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Abstract. The information ratio of an access structure is an impor-
tant parameter for quantifying the efficiency of the best secret sharing
scheme (SSS) realizing it. The most common security notion is perfect
security. The following relaxations, in increasing level of security, have
been presented in the literature: quasi-perfect, almost-perfect and statis-
tical. Understanding the power of relaxing the correctness and privacy
requirements in the efficiency of SSSs is a long-standing open problem.
In this article, we introduce and study an extremely relaxed security no-
tion, called partial security, for which it is only required that any qualified
set gains strictly more information about the secret than any unqualified
one. To compensate the extreme imperfection, we quantify the efficiency
of such schemes using a parameter called partial information ratio. De-
spite our compensation, partial security turns out weaker than the weak-
est mentioned non-perfect security notion, i.e., quasi-perfect security.
We present three main results in this paper. First, we prove that partial
and perfect information ratios coincide for the class of linear SSSs. Con-
sequently, for this class, information ratio is invariant with respect to all
security notions. Second, by viewing a partial SSS as a wiretap channel,
we prove that for the general (i.e., non-linear) class of SSSs, partial and
statistical information ratios are equal. Consequently, for this class, infor-
mation ratio is invariant with respect to all non-perfect security notions.
Third, we show that partial and almost-perfect information ratios do not
coincide for the class of mixed-linear schemes (i.e., schemes constructed
by combining linear schemes with different underlying finite fields).
Our first result strengthens the previous decomposition theorems for con-
structing perfect linear schemes. Our second result leads to a very strong
decomposition theorem for constructing general (i.e., non-linear) statis-
tical schemes. Our third result provides a rare example of the effect of
imperfection on the efficiency of SSSs for a certain class of schemes.

Keywords: Information theoretic cryptography · Secret sharing · Per-
fect and non-perfect security · Wiretap channel · Decomposition meth-
ods.

1 Introduction

A secret sharing scheme (SSS) [16,60] is a cryptographic tool that allows a dealer
to share a secret among a set of participants such that only certain qualified

{amirjafa,shahram.khazaei}@gmail.com


2 A. Jafari & S. Khazaei

subsets of them are able to reconstruct the secret. The secret must remain hidden
from the remaining subsets, called unqualified. The collection of all qualified
subsets is called an access structure [41], which is supposed to be monotone, i.e.,
closed under the superset operation.

The information ratio [18, 20, 53] of a participant in a SSS is defined as the
ratio of the size (entropy) of his share to the size of the secret. The information
ratio of a SSS is the maximum of all participants’ information ratios. The infor-
mation ratio of an access structure is defined as the infimum of the information
ratios of all SSSs that realize it. Realization is defined with respect to some se-
curity notion, e.g., perfect or any variants of non-perfect security to be discussed
in the next subsection. It is a difficult problem to compute the information ratio
of access structures in general.

The most common types of SSS fall in the class of multi-linear schemes. In
these schemes, the secret is composed of some finite field elements and sharing
is performed by applying a fixed linear mapping on the secret elements and
some randomly chosen elements from the finite field. When the secret is a single
field element, the scheme is called linear. In this paper we do not make such a
distinction and simply call all of them linear.

1.1 Perfect and non-perfect security notions

Some closely related security notions for realization of an access structure by
SSSs are given below, in decreasing order of security level. The non-perfect secu-
rity notions are formally defined by considering a family of SSSs; see Appendix A.

Here we provide less formal definitions for which we need some notations. In
the following, S0, SA and SB are random variables representing the secret, the
shares of a qualified set A and the shares of an unqualified set B, respectively.
The random variable zS0,A is the estimation of the qualified set A of the secret.
The Shannon entropy function and mutual information function are denoted by
Hp¨q and Ip¨ : ¨q, respectively. The statistical distance (or total variation) between
random variable X and Y , with respective probability mass functions pX and
pY , is denoted by SDppX , pY q; it is essentially the norm-one distance between
the two probability mass functions divided by two. Also, ε ě 0 is some negligible
number (e.g., ε « 2´80).

– Perfect: The qualified sets must recover the secret with probability one
(i.e., PrrzS0,A ‰ S0s “ 0 or equivalently HpS0|SAq “ 0) and it must remain
information-theoretically hidden from unqualified sets (i.e., IpS0 : SBq “ 0).
These requirements are respectively called the perfect correctness and perfect
privacy conditions.

– Statistical: The qualified sets may fail to recover the secret with some
negligible probability of error (i.e., fApsq “ PrrzS0,A ‰ S0|S0 “ ss ď ε
for every secret s); and some negligible amount of information about the
secret can be leaked to unqualified sets which is quantified using the notion
of statistical distance (i.e., fBpsq “ SDppSB |S0“s, pS0q ď ε, for every secret
s). This is a standard relaxation and requires that the reconstruction error
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probability and statistical distance be negligible for the worst choice of the
secret.

– Expected-statistical: This notion is a non-standard variant of statistical
security that we consider in this paper for ease of reference and comparison.
It requires that the reconstruction error probability and statistical distance
be negligible on average (i.e., over a random choice of the secret). That is, for

correctness we require PrrzS0,A ‰ S0s ď ε or equivalently ErfApS0qs ď ε; for
privacy we require that ErfBpS0qs “ SDppSBS0

, pSB
pS0

q ď ε, where fA, fB
are as in the previous item and Er¨s denotes the expectation of random
variables.

– Almost-perfect [24, 48]: Some small amount of information (in terms of
entropy) about the secret is allowed to be missed by qualified sets and to be
leaked to unqualified ones (i.e., HpS0|SAq ď ε and IpS0 : SBq ď ε).

– Quasi-perfect [47, Chapater 5]: Some small percentage of information in
terms of entropy, after normalization to the secret entropy, about the secret
is allowed to be missed by qualified sets and to be leaked to unqualified ones
(i.e., HpS0|SAq{HpS0q ď ε and IpS0 : SBq{HpS0q ď ε).

Similar definitions in other contexts. The root of these definitions can be
found in the context of capacity in network information theory, starting from
the seminal works of Shannon (1944). The capacity of transmission channels is
usually defined by requiring the average error probability to be negligible (i.e.,
similar to the correctness requirement for expected-statistical security). However,
the capacity of a single-sender multi-receiver channel remains unchanged if one
requires negligible maximum error probability (i.e., similar to the correctness
requirement for statistical security). In contrast, for multi-sender channels, a
well-known old result by Dueck [33] shows that the capacity region with maximal
probability of error is smaller than with average probability of error. On the other
hand, it is well-known that requiring zero-error probability leads to zero capacity
for many point-to-point channels.

In the context of information-theoretic security, the privacy requirement for
Wyner’s wiretap channel [65] (1975) and Maurer’s secret key agreement [56]
(1991), were initially defined with respect to a definition similar to the quasi-
perfect privacy requirement. Later, Maurer introduced a stronger privacy re-
quirement in [57] (1994) which corresponds to almost-perfect security. Csiszar
introduced an even stronger definition in [25] (1996) which corresponds to the
expected-statistical definition mentioned above. These three notions have been
studied extensively in subsequent works (e.g., see [27,58,66]) and it is known that
the secrecy capacity is invariant with respect to these security requirements. It
can easily be shown that the secrecy capacity remains unchanged even if we im-
pose stronger reliability and privacy requirements, similar to those for statistical
SSSs. See Section 5.1 and Appendix B.

General motivations. We are not aware of any extensive study of these notions
in the setting of secret sharing. In this setting, special classes of SSSs (e.g., linear,
abelian, homomorphic, etc) are also of particular interest. In particular, for a
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given class of SSSs, it is an open problem if the information ratio of an access
structure is invariant with respect to different security notions, and very few
results are known in this regard, which are reviewed next. The general motivation
of this paper is to understand the power of imperfection in the efficiency of SSSs,
with respect to different classes of schemes.

A trivial relation. It can be shown (see Appendix A.4) that the following
relation holds for the information ratios of an access structure with respect to
the mentioned security notions and for every class of SSSs:

quasi-perfect ď almost-perfect ď expected-statistical ď statistical ď perfect
(for any class of schemes) .

(1.1)

Equivalence. Recently, Kaboli, Khazaei and Parviz proved in [46] that the
almost-perfect (and consequently statistical and expected-statistical) security
coincides with the perfect security for a large subclass of SSSs. It is a subclass of
the so-called group-characterizable (GC) SSSs1 [22] for which the secret subgroup
is normal in the main group. This class includes all well-known classes of SSSs
including the homomorphic schemes2. The coincidence for linear schemes is quite
trivial and had already been realized by Beimel and Ishai in [9]:

almost-perfect ” expected-statistical ” statistical ” perfect
(for GC schemes with normal secret subgroup) .

(1.2)

However, it is easy to see that the quasi-perfect and perfect security notions
do not coincide for the linear class3:

quasi-perfect ı almost-perfect (for linear schemes) . (1.3)

1 Given a finite group G and a collection G0, G1, . . . , Gn of its subgroups, a SSS can
be constructed as follows which is called group-characterizable. The secret space is
G{G0, i.e., the set of all left cosets of G0 in G, and the share space of participant i
is G{Gi. To share a secret s P G{G0, a random g P G is chosen such that s “ gG0

and gGi is given as a share to participant i.
2 The class of homomorphic schemes was introduced by Benaloh in 1986 [13] and it
was recently proved in [45] to be a more powerful generalization of the class of linear
schemes. For a homomorphic SSS, it holds that by multiplying the corresponding
shares of two secrets we get valid shares for the product of the secrets.

3 For example consider a family of schemes for the 2-out-of-2 threshold access structure
as follows. The secret of the m’th scheme is an m-bit-long string ps1, . . . , smq. The
share of the first participant is a pm´ 1q-bit-long random string pr1, . . . , rm´1q. The
share of the second party is pr1 ‘ s1, . . . , rm´1 ‘ sm´1q. Clearly the family is quasi-
perfect and the sequence of information ratios converges to 1, but it is not perfect
for any m.
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A non-trivial relation. As we will see, using the known results in the context
of wiretap channels (or more generally network formation theory), it is possible
to show that for the general class of SSSs, the information ratio is invariant with
respect to all mentioned non-perfect security notions. That is:

quasi-perfect “ almost-perfect “ expected-statistical “ statistical
(for general schemes) .

(1.4)

In Appendix C, we quote a simple proof, suggested privately by Laszlo Csir-
maz in a private communication, for the equality of quasi-perfect and almost-
perfect information ratios using the properties of the so-called entropy region [67].
In contrast, in the context of information-theoretic secret key agreement, a more
complex argument is required to prove the equivalence between weak and strong
security requirements (which respectively correspond to privacy requirements in
quasi-perfect and almost-perfect security). Indeed, Maurer and Wolf [58] em-
ploy the privacy amplification technique, introduced by Bennett, Brassard and
Robert in [14], to establish the equivalence. Csirmaz’ argument does not ex-
tend to expected-statistical security. Csiszár shows in [25] that the method used
in [26] leads to a stronger security requirement for secret key agreement which
corresponds to the privacy requirement in expected-statistical security. We show
in Appendix B that Csiszár’s definition even leads to stronger reliability and
security requirements (similar to the correctness and privacy requirements for
statistical security).

For wiretap channels, it can easily be shown that by requiring perfect reliabil-
ity or perfect security, the secrecy capacity may reduce to zero in some situations
(e.g., when the channels to the receiver and eavesdropper are both memoryless
binary channels with symmetric error and the channel to the eavesdropper is
worse than the channel to the receiver). In the context of secret sharing, Beimel
and Ishai [9] have provided some evidence on the superiority of statistical se-
curity to perfect security. However, a proof of this possibly true statement is
unknown and remains unsolved in this paper too.

We remark that if statistical and perfect information ratios turn out to co-
incide, in light of the recent results in [24,48], further progress in the context of
dual SSSs will be made. We refer to Appendix D for further discussion.

Another non-trivial relation. Considering relations (1.2), (1.3) and (1.4), it
is interesting to study if the quasi-perfect and almost-perfect information ratios
coincide for the well-studied subclasses of SSSs such as linear, abelian or homo-
morphic schemes. In this paper, we will show that they are equal for the class
of linear SSSs (the problems remain unsolved for the abelian and homomorphic
classes). By (1.2), we then have:

quasi-perfect “ perfect (for linear schemes) . (1.5)

This result is not entirely trivial as we explain next. Consider a linear scheme
such that the secret consists of m ě 3 field elements. Consider a simple case
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where every qualified set learns exactly m´1 independent linear relations about
the secret and every unqualified set learns exactly one linear relation. We need
to find a way to transform such schemes into a perfect one, by increasing the
information ratio only by a small factor (e.g., 1` 2

m´2 , as it turns out to be the
case). This may seem easy at first but notice that in the original scheme dif-
ferent sets of qualified/unqualified participants might gain different information
on the secret. Some may learn certain coordinates while others learn different
coordinates; some may not learn coordinates but rather linear combinations of
the secret. So our construction needs to find a way that works no matter what
the learned linear combinations are. We remark that for the case where we only
allow m ´ 1 coordinates to be learned by qualified sets and one coordinate to
be learned by unqualified sets (i.e., arbitrary linear combinations are not al-
lowed), there exists a simple solution using the so-called ramp [17] SSSs (e.g.,
see [38, Theorem 3.2]). However, as we will see in Section 1.3, when describing
result (I), the general case needs more effort.

