secu-
rity notions are incomparable. First, we prove that our masking scheme is indeed
secure against computational attacks by showing that it is secure in the prob-
ing model with the given order using the non-interference notions by Barthe et
al. [BBD+16]. We give a concrete construction for first and second order predic-
tion security and prove their security. We extend the security definitions given
in [BU18] and give a novel composability proof for the second order prediction
secure constructions. Besides the formal proofs, we verify the probing security
of our masking scheme using the tool MaskVerif [BBC+19] for specific orders.
Furthermore, we update and use the tool produced by [BU18] to experimentally
verify the first order prediction security of our scheme. The implementation
that can be used with MaskVerif and the updated version of the tool produced
by [BU18] is available as open source1.

In the Section 5 we introduce a proof-of-concept AES implementation to
analyze the overhead and experimentally verify the security properties of our
scheme using a simple leakage test. The analysis includes the number of needed
gates and number of required randomness for different orders of protection. We
show that our combined approach outperforms the previous approaches which
required to combine two different masking schemes to resist both attacks.

1 The link is removed for anonymous reviewing, but the code can be found in Supple-
mentary files.

A White-Box Masking Scheme 5

2 Preliminaries

In this section, we provide the notation and definitions used in this paper. We also
identify the challenges that need to be addressed for secure white-box designs.

First, we summarize the notation used throughout the paper. In the fol-
lowing, we use some finite ring (K,⊕,⊗) with an addition operation ⊕ and a
multiplication operation ⊗. We often omit the multiplication symbol ⊗ and thus
write xy instead of x ⊗ y. Although we introduce the notations using K we fix
K = GF(2) through the paper. A vector space over K of dimension ` is denoted
by K`. For a, b ∈ Z with a < b, we define [a, b] := {a, a + 1, . . . , b − 1, b}. The
letters x, y, z, . . . represent the sensitive variables. Random variables are repre-
sented by the letter r, with an index as ri or ri. To denote a random selection
of a variable r from the field K, we use r ∈R K.

A variable x is split into n+1 linear shares x0, . . . , xn such that x =
⊕n

i=0 xi
and a single share (e.g. x0) split into d + 1 non-linear shares x̃0, . . . , x̃d such

that x0 =
∏d
j=0 x̃j . A vector of shares (x̃0, . . . , x̃d, x1, . . . , xn) is denoted by x.

For a subset I ⊆ [0, n] of indices, we denote by x|I = (xi)i∈I the sub-vector

of shares indexed by I. A gadget G for a function f : Ka → Kb (with regard
to a masking order) is an arithmetic circuit with a · (n + d + 1) inputs and
b·(n+d+1) outputs grouped into a vectors of shares x(1), . . . , x(a), resp. b vectors
of shares y(1), . . . , y(b). The gadget needs to be correct, i. e. G(x(1), . . . , x(a)) =
(y(1), . . . , y(b)) iff f(x(1), . . . , x(a)) = (y(1), . . . , y(b)) for all possible inputs and
for all values generated by the random gates. The values assigned to wires that
are not output wires are called intermediate variables. Bold numbers 0 and 1
are used to denote constant functions.

As usual, we model the white-box implementations as Boolean circuits rep-
resented by directed acyclic graphs. Each node in a circuit C, with k > 0 inputs,
corresponds to a k-ary Boolean function. Nodes with the indegree equal to zero
are called inputs of C and nodes with the outdegree equal to zero are called
outputs of C.

Let x = (x1, . . . , xN) (resp. y = (y1, . . . , yM)) be a vector of input (resp.
output) nodes in some fixed order. For each node v in C, we say that it computes
a Boolean function fv : FN2 → F2 defined as follows:

– for all 1 ≤ i ≤ N set fxi(z) = zi,
– for all non-input nodes v in C set fv(z) = gv(fc1(z), . . . , fck(z)), where
c1, . . . , ck are nodes having an outgoing edge to v and gv : Fk2 → F2.

The set of fv for all nodes v in C is denoted F(C), the set of fxi for all input
nodes xi is denoted X (C), and the set of fv for all non-input nodes v in C is
denoted F(C \ X).

Recall, that any Boolean function f : Fn2 → F2 has unique representation of
the form f(x) =

⊕
b∈Fn ab x

b1
1 . . . xbnn , with ab ∈ F2. The (algebraic) degree of f ,

denoted deg(f), is the maximum degree of a monomial xb11 . . . xbnn , with ab = 1.
If V = {g1, . . . , g|V|} is a set of Boolean functions with the same domain Fn2

then by the d-th order closure of V (denoted V(d)) we call the vector space of all

6 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

functions obtained by composing any function of degree at most d with functions
from V, i.e., V(d) contains functions of the form f ◦ (g1(x), . . . , g|V|(x)) for all

f : F|V|2 → F2, with deg(f) ≤ d. For example, F (1)(C) is spanned by {1}∪F(C)
and F (2)(C) is spanned by {1} ∪ {gigj | gi, gj ∈ F(C)}.

Differential Computational Analysis: The idea of using side-channel attacks to
recover critical secrets in WBC has been introduced by Bos et al. [BHMT16].
Differential computational analysis utilizes internal states of the software exe-
cution (such as memory accesses) to generate software traces. DCA is regarded
as one of the most efficient attacks against white-box implementations, since
it does not require full knowledge of the white-box design and thus avoids the
time-consuming reverse engineering process. The first part of DCA consists of
collecting software traces using memory addresses, intermediate values or writ-
ten/read values by the implementation. In the second part a statistical analysis
is performed using the software traces collected in the first part.

To resist against DCA, a natural approach is to use the well-known side-
channel analysis countermeasure masking [CJRR99b]. The masking is carried
out in two steps as defined in the seminal work by Ishai, Sahai, and Wagner in
2003 [ISW03]. First, input data is transformed by representing each input x by
n+ 1 shares in such a way that

x = x0 ⊕ · · · ⊕ xn,

where x ∈ F2 and n of the shares are distributed uniformly and independently.
Additionally, the circuit is adapted by replacing all AND and XOR gates with
gadgets processing the shares of the inputs. Throughout the paper, the two
stages of masking will be defined as ISW transformation.

Masking schemes rely on the availability of good randomness, which is usually
provided by secure RNGs, e.g. in the form of a secure and efficient Pseudorandom
Generator [IKL+13,CGZ19]. Similarly, randomness generation for white-box im-
plementations has been analyzed in the literature. Due to the adversarial ability
to control the execution environment in the white-box model, the attacker can
simply disable any external randomness sources. Therefore, white-box imple-
mentations have to rely on internal randomness sources in combination with
additional obfuscation countermeasures [BBIJ17,BU18,BRVW19]. Remark that
the effectiveness of DCA comes from its universality and its ability to avoid
reverse-engineering, which can be extremely costly [GPRW19]. By combining
masking with an obfuscation layer, the adversary is thus again forced to do a
time-consuming reverse engineering step to bypass the obfuscation, which cannot
be done by an automated tool, while the masking prevents obfuscation-oblivious
attacks such as DCA.

Algebraic Attacks: Algebraic attacks have been introduced during the WhibOx
contest of CHES2017 [Con]. Although the majority of the implementations in the
contest were broken in less than one day, even the strongest design (by means of
the surviving time: 28 days) was broken by algebraic analysis [BU18,GPRW19].

A White-Box Masking Scheme 7

Algebraic attacks try to find a set of circuit nodes whose dth-order of com-
bination equals to a predictable vector. Observe that if an implementation is
protected by a linear masking, there exists a set of circuit nodes (corresponding
to the secret shares) such that a linear combination (i.e. the first order com-
bination) is always equal to a predictable secret value. This means that linear
masking is inherently vulnerable to first-order algebraic attacks independently of
the masking order [BU18,GPRW19]. Like DCA, algebraic attacks do not require
complex reverse engineering and are thus a generic threat that any white-box
implementation needs to address.

Another challenge for secure white-box implementation is the adversaries’
ability to collect noise-free measurements. The security of masking schemes
against side-channel attacks or DCA requires noisy observations [CJRR99a].
To deal with this problem, artificial noise sources such as control flow obfusca-
tion [BBIJ17], shuffling [BRVW19], and input and output encodings [BBMT18]
have been analyzed in the literature. The artificial noise introduced by these
methods increases the complexity of higher order DCA dramatically. It has been
shown in [BRVW19] that the complexity of attacks increases with the order
of the masking and the order of the obfuscation layers. Therefore, the prob-
ing model is a valid approach to analyze the security of masking schemes of
white-box implementations against DCA. Due to the artificial noise sources, it
becomes infeasible for an attacker to combine the required number of shares to
recover the sensitive information. Throughout the paper we assume a reliable
randomness source is provided as part of the implementation, in other words,
randomness can be provided via pseudorandom values derived from the input
and protected by obfuscation layers, as done in [BBIJ17, BU18, RW19]. There-
fore, the attacks on randomness sources and the adversaries’ ability to disable
randomness is out-of-scope in this work. For a full white-box implementation,
other techniques (fault protection, randomness generation, obscurity layers) need
to be added [BU18,BRVW19] in addition to a secure masking scheme, which we
introduce throughout this work.

In the next section, we introduce our masking scheme, which resists both
computational and algebraic attacks by using an adapted version of the ISW

transformation.

3 Secure Masking Construction

The proposed masking scheme is based on two ideas: an ISW-like masking to
increase the number of shares required to eliminate computation attacks and
using a multiplicative sharing to increase the degree of the decoding function.
We call the first part linear sharing of order n and the second part non-linear
sharing of degree d. And the resulting construction is named (n, d)-masking. We
start with the data transformation and define our masking function:

Encode(x, x̃0, . . . , x̃d, x1, . . . , xn−1) = (x̃0, . . . , x̃d, x1, . . . , xn) ,

8 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

where x̃0, . . . , x̃d, x1, . . . , xn−1 ∈R F2 are chosen randomly and independently
from F2, and

xn = x⊕
∏d
j=0 x̃j ⊕

⊕n−1
i=1 xi .

Observe that our masking scheme is obtained from the ISW transformation
by replacing the first share x0 in ISW by a non-linear sharing x0 =

∏d
j=0 x̃j . The

unmasking function is defined as follows:

Decode(x̃0, . . . , x̃d, x1, . . . , xn) =
∏d
j=0 x̃j ⊕

⊕n
i=1 xi.

The data transformation is followed by the transformations of each AND and
XOR gate. Throughout the paper, we define the transformed gates as And and
Xor (or And[n, d] and Xor[n, d]) gadgets respectively.

3.1 Gate Transformations

In this section the generic constructions for Xor, And are presented. Addition-
ally, we provide definition of the RefreshMask gadget, which is needed to protect
against algebraic attacks. The scheme can be used for an arbitrary order n of
linear masking and any degree d of the non-linear component. Though the con-
structions are general, the algebraic security depends on the variable structure
(the details can be found in Section 4). The intermediate variables (which be-
come the bottlenecks in the design) need a special structure depending on the
non-linear degree d are the following:

– The intermediate variable U used in Xor and specified in Equation (1),
– The intermediate variables rj,0 in Equation (2), used in And, outputs the

variables V,
– The intermediate variables W and R used in RefreshMask, Equation (3).

In the following descriptions we first introduce the functionalities of these
variables which can be defined for arbitrary orders of n and d. Afterwards, we
will show the computational structure of these variables for d = 1 and d = 2.

Let x and y be two bits and consider an (n, d)-masking scheme, i.e. x and

y have been split into (n+ d+ 1) shares such that
∏d
j=0 x̃j ⊕

⊕n
i=1 xi = x and∏d

j=0 ỹj ⊕
⊕n

i=1 yi = y.

Xor[n, d] Gadget: A masked representation of z = x ⊕ y with n + d + 1 shares

such that
∏d
j=0 z̃j ⊕

⊕n
i=1 zi = z can be calculated as follows:

Step-0: The input shares are processed by RefreshMask gadgets;

x← RefreshMask(x) and y ← RefreshMask(y).

Step-1: The values of the non-linear shares are processed:

z̃i = x̃i ⊕ ỹi for 0 ≤ i ≤ d.

A White-Box Masking Scheme 9

Algorithm 1 Xor(x, y)

Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n]) and y = ((ỹj)j∈[0,d], (yi)i∈[1,n]).
Output: The shares of x⊕ y as z = ((z̃j)j∈[0,d], (zi)i∈[1,n]).
1: x← RefreshMask(x)
2: y ← RefreshMask(y)
3: for 0 ≤ j ≤ d do
4: z̃j ← x̃j ⊕ ỹj
5: for 1 ≤ i < n do
6: zi ← xi ⊕ yi
7: zn ← xn ⊕ yn ⊕ U
8: return z̄ = ((z̃j)j∈[0,d], (zi)i∈[1,n])

Step-2: Computation of linear shares:

zi =

{
xi ⊕ yi, for 1 ≤ i < n

xi ⊕ yi ⊕ U , for i = n.

where the functionality of U is defined as follows:

U =
⊕

I({0,...,d}
I 6=∅

∏
i∈I x̃i

∏
j 6∈I ỹj (1)

Moreover, we can introduce the computational structure of U for a secure
masking scheme as follows:

– Xor[n, 1]: U = x̃0ỹ1 ⊕ x̃1ỹ0
– Xor[n, 2]: U = x̃1(x̃2ỹ0 ⊕ ỹ2(x̃0 ⊕ ỹ0))⊕ ỹ1(x̃2ỹ0 ⊕ x̃0(x̃2 ⊕ ỹ2))

– Xor[n, d] for d ≥ 3, the functionality of U can be defined as in Equa-
tion (1). However the computational structure should be described care-
fully in order not to create vulnerabilities in algebraic security.

And[n, d] Gadget: A masked representation of z = xy with n+ d+ 1 shares such

that
∏d
j=0 z̃j ⊕

⊕n
i=1 zi = z can be calculated as follows:

Step-0: The input shares are processed by RefreshMask gadgets;

x← RefreshMask(x) and y ← RefreshMask(y).

Step-1: The calculations of the values with multiplicative representation are
processed. Additional random bits ri,j are generated in order to attain alge-
braic security in the second step.

z̃i = x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n for 0 ≤ i ≤ d where i′ = i+ 1 mod(d+ 1).

10 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

Step-2: The variables rj,i for 0 ≤ i < j ≤ n are generated as follows:

rj,i =

{
(ri,j ⊕ (x̃0 · · · x̃d)yj)⊕ xj(ỹ0 · · · ỹd), for i = 0 (a)

(ri,j ⊕ xiyj)⊕ xjyi, for 1 ≤ i ≤ n where ri,j ∈R F2 (b) ,

The calculations for 1 ≤ i ≤ n are processed as identical to the ISW-And
gadget. However, for i = 0 the calculations require a special computational
structure:

rj,0 = [r0,j ⊕ (x̃0 · · · x̃d)yj]⊕ xj(ỹ0 · · · ỹd) for 1 ≤ j ≤ n. (2)

Observe that ri,j for 1 ≤ i < j ≤ n is assigned a uniformly random value.
However, r0,j cannot be assigned as random. Instead, r0,j should be defined
in such a way that the following equation holds:

n⊕
j=1

r0,j =
⊕

I⊂{0,...,d}
I 6=∅

∏
i∈I x̃iỹi′

∏
j 6∈I(r

j,1 ⊕ · · · ⊕ rj,n) where i′ = i+1 mod(d+1).

Throughout the paper we denote the right-hand side of the above equation
as V. Note that the above functionality for rj,0 (given on the right-hand side
of Equation (2)) is not secure against an algebraic attack, even if it is only
a first order one. Below we provide a secure computational structure for the
case of an (n, 1) and (n, 2)-masking.

