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Abstract. We report on the concrete cryptanalysis of LEDAcrypt, a
2nd Round candidate in NIST’s Post-Quantum Cryptography standard-
ization process and one of 17 encryption schemes that remain as can-
didates for near-term standardization. LEDAcrypt consists of a public-
key encryption scheme built from the McEliece paradigm and a key-
encapsulation mechanism (KEM) built from the Niederreiter paradigm,
both using a quasi-cyclic low-density parity-check (QC-LDPC) code.
In this work, we identify a large class of extremely weak keys and pro-
vide an algorithm to recover them. For example, we demonstrate how to
recover 1 in 247.72 of LEDAcrypt’s keys using only 218.72 guesses at the
256-bit security level. This is a major, practical break of LEDAcrypt.
Further, we demonstrate a continuum of progressively less weak keys
(from extremely weak keys up to all keys) that can be recovered in sub-
stantially less work than previously known. This demonstrates that the
imperfection of LEDAcrypt is fundamental to the system’s design.
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1 Introduction

Since Shor’s discovery [28] of a polynomial-time quantum algorithm for factoring
integers and solving discrete logarithms, there has been a substantial amount of
research on quantum computers. If large-scale quantum computers are ever built,
they will be able to break many of the public-key cryptosystems currently in use.
This would gravely undermine the integrity and confidentiality of our current
communications infrastructure on the Internet and elsewhere.

In response, the National Institute of Standards and Technology (NIST) ini-
tiated a process [1] to solicit, evaluate, and standardize one or more quantum-
resistant, public-key cryptographic algorithms. This process began in late 2017
with 69 submissions from around the world of post-quantum key-establishment
mechanisms or KEMs (resp. public-key encryption schemes or PKEs), and dig-
ital signature algorithms. In early 2019, the list of candidates was cut from 69
to 26 (17 of which are PKEs or KEMs), and the 2nd Round of the competition
began [2]. The conclusion of Round 2 is now rapidly approaching.



LEDAcrypt [3] is one of the 17 remaining candidates for standardization
as a post-quantum PKE or KEM scheme. It is based on the seminal works of
McEliece [21] in 1978 and Niederreiter [24] in 1986, which are based on the NP-
complete problem of decoding an arbitrary linear binary code [5]. More precisely,
LEDAcrypt is composed of a PKE scheme based on McEliece but instantiated
with a particular type of codes (called QC-LDPC) and a KEM in the variant
style of Niederreiter. The specific origins of LEDAcrypt – the idea of using QC-
LDPC codes with the McEliece paradigm – dates back a dozen years to [17].

At a very high level, the private key of LEDAcrypt is a pair of binary matrices
H and Q, where H is a sparse, quasi-cyclic, parity-check matrix of dimension
p × p · n0 for a given QC-LDPC code and where Q is a random, sparse, quasi-
cyclic matrix of dimension p · n0 × p · n0. Here p is a moderately large prime
and n0 is a small constant. The intermediate matrix L = [L0|...|Ln0−1] = H ·Q
is formed by matrix multiplication. The public key M is then constructed from
L by multiplying each of the Li by L−1

n0−1. Given this key pair, information can
be encoded into codeword vectors, then perturbed by random error-vectors of a
low Hamming weight.1

Security essentially relies on the assumption that it is difficult to recover
the originally-encoded information from the perturbed codeword unless a party
possesses the factorization of the public key as H and Q. To recover such matrices
(or, equivalently, their product) one must find low-weight codewords in the public
code (or in its dual) which, again, is a well-known NP-complete problem [5].
State-of-the-art algorithms to solve this problem are known as Information Set
Decoding (ISD), and their expected computational complexity is indeed used as
a design criteria for LEDAcrypt parameters.

The LEDAcrypt submission package in the 2nd Round of NIST’s PQC pro-
cess provides a careful description of the algorithm’s history and specific design,
a variety of concrete parameters sets tailored to NIST’s security levels (claiming
approximately 128-bit, 192-bit, and 256-bit security, under either IND-CPA or
IND-CCA attacks), and a reference implementation in-code.

1.1 Our results

In this work, we provide a novel, concrete cryptanalysis of LEDAcrypt. Note
that, in LEDAcrypt design procedure, the time complexity of ISD algorithms
is derived by assuming that the searched codewords are uniformly distributed
over the set of all n-uples of fixed weight. However, as we show in Section 3,
for LEDAcrypt schemes this assumption does not hold, since it is possible to
identify many families of secret keys, i.e., matrices H and Q, for which the
rows of L = HQ (which represent low weight codewords in the dual code) are
characterized by a strong bias in the distribution of set bits. We define such
keys as weak since, intuitively, in such a case an ISD algorithm can be strongly
improved by taking into account the precise structure of the searched codeword.
As a direct evidence, in Section 4 we consider a moderately-sized, very weak class

1We refer the reader to Section A.1 for further technical details of the construction.

2



of keys, which can be recovered with substantially less computational effort than
expected. This is a major, practical break of the LEDAcrypt cryptosystem, which
is encapsulated in the following theorem.

Theorem 1.1 (Section 4). There is an algorithm that costs the same as 249.22

AES-256 operations and recovers 1 in 247.72 of LEDAcrypt’s Category 5 (i.e.
claimed 256-bit-secure) ephemeral / IND-CPA keys.

Similarly, there is an algorithm that costs the same as 257.50 AES-256 oper-
ations and recovers 1 in 251.59 of LEDAcrypt’s Category 5 (i.e. claimed 256-bit-
secure) long-term / IND-CCA keys.

While most key-recovery algorithms can exchange computational time spent
vs. fraction of the key space recovered, this trade-off will generally be 1-to-
1 against a secure cryptosystem. (In particular this trade off is 1-to-1 for the
AES cryptosystem which is used to define the NIST security strength categories
for LEDAcrypt’s parameter sets.) However, we note in the above that both
49.22 + 47.72 = 96.94 � 256 and 57.49 + 51.59 = 109.08 � 256, making this
attack quite significant. Additionally, we note that this class of very weak keys
is present in every parameter set of LEDAcrypt.

While the existence of classes of imperfect keys is a serious concern, one
might ask:

Is it possible to identify such keys during KeyGen, reject them, and thereby
save the scheme’s design?

We are able to answer this in the negative.

Indeed, as we demonstrate in Section 3, the bias in the distribution of set
bits in L, which is at the basis of our attack, is intrinsic in the scheme’s de-
sign. Our results clearly show that the existence of weaker-than-expected keys
in LEDAcrypt is fundamental in the system’s formulation and cannot be avoided
without a major re-design of the cryptosystem.

Finally, we apply our new attack ideas to attempting key recovery without
considering a weak key notion. Here we analyze the asymptotic complexity of
attacking all LEDAcrypt keys.

Theorem 1.2 (Section 5). The asymptotic complexity of ISD using an appro-
priate choice of structured information sets, when attacking all LEDAcrypt keys
in the worst case, is exp(Õ(p

1
4 )).

This gives a significant asymptotic speed-up over running ISD with uniformly
random information sets, which costs exp(Õ(p

1
2 )). We note that simply enumer-

ating H and Q actually leads to an attack running in time exp(Õ(p
1
4 )), and

indeed similar attacks were considered in LEDAcrypt’s submission documents
for the NIST PQC process. However, this type of attack had worse concrete
complexity than ordinary ISD with uniformly random information sets for all of
the 2nd Round parameter sets.
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1.2 Technical Overview of Our New Attacks

Basic Approach: Exploiting the Product Structure. The typical approach
to recovering keys for LEDAcrypt-like schemes is to use ordinary ISD algorithms,
a class of techniques which can be used to search for low weight codewords in an
arbitrary code. Generally speaking, these algorithms symbolically consider a row
of an unknown binary matrix corresponding to the secret key of the scheme. From
this row, they randomly choose a set of bit positions uniformly at random in the
hope that these bits will (mostly) be zero. If the guess is correct and, additionally,
the chosen set is an information set (i.e., a set in which all codewords differ
at least in one position), then the key will be recovered with linear algebra
computation. If (at least) one of the two requirements on the set is not met,
then the procedure resets and guesses again.

For our attacks, intuitively, we will choose the information set in a non-
uniform manner in order to increase the probability that the support of HQ,
i.e. the non-zero coefficients of HQ, is (mostly) contained in the complement
of the information set. At a high level, we will guess two sets of polynomials
H ′0, ...,H

′
n0−1 and Q′0,0, ..., Q

′
n0−1,n0−1, then (interpreting the polynomials as p×

p circulant matrices) group them into quasi-cyclic matrices H ′ and Q′. These
matrices will be structured analogously to H and Q, but with non-negative
coefficients defined over Z[x]/〈xp − 1〉 rather than F2[x]/〈xp + 1〉. The hope is
that the support of H ′Q′ will (mostly) contain the support of HQ. It should be
noted that a sufficient condition for this to be the case is that the support of
H ′ contains the support of H and the support of Q′ contains the support of Q.
Assuming the Hamming weight of H ′Q′ (interpreted as a coefficient vector) is
chosen to be approximately W , then the information set can be chosen as the
complement of the support of H ′Q′ and properly passed to an ISD subroutine
in place of a uniform guess.

Observe that the probability that the supports of H ′ and Q′ contain the
supports of H and Q, respectively, is maximized by making the Hamming weight
of H ′ and Q′ as large as possible while still limiting the Hamming weight of
H ′Q′ to W . An initial intuition is that this can be done by choosing the 1-
coefficients of the polynomials H ′0, ...,H

′
n0−1 and Q′0,0, ..., Q

′
n0−1,n0−1 to be in

a single, consecutive chunk. For example, by choosing the Hamming weight of
the polynomials (before multiplication) as some value B � W, we can take
H ′0 = xa + xa+1 + ...+ xa+B−1 and Q′0,0 = xc + xc+1 + ...+ xc+B−1.

Note that the polynomialsH ′0 andQ′0,0 (chosen with consecutive 1-coefficients
as above) have Hamming weight B, while their product only has Hamming
weight 2B − 1. In the most general case, uniformly chosen polynomials with
Hamming weight B would be expected to have a product with Hamming weight
much closer to min(B2, p). That is, for a fixed weight W required of H ′Q′ by the
ISD subroutine, we can guess around W/2 positions at once in H ′ and Q′ respec-
tively instead of something closer to

√
W as would be given by a truly uniform

choice of information set. As a result, each individual guess of H ′ and Q′ that’s
“close” to this outline of our intuition will be more rewarding for searching the
keyspace than the “typical” case of uniformly guessing information sets.
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This constitutes the core intuition for our attacks against LEDAcrypt, but
additional considerations are required in order to make the attacks practically
effective (particularly when concrete parameters are considered). We enumerate
a few of these observations next.

Different ring representations. The idea of choosing the polynomials within H ′

and Q′ with consecutive nonzero coefficients makes each iteration of an infor-
mation set decoding algorithm using such an H ′ and Q′ much more effective
than an iteration with a random information set. However there is only a lim-
ited number of successful information sets with this form. We can vastly increase
our range of options by observing that the ring F2[x]/〈xp + 1〉 has p− 1 isomor-
phic representations which can be mapped to one another by the isomoprhism
f(x) → f(xα). This allows us many more equally efficient choices of the infor-
mation set, since rather than restricting our choices to have polynomials H ′0 and
Q′0,0 with consecutive ones in the standard ring representation, we have the free-
dom to choose them with consecutive ones in any ring representation (provided
the same representation is used for H ′0 and Q′0,0.)

