
Bank run Payment Channel Networks

Zhichun Lu1, Runchao Han2,3, and Jiangshan Yu2?

1 Zhejiang Gongshang University, China
2 Monash University, Australia

3 CSIRO-Data61, Australia

Abstract. Payment Channel Networks (PCNs) have been a promising
approach to scale blockchains. However, PCNs lack liquidity, as large-
amount or multi-hop payments may fail. Payment griefing is one of the
identified attacks on PCNs’ liquidity, where the payee withholds the
preimage in Hash Time Locked Contract. Before this payment expires,
coins involved in this payment cannot be used in other payments.
We introduce Bankrun attack, which exploits payment griefing to bank
run PCNs. Bankrun in finance means numerous clients withdraw their
money from a bank, which makes the bank insolvent and even bankrupted.
In our Bankrun attack, the attacker generates sybil nodes, establishes
channels with hubs in the network, makes payments between his nodes
and griefs them simultaneously. If the adversary has sufficient coins, he
can lock a high percentage of coins in the PCN, so that the PCN may
no longer handle normal payments.
We introduce a framework for launching Bankrun attacks, and develop
three strategies with a focus on minimising the cost, draining important
channels, and locking most amount of coins, respectively. We evaluate
the effectiveness of Bankrun attacks on Bitcoin’s Lightning Network, the
first and most well-known PCN. Our evaluation results show that, us-
ing channels with 1.5% richest nodes, the attacker can lock 83% of the
capacity in the entire network. With connections to these nodes, an ad-
versary with 13% (∼77 BTC) of coins in the network can lock up to 45%
(∼ 267 BTC) of coins in the entire network until time out (e.g. for an
entire day); reduces the success rate of payments by 23.8%∼62.7%; in-
creases fee of payments by 3.5%∼14.0%; and increases average attempts
of payments by 26.4%∼113.7%, where payments range from 100,000 to
1,900,000 satoshi (7∼135 USD).

1 Introduction

Since Bitcoin, blockchains have achieved great success. However, they suffer from
limited throughput. Introduced by Lightning network (LN) [11], Payment Chan-
nel Network (PCN) is one of the promising approaches to scale blockchains.

Payment channels allow nodes to make offchain payments where transactions
do not need to be recorded on the blockchain. To open a payment channel, two
parties collaterise some of their coins in a 2-2 multi-signature address. To make

? corresponding author



a payment, two parties only need to sign a new transaction which updates their
balance in this channel. To close the channel, one of the two parties commits the
latest transaction to the blockchain to commit their final balance on the chain.
Without a direct channel, two parties can make off-chain payments through
multiple channels, and such payments are known as multi-hop payments. If a
party wants to make a payment, he should find a group of channels (i.e., a path)
that can direct him to the payee. The network of channels is called a Payment
Network Channel (PCN). A multi-hop payment should update involved channels
in an atomic way, which usually relies on Hash Time Locked Contracts (HTLCs).
HTLC is a contract that, the payee should reveal the preimage of a hash value
before timeout to redeem the payment, otherwise the payment will expire. In a
multi-hop payment, the payee chooses a preimage and computes its hash value,
and HTLC payments of all involved channels share this hash value. By revealing
this preimage, all HTLC payments are activated simultaneously.

Payment griefing [2] is an attack that exploits HTLC to reduce PCNs’ liq-
uidity i.e., the ability of a PCN to route payments. In payment griefing, the
attacker withholds the preimage of HTLCs. Before the payment expires, coins
involved in this payment are locked and cannot be used in other payments. The
attack is free, as for an unsuccessful payment the payer does not need to pay for
anything. In addition, this attack is not accountable as intermediate nodes does
not know who the payer is, due to the anonymity nature of PCNs.

In this paper, we introduce Bankrun attack, which exploits payment grief-
ing to bank run the entire PCN. Bank run [4] is a concept in finance, where
numerous clients withdraw their money from a bank simultaneously, as they
lose confidence to this bank due to events such as financial crisis. If the bank
does not have enough money in hand (i.e., is insolvent), the bank will be short
of liquidity and eventually go bankrupt. The key of bank run is initiate a large
number of withdraw requests to paralyse the bank, which is similar to our attack.
In a Bankrun attack in LN, the adversary generates a number of sybil nodes, es-
tablishes channels with existing nodes in the PCN, initiates numerous multi-hop
payments between his nodes and griefs them simultaneously. If the adversary
has sufficient coins, he can lock a high percentage of coins in the PCN, so that
the PCN may no longer handle normal payments.