– And[n, 1] : rj,0 = x̃1(x̃0yj ⊕ r0,j ỹ0)⊕ ỹ1(ỹ0xj ⊕ r1,j x̃0)⊕ r1,j(r0,1 ⊕ . . .⊕
r0,n).

– And[n, 2] : rj,0 = x̃0
[
x̃2(x̃1yj ⊕ r0,j ỹ0)⊕ r1,jvỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2xj ⊕ r1,j x̃2)⊕ r0,jux̃2

]
⊕

x̃0ỹ1(r1,j x̃2ỹ0 ⊕ r2,j x̃1ỹ2)⊕ r0,j x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,j x̃0 ⊕ r1,j ỹ1)⊕ uvr0,j .

where u = r1,1 ⊕ · · · ⊕ r1,n and v = r2,1 ⊕ · · · ⊕ r2,n.
– And[n, d] for d ≥ 3 the circuit nodes that calculates rj,0 should be struc-

tured in such a way that algebraic security properties are satisfied.

Step-3: The final step can be performed identical to an ISW-And gadget: For
every 1 ≤ i ≤ n, compute zi = xiyi ⊕

⊕
i 6=j ri,j .

RefreshMask[n, d] Gadget: This operation has a crucial importance for generat-
ing an algebraically secure implementation. In fact, it has to be combined with
each Xor and And gadget in order to obtain a fully secure masking scheme. The
security details can be found in Section 4.

Step-1: For 0 ≤ i ≤ d, calculate x̃′i = x̃i ⊕ r̃ where r̃ ∈R F2.
Step-2: For 1 ≤ i < j < n, calculate x′i = xi⊕r and xj = xj⊕r where r ∈R F2.

A White-Box Masking Scheme 11

Algorithm 2 And(x, y)

Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n]) and y = ((ỹj)j∈[0,d], (yi)i∈[1,n]).
Output: The vector of shares of xy as z = ((z̃j)j∈[0,d], (zi)i∈[1,n]).
1: x← RefreshMask(x)
2: y ← RefreshMask(y)
3: for 0 ≤ i ≤ d do
4: z̃i = x̃iỹi′ . i′ = i+ 1 mod(d+ 1)
5: for 1 ≤ j ≤ n do
6: ri,j ← rand(0, 1)
7: z̃i = z̃i ⊕ ri,j

8: for 0 ≤ i ≤ n do
9: for i < j ≤ n do

10: if i = 0 then
11: rj,0 ← as described in the text.
12: else
13: ri,j ← rand(0, 1)
14: rj,i ← (ri,j ⊕ xiyj)⊕ xjyi
15: for 1 ≤ i ≤ n do
16: zi ← xiyi
17: for 0 ≤ j ≤ n and j 6= i do
18: zi ← zi ⊕ ri,j . Denoted by zi,j

19: return z = ((z̃j)j∈[0,d], (zi)i∈[1,n])

Step-3: In the last step we need to define two intermediate variables as follows:

W ′ =
⊕

I({0,...,d}

∏
i∈I x̃i

∏
j 6∈I r̃j and W =

⊕
I({0,...,d}

I 6=∅

∏
i∈I(x̃i ⊕ r0)

∏
j 6∈I r̃j ,

Here, as usual, a product over the empty set I is evaluated as 1. Using the
above equations we define the variable R =W⊕W ′. Now, we can introduce
the variables that need to be added to the final share xn as:

x′n ← xn ⊕W ⊕R where R =W ′ ⊕W. (3)

Remark that we cannot directly addW ′ to the final share xn due to algebraic
security properties. Therefore, the variables W and R should be added to the
final share in order to define an algebraically secure mask refreshing gadget.
The computational structure of the circuit nodes to calculate W and R for
RefreshMask[n, 1] and RefreshMask[n, 2] can be found below.

– RefreshMask[n, 1] : W = r̃0(x̃1 ⊕ r0) ⊕ r̃1(x̃0 ⊕ r0) and R = (r̃0 ⊕ r0)(r̃1 ⊕
r0)⊕ r0.

12 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

Algorithm 3 RefreshMask(x)

Input: The shares x = ((x̃j)j∈[0,d], (xi)i∈[1,n])
Output: The shares x = ((x̃′j)j∈[0,d], (x

′
i)i∈[1,n])

1: for 0 ≤ j ≤ d do
2: r̃j ← rand(0, 1)
3: x̃′j ← x̃j ⊕ r̃j
4: for 1 ≤ i ≤ n do x′i ← xi

5: for 1 ≤ i ≤ n do
6: for i+ 1 ≤ j ≤ n do
7: ri,j ← rand(0, 1)
8: x′i ← x′i ⊕ ri,j . Denoted by ai,j
9: x′j ← x′j ⊕ ri,j . Denoted by bj,i

10: r0 ← rand(0, 1) . r0 is used to compute W and R
11: x′n ← xn ⊕W ⊕R
12: return (((x̃′j)j∈[0,d], (x

′
i)i∈[1,n])

– RefreshMask[n, 2] :W = r̃1r̃2(x̃0 ⊕ r0)⊕ r̃0r̃2(x̃1 ⊕ r0)⊕ r̃0r̃1(x̃2 ⊕ r0)⊕
r̃2(x̃0 ⊕ r0)(x̃1 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0)(x̃2 ⊕ r0)⊕
r̃0(x̃1 ⊕ r0)(x̃2 ⊕ r0),

R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)(r̃2 ⊕ r0)⊕
r0 [r̃2(x̃0 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0)⊕ r̃0(x̃1 ⊕ r0)]⊕
r0 [r̃2(x̃1 ⊕ r0)⊕ r̃1(x̃2 ⊕ r0)⊕ r̃0(x̃2 ⊕ r0)] .

– RefreshMask[n, d] for d ≥ 3 the circuit nodes that calculateW and R should
be constructed in such a way that algebraic security properties are satisfied.

3.2 Correctness and Performance Analysis

Next, we introduce the transformation T(n,d) to generate a Boolean circuit that
is protected by an (n, d)-masking scheme by using the gadgets described in Sec-
tion 3.1. The following lemma summarizes the correctness of the transformation
T(n,d).

Lemma 1. Let us denote the Boolean circuit C initialized with data D by C[D].
The transformation T(n,d) : C[D] 7→ C ′[D′] where C ′ uses And, Xor, RefreshMask
gadgets and Encoding, Decoding functions described in Section 3 with random-
ness gates is a functionality preserving transformation, i.e. C[D] and C ′[D′]
have the same input-output behavior.

The proof for this lemma can be found in Appendix A. In conclusion, the trans-
formation T(n,d) can be used to transform any circuit to an (n, d)-masked circuit
in a functionality preserving manner. Although we are using an nth order linear
masking, the scheme only provides an (n−1)th probing security. Due to the non-
linear sharing, the masking loses one share to increase the decoding order. Also
the algebraic security depends on the structure of the Equations (1), (2), and (3)
in each gadget as underlined above. The details can be found in Section 4.2.

A White-Box Masking Scheme 13

Table 1. The number of bitwise operations in a masked Xor, And and RefreshMask

(or RefM in short) gadget. Remark that (n, 0)-masking scheme corresponds to ISW

gadgets. The last part of the table corresponds to the overhead of (n, d)-masking scheme
compared to the ISW transformation.

Xor And Randomness

Xor[n, 0] n+ 1 - -

And[n, 0] 2n(n+ 1) (n+ 1)2 n(n+ 1)/2

RefM[n, 0] n(n− 1) - n(n− 1)/2

Xor[n, 1] n+ 4 2 -

And[n, 1] 2n2 + 5n− 1 n2 + 7n+ 2 n(n+ 3)/2

RefM[n, 1] n(n− 1) + 8 3 (n(n− 1)/2) + 2

Xor[n, 2] n+ 9 6 -

And[n, 2] 2n2 + 15n− 2 n2 + 27n+ 3 n(n+ 5)/2

RefM[n, 2] n(n− 1) + 30 22 (n(n− 1)/2) + 3

Xor[n, d] n+ d+ 2 + Ux Ua -

And[n, d] n(2n+ d− 1) + Vx n2 + d+ 1 + Va n(n+ 2d+ 1)/2

RefM[n, d] n(n− 1) + d+ 1 +Wx +Rx Wa +Ra (n(n− 1)/2) + d+ 1

Overhead

Xor[n, d] d+ 1 + Ux Ua -

And[n, d] n(2n+ d− 3) + Vx − 1 d+ Va − n nd

RefM[n, d] d+ 1 +Wx +Rx Wa +Ra d+ 1

Performance Analysis: In order to compare our construction with the previous
schemes we analyze the performance of our scheme in terms of bitwise operations
and randomness requirements. An analytical comparison of different orders and
a comparison between the ISW transformation and (n, d)-masking scheme can be
found in Table 1.

In the following analysis, for simplicity, we use the symbol vertical bar (|)
to separate the number of Xor, And operations respectively. We exclude the
RefreshMask gadgets inside the Xor and And gadgets to analyze the construc-
tions straightforwardly. Since the structure of the bottleneck variables depends
on the non-linear degree d, we use a symbolic approach to analyze the perfor-
mance numbers for the higher orders (i.e. for d ≥ 3). We use subscripts to denote
the number of operations within U , V, W, and R, e.g., Ux and Ua represent the
number of bitwise Xor, And operations within U respectively.

As seen in Table 1, the Xor gadget can be transformed efficiently. The cost
of the gadget in the ISW transformation is n+ 1 bitwise Xor operations while an
(n, d)-masking requires n+ d+ 2 bitwise Xor operations and the additional cost
of the variables U . Therefore, the cost of the Xor gadget can be calculated as;
(n+ d+ 2 + Ux)|Ua.

The cost of an And gadget can be analyzed easily by comparing it step by
step with the ISW transformation. As seen in the construction in Section 3, the
gadget can be divided into three stages.

14 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

– Step-1 requires n(d+1) random bits and the cost of processing these values
can be calculated as n(d+ 1)|d+ 1.

– Step-2(a) includes the calculations of rj,0 for 1 ≤ j ≤ n. For the (n, 1)
masking, Vx = 4n and Va = 7n. Additionally, the calculations of r0,1⊕ . . .⊕
r0,n require n − 1 Xor. Similarly, (n, 2) masking Vx = 12n and Va = 27n.
Also the intermediate variables u, v, and uv are calculated only once and
they require 2(n− 1)|1.

– Step-2(b) & Step-3 involve the calculations of rj,i for 1 ≤ i < j ≤ n, i 6= 0
and Step-3. These parts can be processed identical to the ISW transformation
and cost 2n(n − 1)|n2 gates, while the required number of random bits is
n(n − 1)/2. Observe that the cost of these parts are exactly the cost of an
ISW-AND gadget with n shares.

To sum up, we express the cost of And[n, d] gadget as (n(2n+d−1)+Vx)|(n2+
d+ 1 + Va) gates, and the required randomness as n(n+ 2d+ 1)/2.

We analyze the performance of the RefreshMask gadget using a similar
methodology. The total number of required randomness and the number of re-
quired bitwise Xor operations can be calculated as (n(n − 1)/2) + d + 1 and
n(n−1)+d+1 respectively. As in the previous gadgets, the calculations ofW and
R add more calculations to the structure. The numbers for RefreshMask[n, 1]
and RefreshMask[n, 2] can be seen in Table 1.

Using the performance analysis, we show the exact overhead of our scheme.
The numbers in the overhead section of Table 1 can be calculated by comparing
the cost of the nth-order ISW transformation with an (n, d)-masking scheme. As
seen in the table, the cost principally depends on the calculation of the values
U , V, W, and R while the randomness is affected by the masking degrees n and
d.

4 Security Against Computational and Algebraic Attacks

In this section, we use the definition of non-interference as defined by [BBD+16]
which guarantees security against t-probes for t ≤ n as proposed by Ishai
et al. [ISW03] and security against algebraic attacks of degree d as proposed
in [BU18]. First, we recall briefly both security notions and then we prove that
our (n, d) construction is secure against probing up to order n − 1 and against
algebraic attacks for d = 1 and d = 2. Remark that security against probing
follows from security against computational attacks of the same order, since the
underlying idea of computational attacks corresponds to side-channel attacks in
the probing model.

4.1 Security Notions

In this section, we cover the security notions that we used to prove our security
properties starting with the probing model. Roughly speaking, in the setting
of the probing model, an adversary may invoke the (randomized) construction

A White-Box Masking Scheme 15

multiple times and adaptively choose the inputs. Prior to each invocation, the
adversary may fix an arbitrary set of t ≤ n wires of the circuit values which can
be observed during that invocation. In this paper we use a more refined security
model defined as t-non-interference(t-NI) and t-strong non-interference(t-SNI)
defined in [BBD+16]. We use the restatements of the definitions by Coron et
al. [CGPZ16].

Definition 1 (t-NI Security). Let G be a gadget which takes as input n + 1
shares (xi)0≤i≤n and outputs n + 1 shares (yi)0≤i≤n. The gadget G is said to
be t-NI secure if for any set of t1 probed intermediate variables and any subset
O ⊂ [0, n] of output indices, such that t1+ |O| ≤ t, there exists a subset I ⊂ [0, n]
of input indices which satisfies |I| ≤ t1 + |O|, such that the t1 intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

Definition 2 (t-SNI Security). Let G be a gadget which takes as input n+ 1
shares (xi)0≤i≤n and outputs n + 1 shares (yi)0≤i≤n. The gadget G is said to
be t-SNI secure if for any set of t1 probed intermediate variables and any subset
O ⊂ [0, n] of output indices, such that t1+ |O| ≤ t, there exists a subset I ⊂ [0, n]
of input indices which satisfies |I| ≤ t1, such that the t1 intermediate variables
and the output variables y|O can be perfectly simulated from x|I .

The main difference between the t-NI and t-SNI security notions is that in
the latter notion the size of the input subsets I does not depend on the size
of the set of probed output shares O. Thus, t-SNI security notion ensures the
input-output separation which is an essential component for composability of
the gadgets.

Note that security in the probing model is a necessary but not a sufficient
condition for a secure white-box implementation. E.g., a white-box adversary can
implement an algebraic attack to recover the secret key from a masked white-box
implementation.

Definition 3 (Prediction Security (d-PS), [BU18]). Let C : FN ′2 ×FRC
2 →

FM2 be a Boolean circuit, E : FN2 × FRE
2 → FN ′2 an arbitrary function, d ≥ 1 an

integer, and A an adversary. Consider the following security experiment:

Algorithm 4 PSC,E,d(A, b)
1: (f̃ , x[0], x[1], ỹ)← A(C,E, d) where

f̃ ∈ F (d)(C), x[l] = (x
[l]
1 , . . . , x

[l]
Q), x

[l]
i ∈ FN

2 , ỹ ∈ FQ
2

2: (r1, . . . , rQ)
$←− (FRE

2)Q

3: (r̃1, . . . , r̃Q)
$←− (FRC

2)Q

4: for f ∈ F (d)(C) do

5: y(f) = (f(E(x
[b]
1 , r1), r̃1), . . . , f(E(x

[b]
Q , rQ), r̃Q))

6: F ← {f ∈ F (d)(C) | y(f) = ỹ}
7: if F = {f̃} then return 1 else return 0

16 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

In the above experiment,
$←− means sampling uniformly at random. Finally,

we define the advantage of an adversary A as

AdvPS
C,E,d[A] =

∣∣∣Pr[PSC,E,d(A, 0) = 1]− Pr[PSC,E,d(A, 1) = 1]
∣∣∣

The pair (C,E) is said to be dth order prediction-secure (d-PS) if for any ad-
versary A the advantage is negligible.