Main contribution and motivations. As we mentioned earlier, our general
motivation is to understand the effect of imperfection in the efficiency of SSSs.
The main contribution of this paper is to present and study a new non-perfect
security notion. It is an extremely relaxed notion and has been mainly introduced
to partially understand the power of relaxing security requirements. We will
introduce our new security notion in Section 1.2 and describe its properties in
Section 1.3. Applications of our new notion in the construction of efficient SSSs
is discussed in Section 1.4.

Imperfection in other contexts. As we mentioned earlier, there is no proof
that requiring weaker correctness and/or privacy conditions in the context of
secret sharing leads to more efficient schemes. In contrast, for several primitives
in the context of network information theory (e.g., the wiretap channel), it is
well-known that requiring perfect reliability and/or perfect privacy may lead to
zero capacity. Also, in the context of CDS [35], a cryptographic primitive closely
related to SSS, it has been recently shown by Applebaum and Vasudevan [4]
that relaxing either correctness or privacy requirements in CDS has a huge im-
pact on its efficiency. It is worth mentioning that for all non-perfect security
notions of SSSs mentioned above, requiring perfect correctness does not lead to
a stronger security notion; e.g., see [47, Theorem 33]. A similar situation arises
in the context of secret key agreement with public discussion [1, 56].

1.2 Partial security: a new non-perfect notion

We introduce an extremely relaxed security notion, called partial security. We
say that a SSS partially realizes an access structure if the amount of information
gained about the secret by any qualified set is strictly greater than that of any
unqualified one. In other words, the qualified sets have a positive advantage δ
over the unqualified ones with regard to the fraction of secret entropy that they
gain. Thus, a perfect scheme is also partial with δ “ 1, because qualified and
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unqualified sets recover 100% and 0% of the secret, respectively. We refer to
Section 3.4 for some examples.

Related security notions. Partial security is related to the so-called prob-
abilistic/weak security notions [8, 29], but has much weaker requirements in
both correctness and privacy. Probabilistic SSSs can be divided into two cat-
egories. The weakly-private [8] schemes require perfect correctness whereas for
privacy, it suffices that every secret be probable for an unqualified set. The
weakly-correct [29] schemes require perfect privacy whereas for correctness, it
suffices that qualified subsets recover the secret with non-zero probability. What
makes partial security non-trivial and more interesting is a new parameter that
we introduce to quantify their efficiency (to be defined in the next paragraph).
We will discuss the effect of this choice for the case of weakly-private SSSs in
the paper (Section 3.3 and Example 3.4).

Partial information ratio. For all previous security notions, the standard
notion of information ratio (i.e., the ratio between the largest share size and the
secret size) is used to quantify the efficiency of SSSs. However, to compensate the
extreme imperfection that partial SSSs bear by our definition, we quantify the
efficiency of such schemes using a parameter called partial information ratio. It
is defined to be the (standard) information ratio scaled by the factor 1{δ, where
δ is the advantage mentioned above. The intuition behind this choice stems
from two concepts: (i) the capacity of wiretap channel [26, 65] and (ii) a similar
compensating factor in decomposition constructions [30,38,61,62]. These subjects
will be studied in detail in the paper in Section 5 and Section 7, respectively.

1.3 Main results

The notion of partial information ratio makes it fair to compare the efficiency of
partial security with other security notions. Recall that by (1.1), quasi-perfect
security is weaker than all mentioned non-perfect security notions, for every
arbitrary class of SSSs. It can be shown (see Appendix E) that, despite our com-
pensation factor, the partial security is still weaker than all previously mentioned
notions; that is:

partial ď quasi-perfect (for any class of schemes) . (1.6)

In this paper, we present the following three main results about partial SSSs:

(I) Linear/Perfect/Coincidence.We prove that the partial information ratio
of an access structure is equal to its perfect information ratio for the class
of linear schemes; i.e.,

partial “ perfect (for linear schemes) , (1.7)

from which (1.5) follows. Here is an overview of the proof. Let Π be a partial
linear SSS whose secret is composed of m field elements, every qualified sub-
set learns at least λ independent linear combinations of the secret elements,
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and every unqualified subset learns at most ω independent linear combina-
tions of the secret elements (0 ď ω ă λ ď m). We turn Π into a perfect one
(for the same access structure) while the information ratio is only increased
by a factor of 1

δ “ m
λ´ω . We present a “universal” transformation that works

for “every” linear partial scheme. The main idea is to share carefully-chosen
linear functions of the secret using the partial scheme independently. More
precisely, the secret of the perfect scheme consists of λm field elements. We
use m instances of the partial scheme with independent randomnesses. The
secret of the i’th instance is Lipsq, where L1, . . . , Lm are suitably chosen lin-
ear transformations that ensures the perfect correctness and perfect privacy
of the constructed scheme. We refer to Section 4 for further details.

(II) General/Statistical/Coincidence. We prove that the partial and statis-
tical information ratios of an access structure coincide for general schemes;
that is,

partial “ statistical (for general schemes) , (1.8)

from which relation (1.4) follows. The proof is achieved by viewing a partial
SSS as a multi-receiver multi-eavesdropper wiretap channel [65] and using
the known results [26] on the secrecy capacity of such channels, along with a
new observation that we make (see Appendix B). A wiretap channel models
a point-to-point communication system between a sender, a set of legitimate
receivers and a set of eavesdroppers. When the sender transmits a message
through the channel, every receiver and eavesdropper obtains a message.
The obtained messages are correlated and their joint distribution is deter-
mined by sender’s input and channel’s parameters. This is essentially what
happens when a dealer shares a secret among a set of participants. The
qualified sets can be considered as legitimate receivers and the unqualified
ones can be treated as eavesdroppers. In a wiretap channel, the goal is to
reliably transmit a message to the receivers while keeping it secret from the
eavesdroppers. This is achieved by employing multiple instances of the same
channel independently. To this end, a well-designed encoder is used to map
the message into several inputs for the channel. Each receiver then collects all
the received instances and recovers the message using a proper decoder. The
same approach can be used here to transform a partial SSS into a scheme
with statistical security. Further details will be given in the main body of
the paper (Section 5).

We remark that the connection between SSSs and wiretap channels has al-
ready been realized in [51, 68], however, the motivations of those works are
different from ours.

(III) Mixed-linear/Almost-perfect/Separation. We provide an example of
an access structure such that its partial information ratio is smaller than its
almost-perfect information ratio, for the class of mixed-linear schemes. That
is:

partial š almost-perfect
(for mixed-linear schemes and some access structure) .

(1.9)
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It remains open to prove separation/coincidence between “partial and quasi-
perfect” and “quasi-perfect and almost-perfect” information ratios for this
class. However, the above relation shows that at least one of them are sep-
arated. The above result is a rare example on the power of imperfection in
the efficiency of SSSs.

The class of mixed-linear schemes was recently introduced in [45] by the
present authors. These schemes are constructed by combining linear schemes
whose underlying finite fields could be different. Mixed-linear schemes are
superior to linear ones; but, it is an open problem if they are as powerful
as the larger class of abelian schemes, or even its superclass, homomorphic
schemes. Inequality (1.9) is proved for an access structure on 12 participants,
introduced in [11] and further studied in [45], which has both Fano and non-
Fano access structures as minors. The proof relies on the fact that these
access structures behave differently with respect to the characteristic of the
underlying finite field. We refer to the main body of the paper in Section 6
for further details.

1.4 General decomposition theorems

Given an access structure, in some situations, it is easier to first construct par-
tial schemes for it. For example, in the so-called weighted decomposition meth-
ods [38, 62]—which are generalizations of non-weighted decompositions [32, 61,
64]—several perfect or non-perfect linear subschemes are combined to construct
a partial linear scheme. The subschemes realize access structures which are usu-
ally much simpler than the given one. Our result (I) can be used to transform the
obtained partial scheme for the initial access structure into a perfect one. These
methods have been very effective in finding the optimal perfect linear SSSs for
small access structures (e.g., see [5, 31, 36–39]). The project of finding optimal
SSSs for small access structures was initiated in [43,63] and is not finalized yet;
because the optimal perfect non-linear schemes for some access structures on
five participants and several graph-based access structures on six participants
are still unknown.

Our first result strengthens the decomposition theorem in [38, 62] for con-
structing perfect linear schemes (the theorems in [38, 62] are only applicable to
special linear partial schemes and now this requirement is relaxed). More inter-
estingly, our second result leads to a very strong decomposition theorem for the
construction of general (i.e., non-linear) schemes with statistical security (The-
orem 7.6). We believe that our decomposition theorem will turn out useful for
constructing almost-optimal statistical SSSs for small access structures, advanc-
ing the project initiated in [43, 63] one step forward (we are currently working
on that). We would not be surprised if it also finds applications in designing
efficient general statistical SSSs (e.g., by using non-perfect CDS [4]). Currently,
the best achieved upper-bound for perfect security is 20.637n [2, 3] (building on
the breakthrough result of [52]).
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1.5 Paper organization

In Section 2, we present the required preliminaries and introduce our notation.
In Section 3 the notions of partial security and partial information ratio are
introduced. Sections 4, 5 and 6 are devoted to proving results (I), (II) and (III)
respectively. In Section 7, we revisit decomposition techniques and strengthen
previous results. Section 8 concludes the paper.

2 Preliminaries

In this section, we provide the basic background along with some notations. We
refer the reader to Beimel’s survey [6] on secret sharing.

2.1 General notations

All random variables are discrete in this paper. The Shannon entropy of a random
variable X is denoted by HpXq and the mutual information of random variables
X,Y is denoted by IpX : Y q. The support of a random variable X is denoted
by supppXq. For a positive integer m, we use rms to represent the set t1, . . . ,mu.
Throughout the paper, P “ tp1, . . . , pnu stands for a finite set of participants. A
distinguished participant p0 R P is called the dealer. Unless otherwise stated, we
identify the participant pi with its index i; i.e., PYtp0u “ PYt0u “ t0, 1, . . . , nu.
We use 2X to denote the power set of a set X.

2.2 Perfect secret sharing

A secret sharing scheme is used by a dealer to share a secret among a set of
participants. To this end, the dealer chooses a randomness according to a pre-
specified distribution and applies a fixed and known mapping on the secret and
randomness to compute the share of each participant. This definition does not
assume a priori a distribution on the secret space. In this paper, we use the
following definition for secret sharing.

Definition 2.1 (Secret sharing scheme) A tuple Π “
`

Si

˘

iPPYt0u
of jointly

distributed random variables with finite supports is called a secret sharing scheme
on participants set P when HpS0q ą 0. The random variable S0 is called the
secret random variable and its support is called the secret space. The random
variable Si, i P P , is called the share random variable of participant i and its
support is called his share space.

When we say that a secret s0 is shared using Π, we mean that a tuple
`

si
˘

iPPYt0u
is sampled according to the distribution Π conditioned on the event

tS0 “ s0u. The share si, i P P , is then privately transmitted to the participant
i.

The above definition of secret sharing does not convey any notion of security.
In the most common type of secret sharing, called perfect secret sharing, the goal
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of the dealer is to allow pre-specified subsets of participants to recover the secret.
The secret must remain information-theoretically hidden from all other subsets
of participants. This intuition is formally captured by the following definitions.

Definition 2.2 (Access structure) A non-empty subset Γ Ď 2P , with H R Γ ,
is called an access structure on P if it is monotone; that is, A Ď B Ď P and
A P Γ imply that B P Γ . A subset A Ď P is called qualified if A P Γ ; otherwise,
it is called unqualified. A qualified subset is called minimal if none of its proper
subsets are qualified. An unqualified subset is called maximal if none of its proper
supersets are unqualified.

Definition 2.3 (Perfect realization) We say that a secret sharing scheme
Π “

`

Si

˘

iPPYt0u
is a (perfect) scheme for Γ , or it (perfectly) realizes Γ , if

the following two hold, where SA “ pSiqiPA, for a subset A Ď P :

‚ (Correctness) HpS0|SAq “ 0 for every qualified set A P Γ and,

‚ (Privacy) IpS0 : SBq “ 0 for every unqualified set B P Γ c.

2.3 Access function

Non-perfect secret sharing schemes have been studied in several works includ-
ing [17, 50, 62]. The notion of access function, introduced in [34], is a general-
ization of the definition of access structures that facilitates study of non-perfect
schemes.

Definition 2.4 (Access function [34]) A mapping Φ : 2P Ñ r0, 1s is called
an access function if ΦpHq “ 0 and it is monotone; i.e., A Ď B Ď P implies
that ΦpAq ď ΦpBq.

The access function of a secret sharing scheme is then naturally defined as
a function that quantifies the percentage of information about the secret gained
by every subset of participants.

Definition 2.5 (Access function of a scheme) The access function of a se-
cret sharing scheme Π “

`

Si

˘

iPPYt0u
is a function ΦΠ : 2P Ñ r0, 1s defined

by:

ΦΠpAq “
IpS0 : SAq

HpS0q
.