Equivalent keys. For each public key of LEDAcrypt, there exist many choices
of private keys that produce the same public key. In particular, the same public
key M = (Ln0−1)−1L produced by the private key

H = [H0, H1, · · · , Hn0−1],

Q =


Q0,0 Q0,1 · · · Q0,n0−1

Q1,0 Q1,1 · · · Q1,n0−1

...
...

. . .
...

Qn0−1,0 Qn0−1,1 · · · Qn0−1,n0−1

 ;

would also be produced by any private key of the form

H ′ = [xa0H0, x
a1H1, · · · , xan0−1Hn0−1],

Q′ =


xb−a0Q0,0 xb−a0Q0,1 · · · xb−a0Q0,n0−1

xb−a1Q1,0 xb−a1Q1,1 · · · xb−a1Q1,n0−1

...
...

. . .
...

xb−an0Qn0−1,0 x
b−an0Qn0−1,1 · · · xb−an0Qn0−1,n0−1

 ;

for any integers 0 < ai, b < p, i ∈ {0, . . . , n0−1}. These pn0+1 equivalent keys im-
prove the success probability of key recovery attacks as detailed in the following
sections.

Different degree constraints for H ′ and Q′. While we have so far described H ′

and Q′ as having the same Hamming weight B, this does not necessarily need
to be the case. In fact, there are many, equivalent choices of H ′ and Q′ which
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produce the same product H ′Q′ based on this observation. For example, the
product of

H ′0 = xa + xa+1 + ...+ xa+B−1

Q′0,0 = xc + xc+1 + ...+ xc+B−1

is identical to the product of

H ′0 = xa + xa+1 + ...+ xa+B−1−δ

Q′0,0 = xc + xc+1 + ...+ xc+B−1+δ

for any integer −B < δ < B. More generally, this relationship (that if H ′ shrinks
and Q′ proportionally grows, or vice versa, then the product H ′Q′ is the same)
is independently true for any set of {H ′i, Q′i,0, ..., Q′i,n0−1} for i ∈ {0, ..., n0 − 1}.

Attacks for n0 = 2 imply similar-cost attacks for n0 > 2. Our attacks are more
easily described (and more effective) in the case n0 = 2. In this case, we apply
ISD to find low-weight codewords in the row space of the public key [M0 | M1]
to recover a viable secret key for the system. Naively extending this approach
for the case n0 > 2 to the entire public key [M0 | ... | Mn0

] requires constraints
on the support of n0 +n2

0 polynomials (n0 polynomials corresponding to H ′ and
n2

0 polynomials corresponding to Q′), so the overall work in the attack would
increase quadratically as n0 grows. However, even in the case that n0 > 2, we
observe that it is sufficient to find low weight codewords in the row space of only
[M0 |M1] in order to recover a working key, implying that the attack only needs
to consider 3n0 polynomials Hi, Qj,0, Qk,1. So, increasing n0 will make all of
our attacks less effective, but not substantially so. More importantly, any attack
against n0 = 2 parameters immediately implies a similar-cost attack against
parameters with n0 > 2. Therefore, we focus on the case of n0 = 2 in the
remainder of this work.

A Continuum of Progressively Less Weak Keys. The attacker can recover
keys with the highest probability per iteration of ISD by using a very structured
pattern for L′. As we will see in Section 4, in this pattern both L′0 and L′1 will have
a single contiguous stretch of nonzero coefficients in some ring representation.
The result is a practical attack, but one which is only capable of recovering weak
keys representing something like 1 in 240 or 1 in 250 private keys.

However, if the attacker is willing to use a more complicated pattern for the
information set, using different ring representations for different blocks of H ′

and Q′, and possibly having multiple separate stretches of consecutive nonzero
coefficients in each block, then the attacker will not recover keys with as high a
probability per iteration, but the attack will extend to a broader class of slightly
less weak keys. This may for example lead to a somewhat less practical attack
that recovers 1 in 230 keys, but still much faster than would be expected given
the claimed security strength of the parameter set in question.

We do not analyze the multitude of possible cases here, but we show they
must necessarily exist in Section 3 by demonstrating that bias is intrinsically
present throughout the LEDAcrypt key space.
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Improvements to Average-case Key Recovery. In Section 5 we will take
the continuum of progressively weaker keys to its logical extreme. We show that
the attacks in this paper are asymptotically stronger than the standard attacks
not just for weak keys, but for all keys.

As we move away from the simpler information set patterns used on the
weakest keys, the analysis becomes more difficult. To fully quantify the impact
of our attack on average keys would require extensive case analysis of all scenarios
that might lead to a successful key recovery given a particular distribution of
information sets used by the attacker, which we leave for future work.

1.3 Related Work

The main attack strategies against cryptosystems based on QC-LDPC codes are
known as information set decoding (ISD) algorithms. These algorithms are also
applicable to a variety of other code-based cryptosystems including the NIST
2nd round candidates BIKE [23], HQC [8], Classic McEliece [9], and NTS-KEM
[18]. Initiated by Prange [26] in 1962, these algorithms have since experienced
substantial improvements during the years [4,7,14,15,19,20,29]. ISD algorithms
can also be used to find low-weight codewords in a given, arbitrary code. ISD
main approach is that of guessing a set of positions where such codewords contain
a very low number of set symbols; when this set is actually an information set,
then linear algebra computations yield the searched codeword (see A.3). ISD time
complexity is estimated as the product between the expected number of required
information set guesses and the cost of testing each set. Advanced ISD algorithms
improve Prange’s basic idea by reducing the average number of required guesses,
at the cost of increasing the time complexity of the testing phase. Quantum ISD
algorithms take into account Grover’s algorithm [10] to quadratically accelerate
the guessing phase. A quantum version of Prange’s algorithm [6] was presented
in 2010, while quantum versions of more advanced ISD algorithms were presented
in 2017 [12].

In the case of QC-MDPC and QC-LDPC codes, ISD key recovery attacks
can get a speed-up which is polynomial in the size of the circulant blocks [27].
This gain is due to the fact that there are more than one sparse vector in the
row space of the parity check matrix, and no modification to the standard ISD
algorithms is required to obtain this speed-up. Another example of gains due to
the QC structure is that of [16] which, however, works only in the case of the
circulant size having a power of 2 among its factors (which is not the case we
consider here).

ISD can generally be described as a technique for finding low Hamming-
weight codewords in a linear code. Most ISD algorithms are designed to assume
that the low-weight codewords are random aside from their sparsity. However, in
some cryptosystems that can be cryptanalyzed using ISD, these short codewords
are not random in this respect, and modified versions of ISD have been used to
break these schemes [22, 25]. Our paper can be seen as a continuation of this
line of work, since unlike the other 2nd Round NIST candidates where ISD is
cryptanalytically relevant, the sparse codewords which lead to a key recovery of
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LEDAcrypt are not simply random sparse vectors, but have additional structure
due to the product structure of LEDAcrypt’s private key.

2 Preliminaries

2.1 Notation

Throughout this work, we denote the finite field with 2 elements by F2. We
denote the Hamming weight of a vector a (or a polynomial a, viewed in terms
of its coefficient vector) as wt(a). For a polynomial a we use the representation

a =
∑p−1
i=0 aix

i, and call ai its i-th coefficient. We denote the support – i.e. the
non-zero coordinates – of a vector (or polynomial) a by S(a). In similar way,
we define the antisupport of a, and denote it as S̄(a), as the set of positions i
such that ai = 0. Given a polynomial a and a set J , we denote as a|J the set of
coefficients of a that are indexed by J .

Given π, a permutation of {0, · · · , n−1}, we represent it as the ordered set of
integers {`0, · · · , `n−1}, such that π places `i in position i. For a length-n vector
a, π(a) denotes the action of π on a, i.e., the vector whose i-th entry is a`i . For
a probability distribution D, we write X ∼ D if X is distributed according to
D.

2.2 Parameters

The parameter sets of LEDAcrypt that we explicitly consider in this work are
shown in Table 1 (although similar forms of our results hold for all parameter
sets). We refer the reader to Section A.1 for further technical details of the
construction.

NIST Category Security Type p dv m0 m1 n0

1 (128-bit) IND-CPA 14,939 11 4 3 2

5 (256-bit) IND-CPA 36,877 11 7 6 2

5 (256-bit) IND-CCA 152,267 13 7 6 2
Table 1. LEDAcrypt parameter sets that we consider in this paper.

3 Existence of Weak Keys in LEDAcrypt

As we have explained in Section 1.3, key recovery attacks against cryptosystems
based on codes with sparse parity-check matrices can be performed by searching
for low weight codewords, either in the code or in its dual. For instance, such
codewords in the dual correspond, with overwhelming probability, to the rows
of the secret parity-check matrix, of weight ω � n, where n denotes the code
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length. The most efficient way to solve this problem is to use ISD algorithms. To
analyze the efficiency of such attacks, weight-ω codewords are normally modeled
as independent random variables, sampled according to the uniform distribution
of n-uples with weight ω, which we denote as Uω. At each ISD iteration, the
algorithm succeeds if the intersection between the chosen set T and the support
of (at least) one of such codewords satisfies some properties. Regardless of the
considered ISD variant, this intersection has to be small.

Let ε be the probability that a single ISD iteration can actually recover a
specific codeword of the desired weight. When the code contains M codewords
of weight ω, then the probability that a single ISD iteration can recover any
of these codewords is 1 − (1 − ε)M which, if εM � 1, can be approximated as
εM . This speed-up in ISD algorithm normally applies to the case of QC codes,
where M corresponds to the number of rows in the parity-check matrix (that is,
M = n− k).

In this section we show that the product structure in LEDAcrypt yields
to a strong bias in the distribution of set symbols in the rows of the secret
parity-check matrix L = HQ. As a consequence, the assumption on the uniform
distribution of the searched codewords does not hold anymore, and this opens
up for dramatic improvements in ISD algorithms. To provide evidence of this
claim we analyze, without loss of generality, a simplified situation. We focus on
the case n0 = 2, and consider the success probability of ISD algorithms when
applied on LEDAcrypt schemes, searching for a row of the secret L (say, the first
row), with weight ω = 2dv(m0 +m1).

In this case we expect to have the usual speed-up deriving from the presence
of multiple low-weight codewords. However, quantifying this speed-up is not
straightforward and requires cumbersome computations, since it also depends
on the particular choice of the chosen set in ISD. Thus, to keep the descrip-
tion as general as possible and easy to follow, in this section we only focus on
a single row of L. Exact computations for these quantities are performed in
Sections 4 and 5. Furthermore, we only consider the probability that a chosen
set T does not overlap with the support of the searched codeword. With this
choice, we essentially capture the essence of all ISD algorithms. An analysis on
a specific variant, with optimized parameters and requirements on the chosen
set, might significantly improve the results of this section which, however, are
already significant for the security of LEDAcrypt schemes.

Let T ⊆ {0, · · · , n− 1} be a set of dimension k: for a ∼ Uω, we have

Pr [T ∩ S(a) = ∅| a ∼ Uω] =

(
n−ω
k

)(
n
k

) .

Note that this probability does not depend on the particular choice of T , but just
on its size. When a purely random QC-MDPC code is used, as in BIKE [23], the
first row of the secret parity-check matrix is well modeled as a random sample
from Uω. The previous probability can also be described as the ratio between
the number of n-uples of weight ω whose support is disjoint with T , and that of
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all possible samples from Uω; in schemes such as BIKE, this also corresponds to
the probability that a secret key satisfies the requirement on an arbitrary set T .

As we show in the remainder of this section, in LEDAcrypt such a fraction
can actually be made significantly larger, when T is properly chosen. To each
choice, we can then associate a family of weak keys, that is, secret keys for which
the corresponding first row of L does not overlap with T . We formally define the
notion of weak keys in the following.