In summary, prediction security analyzes the behaviour of functions from
F (d)(C) composed with an encoding function E. Consider two elements x, x′ ∈
FN2 , if an adversary is able to find a function f ∈ F (d)(C) \ {0,1} such that
f(E(x, ·), ·) is constant (or high-bias) but f(E(x′, ·), ·) is non-constant (or low-
bias) then the adversary can distinguish these inputs and therefore the pair
(C,E) is considered insecure. Thus, prediction security requires every function
from the set F (d)(C) to have low-bias.

The outline of proofs can be summarized as follows. First our gadgets and
encoding function have been proven to satisfy ε-1-AS, Definition 7 and Defi-
nition 6 (resp. ε-2-AS Definition 9 and Definition 8). Next, the composability
of our gadgets is proven using 1-AS composability result in [BU18] and using
2-AS composability results given in Proposition 10 and 11 respectively. Third,
we prove the composability of the encoding function with an arbitrary boolean
circuit in Proposition 7 and 12. In Section 4.5 we give the quantitative bounds
for the prediction security using the Proposition 1.

In [BU18], it is shown that a circuit C achieves d-PS, if there are enough
random bits used in the circuit depending on the bias bound. Before giving the
relation between random bits and d-PS, we first remark the set of functions that
is needed for the analysis.

Definition 4 ([BU18]). Let C : FN ′2 × FRC
2 → FM2 be a Boolean circuit,

E : FN2 × FRE
2 → FN ′2 an arbitrary function and d ≥ 1 an integer. For any

function f ∈ F (d)(C) \ {0,1} and for any x ∈ FN2 define fx : FRE
2 × FRC

2 → F2

given by fx(re, rc) = f(E(x, ·), ·) and denote the set of all such functions as Rd:

Rd = {fx(re, rc) | f ∈ F (d)(C) \ {0,1}, x ∈ FN2 }.

Using the above definition, a bound for the d-PS is given as in the following
proposition which indicates the required number of random bits.

Proposition 1 (Corollary 1 in [BU18]). Let ε be the maximum bias among
all functions from Rd, i.e., ε = maxfx∈Rd

E(fx). Let e = − log2(1/2 + ε). Then
for any adversary A choosing vector size of Q:

AdvPS
C,E,d[A] ≤ 2−k

if e > 0 and RC ≥ k · (1 + 1/e).

A White-Box Masking Scheme 17

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
4

-10

-5

0

5

10

15

Fig. 1. A first-order leakage detection on a circuit that simulates AES-128 with the
masking defined in [BU18]. Clearly, the t-test value exceeds the threshold values shown
by red lines.

Although it may seem that prediction security covers probing security (or vice
versa), both notions are in fact incomparable. Therefore, both notions are needed
to analyze a secure white-box implementation. To illustrate the incomparability
of the two notions, let us consider two examples; a white-box implementation
protected with an nth-order Boolean masking and minimalist quadratic masking
defined in [BU18].

Example 1 (Probing Secure Masking Vulnerable to Algebraic Attacks). Applying
an ISW transformation to the circuit and the data results in an nth-order probing
secure implementation. However, a first-order algebraic attack can exploit a first-
order (linear) combination of intermediate values which is equal to a predictable
value. Therefore, an nth-order Boolean masking is secure in the probing model,
but not secure in prediction security, as shown in [BU18].

Example 2 (Algebraically secure masking vulnerable to probing). As the second
example, we use the encoding function Encode(x, x0, x1) = (x0, x1, x0x1 ⊕ x).
As given in [BU18] the masking scheme satisfies first order algebraic security.
However, it is not probing secure, not even first order probing secure. A leakage
is caused by the unbalanced sharing where the third share x0x1 ⊕ x statistically
depends on the sensitive variable x. For any value x we have Prx0,x1∈RF2

[(x0x1⊕
x) = x] = 3/4. Thus, there exists no first order function that is equal to a
predictable vector, but there exists one node (the last share) that is highly
correlated with a predictable vector.

To practically verify this leakage, we implement a basic bitwise AES-128
circuit using the Sbox designed by Boyar and Peralta [BP09] and implement a
basic leakage detection test using 500 traces with 45000 nodes (N = 500 and
M = 45000). As seen in Figure 1, the test shows the intense leakage. The details
of the experimental setup regarding the leakage detection, trace collection and
the variable selection can be found Section 5.1.

As illustrated in Example 1, prediction security is based on finding a degree-
d function whose output equals to a predictable value. However, in probing we
only need to find a set of variables which depends on a predictable value as seen
in Example 2. As a main result, we prove the security of our scheme in two steps:

18 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

1. Prove probing security using Definitions 1 and 2 for an arbitrary (n, d)
scheme

2. Prove prediction security using Definition 3 for (n, 1) and (n, 2) schemes

4.2 Security Against Computational Attacks in the Probing model

We start with providing some auxiliary definitions that form the basis of our
security proofs.

Definition 5 ((n, d)-family of shares). A vector x = (x̃0, . . . , x̃d, x1, . . . , xn)
of n + d + 1 intermediate variables is called an (n, d)-family of shares if every
tuple of the form ((x̃i)i∈Ĩ , (xi)i∈I) such that |Ĩ| ≤ d + 1 and |I| ≤ n − 1 of
x̃0, . . . , x̃d, x1, . . . , xn is uniformly distributed and independent of any sensitive
variable where x =

∏d
j=0 x̃j ⊕

⊕n
i=1 xi is a sensitive variable.

We can extend the definition as: two (n, d)-families of shares x = (x̃0 . . . , x̃d, x1, . . . , xn)
and y = (ỹ0 . . . , x̃d, y1, . . . , xn) are called to be (n − 1)-independent of one an-
other if every tuple composed of ((x̃i)i∈Ĩ , (xi)i∈I) and ((ỹj)j∈J̃ , (yj)j∈J) with

|Ĩ|, |J̃ | ≤ d + 1 and |I|, |J | ≤ n − 1 is uniformly distributed and independent of
any sensitive variable. Two (n, d)-families are (n− 1)-dependent of one another
if they are not (n− 1)-independent.

To prove security of our scheme in the t-SNI notion, we decompose C into
basic components, which we call randomized elementary transformations. Such a
component gets as input two (n− 1)-independent (n, d)-families of shares, resp.
one (n, d)-family of shares, and it returns a (n, d)-family of shares.

In this section, we first prove that the randomized elementary transformations
(gadgets) specified as in Algorithm 1, 2, and 3 satisfy non-interference notions.
One challenge for proving t-SNI security results from the fact that in the pro-
posed sharing only a subset of shares is uniformly distributed. The product of
non-linear shares x0 (as expressed by x0 =

∏d
j=0 x̃j) is non-uniformly distributed

or biased. Hence, x0 can be predicted correctly by an adversary with high prob-
ability. Thus, the non-linear shares do not contribute to security against probing
attacks. To address this fact, we consider the non-linear shares as public values
accessible by the adversary or as free probes, due to the bias of their product.
We use the following fact in our proofs.

Fact 1. Let G be a masked operation that operates on an (n, d) family of shares
x = (x̃0, . . . , x̃d, x1, . . . , xn) (or two (n, d) family of shares x = (x̃0, . . . , x̃d, x1, . . . , xn)
and y = (ỹ0, . . . , ỹd, y1, . . . , yn)) as defined in Definition 5. A simulator can
access non-linear shares (x̃0, . . . , x̃d) (or (x̃0, . . . , x̃d) and (ỹ0, . . . , ỹd)) as free
probes or public inputs to the gadgets.

Now we are ready to prove the security of our basic constructions. We start
with the t-SNI property of the RefreshMask and And gadgets. Then, we continue
with the t-NI property of the Xor gadget. The proofs can be found in Appendix A.

A White-Box Masking Scheme 19

Proposition 2. (t-SNI of RefreshMask) Let x = (x̃0, . . . , x̃d, x1, . . . , xn) be an
(n, d)-family of shares, with n ≥ 2, as input of Algorithm 3 to refresh masking.
Then every tuple of t1 intermediate variables and t2 output variables in Algo-
rithm 3 such that t1 + t2 ≤ t can be simulated by at most t1 linear shares taken
from x .

Proposition 3. (t-SNI of And) Let x = (x̃0, . . . , x̃d, x1, . . . , xn) and y = (ỹ0, . . . , ỹd, y1, . . . , yn)
be two (n − 1)-independent (n, d)-families of shares, with n ≥ 2, inputs of Al-
gorithm 2 for And. Then every tuple of t1 intermediate variables and t2 output
variables such that t1 + t2 ≤ t can be simulated by at most t1 linear shares taken
from x and y.

Proposition 4. (t-NI of Xor) Let x = (x̃0, . . . , x̃d, x1, . . . , xn) and y = (ỹ0, . . . , ỹd, y1, . . . , xn)
be two (n− 1)-independent (n, d)-families of shares, with n ≥ 2, as input of Al-
gorithm 1 to compute Xor. Then every tuple of t1 intermediate variables and t2
output variables such that t1 + t2 < t can be simulated by at most t1 + t2 linear
shares taken from x and y.

In conclusion, we prove the security against t-probes of our individual gadgets
such that t < n. Next, we analyze an arbitrary circuit C as a combination
of our gadgets. As stated in [BBD+16], an algorithm is said to be t-NI if all
gadgets are t-NI and every non-linear usage of a secret state is guarded by t-
SNI refreshing gadgets. Moreover, it is sufficient to make the algorithm t-SNI,
if every input or the output of a t-NI gadget is processed by a t-SNI gadget.
Since the RefreshMask operation is proven to be secure in the t-SNI notion, we
can use the operation defined in Section 3.1 to generate an arbitrary circuit that
is secure against (n − 1)th-order probing attacks and therefore secure against
(n− 1)th-order computational attacks.

Experimental Verification: To support the results, we provide an experimental
verification of the gadgets And[n, d], Xor[n, d] and RefreshMask[n, d] for d = 1
and 2 and for n = 1, 2, 3, 4 and 5 using the tool MaskVerif [BBC+19]. We im-
plement our masking scheme (with the given orders n and d) inside the tool and
experimentally verify the security features of our gadgets. The implementation
of our scheme that can be used with MaskVerif is available as open source2. The
experiments are run on on Intel Core i5-6400 CPU@ 2.70GHz and a summary
of the experimental results can be found in Table 2.

4.3 Algebraic Security of the (n, 1)-Masking Scheme

In this section, we analyze the prediction security (Def. 3) of our (n, 1)-masking
scheme using the gadgets in Section 3.1. The security proofs use two auxiliary
notions: algebraic circuit security which deals which he security of any Boolean
function C and algebraic encoding security which deals with the security of the
encoding function E:

2 The link is removed for anonymous reviewing, but the code can be found in Supple-
mentary files.

20 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

Table 2. A summary of SNI/NI/Probing security verification of our gadgets. The
inputs of an (n, d) gadget are two (n−1)-independent family of shares x̄ and ȳ (resp. one
(n−1)-independent families of shares x̄ for RefreshMask or RefM in short). The number
of observations (#Obs.) represents the total number of (intermediate and output)
variables within the specified gadget. The timing corresponds to the total time for
MaskVerif to verify the SNI, NI and probing security notions, respectively.

Free Probes # Obs. SNI NI Probing

RefM[2, 1] [x̃0, x̃1] 23 0.01s 0.01s 0.01s
Xor[2, 1] [x̃0, x̃1], [ỹ0, ỹ1] 16 - 0.01s 0.05s
And[2, 1] [x̃0, x̃1], [ỹ0, ỹ1] 52 0.01s 0.01s ¡0.01s

RefM[3, 1] [x̃0, x̃1] 30 0.01s 0.01s 0.01s
Xor[3, 1] [x̃0, x̃1], [ỹ0, ỹ1] 19 - 0.01s 0.01s
And[3, 1] [x̃0, x̃1], [ỹ0, ỹ1] 86 0.02s 0.02s 0.02s

RefM[4, 1] [x̃0, x̃1] 40 0.02s 0.01s ¡0.01s
Xor[4, 1] [x̃0, x̃1], [ỹ0, ỹ1] 22 - 0.01s 0.01s
And[4, 1] [x̃0, x̃1], [ỹ0, ỹ1] 123 0.06s 0.05s 0.05s

RefM[5, 1] [x̃0, x̃1] 53 0.05s 0.01s 0.01s
Xor[5, 1] [x̃0, x̃1], [ỹ0, ỹ1] 48 - 0.01s 0.01s
And[5, 1] [x̃0, x̃1], [ỹ0, ỹ1] 170 2.25s 0.59s 0.45s

RefM[2, 2] [x̃0, x̃1, x̃2] 55 0.01s 0.01s 0.01s
Xor[2, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 24 - ¡0.01s 0.01s
And[2, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 98 0.02s 0.01s 0.01s

RefM[3, 2] [x̃0, x̃1, x̃2] 62 0.01s 0.01s 0.01s
Xor[3, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 27 - 0.01s 0.01s
And[3, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 154 0.03s 0.01s 0.02s

RefM[4, 2] [x̃0, x̃1, x̃2] 72 0.02s 0.01s 0.01s
Xor[4, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 30 - 0.01s 0.01s
And[4, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 215 0.61s 0.08s 0.07s

RefM[5, 2] [x̃0, x̃1, x̃2] 85 0.04s 0.01s 0.01s
Xor[5, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 33 - 0.01s 0.01s
And[5, 2] [x̃0, x̃1, x̃2], [ỹ0, ỹ1, ỹ2] 284 10.47s 1.06s 1.11s

Definition 6 (Algebraic Encoding Security (ε-1-AS)). Let E(x, r) : FN2 ×
FRE
2 → FN ′2 be an arbitrary encoding function. Let Y be the set of functions given

by the output bits of E. The function E is called 1st-order algebraically ε-secure
(ε-1-AS) if for any f ∈ Y(1) \ {0,1} and for any x ∈ FN2 the bias of the function
f(x, ·) : FRE

2 → F2 is not greater than ε:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ ε

Definition 7 (Algebraic Circuit Security (ε-1-AS)). Let C(x, r) : FN ′2 ×
FRC
2 → FM2 be a Boolean circuit and and let ε be a real number, with 0 ≤
ε < 1/2. Then C is called first-order algebraically ε-secure (ε-1-AS) if for any
f ∈ F (1)(C) \ {0,1} one of the following conditions holds:

(a) f is an affine function of x,

A White-Box Masking Scheme 21

(b) for any x ∈ FN2 , E(f(x, ·)) ≤ ε where f(x, ·) : FRC
2 → F2,

where E(·) represents the bias of a Boolean function g : F`2 → F2 i.e., E(g) =
|1/2−wt(g)/2`| and wt(g) is the weight of g, i.e., the number of nonzero entries
of its truth table.

ε-1-AS of the Gadgets Using the above definitions, we employ the following
methodology to prove the 1-PS of our scheme. We first divide the circuit into
smaller circuits (namely And, Xor and RefreshMask gadgets as defined in Sec-
tion 3.1) and show that the gadgets satisfy Definition 6. This gives us a bias
bound for the individual gadgets. Using the 1-AS composability result in [BU18]
we make sure that any composition of our gadgets (C) is also 1-AS. Finally, we
combine C with encoding function E and using Proposition 1 we complete the
1-PS security proof of our scheme.

While proving algebraic encoding security is quite straightforward, proving
algebraic circuit security needs significant attention. The methodology to prove
algebraic circuit security in [BU18] can be divided into two steps. The first
step consists of showing E(f(x, r)) 6= 1/2 for all f ∈ F (1)(C) and for all x ∈ FN2
except for constant functions and affine functions of x. A verification algorithm is
provided in [BU18]. The provided algorithm generates a truth table by evaluating
the circuit on all possible inputs and records each node in the circuit. Another
truth table is formed by selecting the values where the input is fixed x = c.
That is, the second truth table corresponds to the values of the circuit nodes
where the input x is fixed to a value c while r takes all possible values. Observe
that the latter truth table is a subset of the former one. Finally, the algorithm
compares the dimensions of the basis of the truth tables for each restriction, to
check if there is a constant function f when the input is fixed to a value c.