We say that a SSS Π realizes an access function Φ if Φ “ ΦΠ . It is known [34]
that every access function is realizable by some SSS. It is also worth mention-
ing that all-or-nothing (i.e., 0-1-valued) access functions correspond to access
structures.
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2.4 Convec and information ratio

Convec is short for contribution vector [43] and a norm on it can be used as an
indication of efficiency of a secret sharing scheme.

Definition 2.6 (Convec of a scheme) The (standard) convec of a secret shar-
ing scheme Π “

`

Si

˘

iPPYt0u
is denoted by cvpΠq and defined as follows:

cvpΠq “
`HpSiq

HpS0q

˘

iPP
.

The maximum and average information ratios of a secret sharing scheme
on n participants with convec pσ1, . . . , σnq are defined to be maxtσ1, . . . , σnu

and pσ1 ` . . . ` σnq{n, respectively. The maximum/average information ratio
of an access structure is defined to be the infimum of the maximum/average
information ratios of all secret sharing schemes that realize it. In this paper, we
restrict our attention to maximum information ratios, unless otherwise stated.

2.5 Linear schemes

The most common definition of a linear scheme is based on linear maps. A secret
sharing scheme pSiqiPPYt0u is said to be linear if there are finite dimensional
vector spaces E and pEiqiPPYt0u, and linear maps µi : E Ñ Ei, i P P Y t0u

such that Si “ µipEq, where E is the uniform distribution on E. The following
equivalent definition turns out convenient for the purpose of this paper.

Definition 2.7 (Linear scheme) A tuple Π “ pT ;T0, T1, . . . , Tnq is called an
F-linear (or simply a linear) secret sharing scheme if T is a finite dimensional
vector space over the finite field F and all Ti’s are subspaces of T with dimT0 ě 1.
When there is no confusion, we omit T and simply write Π “ pTiqiPPYt0u.

In the following we describe the connection between Definition 2.7 and the
description preceding it. One can think of a linear secret sharing scheme as being
represented by a matrix, where each row is associated with either a participant
or the secret. Sharing is performed by multiplying this matrix by a random
vector. Then the vector space Ti is the vector space generated by the rows
that correspond to participant i and T0 is the vector space generated by the
rows corresponding to the secret. This is similar to the well-known definition
of a linear secret sharing scheme in terms of monotone span programs [49], by
Karchmer and Wigderson (or multi-target span programs [7]).

The above description essentially tells us how to associate a collection of
random variables pSiqiPPYt0u to a collection pTiqiPPYt0u of subspaces of a com-
mon vector space T on a finite field F. The induced random variable, however,
depends on the selected bases for Ti’s. In the following, we describe a method,
introduced in [40], to define an induced random variable which does not depend
on the chosen bases. First, we pick a linear function α : T Ñ F uniformly at
random from the set of all such possible linear functions. The random variable
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associated to the subspace Ti is defined by Si “ α|Ti , i.e., the restriction4 of
the map α to the domain Ti. It is easy to see that for every i, j P P Y t0u,
the joint random variable pSi,Sjq is “isomorphic” with the random variable
α|Ti`Tj ; that is, they have the same distribution up to renaming the elements
of their supports. More generally, for any subset A Ď P Y t0u, the joint ran-
dom variable SA “ pSiqiPA is isomorphic with the random variable α|TA

, where
TA “

ř

iPA Ti. Finally, notice that we have HpSAq “ dimTA log |F|. Also, using
the relation dimpV X W q “ dimV ` dimW ´ dimpV ` W q for vector spaces, it
easily follows that IpSA : SBq “ dimpTA X TBq log |F|, for every pair of subsets
A,B Ď P Y t0u.

Access function and convec of a linear scheme. Based on our previous
discussion, it easily follows that the access function and convec of a linear secret
sharing scheme Π “ pTiqiPPYt0u are given by the following relations

ΦΠpAq “
dimpT0 X TAq

dimpT0q
, cvpΠq “

` dimpTiq

dimpT0q

˘

iPP
,

where TA “
ř

iPA Ti.

Linear and mixed-linear information ratios. If, in the computation of
information ratio, we restrict ourselves to the class of linear schemes, we refer
to it as the linear information ratio. In the following subsection, we define the
class of mixed-linear schemes, where the corresponding parameter is referred to
as the mixed-linear information ratio.

2.6 Mixed-linear schemes

The class of mixed-linear SSSs was recently introduced in [45] and it was proved
to be superior to the linear class (i.e., there exists an access structure whose linear
information ratio is larger than its mixed-linear information ratio). Mixed-linear
schemes are a subclass of homomorphic schemes and it is an open problem if
homomorphic schemes can outperform mixed-linear ones [45, Problem 6.4].

Informally, a mixed-linear scheme is constructed by combining different lin-
ear schemes with possibly different underlying finite fields. We now present the
formal definition.

Definition 2.8 Mixed-linear schemes are recursively defined as follows. A linear
scheme is mixed-linear. If Π “ pSiqiPPYt0u and Π 1 “ pS1

iqiPPYt0u are mixed-
linear schemes, their mix, defined and denoted by Π ‘Π 1 “ pS2

i qiPPYt0u, is also
mixed-linear, where S2

i “ pSi,S
1
iq.

Informally, to share a secret ps, s1q using Π ‘ Π 1, where s and s1 are in the
secret spaces of Π and Π 1, respectively, we independently share s using Π and
s1 using Π 1. Hence, each participant in Π ‘Π 1 receives a share from Π and one
from Π 1.
4 For a function f : D Ñ R and sub-domain A Ď D, the restriction map f |A is the
restriction of the map f to the subdomain A. That is, f |A : A Ñ R is defined by
f |Apxq “ fpxq for every x P A.
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3 Partial secret sharing

In this section, we introduce a relaxed security notion for SSSs, called partial
security. In addition, we provide some examples and discuss a slightly relevant
security notion for SSSs called weakly-private, which has already been studied
in the literature. Further properties and applications of our new security notion
will be studied in later sections.

3.1 Security definition

A scheme is said to partially realize an access structure if the amount of infor-
mation gained on the secret by every qualified set is strictly larger than that
of any unqualified one. Below, we give a formal definition. The reader may first
recall the definition of the access function of a SSS (Definition 2.5).

Definition 3.1 (Partial realization) We say that a secret sharing scheme Π
is a partial scheme for Γ , or it partially realizes Γ , if:

δ “ min
APΓ

ΦΠpAq ´ max
BPΓ c

ΦΠpBq ą 0 . (3.1)

The parameter δ is a normalized value for quantifying the advantage of the
qualified sets over the unqualified ones with respect to the amount of information
that they gain on the secret. In Section 5, we will see that the unnormalized
parameter δHpS0q, where S0 is the secret random variable, is related to the
capacity of Wyner’s wiretap channel [65]. The inverse of δ is an important factor
that will be taken into account in the next subsection to quantify the efficiency
of partial schemes.

Partially-correct and partially-private SSSs One can define two more re-
stricted (i.e., less relaxed) versions of partial security by requiring either the
correctness or privacy condition of perfect security to hold. Let Π be a partial
SSS for an access structure Γ . We say that Π is a partially-correct scheme for
Γ if ΦΠpBq “ 0, for every unqualified set B P Γ c; that is, unqualified sets gain
no information about the secret. Similarly, we say that Π is a partially-private
scheme for Γ if ΦΠpAq “ 1, for every qualified set A P Γ ; that is, qualified sets
fully recover the secret.

Another view on partial secret sharing. In perfect SSSs, one requires every
subset of participants to be either qualified (i.e., entirely recover the secret) or
unqualified (i.e., gain no information on the secret). If a SSS is not perfect, it
does not define an access structure. A partially-correct (resp. partially-private)
SSS allows us to associate a unique access structure to the scheme, even if it
is not perfect: qualified sets are those that gain a positive (resp. full) amount
of information about the secret. On the other hand, it might be possible to
associate more than one access structure to a partial scheme, because the same
scheme can be a partial SSS for different access structures. Therefore, partial
security allows us to define the notion of access structure for a non-perfect SSS
too.
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3.2 Partial convec and partial information ratio

We quantify the efficiency of a partial scheme via a scaled version of its standard
convec (Definition 2.6), that we call partial convec. Clearly, unlike the standard
convec of a scheme, which is defined on its own, the partial convec depends on
the access structure that it partially realizes.

Definition 3.2 (Partial convec) Let Π be a partial scheme for Γ . The partial
convec of Π (with respect to Γ ) is defined and denoted by

pcvpΠ,Γ q “
1

δ
cvpΠq,

where δ, the (normalized) advantage, is defined as in Equation (3.1). When there
is no confusion, we simply use the notation pcvpΠq.

The intuition behind the choice of factor 1
δ stems from two concepts: (i) the

capacity of Wyner’s wiretap channel and (ii) a similar compensating factor in
decomposition constructions. We will revisit these concepts in in Section 5 and
Section 7, respectively.

Partial information ratio. The partial information ratio of a SSS is defined to
be the maximum coordinate of its partial convec. The partial information ratio of
an access structure is the infimum of the partial information ratio of all SSSs that
partially realize it. The partially-correct and partially-private information ratios
are defined similarly. Additionally, one can discuss the linear and mixed-linear
partial information ratios.

Relations between different information ratios. In Sections 4, 5 and 6,
we will prove the following three results about partial information ratio:

partial “ perfect (for linear schemes and every Γ ),
partial “ statisticial (for general schemes and every Γ ),

partially-correct š almost-perfect (for mixed-linear schemes and some Γ ).

The first result shows that partial, partially-correct and partially-private infor-
mation ratios are all equal for the linear class. Also, a lemma by Kaced [47,
Lemma 17] can be used to show that requiring perfect correctness does not lead
to a stronger variant of partial security (for general schemes). However, it re-
mains open if the following equalities hold for other classes of schemes such as
mixed-linear, abelian or homomorphic schemes.

partial “ partially-private (for linear and general schemes),
partial “ partially-correct (for linear schemes).
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3.3 On choosing a fair criterion for efficiency

We remark that, the scale factor 1
δ in the definition of partial information ratio

enables us to fairly compare the efficiency of an access structure with respect to
partial and perfect security notions. In the following, we recall a non-trivial re-
sult, due to Beimel and Franklin [8], which shows that without the compensation
factor 1

δ , it is possible to have very efficient partially-private schemes.

There is a somewhat relevant security notion to partially-private security
called weakly-private. In a weakly-private SSS, the qualified sets are required
to recover the secret with probability one, but for every unqualified set, it is
only required that all secrets are probable; that is, an unqualified set can never
rule out any secret. Weakly-private SSSs were first introduced in [19] and it was
shown that weakly-ideal and (perfectly) ideal SSSs are equivalent. The notion
was then studied in other works [8,11,44,59]. In particular, Beimel and Franklin
showed in [8] that for every access structure with n participants, it is possible to
construct a weakly-private SSS with an ℓ-bit-long secret and pℓ ` n2nq-bit-long
shares. We will describe their construction in Example 3.4. Since a weakly-private
SSS is partially-private too5, it follows that if we did not include the scale factor
1
δ in the definition of partial information ratio, then the partial information ratio
of every access structure would turn out to be one.

Recall that the best upper-bound on the information ratio of access struc-
tures with respect to perfect security is exponential. Therefore, the fact that the
(standard) information ratio of weakly-private SSSs is so small may seem sur-
prising (as it also surprised Beimel and Franklin in [8]). However, we will show
in Example 3.4 that the partial information ratio of their construction is still
exponential for almost all access structures.

We remark that partial and weakly-private security notions are dissimilar to
a great extent. For example, they behave substantially different with respect to
the so-called strongly-uniform SSSs. We refer to Appendix F for some discussion.

3.4 Some examples

In this subsection, we present some examples of linear, mixed-linear and non-
linear partial SSSs.

Example 3.3 (Linear and mixed-linear) Consider the following two access
structures:

Γ1 on 3 participants with minimal qualified sets tp1, p2u, tp2, p3u, tp1, p3u,

Γ2 on 5 participants with minimal qualified sets tp1, p2u, tp2, p3u, tp1, p3u, tp4, p5u.

5 Semantically, it would be better if partially-private SSSs turned out stronger than
weakly-private schemes.
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r

p1

s1 ` s2 ` r

p2 p3

s1 ` r

(a) A linear partial scheme for Γ1.
The secret is ps1, s2q P F2 ˆF2 and
r P F2 is the randomness.

r1

p1

s1 ` 2r1

p2 p3

s1 ` r1 s2 ` r2

p5

p4

r2

(b) A mixed-linear partial scheme for
Γ2. The secret is ps1, s2q P F3ˆF2 and
the randomness is pr1, r2q P F3 ˆ F2

Fig. 1: Partial schemes for Γ1 and Γ2. All random variables are independent and uni-
form on their supports.

An access structure whose minimal qualified sets are all of size two can be
represented by a graph. Figure 1 shows a partial scheme for each of these access
structures. The scheme for Γ1 is linear, its secret contains two bits of information
and every participant receives one bit of information as his share. The scheme for
Γ2 is mixed-linear and its secret contains log 6 « 2.58 bits of information. The
share of participants p4, p5 are one bit each, and those of participants p1, p2, p3
are log 3 « 1.58 bits. The scheme for Γ1 is partially-correct with advantage
δ1 “ 1

2 (every minimal qualified set gains 50% information about the secret and
unqualified sets gain no information). The scheme for Γ2 is also partially-correct
with advantage δ2 “

log 2
log 6 « 0.387.