Definition 3.1. Let K be the public key space of LEDAcrypt with parameters
n0, p, dv,m0,m1. Let T ⊆ {0, · · · , n0p− 1} of cardinality n− k = p and W ⊆ K
be the set of all public keys corresponding to secret keys sk = (H,Q) such that
the first row in the corresponding L = HQ has support that is disjoint with T .
Finally, we define ω = n0(m0 + m1)dv and Uω as the uniform distribution of
(n0p)-tuples with weight ω. Then, we say that W is a set of weak-keys if

Pr [pk ∈ W|(sk, pk)← KeyGen()]� Pr [T ∩ S(a) = ∅|a ∼ Uω] =

(
n0p−ω
p

)(
n0p
p

) .

Roughly speaking, we have a family of weak keys when, for a specific set
choice, the number of keys meeting the requirement on the support is signifi-
cantly larger than the one that we would have for the uniform case. Indeed, for
all such keys, we will have a strongly bias in the matrix L, since null positions
can be guessed with high probability; as we describe in Sections 4 and 5, this
fact opens up for strong attacks against very large portions of keys.

3.1 Preliminary considerations on sparse polynomials
multiplications

We now recall some basic fact about polynomial multiplication in the rings
F2[x]/〈xp + 1〉 and Z[x]/〈xp − 1〉, which will be useful for our treatment. Let
a, b ∈ F2[x]/〈xp + 1〉 and c = ab; we then have

ci =

p−1⊕
z=0

azbz′ , z′ = i− z mod p,

where the operator
⊕

highlights the fact that the sum is performed over F2.
Taking into account antisupports, we can rewrite the previous equation as

ci =

p−1⊕
z 6∈S̄(a)

z′=i−z mod p, z′ 6∈S̄(b)

azbz′ . (1)

Let N(a, b, i) denote the set of terms that contribute to the sum in Eq. (1), i.e.

N(a, b, i) =
{
z s.t. z 6∈ S̄(a) and i− z mod p 6∈ S̄(b)

}
.
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We now denote with ã and b̃ the polynomials obtained by lifting a and b over
Z[x]/〈xp−1〉 i.e., by mapping the coefficients of a and b into {0, 1} ⊂ Z. Let c̃ =

ãb̃: we straightforwardly have that c ≡ c̃ mod 2, |N(a, b, i)| = c̃i and
∑p−1
i=0 c̃i =

wt(a) ·wt(b). Let a′ ∈ Z[x]/〈xp + 1〉 with coefficients in {0, 1}, such that S(a′) ⊇
S(a), i.e., such that its support contains that of a (or, in another words, such
that its antisupport is contained in that of a); an analogous definition holds for
b′. Indeed, we can write a′ = ã + sa, where sa ∈ Z[x]/〈xp + 1〉 and whose i-th
coefficient is equal to 0 if a′i = ai, and equal to 1 otherwise; with analogous
notation, we can write b′ = b̃+ sb. Then

c′ = a′b′ = (ã+ sa)(b̃+ sb) = ãb̃+ sab̃+ sbã+ sasb = c̃+ sab̃+ sbã+ sasb.

Since sab̃, sbã and sasb have all non-negative coefficients, we have

c′i ≥ c̃i = |N(a, b, i)| ≥ 0,∀i ∈ {0, · · · , p− 1}. (2)

We now derive some properties that link the coefficients of c′ to those of c;
as we show, knowing portions of the antisupports of a and b is enough to gather
information about the coefficients in their product.

Lemma 3.2. Let a, b ∈ F2[x]/〈xp + 1〉, and Ja, Jb ⊆ {0, · · · , p − 1} such that
Ja ⊇ S(a) and Jb ⊇ S(b). Let a′, b′ ∈ Z[x]/〈xp − 1〉 be the polynomials whose
coefficients are null, except for those indexed by Ja and Jb, respectively, which
are set as 1. Let c = ab ∈ F2[x]/〈xp + 1〉 and c′ = a′b′ ∈ Z[x]/〈xp − 1〉; then

c′i = 0 =⇒ ci = 0.

Proof. The result immediately follows from (2) by considering that if c′i = 0 then
necessarily |N(a, b, i)| = 0 and, subsequently, ci = 0.

When the weight of c = ab is maximum, i.e., equal to wt(a) · wt(b), the
probability to have null coefficients in ci can be related to the coefficients in
c′i; in analogous way, we can also derive the probability that several bits are
simultaneously null. These relations are formalized in the following Lemma.

Lemma 3.3. Let a, b ∈ F2[x]/〈xp + 1〉, with respective weights ωa and ωb, such
that ω = ωaωb ≤ p, and c = ab has weight ω. Let Ja, Jb ⊆ {0, · · · , p − 1} such
that Ja ⊇ S(a) and Jb ⊇ S(b). Let a′, b′ ∈ Z[x]/〈xp−1〉 be the polynomials whose
coefficients are null, except for those indexed by Ja and Jb, respectively, which
are set as 1; finally, let M = |Ja| · |Jb|.
i) Let c′i be the i-th coefficient of c′ = a′b′; then

Pr [ci = 0|c′i] = γ(M,ω, c′i) =

(
1 + ω · c′i

M + 1− ω − c′i

)−1

.

ii) For V = {v0, · · · , vt−1} ⊆ {0, · · · , p− 1}, we have

Pr [wt(c|V ) = 0 | c′] = ζ(V, c′, ω) =

t−1∏
`=0

γ
(
M −

∑`−1
j=0 c

′
vj , ω, c

′
v`

)
.

Proof. The results follow from a combinatorial argument. See B.3 for details.
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3.2 Identifying families of weak keys

We are now ready to use the results presented in the previous section to describe
how, in LEDAcrypt, families of weak keys as in Def. 3.1 can be identified. We base
our strategy on the results of Lemmas 3.2 and 3.3. Briefly, we guess “containers”
for each polynomial in the secret key, i.e., polynomials over Z[x]/〈xp− 1〉 whose
support contains that of the corresponding polynomials in F2[x]/〈xp + 1〉. We
then combine such containers, to find positions that, with high probability, do
not point at set coefficient in the polynomials in L = HQ. Assuming that the
initial choice for the containers is right, we can then use the results of Lemmas 3.2
and 3.3 to determine such positions. For the sake of simplicity, and without loss
of generality, we describe our ideas for the practical case of n0 = 2.

Operatively, to build a set T defining an eventual set of weak keys, we rely on
the following procedure.

1. Consider sets JHi
such that JHi

⊇ S(Hi), for i = 0, 1; the cardinality of
JHi

is denoted as BHi
. In analogous way, define sets JQi,j

, for i = 0, 1 and
j = 0, 1, with cardinalities BQi,j

.
2. To each set JHi

, associate a polynomial H ′i ∈ Z[x]/〈xp− 1〉, taking values in
{0, 1} and whose support corresponds to JHi ; in analogous way, construct
polynomials JQi,j from the sets JQi,j . Compute

L′i,j = H ′jQ
′
j,i ∈ Z[x]/〈xp − 1〉, (i, j) ∈ {0, 1}2.

3. Compute

L′i = L′i,0 + L′i,1 = H ′0Q
′
0,i +H ′1Q

′
1,i ∈ Z[x]/〈xp − 1〉.

Let πi, with i = 0, 1, be a permutation such that the coefficients of πi
(
L′i
)

are in non decreasing order. Group the first
⌊
p
2

⌋
entries of π0 in a set T0, and

the first
⌈
p
2

⌉
ones of π1 in a set T1. Define T as T = T0 ∪ {p+ `| ` ∈ T1}.

A visual representation of the above constructive method to search for weak keys
is described in Appendix C.

Essentially, our proposed procedure to find families of weak keys starts from the
sets JHi and JQi,j , which we think of as “containers” for the secret key, i.e., sets
containing the support of the corresponding polynomial in the secret key. Their
products yield polynomials L′i,j , which are containers for the products HiQj,i.
Because of the maximum weight requirement in LEDAcrypt key generation, each
L′i,j matches the hypothesis required by the Lemma 3.3: the lowest entries in
L′i,j correspond to the coefficients that, with the highest probability, are null
in H ′iQ

′
j,i. We remark that, because of Lemma 3.2, a null coefficient in L′i,j

means that the corresponding coefficients in HjQj,i must be null. Finally, we
need to combine the coefficients of the polynomials L′i,j , to identify positions
that are very likely to be null in each Li. The approach we consider consists in
choosing the positions that correspond to coefficients with minimum values in
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the sums L′i,0 +L′i,1. This simple criterion is likely to be not optimal, but allows
to avoid cumbersome notation and computations; furthermore, as we show next,
it already detects significantly large families of weak keys.

The number of secret keys that meet the requirements on T , i.e., keys leading
to polynomials L0 and L1 that do not overlap with the chosen sets T0 and T1,
respectively, clearly depends on the particular choice for the containers. In the
remainder of this section, we describe how such a quantity can be estimated.
For the sake of simplicity, we analyze the case in which the starting sets for the
containers have constant size, i.e., BHi

= BH and BQi,j
= BQ, for all i and j;

furthermore, we choose JH0 = JH1 , JQ0,0 = JQ1,1 and JQ1,0 = JQ0,1 .

First of all, let J be the set of secret keys whose polynomials are contained
in the sets JHi

and JQi,j
; the cardinality of this set can be estimated as

|J | = η

((
BH
dv

)(
BQ
m0

)(
BQ
m1

))2

,

where η is the acceptance ratio in key generation, i.e., the probability that a
random choice of matrices H and Q leads to a matrix L with full weight.

We now estimate the number of keys in J that produce polynomials L0

and L1 corresponding to a correct choice for T0 and T1, i.e., such that their
supports are disjoint with T0 and T1, respectively. For each product HiQi,j , we
know i) that it has full weight, not larger than p, and ii) that sets JHi

, JQi,j

are containers for Hi and Qi,j , respectively. Then, Lemma 3.3 can be used to
estimate the portion of valid keys. For instance, we consider the polynomial
L0 = H0Q0,0 +H1Q1,0: the coefficients that are indexed by T0 will be null when
both the supports of H0Q0,0 and H1Q1,0 are disjoint with T0. If we neglect the
fact that these two products are actually correlated (because of the full weight
requirement on L0), then the probability that L0 does not overlap with T0, which
we denote as Pr [null(T0)], is obtained as

Pr [null(T0)] = ζ
(
T0, L

′
0,0,m0dv

)
· ζ
(
T0, L

′
0,1,m1dv

)
,

where ζ is defined in Lemma 3.3. The above quantity can then be used to esti-
mate the fraction of keys in J for which the support of L0 does not overlap with
T0; we remark that, as highlighted by the above formula, this quantity strongly
depends on the choices on JH0 , JH1 , JQ0,0 , JQ1,0 .
With the same reasoning, and with analogous notation, we compute Pr [null(T1)];
because of the simplifying restrictions on JQi,j

, this probability is equal to
Pr [null(T0)].

Then, if we neglect the correlation between L0 and L1 (since H0 and H1 are
involved in the computation of both polynomials), the probability that a random
key from J is associated to a valid L, i.e., that it leads to polynomials L0 and

13



L1 that respectively do not overlap with T0 and T1, can be estimated as

Pr [null(T )] = Pr [null(T0)] · Pr [null(T1)]

=
(
Pr [null(T0)]

)2
=

(
ζ
(
T0, L

′
0,0,m0dv

)
· ζ
(
T0, L

′
0,1,m1dv

))2

.