The second step is to find the maximum degree term (i.e. node in the circuit)
and calculate the corresponding bias bound. As proven in [MS77], the degree of
a Boolean function gives us a boundary for the weight of the function such that
wt(g) ≤ 2N−deg(g), where N is the number of inputs of the function g. Using
this bound we can analyze the bias bound of a function f ∈ F (1)(C). Observe
that the maximum degree of f is equal to the maximum degree node in C, since
f contains only linear combinations of the nodes. That is, for all f ∈ F (1)(C),
deg(f) ≤ max(deg(ci)ci∈C) and thus wt(f) ≥ 2N−max(deg(ci)ci∈C). Using this
minimum weight value, the linear-bias bound of the gadget can be calculated as:

ε =

∣∣∣∣12 − wt(f)

2N

∣∣∣∣ ≤ ∣∣∣∣12 − 2N−deg(f)

2N

∣∣∣∣ =

∣∣∣∣12 − 1

2deg(f)

∣∣∣∣ . (4)

Due to the first part of the proof, we know that there are no constant func-
tions and therefore the bias cannot grow.

Using the discussion above, we will prove the security of our gadgets by
showing that there exists no constant function f(x, ·) ∈ F (1)(C) for all x ∈ FN2
and by calculating the corresponding bias boundary of the gadgets. We start
with the first order algebraic security proof for a RefreshMask[n, 1] gadget that
uses the construction given in Section 3.1.

22 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

Proposition 5. Let C be the circuit representation of the RefreshMask gadget
using a masking scheme with an arbitrary order n and a fixed degree d = 1.
C takes as input n + 2 shares (x̃0, x̃1, (xi)1≤i≤n) and outputs n + 2 shares
(x̃0, x̃1, (xi)1≤i≤n). The gadget RefreshMask[n, 1] is ε-1-AS with ε := 1/4.

The proof of Proposition 5 can be found in Appendix A. We proceed with first
order algebraic security proof for an And[n, 1] gadget that uses the construction
given in Section 3.1.

Proposition 6. Let C be the circuit representation of the And gadget using a
masking scheme with an arbitrary order n and a fixed degree d = 1. C takes as
input n + 2 shares (x̃0, x̃1, (xi)1≤i≤n) and (ỹ0, ỹ1, (yi)1≤i≤n) and outputs n + 2
shares (z̃0, z̃1, (zi)1≤i≤n). The gadget And[n, 1] is ε-1-AS with ε := 7/16.

Proof. In the first part of the proof, we show that there exists no function f ∈
F (1)(C) such that f is constant when inputs are fixed.

First, let us the reformulate the circuit C as follows:

C : ((Fn+2
2 × Fn+2

2),FRC
2)→ Fn+2

2

((x̃0, x̃1, (xi)1≤i≤n), (ỹ0, ỹ1, (yi)1≤i≤n), r̄) 7→ (z̃0, z̃1, (zi)1≤i≤n).

where r̄ denotes the set of randomness that is used in the circuit. Next, we
define three classes of edges within the circuit:

– R: The set of random bits,
– B: The set of linear shares i.e. xi and yj for all 1 ≤ i, j ≤ n,
– M: The set of non-linear shares i.e. x̃0, x̃1, ỹ0 and ỹ1.

Using the above classification we can analyze the nodes ci ∈ C with respect
to their input edges. We define the nodes as ci : (u1i , u

2
i) 7→ vi where u1i , u

2
i ∈ F2

represent the input bits of the node and vi ∈ F2 represents the output bit of the
node. The classification of the nodes can be listed as follows;

1. u1i ∈ R or u2i ∈ R,
2. u1i ∈ B or u2i ∈ B,
3. u1i ∈ M and u2i ∈ M.

Assume that there exists a function f ∈ F (1)(C) such that f is constant
when the inputs x and y are fixed. We can represent the function as f =

⊕
i∈I vi

where I ⊆ C. Remark that the input shares are randomized, since they are first
processed by RefreshMask gadgets. Therefore f should include a reconstructed
combination of the shares i.e., f should include a combination of nodes such that
x̃0x̃1 ⊕ x1 ⊕ · · · ⊕ xn (resp. ỹ0ỹ1 ⊕ y1 ⊕ · · · ⊕ yn) is formed.

Any linear combination of the nodes of 1 and 2 cannot be constant due to
RefreshMask gadgets, since either a node is random (non-fixed by definition) or
the node corresponds to linear masking (randomized by RefreshMask). There-
fore, f should include at least one node from the 3rd class to form the recon-
structed multiplicative representation: x0 or y0. Clearly, the nodes from the 3rd

class can be found in Step-1 and Step-2(a) where the following computations
are processed:

A White-Box Masking Scheme 23

– z̃0 and z̃1,
– x̃1(x̃0yj ⊕ r0,j ỹ0) = x̃1x̃0yj ⊕ r0,j x̃1ỹ0 for 1 ≤ j ≤ n,
– ỹ1(ỹ0xj ⊕ r1,j x̃0) = ỹ1ỹ0xj ⊕ r1,j ỹ1x̃0 for 1 ≤ j ≤ n.

The use of parenthesis indicates the order in which the nodes are used in
the above equations. The resulting order eliminates the generation of an affine
function of x0 or y0 (the shares represented by x̃0, x̃1 and ỹ0, ỹ1 respectively),
although these nodes calculate the correct function (rj,0 as seen in Equation (2)).
Any linear combination of these nodes cannot be constant and thus there exists
no constant function f ∈ F (1)(C) when the inputs are fixed.

In the second part, we examine the highest degree term in the gadget and find
the corresponding bias. For And[n, 1] the maximum degree term can be found
in line 16 of Algorithm 2. Specifically, xnyn which contains a node of the form
r̃x0 r̃

x
1 r̃
y
0 r̃
y
1 where r̃x0 , r̃

x
1 (resp. r̃y0 , r̃

y
1) are the randomness used in RefreshMask(x)

(resp. RefreshMask(y)). Clearly the corresponding bias and the bias bound of
the gadget can be calculated as 2−4 and ε ≤

∣∣1/2− 1/24
∣∣ = 7/16 respectively.

Thus the And gadget is ε-1-AS with ε := 7/16.

Although we are not giving a proof for the Xor gadget, the same discussion
can be carried out and it can be shown that the Xor[n, 1] gadget is ε-1-AS
with ε := 1/4. We provide experimental verification of the first order gadgets,
including the Xor gadget next.

Experimental Verification: To support the results, we provide experimental veri-
fication of the first order gadgets And[n, 1] and Xor[n, 1] (and inherently RefreshMask[n, 1])
for n = 1, 2 and 3 using the tool given in [BU18]3. First we adapt our scheme
to work with the tool, i.e. we implement our masking scheme (with the given
orders n and d) as a class inside the tool. We then run the verification algo-
rithm as explained above. The updated version of the tool including our scheme
is available as open source4.

We confirm the first order algebraic security of our scheme for different orders.
Details are shown in Table 3. The algorithm is run on an Intel Xeon Silver
4114 CPU@2.20GHz and, as shown in the table, the time that algorithm takes
increases exponentially with the increasing number of nodes within the gadgets.
The bias bound does not depend on the linear degree n, since the maximum
degree term is found within the terms that depend on the non-linear degree d.

Encoding-Circuit Composability In the last part of the security analysis,
we use the composability result of ε-1-AS given in [BU18]. Since the gadgets
(Xor[n, 1], And[n, 1], RefreshMask[n, 1], as defined in Section 3.1) are ε-1-AS, an
arbitrary combination of these gadgets is also ε-1-AS by Proposition 4 in [BU18].
Moreover, we observe that Encode[n, 1] is ε-1-AS with ε := 1/22 according to

3 https://github.com/cryptolu/whitebox
4 The link is removed for anonymous reviewing, but the code can be found in Supple-

mentary files.

24 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

Table 3. First-order algebraic security verification of individual gadgets. Input cor-
responds to the number of shares for both inputs (i.e. 2(n + 2)). Random states the
number of random values (RC) within the circuit and it is calculated by the random-
ness requirement of two RefreshMask gadgets and additional randomness in the gadget.
The number of intermediate variables represents the number of nodes in the gadget.

Max degree Bias Bound Input Random Intermediate Time

Xor[1, 1] 2 1/4 6 6 8 3.5s
And[1, 1] 4 7/16 6 6 12 4s.

Xor[2, 1] 2 1/4 8 8 8 45.7s
And[2, 1] 4 7/16 8 13 24 ≈ 114min

Xor[3, 1] 2 1/4 10 10 8 ≈ 17min
And[3, 1] 4 7/16 10 19 36 ≈ 5 days

Definition 6. Recall that for an (n, 1) scheme the highest degree term is found

in the last share: xn = x ⊕ x̃0x̃1 ⊕
⊕n−1

i=1 xi and clearly no linear combination
of (x̃0, x̃1, x1, . . . , xn) is constant. Thus, for Encode[n, 1] ∀f ∈ Y(1) \ {0,1} and
∀x ∈ FN2 the bias of f(x, ·) : FRE

2 → F2 is not greater than ε′:

max
f∈Y(1)\{0,1},x∈FN

2

E(f(x, ·)) ≤ 1/4.

Finally, we can combine our construction with the encoding-circuit linear-
composability result from [BU18].

Proposition 7. Let C : FN ′2 × FRC
2 → FM2 be a Boolean circuit, and let E :

FN2 ×FRE
2 → FN ′2 be a function. If E is encoding ε-1-AS and C is circuit ε-1-AS

then, for d = 1, it is true:

max
fx∈Rd

E(fx) ≤ ε,

where Rd is defined in Definition 4.

4.4 Algebraic Security of the (n, 2)-Masking Scheme

To prove the second-order prediction security (2-PS) of the (n, 2)-masking scheme
we proceed as follows. For our encoding function E and any Boolean circuit C
constructed from gadgets as defined in Section 3.1 we will analyze, for d = 2,
the maximum bias over all functions in the set Rd defined in Definition 4. The
main result of this section is that the maximum bias over all such functions is
small. To obtain a bound on the prediction security of the (n, 2)-masking, we
combine this bias with the upper bound on 2-PS from Proposition 1:

AdvPS
C,E,d[A] ≤ 2−k,

assuming e = − log2(1/2 + ε) > 0 and the number of random bits of the circuit
C is ≥ k · (1 + 1/e), where, recall, ε = maxfx∈Rd

E(fx). To prove that for all
fx in R2 the bias E(fx) is small, we use auxiliary definitions which extend the
notion of the first-order algebraic security defined in [BU18] in a non-trivial way.

A White-Box Masking Scheme 25

Definition 8 (Algebraic Encoding Security (ε-2-AS)). Let E(x, r) : FN2 ×
FRE
2 → FN ′2 be an arbitrary encoding function. Let Y be the set of functions

given by the output bits of E and let ε be a real number, with 1/4 ≤ ε < 1/2.
The function E is called second-order algebraically ε-secure (ε-2-AS) if, for ε′ =
1
2 −

√
1
2 − ε, it is true that:

1. ∀f ∈ Y(1) \ {0,1} and ∀x ∈ FN2 the bias of f(x, ·) : FRE
2 → F2 is not greater

than ε′:
max

f∈Y(1)\{0,1},x∈FN
2

E(f(x, ·)) ≤ ε′.

2. ∀f ∈ Y(2) \ {0,1} and ∀x ∈ FN2 the bias of f(x, ·) : FRE
2 → F2 is not greater

than ε:
max

f∈Y(2)\{0,1},x∈FN
2

E(f(x, ·)) ≤ ε.

Definition 9 (Algebraic Circuit Security (ε-2-AS)). Let C(x, r) : FN ′2 ×
FRC
2 → FM2 be a Boolean circuit and let ε be a real number, with 1/4 ≤ ε < 1/2.

Then C is called second-order algebraically ε-secure (ε-2-AS) if

1. C is ε′-1-AS, with ε′ = 1
2 −

√
1
2 − ε, and

2. for any function f ∈ F (2)(C \ X) \ {0,1} and for all x ∈ FN2 it holds:
E(f(x, ·)) ≤ ε, where f(x, ·) : FRC

2 → F2.

The rest of this section is organised as follows. First, we estimate the values
ε for ε-2-AS of the basic gadgets RefreshMask, And, and Xor. Then we prove
the composability result, i.e., that combining ε-2-AS circuits leads to the ε-2-
AS composed circuit. Finally, we show that our encoding scheme E is ε-2-AS,
with ε := 7/16, and that from the ε-2-AS security of C we get an estimation on
maxfx∈Rd

E(fx), for d = 2.

ε-2-AS of the Gadgets Using the new definition we will prove the second
order prediction security of our (n, 2) basic gadgets. We first show that there
exists no constant function f(c, ·) ∈ F (2)(C) for all c ∈ FN2 . In the second step,
we calculate the corresponding first-order and second-order bias bounds. We
start with the ε-2-AS of the RefreshMask[n, 2] gadget.

Proposition 8. Let C be the circuit representation of the RefreshMask gadget
using a masking scheme with an arbitrary order n and a fixed degree d = 2.
C takes as input n + 3 shares (x̃0, x̃1, x̃2, (xi)1≤i≤n) and outputs n + 3 shares
(x̃0, x̃1, x̃2, (xi)1≤i≤n). The gadget RefreshMask[n, 2] is ε-2-AS with ε := 31/64.

The proof of Proposition 8 can be found in Appendix A. Next, we prove the
second order algebraic security of And[n, 2] gadget.

Proposition 9. Let C be the circuit representation of the And gadget using a
masking scheme with an arbitrary order n and a fixed degree d = 2. C takes

26 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

as input n + 3 shares (x̃0, x̃1, x̃2, (xi)1≤i≤n) , (ỹ0, ỹ1, ỹ2, (yi)1≤i≤n) and outputs
n+3 shares (z̃0, z̃1, z̃2, (zi)1≤i≤n). The gadget And[n, 2] is ε-2-AS with ε := (1/2−
1/212).

Proof. Similar to the proof of Proposition 6, we reformulate the circuit C as
follows:

C : ((Fn+3
2 × Fn+3

2),FRC
2)→ Fn+3

2

((x̃0, x̃1, x̃2, (xi)1≤i≤n), (ỹ0, ỹ1, ỹ2, (yi)1≤i≤n), r̄) 7→ (z̃0, z̃1, z̃2, (zi)1≤i≤n).

Next we use the classification of the nodes that we used in the proof of
Proposition 6:

– R: The set of random bits,
– B: The set of linear shares i.e. xi and yj for all 1 ≤ i, j ≤ n,
– M: The set of non-linear shares i.e. x̃0, x̃1, x̃2, ỹ0, ỹ1 and ỹ2.

Using the above classification we can analyze the nodes ci ∈ C \ X with
respect to its input edges. We define the nodes as ci : (u1i , u

2
i) 7→ vi where

u1i , u
2
i ∈ F2 represent the input bits of the node and vi ∈ F2 represents the

output bit of the node. The classification of the depending nodes is as follows,
(1) u1i ∈ R or u2i ∈ R, (2) u1i ∈ B or u2i ∈ B, (3) u1i ∈ M and u2i ∈ M.