Therefore, the partial information ratios of all participants in Γ1 are 1
δ1

1
2 “ 1.

The partial information ratios of participants p1, p2, p3 in Γ2 are all 1
δ2

log 3
log 6 “

log 3 « 1.58. The partial information ratios of participants p4, p5 in Γ2 are both
1
δ2

log 2
log 6 “ 1.

Example 3.4 (Non-linear) Let Γ be an access structure on the participants
set tp1, . . . , pnu. Beimel and Franklin [8] proposed the following weakly-private
SSS for Γ , which by our discussion in Section 3.3 is also partially-private.

Given a uniformly chosen secret s P t0, 1uk, do the following:

1. Choose a maximal unqualified subset C P Γ c at random.
2. For every participant pi P C, choose a random string ri P t0, 1uk and

send it to him as a part of his share.
3. Send the secret s to every participant pi P P zC as a part of his share.
4. Encode the selected subset C as an n-bit string and then share it among

the participants using a trivial perfect scheme with share size n2n.

The share size of every participant is k ` n2n and therefore, the standard
information ratio of the scheme is 1` n2n

k , which can be arbitrarily close to one
if k is chosen to be sufficiently large. However, the following claim, proved in
Appendix G, shows that for almost all access structures, in particular for ev-
ery n{2-uniform access structure, the partial information ratio of this scheme is
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exponential in n. An access structure is called n{2-uniform if every set of size
n{2 ´ 1 or smaller is unqualified and every set of size n{2 ` 1 or larger is qual-
ified. These access structures are known to have perfect SSSs with information

ratio 2Õp
?
nq [10, 52]. But, the partial information ratio of the above scheme is

Ωpn´3{42n{2q by this claim.

Claim 3.5 For k ě n, the advantage of the above scheme is δ “ Opn3{42´n{2q

for 2p n
n{2q out of the total 2p n

n{2qp1`Op
log n

n qq access structures on n participants.

For 1 ď k ă n, the advantage seems intuitively even worse, but it is harder
to analyze.

4 Equality of perfect and partial linear information ratios

In this section, we prove that the partial linear information ratio of an access
structure is equal to its perfect linear information ratio. We warm up by a
simple example in Section 4.1, that highlights our main idea. Two linear algebraic
lemmas lie at the core of our proof which are presented in Section 4.2. The first
one is used in Section 4.3 for transforming a partially-correct linear secret sharing
scheme into a perfect one without changing its convec. The second lemma is
needed to handle the partial case, which is discussed in Section 4.4.

4.1 Warm-up

Given a partial linear scheme for an access structure, we turn it into a perfect
one for the same access structure while the information ratio is only increased
by a factor of 1

δ . For example, consider the partial linear scheme for access
structure Γ1, mentioned in Example 3.3, whose (standard) information ratio is
1
2 ; but since its advantage is δ “ 1

2 , its partial information ratio is equal to
one. This scheme of Figure 1a can be used to construct a perfect linear scheme
for Γ1 with information ratio one as follows. Use two instances of the partial
scheme with independent randomnesses, one with secret ps1, s2q and one with
secret ps1 ` s2, s1q. The privacy of the scheme is immediate and its correctness
can easily be verified. For example, participants p1 and p2 recover s1 ` s2 and
s2 from the first and second schemes, respectively, and since these relations are
linearly independent, the secret can be fully recovered. The constructed scheme
is linear with (perfect) information ratio equal to one.

The above example was easy to handle because the partial scheme was al-
ready known to us. For the general case, we need to seek a “universal” transfor-
mation that works for “every” linear partial scheme.

Here we describe the construction for the simplest case where we are given
a partially-correct F-linear SSS whose secret is composed of m field elements
and there exists at least one minimal qualified set that learns exactly one linear
combination of the secret elements. As we will see later, this corresponds to λ “ 1
and ω “ 0 in the general case. The universal construction shares each secret
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Lipsq, i P rms, independently using the partial scheme, where Li : Fm Ñ Fm is
some properly chosen linear mapping. The construction can be proved perfect if
the linear mappings L1, . . . , Lm have the property stated in the following lemma.
The proof of the lemma shows how to construct such mappings.

Lemma 4.1 (Linear mappings (λ “ 1)) Let m be some positive integer and
F be a finite field. Then, there exist linear mappings L1, . . . , Lm : Fm Ñ Fm such
that for every non-zero vector x P Fm, the vectors L1pxq, . . . , Lmpxq are linearly
independent.

Proof. Let K be an extension field of F with degree m (i.e., if F has q elements,
K has qm elements). Let tα1, . . . , αmu be a basis for K on F. For every i P

rms, the mapping Li : Fm Ñ Fm, defined by Lipxq “ αix, is linear on F,
where elements of Fm are identified by elements of K, and the multiplication
is performed in the field K. For any nonzero x P K we show that the vectors
L1pxq, . . . , Lmpxq are linearly independent. If there exist coefficients c1, . . . , cm P

F such that
řm

i“1 ciLipxq “ 0, then we have
řm

i“1 ciαix “ 0 hence p
řm

i“1 ciαiqx “

0. The element x P K is nonzero; thus
řm

i“1 ciαi “ 0. Independency of the
vectors α1, . . . , αm concludes that ci “ 0 for all i P rms. Therefore, the vectors
L1pxq, . . . Lmpxq are linearly independent on F. [\

We remark that the lemma does not hold in general if the base field is not
finite. So the claim is truly a property of finite fields.

In the next subsection, we present a generalization of the above lemma to
handle the case where the minimum number of learned linear relations by qual-
ified sets is greater than one (λ ě 1). Another lemma is presented to tackle
the case where unqualified sets may learn up to some certain number of linear
combination of the secret elements (ω ě 0).

4.2 Two linear algebraic lemmas

Let F be a finite field and x1, . . . , xλ P Fm be linearly independent vectors. The
following lemma essentially states that there exist linear mappings L1, . . . , Lm :
Fm Ñ Fλm such that the collection tLjpxiq : i P rλs, j P rmsu of vectors in Fλm

is linearly independent.

Lemma 4.2 (Linear mappings (λ ě 1)) Let 1 ď λ ď m be integers. Let T0

be a vector space over some finite field with dimension m. Then, there exist
m linear maps L1, . . . , Lm : T0 Ñ Tλ

0 such that for any subspace E Ď T0 of
dimension dimE ě λ, the following holds

m
ÿ

i“1

LipEq “ Tλ
0 .

Proof. Without loss of generality we can assume that T0 “ Fm, where F is the
underlying finite field. We show that there exist m linear maps L1, . . . , Lm :
Fm Ñ Fλm, such that for any λ linearly independent vectors x1, . . . , xλ P Fm,
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the λm vectors Lipxjq P Fλm, i P rms and j P rλs, are linearly independent. The
construction is explicit and is as follows.

Let |F| “ q and identify Fm with a finite field K with qm elements that is
an extension of F with degree m. Choose a basis w1, ..., wm for K over F and
identify Fλm with Kλ.

Define Li by sending x P K to pwix,wix
q, ..., wix

qλ´1

q P Kλ. Note that the

mapping x ÞÝÑ xq is an F-linear map from K to K and x ÞÝÑ xqi is the com-
position of this map with itself i times. Therefore, the mapping Li is F-linear
too, for every i P rms. If there exist coefficients cij , i P rms and j P rλs, such

that Σλ
j“1Σ

m
i“1cijLipxjq “ 0, then

řλ
j“1p

řm
i“1 cijwiqx

qk´1

j “ 0 for every k P rλs.

Since the λ ˆ λ matrix M “

´

xqk´1

i

¯

iPrλs,kPrλs
is invertible (to be proved at the

end), we have
řm

i“1 cijwi “ 0 for all j P rλs and thus cij “ 0, for every i P rms

and j P rλs, as the vectors w1, ..., wm are linearly independent over F. Therefore,
the vectors Lipxjq, i P rms and j P rλs, are linearly independent over F.

We complete the proof by showing that the matrixM is invertible. Assume for

a row vector y “ py1, . . . , yλq, we have yM “ 0, hence y1x`y2x
q`. . .`yλx

qλ´1

“

0 for every x “ x1, . . . , xλ. Since this polynomial is linear over the field F,
it vanishes on the span of these independent vectors over F, a space with qλ

elements. However, as the polynomial is of degree qλ´1, it is identically zero;
i.e., y “ 0. This shows that M is invertible. [\

When turning a partial linear scheme into a perfect one, as we will see, the
above lemma is needed to argue about correctness of the constructed scheme. To
argue about its privacy, we need the following lemma. The second lemma is true
for finite fields that are sufficiently large and, unlike the first lemma, it holds for
infinite fields.

Lemma 4.3 (Non-intersecting subspace lemma) Let T0 be a vector space
of dimension m over a finite field with q elements and let E1, . . . , EN be subspaces
of T0 of dimension at most ω, 1 ď ω ă m. If N ă

qm´1
qm´1´1 , then there exists a

subspace S Ă T0 of dimension m ´ ω such that S X Ei “ 0, for every i P rN s.

Proof. Without loss of generality we can assume that dimEi “ ω. Let F be
the underlying finite field with q elements. We show that if N ă

qm´1
qm´1´1 , then

the required subspace S of dimension m ´ w with zero intersection with Ei’s
exists. We prove this by induction on m ´ w. If m ´ w “ 1, then each Ei has
qm´1 ´1 non-zero elements so there are at most Npqm´1 ´1q non-zero elements

in their union. If N ă
qm´1

qm´1´1 then there is a non-zero element outside this union
that generates the required subspace S. If Ei’s are of dimension w, then since
N ă

qm´1
qw´1 the above proof shows that there is a non-zero vector u outside their

union. If we add this vector to each Ei we get subspace E1
i of dimension w ` 1.

Therefore, by induction, we have a subspace S1 of dimension m ´ w ´ 1 that
has zero intersection with each E1

i. Now the space generated by S and u is the
required subspace of dimension m ´ w and zero intersection with each Ei. [\
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4.3 Constructing a convec-preserving perfect linear scheme from a
partially-correct linear scheme

The following proposition will be generalized in the next subsection. However, we
present it separately in this subsection since we will extend its proof in the course
of the proof of Proposition 4.5. We recall that the standard and partial convecs
of a secret sharing scheme Π are denoted by cvpΠq and pcvpΠq, respectively;
see Definitions 2.6 and 3.2.

Proposition 4.4 (Partially-correct ùñ Perfect) Let Γ be an access struc-
ture and Π 1 be a partially-correct F-linear secret sharing scheme for it. Then,
there exists a perfect F-linear secret sharing scheme Π for Γ such that cvpΠq “

pcvpΠ 1q.

Construction. We now show how to construct Π from Π 1. Identify the secret
space of Π 1 by Fm. Since Π 1 is a partially-correct scheme for Γ , there exists an
integer λ, with 1 ď λ ď m, such that every qualified set of participants discovers
at least λ independent linear relations on the secret, and there exists a qualified
set that recovers exactly λ such relations. Our construction is a generalization of
the one described in Section 4.1 for the case where λ “ 1. In that case, the secret
space of the constructed schemeΠ was Fm. For the general case, we let the secret
space of Π be Fλm. To share a secret s P Fλm, we share each of the m secrets
L1psq, . . . , Lmpsq P Fm using an independent instance of Π 1, where the mapping
Li : Fm Ñ Fλm is as in Lemma 4.2. Each participant in Π receives a share
from each instance of Π 1. Hence, while the secret length has been multiplied by
λ, the share of each participant has increased by a factor of m. Therefore, the
standard convec of Π and partial convec of Π 1 are equal. Note that since the m
instances of Π 1 use independent randomnesses, the secret remains hidden from
every unqualified set. By Lemma 4.2, each qualified set gets λm independent
linear relations on s. We conclude that the scheme Π is perfect.

In the following, we prove Proposition 4.4 more formally.

Proof (of Proposition 4.4). LetΠ 1 “ pT 1;T 1
0, T

1
1, . . . , T

1
nq be the F-linear partially-

correct scheme that satisfies λ “ minAPΓ tdimpT 1
AXT 1

0qu ě 1 and dimpT 1
AXT 1

0q “

0 for all A P Γ c. Let m “ dimpT 1
0q ě 1.

Our goal is to build a perfect F-linear scheme Π “ pT ;T0, T1, . . . , Tnq such
that dimpTiq ď m dimpT 1

i q for every i P rns and dimpT0q “ λm.
Find an orthogonal complement R1 for T 1

0 inside T 1; hence, T 1 “ T 1
0 ‘R1. Let

T “ T 1λ
0 ‘ R1m.

Let L1, . . . , Lm : T 1
0 Ñ T 1λ

0 be the linear maps of Lemma 4.2 and define
ϕ : T 1m Ñ T by

ϕps1, . . . , sm, r1, . . . , rmq “
`

m
ÿ

i“1

Lipsiq, r1, . . . , rm
˘

,

where s1, . . . , sm P T 1
0 and r1, . . . , rm P R1.
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We let T0 “ T 1λ
0 and Ti “ ϕpT 1m

i q. Then, the conditions on dimensions are
clear and consequently cvpΠq ĺ pcvpΠ 1q. It is straightforward to tweak the
scheme such that the claimed vector equality holds. It remains to prove that Π
perfectly realizes Γ .