Thus we conclude that the number of keys whose polynomials are contained by
the chosen sets, and such that the corresponding L does not overlap with T , can
be estimated as |J | · Pr[null(T )].
Then, for the set of secret keys where T does not intercept the first row of L,
which we denote with W, we have

|W| ≥ |J | · Pr[null(T )]. (3)

The inequality comes from the fact the right term in the above formula only
counts keys with polynomials contained by the initially chosen sets; even if such
property is not satisfied, it may still happen that the resulting L does not overlap
with T (thus, we are underestimating the cardinality of W).

3.3 Results

In this section we provide practical examples on choices for containing sets,
leading to actual families of weak keys. To this end, we need to define clear
criteria on how the sets JHi

and JQi,j
can be selected. For the sake of simplicity,

we restrict our attention to the cases JH0
= JH1

= JH and JQ0,0
= JQ0,1

=
JQ1,0

= JQ1,1
= JQ. We here consider two different strategies to pick these sets.

– Type I : for i = 0, 1, δ ∈ {0, · · · , p− 1} and t ∈ {1, · · · , p− 1}, we choose

JH = {`t mod p |0 ≤ ` ≤ BH − 1} ,
JQ = {δ + `t mod p |0 ≤ ` ≤ BQ − 1} .

– Type II : for i = 0, 1, we choose JH0
= JH1

as the union of disjoint sets,
formed by contiguous positions. Analogous choice is adopted for JQ.

To provide numerical evidences for our analysis, in Figure 1 we compare the
simulated values of Pr[null(T )] with the ones obtained with theoretical expres-
sion, for parameters of practical interest and for some Types I and II choices.
The simulated probabilities have been obtained by generating random secret
keys from J and, as our results show, are well approximated by the theoretical
expression. This shows that Eq. 3 provides a good estimate for the fraction of
keys in J that meet the requirement on the corresponding set T .

Tables 2, 3 display results testing various weak key families of Type I and
II, for two different LEDAcrypt parameters sets. According to the reasoning in
the previous section, the values reported in the last column can be considered
as a rough (and likely conservative) estimate for the probability that a random
key belongs to the corresponding set W. Our results show that the identified
families of keys meet Definition 1, so can actually be considered weak.
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Fig. 1. Comparison between simulated and theoretical values for Pr[null], for
p = 14939, dv = 11, m0 = 4, m1 = 3. The values reported in Figure (a) are
all referred to the case δ = 0. In Figure (b), the blue curves correspond to the
choice JH = JQ = {0, · · · , 1999} ∪ {µ, · · · , µ+ 1999}, while the red curves correspond
to JH = {0, · · · , 2499} ∪ {µ, · · · , µ+ 2499} and JQ = {0, · · · , 3999}.

Type Family Parameters |J |·Pr[null(T )]
|K|

I
BH = BQ = 7470

δ = 0, t = 1
2−99.88

I
BH = 8000, BQ = 4000

δ = 2000, t = 1
2−85.25

I
BH = 8500, BQ = 4000

δ = 0, t = 127
2−90.23

II
JH = {0, · · · , 4499} ∪ {7000, · · · , 11499}
JQ = {0, · · · , 2499} ∪ {8000, · · · , 10499} 2−101.53

Table 2. Fraction of weak keys, for LEDAcrypt instances designed for 128-bit security,
with parameters n0 = 2, p = 14939, dv = 11, m0 = 4, m1 = 3, for which η ≈ 0.7090.
For this parameter set, probability of randomly guessing a null set of dimension p, in
a vector of length 2p and weight 2(m0 +m1)dv, is 2−154.57.

Remark 1. The results we have shown in this section only represent a qualitative
evidence of the existence of families of weak keys in LEDAcrypt. There may exist
many more families of weak keys, having a complete different structure from the
ones we have studied. Additionally, the parameters we have considered for types
I and II may not be the optimal ones, but already identify families of weak keys.
In the next sections we provide a detailed analysis for families of keys of type
I and II, and furthermore specify the actual complexity of a full cryptanalysis
exploiting such a key structure.
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Type Family Parameters |J |·Pr[null(T )]
|K|

I
BH = 18000, BQ = 9000

δ = 9000, t = 1
2−125.18

I
BH = 24000, BQ = 12000

δ = 0, t = 1
2−184.21

I
BH = 18000, BQ = 9000

δ = 0, t = 5
2−125.18

II
JH = {0, · · · , 20999}

JQ = {0, · · · , 3999} ∪ {10000, · · · , 13999} ∪ {20000, · · · , 23999} 2−270.30

Table 3. Fraction of weak keys, for LEDAcrypt instances designed for 256-bit security,
with parameters n0 = 2, p = 36877, dv = 11, m0 = 7, m1 = 6, for which η ≈ 0.614.
For this parameter set, probability of randomly guessing a null set of dimension p, in
a vector of length 2p and weight 2(m0 +m1)dv, is 2−286.80.

4 Explicit Attack on the Weakest Class of Keys

In the previous section we described how the product structure in LEDAcrypt
leads to an highly biased distribution in set positions in L. As we have hinted,
this property may be exploited to improve cryptanalysis techniques based on
ISD algorithms. In this section, we present an attack against a class of weak
keys in LEDAcrypt’s design. We begin by identifying what appear to be the
weakest class of keys (though large enough in number to constitute a serious,
practical problem for LEDAcrypt). It is easily seen that the class of keys we
consider in this section corresponds to a particular case of type I, introduced
in Section 3.3. We proceed to provide a simple, single-iteration ISD algorithm
to recover these keys, then analyze the fraction of all of LEDAcrypt’s keys that
would be recovered by this attack. Afterward, we show how to extend the ISD
algorithm to more than one iteration, so as to enlarge the set of keys recovered
by a similar enough of effort per key. We conclude by considering the effect of
advanced ISD algorithms on the attack as well as the relationship between the
rejection sampling step in LEDAcrypt’s KeyGen and our restriction to attacking
a subspace of the total key space.

4.1 Attacking an example (sub)class of ultra-weak keys

The simplest and, where it works, most powerful version of the attack dramati-
cally speeds up ISD for a class of ultra-weak keys chosen under parameter sets
where n0 = 2. One example (sub)class of ultra-weak keys are those keys where
the polynomials L0 and L1 are of degree at most p

2 . Such keys can be found by
a single iteration of a very simple ISD algorithm. We describe this simple attack
as follows.

The attacker chooses the information set to consist of the last p−1
2 columns

of the first block of M and the last p+1
2 columns of the second block. If the key

being attacked is one of these weak keys, the attacker can correctly guess the top

16



row of L as being identically zero within the information set and linearly solve
for the nonzero linear combination of the rows of M meeting this condition. The
cost of the attack is one iteration of an ISD algorithm.

A sufficient condition for this class of weak key to occur is for the polynomials
H0, H1, Q0,0, Q0,1, Q1,0, and Q1,1 to have degree no more than p

4 . Since each of
the 2m0+2m1+2dv nonzero coefficients of these polynomials has a 1

4 probability
of being chosen with degree less than p

4 , these weak keys represent at least 1 part
in 42m0+2m1+2dv of the key space.

4.2 Enumerating ultra-weak keys for a single information set

In fact, there are significantly more weak keys than this that can be recovered
by the basic, one-iteration ISD algorithm using the information set described
above. Intuitively, this is for two reasons:

1. Equivalent keys: There are p2 private keys, not of this same, basic form,
which nonetheless produce the same public key.

2. Different degree constraints: The support of the top row of L will also
fall entirely outside the information set if the degree of H0 is less than p

4 − δ
and the degrees of Q0,0 and Q0,1 are both less than p

4 + δ for any δ ∈ Z such
that −p4 < δ < p

4 . Likewise for H1 and Q1,0 and Q1,1, for a total of p keys.

Concretely, we derive the number of distinct private keys that are recovered
by the one-iteration ISD algorithm in the following theorem.

Remark 2. There are p columns of each block of M . For the sake of simplicity,
instead of referring to pairs of p−1

2 and p+1
2 columns, we instead use p

2 for both
cases. This has a negligible affect on our results.

Theorem 4.1. The number of distinct private keys that can be found in a single
iteration of the decoding algorithm described above (where the information set is
chosen to consist of the last p

2 columns of each block of M) is

p3 ·

p
2∑

A0=dv−1

p
2∑

A1=dv−1

((
A0–1

dv–2

)(
A1–1

dv–2

)
·
((p

2 –A0 − 2

m0 − 1

)(p
2 –A0 − 1

m1

)(p
2 –A1 − 1

m1

)(p
2 –A1 − 1

m0

)
+

(p
2 –A0 − 1

m0

)(p
2 –A0 − 2

m1 − 1

)(p
2 –A1 − 1

m1

)(p
2 –A1 − 1

m0

)
+

(p
2 –A0 − 1

m0

)(p
2 –A0 − 1

m1

)(p
2 –A1 − 2

m1 − 1

)(p
2 –A1 − 1

m0

)
+

(p
2 –A0 − 1

m0

)(p
2 –A0 − 1

m1

)(p
2 –A1 − 1

m1

)(p
2 –A1 − 2

m0 − 1

)))
·
(

1−O
(
m

p

))
.

(4)
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Proof. We count the number of ultra-weak keys as follows. By assumption, all
nonzero bits in each block of an ultra-weak key are contained in some consecutive
stretch of size ≤ p

2 . Thus these ultra-weak keys contain a stretch of at least p
2

zero bits. This property applies directly to the polynomials H0Q0,0 + H1Q1,0

and H0Q0,1 +H1Q1,1, and must also hold for H0 and H1. We index the number
of ultra-weak keys according to the first nonzero coefficient of these polynomials
after the stretch of zero bits in cyclic ordering.

We begin by considering H,Q though not requiring HQ to have full weight.
We are using an information set consisting of the same columns for bothH0Q0,0+
H1Q1,0 and H0Q0,1 + H1Q1,1. Therefore we count according the first nonzero
bit of the sum H0Q0,0 +H1Q1,0 +H0Q0,1 +H1Q1,1. Let l be the location of the
first nonzero bit of this sum.

Let j0, j1 be the locations of the first nonzero bit of H0, H1, respectively.
Suppose that the nonzero bits of H0, H1 are located within a block of length
A0, A1, respectively.

By LEDAcrypt’s design, dv ≤ Ai, i ∈ {0, 1} and by assumption on the chosen

information set, Ai ≤ p
2 , i ∈ {0, 1}. Once j0 is fixed, there are

∑ p
2

A0=dv−1

(
A0−1
dv−2

)
ways to arrange the remaining bits of H0. Thus there are

p−1∑
j0=1

p
2∑

A0=dv−1

(
A0 − 1

dv − 2

) p−1∑
j1=1

p
2∑

A1=dv−1

(
A1 − 1

dv − 2

)
(5)

many bit arrangements of H0, H1.

Once j0, j1 are fixed, there are four blocks of Q which may influence the
location l. We compute the probability that only one block of Q may influence
l at a time.

If l is influenced by Q0,0, there are
( p

2−A0−2
m0−1

)
ways the remaining bits of Q0,0

can fall,
( p

2−A0−1
m1

)
arrangements of the bits of Q0,1,

( p
2−A1−1
m1

)
arrangements of

the bits of Q1,0, and
( p

2−A1−1
m0

)
arrangements of the bits of Q1,1. If l is influenced

by Q0,1, there are
( p

2−A0−2
m0

)
arrangements of the bits of Q0,0,

( p
2−A0−1
m1−1

)
ways

the remaining bits of Q0,1 can fall,
( p

2−A1−1
m1

)
arrangements of the bits of Q1,0,

and
( p

2−A1−1
m0

)
arrangements of the bits of Q1,1. Similar estimates hold for Q1,0,

or Q1,1.