Assume that there exists a function f ∈ F (2)(C \ X) such that f(x, y, ·)
is constant for a pair of fixed inputs x, y ∈ Fn+3

2 . As in Proposition 6, input
shares are randomized, due to the initial RefreshMask gadgets. Therefore, f
should include a reconstructed combination of the shares i.e., f should include a
combination of nodes such that x̃0x̃1x̃2⊕x1⊕· · ·⊕xn (resp. ỹ0ỹ1ỹ2⊕y1⊕· · ·⊕yn)
is formed. This observation indicates that f should include nodes from the third
class which can be found in Step-1 and Step-2(a). However, the nodes ci ∈
C \ X contain at most one value from each multiplicative representation i.e.,
each node contains only one non-linear share. Thus, any first or second order
combination cannot contain all three non-linear shares and f(x, y, ·) cannot be
fixed for all x, y ∈ Fn+3

2 .
In the second part of the proof we examine the highest degree term in the

circuit. The maximum degree term can be found in line 16 of Algorithm 2 for
And[n, 2]. We can see that the maximum degree term for this case is 6. Thus the
linear bias bound of the gadget can be seen as follows:

E(f ′) < ε′ :=
1

2
− 1

26
, where f ′ ∈ F (1)(C)

Thus, And[n, 2] is ε′-1-AS. Using the same argument, we can see that the
maximum degree term f ∈ F (2)(C) is less than or equal to 12. This result is
followed by:

E(f) ≤ ε :=
1

2
− 1

212
, where f ∈ F (2)(C).

Observe that in the first part of the proof we showed that there exists no
function f ∈ F (2)(C) such that f(c, ·) is constant, which implies both linear and

A White-Box Masking Scheme 27

second order biases cannot grow. Thus And[n, 2] gadget is ε-2-AS circuit where
ε := 1/2− 1/212.

Using the same idea we can prove that the Xor[n, 2] gadget is a ε-2-AS circuit
with ε := 1/2− 1/26.

Circuit Composability In the previous subsection, we have shown that our
basic gadgets RefreshMask, And, and Xor are ε-2-AS, for some specific values
ε. Now, we prove that any circuit obtained by the composition of such gadgets
remains ε-2-AS. To cover all cases, we consider separately the parallel (Propo-
sition 10) and the sequential (Proposition 11) composability of two circuits. In
particular, from Proposition 10 we can follow, e.g., that if one applies, e.g.,
And(x, y) for inputs x = And(x1, y1) and y = Xor(x2, y2) then, from Proposi-
tion 10, the parallel composition:

And(x1, y1); Xor(x2, y2)

with input x1, y1, x2, y2 and output x, y is an ε-2-AS circuit. Moreover, due to
Proposition 11, we get that

And(And(x1, y1), Xor(x2, y2))

remains ε-2-AS.

Proposition 10 (ε-2-AS-Circuit-Parallel-Composability). Assume C1(x1, r1)
and C2(x2, r2) are two (disjoint) ε-2-AS circuits. Let C be the circuit obtained
by parallel composition of C1 and C2, i.e. by considering the input of C1 and the
input of C2 as the input of C and, analogously, the output of C1 and the output
of C2 as the output of C. Moreover let r1 and r2 be the extra random input of
C:

C(x1, x2, (r1, r2)) = (C1(x1, r1), C(x2, r2)).

Then C(x1, x2, (r1, r2)) is also an ε-2-AS circuit.

Proof. Assume C1 and C2 are ε-2-AS and let ε′ = 1
2 −

√
1
2 − ε. From [BU18]

we know that the composition C is ε′-1-AS. Thus, C satisfies the condition 1 in
Definition 9. To see that the condition 2 is true as well, let us consider a function
f(x1, x2, (r1, r2)) ∈ F (2)(C \ X) \ {0,1}, where X = X1 ∪ X2 denotes all input
nodes of C and Xi all input nodes of Ci, i = 1, 2. We will show that for any
x1, x2, the bias is bounded as follows

E(f(x1, x2, ·, ·)) ≤ ε.

Assume x1 and x2 are arbitrary, but fixed inputs. To simplify the notation, let
f̃ denote the function f̃(r1, r2) = f(x1, x2, (r1, r2)). In the most general case, f̃
has the form

f̃(r1, r2) = c ⊕ u2(r1) ⊕ v2(r2) ⊕
τ∑
i=1

ui1(r1) vi1(r2), (5)

28 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

where c ∈ {0,1} is a constant and u2, v2, u
i
1, and vi1 are functions such that:

u2 ∈ F (2)(C1 \ X1) \ {0,1}, v2 ∈ F (2)(C2 \ X2) \ {0,1}, and

ui1 ∈ F (1)(C1 \ X1) \ {0,1}, vi1 ∈ F (1)(C2 \ X2) \ {0,1}, for i = 1, . . . τ ,

To prove that the bias of f̃ is bounded by ε, we consider two cases.

Case 1: u2 or v2 in Eq. (5) are non-trivial. Let w.l.o.g. v2 be non-trivial, i.e.,
that it contains at least one term. For every fixed (but arbitrary) r1, function
(5) can be represented as a function in F (2)(C2 \ X2) as follows:

f̃r1(r2) = c ⊕ c0 ⊕ v2(r2) ⊕
τ∑
i=1

ci v
i
1(r2),

where c0 = v2(r1) and, in case τ ≥ 1, ci = vi1(r1), for i = 1, . . . , τ . By assumption
that C2 is ε-2-AS we get that E(f̃r1(r2)) ≤ ε and since this bound is true for
every r1, we can conclude that the function f̃ , as defined in (5), has the bias
bounded by ε, too.

Case 2: f̃ in Eq. (5) has the form f̃(r1, r2) = c ⊕
∑τ
i=1 u

i
1(r1) vi1(r2), with

τ ≥ 1. Now, for every fixed r1, function (5) can be represented as a function in
F (1)(C2 \ X2) as follows:

f̃r1(r2) = c ⊕
τ∑
i=1

ci v
i
1(r2),

where ci = vi1(r1), for i = 1, . . . , τ . If for every r1 it would be true that some
ci 6= 0, then we could deduce immediately that the bias of f̃ is bounded by
ε′ ≤ ε. Unfortunately, it can happen that for some strings r1, all coefficients
ci vanish implying that f̃r1(·) has bias 1/2. Below, we argue that there are
sufficiently many values for r1 such that at least one coefficient ci is nonzero. In
consequence we will be able to bound the bias of f̃ in this case.

Consider the coefficient c1. Recall that it is defined as a function c1 = u11(r1)
in F (1)(C1 \ X1). From the assumption, the bias of u11(·) is bounded as follows

E(u11(r1)) = |1/2− wt(u11)/2|r1|| ≤ ε′.

From this inequality, one can deduce that the number wt(u11) of values for r1,
for which c1 = u11(r1) = 1, is at least wt(u11) ≥ 2|r1| (1/2− ε′) . Let, for short,
R1 := {r1 | c1 = u11(r1) = 1} denote the set of all such strings r1. Its cardinality
is

|R1| ≥ 2|r1| (1/2− ε′) .

Now, we consider the functions f̃r1(·) restricting r1 to random strings from R1,
i.e. we consider

f̃r1(r2) = c ⊕
τ∑
i=1

ci v
i
1(r2), with r1 ∈ R1.

A White-Box Masking Scheme 29

From the assumptions we know that every such f̃r1 has bias bounded by ε′:

E(f̃r1) = |1/2− wt(f̃r1)/2|r2|| ≤ ε′, for all r1 ∈ R1.

This means that for every r1 ∈ R1 it is true:

2|r2| (1/2− ε′) ≤ wt(f̃r1) ≤ 2|r2| (1/2 + ε′) .

Combining this inequality with the bound on |R1|, one can conclude that

2|r1|+|r2| (1/2− ε′)2 ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε′) .

Now, using our definition for ε′ = 1
2 −

√
1
2 − ε, the left-hand side can be written

as 2|r1|+|r2| (1/2− ε) and (1/2 + ε′) on the right-hand side can be bounded by
(1/2 + ε). Thus we get

2|r1|+|r2| (1/2− ε) ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε) .

This completes the proof that in Case 2 the bias bound E(f̃) ≤ ε holds.

Proposition 11 (ε-2-AS-Circuit-Sequential-Composability). Consider ε-
2-AS circuits C1(x1, r1) and C2(x2, r2). Let C be the circuit obtained by connect-
ing the output of C1 to the input x2 of C2 and letting the input r2 of C2 be the
extra input of C:

C(x1, (r1, r2)) = C2(C1(x1, r1), r2).

Then C(x1, (r1, r2)) is also an ε-2-AS circuit.

Proof. We will proceed analogously to the proof of Proposition 10. Assume C1

and C2 are ε-2-AS and let ε′ = 1
2 −

√
1
2 − ε. From [BU18] we know that the

composition C is ε′-1-AS and thus, the first condition in Definition 9 is sat-
isfied. To see that also the second condition is true, let us consider a function
f(x1, r1, r2) ∈ F (2)(C\X1)\{0,1}, where X1 denotes all input nodes of C1. In the
proof we will denote by X2 all input nodes of C2. Note, that in our construction
X2 coincide with the output nodes of C1.

Our task is to show that for any x1 the bias

E(f(x1, ·, ·)) ≤ ε.

Assume x1 is an arbitrary, but fixed input and let f̃ denote the function f̃(r1, r2) =
f(x1, r1, r2). In the most general case it has the form

f̃(r1, r2) = c ⊕ u2(r1) ⊕ v2(y(r1), r2) ⊕
τ∑
i=1

ui1(r1) vi1(y(r1), r2), (6)

where c ∈ {0,1} is a constant, y(r1) = C1(x1, r1) denotes the output of C1 on
(x1, r1), and u2, v2, u

i
1, and vi1 are functions such that:

u2 ∈ F (2)(C1 \ X1) \ {0,1}, v2 ∈ F (2)(C2 \ X2) \ {0,1}, and

ui1 ∈ F (1)(C1 \ X1) \ {0,1}, vi1 ∈ F (1)(C2 \ X2) \ {0,1}, for i = 1, . . . τ ,

30 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

To prove that the bias of f̃ is bounded by ε, we consider three cases.

Case 1: v2 in Eq. (6) is non-trivial. We assume that v2 has at least one term.
For every fixed (but arbitrary) r1, function f̃ can be expressed as a function in
F (2)(C2 \ X2) as follows:

f̃r1(r2) = c ⊕ c0 ⊕ v2(ŷ, r2) ⊕
τ∑
i=1

ci v
i
1(ŷ, r2),

where ŷ := y(r1) = C1(x1, r1), c0 := u2(r1), and ci := ui1(r1), for i = 1, . . . , τ
(note, that in this case τ can be 0 or for τ ≥ 1, all coefficient values ci can be
0). By the assumption that C2 is ε-2-AS, we get that E(f̃r1(r2)) ≤ ε and since
this bound is true for every r1, we can conclude that the function f̃ , as defined
in (6), has the bias bounded by ε, too.

Case 2: f̃ in Eq. (6) has the form f̃(r1, r2) = c ⊕ u2(r1) ⊕
∑τ
i=1 u

i
1(r1) vi1(y(r1), r2),

with τ ≥ 1. In this case, for every fixed r1, we can represent f̃ a function in
F (1)(C2 \ X2) as follows:

f̃r1(r2) = c ⊕ c0 ⊕
τ∑
i=1

ci v
i
1(ŷ, r2),

where, as in Case 1, ŷ := C1(x1, r1), c0 := u2(r1), and ci := ui1(r1), for i =
1, . . . , τ ≥ 1. Note, that for some strings r1 it can happen that all coefficients
ci = 0, what means that for such r1 function f̃r1 has bias 1/2. Below, we argue
that there are sufficiently many r1 such that at least one coefficient ci is non-zero.
This will suffice to bound the bias of f̃ .

Next, we consider the coefficient c1 that, recall, is defined as c1 := u11(r1) for
the function u11(·) in F (1)(C1 \X1). From the assumption, its bias is bounded as
follows

E(u11(r1)) = |1/2− wt(u11)/2|r1|| ≤ ε′.

From this, we get that wt(u11) ≥ 2|r1| (1/2− ε′) . Let R1 := {r1 | c1 = u11(r1) = 1}
denote the set of all such strings r1. Its cardinality is at least 2|r1| (1/2− ε′) .
Consider f̃r1(·) restricting r1 to strings from R1 only:

f̃r1(r2) = c ⊕
τ∑
i=1

ci v
i
1(r2), with r1 ∈ R1.

From the assumptions, we know that every such f̃r1 has bias bounded by ε′:

E(f̃r1) = |1/2− wt(f̃r1)/2|r2|| ≤ ε′, for all r1 ∈ R1.

This means that: 2|r2| (1/2− ε′) ≤ wt(f̃r1) ≤ 2|r2| (1/2 + ε′), for all r1 ∈ R1,
and combining this with the bound on |R1|, we get

2|r1|+|r2| (1/2− ε′)2 ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε′) .

A White-Box Masking Scheme 31

Using our definition for ε′ = 1
2 −

√
1
2 − ε we can conclude that

2|r1|+|r2| (1/2− ε) ≤ |{(r1, r2) | f̃(r1, r2) = 1}| ≤ 2|r1|+|r2| (1/2 + ε) .

This completes the proof that in Case 2 the bias E(f̃) ≤ ε, too.

Case 3: f̃ in Eq. (6) has the form f̃(r1, r2) = c ⊕ u2(r1). In this case the
bound on the bias of f̃ follows directly from the assumption that C1 is ε-2-AS.

Encoding-Circuit Composability Finally, we prove that a composition of
an ε-2-AS encoding function E with an ε-2-AS circuit C leads to a construction
for which the second order closure of F(C(E)) contains functions of bias ≤ ε.
Similarly to the security analysis of Encode[n, 1], the highest degree term of

Encode[n, 2] is found in the last share : xn = x⊕ x̃0x̃1x̃2 ⊕
⊕n−1

i=1 xi and clearly
no first or second order combination of (x̃0, x̃1, x̃2, x1, . . . , xn) is constant. Thus
the following holds for Encode[n, 2]:

1. ∀f ∈ Y(1) \ {0,1} and ∀x ∈ FN2 the bias of f(x, ·) : FRE
2 → F2 is not greater

than ε′:
max

f∈Y(1)\{0,1},x∈FN
2

E(f(x, ·)) ≤ 3/8.

2. ∀f ∈ Y(2) \ {0,1} and ∀x ∈ FN2 the bias of f(x, ·) : FRE
2 → F2 is not greater

than ε:
max

f∈Y(2)\{0,1},x∈FN
2

E(f(x, ·)) ≤ 7/16.

This follows from the proposition below, which can be proven analogously as
Proposition 11.

Proposition 12. Let C : FN ′2 × FRC
2 → FM2 be a Boolean circuit, and let E :

FN2 ×FRE
2 → FN ′2 be a function. If E is encoding ε-2-AS and C is circuit ε-2-AS

then, for d = 2, it is true:

max
fx∈Rd

E(fx) ≤ ε,

where Rd is defined in Definition 4.

4.5 Prediction Security – a Summary

In the previous sections, we have shown the algebraic circuit security of our
gadgets and algebraic encoding security of our encoding functions. In this section,
we give the quantitative bounds on prediction security.

Let us start with the first order prediction security bound of an (n, 1) scheme.
According to Proposition 1, e = − log2(1/2 + ε) = − log2(1/2 + 7/16) ≈ 0.093
and the number of required random bits to achieve 128-bit security can be cal-
culated as: Rc ≤ k ·(1+1/e) = 128 ·(1+1/0.093) ≈ 1503. In conclusion, a circuit

32 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

Table 4. Summary of the ε-1-AS and ε-2-AS bounds for the And, Xor and RefreshMask

gadgets and encoding function. The variable e = − log2(1/2 + ε) where ε =
maxfx∈Rd E(fx) as in Proposition 1 and Rc denotes the minimum number of ran-
domness to achieve 128-bit security.

And Xor RefreshMask Encode e ≈ Rc ≥
ε-1-AS 7/16 1/4 1/4 1/4 9.3× 10−2 1.503
ε-2-AS 2047/4096 31/64 31/64 7/16 3.5× 10−4 3.6× 105

C composed with (n, 1) gadgets and Encode[n, 1] is 1-PS (AdvPSC,E,1 ≤ 2−128) if
the circuit contains Rc ≤ 1503 random bits.