For A Ď rns, by linearity of ϕ, we have TA “ ϕpT 1m
A q . Also, we have:

TA X T0 “ ϕpT 1m
A q X T 1λ

0

“ ϕpT 1m
A X T 1m

0 q

“ ϕ
`

pT 1
A X T 1

0qm
˘

“
řm

i“1 LipT
1
A X T 1

0q ,

where the second equality follows from the following fact: ϕpxq P T 1λ
0 if and only

if x P T 1m
0 .

If A P Γ , then dimpT 1
AXT 1

0q ě λ. Therefore, by Lemma 4.2, we have TAXT0 “

T0. Also, if B P Γ c, then T 1
B X T 1

0 “ 0 and hence TB X T0 “ 0. This shows that
Π is a perfect scheme for Γ . [\

4.4 Constructing a convec-preserving perfect linear scheme from a
partial linear scheme

The following proposition is a generalization of Proposition 4.4. The proof essen-
tially follows the same lines as that of Proposition 4.4. We will need Lemma 4.3
to argue about the privacy of the constructed scheme, which is “almost” the
same as the previous one. The difference is due to the fact that Lemma 4.3 holds
for sufficiently large finite fields; therefore, we first need to “lift” the scheme into
a larger field and then apply the construction described in Section 4.3.

Proposition 4.5 (Partial ùñ Perfect) Let Γ be an access structure and Π 1

be a partial F-linear secret sharing scheme for it. Then, there exists a finite
extension K of F and a perfect K-linear secret sharing scheme Π for Γ such
that cvpΠq “ pcvpΠ 1q. Consequently, for every access structure, the partial and
perfect information ratios are the same if we restrict ourselves to the class of
linear schemes.

Proof. Let Π 1 “ pT 1
0, . . . , T

1
nq and denote

λ “ minAPΓ tdimpT 1
A X T 1

0qu

ω “ maxAPΓ ctdimpT 1
A X T 1

0qu

m “ dimT 1
0

where 1 ď λ ´ ω ď m.
Let N be the number of maximal unqualified subsets in Γ c and K be an

extension of F that satisfies |K| ě N . By the process of extending scalars, we
can turn Π 1 into a K-linear scheme with the same convec, access function and
dimensions. For simplicity, we use the same notation for the new scheme; i.e.,
from now on Π 1 is considered to be a K-linear scheme. In particular, the relations
for λ, ω,m are still valid.
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Construct pT0, . . . , Tnq from Π 1 the same way as in the proof of Proposi-
tion 4.4 and recall that dimT0 “ λm and dimTi ď m dimT 1

i . The same ar-
gument, which was used in the proof of Proposition 4.4, shows that for any
A P Γ , we have TA X T0 “ T0. It is also trivial that for every B P Γ , we have
dim

`

TB X T0

˘

ď mω.
By Lemma 4.3 (Ei is TB XT0 for some maximal unqualified set B, dimEi ď

mω and dimT0 “ λm), one can choose S Ď T0 of dimension pλ ´ ωqm such
that TB X S “ 0, for every B P Γ c. Also, it is trivial that TA X S “ S, for every
A P Γ . Now, it is clear thatΠ “ pS, T1, . . . , Tnq is a perfect secret sharing scheme
for Γ such that dimS “ pλ ´ ωqm. Therefore, cvpΠq ĺ pcvpΠ 1q. Again, it is
straightforward to tweak the scheme such that the convec equality holds. [\

5 Equality of statistical and partial information ratios

In this section, we prove the following theorem. The reader may recall the formal
definition of statistical security in Appendix A. For our convenience, we first
present a definition.

Definition 5.1 (Convec/Information ratio of a family) Let tΠmumPN be
a family of SSSs, all defined on the same set of participants. If the sequence
of convecs of the schemes, tcvpΠmqumPN, is convergent, we refer to its limit,
lim

mÑ8
cvpΠmq, as the convec of the family. If the sequence of (partial/standard)

information ratios is convergent, we refer to its limit as the (partial/standard)
information ratio of the family.

Theorem 5.2 (partial“statistical) Let Γ be an access structure.

(I) If Π is a partial SSS for Γ with advantage δ, then there exists a family of
statistical SSSs for it with convec pcvpΠq “ 1

δ cvpΠq.
(II) If there is a family of partial schemes for Γ with partial information ratio

σ, then there is a family of statistical SSSs for it with information ratio σ.

Consequently, the partial and statistical information ratios of every access struc-
ture are equal.

To prove the theorem, we first prove the following technical lemma.

Lemma 5.3 (Technical lemma) Let Π “ pS0,S1, . . . ,Snq be a partial SSS
with advantage δ for an access structure Γ . For every sufficiently small ε ą 0,
there exists a family tΠm

ε umPN of schemes, where Πm
ε “ pTm

0 ,Tm
1 , . . . ,Tm

n q,
with all of the following properties:

‚ (Linear secret length growth) The secret length grows linearly in m as
follows:

log2 |supppTm
0 q| ď CΠm , (5.1)

where
CΠ :“ HpS0qδ “ min

APΓ
IpS0 : SAq ´ max

BPΓ c
IpS0 : SBq (5.2)



24 A. Jafari & S. Khazaei

is called the nominal6 capacity of the SSS Π (with respect to Γ ).
‚ (Statistical-correctness) There exists a negligible function neglε : N Ñ R,
such that for every qualified set A P Γ , there exists a reconstruction function
ReconA : supppTm

A q Ñ supppTm
0 q such that for every secret s P supppTm

0 q

it holds that:

PrrReconApTm
A q ‰ Tm

0 |Tm
0 “ ss ď neglεpmq . (5.3)

We recall that a function negl : N Ñ R is called negligible if neglpmq “

m´ωp1q.
‚ (Statistical-privacy) There exists a negligible function negl1ε : N Ñ R,
such that for every unqualified set B R Γ and every secret s P supppTm

0 q it
holds that:

SDppTm
B |Tm

0 “s, pTm
B

q ď negl1εpmq . (5.4)

Here, SDppX , pY q denotes the statistical distance (or total variation) be-
tween random variables X and Y with respective probability mass functions
pX and pY , which is defined by

SDppX , pY q :“
1

2

ÿ

a

|pXpaq ´ pY paqs| .

‚ (Information ratio) For every participant i P rns, we have

lim
mÑ8

HpTm
i q

HpTm
0 q

“
HpSiq

δHpS0q ´ ε
“

HpSiq

CΠ ´ ε
, (5.5)

where CΠ is the nominal capacity of the scheme, which was defined above.

The proof of the technical lemma is achieved by viewing a partial SSS as
a wiretap channel. In Section 5.1, we review the definition of Wyner’s wiretap
channel and we then prove the lemma in Section 5.2. The proof of the theorem
will be given in Section 5.3.

5.1 The wiretap channel

In this subsection, we recall the notion of wiretap channel, first introduced by
Wyner [65] in 1975 and further developed by Csiszár and Körner [26] in 1978.
A wiretap channel is defined in terms of a conditional probability distribution
function. Here, we start from a joint distribution and study its associated wire-
tap channel. The original description was given for a single receiver and single
eavesdropper. Below, we present the description for the multi-receiver multi-
eavesdropper channel.

Let Σ “
`

X, pY iqiPR, pZjqjPE
˘

be a tuple of random variables. We refer to

the tuple WTCΣ “
`

p,X , pYiqiPR, pZjqjPE
˘

as the wiretap channel associated

6 The adjective nominal refers to the fact that the scheme might indeed provide a
higher capacity for usage. The reason for choosing the terminology “capacity” will
be clear in the later subsections.
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to Σ where pp¨, ¨|¨q is the (conditional) probability distribution of the random
variable

`

pY iqiPR, pZjqjPE
˘

when conditioned on X. That is,

$

&

%

pp¨, ¨|¨q :
ś

iPR Yi ˆ
ś

jPE Zj ˆ X Ñ r0, 1s ,

pppyiqiPR, pzjqjPE |xq :“ PrrpY iqiPR “ pyiqiPR ^ pZjqjPE “ pzjqjPE |X “ xs .
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Fig. 2: A schematic of a wiretap channel with receivers R “ t1, . . . , |R|u and
eavesdroppers E “ t1, . . . , |E |u.

A wiretap channel models a point-to-point communication system between a
sender, a set of (legitimate) receivers with index set R and a set of eavesdroppers
with index set E . When the sender transmits a message x P X through the
channel, according to the conditional distribution p, each receiver i P R obtains
a message yi P Yi and each eavesdropper j P E gets a message zj P Zj .

The goal of the sender is to reliably transmit a long message to the receivers
(i.e., at high rate) by using m independent instances of the channel, while keep-
ing it secret from the eavesdroppers. To this end, the sender uses a well-designed
encoder and receivers use their own decoders to obtain the message (see Fig-
ure 2).

Formally, an encoder is a publicly-known probabilistic algorithm

Enc : K Ñ Xm ,

and the ith decoder is a deterministic algorithm

Deci : Ym
i Ñ K ,

where K stands for the set of messages. To transmit a uniformly chosen message
k P K, the sender first encodes it to obtain a tuple xm “ px1, . . . , xmq Ð Encpkq.
Then each symbol xk P X is independently transmitted through the channel. The
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receiver i and eavesdropper j then accordingly receive a tuple ymi “ pyi1, . . . , yimq

and zmj “ pzj1, . . . , zjmq, respectively. Each receiver i then uses their own decoder

to compute a message pki P K.
Let K,Xm,Y m

i ,Zm
j denote the random variables for the encoder’s input,

the encoder’s output (i.e., channel’s input), the ith receiver’s input and the
jth eavesdropper’s input, respectively. In Figure 2, the ith decoder’s output is
denoted by xKi.

We say that a rate R ě 0 is achievable if for every m there exist an encoder
and decoders such that:

(i) Rate . The RV K is uniformly distributed on K “ t1, . . . , 2mRu.
(ii) Reliability. For every receiver i P R and every message k P K, the decoding

error probability PrrDecipKq ‰ K|K “ ks is negligible in m.
(iii) Privacy. For every eavesdropper j P E and every message k P K, the statis-

tical distance SDppZm
j |K“k, pZm

j
q is negligible in m.

The reliability and security requirements imposed in the literature are usually
weaker. In Appendix B, we show that the secrecy capacity, to be defined below,
remains unchanged even with the stronger requirements.

The secrecy capacity of the wiretap channel WTCΣ , associated to the distri-
bution Σ “

`

X, pY iqiPR, pZjqjPE
˘

, is defined to be the supremum of all achiev-
able rates. Except for the case of single-receiver single-eavesdropper [26], the
secrecy capacity of the wiretap channel is an open problem. However, the fol-
lowing lower-bound on the secrecy capacity of the wiretap channel associated to
Σ is known and enough for our purpose:

CΣ “ min
iPR

IpX : Y iq ´ max
jPE

IpX : Zjq . (5.6)

Assuming CΣ ą 0, it can be proved that every rate R ă CΣ is achievable
(e.g., see [66]). We do not need the details of the encoder for the purpose of
this paper, however, for completeness we describe it here. The encoder works
as follows. Since R ă miniPR IpX : Y iq ´ maxjPE IpX : Zjq, we have R `

maxjPE IpX : Zjq ă miniPR IpX : Y iq. Choose R̃ such that R ` maxjPE IpX :

Zjq ă R̃ ă miniPR IpX : Y iq. Therefore, maxjPE IpX : Zjq ă R̃ ´ R. Let

L “ t1, . . . , 2mpR̃´Rqu and
h : K ˆ L Ñ Xm

be a randomly chosen hash function, which is known to every party. To encode a
message k P K, the decoder chooses a uniform random index ℓ P L and outputs
hpk, lq. It can be shown that there is a choice for the hash function such that
items (ii) and (iii), mentioned above, both hold. It can easily be proved that we
additionally have (e.g., see [66]):

(iv) For every receiver i P R and every eavesdropper j P E , it holds that:

limmÑ8

1

m
HpY m

i q “ HpY iq ,

limmÑ8

1

m
HpZm

j q “ HpZjq .
(5.7)
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5.2 Proof of technical lemma (Lemma 5.3)

We first present an overview of the proof. Given the partial SSS Π for Γ , we
construct a statistical family for it with the claimed secret length and efficiency
as follows. When a secret is shared using Π among the participants, it can
be viewed as transmitting the secret through a wiretap channel in which, each
qualified subset of participants is considered a receiver and each unqualified
subset of participants can be treated as an eavesdropper. The sender (dealer)
can use this channel to send reliably a secret that can be recovered by the
receivers (i.e., qualified sets) and remains hidden from the eavesdroppers (i.e.,
unqualified sets). It is then easy to verify that all the requirements are satisfied.
In particular, the requirement on secret length and information ratio can be
shown to follow by items (i) and (iv), respectively.