We sum over the l locations considering each of the blocks of Q and their
respective weights. Then the overall sum is
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p−1∑
j0=0

p
2∑

A0=dv−1

(
A0 − 1

dv − 2

) p−1∑
j1=0

p
2∑

A1=dv−1

(
A1–1

dv–2

)

·
p−1∑
l=0

((p
2 –A0 − 2

m0 − 1

)(p
2 –A0 − 1

m1

)(p
2 –A1 − 1

m1

)(p
2 –A1 − 1

m0

)
+

(p
2 –A0 − 1

m0

)(p
2 –A0 − 2

m1 − 1

)(p
2 –A1 − 1

m1

)(p
2 –A1 − 1

m0

)
+

(p
2 –A0 − 1

m0

)(p
2 –A0 − 1

m1

)(p
2 –A1 − 2

m1 − 1

)(p
2 –A1 − 1

m0

)
+

(p
2 –A0 − 1

m0

)(p
2 –A0 − 1

m1

)(p
2 –A1 − 1

m1

)(p
2 –A1 − 2

m0 − 1

)))
·
(

1−O
(
m

p

))
.

(6)

Failure to impose full weight requirements onHQ introduces double-counting.
This occurs when more than one block of Q influences l, though the probability
of this event will not exceed O(mp ). The constant sums yield the factor of p3.

We can now estimate the percentage of these recovered, ultra-weak keys out
of all possible keys.

Theorem 4.2. Let m = m0 + m1, x = A0

p , y = A1

p . Out of
(
p
dv

)2( p
m0

)2( p
m1

)2
possible keys, we estimate the percentage of ultra-weak keys found in a single
iteration of the decoding algorithm above as

dv
2(dv − 1)2m

∫ 1
2

x=0

∫ 1
2

y=0

(xy)dv−2

((
1

2
− x
)(

1

2
− y
))m(

1
1
2 − x

+
1

1
2 − y

)
dydx.

Proof. Note that the lines 2− 5 of (4) are approximately(p
2 −A0

m0

)(p
2 −A0

m1

)(p
2 −A1

m1

)(p
2 −A1

m0

)(
m0 +m1
p
2 −A1

+
m0 +m1
p
2 −A0

)
. (7)

For b, c ∈ {0, 1}, (p
2 −Ab
mc

)
≈
(
p

mc

)(
1

2
− Ab

p

)mc

(8)

and (
Ab − 1

dv − 2

)
≈
(

p

dv − 2

)(
Ab
p

)dv−2

(9)

since p is much larger than m0,m1, dv. We rewrite (4) using the approximations
of expressions (7,8) as
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p3

p
2∑

A0=dv−1

(
A0 − 1

dv − 2

) p
2∑

A1=dv−1

(
A1 − 1

dv − 2

)(
p

m0

)2(
1

2
− A0

p

)m0+m1

(10)

(
p

m1

)2(
1

2
− A1

p

)m0+m1
(
m0 +m1
p
2 −A1

+
m0 +m1
p
2 −A0

)
. (11)

Applying approximation (9) further reduces expression (10) to

p3

(
p

m0

)2(
p

m1

)2(
p

dv − 2

)2
p
2∑

A0=dv−1

(
A0

p

)dv−2
p
2∑

A1=dv−1

(
A1

p

)dv−2

(
1

2
− A0

p

)m0+m1
(

1

2
− A1

p

)m0+m1
(
m0 +m1
p
2 −A1

+
m0 +m1
p
2 −A0

)

=p2

(
p

dv − 2

)2(
p

m0

)2(
p

m1

)2

m

p
2∑

A0=dv−1

p
2∑

A1=dv−1

(
A0

p

A1

p

)dv−2(
1

2
− A0

p

)m
(

1

2
− A1

p

)m(
1

1
2 −

A0

p

+
1

1
2 −

A1

p

)
.

Letting x = A0

p , y = A1

p , this is approximated by

p2

(
p

dv

)2(
p

m0

)2(
p

m1

)2

m
dv

2(dv − 1)2

(p− dv + 2)2(p− dv + 1)2

· p2

∫ 1
2

x=0

∫ 1
2

y=0

(xy)dv−2

(
1

2
− x
)m(

1

2
− y
)m(

1
1
2 − x

+
1

1
2 − y

)
dydx.

Dividing by
(
p
dv

)2( p
m0

)2( p
m1

)2
, the result follows.

Evaluating this percentage with the claimed-256-bit ephemeral (CPA-secure)
key parameters of LEDAcrypt — dv = 11,m = 13 — we determine that 1 in
272.8 ephemeral keys are broken by one iteration of ISD. Similarly for the long-
term (CCA-secure) key setting, we evaluate with the claimed 256-bit parameters
— dv = 13,m = 13 — and conclude the number of long-term keys broken is 1
in 280.6.

This result merely determines the number of keys that can be recovered given
that the information set of both blocks of M is chosen to be the last p

2 columns.2

In the following, we turn to demonstrating a class of additional information sets
that are as effective as this one.

2For the reader, we point out that if, hypothetically, we had a sufficiently large num-
ber of totally independent information sets that were equally “rewarding” in recovering
keys, this would straightforwardly imply ≈ 272.8-time and ≈ 280.6-time “full” attacks
against LEDAcrypt’s claimed-256-bit parameters rather than weak-key attacks.
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Remark 3. We remind the reader that instead of referring to the pairs of p−1
2 , p+1

2
columns of blocks of M , we use p

2 in both cases. This has a negligible affect on
our results.

4.3 Enumerating ultra-weak keys for all information sets

Now we will demonstrate a multi-iteration ISD attack that is effective against
the class of all ultra-weak keys. To set up the discussion, we begin by highlighting
two, further “degrees of freedom,” which will allow us to find additional, relevant
information sets to guess:

1. Changing the ring representation: Contiguity of indices depends on
the choice of ring representation. The large family of ring isomorphisms on
Z[x]/〈xp−1〉 given by f(x)→ f(xt) for t ∈ [0, p] preserves Hamming weight.
For example, we can use the family of polynomials

H ′i = Q′i,j = 1 + xt + x2t + ...+ xb
p
4 ct

in this attack, since there exists one t such that H ′i has consecutive nonzero
coefficients. Choices of t ∈ {1, . . . , p−1

2 } yield independent information sets
(noting that choices of t and −t mod p yield equivalent information sets).

2. Changing the relative offset of the two consecutive blocks: We can
also change the beginning index of the consecutive blocks produced within
L′0 or L′1 (by modifying the beginning indices of H ′i and Q′i,j to suit). Note
that shifting both L′0 and L′1 by the same offset will recover equivalent keys.
However, if we fix the beginning index of L′0 and allow the beginning index of
L′1 to vary, we can find more, mostly independent information sets in order
to recover more, distinct keys. The exact calculation of how far one should
shift L′1’s indices for a practically effective attack is somewhat complex; we
perform this analysis below in the remainder of this subsection.

Recall that in the prior 1-iteration attack, we considered one example class
of ultra-weak keys – namely, those keys where the polynomials L0 and L1 are of
degree at most p

2 . Here, we will now take a broader view on the weakest-possible
keys.

Definition 4.3. We define the class of ultra-weak keys to be those where,
in some ring representation, both H0Q0,0 + H1Q1,0 and H0Q0,1 + H1Q1,1 have
nonzero coefficients that lie within a block of p−1

2 -many consecutive (modulo p)
degrees.

Our goal will be now to find a multi-iteration ISD algorithm — by estimat-
ing how far to shift the offset of L′1 per iteration — that recovers as much of
the class of ultra-weak keys as possible without “overly wasting” the attacker’s
computational budget. Toward this end, recall that we have a good estimate
in Theorem 4.2 of the fraction of keys (2−72.8, resp. 2−80.6) recovered by the
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best-case, single iteration of our ISD algorithm. In what follows, we will first
calculate the fraction of ultra-weak keys as a part of the total key space.

Let 2−X be the fraction of all keys recovered by the best-case, single iteration
of our previous ISD algorithm. Let 2−Y be the fraction of ultra-weak keys among
all keys. On the assumption that every ring representation leads to independent
information sets (chosen uniformly for each invocation of ISD) and on the as-
sumption that independence of ISD key-recovery is maximized by shifting “as
far as possible,” we will compute an estimate of the number of index-shifts that
should be performed by the optimal ultra-weak-key attacker as 2Z = 2X−Y . Be-
yond 2Z shifts per guess (but not until), the attacker should begin to experience
diminishing returns in how many keys are recovered per shifted guess.

Therefore, given an index beginning at 1 out of p positions, the attacker will

shift by
p( p−1

2 )

2Z indices at each invocation (where the factor p−1
2 accounts for the

effect of the different possible ring representations). By assumption, each such
guess will be sufficiently independent to recover as many keys in expectation
as the initial, best-guess case described by the 1-iteration algorithm. We note
that additional, ultra-weak keys will certainly be obtained by performing more

work — specifically by shifting less than
p( p−1

2 )

2Z per guess — but necessarily at
a reduced rate of reward per guess.

Toward this end, we now calculate the number of ultra-weak keys then the
fraction of ultra-weak keys among all keys following the format of the previous
calculation.

Theorem 4.4. The total number of ultra-weak keys is

p− 1

2
p2

p
2∑

A0=dv−1

p
2∑

A1=dv−1

(
A0 − 1

dv − 2

)(
A1 − 1

dv − 2

)
(12)

·
p−1∑
l0=0

((p
2 −A0 − 1

m0 − 1

)(p
2 −A1 − 1

m1

)
+

(p
2 −A0 − 1

m0

)(p
2 −A1 − 1

m1 − 1

))
(13)

·
p−1∑
l1=0

((p
2 −A0 − 1

m0

)(p
2 −A1 − 1

m1 − 1

)
+

(p
2 −A0 − 1

m0 − 1

)(p
2 −A1 − 1

m0

))
. (14)

Proof. The proof technique follows as in Theorem 4.1. Details are found in the
appendix, B.1.

Theorem 4.5. Let m = m0 + m1, x = A0

p , y = A1

p . The fraction of ultra-weak
keys out of all possible keys is

p− 1

2
dv

2(dv − 1)2

∫ 1
2

x=0

∫ 1
2

y=0

xdv−2ydv−2

(
1

2
− x
)m(

1

2
− y
)m

(
m0

2 +m1
2

( 1
2 − x)( 1

2 − y)
+

m0m1

( 1
2 − x)2

+
m0m1

( 1
2 − y)2

)
dydx.

Proof. Similar techniques apply. See appendix B.2 for details.
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We evaluate the fraction of weak keys using the claimed CPA-secure parame-
ters p = 36877,m = 13, dv = 11 and determine that 1 in 254.1 ephemeral keys are
broken. Evaluating with one of the CCA-secure parameter sets p = 152267,m =
13, dv = 13, approximately 1 in 259.7 long-term keys are broken.

Given the above, we can make an estimate as to the optimal shift-distance per

ISD invocation as
36,877( 36,876

2 )

272.8−54.1 ≈ 1597 ≈ 210.6 for the ephemeral key parameters

and
152,267( 152,266

2 )

280.6−59.7 ≈ 5925 ≈ 212.5 for the long-term key parameters.
The multi-iteration ISD algorithm against the class of ultra-weak keys, then,

makes its first guess (except, one in each ring representation) as in the case
of the 1-iteration ISD algorithm. It then shifts the relative offset of the two
consecutive blocks by the values calculated above and repeats (again, in each
ring representation).