We introduce a framework for launching Bankrun attacks, which consists of
four critical components, namely 1) node selection, 2) payment enumeration, 3)
payment ranking, and 4) attack. For node selection, the adversary selects a sub-
set of nodes in the PCN and establishes payment channels with them. We choose
richest nodes (aka. hubs) in the PCN, as they have more capacity in relying pay-
ments, have connections to large number of nodes, and are capable to route
more payments. For payment enumeration, the adversary enumerates all viable
payments between his nodes. We employ Breadth First Search (BFS) for finding
viable paths, and Ford-Fulkersons Algorithm [5] for calculating the maximum
amount that each path can afford. For payment ranking, the adversary orders
the enumerated payments in three ranking strategies according to the attack
objectives, namely 1) order-by-amount for breaking the network “backbone”



channels (i.e., channels with most capacities), 2) order-by-length for maximising
the locked coins while minimising the attack budget, and 3) order-by-size (the
multiplication of amount and length) for maximising the locked coins regardless
of the budget. During an attack, the adversary griefs all payments simultane-
ously. As we cannot know the balance of each channel, a payment may fail. In
this case we retry the payment by gradually decreasing its amount.

We then evaluate the effectiveness of Bankrun attacks on Bitcoin’s Lightning
Network [11] as an example. The effectiveness consists of three aspects, namely
the dropped success rate, the increased fee, and the increased attempts of pay-
ments. For ethical concern, the experiment is conducted in a simulated network.
Our results show that, with channels established with 1.5% richest nodes, the
attacker can occupy 83% capacity of the entire network. The payment griefing
attack is cheap to launch, and can significantly damage the liquidity of PCNs.
In particular, with 13% (∼77 BTC) coins in the network for making payments
(which will be refunded as payments will not be successful) and negligible coins
for opening payment channels, the attacker can launch a Bankrun attack that
locks 45% (∼267 BTC) coins in the network; reduces success rate of payments by
33.3%∼71.4%; increases fee of payments by 3.5%∼14.0%; and increases average
attempts of payments by 26.4%∼113.7%, where the amounts of payments range
from 100,000 to 1,900,000 satoshi (7∼135 USD4).

The main contributions are summarized as follows:

– We introduce Bankrun attack on PCNs.
– We provide a framework for launching Bankrun attacks.
– We evaluate Bankrun attacks on Bitcoin’s Lightning Network as an example.
– We show that Bankrun attacks are cheap and can significantly damage the

liquidity of PCNs.

Roadmap. §2 provides the background of the proposed attack. §3 describes
the security model. §4 describes Bankrun attack step by step. §5 describes how
we evaluate the attack’s effectiveness and provides the evaluation results and
analysis. §6 reviews relevant literatures, and §7 concludes this paper.

2 Background

2.1 Payment Channel Networks

Lightning Network [11] introduces the idea of Payment Channel Networks. A
payment channel allows two parties to pay each other without the need to pub-
lish every payment to the blockchain. Instead, two parties collaterise their coins
into a single on-chain transaction, and jointly sign it using a 2-2 multi-signature.
This creates a payment channel, where each party controls his coins. They can
make payments with each other by mutually signing new transactions with up-
dated amounts of their collaterised coins. Before closing the payment channel,

4 Bitcoin price was fetched from https://www.coinbase.com/price/bitcoin at
09/04/2020.

https://www.coinbase.com/price/bitcoin


two parties will not commit these subsequent payments to the blockchain. To
close the channel, one party commits the latest state of channel balance to the
blockchain, and coins in this channel will be allocated to both parties accordingly.

A B C

C sends h to A

A and B sign HTLC6
AB

B and C sign HTLC5
BC

C reveals s to B to proceed HTLC5
BC

B reveals s to A to proceed HTLC6
AB

Fig. 1: A multi-hop payment from A to C via an intermediate node B.

The payment channel can be further extended to support offline payments
that go through multiple channels (aka. multi-hop payments). Most multi-hop
payment protocols are based on Hash Time Locked Contracts (HTLCs). HTLC
is a contract between two parties that, a payment will be made if the payee
shows the preimage of a hash value within a timeout (represented as a block
height on the blockchain). If the payee does not show the preimage and the time
has reached the timeout, the payment will expire and deemed invalid.