Next, we give the second order prediction bound for an (n, 2) scheme. Accord-
ing to Proposition 1, e = − log2(1/2+ε) = − log2(1/2+2047/4096) ≈ 3.5×10−4.
As a result the number of required random bits to achieve 128-bit security is dras-
tically increased and is calculated as: Rc ≤ k·(1+1/e) = 128·(1+1/3.5×10−4) ≈
3.6× 105. A summary of first and second order algebraic security properties can
be found in Table 4.

Comparison with other masking schemes: An (n, d) scheme as defined in Sec-
tion 3 is a combination of linear and multiplicative components. The allocation
of these components gives us different orders of protections and thus the scheme
has two corner cases: (1) d = 0 with n ≥ 1 and (2) d ≥ 1 with n = 0. The
first case (1) acts as an additive masking. Such schemes are widely used in the
literature e.g. Boolean masking [RP10], Threshold Implementations [NRS09],
polynomial masking [RP12] and domain oriented masking [GMK16]. The com-
mon point of these schemes is that the degree of their encoding function is one,
thus they are vulnerable to algebraic attacks i.e. not prediction secure. On the
other hand, the latter case (2) corresponds to a multiplicative masking scheme
which is vulnerable to side-channel attacks [GT03, FMPR11] i.e. not probing
secure. Therefore the masking schemes in the literature need to be combined
with other masking schemes to accomplish both prediction and probing security
notions.

A straightforward approach is to employ both linear and multiplicative com-
ponents, as done in affine masking introduced by Fumaroli et al. [FMPR11]. The
scheme processes a sensitive value x in the form of r1x⊕r0 such that r1, r0 ∈R Fn2
and fixed for each execution of the algorithm. As stated by the authors, affine
masking is not perfectly secure against higher-order SCA but provides practi-
cal security. Indeed some pairs of intermediate variables of the scheme depend
on sensitive variables. A second order side-channel attack can break the affine
masking. Also it is not clear how to generalize the scheme. Another approach to
combine linear and multiplicative components is given in [BU18]. However, the
scheme alone does not provide security against computation attacks as described
in Example 2. As a result, our scheme can be seen as a generalization of affine
masking and the scheme by [BU18] in the sense of employing both linear and
multiplicative components while providing provable security in both prediction

A White-Box Masking Scheme 33

d
n

0 1 2 n

0 # G# ISW Transformation [ISW03]
1 H# H# [BU18] Ex. 3 [n, 1]
2 H# H# Ex. 4 [n, 2]
d H# H# Sec. 3.1

Table 5. The security properties of masking schemes. The mark # (resp.) means the
scheme is vulnerable (resp. resistant against) both to computational and algebraic at-
tacks. Mark H# (resp. G#) stands for vulnerability to computational but resistant against
algebraic attacks (resp. resistant against computational but vulnerability to algebraic
attacks). Remark that a masking scheme with (n, 0) is the ISW transformation [ISW03]
while a masking scheme with (1, 1) is the scheme in [BU18]. The example structures
for the masking schemes with (2, 1) and (3, 1) can be found in Appendix B.

Table 6. The number of gadgets in one round of AES.

SubBytes MixColumns AddRoundKey ShiftRows

And 16 × 32 - - -
Xor 16 × 83 27 128 -

and probing security notions. A summary of the security properties of the our
scheme with different security orders is presented in Table 5.

5 A Proof-of-Concept AES Implementation

In this section we introduce a white-box AES design based on the masking
scheme defined in Section 3. The AES block cipher consists of multiple rounds
of operations on its state. The operations include three linear layers: MixColumns,
ShiftRows, and AddRoundKey and one non-linear layer SubBytes. The bitwise
implementation for the linear operations can be defined straightforwardly. In our
construction we use the bitwise AES-Sbox design by Boyar and Peralta [BP09]
and the exact number of And and Xor gadgets within one round of AES-128 can
be seen in Table 6. The total number of bitwise operations5 can be calculated
using Table 6 and the performance analysis in Table 1. A visual representation
of the AES-128 implementations with (n, 0) (i.e. ISW-transformation), (n, 1)-
masking scheme and (n, 2)-masking scheme is shown in Figure 2. Moreover, the
analysis contains the algebraically secure gadgets where each input is associated
with a RefreshMask gadget, and the idea of using two different masking schemes
(first Minimalist quadratic Masking and second Boolean masking as in [BU18]).

As seen in Figure 2, our hybrid constriction outperforms the idea of using a
first order linear masking on top of a non-linear masking. As stated in [BU18],

5 The bitwise SubBytes design by Boyar and Peralta [BP09] also requires Not gates.
Although we didn’t give the explicit description of a Not gadget in our masking
scheme, it can be easily defined as identical to the Not gadget in the ISW transfor-
mation i.e. by flipping the nth share.

34 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

0 2 4 6 8 10
0

500

1000
10

3

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

10
3

Fig. 2. Total number of bitwise operations and required randomness for one round
of AES-128 with different (n, 0), (n, 1) and (n, 2) masking schemes with and without
initial RefreshMask gadgets

using a combination of two masks even with the first order protections requires
roughly 200.000 gates per AES round. Since the foundation of our scheme is
the ISW transformation, we can increase the probing security aspect of our
scheme efficiently. However, increasing the non-linear order is the bottleneck
of our scheme. When we compare the smallest possible implementations, we see
that one round of AES-128 with (2, 0), (2, 1) and (2, 2)-masking schemes re-
quires 15201, 30808(82678) and 74875(298315) gates respectively. The values in
the parenthesis correspond to the gadgets where the inputs are first processed by
RefreshMask gadgets. Clearly, RefreshMask gadgets impose a heavy overhead
on our scheme. Therefore a significant performance advantage can be achieved by
further optimizing the RefreshMask gadget. While the first order algebraically
secure implementation requires a small overhead over an unprotected imple-
mentation, the second-order algebraically secure implementation comes with a
substantial cost. One round of AES-128 with (2, 1), (3, 1) and (4, 1)-masking
schemes requires 30808(82678), 46115(113945) and 64494(156264) gates respec-
tively. Therefore, we can conclude that one can increase the security against
computational attacks with small overhead compared with the overhead of in-
creasing the security against algebraic attacks. Furthermore, the randomness re-
quirements of our scheme increases similarly to the ISW-transformation as seen
in Figure 2.

5.1 Experimental Setup

To experimentally verify the security properties of our scheme we used the proof-
of-concept AES-128 implementation. The implementations using (n, 0), (n, 1)
and (n, 2) masking schemes including the analysis are available as open source6.

Software traces are simulated by encrypting N random plaintext and col-
lecting the output of each node. We denote the ith trace (corresponding to the
encryption of ith plaintext) by ti = {vi1, . . . , viM} where vij denotes the output

of jth node and M denotes the number of the nodes in the circuit. Using the
software traces we demonstrate a simple leakage detection test by the test vector

6 The link is removed for anonymous reviewing, but the code can be found in Supple-
mentary files.

A White-Box Masking Scheme 35

0 1 2 3 4 5 6 7 8

10
4

-5

0

5

Fig. 3. A first-order leakage test on a circuit that simulates the AES-128 with (2, 1)-
masking defined in Section 3.1. Clearly, t-test value lie in threshold values as drawn by
red lines ([−4.5, 4.5]).

leakage assessment (TVLA) as proposed by Goodwill et al. [GGJR+11]. In the
first part of the test, two different sets of side-channel traces are collected by
processing either a fixed input or a random input under the same conditions in
a random pattern. After collecting the traces, we calculate the means (µf , µr)
and standard deviations (σf , σr) for the two sets. Welch’s t-test is executed as in
Equation (7) where nf and nr denote the number of traces for fixed and random
sets respectively.

t =
µf − µr√

(σ2
f/nf) + (σ2

r/nr)
. (7)

Using the experimental setup we implement a first order leakage detection
test using 10000 traces (i.e. nf + nr = 10000) and M = 80000 (corresponds to
the two round of AES-128). As expected the test shows no observable leakage.
The illustration of the test can be seen in Figure 3.

6 Conclusion

White-box cryptography has become a popular method to protect cryptographic
keys in an insecure software realm potentially controlled by the adversary. All
white-box cryptosystems in the literature have been practically broken due to
differential computation analysis. Algebraic attacks have shown the inefficacy
of classic side-channel countermeasures when they are applied in the white-box
setting. Therefore, the need for a secure and reliable method to protect white-box
implementations against both attacks has become evident.

We have proposed the first masking scheme that combines linear and non-
linear components to achieve resistance against computational and algebraic
attacks. The new scheme extends the ISW transformation to resist algebraic
attacks by increasing the order of the decoding function. We have analyzed the
two prevalent security notions in the white-box model, probing security and
prediction security, and underlined the incompatibility of the notions, which
reveals that a scheme should satisfy both notions. We have used the well-known
SNI security notion to prove the (n − 1)th order probing security of an (n, d)-
masking scheme and thus we showed that our scheme can resist (n− 1)th-order

36 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

computation attacks. We proved first and second order prediction security for
the concrete construction of the (n, 1) and (n, 2) masking scheme, respectively.
the scheme has been defined generically and can be applied to any orders of n
and d, as long as the computational structure satisfies the algebraic properties.
We have examined the implementation cost of our scheme for arbitrary orders
of protection and compare it with the ISW transformation. We have extended
the algebraic verification tool to support our scheme and to validate our results.
The updated code has been made publicly available. Finally, a proof-of-concept
AES-128 bit-wise implementation was provided to perform leakage detection
and extensive performance analysis. The analysis showed that the new combined
masking scheme outperforms the previous approaches which require to combine
two different masking schemes to resist both attacks.

References

[BBB+19] Estuardo Alpirez Bock, Joppe W Bos, Chris Brzuska, Charles Hubain,
Wil Michiels, Cristofaro Mune, Eloi Sanfelix Gonzalez, Philippe Teuwen,
and Alexander Treff. White-box cryptography: don’t forget about grey-
box attacks. Journal of Cryptology, 32(4):1095–1143, 2019.

[BBC+19] Gilles Barthe, Sonia Beläıd, Gaëtan Cassiers, Pierre-Alain Fouque, Ben-
jamin Grégoire, and François-Xavier Standaert. maskverif: Automated
verification of higher-order masking in presence of physical defaults. In
Kazue Sako, Steve A. Schneider, and Peter Y. A. Ryan, editors, Com-
puter Security - ESORICS 2019 - 24th European Symposium on Research
in Computer Security, Luxembourg, September 23-27, 2019, Proceedings,
Part I, volume 11735 of Lecture Notes in Computer Science, pages 300–
318. Springer, 2019.

[BBD+16] Gilles Barthe, Sonia Beläıd, Franćois Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong
Non-Interference and Type-Directed Higher-Order Masking. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’16, pages 116–129, New York, NY, USA, 2016.
ACM.

[BBF+19] Estuardo Alpirez Bock, Chris Brzuska, Marc Fischlin, Christian Janson,
and Wil Michiels. Security reductions for white-box key-storage in mobile
payments. Cryptology ePrint Archive, Report 2019/1014, 2019. https:

//eprint.iacr.org/2019/1014.

[BBIJ17] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, and Martin Bjer-
regaard Jepsen. Analysis of Software Countermeasures for Whitebox En-
cryption. IACR Trans. Symmetric Cryptol., 2017(1):307–328, 2017.

[BBMT18] Estuardo Alpirez Bock, Chris Brzuska, Wil Michiels, and Alexander Treff.
On the Ineffectiveness of Internal Encodings-Revisiting the DCA Attack
on White-Box Cryptography. In International Conference on Applied
Cryptography and Network Security, pages 103–120. Springer, 2018.

[BCD06] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. White
box cryptography: Another attempt. IACR Cryptology ePrint Archive,
2006:468, 2006.

A White-Box Masking Scheme 37

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Impor-
tance of Checking Cryptographic Protocols for Faults. In Walter Fumy,
editor, Advances in Cryptology EUROCRYPT’97, volume 1233 of Lecture
Notes in Computer Science, pages 37–51. Springer, 1997.

[BECN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The
Sorcerer’s Apprentice Guide to Fault Attacks. Proceedings of the IEEE,
94(2):370–382, 2006.

[BGEC05] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a
White Box AES Implementation. In Helena Handschuh and M. Anwar
Hasan, editors, Selected Areas in Cryptography, pages 227–240. Springer,
2005.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Dif-
ferential Computation Analysis: Hiding Your White-Box Designs is Not
Enough. In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2016: 18th Interna-
tional Conference, Santa Barbara, CA, USA, August 17-19, 2016, Pro-
ceedings, pages 215–236. Springer, 2016.

[BMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In 27th USENIX Security
Symposium (USENIX Security 18), page 991–1008, August 2018.

[BP09] Joan Boyar and Rene Peralta. New logic minimization techniques with
applications to cryptology. Cryptology ePrint Archive, Report 2009/191,
2009.

[BRVW19] Andrey Bogdanov, Matthieu Rivain, Philip S Vejre, and Junwei Wang.
Higher-order DCA against standard side-channel countermeasures. In In-
ternational Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 118–141. Springer, 2019.

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and Countermeasures for
White-box Designs. In Thomas Peyrin and Steven Galbraith, editors, Ad-
vances in Cryptology – ASIACRYPT 2018, pages 373–402, Cham, 2018.
Springer International Publishing.

[CEJvO03a] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C. van Oorschot. A
White-Box DES Implementation for DRM Applications. In Joan Feigen-
baum, editor, Digital Rights Management, pages 1–15. Springer, 2003.

[CEJVO03b] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C. Van Oorschot.
White-Box Cryptography and an AES Implementation. In Kaisa Nyberg
and Howard Heys, editors, Selected Areas in Cryptography, pages 250–270.
Springer, 2003.

[CGPZ16] Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina
Zeitoun. Faster Evaluation of SBoxes via Common Shares. In Benedikt
Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware and
Embedded Systems – CHES 2016: 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, pages 498–514.
Springer, 2016.

[CGZ19] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel
Masking with Pseudo-Random Generator. Cryptology ePrint Archive,
Report 2019/1106, 2019. https://eprint.iacr.org/2019/1106.

38 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

[CJRR99a] Suresh Chari, Charanjit Jutla, Josyula R Rao, and Pankaj Rohatgi. A
cautionary note regarding evaluation of AES candidates on smart-cards.
In Second Advanced Encryption Standard Candidate Conference, pages
133–147. Citeseer, 1999.

[CJRR99b] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards Sound Approaches to Counteract Power-Analysis Attacks. In
Michael Wiener, editor, Advances in Cryptology – CRYPTO 99, volume
1666 of Lecture Notes in Computer Science, pages 398–412. Springer,
1999.

[Con] The WhibOx Contest. CHES 2017 Capture the Flag Challenge The
WhibOx Contest, An ECRYPT White-Box Cryptography Competition.
https://whibox-contest.github.io/.

[CPRR14] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In Shiho
Moriai, editor, Fast Software Encryption, pages 410–424, Berlin, Heidel-
berg, 2014. Springer Berlin Heidelberg.

[DMWP10] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of
a Perturbated White-Box AES Implementation. In Guang Gong and
Kishan Chand Gupta, editors, Progress in Cryptology - INDOCRYPT
2010, pages 292–310. Springer, 2010.

[FMPR11] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu
Rivain. Affine Masking against Higher-Order Side Channel Analysis,
pages 262–280. Springer, 2011.