This will not recover all ultra-weak keys, but it will recover a significant
fraction of them. In particular, if the support of each block of L, rather than
fitting in p

2 consecutive bits fits in blocks that are smaller by at least 1
4 of the

shift distance. We can therefore lower bound the fraction of recovered keys by
replacing factors of 1

2 with factors of p
2 minus half or a quarter of the offset, all

divided by p, to find the sizes of sets of private keys of which we are guaranteed
to recover all, or at least half of respectively.

The multi-iteration ISD algorithm attacking the ephemeral key parameters
will make 272.8−54.1 ≈ 218.7 independent guesses and recover at least 1 in 256.0

of the total keys. The multi-iteration ISD algorithm attacking the long-term key
parameters will make 280.6−59.7 ≈ 220.9 independent guesses and recover at least
1 in 261.6 of the total keys.

4.4 Estimating the effect of more advanced information-set
decoding

Our attempts to enumerate all weak keys were based on the assumption that
the adversary was using an ISD variant that required a row of L to be uniformly
0 on all columns of the information set. The state of the art in information set
decoding still allows the adversary to decode provided that a row of L has weight
no more than about 6 on the information set. For example, Stern’s algorithm [29]
with parameter 3 would attempt to find a low weight row of L as follows.

The information set is divided into two disjoint sets of p
2 columns. The first

row of L to be recovered should have weight at most 3 within each of the two
sets. Further, the same row of L should have have Ω(log(p)) many consecutive
0’s in column-indices that are disjoint from those of the information set. If both
of these conditions occur, then a matrix inversion is performed (even though 6
non-zero bits were contained in the information set).

Note that for reasonably large p, nearly a third of the sparse vectors having
weight 6 in the information set will meet both conditions. The most expensive
steps in the Stern’s algorithm iteration are a matrix inversion of size p and a claw
finding on functions with logarithmic cost in p and domain sizes of

( p
2
3

)
. The claw

finding step is similar in cost to the matrix inversion, both having computational
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cost ≈ p3. The matrix inversion step is present in all ISD algorithms. Therefore
with Stern’s algorithm we can recover in a single iteration with similar cost to
a single iteration of a simpler ISD algorithm, O(1) of the private keys where a
row of L has weight no more than 6 on the information set columns.

Recall that we choose the information set to be of size ≈ p
2 in L′. The dis-

tribution of the non-zero coordinates within a successful guess of information
set will be more heavily weighted toward the middle of the set and approxi-
mately triangular shaped (since these coordinates are produced by convolutions
of polynomials). In particular, we will heuristically model both of the tails of the
distribution as small triangles containing 3 bits on the left side and three bits
on the right that are missed by the choice of information set.

Let W = 2dv(m0 +m1) denote the number of non-zero bits in L′. Then the
actual fraction ε that the information set (in the context of advanced information
set decoding) should target within L, rather than 1/2, can be estimated by
geometric area as

ε ·

(
1−

√
3

W/2

)
=

1

2

or, re-writing:

ε =
1

2
(

1−
√

3
W/2

) .
For the claimed-256-bit ephemeral key parameters, we have WCPA = 286. For

the claimed-256-bit long-term key parameters, we have WCCA = 338. Therefore,

εCPA =
1

2
(

1−
√

3
286/2

) ≈ 0.585.

εCCA =
1

2
(

1−
√

3
338/2

) ≈ 0.577.

So – heuristically – we can model the effect of using advanced information
set decoding algorithms by replacing the 1

2 ’s in the calculations of the theorems
earlier in this section by εCPA or εCCA respectively.

4.5 Rejection sampling considerations

We recall that LEDACrypt’s KeyGen algorithm explicitly requires that the parity
check matrix L be full weight. Intuitively full weight means that no cancellations
occur in the additions or the multiplications that are used to generate L from
H and Q. Formally, the full weight condition on L can be stated as:

∀i ∈ {0, . . . , n0 − 1}, weight(Li) = dv

n0−1∑
j=0

mj .

When a weak key notion causes rejections to occur significantly more often
for weak keys than non-weak keys, we will effectively reduce the probability of
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weak key generation compared to our previous analysis. As an extreme example,
if, for a given weak key notion, rejection sampling rejects all weak keys, then no
weak keys will ever be sampled. We therefore seek to measure the probability
of key rejection for both weak keys and keys in general in order to determine
whether the effectiveness of this attack is reduced via rejection sampling.

Let K, W ⊂ K, and KeyGen be the public key space, the weak key space,
and the key generation algorithm of LEDACrypt, respectively. Let K′,W ′ ⊂ K′,
and KeyGen’ be the associated objects if rejection sampling were omitted from
LEDACrypt. We observe that since KeyGen samples uniformly from K,

Pr [pk ∈ W|(pk, sk)← KeyGen()] =
|W|
|K|

.

This equality additionally holds when rejection sampling does not occur. Since,
until now, all of our analysis has ignored rejection sampling we have effectively
been measuring |W ′|/|K′|. We therefore seek to find a relation that allows us
determine |W|/|K| from |K′| and W ′|. We observe that

|W|
|K|

=
|W|
|K|
|W ′|
|W ′|

|K′|
|K′|

=
|W ′|
|K′|

|W|
|W ′|

|K′|
|K|

.

Therefore it holds that the probability of generating a weak key when we consider
rejection sampling for the first time in our analysis changes by exactly a factor
of (|W|/|W ′|) · (|K′|/|K|). This is precisely the probability that a weak key will
not be rejected due to weight concerns divided by the probability that key will
not be rejected due to weight concerns.

We note that as long as the rejection probabilities for both keys and weak
keys is not especially close to 0 or 1, then it is sufficient to sample many keys
according to their distributions and observe the portion of these keys that would
be rejected.

In order to practically measure the security gained by rejection sampling
for the 1-iteration ISD attack against the ephemeral key parameters, we sample
10,000 keys according to KeyGen’ and we sample 10,000 weak keys according
to KeyGen’ and we observe how many of them are rejected. We observe that
approximately 39.2% of regular keys are rejected while approximately 67.4% of
weak keys are rejected. We therefore conclude for this attack and this parameter

set, |W||K| = 0.582 |W
′|

|K′| . Therefore, rejection sampling grants less than 1 additional

bit of security back to LEDACrypt.
This attack analysis can be efficiently reproduced for additional parameter

sets and alternative notions of weak key with the same result.

4.6 Putting it all together

Finally, we re-calculate the results of Section 4.2 using Theorems 4.2 and 4.5,
but accounting for the attack improvement of using advanced information set
decoding from Section 4.4 and accounting for the security improvement due
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to rejection sampling issues in Section 4.5. We re-write the formulas with the
substitutions of εCPA (resp. εCPA) for the constant 1

2 for the reader, and note
that the definition of ultra-weak keys has been implicitly modified to have more
liberal degree constraints to suit the advanced ISD subroutine being used now.

Let x, y,m be defined as in Theorem 4.5. For the case of claimed-256-bit
security for ephemeral key parameters, the fraction of ultra-weak keys recovered
by a single iteration of the advanced ISD algorithm is

dv
2(dv − 1)2m

∫ ε

x=0

∫ ε

y=0

(xy)dv−2 ((ε− x) (ε− y))
m

(
1

ε− x
+

1

ε− y

)
dydx,

and the fraction of these ultra-weak keys out of all possible keys is

(εp)dv
2(dv − 1)2

∫ ε

x=0

∫ ε

y=0

xdv−2ydv−2 (ε− x)
m

(ε− y)
m

(
m0

2 +m1
2

(ε− x)(ε− y)
+

m0m1

(ε− x)2
+

m0m1

(ε− y)2

)
dydx.

Evaluating these formulae with ephemeral key parameters dv = 11,m0 =
7,m1 = 6, p = 36, 877 and substituting εCPA = .585 yields 1 key recovered in
262.62 per single iteration, and 1 ultra-weak key in 243.90 of all possible keys.
This yields an algorithm making 262.62−43.90 = 218.72 guesses and recovering 1
in 247.72 of the ephemeral keys (accounting for the loss due to rejection sampling
and the limited number of iterations).

Substituting εCCA = .577 similarly and evaluating with long-term key param-
eters dv = 13,m0 = 7,m1 = 6, p = 152, 267 yields 1 key recovered in 270.45 per
single iteration and 1 ultra-weak key in 249.55 of all possible keys. This yields
an algorithm making 270.45−49.55 = 220.90 guesses and recovering 1 in 252.54 of
the long-term keys (accounting for the loss due to rejection sampling and the
limited number of iterations).

To conclude, we would like to compare this result against the claimed se-
curity level of NIST Category 5. Formally, these schemes should be as hard to
break as breaking 256-bit AES. Each guess in the ISD algorithms leads to a cost
of approximately p3 bit operations (due to linear algebra and claw finding oper-
ations combined). This is 245.5 bit operations for the ephemeral key parameters
and 251.6 bit operations for the long-term key parameters. A single AES-256
operation costs approximately 215 bit operations. This yields the main result of
this section.

Theorem 4.6 (Main). There is an advanced information set decoding algo-
rithm that costs the same as 249.22 AES-256 operations and recovers 1 in 247.72

of LEDAcrypt’s Category 5 ephemeral keys.
Similarly, there is an advanced information set decoding algorithm that costs

the same as 257.50 AES-256 operations and recovers 1 in 252.54 of LEDAcrypt’s
Category 5 long-term keys.

Remark 4. Note that 49.22+47.72 = 96.94� 256, 57.50+52.54 = 110.03� 256.
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Remark 5. Finally, we recall that we used various heuristics to approximate the
above numbers, concretely. However, these simplifying choices can only affect
at most one or two bits of security compared to a fully formalized calculation
(which would come at the expense of making the analysis significantly more
burdensome to parse for the reader).

5 Attack on All Keys

To conclude, we briefly analyze the asymptotic complexity of our new attack
strategy in the context of recovering keys in the average case. We first note that,
assuming the LEDAcrypt approach is parameterized in a balanced way – that
is, H and Q are similarly sparse, and further assuming that n0 is a constant –
the ordinary ISD attack (with a randomly chosen information set) has a com-

plexity of exp(Õ(p
1
2 )). To see this, observe that all known ISD variants using a

random information set to find an asymptotically sparse secret parity check ma-

trix constructed like the LEDAcrypt private key, have complexity O
(

n0

n0−1

)w
,

where w = n0dvm is the row weight of the secret parity check matrix. Efficient
decoding requires w = O(p

1
2 ). By inspection this complexity is exp(Õ(p

1
2 ))

However, we obtain an improved asymptotic complexity when using struc-
tured information sets as follows.

Theorem 5.1. The asymptotic complexity of ISD using an appropriate choice
of structured information sets, when attacking all LEDAcrypt keys in the worst
case, is exp(Õ(p

1
4 )).

Proof. We analyze the situation with structured information sets. Imagine we
are selecting the nonzero coefficients of H ′ and Q′ completely at random, aside
from a sparsity constraint. The sparsity constraint needs to be set in such a way
that the row weight of the product H ′Q′ (restricted to two cyclic blocks) has
row weight no more than p. This further constrains the row weight of each cyclic

block of H ′ and Q′ to be approximately
(
pln(2)
n0

) 1
2

= O(p
1
2 ). The probability of

success per iteration is then at least O

((
ln(2)
pn0

) 1
2 ·(

∑n0−1
i=0 mi+n0dv)

)
. With bal-

anced parameters, dv and the mi are O(p
1
4 ), thus the total complexity is indeed

exp(Õ(p
1
4 )). Note that when H ′ and Q′ are random aside from the sparsity con-

straint, the probability that the supports of H ′ and Q′ contain the supports
of H and Q respectively does not depend on H and Q, so the structured ISD
algorithm is asymptotically better than the unstructured ISD algorithm, even
when we ignore weak keys.