Figure 1 describes a multi-hop payment where A pays 5 BTC to C via an
intermediate node B in Bitcoin’s Lightning Network. First, C chooses a random
string s as preimage and send its hash value h = H(s) to A, where H(·) is a
cryptographic hash function. A then signs a HTLC contract HTLC6

AB with B
stating “A will pay 6 BTC to B if B can show the value of s within a given
timeout (say 144 blocks)”. B also signs a HTLC contract HTLC5

BC with C
saying that “B will pay 5 BTC to C if C can show the value of s within a given
timeout (say 138 blocks)”. Then C shows s to B in order to redeem 5 BTC in
HTLC5

BC from B. In the meantime, B is able to redeem 6 BTC in HTLC6
AB

from A by revealing s to A. B is incentivised to reveal s, as B does not want to
lose money. The timelock of AB is set to be longer than BC, so B always has
sufficient time to reveal s to A. In our example, the timelock of AB is 24 hours,
and is one hour longer than BC.

By routing this payment, B gets 1 BTC from A. This is known as “fee”,
which is paid by the payer and is used for encouraging nodes to route multi-
hop payments. In LN, fee consists of fixed base fee and proportional fee that
fluctuates according to the congestion level of the network. To minimise the
cost, payers usually search for a path with least fee when making payments.



A B C

Wait until HTLC expire

C sends h to A

A and B sign HTLCAB

B and C sign HTLCBC

C and D terminates HTLCBC

B and C terminates HTLCAB

Fig. 2: Payment griefing attack.

2.2 Payment Griefing

If the payee C reveals the preimage on time and the intermediate node B is
rational, the multi-hop payment will eventually happen. However, there exists
an attack called payment griefing, where the payee withholds the preimage
until HTLCs expire. Before HTLC expire, coins involved in all channels of this
payment are locked and cannot route other payments.

Payment griefing is a threat on PCNs’ liquidity. If a big portion of coins in
a PCN are locked, the PCN will no longer be able to route payments. Payment
griefing is cheap, as the payment does not really happen and the payer does not
pay for the fee to intermediate nodes. Identifying payment griefing can be hard,
as nodes cannot distinguish whether the withholding is due to network delay,
on purpose, or by accident. If the PCN’s routing protocol is privacy-preserving,
payment griefing can even be launched anonymously. For example, Bitcoin’s
Lightning Network adopts onion routing [6], where each intermediate node only
has the knowledge of nodes who directly connect with him.

3 Security model

We consider nodes in the PCN are rational. They publish their routing fee stan-
dards, and accept all affordable routing requests. Each non-malicious node in
a multi-hop payment will reveal the preimage of the hashlock to the upstream
node once he knows its value.

At the beginning, the adversary does not control any node, but has the
knowledge of all nodes in the PCN, including the network topology, the capacity
and the fee standard of each channel. This can be achieved, taking lighting
network as an example, by accessing all publically available data on the Bitcoin
blockchain. When establishing a channel with a node, the node is willing to
provide sufficient capacity. According to liquidity providers such as Bitrefill5,
purchasing capacity from existing nodes is easy and cost-effective.

5 https://www.bitrefill.com/

https://www.bitrefill.com/


For simplicity, we does not consider the impact of timelocks on our attack.
Besides the timelock, a multi-hop payment has two parameters, namely length
and amount. We define the length of a multi-hop payment as the number of chan-
nels the payment involves, the amount of a multi-hop payment as the amount
of coins that the payer wants to pay to the payee, and the size of a multi-hop
payment θ as

θ = X · l

where X and l are the amount and the length of the payment. Given a payment
of size θ, there are θ coins locked in total. Before this payment finishes or expires,
these θ coins cannot be used for routing other payments.

4 Bankrun attack

Fig. 3: Bankrun attack. The adversary generates some sybil nodes (red), estab-
lishes payment channels with existing nodes (blue) in the network, and makes
payments between his own nodes and griefs these payments.

We introduce Bankrun attack (shown in Figure 3), an attack that exploits
the payment griefing to bank run PCNs. First, the adversary establishes payment
channels with existing nodes in the PCN, and make numerous multi-hop pay-
ments between his nodes simultaneously. Then, the adversary withholds preim-
ages until these payments expire. Before that, coins locked in these payments
cannot be used in other payments. If the adversary has sufficient budget, he can
lock a great portion of coins in the PCN so that the PCN may be paralysed.