[Gem] Gemalto. Sentinel R© LDK product brief. https://sentinel.gemalto.

com/resources/software/sentinel-ldk-feature-brief/.
[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A

testing methodology for side-channel resistance validation. In NIST non-
invasive attack testing workshop, 2011.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented
masking: Compact masked hardware implementations with arbitrary pro-
tection order. In Proceedings of the 2016 ACM Workshop on Theory of
Implementation Security, TIS ’16, page 3, New York, NY, USA, 2016.
Association for Computing Machinery.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Cryptographic Hardware and Embedded
Systems CHES 2001, pages 251–261. Springer, 2001.

[GPRW19] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How
to reveal the secrets of an obscure white-box implementation. Journal of
Cryptographic Engineering, Apr 2019.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction
via low-bandwidth acoustic cryptanalysis. In Advances in Cryptology–
CRYPTO 2014, pages 444–461. Springer, 2014.

[GT03] Jovan D. Golić and Christophe Tymen. Multiplicative masking and power
analysis of aes. In Burton S. Kaliski, çetin K. Koç, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems - CHES 2002,
pages 198–212, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prab-
hakaran, Amit Sahai, and David Zuckerman. Robust Pseudorandom
Generators. In Fedor V. Fomin, Rūsiņš Freivalds, Marta Kwiatkowska,
and David Peleg, editors, Automata, Languages, and Programming, pages
576–588, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

A White-Box Masking Scheme 39

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Secur-
ing Hardware against Probing Attacks. In Dan Boneh, editor, Advances
in Cryptology - CRYPTO 2003: 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003. Pro-
ceedings, pages 463–481. Springer, 2003.

[Kar10] Mohamed Karroumi. Protecting White-Box AES with Dual Ciphers. In
Kyung-Hyune Rhee and DaeHun Nyang, editors, Information Security
and Cryptology - ICISC 2010, pages 278–291. Springer, 2010.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analy-
sis. In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99,
pages 388–397. Springer, 1999.

[LKK18] S. Lee, T. Kim, and Y. Kang. A Masked White-Box Cryptographic Im-
plementation for Protecting Against Differential Computation Analysis.
IEEE Transactions on Information Forensics and Security, 13(10):2602–
2615, 2018.

[LN05] Hamilton E. Link and William D. Neumann. Clarifying obfuscation: im-
proving the security of white-box DES. International Conference on In-
formation Technology: Coding and Computing (ITCC’05) - Volume II,
1:679–684 Vol. 1, 2005.

[LRDM+14] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and
Bart Preneel. Two Attacks on a White-Box AES Implementation. In
Tanja Lange, Kristin Lauter, and Petr Lisoněk, editors, Selected Areas in
Cryptography – SAC 2013, pages 265–285. Springer, 2014.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom:
How SGX Amplifies the Power of Cache Attacks. In Wieland Fischer
and Naofumi Homma, editors, Cryptographic Hardware and Embedded
Systems – CHES 2017, pages 69–90. Springer, 2017.

[MOO+14] Ciara Moore, Máire O’Neill, Elizabeth O’Sullivan, Yarkın Doröz, and
Berk Sunar. Practical homomorphic encryption: A survey. In 2014 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 2792–
2795. IEEE, 2014.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The the-
ory of error-correcting codes, volume 16. Elsevier, 1977.

[NRS09] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of non-linear functions in the presence of glitches. In In-
formation Security and Cryptology–ICISC 2008, pages 218–234. Springer,
2009.

[Pay] EMV-Mobile Payment. Software-based Mobile Payment Secu-
rity Requirements. https://www.emvco.com/terms-of-use/?u=

wp-content/uploads/documents/EMVCo-SBMP-16-G01-V1.4_SBMP_

Security_Requirements.pdf.
[RMB+17] Oscar Reparaz, Lauren De Meyer, Beggül Bilgin, Victor Arribas, Svetla

Nikova, Ventzislav Nikov, and Nigel Smart. CAPA: The Spirit of Beaver
against Physical Attacks. Cryptology ePrint Archive, Report 2017/1195,
2017.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order
Masking of AES. In Stefan Mangard and François-Xavier Standaert, ed-
itors, Cryptographic Hardware and Embedded Systems, CHES 2010: 12th
International Workshop, Santa Barbara, USA, August 17-20, 2010. Pro-
ceedings, pages 413–427. Springer, 2010.

40 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

[RP12] Thomas Roche and Emmanuel Prouff. Higher-order glitch free imple-
mentation of the AES using secure multi-party computation protocols.
Journal of Cryptographic Engineering, 2(2):111–127, 2012.

[RW19] Matthieu Rivain and Junwei Wang. Analysis and Improvement of Differ-
ential Computation Attacks against Internally-Encoded White-Box Im-
plementations. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, 2019(2):225–255, Feb. 2019.

[SFRES18] Okan Seker, Abraham Fernandez-Rubio, Thomas Eisenbarth, and Rainer
Steinwandt. Extending Glitch-Free Multiparty Protocols to Resist Fault
Injection Attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2018(3):394–430, Aug. 2018.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI – Towards
Combined Hardware Countermeasures Against Side-Channel and Fault-
Injection Attacks. In Matthew Robshaw and Jonathan Katz, editors, Ad-
vances in Cryptology – CRYPTO 2016: 36th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Pro-
ceedings, Part II, pages 302–332. Springer, 2016.

[VBPS17] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A Prac-
tical Attack Framework for Precise Enclave Execution Control. In Pro-
ceedings of the 2nd Workshop on System Software for Trusted Execution,
SysTEX’17, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[VCMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and
François-Xavier Standaert. Shuffling against Side-Channel Attacks: A
Comprehensive Study with Cautionary Note. In Xiaoyun Wang and
Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012.
Springer, 2012.

[WMGP07] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Crypt-
analysis of White-Box DES Implementations with Arbitrary External
Encodings. In Carlisle Adams, Ali Miri, and Michael Wiener, editors,
Selected Areas in Cryptography, pages 264–277. Springer, 2007.

[XL09] Y. Xiao and X. Lai. A Secure Implementation of White-Box AES. In 2009
2nd International Conference on Computer Science and its Applications,
pages 1–6, 2009.

A Additional Proofs

In this Appendix, we give the proofs for Lemma 1, the correctness of our scheme
and for the Propositions that concern the security features of the gadgets whose
proof is not given in the paper.

Lemma 1: Correctness of Circuit Transformation T(n,d)

Proof. For simplicity, let us denote Encode as:

Encode(x, x̃0, . . . , x̃d, x1, . . . , xn−1) = Encode(x).

Next we prove the functionality preserving property of each gadget.

A White-Box Masking Scheme 41

– x = Decode(RefreshMask(Encode(x))

= Decode(RefreshMask((x̃0, . . . , x̃d, x1, . . . , xn))

= Decode((x̃0 ⊕ r̃0), . . . , (x̃d ⊕ r̃d), (x1 ⊕
⊕n

j=2 r1,j), (r1,2 ⊕ x2
⊕n

j=3 r2,j),

. . . , (
⊕n−1

i=1 ri,n ⊕ xn ⊕W ⊕R))

= (x̃0 ⊕ r̃0) · · · (x̃d ⊕ r̃d)⊕ x1 ⊕ · · · ⊕ xn ⊕W ⊕R
= x̃0 · · · x̃d ⊕W ′ ⊕ x1 ⊕ · · · ⊕ xn ⊕W ⊕R
= x̃0 · · · x̃d ⊕ x1 ⊕ · · · ⊕ xn
= x

– Decode(Xor(Encode(x), Encode(y)))

= Decode(x̃0 ⊕ ỹ0, . . . , x̃d ⊕ ỹd, x1 ⊕ y1, . . . , xn−1 ⊕ yn−1, xn ⊕ yn ⊕ U)

where (x̃0, . . . , x̃d, x1, . . . , xn) = RefreshMask(Encode(x)) and

(ỹ0, . . . , ỹd, y1, . . . , yn) = RefreshMask(Encode(y)).

= [(x̃0 ⊕ ỹ0) · · · (x̃d ⊕ ỹd)]⊕ [(x1 ⊕ y1)⊕ · · · ⊕ (xn−1 ⊕ yn−1)⊕ (xn ⊕ yn ⊕ U)]

= [x̃0 · · · x̃d ⊕ U ⊕ ỹ0 · · · ỹd]⊕ [(x1 ⊕ y1)⊕ · · · ⊕ (xn−1 ⊕ yn−1)⊕ (xn ⊕ yn ⊕ U)]

= (x̃0 · · · x̃d ⊕ x1 ⊕ · · ·xn)⊕ (ỹ0 · · · ỹd ⊕ y1 ⊕ · · · yn)

= x⊕ y.

– xy = Decode(And(Encode(x), Encode(y)))

= Decode(And((x̃0, . . . , x̃d, x1, . . . , xn), (ỹ0, . . . ỹd, y1, . . . , yn)))

where (x̃0, . . . , x̃d, x1, . . . , xn) = RefreshMask(Encode(x)) and

(ỹ0, . . . , ỹd, y1, . . . , yn) = RefreshMask(Encode(y)).

= Decode(z̃0, . . . , z̃d, z1, . . . , zn)

where the output shares can be listed as follows:

z̃i = x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n for 0 ≤ i ≤ d,

zi = xiyi ⊕
n⊕
j=1
j 6=i

ri,j for 1 ≤ i ≤ n.

Also, the values ri,j can be listed as:

r0,j = F(xj , yj) = [r0,j ⊕ (x̃0 . . . x̃d)yj]⊕ xj(ỹ0 . . . ỹd) for 1 ≤ j ≤ n,
ri,j = (ri,j ⊕ xiyj)⊕ xjyi for 1 ≤ i < j ≤ n.

42 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

Therefore,

Decode(z̄) = z̃0 · · · z̃d ⊕ z1 ⊕ . . .⊕ zn

=

d∏
i=0

[
x̃iỹi′ ⊕ ri,1 ⊕ · · · ⊕ ri,n

]
⊕

n⊕
i=1

xiyi ⊕ n⊕
j=0
j 6=i

ri,j

= [(x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕ V]⊕

 n⊕
i=1

(xiyi ⊕
n⊕
j=1
j 6=i

ri,j)

⊕
 n⊕
j=1

((r0,j ⊕ (x̃0 . . . x̃d)yi)⊕ xi(ỹ0 . . . ỹd))

= [(x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕ V]⊕

 ⊕
1≤i,j≤n

xiyj

⊕
[
V ⊕

n⊕
i=1

(x̃0 . . . x̃d)yi ⊕ xi(ỹ0 . . . ỹd)

]

= (x̃0 · · · x̃d)(ỹ0 · · · ỹd)⊕
⊕

1≤i,j≤n

xiyj ⊕
n⊕
i=1

((x̃0 . . . x̃d)yi ⊕ xi(ỹ0 . . . ỹd))

= (x̃0 · · · x̃d ⊕ x1 ⊕ · · ·xn)(ỹ0 · · · ỹd ⊕ y1 ⊕ · · · yn)

= xy.

Hence we showed that the gadgets introduced in Section 3 are function-
ally preserving gadgets. Therefore, the transformation that generates an (n, d)-
masked circuit is a functionally preserving transformation.

Proposition 2: t-SNI of RefreshMask[n, d] gadget

Proof. In order to prove the proposition, we first assume that the simulator can
access the values (x̃i)i∈[0,d] by Fact 1 and we show that every set of intermediate
variables with t1 elements and every set of output variables with t2 such that
t1 + t2 ≤ t can be simulated from a set of input shares U = ((x̃i)i∈[0,d], (xi)i∈I)
such that |I| ≤ t1.

Let us first classify the variables. The intermediate variables are xi, ri,j , x̃i,
r̃j , ai,j , bj,i (where ai,j , bj,i as defined in Algorithm 3) and the intermediate
variables within W, R and the outputs are x̃′i, x

′
i.

Next, we can define I as follows:

– For each selected variable xi, ri,j and ai,j add i to I and bj,i add j to I.
– For each selected r̃j , x̃j and x̃j ⊕ r̃j , we don’t need to add any value since
x̃j is accessible by the simulator.

A White-Box Masking Scheme 43

– Line 11, W and R: If one of the variables of form
∏
i∈J(x̃i ⊕ r0)

∏
i/∈J r̃i

where J ({0, . . . , d} is selected, no values need to be added due to Fact 1.
If one of the variables inside R is selected, no values need to be added since
in the expression only shares x̃i and random variables are used.

It is clear that I contains at most t1 elements since each selected value adds
at most one index to I.

Now we can define the simulator. For all i ∈ I the simulator can sample all
ri,j for j ∈ [i + 1, n] and compute all partials sums ai,j and bj,i and thus the
output x′i. For all i ∈ [0, d] the simulator can sample r̃i and compute the output
x̃′i. Moreover the simulator can computeW and R by sampling random variables
and computing (x̃i)i∈[0,d].

Finally, we need to consider the simulation of the output shares x′i such that
i /∈ I. Observe that i /∈ I means that any random value in the partial sum of x′i
is not probed and is not involved in a partial sum of it. Hence we can simulate
x′i by an uniformly random value. Also, by Fact 1 any output variable x̃′i can
be simulated. As a result any set of t1 selected intermediate variables and any
set of t2 output variables can simulated by U = ((x̃i)i∈[0,d], (xi)i∈I) such that
|I| ≤ t1.

Proposition 3: t-SNI of And[n, d] gadget

Proof. In order to prove the proposition, we first assume that the simulator can
access the values (x̃i)i∈[0,d] and (ỹi)i∈[0,d] by Fact 1. Then we show that every
set of t1 intermediate variables and every set of t2 output variables such that
t1 + t2 ≤ t can be simulated by two sets of input shares (x̃i)i∈[0,d] and (xi)i∈I
such that |I| ≤ t1, resp. (ỹj)j∈[0,d] and (yj)j∈J such that |J | ≤ t1.

We first need to construct the sets of indices I and J corresponding to the
shares of x and y. The following two cases cover every variable in Step-2(b)
and Step-3:

Group 1: For all xi, yi, xiyi, add i to I and J .
Group 2: For all ri,j or zi,j add, i to I and J where zi,j denotes the jth partial

sum of zi.

Note that after thees steps, we have I = J and we denote this common set as
U .

Group 3: For all xiyj ⊕ ri,j , if i ∈ U or j ∈ U , add both i, j to I and J .
Group 4: For all xiyj add, i to I and j to J .

To cover Step-1 and Step-2(a) we need to use the following classification:

Group 5: : For all x̃i, ỹi, r
i,j and combination of these, no values are needed

to be added due to Fact 1.
Group 6: For all x̃iyj (resp. ỹjxi), add j to J (resp. i to I).
Group 7: For all values of the form

∏
i∈K x̃i

∏
j∈L ỹj where K,L ({0, . . . , d},

no values are needed to be added due to Fact 1.

44 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

Clearly, I and J have at most one index per selected variable, and therefore
|I| ≤ t1 and |J | ≤ t1.

We now define the simulator for the intermediate variables. The simulation
of the variables in Group 1 and Group 4 can be performed easily.

Group 1: To simulate xi, yi, or xiyi, we can simply use the input variables, as
both xi and yi are known from I and J .

Group 4: To simulate xiyj we can simply use the input variables, as both xi
and yj are known from I and J .

For the remaining groups Group 1 and Group 4 (i. e. probed variables rj,i,
zi,j or xiyj ⊕ ri,j), we use the following claim.

Claim 1 If i /∈ U , then ri,j is not selected and does not enter in the computation
of any probed zi,k. Similarly, if j /∈ U , then rj,i is not selected and does not enter
in the computation of any selected cj,k.

Proof. For i < j, the variable ri,j is used in all partial sums ci,k for k > j. Also
ri,j is used in ri,j ⊕ xiyj , which is a part of rj,i. Note that rj,i is used in all
partial sums ci,k for k > i.