Remark 6. The fact that there exists an asymptotically better attack than stan-
dard information set decoding against keys structured like those of LEDAcrypt
is not itself particularly surprising. Indeed, the very simple attack that pro-
ceeds by enumerating all the possible values of H and Q is also asymptotically

27



exp(Õ(p
1
4 )). However, this simple attack does not affect the concrete parameters

presented in the Round 2 submission of LEDAcrypt.
In contrast, we strongly suspect, but have not rigorously proven, that our

attack significantly improves on the complexity of standard information set de-
coding against typical keys randomly chosen for some of the submitted parameter
sets of LEDAcrypt. In particular, our estimates suggest that the NIST category
5 parameters with n0 = 2 can be attacked with an appropriately chosen distribu-
tion for H ′ and Q′ (e.g. with each polynomial block of H ′ and Q′ chosen to have
5 or 6 consecutive chunks of nonzero coefficients in some ring representation)
and that typical keys will be broken at least a few hundred times faster than
with ordinary information set decoding.

If it were the case that we were attacking an “analogously-chosen” parameter
set for LEDAcrypt targeting higher security levels (512-bit security, 1024-bit
security, and so on), we believe a much larger computational advantage would
be obtained and (importantly) be very easy to rigorously demonstrate.

6 Conclusion

In this work, we demonstrated a novel, real-world attack against LEDAcrypt –
one of 17 remaining 2nd Round candidates for standardization in NIST’s Post-
Quantum Cryptography competition. The attack involved a customized form
of Information Set Decoding, which carefully guesses the information set in a
non-uniform manner so as to exploit the unique product structure of the keys in
LEDAcrypt’s design. The attack was most effective against classes of weak keys
in the proposed parameter sets asserted to have 256-bit security (demonstrating
a trade-off between computational time and fraction of the key space recovered
that was better than expected even of a 128-bit secure cryptosystem), but the
attack also substantially reduced security of all parameter sets similarly.

Moreover, we demonstrated that these type of weak keys are present through-
out the key space of LEDAcrypt, so that simple “patches” such as rejection sam-
pling cannot repair the problem. This was done by demonstrating a continuum
of progressively larger classes of less weak keys and by showing that the same
style of attack reduces the average-case complexity of certain parameter sets.
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16. Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. Squaring Attacks on McEliece
Public-Key Cryptosystems Using Quasi-Cyclic Codes of Even Dimension. Des.
Codes Cryptography, 80(2):359–377, August 2016.

17. Baldi M., Bodrato M., and Chiaraluce F. A New Analysis of the McEliece Cryp-
tosystem Based on QC-LDPC Codes. Ostrovsky R., De Prisco R., Visconti I. (eds)
Security and Cryptography for Networks. SCN 2008., volume 5229, 2008.

18. Martin Albrecht, Carlos Cid, Kenneth G. Paterson, Cen Jung Tjhai, Mar-
tin Tomlinson. NTS-KEM. available at https://csrc.nist.gove/projects/

post-quantum-cryptography/round-2-submission, 2019. Technical report, Na-
tional Institute of Standards and Technology.

19. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding Random Linear
Codes in O(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT 2011, pages 107–124, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

20. Alexander May and Ilya Ozerov. On Computing Nearest Neighbors with Ap-
plications to Decoding of Binary Linear Codes. In Elisabeth Oswald and Marc
Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages 203–228,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

21. Robert McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory.
The Deep Space Network (DSN) Progress Report, 44:114–116, 1978.

22. Dustin Moody and Ray Perlner. Vulnerabilities of “McEliece in the World of
Escher”. In Tsuyoshi Takagi, editor, Post-Quantum Cryptography, pages 104–117,
Cham, 2016. Springer International Publishing.

23. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu, Carlos
Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-
Pierre Tillich, Gilles Zemor. BIKE. available at https://csrc.nist.gove/

projects/post-quantum-cryptography/round-2-submission, 2019. Technical
report, National Institute of Standards and Technology.

24. Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Prob. Control and Inf. Theory, 15(2):159–166, 1986.

25. Ray Perlner. Optimizing Information Set Decoding Algorithms to Attack Cy-
closymmetric MDPC Codes. In Michele Mosca, editor, Post-Quantum Cryptogra-
phy, pages 220–228, Cham, 2014. Springer International Publishing.

26. Eugene Prange. The use of information sets in decoding cyclic codes. IRE Trans-
actions on Information Theory, 8(5):5–9, 1962.

27. Nicolas Sendrier. Decoding One Out of Many. In Bo-Yin Yang, editor, Post-
Quantum Cryptography, volume 7071 of Lecture Notes in Computer Science, pages
51–67. Springer Verlag, 2011.

28. Peter W. Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. Proceedings 35th Annual Symposium on Foundations of Computer Science
(FOCS), pages 124–134, 1994.

29. Jacques Stern. A method for finding codewords of small weight. In Coding Theory
and Applications, 3rd International Colloquium, Toulon, France, November 2-4,
1988, Proceedings, pages 106–113, 1988.

30

https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission


A Preliminaries

A.1 Overview of LEDAcrypt: QC-LDPC codes

The 2nd Round submission to NIST’s PQC standardization process, LEDAcrypt,
includes a key-encapsulation mechanism (KEM) built from the Niederreiter cryp-
tosystem (LEDAcrypt KEM) and a public-key encryption (PKE) scheme built
from the McEliece cryptosystem (LEDAcrypt PKC), both based on linear error-
correcting codes. LEDAcrypt crucially is built on top of QC-LDPC codes, or
Quasi-Cyclic Low-Density Parity-Check codes. We briefly survey the construc-
tion of such codes (with emphasis on the details of LEDAcrypt) for the reader.

A p× p circulant matrix A is a matrix of the form

A =


a0 a1 a2 · · · ap−1

ap−1 a0 a1 · · · ap−2

ap−2 ap−1 a0 · · · ap−3

...
...

...
. . .

...
a1 a2 a3 · · · a0

 ,

that is, all of the rows (resp. columns) are cyclic shifts of the first row (resp.
column).

A Quasi-Cyclic (QC) matrix is a matrix of the form

B =


B0,0 B0,1 · · · B0,w−1

B1,0 B1,1 · · · B1,w−1

...
...

. . .
...

Bz−1,0 Bz−1,1 · · · Bz−1,w−1


for two positive integers w and z, where each Bi,j is a circulant matrix.

The set of p×p binary circulant matrices forms a ring under matrix addition
and multiplication modulo 2. The algebra of the polynomial ring F2[x]/〈xp + 1〉
is isomorphic to the ring of p× p circulant matrices over F2.

Binary error correcting codes use a redundant representation of information
primarily to detect and correct bit errors that occur during transmissions or
storage. Let Fk2 denote the k-dimensional vector space defined on F2. A binary
code, denoted C(n, k), is defined as a bijective map C(n, k) : Fk2 → Fn2 , n, k ∈
N, 0 < k < n between any binary k-tuple (called an information word) and a
binary n-tuple (called a codeword). We call n the length of the code and k the
dimension of the code.

Encoding via C(n, k) converts an information word u ∈ Fk2 into a codeword
c ∈ Fn2 . Given a codeword ĉ = c + e corrupted by an error vector e ∈ Fn2 with
Hamming weight t > 0, decoding aims to recover the original information word
u and the error vector e. A code is called t-error-correcting if, for any value of
e of Hamming weight t, given ĉ there is an efficient decoding procedure that
retrieves (u, e). Further, the code C(n, k) is linear if and only if the set of its 2k

codewords is a k-dimensional subspace of the vector space Fn2 .

31



For any linear code, there are two equivalent descriptions of the code that
are critical to its use: the generator matrix G and the parity-check matrix H.

Given a linear code C(n, k) and the vector subspace Γ ⊂ Fn2 containing
its 2k codewords, it is possible to choose k linearly independent codewords
{g0, g1, ..., gk−1} ∈ Fn2 to form a basis of Γ. That is, any codeword c = (c0, c1, ..., cn−1)
can be written as a linear combination of the basis vectors; i.e.

c = u0g0 + u1g1 + ...+ uk−1gk−1

where the ui ∈ {0, 1} are the representatives of u = (u0, u1, ..., uk−1) that the
code maps into c. This can be re-written as c = uG, where G is a full row rank
k × n binary matrix; i.e.

G =


g0

g1

...
gk−1

 .
The set of all n-bit vectors in Fn2 that are orthogonal to any codeword of

the code subspace Γ is its orthogonal complement Γ⊥. Its dimension is dim(Γ⊥)
= n − dim(Γ) = n − k = r. A basis of Γ⊥ is similarly obtained by sampling r
linearly independent vectors in Γ⊥ and writing

H =


h0

h1

...
hr−1

 .
The r×n matrix H is known as the parity-check matrix of the code C(n, k), and
for any n-bit vector x ∈ Fn2 , the r×1 vector s = HxT is known as the syndrome of
x through H. Note that every codeword c ∈ Γ satisfies the equality HcT = 0r×1;
that is a codeword belonging to C(n, k) has a null syndrome through H.

A QC code is defined as a linear (block) code C(n, k) with information word
size k = p ·k0 and codeword size n = p ·n0, where n0 is the basic block length of
the code and each cyclic shift of a codeword by n0 symbols gives another valid
codeword. LEDAcrypt relies on a QC code C(p·n0, p·k0) where the generator and
party-check matrices are composed of p× p circulant sub-matrices (i.e. blocks).

A Low-Density Parity-Check (LDPC) code C(n, k) is a special type of linear
block code characterized by a highly-sparse parity-check matrix H. In particular,
the Hamming weight of a column of H, denoted dv, is significantly smaller than
its length r and in fact decreases sub-linearly with it. LEDAcrypt is based on
a QC-LDPC code customized to the security levels targeted by NIST’s PQC
standardization process.

A.2 Overview of LEDAcrypt’s QC-LDPC code-based Niederreiter
and McEliece cryptosystems

We briefly review the relevant portions of LEDAcrypt’s QC-LDPC-based, public-
key encryption algorithms, McEliece ΠMcE = (KeyGenMcE,EncMcE,DecMcE) and
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Niederreiter ΠNie = (KeyGenNie,EncNie,DecNie). In LEDAcrypt, ΠMcE is used
to construct an IND-CCA2 public-key encryption scheme via the KI-γ transfor-
mation of Kobara-Imai [13] in the ROM, while ΠNie is transformed via HHK [11]
to produce an IND-CCA key-exchange mechanism in the ROM (and QROM).

However, our attacks will aim to recover the secret key of these cryptosys-
tems from their public keys alone. That is, the form of encryption, decryption,
encapsulation, and decapsulation will be immaterial here. Therefore, we will fo-
cus only on the underlying KeyGen algorithms, which are substantially similar
(admitting the same form of attack). In particular, both key generation algo-
rithms consider an appropriate QC-LDPC code C(n, k), have the same secret
key material, but differ in whether they output a public key in the form of a
parity-check matrix or a generator matrix systematic form.

Let perm(·) denote the permanent of a matrix. Let w(·) denote the number
of nonzero coefficients of a polynomial (its weight). Note that if 2 is a primitive
element of Zp, then its order ordp(2) is equal to the order of the multiplicative
group of the field; i.e. ordp(2) = p− 1.

Both cryptosystems’ key generation algorithms rely on the following fact.