This attack is similar with bank-run [4] in finance, where numerous clients
withdraw their money from a bank simultaneously, so that the bank will run
out of money and eventually bankrupt. In our Bankrun attack, an adversary
pretends to be multiple payers and payees and launch payment griefing attacks
simultaneously. Bank-run on both banks and PCNs leads to liquidity risk [4],
where the system is insolvent and can no longer process payments. However,
Bankrun attacks on PCNs can be much more dangerous than on banks. PCNs



inherently lack of liquidity, as PCNs are decentralised and coins are distributed
among channels. Meanwhile, a bank can be treated as the only hub who routes
all payments in a PCN. In addition, Bankrun attacks on PCNs can be cheap.
The adversary only needs to spend negligible coins on opening channels, and
coins for payment griefing will be refunded eventually.

We introduce a framework for launching Bankrun attacks. The framework
consists four critical components, namely 1) Node selection, 2) Path finding, 3)
Path ranking, and 4) Launching attack.

1. Node selection: The adversary chooses a set of nodes and establishes chan-
nels with them.

2. Enumerating payments: The adversary enumerates all payments between
his nodes.

3. Ranking payments: The adversary orders these payments.
4. Launching attack: The adversary starts to make and abort payments with

this order.

§4.1-4.4 will describe how to conduct these steps in detail.

4.1 Node selection

The adversary’s first step is to join the PCN by establishing payment channels
with existing nodes. Here comes two questions that, which and how many nodes
the adversary should establish channels with.

To answer the first question, we suggest to establish channels with rich nodes
(aka. hubs), as a hub is likely to route more payments than a poor node. The an-
swer of the second question depends on how the adversary enumerates payments
for griefing (i.e., the next step). More specifically, we should establish channels
with sufficient nodes so that the sum of sizes of enumerated payments takes the
majority of the network capacity and starts to converge. When this sum starts
to converge, the adversary should be able to lock sufficient coins, and cannot
lock more by establishing channels with more nodes. Later in §5.1 we will show
that the adversary only needs to establish channels with top 1.5% (42) richest
nodes if attacking Bitcoin’s Lightning Network.

4.2 Enumerating payments

After establishing payment channels, the adversary enumerates all possible pay-
ments between his nodes. To this end, he should find all paths between each pair
of his nodes, and calculate the maximum amount that each path can afford.

We first model the PCN as a weighted directed graph, where each channel
consists of two edges with opposite directions, and each edge is weighted by its
balance. As we cannot know real-time balances of channels, we use the initial
channel capacity for now, which can be retrieved from transactions opening
channels on the blockchain. When starting to attack (in §4.4), the adversary will
try to make these payments by gradually decreasing the payment amounts.



Algorithm 1 Enumerating payments.

Input:
1: The entire network G
2: The adversary’s node list N
Output:
3: The list of payments P

4: T ← []
5: for (n1, n2) in N do . Start from richest nodes
6: path list← BFS(G, n1, n2)
7: for path ∈ path list do
8: P ← {path : [], amount : 0} . Initialise an empty payment
9: P [path]← path

10: capacity list← [c.capacity for c in path.channels]
11: amount← min(capacity list) . Get the most viable amount of path
12: if amount = 0 then continue . This path is not viable
13: P [amount]← amount . P is a viable payment
14: Append P to P
15: Consume P in G . In simulated environment
16: end for
17: end for
18: return P

Our payment enumerating algorithm borrows the idea of Ford-Fulkersons
Algorithm [5] - a maximum flow algorithm in graph theory. Maximum flow is a
classic problem in graph theory, which aims at finding the maximum amount of
flow that the network allows from a source to a sink. Ford-Fulkersons Algorithm
is one of the most effective algorithms to solve the maximum flow problem. Given
a weighted directed graph and two vertices, Ford-Fulkersons Algorithm first uses
BFS to find all paths between these two vertices. For each path, the maximum
viable amount is the minimum weight of edges.

Algorithm 1 describes the process of enumerating payments. Similar with
Ford-Fulkersons, we employ BFS to find all paths between each two adversary
nodes. Then, we derive the most viable amount using the least channel capacity
for each path. Each path together with its most viable amount is a viable pay-
ment. Then, we consume this payment from the graph and add this payment to
our payment list. Eventually, the payment list contains all viable payments.

4.3 Ranking payments

Griefing different payments may have different impacts on a PCN’s liquidity.
When the adversary’s balance is limited, he should start from griefing critical
payments in order to maximise the attack’s effectiveness. Thus, the adversary
should rank payments by their importance. We consider three ranking criteria,
namely 1) the length l, 2) the amount X, and 3) the size θ. These three criteria
have different preferences on the attack effectiveness.