For 1 < i < j let us consider the following cases:

Case 1: {i, j} ∈ U means that all the variables ri,j , xiyj , xiyj ⊕ ri,j , xjyi and
rj,i can be perfectly simulated while simulating ri,j by a uniformly random
value.

Case 2: i ∈ U and j /∈ U implies that we can simulate ri,j as a uniformly
random value and if xiyj ⊕ ri,j is also selected we can perfectly simulate it
since i ∈ U and j ∈ J by Claim 1.

Case 3: i /∈ U and j ∈ U indicates that any variable of the form ri,j and zi,j
is not selected by Claim 1. More importantly ri,j is not used in any other
selected value. Thus, we can simulate rj,i with a uniformly random value.
Also we can simulate xiyj ⊕ ri,j (observe that xiyj ⊕ ri,j = xjyi⊕ rj,i) since
j ∈ U and i ∈ J .

Case 4: i /∈ U and j /∈ U means that if xiyj ⊕ ri,j is selected we can simply
simulate it with a uniformly random value, since ri,j is not selected and does
not enter any calculation.

From the above analysis we can see that any variable ri,j can be simulated
if i ∈ U including all partial sums zi,k and zi. Now, we need to consider the
variables from Step-1 and Step-2(a).

– Every variable x̃i, ỹi, x̃iỹi′ , x̃iyj , ỹjxi r
i,j or xor of these values can be

simulated according to Fact 1.
– Every variable in Step-2(a) can be simulated since the simulator accesses
x̃i∈[0,d] and ỹj∈[0,d].

A White-Box Masking Scheme 45

Hence, we show that any set of intermediate variables, with t1 elements can
be simulated by the sets ((x̃i)i∈[0,d], (xi)i∈I) and ((ỹj)j∈[0,d], (yj)j∈J) which are
uniformly random and independent of any sensitive variable.

In the last part of the proof, we focus on the simulation of an arbitrary
set of output variables ((z̃i)i∈Õ, (zi)i∈O) where Õ ⊂ [0, d] and O ⊂ [1, n] with
t2 elements such that t1 + t2 ≤ t. Let us first analyze the non-linear output
shares (z̃i)i∈Õ. Observe that we can simulate ri,j as uniformly random values
and perfectly simulate z̃i by Fact 1.

Next, we focus on the output shares (zi)i∈O. From the discussion above, we
can see that we can simulate outputs zi with i ∈ U perfectly. Now, consider
zi with i 6∈ U . A set of indices V is constructed as follows: For each variable
xiyj ⊕ ri,j in Group 3 with i 6∈ U and j 6∈ U (corresponding to Case 4 described
above), we add j to V if i ∈ O or i to V if i 6∈ O. Note that we only considered
variables in Group 3, where we increased I and J by two elements. As V was only
increased by one element, we have |U |+|V | ≤ t1 and thus |U |+|V |+|Õ|+|O| < n.
Hence, there is an index j∗ ∈ [0, n] such that j∗ 6∈ (U ∪ V ∪ O). By definition,
we have

zi = xiyi ⊕
n⊕

j=0;j 6=i

ri,j = ri,j∗ ⊕

xiyi ⊕ n⊕
j=0;j 6=i;j 6=j∗

ri,j

 .

We will now show that ri,j∗ and rj∗,i are not processed in the computation
of any selected intermediate variable or another output variable zi′ with i′ ∈ O.
Observe that, if i 6∈ U (resp. j∗ 6∈ U) neither ri,j∗ (resp. rj∗,i) nor any partial sum
zi,k (resp. zj∗,k) was selected. Therefore, j∗ 6∈ O and zj∗ were also not selected.
Hence, ri,j∗ and rj∗,i are not used in the computation of a selected intermediate
variable.

In the last part of the proof, we need to show that ri,j∗ and rj∗,i are not
needed for other output variables zi′ .

If i < j∗, then xiyj′ ⊕ ri,j∗ was not selected (since j∗ 6∈ V and i ∈ O). If
j∗ < i, then xj∗yi ⊕ rj∗,i was not selected (since j∗ 6∈ (V ∪ O). Hence, ri,j∗ and
rj∗,i are not used in the computation of any output variable zi′ and we simulate
zi by sampling a random value.

Proposition 4: t-NI of Xor[n, d] gadget

Proof. In order to prove the proposition, we first assume that the simulator can
access the values (x̃i)i∈[0,d] and (ỹi)i∈[0,d] and show that every set of intermediate
variables including the output shares with ≤ t elements can be simulated by two
sets of input shares (x̃i)i∈[0,d] and (xi)i∈I such that |I| ≤ t (resp. (ỹj)j∈[0,d] and
(yj)j∈J such that |J | ≤ t). We denote the concatenations of these tuples by
U = ((x̃i)i∈[0,d], (xi)i∈I) and V = ((ỹj)j∈[0,d], (yj)j∈J).

We can define I and J as follows: for each selected xi, yi, xi⊕yi add i to I and
J . Due to Fact 1, all selected variables x̃i, ỹi, x̃i⊕ ỹi, x̃iỹj and

∏
i∈K x̃i

∏
j /∈K ỹj ,

doe not increase the size of the sets I and J .

46 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

It is clear that I and J contains at most t elements since each selected variable
adds at most one index to I and/or J . Remark that the above classification also
covers the output shares.

Now we can define the simulator. Every variable of the form xi, yi, xi ⊕ yi
(resp. x̃i, ỹi, x̃i ⊕ ỹi) can be simulated by the sets U and V . Moreover every
variable of the form

∏
i∈K x̃i

∏
j /∈K ỹj where K ({0, . . . , d} can be simulated

by Fact 1.

Proposition 5: ε-1-AS of RefreshMask[n, 1] Gadget

Proof. In the first part of the proof, we show that there exists no function f ∈
F (1)(C) such that f is constant when inputs are fixed. Assume that there exists a
function f ∈ F (1)(C) such that f is constant when the inputs (x̃0, x̃1, (xi)1≤i≤n)
are fixed. As seen in Algorithm 3, the only nodes that do not contain a random
variable(i.e. not fixed) can be found in line 11 where the values W and R are
processed. By the definition ofW each input is accompanied by a random value.
And R contains only random values. Therefore each node is accompanied by
a random node and any linear combination of these nodes cannot be constant.
Hence there exists no constant function f ∈ F (1)(C) such that inputs are fixed.

In the second part, we examine the highest degree term in the gadget. The
maximum degree term can be found in R with degree 2. Therefore the corre-
sponding bias and the bias bound of the gadget can be calculated as 2−2 and
ε ≤

∣∣1/2− 1/22
∣∣ = 1/4 respectively. Thus the RefreshMask gadget is ε-1-AS

with ε := 1/4.

Proposition 8: ε-2-AS of RefreshMask[n, 2] Gadget

Proof. First let us consider a function f ∈ F (2)(C \X). Assume that there exists
a c ∈ Fn+3

2 such that f(c, ·) is constant. As seen in Algorithm 3, the nodes that
do not contain a random variable (i.e. not fixed) are found in line 11 where
the values W and R are processed. By the computational structure of W and
R given in RefreshMask[n, 2], the input nodes are accompanied by a random
value. Moreover each node contains only one non-linear share, thus any first or
second order combination cannot contain all three non-linear shares such that
the variable x̃0x̃1x̃2 is formed. Hence f(c, ·) cannot be a constant for all c ∈ Fn+3

2 .

In the second part of the proof we analyze them such thatm = max(deg(ci)ci∈C\X).
Observe that the highest degree term in the gadget can be found inR with degree
3. Thus the linear bias bound of the gadget can be seen as follows:

1

2
− 1

22
≤ ε′ = E(f ′) <

1

2
− 1

23
where f ′ ∈ F (1)(C \ X).

This result implies that RefreshMask[n, 1] is ε′-1-AS gadget. Moreover, the
highest degree term of f ∈ F (2)(C \ X) is less than or equal to 6 which implies:

1

2
− 1

25
≤ ε = E(f) <

1

2
− 1

26
where f ∈ F (2)(C \ X).

A White-Box Masking Scheme 47

Observe that, in the first part of the proof we showed that there exists no
function f ∈ F (2)(C \ X) such that f(c, ·) is constant, which implies both linear
and second order biases cannot grow. Thus the RefreshMask gadget is ε-2-AS
with ε := 31/64.

B Example Constructions

Example 3. n = 2, d = 1
Here is an example construction for the (2, 1)-masking scheme:

– Encode(x, x1, x̃0, x̃1) = (x̃0, x̃1, x1, x2) where x2 = x̃0x̃1 ⊕ x1 ⊕ x.
– Decode(x) = x̃0x̃1 ⊕ x1 ⊕ x2.
– Xor(x, y) = (z̃0, z̃1, z1, z2) such that z = x⊕ y:

• z̃0 = x̃0 ⊕ ỹ0,
• z̃1 = x̃1 ⊕ ỹ1,
• z1 = x1 ⊕ y1,
• z2 = x2 ⊕ y2 ⊕ x̃1ỹ0 ⊕ x̃0ỹ1.

– And(x, y) = (z̃0, z̃1, z1, z2) such that z = xy;

Step-1: First, calculate the multiplicative representations of the output
share z0:
• z̃0 = x̃0ỹ1 ⊕ r0,1 ⊕ r0,2,
• z̃1 = x̃1ỹ0 ⊕ r1,1 ⊕ r1,2 where (r0,1, r0,2, r1,1, r1,2)← rand(0, 1)

Step-2(a): Calculate the intermediate values rj,0 which include the recon-
struction of the values x0 and y0:
• r1,0 = x̃1(x̃0y1 ⊕ r0,1ỹ0)⊕ ỹ1(ỹ0x1 ⊕ r1,1x̃0)⊕ r1,1(r0,1 ⊕ r0,2),
• r2,0 = x̃1(x̃0y2 ⊕ r0,2ỹ0)⊕ ỹ1(ỹ0x2 ⊕ r1,2x̃0)⊕ r1,2(r0,1 ⊕ r0,2).

Step-2(b): Calculate the intermediate values rj,0 which do not include the
reconstruction of the values x0 and y0:
• r1,2 ← rand(0, 1),
• r2,1 = (r1,2 ⊕ x1y2)⊕ x2y1.

Step-3: Finally, calculate the rest of the shares:
• z1 = x1y1 ⊕ r1,0 ⊕ r1,2,
• z2 = x2y2 ⊕ r2,0 ⊕ r2,1.

– RefreshMask(x) = (x̃0, x̃1, x1, x2)

1. First, calculate the non-linear components of the output share x0:
• x̃0 = x̃0 ⊕ r̃0,
• x̃1 = x̃1 ⊕ r̃1 where (r̃0, r̃1)← rand(0, 1)

2. Calculate the rest the linear masks:
• x1 = x1 ⊕ r1,
• x2 = x2 ⊕ r1 where r1 ← rand(0, 1)

3. Select a random bit r0 ← rand(0, 1) and calculate the intermediate vari-
able with W and R :
• W = r̃0(x̃1⊕ r0)⊕ r̃1(x̃0⊕ r0) and R = (r̃0⊕ r0)(r̃1⊕ r0)⊕ r0 where
• x2 = x2 ⊕W ⊕R

48 Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz

Example 4. Example: n = 2, d = 2
Here is an example construction for the (2, 2)-masking scheme:

– Encode(x, x1, x̃0, x̃1, x̃2) = (x̃0, x̃1, x̃2, x1, x2) where x2 = x̃0x̃1x̃2 ⊕ x1 ⊕ x.
– Decode(x) = x̃0x̃1x̃2 ⊕ x1 ⊕ x2.
– Xor(x, y) = (z̃0, z̃1, z̃2, z1, z2) such that z = x⊕ y
• z̃i = x̃i ⊕ ỹi for i = {0, 1, 2}
• z1 = x1 ⊕ y1
• z2 = x2 ⊕ y2 ⊕ x̃1(x̃2ỹ0 ⊕ ỹ2(x̃0 ⊕ ỹ0))⊕ ỹ1(x̃2ỹ0 ⊕ x̃0(x̃2 ⊕ ỹ2))

– And(x, y) = (z̃0, z̃1, z̃2, z1, z2) such that z = xy

Step-1: First, calculate the multiplicative representations of the output
share z0:
• z̃0 = x̃0ỹ1 ⊕ r0,1 ⊕ r0,2,
• z̃1 = x̃1ỹ2 ⊕ r1,1 ⊕ r1,2,
• z̃2 = x̃2ỹ0 ⊕ r2,1 ⊕ r2,2 where ri,j ← rand(0, 1) for i = {0, 1, 2} ,
j = {1, 2}.

Step-2(a): Calculate the intermediate values rj,0 where the combination of
random nodes are defined as; u = (r1,1 ⊕ r1,2) and v = (r2,1 ⊕ r2,2).
• r1,0 = F(x1, y1) = x̃0

[
x̃2(x̃1y1 ⊕ r0,1ỹ0)⊕ r1,1vỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2x1 ⊕ r1,1x̃2)⊕ r0,1ux̃2

]
⊕

x̃0ỹ1(r1,1x̃2ỹ0 ⊕ r2,1x̃1ỹ2)⊕ r0,1x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,1x̃0 ⊕ r1,1ỹ1)⊕ uvr0,1.

• r2,0 = F(x2, y2) = x̃0
[
x̃2(x̃1y2 ⊕ r0,2ỹ0)⊕ r1,2vỹ1

]
⊕

ỹ0
[
ỹ1(ỹ2x2 ⊕ r1,2x̃2)⊕ r0,2ux̃2

]
⊕

x̃0ỹ1(r1,2x̃2ỹ0 ⊕ r2,2x̃1ỹ2)⊕ r0,2x̃1ỹ2(v ⊕ x̃2ỹ0)⊕
x̃2ỹ0(r0,2x̃0 ⊕ r1,2ỹ1)⊕ uvr0,2.

Step-2(b): Calculate the intermediate values rj,0 which do not include the
reconstruction of the values x0 and y0:
• r1,2 ← rand(0, 1),
• r2,1 = (r1,2 ⊕ x1y2)⊕ x2y1.

Step-3: Finally, calculate the rest of the shares:
• z1 = x1y1 ⊕ r1,0 ⊕ r1,2,
• z2 = x2y2 ⊕ r2,0 ⊕ r2,1.

– RefreshMask(x) = (x̃0, x̃1, x̃2, x1, x2)

1. First, calculate the multiplicative representations of the output share x0:
• x̃0 = x̃0 ⊕ r̃0,
• x̃1 = x̃1 ⊕ r̃1,
• x̃2 = x̃2 ⊕ r̃2, where (r̃0, r̃1, r̃2)← rand(0, 1)

2. Calculate the rest the linear shares:
• x1 = x1 ⊕ r1,
• x2 = x2 ⊕ r1 where r1 ← rand(0, 1)

3. Select a random bit r0 ← rand(0, 1) and calculate the intermediate vari-
able with W and R :

A White-Box Masking Scheme 49

• W = r̃1r̃2(x̃0 ⊕ r0)⊕ r̃0r̃2(x̃1 ⊕ r0)⊕ r̃0r̃1(x̃2 ⊕ r0)⊕
r̃2(x̃0 ⊕ r0)(x̃1 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0)(x̃2 ⊕ r0)⊕ r̃0(x̃1 ⊕ r0)(x̃2 ⊕ r0),

R = (r̃0 ⊕ r0)(r̃1 ⊕ r0)(r̃2 ⊕ r0)⊕
r0 [r̃2(x̃0 ⊕ r0)⊕ r̃1(x̃0 ⊕ r0)⊕ r̃0(x̃1 ⊕ r0)]⊕
r0 [r̃2(x̃1 ⊕ r0)⊕ r̃1(x̃2 ⊕ r0)⊕ r̃0(x̃2 ⊕ r0)] .

• x2 = x2 ⊕W ⊕R