Proof (of Lemma 5.3). Given the partial SSS Π “ pS0,S1, . . . ,Snq with advan-
tage δ, and 0 ă ε ă CΠ , we construct a statistical family tΠm

ε umPN for Γ with
convec pcvpΠq, where Πm

ε “ pTm
0 ,Tm

1 , . . . ,Tm
n q. Let

Σ “
`

X, pY iqiPΓ , pZjqjPΓ c

˘

:“
`

S0, pSAqAPΓ , pSBqBPΓ c

˘

,

and consider the associated wiretap channel. By (5.2) and (5.6), CΣ “ CΠ and
therefore the rate R “ CΠ ´ε is achievable. Let K be a uniform random variable
on t1, . . . , 2mRu and

Enc : K Ñ Xm “
`

supppS0q
˘m

,

be the encoder mentioned in Section 5.1.
The secret random variable of the scheme Πm

ε is Tm
0 “ K. To share a se-

cret s P supppKq, we first compute a random encoding ps1, . . . , smq Ð Encpsq

and then share every secret sk P supppS0q, k P rms, independently using Π.
The share of the ith participant is the collection of all shares that he receives
from each scheme, which we denote by the random variable Tm

i . The rela-
tions (5.1), (5.3) and (5.4) obviously hold by items (i), (ii) and (iii), respectively.
The proof of the claim on the information ratio, i.e., relation (5.5), follows by
item (iv). Let i P rns be some participant such that tiu is a qualified set (the
unqualified case is similar). By (i) and (iv), we have

lim
mÑ8

HpTm
i q

HpTm
0 q

“ lim
mÑ8

HpY m
i q

HpKq
“ lim

mÑ8

HpY m
i q

mR
“

HpY iq

R
“

HpSiq

CΠ ´ ε
,

which completes the proof. [\

5.3 Proof of Theorem 5.2

The proof takes advantage of the following fact.

Fact 5.4 Let tneglε | ε P Ru and tneglε,k | ε P R, k P Nu be families of negligible
functions. Then the functions negl1{mpmq and negl1{m,mpmq are negligible.
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In some sense, negligible functions enjoy some sort of uniformity. On the
contrary, a similar fact is not true about polynomial functions. Fortunately,
relation (5.1) has built-in uniformity (if it was of the form log2 |supppTm

0 q| ď

cεm
dε , we would have been in trouble).

Proof (of part (I): from a partial scheme to a statistical family). Let Πm
ε be

as in Lemma 5.3. For every m P N, let Π̃m “ Πm
1{m (i.e., we set ε “ 1{m).

We claim that tΠ̃mumPN is a family of statistical schemes for Γ with convec
lim

mÑ8
cvpΠ̃mq “ 1

δ cvpΠq. The claim on secret length growth is clear from (5.1).

The claims on correctness and privacy follow from (5.3) and (5.4) and by using
Fact 5.4. The claim on information ratio follows from (5.5), since we have

lim
mÑ8

HpSiq

CΠ ´ 1{m
“

HpSiq

CΠ
“

1

δ

HpSiq

HpS0q
.

Proof (of part (II): from a partial family to a statistical family). Let tΠkukPN be
a family of partial schemes for Γ with partial information ratio

σ “ lim
kÑ8

max
´

pcvpΠkq

¯

“ lim
kÑ8

max
´ 1

δk
cvpΠkq

¯

,

where δk is the advantage of Πk. For every k P N, let Π “ Πk in Lemma 5.3 and
let tΠm

ε,kumPN be the family which is promised to exist. Let neglε,k and negl1ε,k
be the corresponding negligible functions in relations (5.3) and (5.4).

We let Π̃m “ Πm
1{m,m (i.e., we set ε “ 1{m and k “ m). We claim that

tΠ̃mumPN is a family of statistical schemes for Γ with information ratio σ. Let
Π̃m “ pTm

0 ,Tm
1 , . . . ,Tm

n q. The technical lemma guarantees that:

‚ log2 |supppTm
0 q| ď CΠmm ď C̃m, where C̃ “ supkPNtCΠk

u.

‚ For every qualified setA P Γ , there exists a reconstruction functionReconA :
supppTm

A q Ñ supppTm
0 q such that for every secret s P supppTm

0 q it holds
that:

PrrReconApTm
A q ‰ Tm

0 |Tm
0 “ ss ď negl1{m,mpmq ,

where by Fact 5.4, negl1{m,mpmq is negligible.

‚ For every unqualified set B R Γ and every secret s P supppTm
0 q it holds that:

SDppTm
B |Tm

0 “s, pTm
B

q ď negl11{m,mpmq ,

where by Fact 5.4, negl11{m,mpmq is negligible.

‚ Let Πk “ pSk
0 ,S

k
1 , . . . ,S

k
nq. We have:

lim
mÑ8

max
iPrns

HpTm
i q

HpTm
0 q

“ lim
mÑ8

max
iPrns

HpSm
i q

δmHpSm
0 q ´ 1{m

“ lim
kÑ8

max
´ 1

δk
cvpΠkq

¯

“ σ .
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6 Separating almost-perfect and partial mixed-linear
information ratios

Equality of perfect and partial linear information ratios was proved in Section 4.
In this section, we show that for the F ` N access structure, introduced in [12]
and further studied in [45], the partial and perfect information ratios do not
necessarily match for the class of mixed-linear schemes. By relation (1.2), it
then follows that the almost-perfect and partial information ratios are separated
for this class.

6.1 The access structure F ` N

We study F ` N , a well-known access structure [12, page 2641] with 12 partici-
pants which has both Fano (F) and non-Fano (N ) access structures as minors.
Both F and N have six participants with the following minimal qualified sets:

F : tp1, p4u, tp2, p5u, tp3, p6u, tp1, p2, p3u, tp1, p5, p6u, tp2, p4, p6u, tp3, p4, p5u,

N : tp1, p4u, tp2, p5u, tp3, p6u, tp1, p2, p3u, tp1, p5, p6u, tp2, p4, p6u, tp3, p4, p5u, tp4, p5, p6u.

The access structure F (resp. N ) is the port of the Fano (resp. non-Fano)
matroid and it is known [54] to be ideal only on finite fields with even (resp.
odd) characteristic. Recall that a secret sharing scheme is called ideal if the share
size of every participant is the same as the secret size and an access structure is
called ideal if it admits an ideal (perfect) scheme. Consider the following ideal
linear secret sharing scheme:

p1 : r1 p4 : r1 ` s
p2 : r2 p5 : r2 ` s
p3 : r1 ` r2 ` s p6 : r1 ` r2

where s, r1, r2 are all uniformly and independently chosen from a finite field Fq

of order q. It is easy to check that if q is a power of two, the scheme realizes F
and if q is an odd prime-power, the scheme realizes N .

The access structure F ` N , with 12 participants, is the union of F and N
(the parties in N are renamed from p1, . . . , p6 to p7, . . . , p12 respectively). It is
known that F `N is not ideal but its information ratio is one; hence, it is called
nearly-ideal [12]. Recently, in [45], the exact value of its linear information ratio
has been determined (max“ 4{3 and average“ 41{36). Also, its mixed-linear
information ratio has been determined exactly (max“ 7{6 and average“ 41{36),
proving that mixed-linear schemes are superior to linear ones.

Below, we construct a family of partially-correct mixed-linear schemes for
this access structure with partial information ratio one. Table 1 summarizes
the known results about the F ` N access structure. For completeness, we also
include the result for other non-perfect security notions.
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6.2 A nearly-ideal partially-correct mixed-linear scheme for F ` N

Let m be a positive integer and let 2m `1 “ q1 ˆ ¨ ¨ ¨ ˆ qℓ, where qi’s are pairwise
co-prime prime-powers. We construct a family of partially-correct schemes for
F ` N whose information ratio approaches one as m Ñ 8.

The secret space of the m’th scheme is F2m ˆ Fq1 ˆ ¨ ¨ ¨ ˆ Fqℓ . We share a
secret ps1, s1, ¨ ¨ ¨ , sℓq, where s1 P F2m and si P Fqi , as follows. We share s1 using
the ideal linear scheme for Fano such that each participant in the set tp1, . . . , p6u

receives a share. For each i “ 1, . . . , ℓ, we share si using the ideal linear scheme
for non-Fano such that each participant in the set tp7, . . . , p12u receives a share
for each i. Clearly, all participants p1, . . . , p6 recover s1 and gain no information
about ps1, ¨ ¨ ¨ , sℓq. Similarly, all participants p7, . . . , p12 recover ps1, ¨ ¨ ¨ , sℓq and
gain no information about s1. Therefore, the scheme is partially-correct with
advantage δ “

log 2m

log 2m`logp2m`1q
. The partial information ratios of participants

p1, . . . , p6 are all one and those of participants p7, . . . , p12 are all logp2m`1q

log 2m . That
is, the m’th scheme is partially-correct for F ` N and its partial information
ratio approaches one as m Ñ 8.

(almost/stat.-) quasi-
perfect perfect partial reference

general
max

1 [12]
average

mixed-linear
max 7{6 1 ď ¨ ď 7{6

1
[45]

average 41{36 1 ď ¨ ď 41{36 Eq. (1.2) & Sect. 6.2

linear
max 4/3

Eq. (1.2), (1.7) & [45]
average 41/36

Table 1: Known results on the max/average information ratios of the access
structure F `N w.r.t. different security notions and different classes of schemes.

It remains open to prove the separation or coincidence of “partial and quasi-
perfect” or “quasi-perfect and almost-perfect” information ratios for the class of
mixed-linear schemes. However, the result of this section shows that there is at
least one case of separation.

7 On decomposition techniques

Decomposition techniques are useful to construct SSSs for a given access struc-
ture by combining several (usually simple) schemes. For example, the optimal
linear schemes for several graph access structures on six participants, which had
remained an open problem for a long time, were constructed using these meth-
ods in [38]. Suitable decompositions can be found using linear programming
techniques (see [61,64]). In [5], a recursive method has been used to systemically
find all optimal linear schemes for all access structures on five participants and
all graph access structures on six participants.
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Decomposition techniques have two varieties. Weighted decompositions [38,
62] allow non-perfect subschemes but require them to be linear. In fact, the
constructions in [38, 62] need the linear subschemes to satisfy an additional re-
quirement but, in Section 7.1, we will show that it can be relaxed. Non-weighted-
decompositions [30,61] allow non-linear subschemes but require them to be per-
fect.

In Section 7.2, we present a unified decomposition theorem, that we refer
to as the δ-decomposition, which incorporates both weighted and non-weighted
decompositions.

The existence of a more general decomposition theorem for perfect security
that allows general subschemes (i.e., linear or non-linear, perfect or non-perfect)
remains an open problem. However, we will present a general decomposition
theorem for statistical security in Section 7.3.

7.1 Weighted-pλ, ωq-decomposition revisited

The following definition is a restatement of Definition 3.4 in [38].

Definition 7.1 ((λ, ωq–weighted decomposition) Let λ, ω,N,m1, ¨ ¨ ¨ ,mN ,
be non-negative integers, with 0 ď ω ă λ. Let Γ be an access structure and
Φ1, . . . , ΦN be (rational-valued) access functions all defined on the same set of
participants and further assume that mjΦj is an integer-valued function for ev-
ery j P rN s. We call pm1, Φ1q, . . . , pmN , ΦN q a weighted-pλ, ωq-decomposition for
Γ if the following two hold:

–
řN

j“1 mjΦjpAq ě λ, for every qualified set A P Γ ,

–
řN

j“1 mjΦjpBq ď ω, for every unqualified set B P Γ c.

The weighted-pλ, ωq-decomposition theorem of [38, Theorem 3.2] (as well as
its predecessor [62]) has the following limitation. It requires that in the linear
subschemes every subset of participants fully recovers a certain subset of the
secret elements and nothing more; in other words, recovering a linear combina-
tion such as s1 ` s3 ` s7 of the secret elements is allowed only if s1, s3, s7 are
all recovered. The proof in this case is easily achieved using a ramp SSS. In the
following theorem, we remove this strong requirement. Its proof uses the notion
of partial secret sharing and the result of Section 4 on the equality of partial
and perfect linear information ratios.

Theorem 7.2 (Strong (λ, ωq–weighted-decomposition theorem) Let Γ be
an access structure and pm1, Φ1q, . . . , pmN , ΦN q be a weighted-pλ, ωq-decomposition
for it. If for each j P rN s, the access function Φj has a linear SSS with convec σj,
such that their field characteristics are all the same, then Γ has a linear scheme
with convec 1

λ´ω

řN
j“1 mjσj.

Proof. Let Πj “ pTijqiPPYt0u be a linear SSS for Φj with convec σj , for j P rN s.
Without loss of generality, we assume that all schemes are F-linear for a common
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finite field F (due to the common characteristic). Let T 1
i “ ‘jPrNsTij and denote

Π 1 “ pT 1
i qiPPYt0u. We have dimT 1

i “
ř

jPrNs dimTij which implies that

dimT 1
i “

řN
j“1 mjσj .

Also, for every subset A of participants, it holds that:

dimpT 1
A X T 1

0q “
ř

jPrNs dimpTA X T0q

“
ř

jPrNs mjΦΠj pAq

“
ř

jPrNs mjΦjpAq .

By definition of the (λ, ωq–weighted decomposition, we have

∆ “ min
APΓ

dimpT 1
A X T 1

0q ´ max
BPΓ c

dimpT 1
B X T 1

0q ě λ ´ ω .