Order by size θ. This strategy is for maximising the amount of coins locked
in the PCN, without considering the balance of the adversary. For each payment,
the adversary can lock as many coins as the size θ of this payment.

Order by amount X. This strategy is for attacking most important chan-
nels in the PCN. Payments with large amounts involve channels with large
amounts. These channels can be important and treated as the “backbone” of
the entire PCN, as they may route numerous payments. Thus, attacking these
important channels can make all payments relying on these channels to fail.

Order by length l. This strategy is for maximising the amount of coins
locked in the PCN while minimising the cost. Given a fixed payment size, the
amount will be smaller if the payment involves more channels. Thus, when the
expected cost of the adversary is limited, starting from griefing long payments
can maximise the amount of coins locked.

4.4 Launching attack

Algorithm 2 Launching attack.

Input:
1: The list of ranked payments Pranked

2: The dropping step of amount step
3: The budget of the attacker B

4: for P in Pranked do . Can be concurrent using multiple threads
5: if B ≤ 0 then
6: return ;
7: end if
8: while True do
9: response← make payment(P )

10: if response = InsufficientFunds then
11: P [amount] = P [amount]− step
12: if P [amount] ≤ 0 then break
13: continue
14: end if
15: B = B − P [amount]
16: break
17: end while
18: end for

When enumerating payments, we use channels’ capacities rather than their
real-time balances for determining the amounts of payments. Thus, some of our
enumerated payments may not succeed. In real-world PCNs, if a node cannot
route a payment, the node will reply to the payer with an error message. For
example, Bitcoin’s Lightning Network calls this error InsufficientFunds.

We introduce a retry mechanism similar with Joancomarti et al. [8] for mak-
ing payments. Algorithm 2 describes the attack process. If the payer receives



InsufficientFunds, he will reduce the payment’s amount by a parameter step,
and retries until it is successful or the amount reaches zero. Unlike Joancomarti
et al. [8] using binary search, we search for feasible amounts, from largest possi-
ble to zero. This is because we aim at making payments successfully with largest
amounts, rather than revealing channels’ balances with fewest attempts.

5 Evaluation

In this section, we evaluate Bankrun attack with three strategies in §4.3 on
Bitcoin’s Lightning Network. Our results show that, the adversary can greatly
paralyse the entire PCN by launching a Bankrun attack. In particular, to launch
the attack, the adversary needs to use ∼77 BTC to establish payment channels
with 42 richest nodes in the network. The attack will lock 45% (∼ 267 BTC)
of balance of the entire network; reduce the success rate of most payments by
22% - 62% (compared to their success rate without the attack); increase average
attempt times of making payments by 26.4%∼113.7%; and slightly increase fees
of payments. According to [1], there are more than 10,000 addresses that have
more than 77 BTC and are able to launch payment griefing attacks.

5.1 Evaluating the attack’s effectiveness

Similar to Béres et al. [3], we use a batch of n payments, of which payers and
payees are random and the amount xt is fixed, to test the attack’s effectiveness.

Note that the focus of the attack may be different: some attackers aim at dis-
couraging small payments, while other attackers aim at discouraging large pay-
ments. To this end, we test multiple batches of payments with different amounts
(which will be discussed later).

We then simulate these payments in the PCN, both before and after the
attack. We allow each payment to try r times for finding a viable path. If it
finds a path within r tries, we consider it successful, otherwise failed.

There are three situations for payments, namely added, survived, or removed.
Added means the payment is failed before attack but is successful after attack.
Survived means the payment is successful both before and after attack. Removed
means the payment is successful before attack but is failed after attack.

Bankrun attacks aim at reducing the liquidity of PCNs. The liquidity of
PCNs consists of three aspects, namely 1) the success rate of payments, 2) the
average fee of payments paid to intermediate nodes, and 3) the average attempt
time of payments.

Success rate p. The drop of success rate of payments is a metric quantifying
the attack’s effectiveness. After the attack, payments will be less likely to succeed.
We define the success rate p of payments with that amount as

p =
nsucc
n

where nsucc is the amount of successful payments, and n is the amount of pay-
ments used for testing.



Average fee f̄ . In addition, the average fee of making payments is a metric.
We only consider survived payments when evaluating the average fee. Survived
payments might be forced to choose channels with higher fee or go through more
intermediate nodes, leading to higher fee. We define the average fee f̄ as

f̄ =

∑nsur

i=1 fi
nsur

where nsur is the amount of survived payments, and fi is the fee of the i-th
survived payment.