Fact A.1. [3, cf. Theorem 1.1.14] Let p > 2 be a prime such that ordp(2) = p−1
and Q is an n0 × n0 matrix of elements of F2[x]/〈xp + 1〉. If perm(w(Q)) is odd
and perm(w(Q)) < p, then Q is non-singular.

Key Generation. Now we describe the KeyGen algorithm(s).

Fix a code C(n, k). Let the codeword length be n = p ·n0 and the information
word length k = p(n0 − 1), where n0 ∈ {2, 3, 4} and p is a prime number such
that ordp(2) = p− 1.

1. (H,Q)← GenHQ(seed) : Find two random binary matrices corresponding to
the secret quasi-cyclic p× p ·n0 parity-check matrix H of a given QC-LDPC
code and also a p · n0 × p · n0 quasi-cyclic sparse binary matrix Q.
– Note that H = [H0, ...,Hn0−1], where each Hi is a p× p circulant block

with w(Hi) = dv for 0 ≤ i < n0.
– Note that Q is an n0 × n0 block matrix with w([Qi,0, ..., Qi,n0−1]) = m

for 0 ≤ i < n0.

2. Compute L := H ·Q.
– Writing L = [L0, ..., Ln0−1], note that each Lj =

∑
iHiQi,j is a p × p

circulant block.

3. If there is an index j so that w(Lj) 6= dv ×m, start over.

4. For i = 0 to n0 − 2, compute Mi := (Ln0−1)−1Li.
– M is thus the parity-check matrix in systematic form and from this, the

systematic generator matrix can easily be derived. Note that each Mi is
a p× p circulant block.

5. Output public key pkNie = [M0|...|Mn0−2|Ip] and secret key skNie = (H,Q).

In the case of McEliece style key generation, the final output is skMcE = skNie

and pkMcE = [Ip(n0−1)|[M0|...|Mn0−2]T ], where It denotes the t×t identity matrix.
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A.3 The standard attack: Information Set Decoding

Decoding an error-affected codeword for random codes is known to be an NP-
complete problem. [5]. The best known decoding algorithms which do not exploit
code structure are based on information-set decoding (ISD), an approach intro-
duced by Eugene Prange in [26]. The technique requires finding a large set of
error-free coordinates in a noisy codeword vector such that the corresponding
columns of the generator matrix form an invertible submatrix. The indices of
the error-free coordinates are known as the information set I.

Let G be a generator matrix of a code C. Let I be an information set such
that G restricted to I, denoted GI , forms an invertible submatrix. Let m be an
information word and c = mG + e, a noisy codeword. Then cI = (mG + e)I =
(mG)I + eI = (mG)I , and m can be recovered by computing cI ·G−1

I = (mG)I ·
G−1
I . This essentially outlines a message recovery attack.

The McEliece and Niederreiter cryptosystems use error-correcting codes such
that the public key is a random-looking representation of a code, while the secret
key is a representation of the same code that allows efficient decoding. In the
case of LEDAcrypt, the dual of the public code contains low-weight codewords
that coincide with the rows of the sparse parity-check matrix of the public code.
Recovering a sparse parity-check matrix of the code allows for efficient decoding,
and can thus be considered a key recovery attack.

A modified version of ISD can be used to to recover low-weight codewords
from the dual of the public code. In the case where n0 = 2, one must select a
subset of half the columns of L so that the support of a row of L is outside of
those columns. If successful, then the row of L can be recovered by simple linear
algebra and recognized as the private key by having low hamming weight. Many
improvements of Prange’s ISD algorithm have been published, and in particular
the series of improved ISD algorithms from [29] to [20] can be used to recover
low-weight code words from the dual of the public code with little additional
cost, when the subset of half the columns of L is instead chosen so that no more
than 4–6 of the support columns of a row of L are within the chosen subset.

B Proofs

B.1 Proof of Theorem 4.4

Proof. Let l0 be the location of the first nonzero bit of H0Q0,0 + H1Q1,0, l1
the location of the first nonzero bit of H0Q0,1 + H1Q1,1. Let j0, j1 be the first
nonzero bit of H0, H1, respectively. Suppose that the nonzero bits of H0, H1 are
located within a block of length A0, A1, respectively.

Once j0 is fixed, there are two blocks of Q which may influence the location
l0. If l0 is influenced by Q0,0, there are

( p
2−A0−1
m0−1

)
arrangements of the bits of

Q0,0 and
( p

2−A1−1
m1

)
possible arrangements of the bits of Q1,0. Otherwise, if l0

is influenced by Q1,0, there are
( p

2−A0−1
m0

)
,
( p

2−A1−1
m1−1

)
arrangements of Q0,0, Q1,0,

respectively. A similar calculation holds for the locations of l1 once j1 is fixed.
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Summing over all j0, A0, j1, A1, l0, l1 we obtain

p− 1

2

p−1∑
j0=0

p
2∑

A0=dv

(
A0 − 1

dv − 2

) p−1∑
j1=0

p
2∑

A1=dv

(
A1 − 1

dv − 2

)

·
p−1∑
l0=0

((p
2 −A0 − 1

m0 − 1

)(p
2 −A1 − 1

m1

)
+

(p
2 −A0 − 1

m0

)(p
2 −A1 − 1

m1 − 1

))

·
p−1∑
l1=0

((p
2 −A0 − 1

m0

)(p
2 −A1 − 1

m1 − 1

)
+

(p
2 −A0 − 1

m0 − 1

)(p
2 −A1 − 1

m0

))
.

Simplifying the expression, the result holds.

B.2 Proof of Theorem 4.5

Proof. The expressions in (13,14) are approximately equal to(p
2 −A0 − 1

m0

)(p
2 −A1 − 1

m1

)(p
2 −A0 − 1

m1

)(p
2 −A1 − 1

m0

)
·(

m0
2 +m1

2

(p2 −A0)(p2 −A1)
+

m0m1

(p2 −A0)2
+

m0m1

(p2 −A1)2

)
.

Applying approximations (8,9) as in the proof of Theorem 4.2, we rewrite ex-
pressions (12,13,14) as

p− 1

2
p2

(
p

m0

)2(
p

m1

)2(
p

dv − 2

)2

p
2∑

A0=dv−1

p
2∑

A1=dv−1

(
A0

p

A1

p

)dv−2(
1

2
− A0

p

)m(
1

2
− A1

p

)m
(

m0
2 +m1

2

(p2 −A0)(p2 −A1)
+

m0m1

(p2 −A0)2
+

m0m1

(p2 −A1)2

)
≈p− 1

2
p2

(
p

m0

)2(
p

m1

)2(
p

dv

)2
dv

2(dv − 1)2

(p− dv + 2)2(p− dv + 1)2

p2

∫ 1
2

x=0

∫ 1
2

y=0

(xy)dv−2

(
1

2
− x
)m(

1

2
− y
)m

(
m0

2 +m1
2

( 1
2 − x)( 1

2 − y)
+

m0m1

( 1
2 − x)2

+
m0m1

( 1
2 − y)2

)
dydx.

Dividing by
(
p
dv

)2( p
m0

)2( p
m1

)2
, the result follows.

35



B.3 Proof of Lemma 3.3

Proof. We first prove thesis i), and focus on a generic position i. Let ã and b̃ be
the polynomials obtained by lifting a and b, respectively, from F2[x]/〈xp + 1〉 to
Z[x]/〈xp − 1〉. Since c ≡ c̃ mod 2, we have

wt(c) =

p−1∑
i=0

c̃i −
∑

j s.t. c̃j is odd

(c̃j − 1)−
∑

` s.t. c̃` is even

c̃`.

We have
∑p−1
i=0 c̃i = wt(a)wt(b) = ωaωb = ω and, by hypothesis, c has maximum

weight, that is wt(c) = ω. This means that∑
j s.t. c̃j is odd

(c̃j − 1) +
∑

` s.t. c̃` is even

c̃` = 0,

which implies that all odd coefficients in c̃, in number equal to ω, have value
equal to 1 and all even coefficients are equal to 0.
Let c′ = a′b′ ∈ Z[x]/〈xp − 1〉; we define N(a′, b′, i) analogously to N(a, b, i), i.e.,
N(a′, b′, i) contains all indexes ` such that ` ∈ S(a′) and ` − i mod p ∈ S(b′);
clearly, |N(a′, b′, i)| = c′i and N(a, b, i) ⊆ N(a′, b′, i). Then, each c̃i can be seen
as the sum of exactly c′i products in the form a`bu, for proper indices ` and u;
because of the condition on the maximum weight, the products a`bu are either
all null, or all null expect one.
With a combinatorial perspective, we can describe the computation of c̃i through
an urn experiment, containing M balls of two colors. Balls of the first color
correspond to coefficients a`bu = 0, while balls of the second color correspond
to coefficients a`bu = 1. For the i-th coefficient in c̃, we randomly extract c′i
balls, with the restriction that either zero or one ball of the second color can be
selected. The number of balls in the urn, which we denote with M , equals the
sum of coefficients in c′, which is equal to |Ja| · |Jb|. We have M − ω balls of
the first color and ω of the second color. For the i-th coefficient in c̃, we extract
c′i balls: if all of them are of the first color, then c̃i = 0, otherwise c̃i = 1. The
number of favourable events for having c̃i = 0 is then obtained as

(
M−ω
c′i

)
, while

the number of possible extractions, taking into account that a maximum of one
ball of the second color can be selected, is equal to

(
M−ω
c′i

)
+ ω

(
M−ω
c′i−1

)
. Dividing

these two quantities and simple computations yield the formula of thesis i).
To prove thesis ii), we model again the computation of each coefficient ci with

the urn experiment. Then, the coefficients indexed by V are obtained through
t = |V | extractions without replacement: this is due to the fact that each product
a`bu contributes only to a single coefficient in c̃. At the first extraction, the
urn contains M − ω balls of the first color and ω of the second color. We have
c′v0 = 0 if and only if all extracted balls are of the first color. Then, at the second
extraction, the urn contains M − ω − c′v0 balls of the first color and ω of the
second one. Iteration of this reasoning easily returns the probability expressed
by the Lemma.
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C Constructing information sets

For the sake of completeness, in this Appendix we provide a procedural descrip-
tion of the methodology that, in Section 3, is used to construct sets for a chosen
family of weak keys. Such a procedure is depicted in Algorithm 1.

Algorithm 1 Constructing information sets for LEDAcrypt weak keys with
n0 = 2

Input: sets JH0 , JH1 , JQ0,0 , JQ0,1 , JQ1,0 , JQ1,1 ⊆ {0, 1, · · · , p− 1}, such that
Input: JHi and JQi,j have respective cardinalities BHi and BQi,j , for i = 0, 1
Input: and j = 0, 1.
Output: sets T0, T1 ⊆ {0, · · · , p− 1}, with respective cardinalities

⌊
p
2

⌋
and

⌈
p
2

⌉
.

1: for i← 0 to 1 do
2: H ′i ← polynomial with support JHi and coefficients over {0, 1} ⊆ Z
3: for j ← 0 to 1 do
4: Q′i,j ← polynomial with support JQi,j and coefficients over {0, 1} ⊆ Z
5: end for
6: end for
7: for i← 0 to 1 do
8: for j ← 0 to 1 do
9: L′i,j ← H ′jQ

′
j,i ∈ Z[x]/〈xp − 1〉

10: end for
11: end for
12: for i← 0 to 1 do
13: L′i = L′0,i + L′1,i
14: πi ← permutation such that πi(L

′
i) has non decreasing coefficients

15: end for
16: T0 ← first

⌊
p
2

⌋
terms of π0

17: T1 ← first
⌈
p
2

⌉
terms of π1

18: return {T0, T1}
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