Consequently, Π 1 is an F-linear partial SSS for Γ with the following partial
convec:

pcvpΠ 1q “
1

∆

N
ÿ

j“1

mjσj .

Then, by Proposition 4.5, there exists a finite extension K of F, such that
Γ has a perfect K-linear scheme Π with the above convec. It is straightforward
to modify the scheme, by adding dummy shares, to have a scheme with convec

1
λ´ω

řN
j“1 mjσj . [\

7.2 δ-decomposition for perfect security

We present the notion of δ-decomposition, which incorporates all weighted and
non-weighted decompositions [30,38,61,62], simultaneously (even in a more gen-
eral form since we allow the coefficients to be real numbers).

Definition 7.3 (δ-decomposition) Let N be an integer and h1, . . . , hN be
non-negative real numbers. Let Γ be an access structure and Φ1, . . . , ΦN be access
functions all on the same set of participants. We say that ph1, Φ1q, . . . , phN , ΦN q

is a δ–decomposition for Γ if

δ “ min
APΓ

N
ÿ

j“1

hjΦjpAq ´ max
BPΓ c

N
ÿ

j“1

hjΦjpBq ą 0 .

As we saw in the previous subsection, the subschemes in pλ, ωq-weighted de-
composition need to be linear and, consequently, the subaccess functions Φj ’s
must be rational-valued. In the (non-weighted) pλ, ωq-decomposition [30], how-
ever, the subschemes can be linear or non-linear but they must be perfect. Con-
sequently, the subaccess functions must be all-or-nothing (that is, they must be
0-1-valued functions to represent access structures).

The following theorem captures the strengths and limitations of both weighted
and non-weighted decompositions, collectively. The proof is easy and straight-
forward and, hence, omitted.
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Theorem 7.4 (δ-decomposition for perfect security) Let Γ be an access
structure and ph1, Φ1q, . . . , phN , ΦN q be a δ–decomposition for it. Then:

(i) (Rational/Linear) If each Φj is a rational-valued access function and re-
alizable by a linear SSSs with convec σj, such that all the underlying finite
fields have the same characteristic, then Γ is realizable by a family of linear
schemes with convec 1

δ

řN
j“1 hjσj.

(ii) (All-or-nothing/Non-linear) If each Φj is all-or-nothing (i.e., 0-1-valued)
and realizable by a (linear or non-linear) SSSs with convec σj, then Γ is re-

alizable by a family of SSSs with convec 1
δ

řN
j“1 hjσj.

It remains unknown if there exists a general decomposition theorem with
the advantages of both weighted and non-weighted decompositions. In the next
subsection, we present such a decomposition for all non-perfect security notions.

7.3 δ-decomposition for non-perfect security notions

The δ-decomposition for perfect security only allows two restricted classes of
subschemes. The following decomposition theorem for partial security does not
impose any restriction on the subschemes (i.e., they can be linear or non-linear,
perfect or non-perfect).

Theorem 7.5 (δ-decomposition for partial security) Let Γ be an access
structure and ph1, Φ1q, . . . , phN , ΦN q be a δ–decomposition for it. If each Φj is
realizable by a SSS with convec σj, then Γ is realizable by a family of partial

SSSs with partial convec 1
δ

řN
j“1 hjσj.

Proof. Let Πj “ pSj
i qiPQ be a SSS for Φj . We first prove the theorem under the

assumption that hj{HpSj
0q is a rational number for every j P rN s. The general

case then follows by standard techniques (i.e., considering a converging sequence
of rational numbers to each value). Let L be an integer such that for every

j P rN s, the number Mj :“
Lhj

HpSj
0q

is an integer.

For every j P rN s and every k P rMjs, let Πj,k “ pSj,k
i qiPQ be an independent

instance of Πj . Consider the SSS

Π “ pSiqiPQ with Si “
`

Sj,k
i

˘

jPrNs,kPrMjs
.

By independence of different instances of SSSs, for every i P Q we have

HpSiq “
řN

j“1 MjHpSj
i q “

řN
j“1

Lhj

HpSj
0q
HpSj

i q .

In particular, HpS0q “ L
řN

j“1 hj . It then follows that

cvpΠq “
1

řN
j“1 hj

N
ÿ

j“1

hjcvpΠjq .
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and
IpS0 : SAq “

řN
j“1 MjIpS

j
0 : Sj

Aq

“
řN

j“1
Lhj

HpSj
0q
IpSj

0 : Sj
Aq

“ L
řN

j“1 hjΦΠj pAq

“ L
řN

j“1 hjΦjpAq .

.

Consequently,

ΦΠpAq “
1

řN
j“1 hj

N
ÿ

j“1

hjΦjpAq .

Since ph1, Φ1q, . . . , phN , ΦN q is a δ–decomposition for Γ , by definition, it then
follows that Π is a partial scheme for it with advantage δ1 “ δ

řN
j“1 hj

. Therefore,

we have pcvpΠq “ 1
δ1 cvpΠq “ 1

δ

řN
j“1 hjcvpΠjq

When hj{HpSj
0q is not a rational number for every j P rN s, by consider-

ing a converging sequence of rational numbers to each value, a family of par-
tial schemes can be constructed whose partial information ratio converges to
1
δ

řN
j“1 hjcvpΠjq. [\

The above decomposition theorem together with Theorem 5.2, leads to a
general decomposition theorem for all non-perfect (i.e., quasi-perfect, almost-
perfect and statistical) security notions. Below, we present the statement for the
strongest, i.e., statistical security. On the other hand, we consider the weakest se-
curity notion for the subschemes7, i.e., quasi-perfect security which is equivalent
to almost-perfect security (see Appendix C).

In Appendix A.2, we have defined the notion of quasi-perfect realization for
an access structure by a family of schemes. The definition straightforwardly ex-
tends to access functions. We say that a family tΠmumPN of SSSs quasi-perfectly
realizes an access function Φ if lim

mÑ8
ΦΠm “ Φ (this definition is equivalent to

realization by almost-entropic polymatroid ; see [24, 48] and also Appendix C).

Theorem 7.6 (δ-decomposition for statistical security) Let Γ be an ac-
cess structure and ph1, Φ1q, . . . , phN , ΦN q be a δ–decomposition for it. If each
Φj is quasi-perfectly realizable by a family of SSSs with convec σj, then Γ is

statistically realizable by a family of SSSs with convec 1
δ

řN
j“1 hjσj.

8 Conclusion

In this paper, we introduced a new relaxed security notion for SSSs, called partial
security. The partially-private and partially-correct variants are more relaxed
than weakly-private [8] and weakly-correct security [29] notions, respectively.
However, unlike the latter two security notions, which consider the standard

7 In it not clear how one can extend the notion of partial and statistical security to
access functions.



Partial Secret Sharing Schemes 35

information ratio as a criterion for efficiency, we introduced a new parameter
called partial information ratio. We proved that, in terms of partial information
ratio, partial security coincides with perfect security for linear schemes and with
statistical security for general schemes. The first result helped us remove a strong
requirement for linear subschemes in weighted decompositions [38, 62]. More
interestingly, the second result lead to a very strong decomposition theorem for
statistical security.

Our third result was a rare example demonstrating the superiority of par-
tial schemes to perfect schemes for the particular class of mixed-linear schemes
(recently introduced in [45]). Nevertheless, currently there is no proof for the su-
periority of non-perfect SSSs to perfect ones for general schemes (however, some
evidence was presented by Beimel and Ishai in [9]). Beimel and Franklin made
an attempt in [8], by presenting a weakly-private SSS with standard information
ratio equal to one for every access structure. However, we showed that the par-
tial information ratio of their construction is exponential for almost all access
structures. Nevertheless, the existence of partial schemes with sub-exponential
partial information ratio is not ruled out (unless Beimel’s conjecture [6] turns
out to be true for both perfect and statistical security notions).
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A Non-perfect security notions

In this section, we present formal definitions of the non-perfect security notions
for SSSs, mentioned in the introduction. Statistical security is the only security
notion that we formally use in the body of the paper (in particular Section 5),
and it is implicitly recalled there.

Family of SSSs. Non-perfect security notions are defined with respect to a
family tΠmumPN of SSSs, where m can be considered a security parameter. We
assume that the sequence of information ratios of the SSSs in our families is
converging. We, refer to the converged value as the information ratio of the
family.

A.1 Statistical and expected-statistical security notions

Statistical SSS is a standard relaxation of perfect security, probably first men-
tioned in [15]. Here, we present a definition similar to the one in [9].

Notation. A function ε : N Ñ R is called negligible if εpmq “ m´ωp1q. Also the
statistical distance (or total variation) between two (discrete) random variables
X and Y , with respective probability mass functions pX and pY , is defined as:

SDppX , pY q :“
1

2

ÿ

x

|PrrX “ xs ´ PrrY “ xs| .

Statistical security. Let tΠmumPN be a family of secret sharing schemes, where
Πm “ pSm

0 ,Sm
1 , . . . ,Sm

n q, and Γ is an access structure on n participants. We
say that tΠmu is a statistical family for Γ (or tΠmu statistically realizes Γ ) if:

‚ (Polynomial secret length growth) The secret length grows at most
polynomially in m; that is, log2 |supppSm

0 q| “ Opmcq for some c ą 0.

‚ (Statistical-correctness) For every qualified set A P Γ , there exists a
reconstruction function ReconA such that for every secret s in support of
Sm

0 , the reconstruction probability of error PrrReconApSm
A q ‰ s|Sm

0 “ ss

is negligible in m;

‚ (Statistical-privacy) For every unqualified set B R Γ and for every se-
cret s in the support of Sm

0 , the statistical distance SDppSm
B |Sm

0 “s, pSm
B

q is
negligible in m.
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The statistical privacy condition requires that for every unqualified set B,
the statistical distance between the conditional RV rSm

B |Sm
0 “ ss and RV Sm

B

be negligible for the worst choice of the secret s. Notice that, by the triangle
inequality, the privacy condition implies that for every pair of secrets s, s1 the
statistical distance between the conditional RVs rSm

B |Sm
0 “ ss and rSm

B |Sm
0 “ s1s

is negligible too.
We remark that the condition on the polynomial secret length growth is

not actually a limit on the family of the SSSs because given any family, we
can construct a new family that satisfies this condition. The schemes Πm and
Πm`1 of the old family appear in the new family too but at positions τpmq

and τpm ` 1q, respectively, where τ : N Ñ N is some mapping for which the
distance τpm`1q ´ τpmq is chosen large enough such that the polynomial secret
length growth condition is satisfied in the new family. The schemes at positions
τpmq`1, . . . , τpm`1q´1 are considered to be Πm. Therefore, the first condition
is actually a condition to make sure that the error probability of reconstruction
and the statistical distance are negligible not only in security parameter but also
in secret length.

Expected-statistical security. The definition for expected-statistical secu-
rity is identical to the previous definition except that we require the following
correctness and privacy conditions hold instead:

‚ (Expected-statistical-correctness) For every qualified set A P Γ , there
exists a reconstruction function ReconA such that PrrReconApSm

A q ‰ Sm
0 s

is negligible in m;
‚ (Expected-statistical-privacy) For every unqualified set B R Γ , the sta-
tistical distance SDppSm

BSm
0
, pSm

B
pSm

0
q is negligible in m.

The statistical-correctness requirement takes the worst probability of recon-
struction error into account whereas the expected-statistical-correctness condi-
tion considers the average probability of error; because:

PrrReconApSm
A q ‰ Sm

0 s “
ÿ

sPsupppSm
0 q

PrrSm
0 “ ssPrrReconApSm

A q ‰ s | Sm
0 “ ss .

(A.1)

Similarly, the expected-statistical-privacy condition requires that an unquali-
fied setB is not able to (statistically) distinguish the joint distributions pSm

B ,Sm
0 q

and pSm
B ,S1

q, where S1 is independent of Sm
B and identically distributed as Sm

0 .
The statistical privacy condition requires that the statistical distance between
the conditional RV rSm

B |Sm
0 “ ss and RV Sm

B be negligible for the worst choice
of the secret s. However, the expected-statistical privacy condition requires this
to happen on average; because for every pair of jointly distributed RVs pX,Y q

we have:

SDppXY , pXpY q “
ÿ

yPsupppY q

PrrY “ ysSDppX|Y “y, pXq . (A.2)
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A.2 Almost-perfect and quasi-perfect security notions

In [24], almost-perfect security has been defined in terms of the so-called almost
entropic polymatroids. Here, we present an equivalent definition in terms of a
family of SSSs.

Almost-perfect security. Let tΠmumPN be a family of SSSs, where Πm “

pSm
0 ,Sm

1 , . . . ,Sm
n q, and Γ be an access structure on n participants. We say that

tΠmu is an almost-perfect family for Γ if:

‚ (Almost-correctness) lim
mÑ8

HpSm
0 |Sm

A q = 0 for every qualified set A P Γ ,

‚ (Almost-privacy) lim
mÑ8

IpSm
0 : Sm

B q = 0 for every unqualified set B R Γ .

Quasi-perfect security. In quasi-perfect security it is required that the per-
centage of information missed/leaked in the correctness and privacy conditions
are negligible. That is:

‚ (Quasi-correctness) limmÑ8
HpSm

0 |Sm
A q

HpSm
0 q

“ 0 for every qualified set A P Γ ,

‚ (Quasi-privacy) limmÑ8
IpSm

0 :Sm
A q

HpSm
0 q

“ 0 for every unqualified set B P Γ c.