Average attempts ā. Moreover, the average number of attempts of making
a payment is a metric. After the attack, making a payment will need more
attempts for finding a viable path. We define the average attempts ā as

ā =

∑nsucc

i=1 ai
nsucc

where nsucc is the amount of successful payments, and ai is the attempt time of
the i-th payment.

Experimental setting We simulate and implement our attack using python
3.7.4 and NetworkX [7] - a Python library for complex networks. All experiments
run on a macOS with Catalina 10.15.3 operating system, a Intel Core i5-CPU
2.4G Hz CPU, and 8GB of memory. Similar to Béres et al. [3], we use the snap-
shot6 of the Bitcoin Lightning Network as the dataset. It contains the network
topology, capacities (but not balances) of channels, and fee standards of nodes.
We randomly generate the balance for each channel, which is same as in [3].

We test attacks with three ranking criteria in §4.3, and step = 0.1 ∗ amount
in Algorithm 2. We test attacks with different levels of budgets of the adversary,
including 7.7, 15.4, . . . , 77 BTC. To evaluate the effectiveness using the method
in §5.1, we pick n = 7, 000, xt = {100, 000, 700, 000, 1, 300, 000, 1, 900, 000}
(satoshi), and r = 10. In particular, we use four batches of payments with dif-
ferent amounts (100,000, 700,000, 1,300,000, and 1,900,000 satoshi). The range
of amounts covers most scenarios using PCNs: 100,000 satoshi is approximately
7 USD, and 1,900,000 is approximately 131 USD. Each batch consists of 7,000
payments, which is similar to Béres et al. [3]. We allow a payment to try 10
times for finding a viable path. If it finds a path within 10 tries, we consider it
successful, otherwise we consider it failed.

Number of nodes for establishing channels We test the percentage of
the capacity of the entire network that the adversary can lock by establishing
channels with different number of nodes on Bitcoin’s Lightning Network. Fig-
ure 4 shows that, by establishing channels with top 1.5% (42) richest nodes, the
enumerated payments take ∼ 83% of the capacity of the entire network. In ad-
dition, the sum of sizes of enumerated payments converges with the percentage

6 https://dms.sztaki.hu/~fberes/ln/ln_data_2019-10-29.zip

https://dms.sztaki.hu/~fberes/ln/ln_data_2019-10-29.zip


Fig. 4: The relationship between the percentage of hubs that the adversary es-
tablishes channels with (x axis) and the percentage of the capacity of the entire
network that the enumerated payments take (y axis).

of hubs increasing. Thus, if attacking Bitcoin’s Lightning Network, we suggest
the adversary establishing channels only with top 1.5% richest nodes.

(a) Visualisation of enumerated
payments. Red indicates edges in-
fluenced by our attack, and green
indicates unaffected edges.

(b) Distribution of enumerated
payments. Red indicates many
overlapped points, and blue indi-
cates few overlapped points.

Fig. 5: Characterisation of enumerated payments.

Characterisation of enumerated payments As aforementioned, we estab-
lish channels with 42 richest nodes in the network. Figure 5a visualises our
enumerated payments. It shows that our attack can influence most channels in
the entire network. Figure5b further visualises the distribution of amounts and
lengths of enumerated payments. The amount ranges from zero to 107 satoshi,
and the length ranges from 1 to 13. In addition, most payments are with the
length of 3∼6 and with the amount of 103 ∼ 106 satoshi. This confirms that our
payment enumeration algorithm (Algorithm 1) is effective.



5.2 Simulation results

Payment success rate Figure 6 shows the impact of our payment griefing
attacks on the success rate of payments with different amounts. It shows that,
the success rate of payments significantly drops due to the attack. In particular,

– Success rate of payments with 100,000 satoshi (∼ 7 USD) drops approxi-
mately from 58% to 40% (by 31.0%).

– Success rate of payments with 700,000 satoshi (∼ 50 USD) drops approxi-
mately from 47% to 22% (by 51.1%).

– Success rate of payments with 1,300,000 satoshi (∼ 93 USD) drops approx-
imately from 42% to 18% (by 57.1%).

– Success rate of payments with 1,900,000 satoshi (∼ 135 USD) drops approx-
imately from 31% to 12% (by 61.3%).

(a) 100,000 satoshi (b) 700,000 satoshi (c) 1300,000 satoshi (d) 1,900,000 satoshi

Fig. 6: Success rate of payments after attacks.

Larger payments are less likely to succeed both before and after the attack.
This is because if a payment’s amount is bigger, fewer channels can route this
payment. Also, the success rate of large payments drops more than small pay-
ments after the attack. This is because our attack starts from hubs and mostly
influences channels with large capacity.

In addition, order-by-length is more effective than the other two strategies
in terms of the success rate. Specifically, length priority can help underfunded
attackers get an additional 2%-19% net reduction in the success rate. This is
because the attacker’s balance is limited in our setting. As discussed in §4.3,
when the attacker’s balance is limited, he can lock most coins in the network by
starting from griefing long payments.

Moreover, the success rate of payments is 100,000 satoshi remains stable
when the budget is less than 69 BTC, but drops dramatically after that. Since
starting from griefing payments with big sizes or amounts, the attacker might
spend a great amount of coins, but only affect few channels.

We also evaluate the success rate of payments with different lengths after
the attack. We use the scenario where the payment amount is 1,300,000 satoshi



Fig. 7: Status of payments (1,300,000 satoshi) after the attack with 77 BTC and
order-by-length strategy. Red line indicates the percentage of removed payments.

and the attack uses order-by-length strategy as an example. The result (in Fig-
ure 7) shows that, long payments are more likely to be influenced by our attack.
Specifically, all 7-hop payments are killed by the attack, while only about 30%
of 1-hop payment are affected. This is because a long payment indicates that
the payer and the payee are far from each other, and draining a single channel
between them may fail this payment.

Interestingly, some payments are added. There are two scenarios that cause
added payments. The first scenario is that, consider two payments P1 = A →
B → C → D and P2 = F → C → D. Before attacking, P1 will exhaust channel
CD, and P2 will fail. The attack will drain AB, and P1 will fail. In this way,
CD can still route P2, and P2 will be successful. The second scenario is that, the
payment A→ B → C is forced to find another path A→ E → C as the attack
drains AB, so that BC can route other payments.

Average fee of survived payments Figure 8 shows the average fee of survived
payments after the attack. Note that for each figure, a payment is treated as
survived if it is successful after the attack with any budget and any strategy. The
result shows that, the fee slightly rises with the budget of the attack increases.

Overall, the attack using with the order-by-length strategy results in most
fee rise, and its advantage is more significant on small payments. For payments
with 1,900,000 satoshi, three strategies results in similar fee rise. For payments
1,300,000 satoshi, the order-by-length strategy results in most fee rise, while
the other two strategies achieve less fee rise. For payments with 100,000 and
700,000 satoshi, the order-by-length strategy results in most fee rise, and the
order-by-size strategy results in least fee rise.

The reason that the order-by-length strategy achieves most fee rise is because
griefing long payments influences most channels and is likely to force many pay-
ments to change paths. This can be more obvious on small payments, as small
payments are more sensitive to changes of channels’ balances.



(a) 100,000 satoshi (b) 700,000 satoshi (c) 1,300,000 satoshi (d) 1,900,000 satoshi

Fig. 8: Fee of survived payments after the attack.

Average attempt time of successful payments Figure 9 shows the impact
of out attack on the average attempt time of successful payments. For payments
with 100,000, 700,000, 1,300,000 and 1,900,000 satoshi, our attack forces the
average attempt time to increase by 2, 1.5, 1, and 0.8, respectively.

(a) 100,000 satoshi (b) 700,000 satoshi (c) 1300,000 satoshi (d) 1,900,000 satoshi

Fig. 9: Time of attempts of successful payments after the attack.

Similar with success rate and fee, order-by-length is more effective than the
other two strategies in terms of the average attempt time. The reason is also
because the order-by-length strategy is most effective when the budget is limited.
The advantage of order-by-length is more obvious on small payments, as small
payments are more sensitive to changes of channels’ balances.

In addition, the average attempt time of payments with 100,000 satoshi is
always much fewer than payments with bigger amount. We suspect this is be-
cause payments with 100,000 satoshi have much fewer “deceptive” channels. We
say a channel is deceptive for a payment with amount x when the capacity of
the channel is greater than x, but the balance is less than x.

Due to deceptive channels, the payer usually needs to attempt multiple paths
for making a payment. The attempt time depends on the ratio between the
number of deceptive channels and the number of channels with capacities greater
than the payment amount. As aforementioned, we assume the balance of each
channel is uniformly distributed. Under this assumption, given the payment’s
amount x, this proportion µ is calculated as



Table 1: The proportion µ of deceptive channels out of channels with capacities
greater than the payment amount. ā is the average attempt time before attack.