Using the notion of the access function of a SSS (Definition 2.5), we can
equivalently say that a family tΠmumPN of SSSs quasi-perfectly realizes an access
structure Γ if limmÑ8 ΦΠmpAq equals one when A P Γ and zero when A R Γ .
The definition straightforwardly extends to access functions (see Section 7.3).

A.3 Non-perfect information ratios

With respect to each security notion, a variant of information ratio for an access
structure can be defined. For example, the quasi-perfect information ratio of an
access structure is defined to be the infimum of the information ratios of all
families of SSSs that quasi-perfectly realize it. Statistical, expected-statistical
and almost-perfect information ratios are defined similarly.

A.4 Relations between non-perfect information ratios

In this section we show that the following relation holds for the information
ratios of an access structure with respect to the mentioned security notions and
for every class of SSSs:

quasi-perfect ď almost-perfect ď expected-statistical ď statistical
(for any class of SSSs) .

(A.3)

The left-most inequality is trivial. The right-most inequality follows by rela-
tions (A.1) and (A.2). We prove the middle one. As we will see the condition on
polynomial secret length growth turns out crucial.
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‚ Correctness implication. The expected-statistical-correctness condition
implies the almost-correct condition. This follows by Fano’s inequality [23]
which is stated as follows. Suppose that we wish to estimate the random
variable X, with support X , by an estimator xX, and furthermore, assume
that ε “ PrrX ‰ xXs. Then, HpX|xXq ď Hpεq ` ε logp|X | ´ 1q, where Hpεq

is the entropy of a Bernoulli random variable with parameter ε. Let A be a

qualified set and ySm
0 “ ReconApSm

A q. By statistical-correctness, for every

secret s, the error probability εpmq :“ PrrySm
0 ‰ s|Sm

0 “ ss is negligible in
m. By polynomial secret length growth and Fano’s inequality HpSm

0 |Sm
A q is

negligible too.
‚ Privacy implication. The expected-statistical-privacy condition implies
the almost-privacy condition. This follows by a lemma probably first men-
tioned in [28, Lemma 1], with the following statement. Let pX,Y q be a pair
of jointly distributed RVs and let ε1 “ IpX : Y q and ε2 “ SDppXY , pXpY q.
Let X denote the support of X and X ě 4. Then we have the following
inequality, where e is the Euler’s number and the logarithms are in base
two:

log e

2
ε22 ď ε1 ď ε2 log

|X |

ε2
.

B On the reliability and privacy requirements for wiretap
channels

In Section 5.1, we required the following conditions to hold for the reliability
and privacy of a wiretap channel:

(ii) Reliability. For every receiver i P R and every message k P K, the decoding
error probability fipkq “ PrrDecipKq ‰ K|K “ ks is negligible in m.

(iii) Privacy. For every eavesdropper j P E and every message k P K, the statis-
tical distance gjpkq “ SDppZm

j |K“k, pZm
j

q is negligible in m.

In the literature, usually the following weaker requirements are imposed:

(ii’) For every receiver i P R, the decoding error probability ei “ PrrDecipKq ‰

Ks is negligible in m.
(iii’) For every eavesdropper j P E , the statistical distance dj “ SDppZm

j K , pZm
j
pKq

is negligible in m.

Notice that the reliability and privacy conditions in items (ii) and (iii) require
that the maximum error probability and maximum statistical distance be negli-
gible (i.e., the worst case scenario is considered as is usual in cryptography). On
the other hand, the weaker conditions require them to be negligible on average,
since we have ei “ ErfipKqs and dj “ ErgjpKqs. However, we claim that the
capacity does not decrease with the strong requirements. Let R be an achiev-
able rate with respect to requirements (ii’) and (iii’). We show that it is also
achievable by requirements (ii) and (iii). This can be shown by discarding the
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worst half of the messages in terms of the probability of error, for each receiver
and each sender (and hence reducing the message size by a factor of at most
2´p|R|`|E|q). By using the union-bound and Markov inequality, it follows that
there exists a subset K1 Ď t1, . . . , 2mRu of size at least 2mR´p|R|`|E|q such that
for every k P K1 we have fipkq ď 2ei for every receiver i P R and gjpkq ď 2dj for
every eavesdropper j P E . Consequently, the rate limmÑ8pmR´|R|´|E |q{m “ R
is also achievable with requirements (ii) and (iii).

C Csirmaz proof for “quasi-perfect “ almost-perfect”

As we mentioned in the introduction, in the context of secret key agreement,
advanced concepts (such as privacy amplification) are used to attain strong se-
curity from weak security (the counterparts of almost-perfect and quasi-perfect
security in secret sharing). Here, we present a simple argument, suggested by
Laszlo Csirmaz, for the equality of quasi-perfect and almost-perfect information
ratios.

Let Q be a finite set called the ground set. A polymatroid on the ground set
Q is a mapping f : 2Q Ñ R that satisfies: i) fpHq “ 0, ii) monotonicity, i.e.,
fpAq ď fpBq for every A Ď B Ď Q and iii) submodularity; i.e., fpA Y Bq ď

fpAq ` fpBq ´ fpA X Bq, for every A,B Ď Q.
A polymatroid is called entropic if there exists a vector of random variables

pSiqiPQ such that fpAq “ HpSAq for every subset A Ď Q. Ignoring the empty-
set, a polymatroid can be identified by a p2|Q| ´ 1q-dimensional point in the
Euclidean space.

The set of all entropic polymatroids is called the entropy region [67]. The fol-
lowing facts are known about this set. First, its closure (in the usual Euclidean
topology) is convex. Second, the interior points of the closure are entropic, mean-
ing that the closure adds only boundary points (in other words there is no “holes”
inside the entropy region). Third, the closure is a cone: one can multiply all co-
ordinates by any positive number and remain in the closure; in other words, a
multiple of an interior point is also an interior point. The first result was proved
by Zhang and Yeung [67] and the latter two by Matús [55].

A SSS on participants set P can be identified with an entropic polymatroid
on the ground set Q “ P Y t0u. The notion of realization of an access structure,
or more generally an access function, by SSSs extends to polymatroids in a
straightforward way [34]. A polymatroid f with ground set P Y t0u is said to
realize an access function Φ on participants set P if ΦpAq “

`

fpt0uq ` fpAq ´

fpAY t0uq
˘

{fpt0uq, for every A Ď P . The information ratio of f is defined to be
maxiPP fptiuq{fpt0uq.

Here we informally explain why almost-perfect and quasi-perfect information
ratios are equal. For almost-perfect realization, we require realization by a point
(polymatroid) inside or on the boundary of the entropy region. Such points are
called almost-entropic. By the second property of the entropy region, in every
neighborhood of an almost-entropic polymatroid, there is an entropic point (i.e.,
a genuine SSS). If the distance (in the usual Euclidean L2 norm) between an



Partial Secret Sharing Schemes 45

almost-entropic and an entropic polymatroid is sufficiently small, they realize
almost the same access function and have almost equal information ratios. For
quasi-perfect security, we consider normalization of the point by the secret en-
tropy and we require that a normalized point lies inside or on the boundary. By
the third property of the entropy region (i.e. the closure is a cone), normalization
does not matter; thus, this notion is equivalent to almost-perfect security with
respect to information ratio.

D On duality

The notion of duality is a prevalent concept in different areas of mathematics
such as coding and matroid theory, and there is a natural definition for the
dual of an access structure [42] too. It is a long-standing open problem if the
perfect information ratios of dual access structures are equal. For the case of
perfect security, the equality was proved for linear schemes in [34, 42] and has
recently been extended to the class of abelian schemes in [45]. These results
also apply to quasi-perfect, almost-perfect, expected-statistical and statistical
security notions. However, while the former result (i.e., linear duality) holds for
partial security by (1.7), we conjecture that the latter result (i.e., abelian duality)
does not apply to partial security, and in particular the access structure F `N ,
studied in Section 6, is a counterexample.

Even though the original problem has resisted all efforts for more than 25
years, in a remarkable work, Kaced [48] recently showed that the informa-
tion ratios of dual access structures are not necessarily equal with respect to
the weaker notion of almost-perfect security (which extends to quasi-perfect,
expected-statistical, statistical and partial security too by (1.4) and (1.8)). An
explicit construction was then exhibited by Csirmaz in [24]. But the answer
remains unknown for perfect security.

If statistical information ratio ever turns out to coincide with perfect infor-
mation ratio, the recent result also extends to perfect security and hence, the
original problem is resolved too. However, as we mentioned in the introduction,
a result of Beimel and Ishai [9] suggests that this is not probably the case.

E Proof of “partial ď quasi-perfect” (Inequality (1.6))

The reader needs to recall the definitions of Section 2, Section 3 and Appendix A.2.
We want to show that, for every class of SSSs, the partial information ratio

of an access structure Γ is not larger than its quasi-perfect information ratio. To
prove this claim, let tΠmumPN be a family of SSSs that quasi-perfectly realizes
Γ . We show that tΠmumPN is also a family of partial SSSs for Γ such that

lim
mÑ8

pcvpΠmq “ lim
kÑ8

cvpΠmq ,

where cvpΠq and pcvpΠq stand for the standard and partial convecs of a SSS
Π, as defined in Definitions 2.6 and 3.2, respectively.

Recall the definition of the access function of a SSS (Definition 2.5) and let
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– λm “ minAPΓ tΦΠmpAqu and,
– ωm “ maxBRΓ tΦΠmpBqu.

Since tΠmumPN quasi-perfectly realizes Γ , the sequences tλmu and tωmu

respectively converge to 1 and 0. Therefore, we have δk “ λm ´ ωm ą 0 for
sufficiently large m. This shows that Πm is a partial SSS for Γ with partial
convec pcvpΠmq “ cvpΠmq{δm. The claim then follows since δk Ñ 1 as m Ñ 8.

F Strongly-uniform schemes: partial vs. weakly-private

A SSS pSiqiPPYt0u is called strongly-uniform if, for all A Ď P Yt0u, the marginal
distribution SA is uniformly distributed on its support. Such schemes (random
variables) have been studied in [21, 46, 47] (in [21, 47], it has been called quasi-
uniform). A large class of SSSs, including linear, mixed-linear, abelian, homo-
morphic and more generally the so-called group-characterizable SSSs (see Foot-
note 1) are strongly-uniform. It is an open problem if strongly-uniform SSSs
are “complete” for perfect security. That is, if the perfect information ratio of
an access structure can be computed by merely considering strongly-uniform
SSSs. The group-characterizable SSSs are strongly-uniform and also complete
for quasi-perfect security; e.g., see [47, Theorem 34]. This result extends to par-
tial security but it remains an interesting open problem if group-characterizable
schemes, and more generally strongly-uniform schemes, are complete for any se-
curity notion stronger than quasi-perfect security (i.e., almost-perfect, expected-
statistical, statistical, or perfect security). It also remain open if strongly-uniform
schemes are complete for partially-private security.

On the other hand, it is easy to show that for the class of strongly-uniform
SSSs, the weakly-private and perfect security notions coincide. That is, every
weakly-private strongly-uniform SSS is perfect.

G Proof of Claim 3.5

Let Π “ pSiq PPYt0u denote the SSS in Example 3.4 and let B P Γ c be an
arbitrary unqualified set. We need to find an upper-bound on HpS0 | SBq{HpS0q.

Define the following events, where C is the unqualified set chosen in the
sharing phase:

– B0: B “ C.
– B1: |BzC| “ 1.
– B2: |BzC| ě 2.
– D: All the elements of the vector SCYt0u are distinct.

Let pi “ PrrBis and q “ PrrDs. Denote the number of maximal unqualified
sets of Γ by M and notice that M “ Ωp2n{

?
nq. Clearly, we have p0 “ 1

M and

p1 ď
n{2
M . Also, by the birthday paradox, we have q “ PrrDs ď

n{2pn{2`1q

2k
ď

n2{2
2k

(assuming n ě 2).
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Let D denote the indicator random variable of event D. That is, D “ 1 if D
occurs and otherwise D “ 0. Let B be a random variable which is equal to i if
Bi occurs.

It is easy to verify that for every 0 ď p ď 1, we have ´p log2 p ď 2
?
p and

´p1 ´ pq log2p1 ´ pq ď 2p. Therefore,

HpBq ` HpDq ď
2p1`

?
n{2q

?
M

`
2pn{2`1q

2k{2 `
2p1`n{2q

M ` n2

2k
.

HpS0 | SAq ď HpS0 | SABDq ` HpBq ` HpDq

“ HpS0 | SAB0qp0
`HpS0 | SAB1qp1
`HpS0 | SAB2Dqp2p1 ´ qq

`HpS0 | SAB2Dqp2q
`HpBq ` HpDq

ď kp0 ` plog nqp1 ` 0 ` kp2q ` HpBq ` HpDq

ď k 1
M ` plog nq n

2M ` k n2

2k
` 2`

?
2n?

M
` n`2

2k{2 ` 2`n
M ` n2

2k
.

When k ě n, HpS0 | SBq{HpS0q “ Opn3{42´n{2q.
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