100,000 700,000 1,300,000 1,900,000

µ 15.0% 31.8% 31.2% 39.2%
ā 1.76 2.59 2.66 3.11

µ =

∑n
i=1

x
ci

n

where n is the number of channels with capacities greater than x, and ci is
the i-th channel’s capacity. Table 1 shows the trend of µ and ā is consistent,
which confirms our suspect.

6 Related work

To the best of our knowledge, Bankrun attack is the first practical attack on
PCNs’ liquidity. Dan Robinson [12] first discussed the griefing problem intro-
duced by HTLCs, and Interledger RFCs [2] discussed payment griefing attacks
in PCNs. Our Bankrun attack exploits payment griefing attacks to reduce the
entire PCN’s liquidity.

Mizrahi et al. [9] propose Congestion attack, where the adversary floods a
PCN with numerous small payments so that nodes reach the maximum number
of payments they can routes simultaneously. However, this maximum number is
controlled by max concurrent htlcs, a parameter determined by the node himself.
This can be mitigated simply by increasing the value of max concurrent htlcs.
If a PCN’s liquidity is bottlenecked by max concurrent htlcs rather than the
collaterised coins, the adversary can also launch Bankrun attacks that exhaust
max concurrent htlcs rather than channel capacities.

Rohrer et al. [13] discuss two attacks, namely Channel exhaustion and Node
isolation. Channel exhaustion aims at exhausting channels’ capacities by making
payments through them. Node isolation aims at exhausting all channels of a node
so that the node can no longer route payments. Pérez-Sola et al. [10] formalised
Node isolation as Lockdown attack, and evaluated it on Bitcoin’s Lightning
Network. Our Bankrun attack aims at paralysing the entire PCN, while Node
isolation and Lockdown attack aim at isolating individual nodes in the PCN.

7 Conclusion

In this paper, we propose Bankrun attack, which exploits payment griefing to
bank run PCNs. We provide a framework with three different strategies for
launching Bankrun attacks. We evaluate the effectiveness of Bankrun attacks on
Bitcoin’s Lightning Network as an example, and show that Bankrun attack is
cheap to launch and can greatly reduce the Lightning Network’s liquidity.



References

1. Top 100 richest bitcoin addresses. https://bitinfocharts.com/

top-100-richest-bitcoin-addresses.html, bitinfocharts, 2020
2. Akash Khosla, E.S., Hope-Bailie, A.: Interledger rfcs, 0018 draft 3, connector risk

mitigations. http://j.mp/2m2OvfP (Github, 2019)
3. Béres, F., Seres, I.A., Benczúr, A.A.: A cryptoeconomic traffic analysis of bitcoins

lightning network. arXiv preprint arXiv:1911.09432 (2019)
4. Diamond, D.W., Dybvig, P.H.: Bank runs, deposit insurance, and liquidity. Journal

of political economy 91(3), 401–419 (1983)
5. Ford Jr, L.R., Fulkerson, D.R.: Flows in networks, vol. 54. Princeton university

press (2015)
6. Goldschlag, D., Reed, M., Syverson, P.: Onion routing. Communications of the

ACM 42(2), 39–41 (1999)
7. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics,

and function using networkx. Tech. rep., Los Alamos National Lab.(LANL), Los
Alamos, NM (United States) (2008)

8. Herrera-Joancomart́ı, J., Navarro-Arribas, G., Ranchal-Pedrosa, A., Pérez-Solà,
C., Garcia-Alfaro, J.: On the difficulty of hiding the balance of lightning network
channels. In: Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security. pp. 602–612 (2019)

9. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks. arXiv
preprint arXiv:2002.06564 (2020)

10. Pérez-Sola, C., Ranchal-Pedrosa, A., Herrera-Joancomart́ı, J., Navarro-Arribas, G.,
Garcia-Alfaro, J.: Lockdown: Balance availability attack against lightning network
channels (2019)

11. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

12. Robinson, D.: Htlcs considered harmful. In: Stanford Blockchain Conference (2019)
13. Rohrer, E., Malliaris, J., Tschorsch, F.: Discharged payment channels: Quantifying

the lightning network’s resilience to topology-based attacks. In: 2019 IEEE Euro-
pean Symposium on Security and Privacy Workshops (EuroS&PW). pp. 347–356.
IEEE (2019)

https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
http://j.mp/2m2OvfP

	Bank run Payment Channel Networks

